
Report No. 75-0045
Contract No. NAS8-Z6990

(NASA-CR-144099) HAL/SM SYSTEM
REQUIREMENTS SPECIFICATION (M&S
Inc.) 146 P HC

SOFTli liRE
computing,

CSCL 09B

G3/61

N76-14844

Unclas
06780

HAL/SM SYSTEM

SOFTWARE REQUIREMENTS SPECIFICATION

December I, 1975

Prepared for:

George C. Marshall Space Flight Center
NASA
Marshall Space Flight Center, Alabama

E&~OMPUTING,INC. ------------

•

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

PREFACE

This is a reference manual document describing the requirements for
the HAL/SM programming system to be developed to provide the ability to use
the HAL programming language in the SUMC/MOSS environment.

This document is partially based on, supplements, and in part, super­
cedes the Higher Order Language (HaL) Preprocessor Requirements Specifi­
cation Document (Reference 8). As such, this document and the HAL/SM
Language Specification (Reference 1) shall be the final controlling specifica­
tions for HAL/SM software.

Section 1 of this document discusses the basic structure and major
objectives of the system. Section 2 describes the major subsystems of the
implementation and their functional requirements. Section 3 details the
interfaces between the major subsystems and implicitly defines their pro­
cessing requirements. Section 4 discusses restrictions and limitations in­
herent in the implementatio.n.

Prepared by:

C. Ross
G. P. W. Williams, Jr.

Project Manager:

J. L. Pruitt

Approved by:

•

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

•
•

TABLE OF CONTENTS

Section

LIST OF ACRONYMS

LIST OF FIGURES

v

vii

1.

2.

INTRODUCTION

SUBSYSTEMS

1

3

2.1 Preprocessor Subsystem 3

2.1.1 Inputs 5
2. 1.2 Symbolic Library Interface 7
2.1.3 M&CD Interface 7
2.1.4 Display Data Interface Utility (DDIU) Interface 7
2.1.5 Listings 7
2. 1. 6 Diagnostic Information 8
2.1.7 HAL/S-360 Compiler Interface 8
2. 1.8 User Interface 8

2.2

2.3

HA LLINK Subsystem

RTL Subsystem

9

9

2.3.1 Efficiency Criteria 9
2.3.2 Modifications to Support MOSS External Interface 12
2.3.3 Modifications to Support HAL/SM Calling 12

Sequences
2.3.4 Unsupported Functions 12
2.3.5 Unsupported Execution-Time JCL Options 13

3. INTERFACES 15

3.1 Preprocessor

3.1.1 TASK Header
3.1.2 COMPOOL Header
3.1.3 FUNCTION Header
3.1.4 PROCEDURE Header
3.1. 5 REPLACE Statement

i

15

16
17
18
19
20

•
•

Section

3.2

3.3

TABLE OF CONTENTS
(continued)

3.1.6 JOB Attribute
3. 1. 7 Type Specification
3.1.8 Initialization of DCW-Type Data
3.1.9 ON ERROR Statement (Form 1)
3.1.10 ON ERROR Statement (Form 2)
3.1.11 OFF ERROR Statement
3. 1. 12 SIGNA L Statement
3.1.13 RESET Statement
3.1.14 TERMINATE Statement
3.1.15 ABORT Statement
3.1.16 LOG Statement
3.1.17 UNLOCK Statement
3.1.18 LOAD Statement
3.1.19 INITIATE Statement
3.1.20 DELETE Statement
3.1.21 SCHEDULE Statement
3.1.22 WAIT Statement
3.1.23 A LERT Statement
3.1.24 AVERAGE AI Statement
3.1.25 READ ERP Statement
3.1.26 ISSUE Statement
3.1.27 SET Discrete Statement
3.1.28 APPLY Analog Statement
3.1.29 DISPLA Y TO OPERA TOR Statement
3.1.30 DISPLA Y CONTROL Statement
3.1.31 Display Data Statement
3.1.32 Modify VCW Statement
3.1.33 REQUEST Keyboard Statement
3.1.34 SELECT Statement
3.1.35 RELEASE Statement
3.1.36 CHANNEL Control Statement
3.1.37 CRITICAL SECTION
3.1.38 Time Literals
3.1.39 EVENT Variable
3. 1.40 OPEN and CLOSE Literals

HALLINK

RTL

21
23
25
27
29
31
33
34
35
37
39
40
41
42
43
44
49
53
55
57
59
61
63
65
67
69
73
74
76
78
80
82
84
85
86

87

88

3.3.1
3.3.2

ON ERROR Interface
OFF ERROR Interface

ii

89
91

Section

3.4

TABLE OF CONTENTS
(continued)

3.3.3 SIGNAL Interface
3.3.4 RESET Interface
3.3.5 CANCEL Interface
3.3.6 TERMINA TE Interface
3.3.7 ABORT Interface
3.3.8 LOG Interface
3.3.9 UNLOCK Interface
3.3.10 LOAD Interface
3.3.11 INITIATE Interface
3.3.12 DELETE Interface
3.3.13 SCHEDULE Interface
3.3.14 WAIT Interface
3.3.15 ALERT Interface
3.3.16 AVERAGE Interface
3.3.17 READ ERP Interface
3.3.18 ISSUE Interface
3.3.19 SET DISCRETE Interface
3.3.20 APPLY ANALOG Interface
3.3.21 WRITE TO OPERA TOR Interface
3.3.22 DISPLA Y CONTROL Interface
3.3.23 DISPLA Y DATA Interface
3.3.24 REQUEST KEYBOARD Interface
3.3.25 SELECT Interface
3.3.26 RELEASE Interface
3.3.27 CHANNEL CONTROL Interface
3.3.28 CRITICAL SECTION Interface
3.3.29 EVENT VARIABLE Interface
3.3.30 TIME Interface
3.3.31 DATE Interface
3.3.32 SPIOS Interface
3.3.33 Interrupt and Error Handling Modules
3.3.34 Miscellaneous Modules
3.3.35 LOCK Interface
3.3.36 R TL Modules to be Deleted

User

92
93
94
95
96
97
98
99

100
101
102
104
106
108
109
110
111
112
114
115
117
122
123
124
125
126
127
128
129
130
131
132
133
134

136

3.4.1
3.4.2

OS JCL Procedures
MOSS JCL

iii

136
136

Section

4.

TABLE OF CONTENTS
(continued)

RESTRICTIONS AND LIMITATIONS 137

4.1

4.2

HALlS Dependencies

Separation of Host and Target Machines

Diagnostic Capabilities

RTL Reentrancy

137

137

137

138

REFERENCES

iv

139

C&D
CVT

DDIU

I/O

JCL

MOSS

PAF

RTL

SUMC
SUMC-S
SVC

LIST OF ACRONYMS

Control and Display
Concept Verification

Display Data Interface Utility

Input/Output

Job Control Language

Modular Operating System for the SUMC

Program Access File

Run Time Library

Space Ultrareliable Modular Computer
SUMC-Simplex
Supervisor Call

v

(BLANK)

vi

Figure No.

2-1
2-2
2-3
2-4

LIST OF FIGURES

Title

HAL/SM Subsystems and System Flow
HAL/SM Preprocessor Subsystem
HALLINK Subsystem
HAL/SM Run-Time Library (RTL)

4
6

10
11

vii

(BLANK)

viii

1. INTRODUCTION

The HAL/SM programming system shall implement a version of the
HAL programming language (see Reference 9) which has been specifically
adapted for running in the Concept Verification Test (CVT) environment on
the Space U1trareUab1e Modular Computer - Simplex (SUMC-S) under the
Modular Operating System for the SUMC (MOSS). The HAL/SM programming
language is defined in the HAL/SM Language Specification (Reference 1, re­
ferred to herein as the Language Spec); familiarity with the Language Spec
shall be assumed throughout this document.

The HAL/SM programming system shall be implemented as an adapta­
tion of the HAL/S-360 Compiler System, Ee1ease 11.0 (see References 3
through 5), and shall consist of a HAL/SM Preprocessor, the HAL/S-360
Compiler, and modified versions of the HAL/S-360 HALLINK program and
Run Time Library (RTL). The preprocessor, compiler, and HALLINK
(collectively referred to herein as the language processor system) shall all
operate on the IBM S/360-370 family of computers under suitable operating
systems as specified in Reference 4. The HAL/SM object programs produced
by the language processor system when properly combined with the RTL and
linked in the MOSS environment (see References 6 and 7) shall be capable of
executing under and utilizing the full capabilities of the MOSS Operating System
on the SUMC-S computer system.

-1-

(BLANK)

-2-

•

2. SUBSYSTEMS

The major subsystems of the HAL/SM system shall be as follows (see
Figure 2-1):

o HAL/SM Preprocessor - converts HAL/SM source language
modules into HAL/S source language modules, performs
minimal syntax verification, provides various support
features which cannot be conveniently or adequately per­
formed by the HAL/S-360 compiler (e. g., M&:CD reference
verification, C&:Ddisplay message data set generation).

o HAL/S-360 Compiler - converts HAL/S source language
modules into IBM S/360 compatible object modules, per­
forms complete syntax verification.

o HALLINK - combines HAL/S object modules into load
modules, calculates run-time stack size requirements
and adds the stack to the load module, adds and/or deletes
certain other CSECTS from the gen.erated load module
depending on options specified.

o Run Time Library - when properly linked with each HAL/
SM task, provides computational routines and MOSS inter­
face routines to support various features of the HAL/SM
language.

The functions and interactions are described in more detail in the
remainder of this section on an individual subsystem basis, except for the
compiler. For more information on the compiler, see References 2 through 5.

2.1 Preprocessor Subsystem

This subsection describes the functional requirements for the HAL/
SM preprocessor. In this implementation of HAL/SM, the combination of the
preprocessor and the HAL/S-360 compiler takes the place of a HAL/SM-360
compiler. This approach to language translation has the advantage of being
considerably less costly than a compiler development effort. To take full
advantage of this fact, the requirements for the preprocessor have been
specified with the following ground rules in mind:

o Minimize complexity by making no modifications to
the HAL/S-360 compiler.

'RECEDING PAGE BLANK NOT FU,MED -3-

HAL/SM SUBSYSTEMS AND SYSTEM FLOW

/ /
/

HAL/SM Source
Language Modules

V / f\

.----I M&CD

\ .J
HAL/SM Preprocessor

/C&D Display f\
--I Messages

J HAL/S Source J\ ,/\
Language Modules

,/

HAL/S-360 Compiler

J J\

Object Modules
.

\ \/

J '\

HALLINK RTL

\ \I

/ 1\

Load Modules

\ d

~

MOSS

Figure 2-1

-4-

•

o Perform no processing in the preprocessor which can be
performed by the HAL/S-360 compiler.

Within these constraints the requirements listed in the following paragraphs
have been defined such that the preprocessor will provide the same facilities
as would otherwise be provided by a HAL/SM compiler. The single maJor
area where this is not possible is in syntax error detection and diagnostic in­
formation (see Section 2.1.6).

The remainder of this subsection is divided into detailed requirements
specifications by major functional area of the processing performed by the
preprocessor (see Figure 2-2).

2.1.1 Inputs

The preprocessor shall accept two classes of primary inputs: HAL/
SM symbolic source code and directives. An additional input shall be the
Program Access File.

Symbolic Source Code: The preprocessor shall accept HAL/SM
source code in the one-dimensional form defined in the Language
Specification. Symbolic source code may be presented to the
preprocessor from either a primary input data set (default; nor­
mally from the card reader) or a secondary input data set, as
specified by preprocessor directives. The secondary input data
set is called the Symbolic Library and contains block templates
generated by the preprocessor and other standard symbolic
modules which may be placed in the library using standard IBM
supplied utility programs.

Directives: Directives shall provide control information required
by the preprocessor and the compiler. The preprocessor shall
accept two types of directives:

o HAL/SM preprocessor directives (denoted by a "P"
in column 1 of the input record).

o HAL/S-360 compiler directives (denoted by a "0" in
column 1 of the input record).

Certain of the directives defined for the HAL/S-360 compiler (see Reference 5)
shall be restricted from use by the preprocessor in the HAL/SM system (TBD).·
These directives shall be replaced by preprocessor directives of the same
form and intent. All other compiler directives shall be passed by the pre­
processor to the compiler in the compiler's primary input data set. Additional
preprocessor directives shall be defined to control optional processing performed
by the preprocessor.

-5-

HAL/SM PREPROCESSOR SUBSYSTEM

/ /
/

HAL/SM Source
Language Modules

/

{HAL/SM /\ Iprogram f\

Symbolic Access
Library File (PAF)

\ V \ \

(\

OS JCL
~"

/,M&CL;"
"" \/"- ,

"-
"-
"

HAL/SM
Preprocessor

.

/ 1\
C&:D Display
Messages

Listings \ \J

/ /\
HAL/S Source
Language Modules

\ \J

Figure 2-2

-6-

Program Access File (PAF): Implementation of the HAL/SM ACCESS
attribute shall be via a PAF mechanism of the same form and intent as
in the HAL/S-360 implementation (see Reference 5, paragraph 6.2.2.6).
Although this capability is contained in the compiler, it must be dupli­
cated in the preprocessor because of certain transformations made by
the pr"eprocessor to the text of the preprocessed symbolic modules.

2.1.2 Symbolic Library Interface

The Symbolic Library facility of the HAL/SM system shall be imple­
mented via a mechanism of the same form and iritent as that of the HAL/S"-360
Include Library (see Reference 5, paragraph 6.2.2.5).

All block templates generated by the preprocessor shall be placed in
the Symbolic Library. Template generation shall be performed ina manner
similar to that performed by the compiler (see Reference 5, paragraph 6.2.2.7)
differing only as dictated by the definition of the HAL/SM language.

2.1.3 M&CD Interface

The preprocessor shall verify all references to ERP's made by the
HAL/SM programmer by looking up the M&CD ID in the M&CD. All references
to ERP's shall be checked for correct usage and the reference will be tran­
slated to the standard "a-name" defined for that particular ERP to permit
processing by the MOSS Linker.

2.1.4 Display Data Interface Utility (DDIU) Interface

The preprocessor shall remove all C&D display message text from the
HAL/SM source code and create a data set which contains this information.
The data set shall be constructed by the DDIU routines. Coded references to
the display data set shall be placed in the outputHAL/S code where each
message is referenced.

2.1.5 Listings

Several types of listings may be generated by the preprocessor as
specified by preprocessor directives. Some or all of these listings may be
optional (TBD).

Unformatted Source Listing: This shall be an "80-80" listing of
the primary input data set and all INCLUDEd text (from the Symbolic
Library) before annotation or reformatting by the preprocessor.

-7-

Reformatted Source Listing: This shall be a reformatted and annotated
representation of the symbolic HAL/SM source text. Indentation and
annotation shall be in essentially the same form as the primary listing
prod1l,ced by the compiler (see Reference 5, paragraphs 3.1-3.3).

Cross Reference Listing: This s.hall be an alphabetized listing of all
programmer -defined symbols together with a list of the line numbers
referencing each occurrence of each symbol in the reformatted source
listing.

Output Source Listing: This shall be a listing of the HAL/SM symbolic
source code produced by the preprocessor.

2.1.6 Diagnostic Information

The preprocessor shall produce diagnostic error messages for all
errors which it detects. These error messages shall consist of descriptive
text indicating the type oferror detected and they shall be placed in the re­
formatted source listing to indicate the source of the error.

The preprocessor shall not perform a complete syntactic or semantic
analysis of all statements. However, sufficient analysis shall be performed
such that errors not detected by the preprocessor shall cause incorrect HAL/S
symbolic code to be produced and the compiler will detect the error; i. e.,
syntactically incorrect HAL/SM source text will cause an error message to
be generated by either the preprocessor or the compiler or both.

2.1.7 HAL/S.360 Compiler Interface

The implementation shall provide for automatic invocation of the
compiler to process the HAL/S code produced by the preprocessor when no
errors are detected. All information required by the compiler shall be provided
to it by the preprocessor when the HAL/SM code. is error free. This includes
certain control information in the form of compiler directives (see Reference
5).

The version of the compiler system to be used in the HAL/SM system
shall be fixed at Release 11.0 for the entire duration of the software develop­
ment phase.

2.1.8 User Interface

OS/360-370 JCL procedures shall be implemented to permit convenient
use of the HAL/SM preprocessor. Suitable options and defaults shall be defined
and implemented into the procedures to allow for the normal expected range
of applications of the system.

-8-

2.2 HALLINK Subsystem

The HAL/S-360 HALLINK program (see Figure 2-3) is defined to
produce program complexes which operate in a different environment
from that of MOSS and it, therefore, performs certain processing which
is unnecessary for HAL/SM programs. HALLINK also allows certain
configuratlons of programs which are not valid in the HAL/SM System.
This subsection describes the functional requirements for modifications
to be made to the HAL/S-360 HALLINK program to make it usable and
reliable within the HAL/SM System. The modified version of HALLINK
shall be known as the HAL/SM HALLINK program.

The modifications to be made to HALLINK are primarily to en- .
force restrictions which must be imposed either as a result of the' HAL/
SM language definition and the MOSS environment or as a result of the
implementation of the HAL/SM System. Building these restrictions
into HALLINK will permit a certain degree of integrity to be guaranteed
when including non-HAL/SM modules in a HAL/SM task.

The HAL/SM HALLINK program shall operate in the same manner
as that for HAL/S~360with the following changes:

o Only one process shall be permitted in each address
space.

o Certain control sections shall be deleted from the
output load modules which are not needed in the
MOSS environment.

o The Execution Monitoring System (see Reference 5,
Section 4.3) shall not be supported.

2.3 RTL Subsystem

This subsection describes the functional requirements for modifi­
cations to be made to the HAL/S-360 RTL (see Figure 2-4) to make it
usable under MOSS in the HAL/SM System.

2.3.1 Efficiency Criteria

The configuration of the particular SUMC-S for which this imple­
mentation of HAL/SM is to be designed is currently envisioned as a
system on which main memory is more of a scarce resource than pro­
cessor tim~. For this reason, the primary efficiency criteria to be

-9-

HALLINK SUBSYSTEM

I \

HAL Object Modules

/

/ \

HAL/SM
as JCL , RTL, \ I, , , , , , ,

HALLINK

Listings

I \

Load Modules

\ I

Figure 2-3

-10-

HAL/SM RUN-TIME LIBRARY (RTL)

MOSS TASK

HAL/SM Program
and Data Modules

r------ --~-

I

I Computational
: Routines

- ,
I
I

I

I IL -'

HAL/SM RTL
t- -- -,- - ... - - - - - - - _,

I ,

, Real Time and I'

, Service Routines '
i '

" '________ ,;,":' __ '1"

r-------------j
, Error & Event I

, Control I

1----- ... -- -----.,
I SVC Interface I
I

I

r- - - - - - - .. - ,- .. ,

: C&D I/O
I

I,

I ,I

C&D Display
Messages

MOSS

Figure 2-4

-11-

used in· implementing the required modifications to the RTL shall be as
follows:

o Main Memory requirements shall be kept to a minimum.

o Execution speed shall be considered secondary to
memory utilization.

2.3.2 Modifications to Support MOSS External Interfaces

Modifications shall be made at all operating system interfaces due
to different implementation of similar functions. Some RTL modules and
interfaces shall be deleted where their functions are not supported; others'
shall be added to support new capabilities. Some functions which were
previously performed (or simulated) within theR TL shall be performed
by MOSS (e. g., task scheduling).

2.3.3 Modifications to Support HAL/SM Calling Sequences

Modifications shall be made to the R TL to provide interfaces to
the HAL/SM program for all new calling sequences generated by the pre­
processor (see Section 3.1). Some of the new interfaces shall be modified
versions of existing modules, while others shall require implementation
of completely new modules to support language mechanisms.

2.3.4 Unsupported Functions

Major deletions shall be made from the RTL of modules which handle
functions which are unsupported by this implementation. The major dele­
tions pertain primarily to the following:

o "Pseudo-RTE" - This refers to the RTL routines which
simulate process scheduling, event. management, etc.,
for the HAL/S-360 implementation. These functions shall
be performed by MOSS, frequently with modified seman­
tics.

o Execution Monitoring System - This facility (including the
Diagnostic Command Language, see Reference 5, Section
4.3) shall not be supported for HAL/SM.

o Multiple Processes - Under MOSS, exactly one process
(or "task") is permitted per address space. The HAL/
SM RTL shall support only one process per copy.

-12-

o Flight Computer Timing Simulation - This facility shall
not be supported for HAL/SM.

o Miscellaneous HAL/S Features not in HAL/SM - Certain
HAL/S language features are not provided in HAL/SM
because either the capability cannot be provided under
MOSS (e.g., the HAL/S UPDATE PRIORITY statement),
or because the capability is considered either dangerous
or difficult to support in this implementation.

2.3.5 Unsupported Execution-Time JCL Options

Because of the deletions mentioned in Paragraph 2.3.4, the follow­
ing execution-time options (see Reference 5, Appendix B) are not supported:

0 MSGLEVEL = 2

0 SIMTIME = n

0 SPEED =n

0 PCBS = n

0 FIRSTPGM =name

0 PROGRAM = name

0 TRACE = n

0 NOTIME

0 FAST

0 DUMPALL = n

-13-

(BLANK)

-14-

3. INTERFACES

'l'his section defines the preliminary processing requirements of
each of the major subsystems in terms of their interfaces. As in Section
2, the HAL/S-360 compiler is not discussed directly; see References 2
through 5 for more information. Since the relationships of the HAL/SM
programs to each of the subsystems are quite different, it is useful to
interpret the term "interface" differently for each subsystem discussed.
Specifically, for each subsystem the interfaces are discussed as follows:

o Preprocessor - For each HAL/SM statement type or
construct requiring a modified. implementation in
HAL/S the emitted HAL/S source code is described.

o HALLINK - The allowable inputs and the types of infor­
mation in the output load modules are discussed.

o RTL - For each new entry point into the RTL defined
in support of the preprocessor, the calling sequence
and function performed by the entry point is described.
For each RTL module whose implementation is affected
by the difference between the as and MOSS environment,
the required modifications ·are described on a functional
level.

In addition to the inter-subsystem interfaces discussed above, the
user interface is d1.scussed in terms of as and MOSS JCL requirements.

3.1 Preprocessor

This subsection enumerates the HAL/SM constructs which require
a modified implementation in HAL/S. Each numbered paragraph discusses
a single HAL/SM construct in the following form:

3.1. Construct Name

Syntax Diagram

Emitted HAL/S Code Template(s)

Notes

Examples

-15-

The syntax diagrams are of the same form as those in the language
specification, though they are not necessarily identical. Non-terminal
symbols which are not defined in the language specification are defined else­
where in this subsection. T!le notes are used to correlate various elements
of the HAL/SM construct with the emitted HAL/S code and to explain
differences in alternate versions of the emitted HAL/S code template re­
quired by options or alternatives in the HAL/SM syntax.

3.1.1 TASK Header

HAL/SM Syntax

task

\ header

~

HAL/S Code Template

\. TASK

r{ACCESS

jl--lI>------.i---<0-
.

I / program<\header

'"
Notes

1

\. PROGRAMJ)-------{)--------

1. The TASK in the HAL/SM construct is equivalent to
PROGRAM in HALlS.

2. Access control for HAL/SM constructs is performed
by the preprocessor.

Example

T1: TASK ACCESS;

becomes

T1: PROGRAM;
-16-

3.1.2 COMPOOL Header

HAL/SM Syntax

compool
header

(ACCESS
,

L J
~OMPOOL

'\ -:--
J) CRIGID

'\
~ ,

}

HALlS Code Template

compool
header

---~+------I(COMPOOL)i---_--'--------,---u.;.,r--

1-(RIGID)--

1. Access control for HAL/SM constructs is performed by
the preprocessor.

Example

Cl: COMPOOL ACCESS;

becomes

Cl: COMPOOL;

-17-

3.1.3 FUNCTION Header

HAL/SM Syntax

---.7---(FUNCTION t-r----;-~--"l"~tXP:e~spEe~i~----1

identifier EENTRANT

HAL/S Code Template

function
header

L r ., Itype I ~
./ ~UNCTION) I

Iisnec I ~)JA-.. r ,
~ EENTRANT"" identifier)

\

;

Note

1. Access control for HAL/SM constructs is performed by the
preprocessor.

Example

Fl: FUNCTION (TESTX) SCALAR :REENTRANT ACCESS;

becomes

Fl: FUNCTION (TESTX) SCALAR REENTRANT;

-18-

3.1.4 PROCEDURE Header

HAL/SM Syntax

procedure
header

ASSIGNidentifier)-.-Q).J

L.-_-(,)-_-'

----~--'PROCEDURE

HAL/S Code Template

identifier ASSIGN identifier

Note

1. Access control for HAL/SM constructs is performed by the
preprocessor.

Example

Pl: PROCEDURE (PROC1) ASSIGN (ARGU1) REENTRANT ACCESS;

becomes

Pl:PROCEDURE (PROC1) ASSIGN (ARGU1) REENTRANT;
-19-

3. 1. 5 REPLA CE Statement

HAL/SM Syntax

replace
statement

___I..'T--{ REPLA CE
J

---.-{(BY H----;(text

HALlS Code Template

Not Applicable.

Note

1. The REPLACE statement is processed by the preprocessor
(i. e., the preprocessor shall replace each < identifier> with
the appropriate < text » ..

Example

REPLACE ALPHAZ BY IIJ +.2 SIN(ALPHAB)";

•
•
•
BETAG =ALPHAZ - C05(Y);

becomes

BETAG = J + 2 SIN(ALPHAB) - C05(Y);

-20-

3.1.6 JOB Attribute

HAL/SM Syntax

label
attributes

L, (\
---:_~----(\. JOB /J-....------,-,-T---------

L(ACCESS)-I

HAL/S Code Template

EXTERNAL ROCEDURE CLOSE

NONHAL--r---{ PROCEDURE

Notes

1. All <identifier> s declared with the JOB <label attribute>
shall cause the preprocessor to produce a <VCON template>
(at the beginning of the compilation) with the declared identifier
as its <label> and the JOB <label attribute> shall be trans­
lated into a <VCON label attribute>.

2. All other <label attribute> s shall be handled the same in HAL/S
as in HAL/SM (i. e •• no transformation).

-21-

Example

DECLARE

LOGANAL JOBACCESS;-

becomes

LOGANAL : EXTERNAL PROCEDURE;

CLOSE:

•

DECLARE

LOGANAL PROCEDURE NONHAL (1);

-22-

3.1.7 Type Specification

HAL/SM Syntax

BIT

INITIAL literal

Notes

1. DeW arid EVENT keywords appearing in a <type spec> shall be
translated into a <bit (32) type spec>.

2. Identifiers declared with a FLAG <type spec> shall cause the
preprocessor to produce a <VCON template> (see Section
3.1.6) with the declared identifiers as its <label> and the FLAG
<type spec> itself shall be translated into a <VCON label
attribute> (see Section 3.1.6).

3. All other <type spec> s shall be handled the same in HAL/S
as in HAL/SM (i. e., no transformations).

4. When no initialization is present for DCW type data (see Section
3.1.8), a default value shall be inserted by the preprocessor.

-23-

Examples'

DECLARE VARCWI DCW;

becomes

DECLARE VARCWI BIT(32) INITIAL (HEX'40086000');

and

DECLARE EV 1 EVEN'!:;

becomes

DECLARE EV 1 BIT(32) INITIAL(O);

-24-

3.1. 8 Initialization of DeW-Type Data

HAL/SM Syntax

initial
,

list lexpression I

L.. c dcw value list :JJ

L.....-Jarith exp "" -<D-j"initial list L(D-
'""

..If\.Jdcw value list" "'"
~") '<V

f
lite.al J

-lunsubscrioted var I

HAL/S Code Template

initial
,

list --l expression l-
I., (bit literal '\
~ .1 .

(i)

-1arith exp I"" -(D-J initial list ...I\\.
."'-' ~

[1)
(

bit literal "Y

\)

r "\. literal F
I

unsubscriDted var I

Note·

1. This <bit literal> shall be an encoded value specifying the
display control word options specified in the < dcw value list>
in the HAL/SM construct. Any omitted options in the <dew
value list> shall be assigned default values.

-25-

Example

DECLARE

DCW 1 DCW INITIAL([YELLOW,lOMM, BLINK OFF, 6 J);

becomes

DECLARE

DCW 1 BIT(32) INITIAL(HEX'202C4000');

-26-

3.1. 9 ON ERROR Statement (Form 1)

HAL/SM Syntax

...., ,P.. -{-:-:-:-:-E-RM-E-9r----
..

}-(SIGNAL)-(-rl-fl-ag-;L~ _

HALlS Code Template

number

CALL

variable

number

Note",

1. This <label> shall be an entry into the R TL to communicate
the required information to the HAL/8M error monitor.

2. This < number> shall indicate the error group specified in
the <error spec> of the HAL/8M syntax.

3. This <number> shall indicate the error number within the
selected error group as specified in the <error spec> of
the HAL/8M syntax.

-27-

4. This <bit literal> shall indicate whether the SYSTEM or
IGNORE option was selected in the HAL/SM syntax, and
whether a flag is to be signaled.

5. This optional <variable> shall specify the HAL/S variable
corresponding to the HAL/SM <flag> , when present.

Example

LAB1:ON ERROR
3

:1IGNORE AND SIGNAL FLAG_A;

becomes

LAB1:CALL RTL_ON ERROR1(3, I, BIN'll', FLAG_A);

-28-

3.1.10 ON 'ERROR Statement (Form 2)

HAL/SM Syntax

HA L/S Code Template

error spec statement

----(number Wlabel~EXITYv--Clabel ~'---

- - - -l-s-ta-te-m-en-t--'--i--l(END

Notes

~--

1. This <label> shall be an entry into the R TL to communicate
the required information to the HAL/SM error monitor.

-29-

2. This <number> shall indicate the error group specified in
the <error spec> of the HA L/SM syntax.

3. This <number> shall indicate the error number within the
selected er ror group as specified in the <er ror spec> of the
HAL/SM syntax.

4. This <label> shall be generated by the preprocessor and shall
be the same identifier as indicated by 6.

5. This <statement> shall correspond to the <.statement> in the
HAL/SM syntax.

Example

ON ERROR 3:1 GO TOERREXIT;

becomes

DO;

CALL RTL_ON_ERROR2 (3, 1, G000005);
EXIT:

G000005; GO TO ERR EXIT;
END:

-30-

3.1.11 OFF ERROR Statement

HA L/SM Syntax

basic
statement

)J----if error spec ~>--------

HAL/S Code Template

CALL

Notes

1. This <label> shall be an entry into the R TL to communicate
the required information to the HAL/SM error monitor.

2. This <number> shall indicate the error group specified in
the <error spec> of-the HAL/SM syntailt.

3. This <number> shall indicate the error number within the
selected error group as specified in the <error spec> of the
HAL/SM syntax.

-31-

Example

OFF ERROR l :2 ;

becomes

CALL R TL_OFF_ERROR(I, 2);

-32-

3.1.12 SIGNAL Statement

HALISM Syntax

basic
statement .----'-{.}------,

flag--.."J---.----_----....--t SIGNAL

HALlS Coqe Template

basic
statement r-----t,.'}---..,

K!}--L...j variable
'--_/

Notes

1. This <label> shall be an entry into the R TL to perform the
required functions.

2. Each <variable> shall specify the HALlS variable correspond­
ing to each <flag> appearing in the HALISM construct.

Example

becomes

CALL RTL SIGNAL (FLAG A, FLAG_B);

-33-

3.1.13 RESET Statement

HAL/SM Syntax

basic f,\.
statement ~

1 ((

~label y ,"RESET :; "event var ./ ~

HAL/S Code Template

basic
statement

Notes

1. This <label> shall be an entry into the RTL to perform the
required functions.

2. Each <variable> shall specify the HAL/S variable correspond­
ing to each <event var> appearing in the HAL/SM construct.

Example

becomes

CALL RTL RESET (EV_A);

-34-

3.1.14 TERMINATE Statement

HAL!SM Syntax

---;:)·_-.--~--_rlTERMlNATE

HAL!S Code Template

JOB

TASK

basic
statement

CALL label

1. This <label> shall be one of two entry points into the R TL to
perform the required functions.

Example

TERMINATE JOB;

becomes

CALL RTL_JTERM;

and

-35-

TERMINATE TASK;

becomes

CALL RTL_TTERM;

-36-

3.1.15 ABORT Statement

HALISM Syntax

HALlS Code Template

ABORT

JOB

TASK

label

Notes

CALL

1. This <label> shall be one .of three entry points into the R TL
to perform the required functions.

2. Each <label> shall specify the HAL/S label corresponding to
each <label> in the HAL/SM con'struct.

-37-

Examples·

ABORT JOB;

becomes

CALL RTL_JABORT;

and

L:ABORT TASK_I, TASK_2;

becomes

-38-

3.1.16 LOG Statement

HAL/SM Syntax

~~ ,-(~OG Hchar exp

4>-(label)-l

HALlS Code Template

--(<;)1--

char exp

Notes

1. This <label> shall be an entry point into the R TL to perform
the required functions.

2. The <char exp> shall be the character expression specified
in the HAL/SM construct.

Example

LOG 'SIMULATION ERROR' IIERROR_NUMBER;

becomes

CALL RTL_LOG ('SIMULATION ERROR' I!ERROR_NUMBER);

-39-

3.1.17 UNLOCK Statement

UNLOCK label

HALlS Code Template

•

-O-T-::::!:==~1
'--_/

Notes

1. This <label> shall be an entry point into the RTL to perform
the required functions.

2. Each <label> shall specify the HALlS label corresponding
to each <label> in the HAL/SM construct.

Example

UNLOCK TAKE_OFF;

becomes

-40-

3.1.18 LOAD Statement

HAL/SM Syntax

basic
statement

---.'JI---,-------_._-{' '}---{', ,r---......, I ",-_L_O_A_D_.;J

~label r
.

HAL/S Code Template

label '1----I(Dr---

)--.-~=::::::-r1CALL

Notes

label

1. This <label> shall be an entry point into the RTL to perform
the required functions.

2. This <label> shall specify the HAL/S label corresponding to
the <label> in the HAL/SM construct.

Example

LOAD LOG_ANALYZER;

becomes

CALL RTL_LOAD (LOG_ANALYZER);

-41-

3.1. 19 INiTIA TE Statement

HAL/SM Syntax

HAL/S Code Template

INITIATE label

Notes

1. This <label> shall be an entry point into the RTL to perform
the required functions.

2. This <label> shall specify the HAL/S label corresponding to
the <label> in the HAL/SM construct.

Example

INITIATE LOG_ANALYZER;

becomes

CALL RTL_INIT (LOG_ANALYZER);

-42-

3.1. 20 DE"LETE Statement

HALISM Syntax

HALls Code Template

DELETE

JOB

TASK

label
CALL label

1. This <label> shall be one of two entry points into the R TL
to perform the required functions.

Examples

DELETE JOB:

becomes

CALL RTL3DEL;

and

DELETE TASK;

becomes

~43-

3.1. 21 SCHEDULE Statement

-:---O--.---:~=:::-'Ir\SCHEDULE

expression

time value

time value

-44-

HALlS Code Template

ached
event ex tern a

/rJ)

c __f TL_SCHED-"ARM~r-C-ha-r-e-xp-.L,~_. _

,..-.c=r""1 number
~~-_./

bit var

number

~OUBLEm

Lr'--.f.t<TL EVENT EXP
TRiNG

l...r'>-lKTL EVENT VAR
S'l""" --

-45-

where:

----~--fTEMPORARY R TL SCHED PARM CHARACTER

----CD-(255)-<D---<D-----

event exp
temps

--~J---~TEMPORARY TL EVENT VAR LIST- - NAME

----(ARRA Y)-<0-(number)-<D-(BIT. }-<D-(32)-<D--0-----

Notes

1. This <char exp> shall correspond to the parameter expression
to be passed to the scheduled task.

2. This optional path shall be taken when an <eventexp> appears
in the HAL/SM construct. The path shall be repeated via a
feedback loop as many times as there are event variables in
the event expression. The <number> on this path shall be
a one (1) the first time through, and shall be incremented each
time the path is taken for a given HAL/SM construct. Each
<bit var> on the path shall correspond to each of the <event
var> s appearing in the HAL/SM construct.

-46-

3.. This optional path shall be taken when an <event exp> appears
in the HAL/8M construct. The path shall be repeated via a
feedback loop as many times as necessary to initialize the
array with the Reverse Polish representation of the <event exp>
(see Reference 7, Section 5.2.1). The <number> on this path
shall be one the first time through, and shall be incremented
each time the path is taken for a given HAL/SM construct.
Each <bit var> on the path shall correspond to the code for
either an event operand in the HAL/SM construct or operator
according to the conventions specified for MOSS event expressions.

4. This <label> shall be an entry point into the R TL to perform
the required functions.

5. This <bit literal> shall be a bit vector indicating the presence
of certain optional parameters in the R TL invocation.

6. This <label> shall be the HAL/S label corresponding to the
task label (of the task bei",g scheduled) in the HAL/SM construct.

7. This <arith exp> shall correspond t6 the <time value> in the
IN or A T phrase of the HAL/SM construct, when present.

8. Thi s optional path shall be taken when an <event exp> appears
in·the HAL/SM construct. The <number> indicates the number
of <event var> s present in the <event exp>o

9. This optional path shall be taken when a THEN WAIT phrase
. appears in the HAL/SM construct. The <arith exp> shall
correspond to the <time value> in the HAL/SM construct.

10. This optional path shall be taken when a REPEAT phrase
appears in the HAL/SM construct. The <arith exp> shall
correspond to the <time value> in the HAL/SM construct when
the AFTER clause is present and shall be zero when it is
absent.

11. This optional path shall be taken when a parameter to be passed
to the scheduled task is specified in the HAL/SM construct.

-47-

Examples-

L: SCHEDULE IOTA;

becomes

L: DO;

CALL RTL_SCHED (BIN '0', IOTA);

END;

and

SCHEDULE DELTA IN 30 SECS WHENEVI & (EVZ/EV3);

becomes

DO;

TEMPORARY

R TL EVENT VAR I.JST NAME ARRA Y (3) NT (3Z),
RTL:=EVENT:=EXP:=STRING ARRAY (6) BIT (8);

RTL_EVENT_VAR_I.JST I = EVl;
RTL_EVENT_VAR_I.JST

Z
= EVZ;

RTL EVENT VAR LIST = EV3;
RTL:=EVENT:=EXP:=STRI~Gl= HEX '01';
RTL_EVENT_EXP_STRINGZ = HEX 'OZ';
RTL_EVENT_EXP_STRING

3
=HEX '03';

RTLYVENT_EXP_STRING4 ;= HEX'4E';
RTL_EVENT_EXP_STRINGS =HEX 'SC';
RTL EVENT EXP STRING = HEX '7E':
CALL RTL_SCHED-(BIN 'OdllOO', DELTA, (30000)@ DOUBLE,

RTL_EVENT_VAR_I.JST, RTL_EVENT_EXP_STRING, 3);

END;

-48-

3.1. 22 WAIT Statement

HAL/SM Syntax

irile value

,-_-/)-t~~~Kirn.evalue

event exp

basic
statement

-49-

HALlS Code Template

event exptemps

TL EVENT VAR LIST- - number bit var

~DOUBLE~ _

m~.....!-<~ut-""':"'G....V_E_N_T E_X_P_:_~)00{ number }cD-e-lbit literal

--Ie CALL;c 1.b.1~ In, "'m1)1-----

'\

TL EVENT EXP
TRiNG -

DOUBLE

number

-50-

where:

NAME

--{number~TL_EVENT_EXP_STRING)---

---(ARRA~number)-<D--(BIT~

Notes

1. This optional path shall be taken when an <event exp> appears
in the HAL/SM construct. The path shall be repeated via a
feedback loop as many times as there are event variables in the
event expression. The <number> on this path shall be a one
the fir st time through, and shall be incremented each tim.e
the path is taken for a given HAL/SM construct. Each <bit var>
on the path shall correspond to each of the <event var> s
appearing in the HAL/SM construct.

2. This optional path shall be taken when an <event exp> appears
in the HAL/SM construct. The path shall be repeated via a
feedback loop as many tim.es as necessary to initiate the arJ:"ay
with the Reverse Polish representation of the <event exp> (see
Reference 3, Section 5.2.1). The <number> on this path shall
be one the first tim.e through, and shall be incJ:"em.ented each tim.e
the path is taken for a given HAL/SM constJ:"uct. Each <bit
literal> on the path shall correspond to the code for either an
event operand or operatoJ:" in the HAL/SM constJ:"uct accoJ:"ding
to the conventions specified for MOSS event expJ:"essions.

3. This <label> shall be an entJ:"Y point into the RTL to perfoJ:"m..
the required function.

4. This <bit literal> shall be a bit vector indicating the presence
of ceJ:"tain optional parameters in the R TL invocation.

-51.

5. This <arith exp> shall correspond to the <time value> in
the FOR phrase of the HAL/SM construct, when present•.

6. This optional path shall be taken when an <event exp> appears
in the HAL/SM construct. The <number> indicates the
number of <event var> s present in the <event exp>.

7. This optional path shall be taken when a THEN WAIT phrase
appears in the HAL/8M construct. The <arith exp> corres­
ponds to the <time value> in the HAL/SM construct.

Examples

STATE3:

becomes

WAIT FOR MET 50 SECS 25 MSECS
UNTIL EVARI/EVARIO;

STATE3: DO;
TEMPORARY

RTL_EVENT~VAR_USTNAME ARRAY (2)
BIT (32),

. RTL_EVENT_EXP_STRING ARRAY (4)
BIT (8);

RTLY;VENT_VAR_UST I = EVARI;
RTL EVENT VAR UST = EVARIO;
RTL=EVENT=EXP=STRI~Gl= HEX '01';
RTL_EVENT_EXP_STRING

2
= HEX '02';

RTL EVENT EXP,sTRING =HEX '4E';
RTL-EVENT-EXP-STRING~= HEX '7E';
CALL RTL_WAIT(BIN '01110', (50000)@DOUBLE,

RTL_EVENT_VA~_UST,RTL_EVENT_EXP_

STRING);

END;

STATE4:

becomes

WAIT FOR GMT 2 TSTART;

STATE4: DO;

CALL RTL_WAIT(BIN '0', 2 TSTART);

END;

-52-

3.1.23 A LER T Statement

HALISM Syntax

-~LERT}1event va~ t-Q-f. event ~

dim literal

arith exp r>J'r--"

label

relational op

}-~..........- ...-ltime valueclock

TERMINA TION
event

HALlS Code Template

LJT'----' bit var

- - - ---(i) (j)r--

-53-

Notes

1. This <label> shall be an entry point into the RTL to perform
the required functions.

2. This <bit var> shall correspond to the <event var> in the
HAL/SM construct. '

3. This <bit literal> shall indicate the 'presence of certain optional
parameters in the RTL invocation.

4. This <label> optionally specifies the HAL/S <label> ,?orres­
ponding to the task label, the program flag, or the ERP
designator in the HAL/SM construct.,

5. This optional path shall be taken when the <ERP designator> or
< clock> is specified in the HAL/8M construct. The <number>
shall correspond to the <relational op>, the IS BETWEEN, IS
NOT BETWEEN, or the>, = specification in the HA L/SM con­
struct.

6. This optional path shall be taken when the <erp designator>
or <clock> is specified in the HAL/SM construct. The <arith
exp> shall correspond to the <dim literal> or <arith exp>
following the <erp designator> or the <time value> following
the <clock> in the HAL/8M construct.

Examples

-'

STATES:

becomes

STATES:

and

STATE7:

becomes

STATE7:

ALERT EVENT_VARI TO TERMINATION OF TASKA;

CALL RTL_ALERT (EVENT VAR1, BIN '0', TASKA):

ALERT EVENT VAR5 TO AIlS 2 DELTAV:

CALLRTL_ALERT (EVENT_VAR5, BIN 'll', OAI15, 0,

(2 DELTV)@DOUBLE);

'-54-

3.1. 24 AVERAGE AI Statement

HA L!SM Syntax

:J-"'-'r:/ :tCAVERAGE)-Jarith exp KREADINGS)-@---­
'-0-(labe1 y .

ASSIGN

erp designator

HAL!S Code Template

arith exp

~
)-<D-jvariab1e ~---

~---

Notes

1. This <label> shall be an entry point into the R TL to perform
the required function.

2. This <arith exp:> corresponds to the <arith exp> which specifies
the number of readings to be averaged in the HA L!SM construct.

-55-

3. . This <label> shall specify the HAL/S <label> which corres­
ponds to the HAL/SM <erp designator>.

4. This <variable> shall correspond to the <variable> which
specifies the data storage area in the HAL/SM construct.

Example

STATEIO:

becomes

STATEIO:

AVERAGE 2$N READINGS OF AINPUT 25

ASSIGN AVERA.GE_VALUE;

CALL RTL_AVE.RAGE(2*N, OAI25) ASSIGN
(AVERAGE_VALUE);

-56-

3.1.25 READ ERP Statement

HA LISM Syntax

DELTAS

HALlS Code Template

MEASURE

SENSE

ASSIGN

e.l"p de signator

~_-(••}- -l

variable

number ~~-G}L~variable

-57-

Notes

1. This <label> shall.be an entry point into the RTL to perform
the required function.

2. This <number> shall indicate the presence of the DELTAS option
in the HAL/SM construct.

3. This <number> shall specify the number of <label> sand
< variable> s which follow.

4. This <label> shall specify the HAL/S <label> which corresponds
to theHAL/SM <erp designator>.

5. This <variable> shall correspond to the <variable> which
specifies the data storage area in the HAL/SM construct.

Example

SENSE AINPUT-IO AND SAVE AS ALPHA;

becomes

CALL RTL_SENSE (0,1, OAIlO,ALPHA);

-58-

3.1.26 ISSUE Statement

HA L/ SM Syntax

basic
statement

ISSUE

- - - ---Grp de Signato.1)----<Df-----

HALls Code Template

•
variable

bit literal

number

..-------(,.)------------.,.----,

variable

bit literal

number

Notes

1. This <label> shall be an entry point into the R TL to perform
the required functions.

2. This <label> shall specify the HA L/S <label> which corres­
ponds to the HAL/SM <erp designator>.

-59-

Example

STATE1:

becomes

STATE1:

ISSUE B21, B32 TO RECORD_23;

CALL RTL_ISSUE (OR23, B21, B23);

-60-

3.1. 27 SET Discrete Statement

HA LISM Syntax

basic
statement

to{ 7abe1 }rC SET

,

~rp deSignato?J---- - - - -

. G)>-,c----

variable

bit literal

number ime value

HA LiS Code Template

label
label

number

variable

bit literal H-.......

number

.---~arithexp ~DOUBLE~-<D---0

-61-

Notes

1. This <label> shall be an entry point into the RTL to perform
the required function.

2. This <number> shall specify the number of <label> s to follow.

3. This <label> shall specify the HAL/S <label> which corres­
ponds to the HAL/SM <erp designator>.

4. This <number> shall spe.cify the number of values to follow.

5. This <arith exp> shall correspond to the <time value> in the
FOR phrase of the HAL/SM construct, when present.

Example

STATES:

becomes

STATES:

SET DOll, 0012 TO 10, 12 FOR DELTAT:

CALL RTL_SETD(2, 00011, 00012, 2, 10, 12,
(DELTAT)@DOUBLE);

-62-

3.1.28 APPLY Analog Statem.ent

HALISM Syntax.

APPLY

SEND

dim. literal

arith exp

DELTAS

----..~_ _.----L.--____r-------------...,.(

HALlS Code Tem.plate

basic
statem.ent

tim.e value RAMPED

UNTIL

dim. literal

-63-

Notes

1. This <label> shall be an entry point into the R TL to perform
the required function.

2. This <number> shall indicate the presence of the DELTAS,
RAMPED TO, or pulsed options.

3. This <number> shall specify the number of <arith exp> s
and <label> pairs to follow.

4. This <arith exp> shall specify the value or values to be
APPLYed to the <erp designator>.

5. This <label> shall specify the HAL/S <label> which corres­
ponds to the HAL/SM <erp designator>.

6. This optional path shall be taken when the value(s) is to be pulsed
or ramped. The <arith e:xp> shall correspond to the <time
value> in the FOR phrase of the HAL/SM construct.

7. This <arith exp> shall correspond to the <dim literal> or
<arith exp> following RAMPED TO or UNTIL in the HA L/SM
construct.

Example

STATE25:

becomes

STATE25:

APPLY DELTAV TO A024 FOR 2 TSTART UNTIL MAXV;

CALL RTL APPLY (1,1, (DELTAV), OA024, (2 TSTAR T)

@DOUBL~(MAXV));

-64-

3.1.29 DISPLAY TO OPERATOR Statement

HA L/SM Syntax

~ 0DISPLAy)--.G)-COPERATOR)-----
~labe1).J'

, ACCEPT

char exp

HAL/S Code Template

label

------,<D~I-==cha-=-=rexp:l-_~ ~~
• ~ charvar ~ _

Notes

1. This <label> shall be an entry point into the RTL to perform
the required function.

2. This optional path shall be taken when ACCEPT REPLY IN
appears in HAL/SM construct.

-65-

E::cample

MESSl:

becomes

MESSl:

DISPLA Y TO OPERA TOR 'HAS JOBA BEEN INITIA TED',

ACCEPT REPLY IN REPLY_BUFFER:

CALL RTL WTOR ('HAS JOBA BEEN INITIATED',
REPLY_BUFFER);

-66-

3.1.30 DISPLA Y .CONTROL Statement

HA L!SM Syntax

PAGE SELECT

CLEAR

VIDEOI

VIDE02

0 --(])
ALLOCATE - - -<Z>

DEALLOCATE ---@

@----

HAL!S Code Template

CRT number number

-67-

Notes

I. This <label> shall be an entry point in the R TL to perform
the required function.

2. ' This <number> shall indicate which control function is to be
performed.

3. This <bit literal> shall indicate the presence of the optional
RTL CRT parameters.

4. This optional path shall be taken when the TO <CR T < number> ­
<number> > is specified in the HAL/SM construct.

Example

CaNTRaLl: VIDE02 STROKE TO <CRT'I-4>;

becomes

CaNTRaLl: CALL RTL_DISCON(6. BIN 'I', 1,4);

-68-

3.1.31 Display Data Statement

HAL/SM Syntax

UPDATE identifier

label

WIDTH

har litera!l---t'<ll

VECTOR

-69-

HA!,../S Code Template

t:.....-,-(~m)--{ ,.~~----~­
LcD-(label)--J

~~~~~)-.-.(:;)--~n~u~m~b~e:cr:....)---G}-4b~i~t~I~\t~e:cr::a~I~)-------- - - - - -<D

GC~ha~r=Ii~';te~r~a~')-r?,~----"""'-r,=;\------T---- -- - - ..(!)

-------.-1

ISl'---j

number ---@

<D------------------------~

a>- - - - --<;)--\:b~it~li~t:er::a~10-1------~---------1-0----<i)-------

10

-70-



Notes

1. This <label> shall be an entry point into the R TL to perform
the required functions.

2. This optional path shall be taken when DISPLAY BGROUND or
DISPLA Y ADDON are specified in the HAL/SM construct.

3. This <identifier> shall specify the program label by "lhich
the BACKGROUND and ADDON disk messages are identified.

4. This <number> shall identify the record within the data set
specified by note 2 that contains the BACKGROUND or ADDON
message.

5. This <bit literal> shall specify the presence of the BLINK STATUS
option in the HAL/SM construct.

6. This <number> shall specify the number of <variable> and
associated <dcw var> pairs in the DISPLA Y BGROUND and
DISPLA Y ADDON options of the HAL/SM construct.

7. This <bit var> shall correspond to the <dcw var> following
the WIDTH <number> specification in the HAL/SM construct.

8. This <variable> corresponds to the <variable> following the
FOR in the HAL/SM construct.

9. This <bit literal> shall specify the presence of the <CR T
<number < - <number« specification in the HAL/SM construct.

10. This optional path is taken when <CRT <number> - <number> >
is specified in the HAL/SM construct.

11. This optional path is taken when the DISPLA Y <identifier> or
UPDA TE <identifier> is specified in the HA L/SM construct.

12. This <char literal> corresponds to the <identifier> s mentioned
in note 11.

13. This <number> shall specify the number of <variable> s in the
UPDATE <identifier> option of the HAL/SM construct.

-71-



14. This optional path shall. correspond to the UPDATE <identifier>
option in the HAL/SM construct. The <variable> shall corres­
pond to the <variable> after <identifier> in the HAL/SM con­
struct.

15. This optional path shall correspond to the UPDATE <label> in
the HAL/SM construct.

Examples

STATEl:

becomes

STATEl:

and

STATES:

becomes

STATES,:

and

STATEIO:

becomes

STATEI0:

DISPLAY ADDON TO <CRT 1 - 4>BLINK STATUS

TEXTCWI TEXT 'THIS IS SAMPLE DATA',

WIDTH 10 VARCWI FOR DATA_ARRA Y:

CALL RTL_DISADD(PROGl"10, BIN '1', I, VARCWl,
DATA_ARRAY, BIN '1', I, 4);

DISPLAY BGROUNDLINE 3 COL 10 TEXTCWI TEXT
'THE ALTITUD;E VARIATIONS ARE', LINE 5 COL
15 WIDTH 3 VARCW2 FOR ALTITUDE:

CALL RTL_DISBACK(PR:OGl, IS, BIN '0', BIN '0');

UPDATE STATE5;

CALL RTL_DISUPD(I, VARCW2, ALTITUDE, BIN '0',
BIN '0');

-72-



3.1.32 Modify VCW Statement

HAL/SM Syntax

r-; ::r(MODIFY )idCW var ~dCW value list}0-

.L.®-(label)-J - .

HAL/S Code Template

---CI--r--;::==::;:-.,..-j bit var

bit var

bit literal.

Notes

1. This <bit var> shall be the HA L/Svariable corresponding to the
< dcw var> in the HA L/SM construct.

2. This <bit var> shall be the HAL/S variable corresponding to the
<dcw var> in the HAL/SM construct with added component sub­
scripting to select a specific bit field within the variable.

3. This <bit literal> shall be an encoded value specifying one or
more of the dcw options specified to be modified by the <dcw
value list> of the HAL/SM construct.

Example

MODIFY DCW_l = BUNK ON;

becomes

DCW_l = DCW_I 0 T014 II BIN Il'IIDCW_1 16 TO 31;

-73-



3.1.33 REQUEST Keyboard Statement

HAL/SM Syntax

~ ~R.EQUESTXENTRY)(FROM)---e----
. L(;(label r '

----(KEYBOARD)-&-(AND }{SAVE)G-ichar var ~---

- - - L(-A-N-D-)-(~ST n-b-it-v-ar---,;J----(Q)---

HAL/S Code Tem'E!late

char varr--..:",-

bit var

- -------~---------'------(1)--l;)---

Notes

1. This <label> shall be an entry point into the RTL to perform
the required function.

2. This <char var> shall be the same as the corresponding character
variable in the HAL/SM construct.

3. This <bit var> shall be the same as the corresponding bit
variable in the HAL/SM construct, when present.

-74-



Example

REQUEST ENTR Y FROM<KEYBOARD>AND SAVE AS RESPONSE;

becomes

CALL RTL_RQST_KYBD(RESPONSE);

-75-



3.1.34 SELECT Statement

HA L/SM Syntax

DSD dsd select list

rog select list·

data select list---J--~r-:==:::::::1rlSELECT I--...-t,--_D_A_T_A--,

CHANNEL

FILE

LEAVE

-~, DISP

REWIND

§' select
element

JOB

where: §

COMMON

= {data
prog

SYSTEM

-76-



HALlS Code Template

CALL

,

t------ - - --

Notes

number

I---<-'Hbit literall-~-{jl)--(;J·_--

1. This <label> shall be an entry point into the RTL to perform
the required function.

Z. This <label;> shall correspond to the DATA or PROGRAM
module label specified in the HAL/SM construct, when present.

3. This <number> shall correspond to the SPIOS I/O channel
or file number specified in the HAL/SM construct, when pre­
sent. The range of values shall distinguish between channels
and files.

4. This <bit literal> shall indicate the access rights specified
in the HAL/SM construct for each resource. The format is the
same as the paJ;ameter list entry Z for the SELECT SVC inter­
face to MOSS (see Reference 7, Section 5.5.1).

Example

SELECT DSD CHANNEL (6) WRITE, DISP = LEA VEl

becomes

CALL RTL_SELECT (-6, HEX'OZOl010Z');

-77--



3.1.35 RELEASE Statement

HAL/SM Syntax

basic
statement

---,,,~==~~RELEASE

HALlS Code Template

CHANNEL

FILE

l------...(,'1-- -l

..

basic
statement

Notes

label

1. This <label> shall bean entry point into the RTL to perform
the required function.

2. This <number> shall correspond to thll SPIOS I/o channel
or file number specified in the HAL/SM construct.

3. This <label> shall correspond to the resource label specified
in the HAL/SM construct.

-78-



Example

RELEASE DATAMOD, CHANNEL (3);

becomes

CALL RTL RLSE(DATAMOD, -3);

-79-



3.1.36 CHANNEL Control Statement

HA L/SM Syntax

-_.::>--",,-:::===:-1'"1 CHANNEL number

...---I"ACKSPACE

SPACE

REWIND

UNLOAD

END

CLOSE

HALlS Code Template

arith exp

FILE

basic
statement

label

--- -:Znumber ):{number~arithexp ~~----

.80-



Notes

1. This <label> shall be an entry point into the R TL to perform
the required function.

z. This <number> shall be the channel number of the SPIOS I/O
ch;l.nnel being manipulated.

3. This <number> shall indicate the function to be performed.

4. This <arith exp> shall correspond to the <arith exp> in the
HAL/SM construct, when present, and shall have a value of
one, otherwise.

Example

L: CHANNEL (3) SPACE N_FILES + 1;

becomes

L: CALL RTL_CHAN (3,Z,N_FILEStl);

-81-



3.1.37 CRITICAL SECTION

HA LISM Syntax

critical
block

..l r SECTIO~declare groupL:J )-1. ~RITlCAL --
label~ \.

I Istatement I

--- I
I closing I

HUpdate block ~

Hprocedure block r
~function bloc k ~

HA LIS Code Template

PROCEDURE

statement

rocedure block

update block

function block

,,,cr-, cIosi ng

eclare group

- -(END) <Dl------

-82-



Notes

1. This <label> shall be a sytnbol generated by the preprocessor
to identify the nested procedure. This procedure is an artifice to
force the compiler to enter a new name scope.

Z. This <label> shall be an entry point into the RTL to cause
the task to enter critical mode.

3. This <label> shall be an entry point into the RTL to cause the
task to exit ·from critical mode.

Example

DO IT:

becomes

CRITICAL SECTION;

CLOSE;

DO IT: DO;

GOOOOOl: PROCEDURE;

CLOSE;

CALL GOOOOOl;

END;

-83-



3.1.38 Time Literals

HALlsM Syt!tax

r '\
time

DAY

literal (
DAYS 'I

.\. j

( HR '\
\. /

( number '\ ( HRS \
/ \. ./

( MIN
,

\. /

( \
\. MINS ./

'\
\. SEC

( SECS '\
.J

( MSEC '\
.J

r 'I
\.MSECS /

HALlS Code. Template

~rimitive)

---5_------I(number »40UBLE »>---------
Note

1. The preprocessor shall convert <time literal> s to a <number>
indicating the required time in milliseconds.

Example

30 SECS

becomes

i

30000@DOUBLE -84-



3.1.39 EVENT Variable

HA L/SM Syntax

bit
.operand ~ NOT }-

_J.'~----'-----1_-o/-~-l1 'tc.- _-- Ievent var I

HAL/S Code Template

bit var

Notes

1. This <label> shall be an entry point into the R TL to return as
its value the value of the specified HAL/SM <event var>.

2. This <bit var> shall be the HAL/S variable corresponding to
the HAL/SM <event var>.

-85-



3. 1.40 OPEN and CLOSE Literals

HA LISM Syntax

bit
literal

( OPEN }-
l.

(CLOSED }-

HALlS Code Template

it literal
efinition

__....:.lJ__-.1( REPLACE XOPEN~ - -- --­

-------(REPLACE }{CLOS:E'D_~f----

Note

1. The <bit literal definition> shall be inserted in a COMPOOL
template at the beginning of each HALlS source module produced
by the preprocessor.

-86-



3.2 HALLINK

This subsection discusses the differences between the HAL/SM and
the HAL/S-360 HALLINK programs. The following modifications shall be
made to the HALLINK and HALLKED modules of the HALLINK program:

o Force the suppression of the HALMAP CSECT in the
output load module._

o Verify that the flight computer timing simulation "cost­
use" arrays- have been suppressed during compilation.

o Verify that there are no nested HALlS TASK's in the
output load module.

-87-



3.3 RTL

This subsection enumerates the new and modified modules in the
HAL/SM RTL. Each numbered paragraph discusses a single RTL interface·
or functional module and describes its characteristics in terms of calling
sequence, parameter lists, standard link.age ·conventi.ons (see Reference 4),
function, and/or MOSS interface. For new modules (i. e., those not in the
HAL/S-360 RTL) all of the above mentioned facets are discussed (where they
are pertinent). For modified modules only those facets of the module which
require modification are discussed.

-88-



3.3.1 O:N ERROR Interface

The ON ERROR routines shall be additions to the RTL.

Calling Sequence (Form 1)

Parameter List

PI:' error group number.

P2: error number within the group.

P3: the error action indicator specified as:

o SYSTEM, take the standard-recovery action.

1 IGNORE, do not attempt recovery.

P4: the flag variable to be signaled on occurrence of the error.

Linkage Convention_

Normal HAL/S-360 linkage.

Function

The RTL ON ERROR (Form 1) routine shall establish the error infor­
mation specified in the parameter list in this. program's error environment
stack. The error information shall be used by the error monitor to determine
the actions to take when an error occurs.

Calling Sequence (Form 2)

Parameter List

PI: error group numbel".

P2: error number within the group.

P3: address (label) of the statement to be executed when the
error occurs.

-89-



Linkage Convention

Normal HAL!S-360 linkage.

Function

The RTL ON ERROR routine (Form 2) shall establish the error infor­
mation specified in the parameter list in this program's error environment
stack. The error information shall be used by the error monitor to determine
the actions to take when an error occurs.

-90-



3.3.2 OFF ERROR Interface

The OFF ERROR routine shall be an addition to the RTL.

Calling Sequence

Parameter List

PI: . error group number.

P2: error number within the group.

Linkage Convention

Normal HAL!S-360 linkage.

Function

The RTL OFF ERROR routine shall establish the error information
specified in the parameter list in the program's error environment stack.
The error information shall be used by the error monitor to determine the
actions to be taken when an error occurs.

-91-



3.3.3 SIGNAL Interface

This RTL routine shall replace the cu.rrent HALlS signal routine.

Calling Sequence

Parameter List

Each parameter in the list shall be the same type. The parameter
specification shall be repeated as required.

PI: the flag variable to be signaled.

Linkage Convention

NONHAL(I) linkage.

Function

The RTL SIGNAL routine shall set up the parameter list for the MOSS
event set interface (see Reference 7, Section 5.3.4) and issue the SVC
instruction to invoke that service.

-92-

c.'~



3.3.4 RESET Interface

This RTL routine shall replace the current HALlS reset routine.

Calling Sequence

Parameter List

Eac'h parameter in the list shall be the same type. The parameter
specification shall be repeated as required.

PI: the event variable to be reset.

Linkage Convention

NONHAL(I) linkage,

Function

The RTL RESET routine shall set up the parameter list for the MOSS
event delete interface (see Reference 7, Section 5.3.2) and issue the SVC
instruction to invoke that service.

-93-



3.3.5 CA.NCEL Interface

This RTL routine shall replace the current HAL!S CANCEL routine.
No new syntax has been added to support the CANCEL interface, however, the
function has changed.

Calling Sequence

Parameter .List

the task descriptor of the task to be canceled. This parameter
shall be optional; if omitted, the requesting task shall be
canceled.

Linkage Convention

NONHAL(l) linkage.

Function:

The RTL CANCEL routine shall setup the parameter list for the MOSS
task CANCEL interface (see Reference 7, Section 5.2.6) and issue the SVC
instruction to invoke that service.

Upon return from MOSS, the return. code shall be examined for the
two abnormal conditions:

o the specified task was not in the proper state, and

o the specified task was not periodic and was already in
execution.

HAL!S run time errors shall be generated corresponding to the type of error
encountered.

-94-



3.3.6 TERMINA TE Interface

This RTL interface shall replace the current HALlS TERMINATE process
routines - TERMIN, TERMINT, TERMPCB. The TERMINATE statement shall
invoke either the TERMINATE TASK or the TERMINATE JOB routine as
described below.

Calling Sequence (TERMINATE TASK)

CALL RTL_TTERM;

Linkage Convention

Normal HAL/S-360 linkage.

Function

'I'he RTL TASK TERMINATE routine shall invoke the MOSS
TERMINATE interface (see Reference 7, Section 5.2.3) via an SVC instruc­
tion.

Calling Sequence (TERMINATE JOB)

CALL RTL_JTERM;

Linkage Convention

Normal HAL/S-360 linkage.

Function

The RTL JOB TERMINATE routine shall invoke the MOSS JOB TER­
MINATE interface (see Reference 7, Section 5.1.3) via an SVC instruction.

-95-



3.3.7 A BORT Interface

The ABORT interface shall invoke either the ABORT job or the ABORT
task routine described below. These routines are additions to the RTL.

Calling Sequence (ABORT JOB)

CALL RTL3ABORT;

Linkage Convention

NONHA L (1) linkage.

Function

The RTL job ABORT routine shall invoke the MOSS job ABORT interface
(see Reference 7, Section 5.1.4) via an SVC instruction.

Calling Sequence (A BaR T TA SK)

Parameter List

Each parameter in the list shall be the same type. The parameter
specification shall be repeated as required.

the task descriptor of the task to be aborted. This parameter
shall be optional: if omitted, the requesting task shall be
aborted.

Linkage Convention

Normal HAL/S_360 linkage.

Function

The R TL task A BaRT routine, shall set up the parameter list (if any)
for the MOSS task A BaR T interface (see Reference 7, Section 5.2.4) and
issue the SVC instruction to invoke that service.

-96-



3.3.8 LOG Interface

The LOG routine is an addition to the RTL.

Calling Sequence

Parameter List

PI: the character expression to be written to the MOSS system log.

Linkage Convention

Normal HAL/S-360 linkage.

Function

The RTL LOG routine shall set up the parameter list for the MOSS
write to log interface (see Reference 7, Section 5.4.4) and issue the SVC
instruction to invoke that service.

Upon return to MOSS, the return code shall be examined to determine
if the message exceeded 126 bytes. If so, a·HAL/S run time error shall be
generated within the library.

-97-



3.3.9 UNLOCK Interface

The UNLOCK routine is an addition to the R TL.

Calling Sequence

Parameter List

Each parameter in the list shall be the same type. The parameter
specification shall be repeated as required.

the load module descriptor that identifies the module to
be unlocked.

Linkage Convention

NONHAL (1) linkage.

Function

The R TL UNLOCK routine shall set up to the parameter list for the
MOSS UNLOCK interface (see Reference 7, Section 5.4.2) and issue the
SVC instruction to invoke that service.

-98- .



3.3.10 LOAD Interface

The LOAD routine is an addition to the RTL.

Calling Sequence

Parameter List

PI: the job descriptor of the job to be loaded.

Linkage Convention

NONHAL (1) linkage.

Function

The RTL job LOAD routine shall set up the parameter list for the
MOSS job LOAD interface (see Reference 7, Section 5.1.1) and issue the SVC
instruction to invoke that service.

Upon return from MOSS, the return code shall be examined to
determine if either of the following abnormal conditions occur red;

o the job descriptor was invalid, or

o the job was not in the proper state for loading.

If either of the se conditions is present, the appropriate run time error shall
be generated within the library.

-99-



3.3.11 INITIATE Interface

The INITIATE routine is an addition to the RTL.

Calling Sequence

Parameter List

PI: the job descriptor of the job to be initiated.

Linkage Convention

NONHAL (1) linkage.

Function

The RTL job INITIATE routine shall set up the parameter list for the
MOSS job INITIATE interface (see Reference 7, Section 5.1, 2) and issue the
SVC instruction to invoke that service.

Upon return from MOSS, the return code shall be examined to deter­
mine if the following conditions occurred:

o the specified job was not in External Paging Memory
(EPM), or

o the specified job was not in the proper state for job
initiation.

If either of these conditions is present, the appropriate run time error shall
be generated within the library.

-100-



3.3.12 DELETE Interface

The DELETE interface shall invoke either the DELETE job or DELETE
task routines described below. These routines are additions to the RTL.

Calling Sequence (JOB DELETE)

Linkage Convention

Normal HAL/S-360 linkage.

Function

The RTL job DELETE routine shall invoke. the MOSS job DELETE
interface (see Reference 7. Section 5.1.5) via an SVC instruction.

Calling Sequence (TASK DELETE)

CALL RTL_TDEL;

Linkage Convention

Normal HAL/S-360 Linkage.

Function

The RTL task DELETE routine shall invoke the MOSS task DELETE
interface (see Reference 7. Section 5.2.5) via an SVC instruction.

-101-



3.3.13 SCHEDULE Interface

This RTL routine shall replace the current HALlS SCHEDULE routine.

Calling Sequence

Parameter List

a bit vector indicating the pre sence and format of the optional
parameters P3-P. The format of the bit vector and the
meaning of a "on~" in the corresponding position in the vector
are:

Bit Number

o

1,2

3

4

s

Meaning

P3' the schedule parameter is present.

A 2-bit value indicating the presence and
format of P4' the precondition tim.e delay
as follows:

o - not present
1 - millisecond time interval delay
2 - GMT time value delay
3 - MET time value delay

Ps' P6' P7; the event expression parameters
are present.

Ps' the time interval delay after events are
considered parameter is present.

P9' the repetition time delay for cyclic tasks
is present.

the task descriptor of the task being scheduled.

the character schedule parameter to be passed to the task
being scheduled.

the time delay to be applied before considering any of the other
conditional scheduling parameters. The time delay value may
be a millisecond time interval. a GMT time value, or a: MET
time value as indicated by Pl'

-102-



an array of event variables whose logical combination, as
indicated by P6' must be satisfied before the task is scheduled.

an array of logical operators defining the logical expression
of event variables as given in PS' The event expression shall
be represented in Reverse Polish form.

the number of event variables in the array given in PS'

the millisecond time value which must expire after the event
expression is satisfied before the task is scheduled.

the millisecond time period between successive scheduling for
a periodic task.

Linkage Convention

NONHAL (1) linkage.

Function

The RTL SCHEDULE routine shall set up the parameter list as received
in the format required by the MOSS task SCHEDULE interface (see Reference
7, Section 5.2.1) and issue the SVC instruction to invoke that service.

Upon return from MOSS, the return code shall be examined to deter­
mine if the parameter data was too large for the receiving task. If so, a
HALlS run time error shall be generated within the library.

-103-



3.3.14 WAIT Interface

The WAIT routine shall replace the current HALlS WAIT routine - WAIT,
WAITDEP, and WAITFOR.

Calling Sequence

Parameter List

a bit variable indicating the presence and format of the optional
parameters PZ-P 6' The meaning of each bit position is given
below:

Bit Number

0,1

Z

3

Meaning

A Z-bit value indicating the presence and
format of the precondition time delay,

o - time delay not given
I _ time delay given for milliseconds time

interval
Z - time delay given for GMT time value
3 - time delay given for MET time value

An event expression (P3' P4' and PS) is
present.

A post-condition time interval delay in
milliseconds is present,

the time value to delay before considering any other WAIT
conditions. The format of this value shall be indicated by PI'

an array of event variables whose logical combination, as
indicated by P4' must be satisfied before the task continues.

an array of logical operators defining the logical expression of
event variables given inP3' The event expression shall be re­
presented in Reverse Polish form,

the number of event variables in the array given in P3'

-104-



the millisecond time value which must expire after the event
expression is satisfied before the task is allowed to continue.

Linkage Convention

NONHAL (1) linkage.

Function

The RTL WAIT routine shall set up the parameter list for the MOSS task
SUSPEND interface (see Reference 7, Section 5.2.2) and issue the SVC instruc­
tion to invoke that service.

-105-



3.3.15 AlERT Interface

The ALERT routine is an addition to the RTL.

Calling Sequence

Parameter List

the bit variable corresponding to .the HAL/SM event variable
to be ALERTed.

a bit vector indicating presence and format of the optional
parameters P3-PS' The meaning of each bit position is given
below:

Bit Number

0,1,2

Meaning

A 3-bit value indicating the presence and
format of P4' the event descriptor.

o - event is task termination; P3 is present.
1 - event is a program flag; P3 IS present.
2 - event is an ERP condition; P3 and p 4

are present.
4 - event is a MET clock condition; P3 is

absent, P4 and Ps are present.
5 - event is GMT clock condition; P3 is

absent, P4 and Ps are present.

the event descriptor specified as a task descriptor, flag
variable, or an ERP descriptor.

a number giving the relational operators for ERP and clock
events. The values of this parameter are given in Reference 7,
Section 5.3.1. When this parameter indicates an "is between"
or "is not between" relation, P6 is present.

the value to which the ERP or clock specified is to be compared,
as indicated by the relation given in P4'

the second value to be used in the comparisons "is (not) between, "
as indicated by p4'

-106-



Linkage Convention

NONHA L (1) linkage.

Function

The RTL ALERT routine shall set up the parameter list for the MOSS
event ALERT interface (see Reference 7, Section 5.3.1) and issue the sve
instruction to invoke that service.

-107-



3.3.16 AVERAGE Interface

The AVER.e.GE AI routine is an addition to the RTL.

Calling Sequence

Parameter List

PI: the number of readings to be averaged.

P2: the ERP designator to be averaged.

P
3

: the variable in which the result is to be stored.

Linkage Convention

Normal HAL/S-360 linkage.

Function

The RTL AVERAGE AI routine shall set up the parameter list for the
MOSS read ERP interface (see Reference 7, Section 5.6.2). The parameter
list shall indicate the read AI A VERAGEd option and the address of the R TV s
I/O error processing routine.

-108-



3.3.17 READ ERP Interface

The READ ERP routine is an addition to the RTL.

Calling Sequence

• '•• , p )
m

Parameter List

a number whose value indicates the presence of the
READ AI deltas option as follows:

o - AI deltas option not requested.

1 - AI deltas option requested.

a number whose value indicates the number of ERP's
to be read.

each of these parameters shall be an ERP designator
to be read. All of the ERP's given must be of the same
type.

each of these parameters shall be a variable in which
the results of the READ operation for each of the ERP
designators in p -p . is to be placed. The number of
parameters in tits ~roup shall be the same as in the
group P3-P n'

Linkage Convention

NONHAL (1) linkage.

Function

The RTL READ ERP routine shall set up the parameter list for the
MOSS READ ERP interface (see Reference 7, Section 5. 6.2) and invoke that
service via an SVC. The parameter list shall be paired for each ERP designa­
tor and corresponding variable data area. The address of the R TL' s I/O
error processing routine shall be included as a parameter for each ERP
designator.

-109- ·



3.3.18 ISSUE Interface

The ISSUE routine is an addition to the RTL.

Calling Sequence

Parameter List

the RO ERP designator to which the issue applies.

each of these parameters shall be the same type - either

o variables of the same type.

o bit literals, or

o numbers.

The collection of parameters Pz -p shall form the data
to be issued to the RO. n

Linkage Convention

. NONHAL (1) linkage.

Function

The R TL ISSUE routine shall collect the data in each of the input para­
meters p -Pn and form a contiguous data area. The address of this data
area, its~ength, the ERP designator, and the address of the RTL's I/O error
processing routine shall be passed in a parameter list to the MOSS WRITE
ERP interface (see Reference 7, Section 5.6.3) via an SVC instruction.

-110-



3. 3. 19 SET DISCRETE Interface

The SET DISCRETE routine is an addition to the RTL.

Calling Sequence

Parameter List

this parameter shall specify the number of DO ERP
descriptors to follow.

each parameter shall be of the same type, DO ERP
descriptor, and shall indicate the discretes to be set.

this parameter shall specify the number of value para­
meters to follow;

each parameter shall be of the same type, either:

o variable of the same type,

o bit literals, or

o numbers.

Each parameter gives the value to set to the correspond­
ing DO defined in PI-Pn'

the time value in milliseconds that the DO is to be pulsed.
This parameter is only allowable when Pz and p
specify a single DO to be pulsed. l).+Z

Linkage Convention

NONHA L (1) linkage.

Function

The RTL SET DISCRETE routine shall pair each DO ERP designator
and its corresponding value in a parameter list for the MOSS WRITE ERP
interface (see Reference 7. Section 5.6.3). If a single DO to be pulsed is
specified, the parameter list shall include the time value parameter. The
address of the RTL's I/o error processing routine shall be included as a para­
meter for all requests. The WRITE ERP service shall be invoked via an SVC
instruction when the parameter list is complete.

-111-



3.3.20 APPLY ANALOG Interface

The APPLY ANALOG routine is an addition to the RTL. Multiple forms
of the calling sequence and parameter list are shown to simplify the explana­
tions due to special cases which may be generated.

Calling Sequence (APPLY ANALOG - DELTAS)

Parameter .List

PI:· an indicator which specifies the special option selected.

I - DELTAS

P2-P3: the two values to be applied as deltas.

the AI ERP designator to which the delta values given
in P2 and P3 are to be applied.

Calling Sequence (APPLY ANALOG ~ PULSED)

Parameter List

PI: . special option indicator:

2 - PULSED

P2: the value to be applied to the AO.

P3: the AO ERP de signator to be pulsed.

P4: the time value indicating the length of the pulse.

Calling Sequence (APPLY ANALOG - RAMPED)

Parameter List

PI: special option indicator:

3 - RAMPED
-112-



•

the initial value to be applied to the AO.

the AO ERP designator to be ramped.

the time value for each increment of the ramp.

the maximum (or minimum for negative ramping) to
which the AO is to be ramped.

Calling Sequence (APPLY ANALOG ~ No Special Options.)

Parameter List

special option indicator:

o ~ no special options

the number of multiple ERP designators being supplied.

each parameter of this group shall be the value to be
applied to the AO's specified in parameters p 1-P •

n+ m

each parameter of this group shall be an AO ERP
designator to be applied.

Linkage Convention

NONHA L (1) linkage.

Function

The RTL APPLY ANALOG routine shall set the parameter list as
indicated for each of the cases given above for the MOSS WRITE ERP interface
(see Reference 7, Section 5.6.3). The address of the RTL's I/O error pro­
cessing routine shall be included in the parameter list. The WRITE ERP
interface shall be invoked via an SVC instruction.

-113-



3.3.21 WRITE TO OPERATOR Interface

The WRITE TO OPERATOR routine is an addition to the RTL.

Calling Sequence

Parameter List

a bit variable indicating whether the reply option has
been selected:

o - no reply, p is present.
1 - reply expec~ed, P3 is present.

P2: the character expression to be displayed to the operator.

P3: the character variable in which any reply is to be stored.

Linkage Convention

NONHAL (1) linkage.

Function

The RTL WRITE TO OPERATOR routine shall examine PI to determine
if the reply option has been selected. If no, Pz and its length shall be passed
to the MOSS WRITE TO OPERATOR interface (see Reference 7, Section 5 4.5)
via an SVG instruction. If the reply option has been selected, PZ' its length,
and P.3 shall be passed to the MOSS WRITE TO OPERA TOR with-:REPLY inter­
face (see Reference 7, Section 5.4.6).

A run time error shall be generated if the output message exceeds 100
bytes for either case. -

-114-



3,3.22 DISPLA Y CONTROL Interface

The DISPLA Y CONTROL routine is an addition to the R TL,

Calling Sequence

Parameter List

the control function indicator whose value shall be
interpreted as follows:

o - page select
1 - clear page
2 - video 1
3 - video 1/stroke
4 - video 2
5 - video 2/ stroke
6 - allocate page
7 - deallocate page

a bit vector whose value shall indicate the presence of
P3 and P4' the CRT, and page number.

o - P3 and p 4 are absent

1 - P3 and p 4 are pre sent

the CRT number to which the control function shall be
directed.

the page number to which the control function shall be
directed.

Linkage Convention

NONHA L (1) linkage.

Function

The R TL DISPLA Y CONTROL routine shall examine the control function
indicator, PI' 1£ the allocate or deallocate page functions have been selected,

.U5-



the MOSS ·allocate or deallocate console page interface shall be invoked with
the CRT and page number parameters. To perform. the other functions, MOSS
DISPLA Y CONTROL interfaces shall be invoke the appropriate param.eters.

-116-



3.3.23 DISPLAY DATA Interface

The DISPLA Y DA TA interface shall invoke either the DISPLA Y BA CK­
GROUND, DISPLA Y ADDON, UPDA TE BA CKGROUND, DISPLA Y TYPEI
PROGRAM, or UPDATE TYPEI DATA routines described below. These
routines are additions to the R TL.

Calling Sequence (DISPLA Y BACKGROUND)

.Parameter List

the program identifier by which the data set containing
the background message is identified.

the message identification number. which specifies the
record number of the message within the data set.

the blink status option specification.

the bit indicator which indicates the CRT number and
page number to follow.

the CRT nui::nber (if specified).

the page number (if specified).

Linkage Convention

NONHAL (1) linkage.

Function

The RTL DISPLA Y BACKGROUND routine shall set up the parameter
list for the MOSS DISPLA Y BACKGROUND (from disk) interface and issue
the DISBACKD SVC. (This SVC obtains the indicated message from the C&D
message library a.nd transmits it to the indicated C&D Console page.)

A n I/O .ERROR EXIT routine shall be provided in the R TL routine and the
entry point to this code shall be provided in the SVC parameter list.

-117-



Calling Sequence (DISPLA Y ADDON)

CALL RTL_DISADD (Pi' PZ,P3' P4' PS' ••• , Pi' Pi' Pk' Pm);

Parameter List

the program identifier by which the data set containing
the ADDON message is identified.

the message identification number which specifies the
record number of the message within the data set.

the blink status option specification.

the numbers of pairs, each containing a variable control
word and anas sociated variable used to de scribe the
ADDON variable data.

(where i = 4+Z*P4): the pairs of variable control word with
associated variable described above. The sequence is:
variable control word, variable, variable control word,
variable, •..

(where j =HI): the bit indicator which indicates that a
CR T number and page number follow.

(where k = HZ): the CRT number (if specified).

(where m = i+3): the page number (if specified).

Linkage Convention

NONHAL (1) linkage.

Function

The R TL DISPLA Y ADDON routine shall convert any variabl'l data to
ASCII format, set up the parameter list for the MOSS DISPLA Y ADDON (from
disk) interface, and issue the DISADD SVC. (This SVC obtains the indicated
ADDON message from the C&D message library, updates any variable fields
specified, and transmits it to the indicated C&D Console page. )

An I/O ERROR EXIT routine shall be provided in this R TL routine and
an entry point to this code shall be provided in the SVC parameter list.

-118-



Calling Sequence (UPDATE BACKGROUND)

Parameter List

the number of pairs, each containing a variable control
word and an associated variable to be updated.

(where i = Z+Z*PZ): the pairs of variable control word and
associated variable described above. The sequence shall
be variable control word, variable, variable control word,
variable, •.•

p :
m

p:
n

(where j = HI): the blink status option specification.

(where k = HZ): the bit indicator which indicates that a
CRT number and page number follow.

(where m = i+3): the CRT number (if specified).

(where n = H4): the page number (if specified).

Linkage Convention

NONHAL (1) linkage.

Function

The RTL UPDATE BACKGROUND routine shall construct the update
text from the variable control words and variables, convert the text to ASCII,
set up the parameter list for the MOSS UPDATE BACKGROUND interface, and
issue the UPDISM SVC. (This SVC displays the supplied text to the indicated
C&D Console page as an UPDA TE mes sage. )

An I/O ERROR EXIT routine shall be provided in this RTL routine
and an entry POitlt to this code shall be provided in the SVC parameter list.

Calling Sequence (DISPLA Y TYPEI PROGRAM)

Parameter List

the TYPEl PROGRAM identified in the TYPEI PROGRAM
library.

-119-



· the bit indicator which indicate s that a CRT number and
page number follow•.

the CR T number (if specified).

the page number (if specified).

Linkage Convention

NONHAL (1) linkage.

Function

The R TL DISPLA Y TYPEl PROGRAM routine shall set up the para­
meter list for the MOSS TYPEl PROGRAM transmission interface and issue
the Tl TRANS SYC. (This SYC obtains the indicated TYPEl PROGRAM from
the TYPEl PROGRAM library and transmits it to the indicated C&D Console
and page.)

An I/O ERROR EXIT routine sha~l be provided in this RTL routine
and an entry point to this code shall be provided in the SYC parameter list.

Calling Sequence (UPDATE TYPEl DATA)

Parameter List

the TYPEl PROGRAM identifier.

PZ: the number of TYPEl UPDATE variables.

P3 -Pi: (where i = 3+PZ): the list of variable data.

(where j =Hl): the bit indicator which indicates that a
CRT numbe.r and page number follow.·

(where k = HZ): the CRT number (if specified).

p :
m

(where m = i+3): the page number (if specified).

Linkage Convention

NONHAL (1) linkage.

-lZO-



Function'

The RTL UPDATE TYPEI DATA routine shall set up the parameter
list for the MOSS TYPEI DATA transmission interface and issue the TIDATA
SVC. (This SVC transmits the specified TYPEI UPDATE data to the indicated
C&D Console page. )

An I/O ERROR EXIT routine shan be provided in this RTL routine and
an entry point to this code shall be provided in the SVC parameter list.

-121-



3.3.24 REQUEST KEYBOARD Interface

The REQUEST KEYBOARD routine is an addition to the RTL.

Calling Sequence

Parameter List

the character variable into which the KEYBOARD message
is to be stored.·

a bit variable to be set if a message was returned. If this
parameter is absent, the requesting task shall be delayed
until a KEYBOARD message is available.

Linkage Convention

NONHAL (1) linkage.

Function

The R TL REQUEST KEYBOARD routine shall invoke the MOSS REQUEST
KEYBOARD interface with the character data area address and an indicator
for automatic wait, if specified, as parameters. lithe post-variable P2 is
specified, the routine shall set this bit variable as indicated by the return code
from MOSS.

The address of the RTL's I/O error processing routine shall also
be included as a parameter to the MOSS interface.

-122-

•



•

3.3.25 SELECT Interface

The SELECT routine is an addition to the R TL.

Calling Sequence

Parameter List

The parameter list shall be formed of repeated pairs of parameter s of
the formats given below:

the resource descriptor to be selected. The descriptor
shall be one of the following formats:

o Data module descriptor,

o Program module descriptor, or

o SPIOS I/O channel or file number.

a bit vector indicating the access rights requested for the
resource indicated in Pl' The format of the bit vector
shall be the same as the MOSS SELECT interface (see
Reference 7, Section 5.5.1).

Linkage Convention

NONHAL (1) linkage.

Function

The RTL SELECT routine shall set up the parameter list for the MOSS
SELECT interface and issue the SVC instruction to invoke that service.

-123-



3.3.26 RELEASE Interface

The RELEASE routine is an addition to the RTL.

Calling Sequence

Parameter List

Each parameter in the list shall be of the same format.

the resource descriptor of the resource to be released.
The descriptor shall be in one of the following formats:

o Data module descriptor,

o Program module descriptor, or

o SPIOS I/O channel number.

Linkage Convention

NONHA L (1) linkage.

Function

The RTL RELEASE routine shall set up the parameter list for the
MOSS RELEASE interface and issue the SVC instruction to invoke that service.

-124-

•



3.3.27 CHANNEL CONTROL Interface

This interface is an addition to the RTL.

Calling Sequence

Parameter List

the channel number of the SPIOS I/O channel being
manipulated.

the function indicator which selects the function to be
performed as follows:

1 - backspace,

2 _ space,

3 - rewind,

4 - unload,

5 - end file, and

6 - close file.

the value giving the number of files to be backspaced or for­
ward spaced. This parameter shall only be provided for
the space and backspace options.

Linkage Convention

NONHAL (1) linkage.

Function

The RTL CHANNEL CONTROL routine shall set up the parameter list
for the MOSS CONTROL interface (see Reference 7, Section 5.7.4), and issue
the SVC instruction to invoke that service. The parameter list shall include
the address of the RTL's I/O error processing routine.

-125-



3.3.28 CRITICAL SECTION Interface

The CRITICAL SECTION interface shall consist of two routines, one
executed at the beginning of the critical block, the other at the end of the
critical block. The CRITICAL SECTION routines are additions to the R TL.

Calling Sequence

CALL RTL GO CRITICAL- -
Linkage Convention

Normal HAL/S-360 linkage.

Function

The RTL BEGIN CRITICAL SECTION routine shall invoke the MOSS
CRITICAL SECTION interface (see Reference 7, Section 5.4.7) with the
enter critical processing mode parameter.

Calling Sequence (END CRITICAL)

CALL RTL STOP CRITICAL- -

Linkage Convention

Normal HAL/S-360 linkage.

Function

The RTL END CRITICAL SECTION routine shall invoke the MOSS
CRITICAL SECTION interface with the exit critical processing mode parameter.

-126-



3.3.29 EVENT VARIABLE Interface

The EVENT VARIABLE interface shall be an RTL function routine
which shall return the value of the event variable. This routine is anaddition
to the RTL.

Calling Sequence

Parameter Li st

the event variable to be tested.

Linkage Convention

Normal HA L/S-360 linkage.

Function

The EVENT VARIABLE function routine shall examine the event
variable value to determine if it is zero or an MOSS provided event variable
descriptor. If the value is zero. the function routine shall return a zero value.
If the value is an event variable descriptor. the descriptor shall be passed
to tpe MOSS EVENT TEST interface (see Reference 7. Section 5.3.3) via
a.n SVC. The return code provided by MOSS indicates the value of the event
variable which shall be returned by the FUNCTION routine.

-127-



3.3.30 TIME Interface

This RTL routine shall replace the current HALlS clock time routine.

Calling Sequence

Parameter List

an integer indicating the type of time value de sired.
The permissible values are:

0- MET time.
1 - GMT time.

Return Value: a double precision floating point number equal to the value
of the specified clock time in milliseconds.

Linkage ·Convention

Normal HAL/S-360 linkage.

Function

The RTL TIME FUNCTION shall set up the parameter list in the
format reqUired by the MOSS TIME REQUEST interface (see Reference 7,
Section 5.4.1), and issue the SVC to invoke that service. The returned time
shall then be converted to the above specified form and returned to the caller.

-128-



3.3.31 DATE Interface

This RTL routine shall replace the current HAL!S DATE routine.

Calling Sequence

DATE

Parameter List

Return Value: an integer equal to the value of the "days" fields of
the GMT clock.

Linkage Convention

Normal HAL!S.360 linkage.

Function

The RTL DATE function shall"set up the parameter list in the format
required by the MOSS TIME REQUEST interface (see Reference 7, Section 5.4.1),
and issue the SVC to invoke that service. The required field shall then be
extracted from the returned value, converted to the above specified form, and
returned to the caller.

-129-



3.3.32 SPIOS Interface s

The I/O processing routines and macros in the HAL/S library shall
be modified to utilize MOSS SPIOS services. These I/O routines currently
use the OS/360 I/O services. All format conversion, line, and page manipula­
tion logic shall remain relatively unchanged after the modification.

The following routines and macros shall be modified:

Routines

COLUMN
FILEIN
INPUT
IOINIT
LINE
OUTPUT
PAGE
SKIP

Macros

FCBDEF
FILEDEF
HXCTL

The major impact of the modification shall consist of replacing the
OS/360 I/O service requests with equivalent MOSS I/O service reque'sts.
The SUMC-S MOSS Application Program Design specification (Reference 7,
Section 5.7.1) describes the MOSS I/O service requests which shall be used.
These include:

o READ,

o WRITE,

o CONTROL, and

o CLOSE.

The modified routines shall use the MOSS I/O ERROR EXIT routine conventions
to handle I/O errors. Uncorrectable errors shall be communicated to the
HAL/S error monitor to coordinate with the user defined error environment.

-130-



•

3.3.33 Interrupt and Error Handling Modules

The modules PROGINT, ERRORMON,and ERRGRPare involved in
the processing of program interrupts and all HAL/SM errors. These modules
shall be modified to operate within the MOSS environment.

The major changes to these modules shall be in how errors are
recognized (not in how they are processed). A forced-end routine (see
Reference 7, Section 6) shall replace the HAL/S-360 STAE routine, and a
program exception routine shall replace the HAL/S-360 SPIE routine. I/O
errors shall be recognized by the I/O modules via I/O ERROR EXIT routines
specified in the individual I/O SVC's and the specific errors shall be issued
to ERRORMON through the normal and error intrinsic in HALSYS.

In addition, all modules which detect and send errors may require
change to renumber the errors they send in their invocations of ERRORMON.

-131-



3.3.34 Miscellaneous Modules

The module HALSTAR T is concerned with initiation and normal ter­
mination of a HAL/S-360 program complex. This module shall be modified
to delete certain run time JCL options which are not supported and to use
MOSS interfaces to properly release resources (e. g., close any open data
sets).

The HALSYS module and macro contain common status and linkage
information which is required by the R TL and compiler emitted code. Thi s
module and macro shall be modified to reflect the reorganization of data
and modules within the library resulting from other specific changes.

-132-

,



3.3.35 LOCK Interface

The current HALlS LOCK routine shall be modified to operate in the
MOSS multi-tasking environment. The current HALlS library only simulates
a multi-tasking environment for the user programs, thus, conflicts due to
multiple simultaneous executions of the LOCK routine in support of HALlS
update blocks cannot occur. In the MOSS environment, however, the HALISM
library is operating in a true multi-tasking mode and it must coordinate multiple
use of the LOCK routine.

The MOSS SELECT and RELEASE interfaces (see Reference 7, Section
5.5) shall be used by the LOCK routine to ensure mutually exclusive accesses
to the lock group variable. The function of the LOCKGRP variable for
coordinating accesses to individual data items by the update blocks shall re­
main unchanged. The MOSS EVENT CONTROL interfaces (see Reference 7,
Section 5.3), shall be used to suspend and signal the LOCK routine (in support
of a specific task) when access to individual data items, as indicated by the
LOCKGRP variable, are locked or freed.

-133-



3.3.36 R TL Modules to be Deleted

The following HAL/S-360 RTL modules and macros shall be deleted
from the HAL/SM RTL either because their functions are not supported within )
the HAL/SM system or because they have been replaced by equivalent modules
or MOSS services.

Modules:

BAKTRACE
CANCEL
CLOKTIME
CLOSEHAL
DATE
DISPATCH
DUMPHAL
ENTERTQE
EVENTENQ
EXCLUDE
EXECTRCE
FORMATDA
HALSIM
SCHEDULE
SDLDUMMY
SDLSTACK
SET

. SIGNAL
SVBLOCK
SVBTOC
SVDTOC
SVETOC
SVITOC
SVPMSG
SVSIGNAL
SVSTOP
SVTDEQ
SVTENQ
SVTIME
SVVSTP
TERMIN
TERMINT
TERMPCB

-134.

Macros:

COUNT
EVXQDEF
HALSIM
PCBDEF
SDLCALL
STPGEN
TIMQDEF
TRACEX



•

Modul88:

TIMECANC
TIMEINT
TIMENQ
UPPlUO
WAIT
WAITDEP
WAITFOR
WHERE

-135-



3.4 User

This subsection discusses the user interface to th~HA·I,ISM system
in terms of as and MOSS JCL general requirements. The sPecii~9definition

of the complete user interface shall be defined in a "HAL/SM"User'13
Manual" which shall be published by the implementors. . < ••,

3.4.1 as JCL Procedures

Cataloged procedures shall be provided to perform HAL/SM pre­
processing, compilation, and linking in a manner similar in form and in­
tent to the HAL/S prototype cataloged procedures (see Reference 5) HALSC,
HALSCL, and HALSL. When HAL/SM modules have been properly compiled
and linked they must be put in a form suitable for processing by the MOSS
Linker. A utility and procedures for use shall be supplied with the MOSS system.
Standard IBM utility programs may be used to place the C&D Display Message
Data Set on a medium suitable for transfer to the'SUMC-S.

3.4.2 MOSS JCL

MOSS jobs containing HAL/SM software shall follow all the normal
conventions for MOSS JCL (see Reference 7, Section 3). In addition, certain
conventions must be followed in specifying the following items:

<.

0 Job names.

0 Task names.

0 Program flag names.

0 Critical sections.

0 Forced-end routines.

0 Error processing routines.

0 File names.
•

-136-



•

4. RESTRICTIONS AND LIMITATIONS

Any programming system has certain characteristics which are
specific to its implementation. In the particular case of HA L/SM, the decision
to adapt the HAL/S-360 compiler system using a preprocessor and a modified
run time library shall have an impact on the usability of the system which
needs to be clearly recognized. This section briefly discusses some of the
effects which are apparent at this time.

4.1 HAL/S Dependencie s

The ground rules of this implementation require that the HAL/S-360
compiler remain unmodified. This has both advantages and disadvantages.
On the positive side this means that any upgrades to the compiler which would
itnprove its efficiency, accuracy, or correctness can easily be incorporated
in the HAL/SM system. On the other hand, these ,same upgrades may change
the syntax and/or semantics of the HAL/S language and, thereby, make it
unusable within the HAL/SM system. The modifications made to HALLINK
and the R TL may also make it impractical to utilize future upgrades to
these programs as well.

4.2 Separation of Ho st and Target Machines

The host system for the HAL/SM language processor system shall be
an IBM S~360/370 series machine running under some version of OS/MVT,
as mentioned previously. The target system shall be the SUMC-S running
under MOSS,. These two systems are quite different in concept and, in
addition, they shall most likely be separated physically and managerially.
This means that the HAL/SM programmer must be familiar with two different
systems and sets of operating procedures before he can use the HAL/SM
language. He must also deal with the cumbersome and time consuming problem
of transferring his program between the two systems for every compile and
test sequence during program development. One possible remedy to this
problem might be a software emulator for MOSS running on the S/360.

4.3 Diagnostic Capabilities

The ground rules of this implementation require that no processing
be performed in the preprocessor which can be performed by the compiler •
This implies that the preprocessor shall not perform a complete syntax analysis.
The major drawback to this approach is that only a subset of the syntax errors
will be diagnosed by the preprocessor and related directly to the HAL/SM
program. All remaining syntax errors are caught by the compiler which

-137-



can only state the diagnostic information in terms of the transformed HAL/S
text. The programmer is forced to examine listings from both language
processors, be familiar with both languages, and be· able to relate errors
in the HAL/S program to be corresponding HAL/SM construct and determine
where the error lies there. Since some HAL/SM constructs require conside·r­
able manipulation, and some transformations are performed independent of
context, the required correction may not always be readily apparent. A
possible solution might be to require the preprocessor to perform a complete
syntax analysis and verification.

4.4 R TL Reentrancy

TheHAL/S-360 RTL is presently not reentrant. The disadvantage
here is that each task must have a private copy for its own use •. Under MOSS,
a reentrant RTL might be placed in the job (or system) common area of the
address space and shared by all HAL/SM tasks. within the job (or system)
at a considerable savings in memory requirements and execution time (due
to reduced paging). However, making the RTL reentrant would probably
require a major (if not complete) rewrite of this software.

-138-

•



•

•

REFERENCES

1. "HAL/SM Language Specification, " M&S Computing, Inc., NASA /
MSFC Contract NAS8-26990, Report No. 75-0043, November 21, 1975.

2. "HAL/S Language Specification," Intermetrics, Inc., NASA/JSC
Contract NAS9-13864, Document No. IR-61-5, November 22, 1974.

3. "HAL/S-360 Compiler System Functional Specification, " Intermetrics,
Inc., Rockwell International Corporation, purchase order #M3V8XMX­
483000, PDRL#IM004, July 13, 1974.

4, "HAL/S-360 Compiler System Specification," Intermetrics, Inc.,
NASA/JSC Contract NAS9-13864, Document No. IR 60-3, JanuarylO,
1975.

5. "HAL/S-360 User's Manual, Intermetrics,· Inc., NASA /JSC Contract
NAS9-l3864, Document No. IR-58-8, February 20, 1975.

6. "SUMC-S MOSS Detailed Functional Specifications," RCA-ATL,
NASA!M:SFC Contract NAS8-290n, Document No. SUMC-S-R­
SP-00l-01.0, August 5, 1974.

7, "SUMC-S MOSS Application Program Design Specification, " RCA -ATL,
NASA/MSFC Contract NAS8-290n, Document No. SUMC-S-R-SP­
004-00.0, October 4, 1974.

8. "Higher Order Language (HOL) Preprocessor Requirements Specifica­
tion Document," IBM-FSD, NASA/MSFC Contract NAS8-30604, Docu­
ment No. 74W-00252, Revision I, January 30, 1975.

9. "The Programming Language HAL - A Specification, " Intermetrics,
Inc., Document No. MSC-01846, June, 1971 •

-139-



I

I

I
. I

I

I

I

I

I

I

I

I

I

I

I
• I
•

I

I

I



•

•

•



I

I

I

I

I

I

I

I
, I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

• I

I

I

I

I

I

I

I


