Report No. 75-0045
Contract No, NAS8-26990

(NASA-CR-144099) HAL/SH SYSTEM SOFTWARE NT76- T48LY
REQUIREMENTS SPECIFICATION. (M&S Compggéggégg
‘Inc.) 146 p HC CEEM® eclae

63761 06780

HAL/SM SYSTEM
SOFTWARE REQUIREMENTS SPECIFICATION

Decembef 1, 1975

Prepared for:
George C. Marshall Space Flight Center

NASA '
Marshall Space Flight Center, Alabama

PREFACE

This is a reference manual document describing the requirements for
the HAL /SM programming system to be developed to provide the ability to use
the HAL programming language in the SUMC/MOSS environment,

This document is partially based on, supplements, and in part, super-
cedes the Higher Order Language (HOL) Preprocessor Requirements Specifi-
cation Document {(Reference 8), - As such, this document and the HAL/SM
Language Specification (Reference 1) shall be the final controlling specifica-
tions for HAL/SM software,

Section 1 of this document discusses the basic structure and major
objectives of the system. Section 2 describes the major subsystems of the
implementation and their functional requirements. Section 3 details the
interfaces between the major subsystems and implicitly defines their pro-
cessing requirements., Section 4 discusses restrictions and limitations in-
herent in the implementation,

Prepared by:

C. Ross
G. P, W, Williams, Jr.

Project Manager:
Je L. Pruitt

Approved by:

TABI..E Of CONTENTS
Section
IIST OF ACRONYMS
LIST OF FIGURES

1. INTRODUCTION

2. SUBSYSTEMS
2.1 Preprocessor Subsystem

Inputs

Symbolic Library Interface

M&CD Interface

Digplay Data Interface Ut111ty (DDIU) Interface
Listings

Diagnostic Information -

HAL/S-360 Compiler Interface

User Interface ' ‘

.
.
0 ~I OGN =

NN NN N
.

el ol B T T R Sy W
L]

2,2 HALLINK Subsystem
2,3 RTL Subsystem

Efficiency Criteria

Modifications to Support MOSS External Interface
Modifications to Support HAL/SM Calling
Sequences

[AV ISV)
-

w:.»w
(SN NS I

2.3.4 Unsupported Functions
2.3,5 Unsupported Execution-Time JCL Options
3. INTERFACES
3.1 Preprocessor

3.1.1 TASK Header .

3,1.2 COMPOOL Header
3.1.3 FUNCTION Header
3.1.4 PROCEDURE Header
3.1.5 REPLACE Statement .

w

WX w-J~1~I~3wn

12
12

12
13

15
15

16
17
18
19
20

Section

3.3

TABLE OF CONTENTS
{continued)

JOB Attribute

Type Specification
Initialization of DCW-~Type Data
ON ERROR Statement (Form 1)
ON ERRCR Statement (Form 2)
OFF ERROR Statement
SIGNAL Statement

RESET Statement
TERMINATE Statement
ABORT Statement

LOG Statement

UNI.QOCK Statement

LOAD Statement ‘

INITIATE Statement

DELETE Statement
SCHEDULE Statement
- WAIT Statement

ALERT Statement

AVERAGE Al Statement

READ ERP Statement

ISSUE Statement

SET Discrete Statement
APPLY Analog Statement
DISPLAY TO OPERATOR Statement
DISPLAY CONTROL Statement
Display Data Statement

Modify VCW Statement
REQUEST Kevboard Statement
SELECT Statement ‘ '
RELEASE Statement
CHANNEL Control Statement
CRITICAL SECTION

Time Literals

EVENT Variable

OPEN and CLOSE Literals

.
o~

- [] . - L L] L] - - - L] . - » . L] L] L] - L] L] - L] [] L] *
L] L] L] L] -] . L] L] L] . [] - . » - - L L] - - L] Ll L] -

L] -
L) L]

-
L 00 WL WL W LIV IV TV N D IV IV DD et b bt b b b b 4 J B D GO =)
OV XU WN OOV RHRWNMOOOAICNh WN RO

[]
-

W W W W WWWWWWLWWOLWWILWWWLIWWLWWLWWLWLWWWWWWWWwWw
-

Pt e et b ped e et bt et fed e et et faad e et bl et b el et et el et ek fed bl ek el e b fed et el et
L]

HA LIINK

RTL

3.3.1 ON ERROR Interface
3.3.2 OFF ERROR Interface
ii

88

89
91

TABLE OF CONTENTS

(continued)

Section : Page
3.3.3 SIGNAL Interface SRS 92
3.3.4 RESET Interface 93
3.3.5 CANCEL Interface o ' 94
3.3.6 TERMINATE Interface g5
3.3.7 ABORT Interface S ' - 96
3.3.8 LOG Interface 97
3.3.9 UNLOCK Interface : ' - - 98
3.3.10 LOAD Interface : 99
3,3,11 INITIATE Interface : : ' - 100
3.3.12 DELETE Interface ' , ' 101
3.3.13 SCHEDULE Interface S 102
3,3.14 WAIT Interface 104
3.3.15 ALERT Interface ' 106
3.3.16 AVERAGE Interface 108
3.3.17 READ ERP Interface 109
3.3.18 1ISSUE Interface 110
3.3.19 SET DISCRETE Interface 111
3.3.20 APPLY ANALOG Interface 112
3.3.21 WRITE TO OPERATOR Interface 114
3,3.,22 DISPLAY CONTROL Interface 115
3.3.23 DISPLAY DATA Interface 117
3.3.24 REQUEST KEYBOARD Interface 122
3.3.25 SELECT Interface 123
3.3.26 RELEASE Interface 124
3,3.27 CHANNEL CONTROL Interface 125
3.3.28 CRITICAL SECTION Interface 126
3.3.29 EVENT VARIABLE Interface 127
3.3.30 TIME Interface 128
3.3.31 DATE Interface : 129
3.3.32 SPIOS Interface 130
3.3.33 Interrupt and Error Handling Modules 131
3.3.34 Miscellaneous Modules 132
3.3.35 LOCK Interface 133
3.3.36 RTL Modules to be Deleted 134

3.4 User 136
3.4.1 OS JCL Procedures . 136
3.4.2 MOSS JICL 136

iii

TABLE OF CONTENTS

(continued) -
Section
4, RESTRICTIONS AND LIMITA TIONS

4.1 HAL/S Dependencies

4.2 Separation of Host and Target Machines
4,3 Diagnostic Capabilities ‘. |

4. 4 RTL Reentrancy

REFERENCES

iv

137
137
138

139

C&D
CVvT

DDIU
1/0
JCL
MOSS
PAF
RTL
SUMC

SUMC-5
svC

LIST OF ACRONYMS
Control and Display
Concept Verification
Display Data Interface Utility
Input /Outpuf
Job Control Language
Modular 6perating System for the SUMC
Program Access f‘ile
Run Time Library
Space Ultrareliable Modular Computer

SUMC-Simplex
Supervisor Call

(BLANK)

vi

LIST OF FIGURES

Figure No. Title
2-1 HAL/SM Subsystems and System Flow
2-2 HAL/SM Preprocessor Subsystem
2-3 HALLINK Subsystem
2-4 HAL/SM Run-Time Library (RTL)

Page

10
11

(BLANK)

viii

1. INTRODUCTION

The HAL/SM programming system shall implement a version of the
HAL programming language (see Reference 9) which has been specifically
adapted for running in the Concept Verification Test (CVT) environment on
the Space Ultrareliable Modular Computer - Simplex (SUMC-S) under the
Modular Operating System for the SUMC (MOSS). The HAL/SM programming
language is defined in the HAL/SM Language Specification (Reference 1, re-
ferred to herein as the Language Spec); familiarity with the Language Spec
shall be assumed throughout this document.

The HAL/SM programming system shall be implemented as an adapta-
tion of the HAL/S-360 Compiler System, Release 11,0 (see References 3
through 5), and shall consist of a HAL/SM Preprocessor, the HAL/S-360
Compiler, and modified versions of the HAL/S-360 HALLINK program and
Run Time Library (RTL), The preprocessor, compiler, and HALLINK
{collectively referred to herein as the language processor system) shall all
operate on the IBM S$/360-370 family of computers under suitable operating
systems as specified in Reference 4, The HAL/SM object programs produced
by the language processor system when properly combined with the RTL and
linked in the MOSS environment (see References 6 and 7) shall be capable of
executing under and utilizing the full capablltttes of the MOSS Operating System
on the SUMC-S computer system. :

(BLANK)

2. SUBSYSTEMS

The major subsystems of the HAL/SM system shall be as follows (see
Figure 2-1): .

o HAL/SM Preprocessor - converts HAL/SM source language
modules into HAL/S source language modules, performs
minimal syntax verification, provides various support
features which cannot be conveniently or adequately per-
formed by the HAL/S-360 compiler (e.,g., M&CD reference
verification, C&D display message data set generation).

o HAL/S-360 Compiler - converts HAL/S source language
modules into IBM S/360 compatible object modules, per-—
forms complete syntax verification,

) HALLINK - combines HAL/S object modules into load
modules, calculates run-time stack size requirements
and adds the stack to the load module, adds and/or deletes
certain other CSECTS from the generated load module
depending on options specified, :

o Run Time Library - when properly linked with each HAL/
SM task, provides computational routines and MOSS inter-
face routines to support various features of the HAL/SM
language.

The functions and interactions are described in more detail in the
remainder of this section on an individual subsystem basis, except for the

compiler, For more information on the compiler, see References 2 through 5,

2,1 Preprocessor Subsystem

This subsection describes the functional requirements for the HAL/
SM preprocessor, In this implementation of HAL/SM, the combination of the
preprocessor and the HAL/S-360 compiler takes the place of a HAL/SM-360
compiler., This approach to language translation has the advantage of being
considerably less costly than a compiler development effort, To take full
advantage of this fact, the requirements for the preprocessor have been
specified with the following ground rules in mind:

o Minimize complexity by making no mod dtcattons to
the HAL/S-360 compiler.

RECEDING PAGE BLANK NOT FILMED _,_

HAL/SM SUBSYSTEMS AND SYSTEM FLOW

L

/HAL/SM Source

Language Modules

'

HAL/SM Preprocessor

l

HAL/S Source
Language Modules

l

HAYL/S-360 Compiler

Object Modules

M&CD

C&D Display

Messages

l

HALLINK

RTL

,l

Load Modules

MOSS [

Figure 2-1

—4a

o Perform no processing in the preprocessor which can be
performed by the HAL/S-360 compiler.

W ithin these constraints the requirements listed in the following paragraphs
have been defined suchthat the preprocessor will provide the same facilities
as would otherwise be provided by a HAL/SM compiler, The single major
area where this is not possible is in syntax error detection and diagnostic in-
formation (see Section 2.1, 6),

The remainder of this subsection is divided into detziled requirements
specifications by major functional area of the processing performed by the
preprocessor (see Figure 2-2).

2,1.,1 1Inputs

The preprocessor shall accept two classes of primary inputs: HAL/
SM symbolic source code and directives. An additional input shall be the
Program Access File.

Symbolic Source Code: The preprocessor shall accept HAL/SM
source code in the one-dimensional form defined in the Language
Specification. Symbolic source code may be presented to the
preprocessor from either a primary input data set (default; nor-
mally from the card reader) or a secondary input data set, as
specified by preprocessor directives. The secondary input data
set is called the Symbolic Library and contains block templates
generated by the preprocessor and other standard symbolic
modules which may be placed in the library using standard IBM
supplied utility programs.

Directives: Directives shall provide control information required
by the preprocessor and the compiler. The preprocessor shall
accept two types of directives:

o HAL/SM preprocessor directives (denoted by a "P"
in column 1 of the input record),

o HAL/S-360 compiler directives (denoted by a "D' in
column 1 of the input record).

Certain of the directives defined for the HAL/S-360 compiler (see Reference 5)
shall be restricted from use by the preprocessor in the HAL/SM system ({(TBD).
These directives shall be replaced by preprocessor directives of the same
form and intent. All other compiler directives shall be passed by the pre-
processor to the compiler in the compiler's primary input data set, Additional
preprocessor directives shall be defined to control optional processing performed
by the preprocessor.

wha

HAL/SM PREPROCESSOR SUBSYSTEM

yd

HAL/SM Source
Language Modules

HAL/SM
Symbolic
Library

(OS JGCL

Program
Access
File (PATF)

HAL/SM
Preprocessor

Listings

y

HAL/S Source
Language Modules

Figure 2-2

6.

M&C List

C&D Display
Messages

Program Access File (PAF): Implementation of the HAL/SM ACCESS
attribute shall be via a PAF mechanism of the same form and intent as
in the HAL/S-360 implementation (see Reference 5, paragraph 6.2,2.6).
Although this capability is contained in the compiler, it must be dupli-
cated in the preprocessor because of certain transformations made by
the preprocessor to the text of the preprocessed symbolic modules,

2,1,2 Symbolic Library Interface

The Symbolic Library facility of the HAL/SM system shall be imple-
mented via a mechanism of the same form and intent as that of the HAI/S-360
Include Library (see Reference 5, paragraph 6,2.2,5).

A1l block templates generated by the preprocessor shall be placed in
the Symbolic Library. Template generation shall be performed in a manner
similar to that performed by the compiler (see Reference 5, paragraph 6.2.2,7)
differing only as dictated by the definition of the HAL/SM language.

2.1,3 M&CD Interface

The preprocessor shall verify all references to ERP's made by the
HAL/SM programmer by looking up the M&CD ID in the M&CD. All references
to ERP's shall be checked for correct usage and the reference will be tran-
slated to the standard "O~name!' defined for that pa.rtlcular ERP to permlt
processing by the MOSS Linker.

2,1.4 Display Data Interface Utility (DDIU) Interface

The preprocessor shall remove all C&D display message text from the
HAL/SM source code and create a data set which contains this information.
The data set shall be constructed by the DDIU routines. Coded references to
the display data set shall be placed in the output HAL/S code where each
message is referenced,

2.1,5 Listings

Several types of listings may be generated by the preprocessor as
specified by preprocessor dlrectwes. Some or all of these listings may be
optional (TBD),

Unformatted Source Listing: This shall be an '80-80" listing of
the primary input data set and all INCLUDEd text (from the Symbolic
Library) before annotation or reformatting by the preprocessor.

7=

Reformatted Source Listing: This shall be a reformatted and annotated
representation of the symbolic HAL/SM source text., Indentation and
annotation shall be in essentially the same form as the primary listing
produced by the compiler (see Reference 5, paragraphs 3.1-3,3),

Cross Reference Listi.ng:- This shall be an alphabetized listing of all
programmer -defined symbols together with a list of the line numbers
referencing each occurrence of each symbol in the reformatted source
11st1ng. '

Output Source Listing: This shall be a listing of the HAL/SM symbohc
source code produced by the preprocessor,

2.1,6 Diagnostic Information

The preprocessor shall produce diagnostic error messages for all
errors which it detects, These error messages shall consist of descriptive
text indicating the type of error detected and they shall be placed in the re- .
formatted source listing to indicate the source of the error.

The preprocessor shall not perform a complete syntactic or semantic
analysis of all statements, However, sufficient analysis shall be performed
such that errors not detected by the preprocessor shall cause incorrect HAL/S
symbolic code to be produced and the compiler will detect the error; i.e.,
syntactically incorrect HAL/SM source text will cause an error message to
be generated by either the preprocessor or the compiler or both,

2,1,7 HAL/S-360 Compiler Interface

The implementation shall provide for automatic invocation of the
compiler to process the HAL/S code produced by the preprocessor when no
errors are detected., All information required by the compiler shall be provided
to it by the preprocessor when the HAL/SM code is error free, This includes
certain control information in the form of compiler directives (see Reference
5).

The version of the compiler system to be used in the HAL/SM system
shall be fixed at Release 11,0 for the entire duration of the software develop-
ment phase,

2.1.8 User Interface

0S/360-370 JCL procedures shall be implemented to permit convenient
use of the HAL/SM preprocessor. Suitable options and defaults shall be defined
and implemented into the procedures to allow for the normal expected range
of applications of the system.,

-8-

2.2 HALLINK Subsystem

The HAL/S-360 HALLINK prograrn (see Figure 2-3) is defined to
produce program complexes which operate in a different environment
from that of MOSS and it, therefore, performs certain processing which
is unnecessary for HAL/SM programs, HALLINK also allows certain
configurations of programs which are not valid in the HAL/SM System.
This subsection describes the functional requirements for modifications
to be made to the HAL/S-360 HALLINK program to make it usable and
reliable within the HAL/SM System. The modified version of HALLINK
shall be known as the HAL/SM HALLINK program,

The modifications to be made to HALLINK are primarily to en-
force restrictions which must be imposed either as a result of the HAL/
SM language definition and the MOSS environment or as a result of the
implementation of the HAL/SM System, DBuilding these restrictions
into HALLINK will permit a certain degree of integrity to be guaranteed
when including non-HAL/SM modules in a HAL/SM task,

The HAL/SM HALLINK program shall operate in the same manner
as that for HAL/S-~360 with the follong changes:

o Only one process shall be permitted in each address
Space. .
o Certain control sections shall be deleted from the

output load modules which are not needed in the
MOSS environment,

o The Execution Monitoring System (see Reference 5,
Section 4, 3) shall not be supported.

2.3 RTL Sub3ystem

This subsection describes the functional requirements for modifi-
cations to be made to the HAL/S-360 RTL (see Figure 2-4) to make it
usable under MOSS in the HAL/SM System,

2.3.1 Efficiency Criteria
The configuration of the particular SUMC-S for which this imple-
mentation of HAL/SM is to be designed is currently envisioned as a

system on which main memory is more of a scarce resource than pro-
cesgor time. For this reason, the primary efficiency criteria to be

-9-

'HALLINK SUBSYSTEM

HAL Object Modules

HAL/SM

- RTL

HALLINK

Listings

Y

Load Modules

Figure 2-3

~10a-

HAL/SM RUN-TIME LIBRARY (RTL)

MOSS TASK

HAIL/SM Program
and Data Modules -

/ HAL/SM RTL
e) |
1 Computationatl
| Routines

Real Time and

]
]
; Service Routines
! _

7 P

[Error & Event . 1 SVC Interface .

. C&D Display
1 Control
1

Messages

MOSS

Figure 2-4

-11-

used in implementing the required modifications to the RTL shall be as
follows:

o} Main Memory requirements shall be kept to a minimum.

o Execution speed shall be consldered seconda.ry to
memory utlllzatlon.

2.3.2 Modifications to Support MOSS External Intérfaces

Modifications shall be made at all operating system interfaces due
to different implementation of similar functions., Some RTIL modules and
interfaces shall be deleted where their functions are not supported; others
shall be added to support new capabilities, Some functions which were
previously performed (or simulated) within the RTL shalj be performed
by MOSS (e.g., task scheduling).

2.3.3 Modifications to Support HAL/SM Calling Sequences

Modifications shall be made to the RTIL to provide interfaces to :
the HAL/SM program for all new calling sequences generated by the pre-
processor (see Section 3.1}, Some of the new interfaces shall be modified
versions of existing modules, while others shall require implementation
of completely new modules to support language mechanisms,

2.3.4 Unsupported Functions

Major deletions shall be made from the RTL of modules which handle
functions which are unsupported by this implementation. The major dele-
tions pertain primarily to the following:

o "Pgeudo-RTE!" - This refers to the RTL routines which
simulate protess scheduling, event management, etc.,
for the HAL/S-360 implementation. These functions shall
be performed by MOSS, frequently with modified seman-
tics.

o Execution Monitoring System - This facility (including the
Diagnostic Command Language, see Reference 5, Section
4.3) shall not be supported for HAL/SM.

o Multiple Processes - Under MOSS, exactly one process

(or "task') is permitted per address space. The I—IAL/
SM RTL shall support only one process per copy.

=-12.

Flight Computer Timing Simulation - This facility shall
not be supported for HAL/SM.

Miscellaneous HAL/S Features not in HAL/SM - Certain
HAL/S language features are not provided in HAL/SM
because either the capability cannot be provided under
MOSS (e.g., the HAL/S UPDATE PRIORITY statement),
or because the capability is considered either dangerous
or difficult to support in this implementation.

2,3.5 Unsupported Execution-Time JCL Options

Because of the deletions mentioned in Paragraph 2,3.4, the follow-
ing execution-time options (see Reference 5, Appendix B) are not supported:

(o]

MSGLEVEL = 2
SIMTIME =n
SPEED =n

PCBS =n
FIRSTPGM = name
PROGRAM = name
TRACE =n
NOTIME

FAST

DUMPALL =n

13-

(BLANK)

-14-

3. INTERFACES

_ This section defines the preliminary processing reguirements of
each of the major subsystems in terms of their interfaces. As in Section
2, the HAL/S-360 compiler is not discussed directly; see References 2
through 5 for more information. Since the relationships of the HAL/SM
programs to each of the subsystems are quite different, it is useful to
interpret the term "interface" differently for each subsystem discussed,
Specifically, for each subsystem the interfaces are discussed as follows:

o Preprocessor - For each HAL/SM statement type or
construct requiring a modified implementation in
HAIL/S the emitted HAL/S source code is described,

o HALLINK - The allowable inputs and the types of infor-
mation in the output load modules are discussed. '

o RTL - For each new entry point into the RTL defined
in support of the preprocessor, the calling sequence
and function performed by the entry point is described,
For each RTL module whose implementation is affected
by the difference between the OS and MOSS environment,
the required modifications are described on a functional
level, ‘

In addition to the inter-subsystem interfaces discussed above, the
user interface is discussed in terms of OS and MOSS JCL requirements.

3.1 Preprocessor

This subsection enumerates the HAL/SM constructs which require
a modified implementation in HAL/S, FEach numbered paragraph discusses
a single HAL/SM construct in the following form: '

3.1, _ Construct Name
.Syntax Diagram

Emitted HAL/S Code Template(s)

Notes

Examples

-15.

PRECEDING PAGE BL

The syntax diagrams are of the same form as those in the language
specification, though they are not necessarily identical, Non-terminal
symbols which are not defined in the language specification are defined else-
where in this subsection. The notes are used to correlate various elements
of the HAL/SM construct with the emitted HAL/S code and to explain
differences in alternate versions of the emitted HAL/S code template re-
quired by options or alternatives in the HAL/SM syntax,

3.1.1 TASK Header

HAL/SM Syntax

task

header ' ACCGESS

) - _TASK __J - —G—

HAL/S Code Tergpléte

program
header

> { PROGRAM) —G)—

Notes
1. The TASK in the HAL/SM construct is equivalent to
PROGRAM in HAL/S, :
2, Access control for HAL/SM constructs is performed
by the preprocessor,
Example
Tl: TASK ACCESS;
becomes

Ti; PROGRAM;
-16-

3.1.2 COMPOOL Header

HA L/SM Syntax

compool
header

ACCESS

(COMPOOL

RIGID

—-—
HAL/S Code Template
—] o
{ coMPOOL } —— ' O—

Note

1.

Example

Cl:

becomes

Cl:

Access control for HAL /SM constructs is performed by
the preprocessor.

COMPOOL ACCESS;

. COMPOOL;

-17-

3,1,3 FUNCTION Header

HA L/SM Syntax

function
header

~ , ‘

I' EENTRANT I

Fq"

Note
1. Access control for HAL/SM constructs is performed by the
preprocessor,
Example
Fl: FUNCTIOﬁ (TESTX) SCALAR REENTRANT ACCESS;
becomes | |

Fl1; FUNCTION (TESTX) SCALAR REENTRANT;

-18-

3.1.4 PROCEDURE Header

HAL/SM Syntax

procedure
header

PROCEDURE) t >

Fan
2/

ASSIGN identifie

_ - ‘ - O"‘
QEENTRANTJ ACCESS .

HAL/S Code Template

procedure
header

‘ ROCEDURE

- °
REENTRAN'Q’_,
Note
1, Access control for HAL/SM constructs is performed by the
preprocessor.
ExamEle
Pl: PROCEDURE (PROCI1}) ASSIGN (ARGU1l) REENTRANT ACCESS;
becomes

Pl: PROCEDURE (PROC1) ASSIGN (ARGUl) REENTRANT;
-19-

3.1,5 REPLACE Statement

HAL/SM Syntax

replace
statement

REPLA CE}@.nﬁﬁe a

HAIL:/S Code Template

Not Applicable,

Note
1, The REPLACE statement is processed by the preprocessor
(i. €., the preprocessor shall replace each <« identifier> with
the appropriate < text>).. '
Fxample
REPLACE ALPHAZ BY '"J + 2 SIN(ALPHAB)';
BETAG = ALPHAZ - CO5(Y);
becomes

BETAG =J + 2 SIN(ALPHAB) - C05(Y);

-20-

3.1.6 JOB Attribute

HAL/SM Syntax

label
attributes

ACCESS

HAL/S Code Template

VCON
template ;D

_label EXTERNA 1}@OCEDU RE CLOSE

PROCEDURE)—G\TONHAL }_@_@_._Q 3

1. All <identifier> s declared with the JOB =label attribute>
shall cause the preprocessor to produce a <VCON template>
(at the beginning of the compilation) with the declared identifier
as its =label™> and the JOB <=label attribute> shall be trans-
lated into a <VCON label attribute>,

2. All other <label attribute> s shall be handled the same in HAL/S
as in HAL/SM (i.e., no transformation).

-21~

Examgle .

DECLARE
LOGANAL JOB ACCESS;-
becomes
LOGANAL : EXTERNAL PROCEDURE;

CLOSE;

DECLARE

LOGANAL PROCEDURE NONHAL (1);

22

3.1,7 Type Specification

HAL/SM Syntax

type
~ spec

EVENT J—

vy

DCW

HAL/S Code Template

bit (32)
type spec

Notes
1,
2.
3.
4,

DCW and EVENT keywords a.ppearing in a <type spec> shall be
translated into a <bit (32) type spec=.

Identifiers declared with a FLAG <type spec> shall cause the
preprocessor to produce a <VCON template> (see Section
3.1,6) with the declared identifiers as its <label>and the FLAG
<type spec> itself shall be translated into a <VCON label
attribute> (see Section 3,1,6).

All other <type spec> s shall be handled the same in HAL/S
as in HAL/SM (i. e., no transformations).

When no initialization is present for DCW type data (see Section
3.1,8), a default value shall be inserted by the preprocessor,

23~

Exafnples '
DECLARE VARCW]1 DCW;

becomes .

DECLARE VARCW1 BIT(32) INITIAL (HEX'40086000');
and

DECLARE EV_1 EVENI;
becomes -

DECLARE EV_1 BIT(32) INITIAL(0);

w24

3.1,8 Initialization of DCW-Type Data

HAL/SM Syntax

©

initial _
list expression I____
m . dew value 1isD._@

arith exp |—@ initial list [(D—o
@@vvalue list }

unsubscripted var

HA L/S Code Template

initial
list

——Iixpression I-I

rith exp initial list

——(bit literal ﬁ—
(literal)'__

unsubscripted var |

Note’

1, This =<<bit literal> shall be an encoded value specifying the
display control word options specified in the < dcw value list>
in the HAL/SM construct. Any omitted options in the <dcw
value list> shall be assigned default values, '

-25-

Example
DECLARE

DCW_1 DCW INITIAL([YELLOW,10MM, BLINK OFF, 6 1);
becomes
DECLARE

DCW_1 BIT(32) INITIAL(HEX'202C4000');

26—

3,1.9 ON ERROR Statement (Form 1)

HAL/SM Syntax

error spec|

varidble ' O—@)
-—

3.

This <label> shall be an entry into the RTL to communicate
the required information to the HAL/SM error monitor.

This <number> shall indicate the error group specified in
the <error spec> of the HAL/SM syntax.

This <number> shall indica.te the error number within the

selected error group as specified in the <error spec> of
the HAL/SM syntax, :

-27-

4, This <bit literal> shall indicate whether the SYSTEM or
IGNORE option was selected in the HAL/SM syntax, and
whether a flag is to be signaled.

5. This optional <variable> shall specify the HAL/S va,na.ble
corresponding to the HAL/SM <flag> , when present.

Example
LABLl:ON ERROR IGNORE AND SIGNAL FLAG A;

becomes

LAB1:CALL RTL_ON ERRORI1(3, 1, BIN'11l', FLAG_A});

-28~

3.1.10 ON ERROR Statement (Form 2)

HA L/SM Syntax

basic
statement

error spec statement r———

HAL/S Code Template

ha gic

statement _ ‘ }D _

S (2o)-0{carsHiaber
3 | -
)

e .
(aumber)0 taver JO-0exrr)€

-7 | statement ‘ END O
Notes
1, - This <label> shall be an entry into the RTL to communicate

the required information to the HAL/SM error monitor.

~29-

2. This <number> shall indicate the error group specified in
" the <error spec> of the HAL/SM syntax.
3. This <number> shall indicate the error number within the
selected error group as specified in the <error spec> of the
HAL/SM syntax. '
4, This <label> ghall be generated by the preprocessor and shall
be the same identifier as indicated by 6.
5. This <statement> shall correspond to the <statement> in the
HAL/SM syntax,
Example
ON ERROR, , GO TO ERREXIT;
becomes
DO;

CALL RTL_ON_ERROR2 (3, 1, GO0000S);
EXIT;

G000005; GO TO ERREXIT;

END;

~30-

3.1,11 OFF ERROR Statement

HAL/SM Syntax

basic
statement

| error spec | O

Notes

1. This <label> shall be an entry into the RTL to communicate
the required information to the HAL/SM error monitor.

2, This <number> shall indicate the error group specified in
the <error spec> of the HAL/SM syntax,

3. This <=number> shall i.ndicate the erfor_ number within the

selected error group as specified in the <error spec> of the
HAL/SM syntax,

-3]1-

Example

OFF ERROR1 :2;
becomes

CALL RTL_OFF_ERRQR(I, 2);

-32-

3.1.12 SIGNAL Statement

HAL/SM Syntax

basic
statement

SIGNAL 6]
@
variable
Notes
1, This <label> shall be an entry into the RTL to perform the
required functions,
2. Each <variable> shall specify the HAL/S variable correspond-
ing to each <flag> appearing in the HAL/SM construct.
Example

SIGNAL FLAG A, FLAG B;
becomes

CALL RTL SIGNAL (FLAG A, FLAG_B);
-33-

3,1.13 RESET Statement

HAL/SM Syntax

O

o
event var *

basgic
statement

HAL/S Code Template

‘basic

gy, W
statement /D ®

CALL)‘(Iabel Hvariable O

Y N\
Notes
1. This <label> shall be an entry into the RTL to perform the
required functions, .
2. Each <variable> shall specify the HAL/S s‘rai'iable correspond-
ing to each <event var> appearing in the HAL/SM construct.
Example |
RESET EV_A;
becomes

CALL RTL_RESET (EV_A);
. =34~

3.1,14 TERMINATE Statement

HAL/SM Syntax

basic
statement

JOB

A TERMINATE ®

O~laber)

HAL/S Code Template

basic
statement

— o
Note
1, This <label> shall be one of two entry points into the RTL to
perform the required functions.
Example
TERMINATE JOB;
becomes
CALL RTL_JTERM;
and

-35.

TERMINATE TASK;
becomes

CALL RTL_TTERM;

36—

3.1.15 ABORT Statement

HAL/SM Syntax

hbasic
statement

JOB

TASK O

©

HAL/S Code Template

basic
statement

D CALL label

(o

1, This <label> shall be one of three entry points into the RTL
to perform the required functions.

2. Each <label> shall specify the HAL/S label corresponding to
each <label> in the HAL/SM construct.

-37-

Examples -

ABORT JOB;
becomes

CALL RTL_JABORT; |
and

L:ABORT TASK 1, T:%—‘sSK_Z ;
becomes | |

L:CALL RTL_ABORTL (TASK_l, TASK_2);

-38-

3.1.16 LOG Statement

HAL/SM Syntax

basic
statement

D)

—

Lo—Ga

LOG char exp

HAL/S Code Template

hagic
statement

V - 7‘(01& LL)‘(IAbel)'@‘
A

/

char exp OO

Notes
1, This <label> shall be an entry point into the RTL to perform
the required functions,
2, The <char exp> shall be the character expression specified
in the HAL/SM construct,
Example
LOG 'SIMULATION ERROR! //ERROR_NUMBER;
becomes

CALL RTL_LOG ('SIMULATION ERROR' //ERROR_NUMBER);

-39-

3,1.17 UNLOCK Statement

basic
statement

UNLOCK

HAIL/S Code Template

basic
statement

O - CALI_)_(1abe1>-({)— OO
© |

N
o

Notes
1, This <label> shall be an entry point into the RTL to perform
the required functions. '
2. Each <label> shall specify the HAL/S label corresponding
to each <label> in the HAL/SM construct,
Example
UNLOCK TAKE OFF;
becomes

CALL RTL UNLOCK (TAKE_OFF});

=40~

3.1.18 LOAD Statement

HAL/SM Syntax

basic
statement

Notes
1, This <label> shall be an entry pomt into the RTL to perform
the required functions,
2. This <label> shall specify the HAL/S label corresponding to
the <label> in the HAL/SM construct.
Example
LOAD LOG_ANALYZER;
becomes

CALL RTL_LOAD (LOG ANALYZER);

-41-

3,1,19 INITIATE Statement

HAL/SM Syntax

basic
statement

0 t - ﬂ GNITIATE)—Gabel)*G)—

HAL/S Code Template

Notes
1. This <label> shall be an entry point into the RTL to perform
the required functions.
2. This <label> shall specify the HAL/S label correspondmg to
the <label> in the HAI,/SM construct, -
Example

INITIATE 1.OG ANALYZER;

becomes

CALL RTI_INIT (LOG ANALYZER);

wd? -

3,1,20 DELETE Statement

HA L/SM Syntax

basic
statement

¢

DELETE —~

HAL/S Code Template

basic
statement

> > carr) iabel —0—o

Note
1, This <label> shall be one of tw§ entry points into the RT1L
to perform the required functions.
Examples
DELETE JOB;
becomes
CALL RTL JDEIL;
and
DELETE TASK;
becomes

CALL RTL_TDEL;
~43-

3,1.21 SCHEDULE Statement

basic
statement

expression

@'time value

~ put SCHEDU LE)‘Qa.bel -

- ' —- -~
GMT
a time value
MET :

- -

_— _ e ‘ - ‘
LCWvHEN)— event exp ~£@HEN WAIT time value ‘J
~— -

REPEAT AFTER

o
1),

time value -

=44

HAL/S Code Template

event exp tempsi ’
- }

-1 bit var

<z

L EVENT VAR _ TL_EVENT_EXP_ ®
—

a.r1th exp ; DOUBLE -

%—(Dkarith exp

-

-45-

where:

RTL_SCHED_PAR@—(CHARACTE@— _——

> @MPORAR%TL_EVENT_VAR_LIST ~—
—&@TL_EVENT_}:XP_STRIN}(ARRAY © O—---

—-—{_BIT O—@—0—0©

Notes
1. This <char exp= shall correspond to the parameter expression
to be passed to the scheduled task, ' -
2. This optional path shall be taken when an <event exp> appears

in the HAL/SM construct., The path shall be repeated via a.
feedback loop as many times as there are event variables in
the event expression, The <number> on this path shall be

a one (1) the first time through, and shall be incremented each
time the path is taken for a given HAIL/SM construct, Each

< bit var> on the path shall correspond to each of the <event
var> g appearing in the HAL/SM construct.

-46-

lo.

11.

This optional path shall be taken when an <event exp> appears
in the HAIL/SM construct. The path shall be repeated via a
feedback loop as many times as necessary to initialize the

array with the Reverse Polish representation of the <event exp>
(see Reference 7, Section 5,2.1), The <number> on this path
shall be one the first time through, and shall be incremented
each time the path is taken for a given HAL/SM construct.

Each <bit var> on the path shall correspond to the code for
either an event operand in the HA L/SM construct or operator
according to the conventions specified for MOSS event expressions,

This <label> shall be an entry point into the RTL to perform
the required functions.

This <bit literal> shall be a bit vector indicating the presence
of certain optional parameters in the RTL invocation.,

This <label> shall be the HAL/S label corresponding to the
task label (of the task being scheduled) in the HAL/SM construct.

This <arith exp> shall correspond to the <time value> in the
IN or AT phrase of the HAL/SM construct, when present,

This optional path shall be taken when an <event exp> appears
in'the HAL/SM construct, The <number> indicates the number

of <event var> s present in the <event exp>,

This optional path shall be taken when a THEN WAIT phrase

.appears in the HAL/SM construct, The <arith exp> shall

correspond to the <time value> in the HAL/SM construct.

This optional path shall be taken when a REPEAT phrase
appears in the HAL/SM construct. The <arith exp> shall
correspond to the <time value> in the HAL/SM construct when
the AFTER clause is present and shall be zero when it is
absent, :

This optional path shall be taken when a parameter to be passed
to the scheduled task is specified in the HAL/SM construct.

-47-

Examples-
L: SCHEDULE IOTA;

becomes
L: DO;
CALL RTL SCHED (BIN '0', IOTA);
END;
and

SCHEDULE DELTA IN 30 SECS WHEN EV1 & (EV2/EV3);
becomes | |
: DQ;
TEMPORARY

RTL EVENT VAR_LIST NAME ARRAY (3) BIT (32),
RTL_EVENT_EXP_STRING ARRAY () BIT (8);
RTL _EVENT VAR _LIST, = EVl;
RTL_EVENT_VAR_LIST, = EV2;
RTL_EVENT_VAR_LIST, = EV3;.
‘RTL_EVENT EXP_STRING, = HEX '011;
RTL _EVENT_ EXP_STRING, = HEX '02';
RTIL_EVENT EXP_STRING, = HEX '03';
RTL_EVENT_EXP_STRING, = HEX 4E';
RTL_EVENT_EXP_STRING, = HEX '5C';
RTL EVENT_EXP STRING, = HEX '7E";
CALL RTL_SCHED (BIN '001100', DELTA, (30000)g oo o

RTL EVENT VAR _1LIST, RTL EVENT EXP STRING, 3);

i n

U'lﬂkbéNl-'

END;

-48-

3.1.22 WAIT Statement

HAL/SM Syntax

basic
statement /-

G

event exp

time valuel

()
-

THEN

WAIT

time value

-49.-

HAL/S Code Template

basic
statement

O

®]€TL_EVENT_VAR_LIST number bit var
- - ‘: i - i i —_

-

YRTT, EVENT EXP N
e Q@ DG bit literal

_—— - -

B CALD_ClabeI bit literal T
arith exp [U ¥ @ poune)Y

_ WT L_EVENT_VAR_I1IS %ﬁ\@’ ENT—EXP—
—— - . !

Iwarithexp O—E-&— pouBLE @'—
- -

250~

where:

event exp
temps
TEMPORARY HRTL] EVENT_VAR_LI@(NA ME)‘@RRA 9—(0— -

Notes

2,

This optional path shall be taken when an <event exp> appears

in the HAL/SM construct. The path shall be repeated via a
feedback loop as many times as there are event variables in the
event eéxpression, The <number>> on this path shall be a one

the first time through, and shall be incremented each time

the path is taken for a given HAL/SM construct, FEach <bit var>
on the path shall correspond to each of the <event var> s
appearing in the HAL/SM construct,

This optional path shall be taken when an <event exp> appears

in the HAL/SM construct. The path shall be repeated via a
feedback loop as many times as necessary to initiate the array
with the Reverse Polish representation of the <event exp> (see
Reference 3, Section 5,2,1)., The <number> on this path shall
be one the first time through, and shall be incremented each time
the path is taken for a given HAL/SM construct., Fach <bit
literal> on the path shall correspond to the code for either an
event operand or operator in the HAL/SM construct according

to the conventions specified for MOSS event expressions.

This <label> shall be an entry point into the RTL to perform .
the required function.

This <bit literal> shall be a bit vector indicating the presence
of certain optional parameters in the RTL invocation,

~5] ~

5, This <arith exp> shall correspond to the <time value> in
the FOR phrase of the HAL/SM construct, when present,

6. This optional path shall be taken when an <event exp> appears
in the HAL/SM construct, The <number> indicatés the
‘number of <event var> s present in the <event exp>.

7. This optional path shall be taken when a THEN WAIT phrase
appears in the HAL/SM construct, The <arith exp> corres-
ponds to the <time value> in the HAL/SM construct.

Examgles
STATE3: WAIT FOR MET 50 SECS 25 MSECS
UNTIL EVAR1/EVAR10;
becomes
STATE3: DO;
- o TEMPORARY
RTL _EVENT_ VAR _LIST NAME ARRAY (2)
BIT (32), - .
'RTL_EVENT_EXP_, STRING ARRAY (4)
BIT (8); -
RTL_EVENT_VAR_LIST, = EVARI
RTL EVENT VAR _LIST, = EVARI1O;
RTL_EVENT EXP s'rmilc = HEX '01';
RTL_EVENT_.EXP STRING, = HEX '02%;
RTL_EVENT_EXP_STRING, = HEX '4E';
RTL_EVENT EXP_STRINGj = HEX '7E';
101110
CALL RTL_WAIT(BIN '01110', (50000)q 1, 000 o
RTL_EVENT_VAR_LIST, RTL_EVENT_EXP_
STRING);
END;
STATE4: WAIT FOR GMT 2 TSTART;
becomes
STATE4: DO;
CALL RTI_WAIT(BIN '0', 2 TSTART);
END;

=52 a

3.1.23 ALERT Statement

HAL/SM Syntax

basic
statement

event OO

' A LERT} event var -TO)_'

event

OF H 1label

 dim literal

) .- ttime value |—

bit var

~-53-

Notes

1, This <label> shall be an entry point into the RTL to perform
the required functions. ' _ :

2, This <bit var> shall correspond to the <event var> in the
HAL/SM construct,

3. This <bit literal> shall indicate the presence of certain optidnal
parameters in the RTL invocation. '

4. This <label> optionally SPECIfleS the HAL/S <1abel> corres-
ponding to the task label, the program flag, or the ERP
demgnat_o,r in the HAL/SM construct..

5. This optional path shall be taken when the <ERP designator> or
<clock> is specified in the HAL/SM construct. The <number>
shall correspond to the <relational op>, the IS BETWEEN, IS
NOT BETWEEN, or the>, = specification in the HAL/SM con-
struct. .

6. This optional path shall be taken when the <erp designator™>
or <clock> is specified in the HAL/SM construct. The <arith
exp> shall correspond to the <dim literal> or <arith exp>
following the <erp designator™> or the <time value> following
the <clock> in the HAL/SM construct.

Exa.mEIeé

STATES: ALERT EVENT_VARI TO TERMINATION OF TASKA;

becomes

STATES: CALL RTL_ALERT (EVENT VARI1, BIN '0', TASKA);

and

STATET: ALERT EVENT__'_V.ARS TO AIl5 2 DELTAV;

becomes
STATET: CAIJJRTL;ALERT(EVENT_VARS,IﬂN'lP,OAHS,O,

(2 DELTV) g o0 nr s

54~

3,1.24 AVERAGE AI Statement

HAL/SM Syntax

basic
statement . .
S —— AVERAGE}* arith exp ‘(RTE A DING T

:
ASSIGN

T —@P deﬂgnat@*' A ,
——(.A ND)—(SA VE

variable 0,

HAL/S Code Template

hasic
statement

LL)“(la.bel)-—@—‘ arithexp [~—~

variabhle
Notes
1, This <label> shall be an entry po:.nt into the RTL to perform
the required function. .
2. This <arith exp> corresponds to the <arith 'exp> which specifies

the number of readings to be averaged in the HAIL/SM construct,

-55=

3. This <label> shall specify the HAL/S <label™> which corres-
ponds to the HAL/SM <erp designator>.

4, This <variable> shall correspond to the <variable> which
specifies the data storage area in the HAL/SM construct.

Example
STATELO: AVERAGE 25N READINGS OF AINPUT_25
| ASSIGN AVERA_GE_VA LUE;
becomes
STATELO: CALL RTL_AVERAGE(2tN, 0AI25) ASSIGN

(AVERAGE VALUE);

-56-

3.1.25 READ ERP Statement

HAL/SM Syntax

b_asic
statem_ent ___(MEASURE)
O —C SENSE j_
“‘(ASSIGN }
. 'variable

erp designator

- —

DELTAS —@NDXSAV%Q ,

HAL/S Code Template

variable

BT -

Notes

1, This <label™> shall be an entry point into the RTL to perform
the required function,. ‘

2, This <number>> shall indicate the presence of the DELTAS option
in the HAL/SM construct.

3. This <number> shall specify the number of <label> s and -
< variable> s which follow. '

4, This <label> shall specify the HAL/S <label™ which corresponds
to the HAL/SM <erp designator>,

5. This <variable> shall co'rresf;ohd to the <variable> which
gpecifies the data storage area in the HAL/SM construct.

Example

SENSE AINPUT-10 AND SAVE AS ALPHA; .

becomes

CALL RTL_SENSE (0, 1, 0AI10, ALPHA);

-58 -

3.1,26 ISSUE Statement

HAL/SM Syntax

basic O
statement -
variable

bit literal)j @ -~
number j‘l

- ——@rp de signatoa—"@——‘—_

HAL/S Code Template

basic
statement

> CA LL)“‘(label

variable

bit literal

N
/)
number _)——

Notes
1. This <label> shall be an entry point into the RTL to perform
the required functions,
2. This <label™> shall specify the HAL/S <label> which corres-

ponds to the HAL/SM <erp designator>,
-59-

Example ‘

STATE!; ISSUE BZI,_ B32 TO RECORD__23;
becomes

STATEL: CALL RTL_ISSUE (0R23, B2l, B23);

-60 -

- 3.1.27 SET Discrete Statement

HAL/SM Syntax

—gp designatoD -—=-
)

. t variable '
—— _ @ - bit literal
number

HAIL/S Code Template

basic
statement

number

: O—O—jarith exp D—— M

-61-

Notes

I. This <label> shall be an entry point into the RTL to perf_orm__ ,
the required function, :
2, This <number> shall specify the number of <label> s to follow.
3. This <label> shall specify the HAL/S <label> which corres-
ponds to the HAL/SM <erp designator>.
4. This <number> shall specify the number of values to follow.
5., - This <arith exp> shall correspond'to the <time value> in the
FOR phrase of the HAL/SM construct, when present,
Example
STATES: SET DO11, DOl12 TO 10, 12 FOR DELTAT;
becomes
STATES: CALL RTL_SETDI(2, ODOll, ¢polz, 2, 10, 12,

-(DELTAT)@DOUBLE_)';

~62-

3.1,28 APPLY Analog Statement

HAIL/SM Syntax .

hagic
statement

()
=\

e '
—{ SEND ‘

D
__"__# -

FOR time value

HAL/S Code Template

Notes.

1, This <label™ shall be an entry point into the RTL to perform
the required function,

2. This <number> shall indicate the presence of the DELTAS,
RAMPED TO, or pulsed options,

3. This <number> shall specify the number of <arith exp> s
and <label> pairs to follow,

4.' This <arith exp> shall spe cify the value or values to be
APPLYed to the <erp designator>,

5. This <label™ shall specify the HAL/S <label> which corres-
ponds to the HAL/SM <erp designator>. .

6. This optional path shall be taken when the value(s) is to be pulsed
or ramped, The <arith exp> shall correspond to the <time
value> in the FOR phrase of the HAL/SM construct.

Te This <arith exp> shall correspond to the <dim literal> or
<.arith exp> following RAMPED TO or UNTIL in the HAL/SM
construct. :

Example

STATE25: APPLY DELTAV TO AO24 FOR 2 TSTART UNTIL MAXV;

becomes

STATE25; CALL RTL_APPLY (1,1, (DELTAV), OA024, (2 TSTART)

' @pouBLE, MAXV):

-64-

3,1,29 DISPLAY TO OPERATOR Statement

HAL/SM Syntax

hasic
statement

OPERATOR) -0

\DISPLAY

label

ACCEPT

char var

ichar exp

HAL/S Code Template

label

T O 00—

char exp I "@@__Qi

char var

Notes
1, This <label> shall be an entry point into the RTL to perform
the required function.
2. This optional path shall be taken when ACCEPT REPLY IN

appears in HAL/SM construct,

“65-

Example
MESS1: DISPLAY 'I_'O OPERATOR 'HAS JOBA BEEN IN:_I;TIATED',

ACCEPT REPLY IN REPLY_ BUFFER;
becomes

MESSL: CALL RTL _WTOR ('HAS JOBA BEEN INITIATED!',
REPLY BUFFER);

b6

3.1.30 DISPLAY CONTROL Statement

- HAL/SM Syntax

: TN
(PAGE SELECT)
L TCLEAR)
J
'—LVIDEO.I_

; : VIDEO2 STROKE

A asic]
statement

D -

9 ___QLLOCA TE} -

L _(pEaLLoCATE) PN
- .

@Q----— O crT number

Notes

1., This <label™> shall be an entry point in the RTL to peffo-z-'m

the required function.

2, This <number> shall indicate which control function is to be
performed,

3. This <bit literal™> shall indicate the presence of the optional

RTL CRT parameters.

4. This optional path shall be taken when the TO <CRT < number: -
<number>>is specified in the HAL/SM construct.

Exa.mEIe

CONTROLL: VIDEO2 STROKE TO <CRT 1-4>;
becomes

CONTROLl: CALL RTL_DISCON(6é, BIN '1', 1,4);

-68-

3.1.31 Display Data Statement

HAL/SM Syntax

D 8lc
— -GsrLa--(onon)y - N
o @) Eyo- (@D (mmmee (mmm) -

identifier

& B n

variable — :

@ 2 @ numb%@-@mber

G

BLINK H{STATUS

g

TEXT fchar litex}

i

Caazee) Caeates)

Y

©
)

: VECTOR FM{FROM)—@-@mer 3 r[

-69-

HAL/S Code Template

ha.gic
statement

label

] char literal % , ———D)
o g _ &]

|

R — | : number variable f

variable

on]

variable i -—

©

@--- bit literal * - 9 &

-70-~

Notes

8.

9%

1o,
11,
12,

13,

This <label™ shall be an entry point into the RTL to perform
the required functions.

This optional path shall be taken when DISPLAY BGROUND or
DISPLAY ADDON are specified in the HAL/SM construct,

This <identifier> shall specify the program label by which
the BACKGROUND and ADDON disk messages are identified.

This <number> .‘aha.ll identify the record within the data set
specified by note 2 that contains the BACKGROUND or ADDON
message.

This <bit literal> shall specify the presence of the BLINK STATUS
option in the HAL/SM construct,

This <number™> shall specify the number of <variable> and
associated <dcw var> pairs in the DISPLAY BGROUND and
DISPLAY ADDON options of the HAL/SM construct.

This <bit var> shall correspond to the <dew var>> following
the WIDTH <number> specification in the HAL/SM construct.

This <variable> cdrre sponds to the <variable> following the
FOR in the HAL/SM construct,

This <bit literal> shall specify the presence of the <CRT
<number < - <number <<« specification in the HAL/SM construct.

This optional path is taken when <CRT -<number> <number> >
is specified in the HAL/SM construct.

This optional path is taken when the DISPLAY <identifier>or
UPDATE <identifier > is specified in the HAL/SM construct.

This <char literal> corresponds to the <identifier > s mentioned
in note 11.

This <number> ghall spécify the number of <variable> s in the
UPDATE <identifier™ option of the HAL/SM construct.

-71-

14, This optional path shall correspond to the UPDATE <identifier>
option in the HAL/SM construct, The <variable>> shall corres-
pond to the <variable> after <identifier>in the HAL/SM con-
struct,

15, This optional pﬁth shall correspond to the UPDATE <label> in
' the HAL/SM construct.

Examples
| STATE.I:‘ DISPLAY ADDON TO <CRT 1 - 4>BLINK STATUS
| TEXTCWl TEXT 'THIS IS SAMPLE DATA',
WIDTH 10 VARCWI1 FOR DATA__ARRAY;
becomeé |
STATEL: CALL RTL_DISADD(PROGI,.ld; BIN '1', 1, VARCWI,
DATA_ARRAY, BIN'l!,'1, 4);
and
STATES: | DISPLAY BGROUND.LINE 3 COL 10 TEXTCW]1 TEXT
'THE ALTITUDE VARIATIONS ARE', LINE 5 COL
15 WIDTH 3 VARCW2Z FOR ALTITUDE;
becomes |
STATES: CALL RTL__DISBACK(PR‘OG_I, 15, BIN '0', BIN '0');
and
S'I'ATEld: o UPDA'I’E&STATES;
becomes
STATEIO:V CALL RTL_DISUPD(1, VIARCWZ, ALTITUDE, BIN '0',

BIN '0');

-72-

3.1,32 Modify VCW Statement

HAL/SM Syntax

dew var dcw value 1 39.@_

bit var

bit var aSan G
label R
bit literal
-
Notes

1. This <bit var> shall be the HAL/S variable corresponding to the
<dew var> in the HAL/SM construct.

2, This <bit var> shall be the HAL/S variable corresponding to the
<dcw var>in the HAL/SM construct with added component sub-
scripting to select a specific bit field within the variable,

3. This <bit literal™ shall be an encoded value specifying one or
more of the dcw options specified to be modified by the <dcw
value list™ of the HAL/SM construct.

Example

MODIFY DCW_1 = BLINK ON;

becomes

DCW_1 = DCW_1

111 '
0 Tora NBIN'1'||DCW_1, oy

= 273-

 3,1,33 REQUEST Keyboard Statement

HAL/SM Syntax

basgic
-, statement

"‘""@EYBOARD : AND SAVE AS char var pP—-~—

M
\2/

-
L(A ND)—@o’s*r} bit var

HAL/S Code Template

D

CALL label) ©—{char var T
_°

b1t var

‘This <1abe1> shall be an entry pomt into the RTL to perform
the required function. ‘

This <char var® shall be the same as the corresponding character
variable in the HAL/SM construct,

This <bit var> shall be the same as the corresponding bit
variable in the HAL/SM construct, when present.

~74-

Example

REQUEST ENTRY FROM{KEYBOARD>AND SAVE AS RESPONSE;
becomes

CALL RTL_RQST_KYBD(RESPONSE);

. =75~

3.1.34 SELECT Statement

HAL/SM Syntax

basic
statement

§ select
element

Sy
o

_‘(DShH)—dsd select list

data select list

JOB

SYSTEM

commoN

-76-

HAL/S Code Template

basic
A\ statement

/(D

CA LL)—Gabel }

oy
L

- Q) {pbit literal O—
Notes
1. This <label> shall be an en{:ry point into the RTL to perform
the required function. B
24 This <label> shall correspond to the DATA or PROGRAM
module label specified in the HAL/SM construct, when present,
3. This <number> shall correspond to the SPIOS 1/0 channel
or file number specified in the HAL/SM construct, when pre-
- sent. The range of values shall distinguish between channels
and files, '
4, This <bit literal> shall indicate the access rights specified
in the HAL/SM construct for each resource. The format is the
same as the parameter list entry 2 for the SELECT SVC inter-
face to MOSS (see Reference 7, Section 5,5,1),
Example

SELECT DSD CHANNEL (6) WRITE, DISP = LEAVE;

becomes

CALL RTL_SELECT (-6, HEX'02010102');

-77-"

3.1,35 RELE;ASE Statement

HAL/SM Syntax

basic
‘ statement

0

number F))

'CHANNEL '
FILE .

RELEASE

©

Notes -
I. This <label> shall be an entry point ifto the RTL to perform
the required function,
2, This <numbe.1.'> shall corregpond to the SPIOS I/O channel
or file number specified in the HAL/SM construct.
3. This <label™ shall correspond to the resource label specified

in the HAL/SM construct.

-78-

-

Example

RELEASE DATAMOQOD, CHANNEL (3);
becomes

CALL RTL_RLSE (DATAMOD, -3);

-79- .

3.1.36 CHANNEL Control Statement

HA L/SM Syntax

bagic
statement

ll lahel .

a ,
'——"@CKSPACD—" aritirx exp —]
| __C SPACE j—- -

-—@EWIND j——

©

i (UNLOAI? j——
—(Cm (G-
_'(CLOSE j“

HAL/S Code Template

arith exp :

=80~

Notes

2,

4.

Example
L:
becomes

- L:

This <label™ shall be an entry point into the RTL to perform
the required function.

This <number> ghall be the channel number of the SPIOS 1/0
channel being manipulated,

This <number> shall indicate the function to be performed.

This <arith exp> shall _corré spond to the <arith exp>in the
HAL/SM construct, when present, and shall have a value of
one, otherwise,

CHANNEL (3) SPACE N_FILES + 1;

CALL RTL_CHAN (3,2, N_FILES+l);

w81 -

3.1.37 CRITICAL SECTION

HAL/SM Syntax

CRITICAQ‘@ECTI?)&'@— declare group

statement

update block

closing

procedure block

function block

HAL/S Code Template

---feclare group

e

statement

update block [

procedure block {7

function block |

_— .(CA LL)—@bel)-@- closing

cALLY{ 1abel) e

~— —ExD) ®-

D—

-82~

Notes

2.

3.

Example

 DO_IT:

becomes

DO _IT:

END;

This <label> shall be a symbol generated by the preprocessor
to identify the nested procedure. This procedure is an artifice to
force the compiler to enter a new name scope.

This <label> shall be an entry point into the RTL to cause
the task to enter critical mode,

This <label> shall be an entry point into the RTL to cause the
.task to exit from critical mode.

CRITICAL SECTION;

CALL DO_IT_FAST;

CLOSE;

DO;

G000001: PRO.CEDURE;
CALL RTL_GO_CRITICAL;
CALL DO_IT_FAST;
CALIL RTL_STOP_CRITI&IA L;
CLOSE;

CALL GO000001;

-83-

3.1,38 Time Literals

HA L/SM Syntax

DAY
- +
2 (number)} + { HRS —

' MIN |
|
|

| SECS ‘
MSECS

HAL/S Code Template

- number (3—@—DOUBLE M
Note

1. The preprocessor shall convert <time literal> s to a <number>

indicating the required time in milliseconds,

Example

30 SECS
becomes

30000, .

@DOURBLE

3,1,39 EVENT Variable

HA L/SM Syntax

event var

HAL/S Code Template-

bit
operand })
v bit var | @
Notes

1, This <label> shall be an entry point into the RTL to return as
its value the value of the specified HAL/SM <event var>,

2. This <bit var> shall be the HA L/S variable corresponding to
the HAL/SM <event var>. '

-85-

3,1,40 OPEN and CLOSE Literals

HAL/SM Syntax

: | OPEN)
o - CLOSED

HAL/S Code Template

bit literal \
definition
e

Note

1. The <bit literal definition> ghall be insertea in a COMPOOL
template at the beginning of each HAL/S source module produced
by the preprocessor.:

~86-

3.2 HALLINK

This subsection discusses the differences betweén‘the HAIL/SM and
the HAL/S-360 HALLINK programs., The following modifications shall be
made to the HALLINK and HALLKED modules of the HALLINK program:

o Force the suppression of the HALMAP CSECT in the
output load module,.

o Verify that the flight computer timing simulation "cost-
use'' arrays have been suppressed during compilation.,

o Verify that there are no nested HAL/S TASK's in the
output load module,

-87-

3.3 RTL

This subsection enumerates the new and modified modules in the. .
HAL/SM RTL. Each numbered paragraph discusses a single RTL interface -
or functional module and describes its characteristics in terms of calling
sequence, parameter lists, standard linkage conventions (see Reference 4),
function, and/or MOSS interface. For new modules (i,e., those not in the
HAL/S-360 RTL) all of the above mentioned facets are discussed (where they
are pertinent), For modified modules only those facets of the module which
require modification are discussed, .

-88.

3.3.1 ON ERROR Interface

The ON ERROR routines shall be additions to the RTL.

Calling Sequence (Form 1)
CALL RTL_ON ERRORI(pl,pZ,p3,p4),

Pa.ra.meter List

Py:. . error group number,
P,: error number within the group. .
Pyt the error action indicator specified as:

0 - SYSTEM, take the standard recovery action,
1 - IGNORE, do not attempt recovery,
Py the flag variable to be signaled on occurrence of the error,

Linkage Convention

Normal HAL/S-360 linkage,
Function

The RTL ON ERROR (Form 1) routine shall establish the error infor-
mation specified in the parameter list in this program's error environment
stack. The error information shall be used by the error monitor to determine

the actions to take when an error occurs,

Calling Sequence (Form 2)

CALL RTL_ON_ERRORZ(pl 2Py P3);

Parameter List

Pyt error group number,
Py error number within the group.
Py address (label) of the statement to be executed when the

error occurs,

-89-

Linkage Convention
Normal HAL/S-360 linkage.
Function

The RTL ON ERROR routine (Form 2) shall establish the error infor-
mation specified in the parameter list in this program's error environment
stack. The error information shall be used by the error monitor to determine
the actions to take when an error occurs,

-90-

3.3.2 OFF ERROR Interface
The OFF ERROR routine shall be an addition to the RTL.

Calling Sequence

CALL RTL_OFF_ERROR(pl » Py B

Parameter List

Pyt error group number,
1 2% error number within the group.

Linka.ge Convention

Normal HAL/S-360 linkage,
Function

‘The RTL OFF ERRCR routine shall establish the error information
specified in the parameter list in the program's error environment stack,
The error information shall be used by the error monitor to determine the
actions to be taken when an error occurs, ‘

-9} -

3.3.3 SIGNAL Interface
Thm RTL routine shall repla.ce the current HAL/S s1gnal rout1ne.

Calling Sequence

CALL RTL_SIGNAL(P,Pys+++,D,);

Parameter List

Each parameter in the list shall be the same type. The parameter
specification shall be repeated as required,

Py: the flag v;riable to be signaled.

Linkage Convention

NONHAL(1) linkage.
Function
The RTL SIGNAL routine shall set up the parameter list for the MOSS

event set interface (see Reference 7, Sectmn 5.3.4) and issue the SVC
instruction to invoke that service,

-92.

3.3.4 RESET Interface

This RTL routine shall replace the current HAL/S réset routine.

Calling Sequence
CALL RTL____RES]'F‘I'I})1 ’ pz, cesy Pn);

Parameter List

Fach parameter in the list shall be the same type. The parametei-
specification shall be repeated as required.

Pyt the event variable to be reset.

Linkage Convention

NONHAL(L) linkage,
Function
The RTL RESET routine shall set up the parameter list for the MOSS

event delete interface (see Reference 7, Section 5.3.2) and issue the SVC
instruction to invoke that service. '

-93-

3.3.5 CANCEL Interface
This RTL routine shall replace the current HAL/S CANCEL routine.
No new syntax has been added to support the CANCEL interface, however, the

function has changed.

Calling Sequence

CALL RTL_CANCEL(pI);

Parameter List

Py the task descriptor of the task to be canceled. This parameter

shall be optional; if omitted, the requesting task shall be
canceled,

Linkage Convention

NONHAL(1) linkage,
Function:

The RTL CANCEL routine shall set up the parameter list for the MOSS
task CANCEL interface (see Reference 7, Section 5,2,6) and issue the SVC
instruction to invoke that service,

Upon return from MOSS, the return.code shall be examined for the
two abnormal conditions:

o the specified task was not in the proper state, and
o the specified task was not periodic and was already in
execution,

HAL/S run time errors shall be generated corresponding to the type of error
encountered,

-94.

3.3,.6 TERMINATE Interface

This RTL interface shall replace the current HAL/S TERMINATE process
routines - TERMIN, TERMINT, TERMPCB., The TERMINATE statement shall
invoke either the TERMINATE TASK or the TERMINATE JOB routine as
described below,

Calling Sequence (TERMINATE TASK)

CALL RTL_TTERM;

Linkage Convention

Normal HAL/S-360 linkage,
Function

The RTL TASK TERMINATE routine shall invoke the MOSS -
TERMINATE interface (see Reference 7, Section 5.2, 3) via an SVC instruc-
tion.

Calling Sequence (TERMINATE JOB)

CALL RTL_JTERM;

Linkage Convention
Normal HAL/S-360 linrkage,
Function

The RTIL JOB TERMINATE routine shall invoke the MQOSS JOB TER-
MINATE interface (see Reference 7, Section 5,1.3) via an SVC instruction,

-95-

3.3.7 ABORT Interface

The ABORT interface shall invoke either the ABORT job or the ABORT
task routine described below. These routines are additions to the RTL.

Calling Sequeﬁce (ABORT J OB)

CALL RTL_JABORT;

Linkage Convention

NONHAL (1) linkage,
Function

The RTL job ABORT routine shall invoke the MOSS job ABORT interface
(see Reference 7, Section 5,1,4) via an SVC instruction,

Calling Sequence (ABORT TASK)

CALL RTL_TABORT (p'l, Pys vesy Pn);- :

Parameter List

Each parameter in the list shall be the same type. The parameter
specification shall be repeated as required,

Pyt the task descriptor of the task to be aborted. This parameter
shall be optional; if omitted, the requesting task shall be
aborted, '

linkage Convention

Normal HAL/S-360 linkage.
Function
The RTL task ABORT routine, shall set up the parameter list (if any)

for the MOSS task ABORT interface (see Reference 7, Section 5,2.4) and
issue the SVC instruction to invoke that service,

-96-

3.3,8 LOG Intex;face
The LOG routine is an addition to the RTL.

Calling Sequence

CALL RTL_LOG (p,);

Parameter List

Plé " the character expression to be written to the MOSS system log,

Linkaﬁe Convention

Normal HAL/S-360 linkage,
Function

The RTL LOG routine shall set up the parameter list for the MOSS
write to log interface (see Reference 7, Section 5,4.4) and issue the SVC
instruction to invoke that service,

Upon return to MOSS, the return code ‘shall be examined to determine

if the message exceeded 126 bytes, If so, a HAL/S run time error shall be
generated within the library,

.97

3.3,9 UNLOCK Interface
The UNLOCK routine is an addition to the RTL,

Calling Sequence

CALL RTL_UNLOCK (py, Pys «ves D)

Parameter List

Each pa.ré,meter in the list shall be the same type. The parameter
specification shall be repeated as required,

Pyt the load module descriptor that identifies the module to
be unlocked. ‘

Linkage Convention

NONHAL (1) linkage,
Function
The RTL UNLOCK routine shall set up to the parameter list for the

MOSS UNLOCK interface (see Reference 7, Section 5.4,2) and issue the
SVC instruction to invoke that service, . o

-98- -

3.3.10 LOAD Int‘erface
The LOAD routine is an addition to the RTL.

Calling Sequence

CALL RTL_LOAD (pl);

Parameter Li ét

Pyt * the job descriptqr of the job to be loaded,

Linkage Convention

NONHAL (1) linkage.
Function

The RTL job LLOAD routine shall set up the parameter list for the
MOSS job LOAD interface (see Reference 7, Section 5. 1,1) and issue the SVC

instruction to invoke that gervice.

Upon return from MOSS, the return code shall be examined to
determine if either of the following abnormal conditions occurred;

o the job descriptor was invalid, or
6 the job was not in the proper state for loading.

If either of these conditions is present, the appropriate run time error shall
be generated within the library. .

-99.

3,3,11 INITIATE Interface

The INITIATE routine is an addition to the RTL.,

Calling Sequence

CALL RTL_INIT (p,);

Parameter List

Pyt the job de scripi;or of the job to be initiated.

Linkagg Convention

NONHAL (1) linkage,
Function

The RTL job INITIATE routine shall set up the parafneter list for the
MOSS job INITIATE interface (see Reference 7, Section 5.1,2) and issue the

SVC instruction to invoke that service.

Upon return from MOSS, the return code shall be examined to deter-
mine if the following conditions occurred:

o the specified job was not in External Paging Memory -
(EPM), or
) the specified job was not in the proper state for job
. initiation, ' :

If either of these conditions is present, the appropriate run time error shall
be generated within the library.

-100-

3.3,12 DELETE Interface

The DELETE interface shall invoke either the DELETE job or DELETE
task routines described below. These routines are additions to the RTL.

Galling Sequence (JOB DELETE)

CALL RTL JDEL;

Linkage Convention

Normal HAL/S-360 linkage,
Function

The RTL job DELETE routine shall invoke. the MOSS job DELETE
interface (see Reference 7, Section 5.1.5) via an SVC instruction.

Calling Sequence (TASK DELETE)

CALL RTL_TDEL;

Iinkage Convention

Normal HAL/S-360 Linkage.
Function

The RTL task DELETE routine shall iinvoke the MOSS task DELETE
interface (see Reference 7, Section 5,2.5) via an SVC instruction,

-101-

3.3.13 SCHEDULE Interface

This RTL routine shall r’ePIaqe'th:e S:lu'rrent HAL/S SCHEDULE routine,

Calling Sequence

CALL RTL_SCHEDULE (py, P,, P3s Pys Pg» Pgs Pys Pgs Pos

Parameter List

Plt,

a bit vector indicating the presence and format of the optional
parameters p3-p,. The format of the bit vector and the
meaning of a "onZ” in the corresponding position in the vector
are:

Bit Number o Meaning
0 | o Py the schedule parameter is present.
1,2 A 2-bit value indicating the -preéence and

format of Pys the precondition time delay
as follows:

not present

0 -
1l - millisecond time interval delay
2 - GMT time value delay
3 « MET time value delay
3 _ . Pgs Pgs P the event expression parameters

- are present,

4 Pgs the time interval delay after events are
considered parameter is present.

5 Pg’ the repetition time delay for cyclic tasks
is present.

the task descriptor of the task being scheduled,

the character schedule parameter to be passed to the task
being scheduled.

the time delay to be applied before considering any of the other
conditional scheduling parameters. The time delay value may
be a millisecond time interval, a GMT time value, or a MET
time value as indicated by P;-

-102-

pg: an array of event variables whose logical combination, as
indicated by Pys must be satisfied before the task is scheduled.

Pyt an array of logical operators defining the logical expression
of event variables as given in p.. The event expression shall
be represented in Reverse Polish form., '

Pt the number of event variables in the array given in Ps.
Pg* the milligecond time value which must expire after the event
: expression is satisfied before the task is scheduled,
Py? the millisecond time period between successive scheduling for

a periodic task,

Linkage Convention

NONHAL (1) linkage,
Function

The RTL SCHEDULE routine shall set up the para.fneter list as received
in the format required by the MOSS task SCHEDULE interface (see Reference
7, Section 5.2.1) and issue the SVC instruction to invoke that service.

Upon return from MOSS, the return code shall be examined to dei:er-

mine if the parameter data was too large for the receiving task, If so, a
HAL/S run time error shall be generated within the library.

~103-

3.3.14 WAIT Interface

The WAIT routine shall repla.ce the current HAL/S WAIT routine - WAIT,
WAITDEP, and WAITFOR.

Calling Sequence

Parameter List

pl'.- a bit variable indicating the presence and format of the optional
' parameters P,-Pg,+. The meaning of each bit position is given
below: :
Bit Number | Meaning
0,1 A 2-bit value indicating the presence and

format of the precondition time delay.

0 - time delay not given

1 - time delay given for milliseconds time
interval :

2 - time delay given for GMT time value

3 - time delay given for MET time value

2 An event expression (p3, p4, and PS) is
present,
3 A post-condition time interval delay in

milliseconds is present,

P,: the time value to delay before considering any other WAIT
conditions, The format of this value shall be indicated by Py.

Py: an array of event variables whose logical combination, as
indicated by p,s must be satisfied before the task continues,

Py an array of logical operators defining the logical expression of
event variables given in p,. The event expression shall be re-

presented in Reverse Polish form.

Pyt the number of event variables in the array given in Pge

-104-

Pyt the millisecond time value which must expire after the event
expression is satisfied before the task is allowed to continue.

Linkage Convention

NONHAL (1) linkage.
'Function

The RTL WAIT routine shall set up the parameter list for the MOSS task
SUSPEND interface (see Reference 7, Section 5 2. 2‘.) and iesue the SVC instruc-
tion to invoke that service. ‘

-105-

3.3,15 ALERT I.nterfa.ce
The ALERT routine is an addition to the RTL.

Calling Sequence

CALL RTL_ALERT (p;, P,» P3» Pys Pgs D)

Parameter List

'plz' the bit variable corresponding to the HAL/SM event variable
. to be ALERTed.

P,: a bit vector indicating presence and format of the optional
parameters P3Pge The meaning of each bit position is given
below:

Bit Number ' Meanin
0,1,2 | A 3-bit value indicating the presence and

format of p,» the event descriptor.

0 - event is task termination; p, is present,
"1 - event is a program flag; p, 1s present,

2 - event is an ERP condition; P3 and p4
are present

4 - event is a MET clock condition; p
abgent, p4 and p_ are present.

5 - event is GM T clock condition; Py is
absent, Py and Py are present,

Py the event descriptor specified as a task descriptor, flag
variable, or an ERP descriptor.

Py’ a number giving the relational operators for ERP and clock
events. The values of this parameter are given in Reference 7,
Section 5.3.1, When this parameter indicates an 'lis between”
or 'is not between'' relation, Py is present.

Py: the value to which the ERP or clock specified is to be compared,:
as indicated by the relation given in p 4

Py’ the second value to be used in the comparisons 'is (not) between, "
as indicated by Pye

-106-

Linkage Convention

NONHAL (1) linkage.
Function
The RTL ALERT routine shall set: up the parameter list for the MOSS

event ALERT interface (see Reference 7, Sectmn 5.3.1) a.nd issue the SVC
instruction to invoke that service.

-107-

3.3.16 AVERAGE Interface
The AVERAGE AI routine is an addition to the RTL,

Calling Sequence

CALL RTL_AVERAGE (Pl’ Py p3)

Parameter List

Py 3 the number of readings to be averaged,
P,: the ERP designato.f to be averaged,
Pt the variable in which the result is to be stored,

Linkage Convention
Normal HAL/S-360 linkage.

Function

The RTL AVERAGE AI routine shall set up the parameter list for the
MOSS read ERP interface (see Reference 7, Section 5,6,2), The parameter
list shall indicate the read AI AVERAGEd optlon and the address of the RTL's
I/O error processing routine.

-108-

3.3,17 READ ERP Interface

-

The READ ERP routine is an addition to the RTL.

Calling Séque nce

CALL RTL _SENSE (Pys Pys Pys vees Pps Ppogs =ees P_)

Parameter List

Py - a number whose value indicates the presence of the
READ Al deltas option as follows:

0 ~ AI deltas option not requested, -

‘1 - AI deltas option requested,

P, a number whose value indicates the number of ERP's
to be read,

P3P : each of these parameters shall be an ERP designator
n to be read. All of the ERP's given must be of the same

type. -

each of these parameters shall be a variable in which

the results of the READ operation for each of the ERP
designators in p,, - 0 is to be placed. The number of

parameters in this group shall be the same as in the

group py-p, .

Linkage Convention

NONHAL (1) linkage.
Function

The RTL READ ERP routine shall set up the parameter list for the
MOSS READ ERP interface (see Reference 7, Section 5. 6.2) and invoke that
service via an SVC. The parameter list shall be paired for each ERP designa-
tor and corresponding variable data area. The address of the RTL's I/0O
error processing routine shall be included as a parameter for each ERP
designator, ' '

-109-

3.3,18 ISSUE Interface
The ISSUE routine is an addition to the RTL.,

Calling Sequence

CALL RTL_ISSUE (py, Pys «+es P,)

Parameter List

P the RO ERP designator to which the issue applies,

P, P, each of these parameters shall be the same type - either
| o variables of the same type.
o . bit literals, or
o numbers.

The cdilection of parameters P,-P shall form the data
to be issued to the RO. 2

Linkage Convention

" NONHAL (1) linkage,
Function |

The RTL ISSUE routine shall collect the data in each of the input para-
meters p,-p, and form a contiguous data area. The address of this data 7
area, itszlength, the ERP designator, and the address of the RTL's I/O error
processing routine shall be passed in a parameter list to the MOSS WRITE
ERP interface (see Reference 7, Section 5.6, 3) via an SVC instruction.

_1_10..

3,3,19 SET DISCRETE Interface

The SET DISCRETE routine is an addition to the RTL.

Calling Sequence
CALL RTL_SETD (pl, ceey pn.. pn+1, Ppaps **es P s pm+1)
Parameter List |
Py ’ this parameter shall specify the number of DO ERP
descriptors to follow,
PyP,: each parameter shall be of the same type, DO ERP
-descriptor, and shall indicate the discretes to be set.
Pt this parameter shall specify' the number of value para-
, meters to follow. :
1 each parameter shall be of the same type, either:
o variable of the same type,
o bit literals, or
o ~numbers,
Each parameter gives the value to set to the correspond-
ing DO defined in Py-P,-
P’ ~ the time value in milliseconds that the DO is to be pulsed,

This parameter is only allowable when P, and p

specify a single DO to be pulsed 2

Linkage Convention

NONHAL (1) linkage.
Function

The RTL SET DISCRETE routine shall pair each DO ERP designator
and its corre sponding value in a parameter list for the MOSS WRITE ERP
interface (see Reference 7, Section 5.6.3). If a single DO to be pulsed is
specified, the parameter list shall include the time value parameter, The
address of the RTL's I/O error processing routine shall be included as a para-
meter for all requests. The WRITE ERP service shall be invoked via an SVC
instruction when the parameter list is complete,

' -111-

3.3.20 APPLY ANALQOG Interface

The APPLY ANALOG routine is an addition to the RTL. Muitiple forms
of the calling sequence and parameter list are shown to snnphfy the explana-—
tions due to special cases which may be generated .

Calling Sequence (APPLY ANALOG - DELTAS)

CALL RTL_APPLY (py, Pps P3s Py)

Parameter .List

Py ¥ an indicator which ‘specifies the special option selected.
1 - DELTAS
P,-P3: the two values to be applied as deltas.

Pyt the AI ERP des1gna.tor to which the delta values glven
in P, and pgy are to be applied.. ‘

Calling Sequence (APPLY ANALOG - PULSED)

CALL RTL_APPLY (Pl, st P3a P4)

Parameter List

Py special option indicator:

2 - PULSED
152: the value to be applied to the AO,
Pyt the AO ERP designator to be Pﬁlsed.

Pyt the time value indicating the length of the pulse,

Calling Sequence (APPLY ANALOG - RAMPED)
 CALL RTL_APPLY (p, B, Py» Py Pg)

Parameter List

py;: special option indicator:

3 - RAMPED
-112-

P, the initial value to be _applied‘ to the AO.
Pyt the AO ERP designator to be ramped.
Py the time value for each increment of the ramp.

Pg: . the maximum (or minimum for negative ramping) to
which the AO is to be ramped.

Calling Sequence (APPLY ANALOG - No Special Options.)_ _

CALL RTL_APPLY (P}, Py Pgs s pn, Poiqe *ver P)

Parameter List

P: special option indicator:
0 - no special options
Py : the number of multiple ERP designators being supplied.

P3P} each parameter of thié grodp shall be the value to be
~ applied to the AO's specified in parameters Poi17Py°

- " each parameter of this group shall be an AO ERP

P “p_:
. n+l designator to be applied.

Linka_gg Convention

NONHAL (1) linkage.
Function

The RTL APPLY ANALOG routine shall set the parameter list as
indicated for each of the cases given above for the MOSS WRITE ERP interface
(see Reference 7, Section 5.6.3), The address of the RTL's I/O error pro-
cessing routine shall be included in the parameter list, The WRITE ERP
interface shall be invoked via an SVC instruction.

-113- .

3.3.21 WRITE TO OPERATOR Interface
The WRITE TO OPERATOR routine is an addition to the RTL.

Calling Sequence

CALL RTL_WTO (p}, P,» Pg)

Parameter List

Py a bit variable indicating whether the reply option has
been selected: ' =

0 - no reply, p, is present,
1 - reply expec%ed, Ps is present,

Pyt the character expression to be displayed to the ope"rator.
p,: the character variable in which any reply is to be stored.

Linkage Convention

NONHEAL (1) linkage.

Function

The RTL WRITE TO OPERATOR routine shall examine p, to determine
if the reply option has been selected. If no, p, and its length shall be passed
to the MOSS WRITE TO OPERATOR interface {see Reference 7, Section 5 4,5)
via an SVC instruction., If the reply option has been selected, p,, its length,
and p, shall be passed to the MOSS WRITE TO OPERATOR with REPLY inter~
face (see Reference 7, Section 5.4, 6). :

A run time error shall be generated if the output message exceeds 100
bytes for either case.

~114-

3,3,22 DISPLAY CONTROL Interface
The DISPLAY CONTRQOL routine is an addition to the RTL,

Calling Sequence

CALL RTL_DISCON (p;, P,» P D)

Parameter List

Py the control function indicator whose value shall be
interpreted as follows:

page select

- clear page

- video 1

- video 1/stroke
video 2

- video 2/stroke
- allocate page
deallocate page

~N Ok W =O
1

Pyt a bit vector whose value shall indicate the presence of
p3-and Pys the CRT, and page number,

0-p, and Py are absent

1- P, and p, are present

P3: the CRT number to which the control function shall be .
directed. |

Pyt thé page number to which the control function shall be
directed. '

Linkage Convention

NONHAL (1) linkage,
Function

The RTL DISPLAY CONTROL routine shall examine the control function
indicator, Py If the allocate or deallocate page functions have been selected,

~115-

the MOSS allocate or deallocate console page interface shall be invoked with
the CRT and page number parameters, To perform the other functions, MOSS
DISPLAY CONTROL interfaces shall be invoke the appropriate parameters.

-116-

3.3.23 DISPLAY DATA Interface

The DISPLAY DATA interface shall invoke either the DISPILAY BACK-
GROUND, DISPLAY ADDON, UPDATE BACKGROUND, DISPLLAY TYPEI1
PROGRAM, or UPDATE TYPEl DATA routines described below, These
routines are additions to the RTL,

Calling Sequence (DISPLLAY BACKGROUND)
CALL RTL_DISBACKD (p;, P,: P3s Py Pgs Py

‘Parameter List

Pyt the program identifier by which the data set containing
the background message is identified.

Pyt the message identification number which specifies the
record number of the message within the data set,

Pat the blink status option specification.

Pyt the bit indicator which indicates the CRT number and
page number to follow.

Py’ the CRT number (if specifiea).
§6: the page number (if specified).

Linkage Convention

NONHAL (1) linkage.
Fﬁnction

The RTL DISPLAY BACKGROUND routine shall set up the parameter
list for the MOSS DISPLAY BACKGROUND (from disk) interface and issue
the DISBACKD SVC. (This SVC obtains the indicated message from the C&D
mesgsage library and transmits it to the indicated C&D Console page.)

AnI/O ERROR EXIT routine shall be provided in the RTL routine and the
entry point to this code shall be provided in the SVC parameter list.

117~

Calling Sequence (DISPL.AY ADDON)

CALL RTL_DISADD (Pln pzp P3; P4: PS, s s, Pi;: Pj, Pk.r Pm);

Parameter List

Py: the program identifier by which the data set containing
the ADDON message is identified.

p,: the messgage identification number which specifies the
- record number of the message within the data set,

P.: the blink status option specification,
3 : P P
Py the numbers of pairs, each containing a variable control

word and an as sociated variable used to describe the
ADDON variable data. '

P5P;* (where i = 4+2%p,): the pairs of variable control word with
associated variable described above. The sequence is:
variable control word, variable, variable control word,
variable, ... ' '

P, (where j = i+1): the bit indicator which indicates that'a

J CRT number and page number follow,
P! (where k = i+2); the CRT number (if specified),
P’ (where m = i+3): the page number (if specified),
Linkage Convention

NONHAL (1) linkage,
Function

The RTL DISPLAY ADDON routine shall convert any variable data to
ASCII format, set up the parameter list for the MOSS DISPLAY ADDON (from
disk) interface, and issue the DISADD SVC. (This SVC obtains the indicated
ADDON message from the C&D message library, updates any variable fields
specified, and transmits it to the indicated C&D Consocle page.)

An1/0 ERROR EXIT routine shall be provided in this RTL routine and
an entry point to this code shall be provided in the SVC parameter list.

-118-

Calling Sequence {UPDATE BACKGROUND)

CALL RTL_UPDISM (pl, Pys sees Pis PJ-; Py pm’ Pn)

Parameter List

Py the number of pairs, each containing a variable control
word and an associated variable to be updated.

P,-P;t (where i = 2+2%p,): the pairs of variable control word and
agsociated variable described above. The sequence shall
be variable control word, variable, variable control WOrd
variable, ... '

pj: (where j = i+l): the blink status option specification.

Pt (where k = i+2): the bit indicator which indicates that a
CRT number and page number follow,

Pyt | (where m = i+3); the CRT number (if specified),

P,* (where n = i+4): the page number (if specified),

Linkage Convention

NONHAL (1) linkage,
Function

The RTI. UPDATE BACKGROUND routine shall construet the update
text from the variable control words and variables, convert the text to ASCII,
set up the parameter list for the MOSS UPDATE BACKGROUND interface, and
issue the UPDISM SVC. (This SVC displays the supplied text to the indicated
C&D Console page as an UPDATE message.)

An 1/0 ERROR EXIT routine shall be provided in this RTL routine
and an entry point to this code shall be provided in the SVC parameter list,

Calling Sequence (DISPLAY TYPEl PROGRAM)

CALL RTL_TITRANS (p;, P,, Pys Py

 Parameter List

Py: the TYPE1 PROGRAM identified in the TYPEl PROGRAM
library.

=119~

P,: ‘the bit indicator which indicates that a CRT number and
page number follow. .

Py! the CRT number (if specified).
the page number (if specified),

s

Linkage Convention

NONHAL (1) linkage,
" Function

The RTL DISPLAY TYPEl PROGRAM routine shall set up the para-
meter list for the MOSS TYPE1l PROGRAM transmission interface and issue
the TI TRANS SVC. (This SVC obtains the indicated TYPEl PROGRAM from
the TYPEl PROGRAM library and transmits it to the indicated C&D Console
and page.)

AnI/O ERROR EXIT routine shall be provided in this RTL routine
and an entry point to this code shall be provided in the SVC parameter list,

Calling Sequence (UPDATE TYPEL DATA)

CALL RTL_TIDATA (pl, Pys Pgs eees Pys pj, Py pm);

Parameter List

Pt the TYPEl PROGRAM identifier.

Py | the number o:f TYPEl -UPDATE variable.s.‘

P3-P;: (wi:tere i= 3+p2)V: the list of variable data.

pj: (where j = i+1): the bit indicator which indicates that a

CRT number and page number follow."
Py : (where k = i+2): the CRT number (if specified),
Pt (where m = i+3): the page number (if specified),

‘Linkage Convention

NONHAL (1) linkage.

=120-

Function’

The RTL UPDATE TYPEL DATA routine shall set up the parameter
list for the MOSS TYPE]l DATA transmission interface and issue the TIDATA

SVC. (This SVC transmits the specified TYPEl UPDATE data to the indicated
C&D Console page,)

AnI/O ERROR EXIT routine shall be provided in this RTL routine and
an entry point to this code shall be provided in the SVC parameter list,

-121-

3.3.24 REQUEST KEYBOARD Interface
The REQUEST KEYBOARD routine is an addition to the RTL.

Calling Seq.ue nce

CALL RTL_RQST KYBD (pl, pz)

Parameter List

Py the character variable into which the KEYBOARD message
is to be stored.

Pyt a bit variable to be set if a message was returned, If this

parameter is absent, the requesting task shall be delayed
until a KEYBOARD message is available,

Linkage Convention

NONHAL (1) linkage,

Function

The RTL REQUEST KEYBOARD routine shall invoke the MOSS REQUEST
KEYBOARD interface with the character data area address and an indicator
for automatic wait, if specified, as parameters. If the post-variable p, is
specified, the routine shall set this bit variable as indicated by the return code
from MOSS.

The address of the RTL's I/O error proéessing routine shall also
be included as a parameter to the MOSS interface,

-122- .-

3.3.25 SELECT Interface
The SELECT routine is an addition to the RT L.

Calling Sequence

CALL RTL SELECT (pl, Pys eees pn);

Parameter lList

The parameter list shall be formed of repeated pairs of parameters of
the formats given below:

Pyt the resource descriptor to be selected., The descriptor
shall be one of the following formats:

o] Data module descriptor,
o Program module descriptor, or
o SPIOS 1/0 channel or file number,)
P,! a bit vectér indicating the access rights requested for the

resource indicated in p;. The format of the bit vector
shall be the same as the MOSS SELECT interface (see
Reference 7, Section 5.5.1).

Li_rlka.gg Convention

NONHAL (1) linkage.
Function

The RTL SELECT routine shall set up the parameter list for the MOSS
SELECT interface and issue the SVC instruction to invoke that service,

-123-

3.3.26 RELEASE Interface
The RELEASE routine is an addition to the RTL.

Calling Sequence

CALL RTL_RLSE (P}, Py, +++s P,)i

Parameter List

Each parameter in the list shall be of the same format.

Pyt the resource descriptor of the resource to be released,
The descriptor shall be in one of the following formats:

o Data module descriptor,
o Progfarh module descriptor, or
o SPIOS I/0 channel number,

Linkage Convention

NONHAL (1) linkage,
Function

The RTL RELEASE routine shall set up the parameter list for the
MOSS RELEASE interface and issue the SVC instruction to invoke that service,

_124-

3,3,27 CHANNEL CONTROL Interface
This interface is an addition to fhe RTL.

Calling Seque nce

CALL RTL_CHAN (p;, P, P3)i

Parameter List

Py the channel number of the SPIOS 1/0 channel being
manipulated.
P,: .the function indicator which selects the function to be

performed as follows:
1 - backspace,
2 - space,
3 - rewind,
4 - unload,
5 <« end file, and
6 - close file,
Pj: the value giving the number of files to be backspaced or for-
ward spaced, This parameter shall only be provided for

the space and backspace options,

Linkage Convention

NONHA L (1) linkage.
Function

The RTL CHANNEL CONTROL routine shall set up the parameter list
for the MOSS CONTROL interface (see Reference 7, Section 5.7.4), and issue

the SVC instruction to invoke that gervice, The parameter ligt shall include
the address of the RTL's 1/0 error processing routine,

-125-

3.3.28 CRITICAL SECTION Interface

The CRITICAL SECTION interface shall consist of two routines, one
executed at the beginning of the critical block, the other at the end of the
critical block, The CRITICAL SECTION routines are additions to the RTL.

Calling Sequence

CALL RTL_GO_CRITICAL

Linkage Convention

Normal HAL/S-360 linkage.
Function

The RTL BEGIN CRITICAL SECTION routine shall invoke the MOSS
CRITICAL SECTION interface (see Reference 7, Section 5.4.7) with the

enter critical processing mode parameter,

Calling Sequence (END CRITICAL)

CALL RTL STOP_CRITICAL

Linkage Convention

Normal HAI/S-360 linkage,
Function

The RTL END CRITICAL SECTION routine shall invoke the MOSS
CRITICAL SECTION interface with the exit critical processing mode parameter,

-126-

3,3,29 EVENT VARIABLE Interface

The EVENT VARIABLE interface shall be an RTL function routine
which shall return the value of the event variable. This routine is anaddition
to the RT L.,

Calling Sequence

RTL_TEST (p,):

Parameter List

Py: 7 the event variable to be tested, .

Linkage Convention

Normal HAL/S-360 linkage.
Function

The EVENT VARIABLE function routine shall examine the event
variable value to determine if it is zero or an MOSS provided event variable
descriptor, If the value is zero, the function routine shall return a zero value,
If the value is an event variable descriptor, the descriptor shall be passed
to the MOSS EVENT TEST interface (see Reference 7, Section 5. 3. 3) via
an SVC. The return code provided by MOSS indicates the value of the event
variable which shall be returned by the FUNCTION routine.

«127-

3.3.30 TIME Interface
This RTL routine shall replace the current HAL/S clock time routine,

Calling Sequence

TIME (p;);

Parameter List

Py: an integer indicating the type of time value de-sired.
The permissible values are:

0 - MET time,
1 - GMT time,

Return Value: a double precision floating point numbe r éqtial to the value
of the specified clock time in milliseconds,

liﬁkage ‘Convention

Normal HAL/S-360 linkage.
Function

The RTL TIME FUNCTION shall set up the parameter list in the
format required by the MOSS TIME REQUEST interface (see Reference 7,

Section 5.4,1), and issue the SVC to invoke that service, The returned . time
shall then be converted to the above specified form and returned to the caller,

-128-

3.3.31 DATE Interface
This RTL routine shall replace the current HAL/S DATE routine,

Calling Sequence

DATE

Parameter List

Return Value: an integer equal to the value of the "days' fields of
the GMT clock,

Linkage Convention

Normal HAL/S-360 linkage.
Function

, The RTL DATE function shall-set up the parameter list in the format

required by the MOSS TIME REQUEST interface (see Reference 7, Section 5,4,1),
and issue the SVC to invoke that service., The required field shall then be
extracted from the returned value, converted to the above specified form, and
returned to the caller,

-129-

3, 3,32 SPIOS Interfaces

The 1/O processing routines and macros in the HAL/S library shall
be modified to utilize MOSS SPIOS services. These I/O routines currently
use the 0S/360 I/0O services, All format conversion, line, and page manipula-
tion logic shall remain relatively unchanged after the modification,

The following routines and macros shall be modified:

Routines ' Macros
COLUMN FCEDEF
FILEIN FILEDEF
INPUT HXCTL
IOINIT
LINE
OUTPUT

" PAGE
SKIP

The major impact of the modification shall consist of replacing the
0S/360 I/0 service requests with equivalent MOSS I/0Q service requests.,
The SUMC-S MOSS Application Program Design Specification (Reference 7,
Section 5.7.1) describes the MOSS 1/O service requests which shall be used.
These include:

o READ,

o WRITE,

o CONTROL, and
o CLOSE.

The modified routines shall use the MOSS I/O ERROR EXIT routine conventions
to handle I/0 errors. Uncorrectable errors shall be communicated to the
HAIL/S error monitor to coordinate with the user defined error environment,

-130-

3.3.33 Interrupt and Error Handling Modules

The modules PROGINT, ERRORMON, and ERRGRP are involved in
the processing of program interrupts and all HAL/SM errors, These modules
shall be modified to operate within the MOSS environment,

The major changes to these modules shall be in how errors are
recognized {not in how they are processed). A forced-end routine (see
Reference 7, Section 6) shall replace the HAL/S-360 STAE routine, and a
program exception routine shall replace the HAL/S-360 SPIE routine, I/O
errors shall be recognized by the I/0 modules via I/0 ERROR EXIT routines
gpecified in the individual 1/O SVC's and the specific errors shall be issued
to ERRORMON through the normal and error intringic in HALSYS.

In addition, all moduleg which detect and send errors may require
change to renumber the errors they send in their invocations of ERRORMON,

-131-

3.3, 34 Miscellaneous Modules

The module HALSTART is concerned with initiation and normal ter-
mination of a HAL/S-360 program complex. This module shall be modified
to delete certain run time JCL options which are not supported and to use
MOSS interfaces to properly release resources (e, g., close any open data
sets). ’ '

The HALSYS module and macro contain common status and linkage
information which is required by the RTL and compiler emitted code, This
module and macro shall be modified to reflect the reorganization of data
and modules within the library resulting from other specific changes.

-132-

3.3.35 LOCK Interface

The current HAL/S LOCK routine shall be modified to operate in the
MOSS multi-tasking environment. The current HAL/S library only simulates
a multi-tagking environment for the user programs, thus, conflicts due to
multiple simultaneous executions of the LOCK routine in support of HAL/S
update blocks cannot occur, In the MOSS environment, however, the HAL/SM
library is operating in a true multi-tasking mode and it must coordinate multiple
use of the LOCK routine,

The MOSS SELECT and RELLEASE interfaces (see Reference 7, Section
5.5) shall be used by the LOCK routine to ensure mutually exclusive accesses
to the lock group variable, The function of the LOCKGRP variable for
coordinating accesses to individual data items by the update blocks shall re-
main unchanged, The MOSS EVENT CONTROL interfaces (see Reference 7,
Section 5, 3), shall be used to suspend and signal the LOCK routine (in support
of a specific task) when access to individual data items, as indicated by the
LOCKGRP variable, are locked or freed,

-133-

3.3.36 RTL Modules to be Deleted

The following HAL/S-360 RTL modules and macros shall be deleted
from the HAL/SM RTL either because their functions are not supported within .
the HAL/SM system or because they have been replaced by equivalent modules

or MOSS services, :

Modules:

BAKTRACE
CANCEL
CLOKTIME
CLOSEHAL
DATE
DISPATCH
DUMPHAL
ENTERTQE
EVENTENQ
EXCLUDE
EXECTRCE
FORMATDA
HALSIM
SCHEDULE
SDLDUMMY
SDLSTACK
SET

. SIGNAL
SVBLOCK
SVBTOC
SVDTOC
SVETOC
SVITOC
SVPMSG
SVSIGNAL
SVSTOP
SVTDEQ
SVTENQ
SVTIME
SVVSTP
TERMIN
TERMINT
TERMPCB

Macros:

COUNT
EVXQDEF
HALSIM
PCBDEF
SDLCALL
STPGEN

- TIMQDEF

TRACEX

Modules:

TIMECANC
TIMEINT
TIMENQ
UPPRIO
WAIT
WAITDEP
WAITFOR
WHERE

-135-

3,4 User

This subsection discusses the user interface to the HA L/SM system
in terms of OS and MOSS JCL general requirements, The spec;:fzc definition
of the complete user interface shall be defined in a "HA L/SM, User's
Manual! which shall be published by the implementors. 1

3.4.1 OSJCL Procedures

Cataloged procedures shall be provided to perform HAL/SM pre-
processing, compilation, and likking in a manner similar in form and in-
tent to the HAL/S prototype cataloged procedures (see Reference 5) HALSC,
HALSCL, and HALSL, When HAL/SM modules have been properly compiled
and linked they must be put in a form suitable for processing by the MOSS
Linker. A utility and procedures for use shall be supplied with the MOSS system.,
Standard IBM utility programs may be used to place the C&D Display Message
Data Set on a medium suitable for transfer to the SUMC-S.

3.4,2 MOSS JCL
MOSS jobs containing HAL/SM software shall follow all the normal

conventions for MOSS JCL (see Reference 7, Section 3). In addition, certain
conventions must be followed in specifying the following items:

o Job names,

o Task names,

o Program flag names.,

o Critical sections,.

o Forced-end routines,

o Error processing routines,
o File names,

-136-

4, RESTRICTIONS AND LIMITATIONS

Any programming system has certain characteristics which are
gpecific to its implementation, In the particular case of HAL/SM, the decision
to adapt the HAL/S-360 compiler system using a preprocessor and a modified
run time library shall have an impact on the usability of the system which
needs to be clearly recognized, This section briefly discusses some of the
effects which are apparent at this time.

4.1 HAL/S Dependencies

The ground rules of this implementation require that the HAL/S-360
compiler remain unmoedified. This has both advantages and disadvantages,
On the positive side this means that any upgrades to the compiler which would
improve its efficiency, accuracy, or correctness can easily be incorporated
in the HAL/SM system. On the other hand, these same upgrades may change
the syntax and/or semantics of the HAL/S language and, thereby, make it
unusable within the HAL/SM system, The modifications made to HALLINK
and the RTL may also make it impractical to utilize future upgrades to
these programs as well.

4,2 Separation of Host and Target Machines

The host system for the HAL/SM language processor system shall be
an IBM $-360/370 series machine running under some version of OS/MVT,
as mentioned previously, The target system shall be the SUMC-S running
under MOSS, These two systems are quite different in concept and, in
‘addition, they shall most likely be separated physically and managerially.
This means that the HAL/SM programmer must be familiar with two different
systems and sets of operating procedures before he can use the HAL/SM
language. He must also deal with the cumbersome and time consuming problem
of transferring his program between the two systems for every compile and
test sequence during program development, One possible remedy to this
problem might be a software emulator for MOSS running on the S/360.

4.3 Diagnostic Capabilities

The ground rules of this implementation require that no processing
be performed in the preprocessor which can be performed by the compiler,
This implies that the preprocessor shall not perform a complete syntax analysis,
‘The major drawback to this approach is that only a subset of the syntax errors
will be diagnosed by the preprocessar and related directly to the HAL/SM
program. All remaining syntax errors are caught by the compiler which

-137-

can only state the diagnostic information in terms of the transformed HAL/S
text. The programmer is forced to examine listings from both language
processors, be familiar with both languages, and be able to relate errors

in the HAL/S program to'be corresponding HAL/SM construct and determine
where the error lies there. Since some HAL/SM COnstructs require consider-
able manipulation, and some transformations are performed independent of
context, the required correction may not always be readily apparent. A
possible solution might be to require the preprocessor to perform a complete
syntax analysis and verification,

4.4 RTI Reentrancy

The HAL/S-360 RTL is presently not reentrant, The disadvantage .
here is that each task must have a private copy for its own use. Under MOSS,
a reentrant RTL might be placed in the job {or system) common area of the
address space and shared by all HAL/SM tasks within the job (or system)
at a considerable savings in memory requirements and execution time (due
to reduced paging). However, making the RTL reentrant would probably
require a major {if not complete) rewrite of this software.

-138- -

9.

REFERENCES

"HAL/SM Language Specification,'' M&S Computing, Inc., NASA/
MSFC Contract NAS8-26990, Report No. 75-0043, November 21, 1975,

"HAL/S Language Specification, ' Intermetrics, Inc., NASA/JSC
Contract NAS9-13864, Document No. IR-61-5, November 22, 1974,

"HAL/S-360 Compiler System Functional Specification, ' Intermetrics,
Inc., Rockwell International Corporation, purchase order #M3V8XMX-
483000, PDRL#IMO004, July 13, 1974,

"HAL/S-360 Compiler System Specification, ' Intermetrics, Inc.,
NASA /JSC Contract NAS9-13864, Document No. IR 60-3, January 10,
1975,

"HAJI,/S-360 User's Manual, Intermetrics, Inc., NASA/JSC Contract
NAS9-13864, Document No. IR-58-8, February 20, 1975,

NSUMC-~S MOSS Detailed Functional Specifications, " RCA-ATIL,
NASA /MSFC Contract NAS8-29072, Document No, SUMC-5-R -
SP-001-01,0, August 5, 1974,

"SUMC-S MQOSS Application Program Design Specification, " RCA-ATL,
NASA/MSFC Contract NAS8-29072, Document No, SUMC-S-R-SP-
004-00.0, October 4, 1974,

"Higher Order Language (HOL) Preprocessor Requirements Specifica-
tion Document, ' IBM-¥SD, NASA/MSFC Contract NAS8-30604, Docu-
ment No. 74W-00252, Revigion 1, January 30, 1975.

"The Programming Language HAL - A Specification, ' Intermetrics,
Inc., Document No. MSC-01846, June, 1971,

~139-

