ing in-

SERVICE

DEPARTMENT CF COMMERGE
SPRINGFIELD, VA. 22161

&
£

©

—

(@)
O

b
al

AL TECHNICAL
TION

MA

peslh 19769 2
seTouf ¥

REPRADUCED BY
NATION
1NFOU§

goghl-6LR

860 T2SD
LoY fH/GLY DH d 9ZE ﬂ.unH_‘wu@uﬁmauwuaH“ ﬂ
S/1V0 NI ONIHRVES0sd (' gsl—¥0-VSVN)

PROGRAMMING IN HAL/S

MICHAEL J. RYER

Intermetrics Inc

This document was prepared under NASA Contract NAS9-13864

PREFACE

This manual 15 intended as an mtroduction to programmung th HALSS The reader 15
presumed to have some experience usimg one or more procedurs-onented languages such as
FORTRAN or PL/I The book may be used either as part of a selfstudy program or n ¢on-
junction with a course of twenty to forty classrcom hours over a penod of one to two
weeks

The matenal 1s organized as a tutonal rather than as a reference book Furthermore, 1t
15 mtended as an introduction to HALSS rather than as a definitive exposition After com-
pleting the course, the reader should refer to the HAL/S Language Specificattion or the
HALSS Programmer’s Guide for 2 more detailed and complete descripiton of the language

It 13 impossible to give proper credit to all the people at NASA, IBM, and Intermetrics
who have contnbuied to this book Special recogniion must go to Josephine Jue, John
Schwartz, and Al Mandeln for their detailed review of several drafts of the manuscnipt, to
Gary Singer for perfornung the final editing and page layout, and to Valenie Censabella who
typed all of the manuscripts and got the maronty of the exercises through the HAL/S-360
compiler

Support of the HAL/S language, compilers, and documentation 15 an ongomng effort of
NASA and Intermetrics Comments on this manual will be appreciated and will be mecor-
porated mto subsequent editions All comments or inquiries should be addressed to

HAL/S Language Group

NASA- Johnson Space Center

F R/Spacecraft Software Division
Houston, Texas 77058

{713} 483-2151

Michael I Ryer
September 1978

Preceding page Hlank

1

Section

10

20

30

40

50

60

TABLE OF CONTENTS

INTRODUCTION
I1 Learning HAL/S After FORTRAN

I 2 HAL/S Contrasted With Other High Order Languages
13 HAL(S Contrasted With the Assembiy Language

14 Introduction to the Main Text

READING, WRITING, AND ARITHMETIC
21 Woutinga HAL/S Program
22 Anthmetic Expressions
221 A Compiled Example
23 Declarmg Data
2 4 Executable Stateraents

MORE BASICS

31 Buwlt-In Functions

32 Subscnpts

33 The REPLACE Statement

34 The Precision Attributes

35 Summary of the Arithmetic Expression

CONDITIONAL EXECUTION
41 IF THEN ELSE

42 The DO END Group

4 3 Booleans

44 DO CASE and GO TO

LOOPS

51 The {terafive DC FOR Statement
52 The Discrete DO FOR Statement
53 The WHILE Clause

54 The UNTIL Clause

55 EXIT and REPEAT

ARRAYS
61 Arrays of Integers and Scalars
611 Additional Examples
6 2 Operations on Entire Arrays
63 Arrays of Other Data Types
631 Arrays of BOOLEANs
6 4 Functions of Arrays
641 Shapmg Funchons

""—"""‘——----.-

Pmcedmg age bIank

Pape

1-1
1-1
1-2
14
1-3

2-1
2-1
2-5
2-9
2-11
215

3-1
3-1
3-7
3-12
3-15
3-19

41
4-1
49
4-16
4-20

5-1
5-1
5-6
5-7
5-8
5-11

6-1
6-1
&6
6-10
6-15
6-19
6-22
6-23

v

TABLE OF CONTENTS (Contmued)

Section Page
70 PROCEDURES AND FUNCTIONS 7-1
71 User Defined Functions 7-1
72 Arguments and Parameters 7-7
73 Procedures N 7-9

74 Scoping Rules 7-13

75 ARRAY(*), AUTOMATIC, and NONHAL 7-14

751 Auwtomatic Imtialization 7-15

7572 The NONHAL Attribute 7-15
80 1/O AND CHARACTER STRINGS 8-1
&1 The WRITE Statement &1
82 IO Control Functions 26
&3 The READ Statement . B9

84 Character Strings 8-12

85 Other HAL/S 1JO Constructs 8-18

851 The READALL Statement 8-19

852 The FILE Statement 8-21

853 AviomesIfO 8-22
80 STRUCTURES 9-1
91 Declaning and'Referencing Structures 9-3
92 The Structure Template 9.6

921 Template Matching 9-11

93 Multi-Copied Structures g-12

94 DENSE, RIGID, and “Unqualhfied” 9-18

941 The DENSE Attnbute 9-18

942 The RIGID Atinbute 9-20

943 Unqualified Siructures 9-21
100 ERROR RECOVERY 10-1
101 The ON ERROR Staiement 102
102 Deactivating Error Handlers 10-8

103 Other Error Control Constructs 10-12
110 STRUCTURING LARGE AFPPLICATIONS 11-1
11 1 The Unit of Compilation 11-1
11 2 Building a Program Complex i1-6

11 3 Mulh-Programmng Considerations 11-13
120 'REAL-TIME STATEMENTS 12-1
121 The SCHEDULE Statement 12-2
122 Event Vanables 12-8

12 3 Other Real-Tume Statements 12-16

it

TABLE OF CONTENTS (Continued)

Section Page
130 SYSTEM PROGRAMMING AIDS 13-1
131 Bit Stnings 13-1

132 Name Vanables 13-11

133 Lists and Queucs 13-15
APPENDIX A A-]
APPENDIX B B-1
APPENDIX C C-1
APPENDIX D D-1

INDEX

Learming HALS after FORTRAN 1-1

10 INTRODUCTION

HAL/SS 1s a computer programmung language, 1t 1s a representation for algorithms which
can be inferpreted by erther a person or a computer HAL/S compilers transform blocks of
HAL/S code into machme language which can then be directly exccuted by a computer
When the machine language 1s executed, the algonthm specified by the HAL/S code (source)
15 performed This document describes how to read and wnite HAL/S source

HAL/S was developed pnincipally for real-time aerospace programming Its most signifi-
cant use to date has been the production of the NASA Space Shuttle Flight software This
mitended apphcation mmposed three major constramnis on the language design reliability,
efficiency, and machine-independence Relability and efficiency are obvious requirements
of fhight software The machine-independence requirement stems from a desire fo mimimize
programmer tramng, to transfer blocks of proven code between distinct NASA projects,
and fo reduce the dependence on flight hardware availlabairty

Within these constramts, the language provides ssmpie and mturtive constructs for func-
tions commonly performed by aerospace applications, such as vector/matnx anthmethe
More generally, HAL/S 15 suitable for real-time process control apphcations, particularly
where mathematically-oriented algonthms are mvolved While the language 15 “tuned” for
aerospace, the machine1ndependence and rehabihity aspects of HAL/S make 1t attractive for
a vaniety of applications which do not perfectly match the orginal intent

It may seem strange o some readers to attribuie reliabity to a programmung language
rather than fo programs wntten m that language This viewpoint 1s an outgrowth of the
study of structured programming A rebable program produces correct results for ail pos-
sible combinations of mputs Since 1t 15 usually smpractical to exercise the program on all
possible inputs, programs must be venfied by induction The assertion 15 made that if the
program passes a particular set of fests, then the program will produce correct results for
airy set of mputs This assertion 15 always based on an understanding of the program’s
mternal workings If the logic of a program 1s misunderstood, the results of venfication
cannot be relied upon

Although 1t 1s difficult to assess the psychological mmplications, certamn tugh order lan-
guage constructs (e g, the GOTQ) are known to be symptomatic of unreliable programs
These construcis have been ehminated or highly restricted in HAL/S

11 LEARNING HAL/S AFTER FORTRAN

HAL/S 1s stmilar to FORTRAN i many ways The assignment statement 1s essentially
the same in both languages The FORTRAN concepts of subroutines, arrays, common
blocks, and bbrary routines zll have analogues 1n HALSS Some concepts have been ex-
tended, for example, the FORTRAN statement A=B+C, can be used to add either mtegers
or reals The compiler generates mstructions appropnate to the typesof A, B, and C In
HAL/S, the same concept apphes, but A, B, and C may also be vectors, matrices, Of arrays
of any type HAL/S has many more data types than FORTRAN

Every variable used m a HAL/S program must be expheaty declared before 1t 15 refer-
enced This 15 done via the DECLARE statement, which specifies the name of the vanable
and 1its attmbutes (mncluding its data type or “mode’™) The need to declate variables results

12 Imtroduchon

from the wide vanety of data types w HAL/S It also allows the compiler to check for mas-
use of data and to enforce certain programming standards For example, a FORTRAN pro-
grammer might divide a vanable contaiming alphanumenc character data by the number 256
n order to access the leftmost byte HAL/SS does not allow any anthmetic operations on
character data since such operations usually depend on the particular character code 1n use
and are thus machme-dependent Instead, individual characters may be extracted from a
character vanable by explicit subscrnipting Simularly, bmary (logical) data is a distinet data
type The AND, OR, and NOT operators may be used with BOOLEANS or BIT stnngs, but
not with anthmetic data

These restrictions may seem awkward at first, but with expenence 1t will become quite
natural to select the appropnate type for each variable i advance HAL/JS mcludes con-
structs for data type conversions, but these conversions are needed less frequently than an
expenienced FORTRAN programmer might expect

Another maor difference between HAL/S and FORTRAN 1510 the flow-control (branch-
ng) statements Structured programming research has had a major impact 1n fhis area In
essence, the vanous forms of GOTO statement have been replaced with more relrable con-
structs The distinction may be characterized as “flow control by nesting of statements”
rather than “flow control by branchung” While this difference of philosophy may make
the transition to HALJS from FORTRAN more difficult, 1t can be argued that the HAL/S
form 15 more English-ike and thus move mtwtive Furthermore, using the HAL/S flow-con-
trol constructs mstead of GOTOs tends to resultm a program which ¢an be read sequentially
{from top to bottom) Loops and decisions are expressed exphcitly m HALJS rather than
mmphed by a convoluted arrangement of forward and backward branches In any case, most
modern programimng languages {including FORTRAN *77) have flow control statements of
the type found 1n HAL/S

While the treatment of data types and flow conirol are the most fundamental differences
between HAL/S and FORTRAN, the differences i source and histing formats are the most
noticeable The source format 15 somewhat freer than it FORTRAN The oufput hsting
format, however, 15 not under programmer c¢ontrol at ail Every HAL/S hsting 15 put i a
standard formai by the compiler Each HAL/S statement 1s placed on a new line and auto-
matically indented to show its relationship to cther neighboring statements Exponenis and
subscripts are raised and lowered (respectively) in the listing, and various additional informa-
tion (compilergenerated annotation) 1s added Thus, the work of the programmer 1s reduced,
the mdenting 15 always correct (since the compiler re-computes it every tume), and reading a
listing requires no knowledge of the mdividual programmer’s style

Other major differences between HAL/S and FORTRAN are 1n the arsas of Real-time
mnteractions, and the interfacmg of separately compiled units These advanced topics are
thoroughly discussed 1in chapters eleven and twelve of the fext

12 HAL/S CONTRASTED WITH OTHER HIGH ORDER LANGUAGES

The differences between HAL/S and other high order languages arise from the charac-
tenistics of aerospace apphcations, and the ime-frame 1n which HALSS was designed HAL/S
was developed between 1970 and 1972 Since that time, changes which would wnvahdate
existing HAL/S code have been resisted Thus, some recent advances in language design have
not been wncorporated Note, however, that the language did evolve from a thorongh study

HALJS Contrasted with Other High Order Languages 13

of the exasting languages Most of the concepis which have been developed since that fune
have not been mmplemented i any opergfional (rather than expernimental) language When
these concepls (e g, data abstraction) have been proven cutside of the umversity environ-
ment, they may be mcorporated 1n HALSS There 1s an established language control board
which continuously reviews the state of the art and sugpsests andfor approves changes to
HAL/S

Some features which were i common use at the time were excluded due to efficiency
considerations These inelude recursion and dynamic storage allocation In addition to the
overhead normally associated with these facilifies, a rehability problem 1s avoided by their
exclusion Because of these and other exclusions, the total storage requirement of a HAL/S
application can be exactly determuned before execution starts Consequently, HAL/SS pro-
grams can never run out of storage durmg execution Thus safety feature is essential 1n
aerospace applications

Other constructs, such as the full generality of the PL/1 error recovery system, have also
been omitted for reasons of efficiency

HAL/S also Jacks sophisticated facihfies for dealing with ground-based penipheral devices
(printers, plotters, ¢tc) Character-onented 1/0Q statements are provided for testing and
development, but many [JO facihties provided by ground-based operating systems are m-
accessible from HAL/S This is due to the design emphasis on flight software, and the lack
of standardization of the concepts and facilities of ground-based operating systems

HAL/S stresses readability rather than “wntabihty” Tius approach acknowledges the
fact that a program 15 written once (generally by one person), but 1s read many tmmes (and
often by many people) For instance, there are no abbreviations for HAL/S keywords
Furthermore, all of the keywords are “reserved” No confusion can anse from vanable
names which duplicate keywords, because no such re-use of a2 kevword 15 allowed

On the other hand, HALfS includes some facihities which other languages lack Vector/
matrn anthmetic has already been menfioned HAL/S vectors and matncees are distmet
from arrays, and are supported by a full set of operations These include cross and dot
product, as well as addition, subtraction, multiplication, division, and exponentiation All
are defined according to the usual rules of mathemaiics

Although HAL/S contfains features abstracted from a varlety of languages, 1t exhubits a
considerable uniformity For mstance, a portion of a variable 1s always selected by subscript-
umg, whether the varmable s a 3-vector, a character siring, or a set of hiis comprsing 2
computer word

Finally, there 1s one difference which 1s not exhubated in the language per se This may
be termed the “system™ aspect of HAL/S In addition to the listing and a machine-language
“object module”, the compuler generates a machine-readable random access file contammg
mformation about every varnable and statement in the program This file s then used by
various stafistics and diagnosiic packages Furthermore, some compilers can optionally 1n-
sert “hooks™ (diagnostic package interfaces) m the generated code These interfaces are used
m a functional simulation (FSIM) execution mode

14 Introduction

FSIM 15 a tool which allows flight code to be developed and tested on ground-based
computers It includes a model of the flight operating system, and simulates the tmung of
the flight computer It also imncludes provisions for the ssmujation of avionics IfO This 1s
done 1 such a way that flight code can be executed on a ground-based computer without
any source-level changes whatsoever Debugging commands are entirely based on the HAL/S
source, the program can be debugged without knowing any detads of the ground computer
hardware More mformation regarding the compiler and related software can be found mn
Appendix B of thus manual

i 3 HAL/SCONTRASTED WITH THE ASSEMBLY LANGUAGE

This manual 1s prumarily intended for experienced high order language programmers, this
section presents some brief background mformation for programmers whose experence has
been primarily in assembly language

The term “huigh order language” refers to languages i which a hine of source produces a
vanable number of machine mstructions Some readers may wutially view HAL/S as a tool
for specifyming machine instructions more compactly

Many assemblers allow expressions, such as “A+BfC"” m certain contexts where a num-
ker 1s needed The symbols used in these expressions must have values known to the assem-
bler,1e, A, B, and C must be equated to constants 1n some way or must be macros which
expand to constants or hiterals The computation 1s done at assembly time and the output of
the assembler contamns just the value of the expression

This facility s present m HAL/S There 1s, however, an important distinction if the
values of the symbaols used in a HAL/S expresston are not known at compile-lime, then ma-
chmne instructions are generated to perform the computation at run-time Most of the com-
putation wm a HALIS program is specified by means af expressions There are no ADD or
SUBTRACT HAL/S statements, all anthmetic 15 done with operators (¢ g, “+7, “—", efc)
The **+” operator will add integers, scalars, vectors, matrices or arrays of any of these basic
types The same operator performs both single and double precision arthmetic Thus, the
compier “decides” what particular machine instructions are appropnate to add the specified
operands together This 1s one type of bookkeeping that 1s automated by the compmler

‘Thus approach itlustrates another meanmg of “high order language™ the programmer
15 farther removed from the details of the computer hardware The programmer specifies
a function (e g, addifion) and the comptler maps 1t into the computer’s repertomre (e g,
LOAD, ADD, STORE)} All addressing and msiruction usage decisions are glso the province
of the compler

Unlike a macro assembler, the compiler does not always generate the same insteuction
sequence for a given source statement It can “remember” whether a vanable 1s stall n a
remster from some prior statement, and, if so, avoid re-loading 1t The compiler may also
move an entire computation out of a loop f none of the varables referenced are modified
within the loop Generally, the compiler 1s free to make any re-arrangement of the program,
provided that the same results wall be produced from its exeeution This means that 1t is
nearly impossible to predict what machine mstructions will be generated when a parficular
HAL/S statement 1s compiled Hence, the best policy 1s to specify the desired function 1
the most intuitive way and 1gnore the mapping into machine mstructions

Introduction to the Mewn Text 1-5

There 15 no way to reference a particular machine register or word of memory n a
HAL/S program Operations are performed on vanables and constants rather than addresses
and registers All such assignments are made by the compier A large class of potential
programmer errors {e g , use of the wrong register) 15 avonded by this approach

1 4 INTRODUCTION TO THE MAIN TEXT

The followimng chapters descmbe the HAL/S Language, a few advanced features are
omitted, but most of the language 15 covered, including all of the frequently used con-
structs This manual 1s intended for sequential readimg The HAL/S Language Specification
1s more appropriate for use as a reference, smnce 1t 1s concise, complete, and fully cross-
referenced This manual, being tufonal in nature, descnibes each facet of the language n
terms of the material presented in previons chapters mteractions between separate con-
structs are not discussed until each construct has been described separately Each chapter
1$ a prerequisite to the next, but no other knowledge of HAL/S 15 assumed

Another document, the HAL/S Programmer’s Guide, 1s also tutoral in nature, but
each chapter 15 self contammed matenal 15 repeated instead of referenced Hence, the
programmer’s guide may be the best choice for “brushing up™ on some particular aspect
of the language

The mformation needed to compile (link, run and debug) a HAL/S program, once 1t
1s wntten, can be found m the HAL/S User's Manual for the particular compiler in use
These documents also describe variatwons among compilers {(1e, umplemcntation
dependencies)

The chapters wiuch follow explain HALfS prmmarily by example The form: of each
construct 15 always shown by example, the examples are so constructed that the meanmgs
of new forms can be deduced Those who learn easily from examples may find portions of
the English explanation redundant In every case, the examples are intended fo be read from
top to boitom when they are first referenced, rather than after the new constructs have
been explained

The oceasional tables and hists need not be memonzed If the exercises can be done
after one readmg, further study is not needed The most important constructs are used
freely m subsequent chapters, thus providing a continuous review of carher material It
would be difficult to learn HAL/S without wreting any HAL/S programs, ahout one-half of
the exercises require programmuing Angwers to all are given 1n Appendix C

Compater words which are not defined heremn (e g, algorithm, program) may be taken
at thewr conventional meanings In some casges, a more precise HAL/S meaning 15 mven later
Defimitrons are denoted by italics as n ““the form and meaning of a language construct are
generally termed 1ts syntax and semanfics, respectively

Chapter Two contamns cnough mformathon to wnte a HAL/S program that really does
something Chapter Three completes the topics mtreduced in Chapter Two, primarily adds-
fional forms of the arithmetic expression The remaimng chapters discuss flow control, addi-
tronal data types, and advanced topics such as real-tume programming

Writing e HAL[S Program 2-1

20 READING, WRITING, AND ARITHMETIC

The basic rules for wnting a HAL/S program are shown in the example below |

SIMPLE PROGRAM,
C CODE IN THIS TYPEFACE IS
C HAL/S SOURCE

DECLARE PI CONSTANT (3 14159266),
DECLARE R SCALAR,

READ(S) R,
WRITE(6) PI R*=2,
CLOSE SIMPLE,

21 WRITING A HAL/S PROGRAM

The example above consists of six HAL/S statements and two comments The first state-
ment serves fo fllustrate several conventions used throughout the langnape

1. Every program begins with a labeled PROGRAM statement ,
2 HALY/S statements are labeled by preceding them with an wentifier and a colon
3 Al HAL/S statements end with a semi-colon

The two Lines followmng the PROGRAM statement are commments For further ¢lanfica-
tion, additional hines could be used Any bne contaming a C in column one 15 a comment
Comment hnes may be placed anywhere 1 a program

The next statements are DECLARE statements These statements form the declare
group, which precedes the execurable statemenis 1 every program vanables are created via
the DECLARE statement Vanables must always be declared before they are used READ
and WRITE are executable statements The numbers 5 and 6 in parentheses are channel
numbers They conirol the routing to and from an external device Many other executable
statements will be introduced in later chapters CLOSE, like PROGRAM, 15 a delmiting
statement It is the last line of every programn The block dehmting statements are further
discussed 1n chapter seven Thas chapter stregses the DECLARE statement and the assignment
statement (rot shown abhove)

In thus simple example each sfatement could be punched onto a card just as shown
HAL/S source 1s free format There are no rules about particular card columns except
column one Column one must contain one of the characters E, M, 8, C, D or blank Normal
statements are wntten with a blank 1n colimn one “C” 15 used for comments, the use of
the other characters will be discussed later . g

fl
]

When a program 1s stored on disk or tape the format 1s the same Column one 15 defined
as the first character of a record or the character following an end of line code With this
exception, the arrangement of HAL/SS source on cards or records does not affect 1ts inter-
pretation by the compiter The example above could also be put as

22 Reading, Writing, and Arithmene

SIMPLE PROGRAM,
C THIS IS HAL/S SOURCE
DECLARE PI CONSTANT (3 14159266), DECLARE
R SCALAR, READ(5) R, WRITE(6)
FI R**2, CLOSE SIMPLE,

Longer programs are not always wrntten correctly the first time Placing only one state-
ment on a line makes later modifications much easier >

Since every statement ends with a semicolon, no additional convention 1s needed for
long §tatements J¢ s the semucolon rather then the end of a line that marks the end of ¢
statement To put a comment after a statement on the same line, the “{**’ form ¢an be used
For instance

READ(5)R, /~OBTAIN RADIUS*/
WRITE(6) PI R*¥*3, /= ** MEANS EXPONENTIATION */

This type of comment may be placed anywhere a blank i1s allowed (except in ¢olumn
one) It consists of any strng of characters begmning wath “/*” and ending with “*/> As
the example shows, “*" and “/” may be used within the stningin any combination other
than “=f*

The WRITE statement could also be coded as

column 1
4
E
M WRITE(6) PI RZ,

Here, column one 15 used to distingwsh between main and exponent lines Some implemen-
tations of HAL/S accept a two dimensional input fornat in whach exponents and subscnipls
are mdicated by their positions Multi-hne mput 18 generally not used however, since enter-
mg and maintammng source n this form 15 cumbersome under commion editors or on cards
The compier produces hstings 1n the multi-ine format but all source 1n thus book will be
shown mn the single-hne form

The preceding paragraphs descnbe the placement of statements i a file or on cards
Next we will discuss the format of individual statements

The PROGRAM and CLOSE statements contamn the two keywords, an identifier, and
punctuation Keywords are the “verbs™ in HAL/S Each has a predefined meaming, and so
cannot be used as a vanable name A complete hist of keywords 15 given 1n Appendix D
All of the HAL/S keywords are made up of the letters A through Z Except for ARCTAN2
function, no numerals aré used The underscore, or “break character” {_) 15 not.used m
any HAL/{S keyword

*Some debugmng systems allow a breakpomt to be set at the statement on & particular card (specified by
sequence nember) Placing only one statement.per line also simplifies this usage

Wriing ¢ HHALJS Program 2-3

Blanks, or spaces, are sigmficant m HAL/S For instance, DECLARER 15 a vahid 1denti-
fier It would neve; be interpreted as DECLARE R Blanks must be coded between key-
words and identifiers m any combination Except in comments and character stnings,
however, there 1s no difference between one blank and many blanks

The compiler sees its input as a continuous stream of characters, 1 e , the concatenation
of columns 2 through n of the entire input file This input 15 split 1nto words at the punctua-
tion blanks, commas, semi-colons, etc The punctuation 1s in two categones delimiters
such as , ,, and blank, and operators such as +, —, blank, and / When a blank appears
between two dentifiers or expressions 1t serves as the multiplication operator Otherwise,
1t 15 2 dehmiter

Using the punctuation, the compiler breaks 1ts input into a senies of rokens Tokens are
of four types

Keywords such as DECLARE
Identifiers such as R
Operators such as§ ** or blank
Literals such as 314159265

O L S

Each HAL/S statement 15 defined 1n ferms of these token types For mmstance, the basic
DECLARE statement consists of the keyword DECLARE followed by an 1dentifier
followed by atirtbutes The attobutes consist of keywords and literals Like all statements,
DECLARE ends with a serm—colon

Identifiers consist of varable names and labels The wdentifiers in the sample program
are SIMPLE, Pi, and R Identifiers may be from one to thirty-two characters m length,
and composed from the letters A-Z, the numerals 0-9 and the underscore. The first character
must be q letter, the last may not be an underscore Selection of names 15 entirely up to
the user

DECLARE SIGMA CONSTANT (3 14159),

18 syntactically correct The underscore may be used m an 1denhafier to wnte an 1dentifier
composed on more than one word DELTA_V and TIME_TO_GO are valid 1dentifiers

There 15 a trade-off 1n 1dentifier lengths Very short identifiers, such as RENGL, make
for cryptic code, whereas very long identifiers, such as CURRENT_VEHICLE_ROLL_
ANGLE, make 1t hard to find operators and match up parentheses in expressions Identifiers
may not be started on one card and continued on the next Smce the card boundary serves
as a delimuter equavalent to a space, lang names can be awkward

HAL/S does encourage self-documenting programs through meaningful identifier names
Thus author’s preference for a minture of long and short names 1s generally displayed
throughout this manual Sometimes this text uses underscores and numerals in identifiers
to distingush them from keywords The HALJS keywords cannot be used as identifiers A
few to be careful of are SUM, IN, SET, LINE 2nd TRACE None of the keywords are less
than two characters

2-4 Reading, Wrnining, and Arithmetic

The third type of token 15 an operator HAL/SS includes logcal and character operators
as well ag the anthmetic operators listed 1n Section 2 2

The fourth type of token 15 a hiteral There are anthmetic, character, and bit Lterals,
though only anthmetic hterals are of concern now Throughout this book, anthmetic
Irterals are called simply numbers

While HAL/S has both mnteger and scalar datatypes, i does not distingmsh hetween
integer and-scalar numbers “3" 15 completely-equivalent-to “3 0 “3 14159 15 completely
equivalent to “314159/100000%", and to “314159E-5", “31415 9E4" and so forth The
character E 15 used mm numbers to mdicate screntific notation The form “3 14159E-5™ 15
mterpreted as

314159 x 10>
or
(314159)10™*(=5)

Thus, numbers can be wntten as a sequenceé of digits wath or wathout a decunal point,
ophonally followed by the letter E and one or more digits The minus sign {—) 15 used for
negative numbers and exponents The HALSS Language Specification describes the use of
other exponent letters to specify powers of two or sixteen mstead of ten

No blanks may appear in a number Blanks must separate numbers from adjacent key-
words, idenfifiers and literals

The stalement,
DECLARE PI CONSTANT(3+1/7),

1s completely vahd “3 + 1/7” 15 considered a number rather than an expression An ex-
pression wlich contains only numbers, CONSTANTS, and the bhasic anthmetic operators 15
smd to be computable ar compile-tume Instead of generating code to evaluate such an
expresston at runfune, the compiler will convert the expression to a stmple number Only
the value 15 kept at runtime, the additron and dwvision 1n *3 + 1/7" are performed dunng
compilation When this manual refers to numbers, any expression which can be reduced to
a number during compilation 1s mmcluded

In summary, a HAL/S program begms with a labeled PROGRAM statement and ends
with a CLOSE statement In between 1s a2 declare group followed by execuiable statements
These statements may be arranged m any convenient way on successive cards or lines, pro-
viding that column one 1s blank Declaration and executable statements must end with a
semi-colon Both comment hines and comments within statements are allowed Siatemenis
consist of a sequence of tokens separated by blanks or other punctuation, the tokens are of
four types kevwords, identifiers, operators, and Iiterals Most of the HAL/S keywords and
operators will be described later The rules for forming and recogmzing tokens of each type
have been presented here

Arithmetic Expressions 2-5

Exercises

21A Some of the following are vahid HAL/S tokens, some are not Identify the vahd
tokens, and state the type of each

Note Appendix D contains a complete List of HAL/S keywords

2) TEST_TIME
b) CHARACTER
¢) TRY AGAIN
d) 71E-l4

e} X

f) 1ABC

g) DEC_LARE
h) INITIAL

1) ALTITUDE_
1) TRUE

k) 421

1} QUITE_A_LONG_STRING
m) 10000000

22 ARITHMETIC EXPRESSIONS

Like most high order languages, HAL/S allows numenc computations to be specified
i a form very similar to ordinary mathematical notation Forinstance, the equations below
should be quite recogmzable 1n their HAL/S forms

AREA_CIRCLE = PI R**2, /*CIRCLE~/
AREA_TRIANGLE = 1/2 B H, J*TRIANGLE™/
AREA_PYTHEGORUS = (H**2 — B**2)*x(12), /*PYTHAGORUS™/
AREA_TRAPEZOID = H(A+B)/2, {*TRAPEZOID*/ *

This exammple dlustrates the formes of some famibiar equattons m HAL/S. As in other lan-
guages, the successive assignments to AREA are not functional

This example shows four assignment statements 35 well as a number of anthmetic ex-
pressions The assignment statement 15 much as in other languages The value of the expres-
sion on the right of the equals sign 1s assigned inte the vanable on the left This section 1s
pnmanly concerned with the evaluation of the expression on the night hand side

The example shows addifion, subtraction, mulfiphication, division and exponentiation
operators As 1 mathematical notation, mulnplication is indicated by adiecent factors No
special character 1s used fo stand for mulfiplication Sometimes the blank 1s referred to as a
multiplication operator, since adjacent wdentifiers must always be separated by a blank
However, 1t 15 the aducency not the blank that mndicates multiphcation For wnstance,
“PI R**2* can be written without a blank as “PI{R**2)” or “(PD)R**2” or “R(PFI)R"

-

2-§ Readmg, Writing, and Anithmetic

The other basic operators contan no surpnses The hyphen or minus sign 15 vsed for
both subiraction and niegation Parentheses control the order of valuation 1 the usual way
The table below shows the major differences between HAL/S and mathematical conventions

Mathematical Notation HAL/S Expression
ab ab
2x 2 X
nx—1 n x**(n-1)
—{ctd) —(c+d)
25
(:i%) ((a+b)/(c—d))y=*2 5
Xy
P {x Y)/(-2 a b)
a(x+1) {a (xt1)

Mathematics defines several conventions to reduce the need for parenthesis 1n expres-
siens For example,

AX+BY

15 always interpreted as the sum of two terms, (A X) + (B'Y) rather than as the product of
three factors A(X+B)Y These conventions are stated 1n terms of the order of evaluation of
vanous constructs In particular, multiplication and division are performed before addition
and subtraction HAL/S mcotporates these rules by defimng a precedence for each operator,
as shown below ;

Precedence of Operators

** sxponentiahion first
¥ multiphcation
[division

+, — addition
subtraction

v -

Note that multiphcation 15 done before division rather-than at the same tine as m some
languages

(aven this precedence, the expression
2 +
AXS + BX ~ C,
15 évaluated correctly when watten in HAL/S withont parenthesis

[}

"AX®2+BX ~-C

Arithmetic Expressions 27

The equivalent form with parenthesis 1s
((AX*2) + (B X) - C

If strict left-to-npght evaluation was desired, this could only be indicated by parentheses, as
shown below

{a X2 + B)X - C
When an expression contains several operators of the same precedence, they are

evaluated from left to right for all operators except for exponentiation and division These
are evaluated night to left To see why this 1s true, consider the definttions below

Z = w(YZ
Y% = x(Y9)
A

B=4aCt

C B

The first expression is wntten
KExY<*Z,

IFX=4,Y=3,and Z=2,this1s
4223%2 = 4%(3%%2) = 47

if the natural sequence was overnidden via (4773)="2, 162 would be produced Likewsse,
AJBJC 15 natusally interpreted as A f (BfC), which 15 indeed equal to A(C/B)

Qther operators of equal precedence are evaluated from left to nght Addition and
multiphcation are commutative and associative, so the order does not matter except for pre-
cision analysis Subtraction, however, 18 neither, and the order of evaluation dees affect the
results The HAL/SS expression,

A-B-C
1s interpreted ag (A-B) —C

The distinetron between numbers and expressions 15 somewhat blumed 1n HAL/S As
already stated, any expression that czn be compuied n advance (during compilation) can
be used wherever a number 15 required Furthermore, a negative number (eg, —1) 15
actually an expression, containmg the number 1 and the negabon operator The presence of
a blank between a munus sign and a hteral 15 irrelevant “—2A 15 the product of A and -2,
but “A —2" 15 a subtraction even though there 15 no space between the minus sign and the 2

The comnstruct, “Af—2" 15 ilegal The minus sign 15 seen as an operator, and HALSS
never allows fwo operators in succession This diviston could be wntten as “Af{—2)" or
more sensibly as “—Af2"

http:X*fl/.cZ

2-8 Readwmg, Wniting, and Arithmene

To summanze precedence rules,

HAL/S has defined the precedence of each operator to correspond to the usual
mathematical conventions, BUT WHEN IN DOUBT, PARENTHESIZE

Anthmetic expresstons may contamn a vanety of anthmetic types Integers, scalars,
vectors, and matnces If one vanable of each type 1s created as follows

DECLARE S SCALAR,
DECLARE I INTEGER,
DECLARE V VECTOR,
DECLARE M MATRIX,

The following multiphcations and assignments are legal

=Vv,
\Za's
VM,
v

M

noa

»

ZAER<C<®
1l
» 2«

v
=M

[4]

They are, respectively the dot (inner) product, the cross product, the vector matnx prod-
uct, the vector outer product, the matnx product, and the scaling of a vector and a matrix
They produce results of the types mdicated by the target varmble (left hand side) of these
assignments Thus 1s a necessity rather than a comnadence Every expression has a datatype
and assigniments can only be made between hike types

Hentical data types are not required Since integers and scalars may be used nter-
changeably, the following combinations are also legal

1=VV,
V=VI,
M=MI,

as are all eight combinahions of mtegers and scalars alone This, however, exhausts the
combmations that can be written with the four vanables declared above Not all operators
apply to every combination of datatypes For insfance, the addition of a vector to a matix
15 not permiited In general, operations which are undefined i mathematics are 1llegal 1n
HAL/S

By default, vectors and matnices are of size 3 and 3x3 Section 2 3 explores other pos-
stbilities and defines the operators m more detail At this point 1t suffices to say that
wherever a vanable of a given type 15 allowed mn an expression, 2 parenthesized expression of
the same type1s also allowed, e g,

v
M

VAV SIM),
M(V V),

o

Arnithmene Expressions 2-9

221 A Compied Example

With the names (I, S, M, and V) used 1n the previous section, the type of each vanable 15
apparent Most apphcations would require a better notatron Thas 15 provided by the com-
piler as shown below

M | DATATYPES.

H | PROGFAM,

H DECLARE § SCALAR,
H DECLARE I IMTEGER,
H DECLAPE V VECTOR,
b DECLAPE I MATRIX,
g - -

H S=V V,

E - - -

H V=V %y,

E - - %

1 Vv =VH

E - -

[l n=yvwv,

E * * ¥*

H M =HMH,

£ - -

H V=vYs5;

H

CLOSE DATATYPES;

This hsting was automatically produced from the preceding HAL/S statements by a
HAL/S compiler Mo changes to the source were made The astensk and hyphen overmarks
appear only 1n the listing, they are not coded by the programmer The compiler indicates
the type of each variable i a compidation via the overmarks shown below

Integer and Scalar none
Vector —
Matrix *
Character s

Bat and Bool;an

Structure +

Other differences between the source and the hsting are

1 The compder controls spacing, mndenting, and the arrangement of statements on
hines 1n the listing The source format 15 1rrelevant

2 Statements in the listing always appear it multi-lhine format, with raised exponents
and lowered subscnpts

The compiler marks each hine of the hsting with an E, M, or S fo indicate exponent,
main, and subscript lines These characters, as well as “C’” for comments, appear oufside the
box mn the examples Some blank lines have been removed, and DECLARE statements are
somefimes used in several examples without being repeated Any HAL/S code which appears
in a box like the one preceding is eatracted from an actual listing If has not been re-typed
and 1s therefore free of any syntax errors

2.10 Reading, Wnhing, and Arithmetic

The standardized hsting format produced by HAL/S compilers 1solates the reader of
a program from the style of its author The same lsiing will result whether the source was
entered with minimum spacing on as few lines as possible, or was entered one token per line
As a result, the isting format 1s a rehable source of information about a program’s structure,
independent of mdividual programmers Since the indenting 1n the histing 15 re-computed at
gach compilation based at the flow control statements 1n the source, 1t 1s always up to date,
and changes to the source can be made without undue concern over spacing

This compietes the discussion of HALfS source and listing formats More_information
about anthmetic data will be needed to proceed with the topic of anthmetic operations

Exercises

22A Wrte HAL/S expresstons equivalent to the following mathematical expressions

a) axtby+cz

by b 4 d_

) c et+f

C) 2[1—1
—
2|

d) %3 _-3x243x—1
&) (x—1)°
n 108"
g (0%

h) vw V {V, Ware vectors, * *means dot product)
Vv

22B Thelefi-hand column contains mathematical expresstons that are incorrectly coded 1n
HAL/S in the nght-hand column Fmd the errors and rewrite each expression

correctly

a) mxtb M*X+B

b) 2(x+1) 2X+1

¢y x—25n X~ #(=2 5N)
dy ¢ C~—5

e} X AC/BD

bd

Declaring Data 2-11

23 DECLARING DATA

The example below 15 a declare group which shows the three different forms of DE-
CLARE statements

DECLARE3
FROGRAH,
DECLARE COUNTER INTEGER,
DECLARE VEGTOR,
FOSITION, VELOCITY, TORGUE;
DECLARE MEM_CO_ORDS HATRIX,
SPEED SCALAR,
N INTEGER,
WIMD_FORCE VECTOR,
CLOSE DECLARES,

ITAXXIIIIIX

The first forms the siaple DECLARE statement used previously The next two forms are for
convenience 1n declaning many varables The effect 15 the same as a number of simple
declare statements The second form 15 a factored declare statement It 15 dishinguished by
the appearance of a data type before the varzable names The datfa type applies to all of the
identifiers 1n the list This example creates three 3-vectors

The thard statement i DECLARE3 15 a compound declare statement This form 1s used
either to avoid re-typing the word DECLARE, or to show that a group of vaniables are re-
lated This grouping capability can aid in the attempt to document a program 1n the code as
well as 1in the comments

Like all HAL/S statements, declarations may be entered n free format The example
above shows how the compiler arranges the tokens m the listing

The sumple declare statement consisis of DECLARE, a vanable name, and the attributes
of that variable The factored declare statement consists of DECLARE, a set of attrnibutes, a
comma, and a list of identhfiers to which the attnbutes apply The compound declare state-
ment consists of DECLARE and a hist of identifier-attributes pawrs, separated by commas

The three forms of DECLARE are for convenience and documentation A vanable of
any type can be created usmg any form, and the type of declaration used does not affect
the way the data 1s allocated or referenced

The attnbutes of an wdentifier consist of 1ts data type, precision, dumensionality, 1nitiall-
zation, fock group, and so on The only attribute that s required 1n a deciare statement 1s
the dara fype Several other attributes are described 1n Chapters three and six

The INTEGER type 15 used for counters, mdexes, status indicators, and other applca-
tions where a variable’s domain 13 limited to the whole numbers Integers generally occupy
less storage than scalars and can be operated on more efficiently

SCALARs correspond to the real numbers They are generally stored m floating point
format although this 1s not a language requirement In any case, they can represent numbers
to “n” digiis of precision, where n s constant for a given implementation In a floatmg
point 1mplementation, scalars may trade-off precision for a greater range by representing the
number as a fracthion (mantissa) and an exponent (charactenstic)

2-12 Reading, Wriing, and Arithmetic

VECTORs have scalar components They generally represent quantities in 3-space, such
as posttion 1 cartesian coordinates Vectors can be of any length from 2 to an implementa-
tron-dependent linit The VECTOR keyword may be followed by a parenthesized number
VECTOR(2) 1s a vector with two components VECTOR alone 15 an abbreviztion for
VECTOR(3) No distinction 15 made between row and column vectors

The MATRIX keyword by ifself 15 equivalent to MATRIX(3,3) Matrices also have
scalar components, but are generally viewed as linear operators on vectors, rather than as
a collection of sealar or vector components

A VECTOQORI(n) can be multiplied by a MATRIX(x,n) vielding a VECTOR(x) When
x =n = 3, thes can serve as a coordinate transformation since each component of the result-
ing vector 15 equal fo the dot product of the onginal vector and one column of the matnx
A projection of the vector onto one axis

A MATRIX(x,y) can be multiplied by 2 MATRIX{v.z) vielding a MATRIX(x,z) The
wnner dumensions must match The exponentration operator can be used to wvert or trans-
pose a matnx of to generate the identity matrix The cross product (%) only apphes to 3-
vectors The dot product {) apphes only to vectors of equal lengths Addition, subtraction,
and assignment require 1dentical dimensions

These definitions of the four anthmetic data types are consistent with standard mathe-
mafical conventions Data type 1s the most important attribute because 1t determnes which
operations may be performed on the vanable

Another important attnbute of vanables 1s inttialization The INITIAL atinbuie speci-
fies the value a vanable will have when the program s first Joaded into computer memory
Its form 1s shown below

INITIAL_AND_CONSTANT-
FROGRAM,

DECLARE % SCALAR INITIALCOD;

DECLARE MAX_SPEED SCALAR INITTALE14000);

DECLARE FEET_TO_MILES SCALAR CONSTANT(Y / 5280);

DECLARE SEC_TO_HR COHSTANT(60 {60}),

DECLARE MAX_MPR INITIAL(14000 FEET_TO_MILES / SEC_TD_HR),
CLOSE;

b g e s e e b i 4

The CONSTANT atinbute also causes imtizhzation When an identifier has the CON-
STANT attnibute, its value cannot be changed Any attempt to assign info it resuits i an
EITOT message *

In other respects, INITIAL and CONSTANT are the same Both are followed by a paren-
thesized value to which the identifier 1s mitially set Varables of any type may be imtiahized
For integers and scalars the value must be a number As the example indrcates, this includes
both anthmetic hterals, and expressions which can be evaluated at compile time Since the
value of a CONSTANT cannot be changed, compile-time expressions may contain references
to previously declared mtegers and scalars with the CONSTANT attnbute

Declarmg Dara 2-13

This example shows two new abbreviated forms SCALAR 1s the default data type It
can be omitted, as n the fourth declaration of the example Another omission 1s i the
CLOSE statement The program name 1s optional, although good reasons for keepmg 1t wall
be seen when nested code blocks are miroduced m Chapter Seven

A vector or matrix 1s imtialized in much the same way as an integer or scalar The
essenfial difference 1s that a value for each of the vector or matnix components is specified
in pareniheses followmg the word INITIAL or CONSTANT The values are separated by
commas and are sometimes referred to as the rurtal list

For example, the declaration

DECLARE VECTS VECTOR(S) INITIAL(Z 8,1 3,3 7,0,0),

created a vector with the followmg mmtial value

28
13
37
0
0

Each element of the vector 1s imbiahzed to the corresponding value i the mihal ist The
first element recerves the first valure, the second element the second value, ete

For a mainx, the elements are mnitialized to the values in the mutial hist as follows the
first row 15 imbalized to the first values i the hst (using enough of them to fill one row),
then the second row 15 1mtialized, and so on The declaration,

DECLARE COORDMAT MATRIX(3,3) INITIAL(l 7,2,0982,61,11,-8,73,86),
creates

17 - () O

82/

_— 11

P

—§=—27 3 ———8 6

The arrows mdicate the order m whach the matnx components are assigned from the hnear
senes of values in the 1nitial Iist

The unportant fact to remember about MATRIX imtialization 15 that the order 1n which
values are assigned 1s by rows and not by columns This row-by-row order also apphes to the
way matnx components are read and pnnted with READ and WRITE statements, and to
arrays and the MATRIX shaping function, as will be shown later. This convention 1s corm-
monly called row-major order

2-14 Readwmng, Wrniting, and Anthmetic

Wntmg an inghal list as m the above examples can be cumbersome if the vector or
matnx 15 large HAL(S offers some shorteuts

I

If only one value 13 specified 1n the mufialization attnbute, all of the components
of the vector or matnx are imhiahized to that same value For example

DECLARE V VECTOR(3) INITIAL(10),
M MATRIX(34) Intral(0),

10 0 0 0 0
10 g 0 0 0
10 o 0 0 0

If several successive values in the 1natial ist are wdentical, the programmer can specify
a repetition factor and wite the common component-vazlues just once The repeti-
tion factor 18 a number mdicating how many tunes the value 1s to be repeated, and 1t
1s separated from the value by a #symbol Using repetitron factors, the imtalizabion
atinbute,

INITIAL(1 5,1 5,1527.2T)
may be wntten more succinctly as,
INITIAL(3#1 5,2#2 1)

whach 1s entirely equivalent to the longer form The repefition factor may also
precede a parenthesized, comma-separated Iist of values, in which case the whele
st 15 repeated Repehtion factors may be nested fo form a vanety of patterns For
example, a 3x3 matnx may be mtiahzed fo the identity matnx by the imtialization
attnibute,

INITEAT(1,275(340,1)
If only some components are to be imtralized there are twe ways to achieve the
desired affect

a) A repehition factor may be speafied without an accompanying value, In wlich
case the specified number of components are passed over and left umnitiahized,
or

) the last item in fthe mtial list may be an asterisk, which indicates that the re-
maming components are not to be mmitialized

For example, the statement,
DECLARE A MATRIX(3,5) INITIAL (1,2,3,4%.8,6,3% 09,,
creates the matrix
A=[1 2 3 x x
x x 8 6 02
09 09 x x x

where X indicates an unimhialized component

Executalble Statemnents 2-15

The symbols # and - are used in vector and matrx 1nitial ists as well as 1t other con-
structs They can also be used 1n the mitial hist 1n the declaration of an array or structure and
i shapmg functions As described later shaping funchions allow the creation of vector and
mainx quantifies as m the following statement

M = MATRIX(1,2#(3#0,1)),

All HALJS vanables must be defined before they are referenced The DECLARE
statement 15 the most common means of defining an identifier, but other possibiuities
such as use of the TEMPORARY statement willbe mtroduced in later chapters While there

are additional data types and attnibutes, all of the forms of the DECLARE s#afement have
been presented

Exercises

23A Wnte declare statements corresponding to the table below

IDENTIFIER TYPE INITIAL/CONSTANT
X_DELTA SCALAR INITIALIZED TO 1
Y_DELTA SCALAR INITIALIZED TO 1
TIME_DELTA CONSTANT VALUE 1
DELAY_FACTOR CONSTANT VALUE 5
TEMPI SCALAR
TEMP2 SCALAR
TEMP3 SCALAR
COUNT INTEGER INITIALTZED TO 1
POINT_A VECTOR
ORIGIN CONSTANT VALUE (0,0,0)

VECTOR 1 00
TRANSFORM MATRIX INITIALIZED TO 010

0 01

24 EXECUTABLE STATEMENTS

Thus chapter stresses the HAL/S source and histing formats and the anithmetic operators
and data types Enough executable statements have been introduced to wnte simple pro-
grams The mformation gbout executable statements whuch will be assumed in later chapfers
appears below

The assiginmend statement consists of one or more target vanables, an = sign, and an ex-
pression To store the value of an expression into several vanables at once the multiple as-
signment 1s used, asn

ILJ, K=0,
A, B, C = (A+B+0){3,

2-16 Reading, Wnting, and Anithmetic

Each target vanable must be of the same type as the expression on the right Conversions
between integer and scalar, and single and double precision are antomatically performed,
however

The operands to the READ staternent are a parenthesized channel number and a list of
vanables, e g,

READ(S) ALPHA, BETA, GAMMA,

The chanzel number selects one of several external devices from which the vanables are to
read The data must be ;n a standard character format, so no additional control parameters
need be given Chapter ejght describes other options in the READ statement

The WRITE séiatement also includes an mnteger channel number Its remamning operands
may be expressions of any type In the statement,

WRITE(6) M, V, M*~{—1), M**(-1)V,
two matnx and two vector expressions appear Matnices can be raised fo any mtegral power
Minus one results i the “mverse™ operation The output format 15 described in Chapter
Eight along with more details of the READ, READALL, WRITE and FILE statements

The PROGRAM and CLOSE statemenis have been described 1 this chapter

Most of the remainmg HAL[S statements alter the sequential flow of control These -
chide statements for conditional execution (Chapter 4), loopmmg (Chapter 5), and subrou-
tmes (Chapter 7} Error control (Chapter 10) and'real-time (Chapters 11 and 12) statements
complete the set

Chapter three descnibes additional forms of the anthmetic expression

2A

2B

2C

Executable Statements 2-17

End of Chapter Problems

The following program will compute the roots of the polynomal 3X2+4X—10 and
print them out

ROOTS PROGRAM,
DECLARE SCALAR
ROOTI1, ROOT2,
ROOTI = (—4+@&=~2—4 3 (—10)*=0 5)/2,
ROOT2 = (—4—(4°>2—4 3 (—10))=*0 5)/2,
WRITE(6) ROOT1, ROOT?,
CLOSE ROOTS,

Modify the program to read m three scalar values A, B, and C from channel 3, and
compufe the roofs of AX24BXHC

Note Assume the input values will yield real roots

A ball 15 tossed straaght outward from a height of 110 feet with a horizontal velocity
of 4 ftfsec Each time 1t hits the ground, 1t rebounds to 35% of 1ts previous height

Write a HAL/S program to compute the time untid the ball lats the ground for the
third time, and how far if has traveled honzontally 1n that inferval

The applicable equations of motion are

1 For an object dropping from height H to the ground or bouncing from the
ground to height H, 1n time T,

=L,72
H 2gT

where g =32 ftf sec? 1s the gravitational acceleration

2 Honzontal motion 1s mdependent of vertical motion, so 1f D 15 honzontal dis-
tance traveled i time T at velocity V,

D=VT

An artificial satellite moves m a cireular orbat of radius 4000 males Write a HALJS
program fo compute how long it takes to make 1 revolution and write the result on
channel 6

472 R3
Remember, P = J(MASS_OF_EARTH) 6 670 x 10~

m CGS nnits

Say the MASS OF_EARTH 1s 5 983 x 1027 grams One mile equals 160934 4 cm

2-18 Reading, Wnting, and dnthmetic

2D Letax + by =¢,
cx+ dy =1,
be a systern of 2 equations m 2 unknowns
Wnte 2 HALSS program to compute the solution of the system

The wmpuis a, b, ¢, d, e, and are available on channel 5, and the solution X, ¥,
should be wntien on channel6

We are guaranteed that a solution does exist
Remember, Cramers Rule states

. ed—bf - af-ec
X5 ad—tbe Y= 2d be

. A

y
H
T = Builtan Functions 3-]

-~
abuta k

P

30 MORE BASICS

This chapter describes additional aspects of the anthmetic expression, mcludmg sub-
scrpting and function mvecation One new non-executable statement 1s also presented, so
that only new data types, and executable statements other.than assignment are left to later
chapters

-

3.1 BUILT-IN FUNCTIONS

In addition to the anthmetic operators, HAL/S provides a set of builtan functions
When the name of one of these functions occurs in an expression, code 15 generated to m-
voke the corresponding library routine Builtn function names are HALSS keywords and
the run-time library routines are supphed with the compiler Examples of several useful
builfan funetions can be given with the aid of a paraliclogram

D

=
o

proevsesossanann st rnans

B

The size and shape of a parallelogram are unuquely determmed by the lengths of two ad-
Jzcent sides and the angle befween These scalar quantities will be called LONG, SHORT and
ALPHA

Taking the lower left corner as the ongin of a coordmate system with an X axis ex-
tendmng along B, the following program computes the coordinates of the corner ponfs

H | COBRNERS

H PROGRAM,

H DECLARE SCALAR,

H LONG, SHORT, ALPHA,
H BECLAPE VECTGR(2),

M AB, BC, CP; DA,

H READ(5) LONG, SHORT, ALPHA,

E -

[£} AB = 03

E -

M BC = VECTOR {LOMG, 0],

s 4 '

E -

M BA = VECTOR (SHORT COSC(ALPHA), SHORT SIM{ALPHA)}:
S 2

E - - -

H Co = BC + DA .

E - - - -

H HRITE(G) AB., BC, CO, DA,

H | CLOSE CORMERS:

3-2 More Basics

The first assignment sets both compconents of the vector AB to zero Any anthmetic
varrable may be assigned from the lLiteral zero Zero 1s the only such special case, 1t may be
considered a typeless Literal

The second assignment tlustrates use of the VECTOR: shaping function The expression
VECTORS (2) {LONG,0) represents a 2-vector whose components have the values LONG
and zero

in the thard assignment, the argsumenis to the VECTOR funéhion afé anthmeic ex-
pressions As a result, the first component of DA 1s set to the product of the length of the
short side and the cosine of the angle ALPHA The “Y™ component of this vector 1s com-
puted stmilarly, except that the sine function 1s used |

The fourth assiznment merely flustrates the “parallelogram rule™ for vector addition

SIN and COS are algebraic built4n functions, listed in Appendix A Thus category in-
cludes SIN, COS, TAN and thewr inverses (e g, ARCSIN) and the hyperbolic-forms (e g,
SINH, ARCCOSH) Also included are 1.OG, EXP, and SQRT For argument X, the latter
functions are equvalent to Log, (X), eX, andVX

Each algebraic funchion returns a scalar value The arguments may be any feger or
scaler expression An algebraic function name with its parenthesized argument 1s 1tself a
scalar expression Thus, function invocations may be nested, as 1n

ARCTAN(SIN(X)/SQRT(1—-SIN(X)*<2))

A function’s arguments are always enclosed it parenthests As usual, the evaluation of an
expression always starts at the mnner-most parenthesis In the expression above, *1—
SINCGO*¥2% 15 evaluated as “1—((SIN(X))**2)” The function invocation may be viewed as
of higher precedence than exponentiation Another interpretation of the same rule 15 that
the value passed to a function is completely specified withan the parenthesis Operators out-
side the parentheses apply to the value returned.

Before continumeg td°other classes of buli-ifi functrofis, consider some general rules

1 No budian function modifies any of 1fs arguments

2 A function name and its argument bist together comprse an expression of some data
type

3 A function argament may be any expression of the specified data type

4 All tngonometne functions receive and return angles i radums

5 Invalid arguments (e g, SQRT(—1)) are indicated via runtime errors, as described m
chapter ten

The.parallelogram example also nsed the VECTOR shaping function Shaping functions
perform conversions One funchion per dala fype 15 provided The anthmehc shaping func-
tions are VECTOR, MATRIX, INTEGER and SCALAR The VECTOR and MATRIX func-
tions will accept any number of arguments, each of whuch may be of any apthmetic type

Builtan Functions 3-3

The second assignment statement of the example might be entered as

BC = VECTORS2(LONG,0), -
Thus statement contams the first subscnpt used so far Whenever the' VECTOR funciion pro-
duces a vector of dunenston other than three, the dimensionality of the result must be speci-
fied as 2 subscript to the function HAL/S uses the dollar sign (3) to 1adrcate a subscript,
when the subscnptas a single token {2), no parentheses are needed “VECTORS2" 1s the
HAL/S notation for “2-vector”

The MATRIX shaping function may afso be subscripted A 3x2 matnx can be produced
from the numbers 1—6 by

MATRIXS (3,2) (1,2,3,4,5,6)

v L

A three-by-three matnx can be produced without a subscnpt, as in

MATRIX (1,3#0,1,3#0,1)

The number of values 1 the arpument hst of 2 shaping function must match the sub-
script 1f one 15 supphed Otherwise, the number of values must be three (for a vector) or
nine {for a matnx) If supphed, the subscript must be either a single compile-tinie expression
mdicating the length of a vector or two expressions, indicating a pawr of matrix dimensions
The product of these numbers 1s the number of components i the matnx The dimensions
of any vector or matnx expresston must be known at compile-time *

It 15 the total number of components m a shaping function argument st that must
match the subscnipt For mstance, given «

DECLARE M MATRIX,
V4 VECTOR (4),
V2 VECTOR (2),
M22 MATRIX (2,2},

All of the following are legal (since each list has 9 components)

M = MATRIX (V4,M22,0), -
M = MATRIX (V4,0V2,V2),
M = MATRIX§ (3,3) (M22,2#V2,0),

Whenever a data aggregate appears in the argument bist of a shapmg function, 1t 15 “un-
raveled” 1n the natural sequence (1e, the same order as in wnibal lists, row-major) The
VECTOR and MATRIX functions see their argument hsts as a linear stream of scalars Thus,
if for example X, Y and Z are three 3-vectors, then MATRIX(X,Y,2) 15 a 3x3 matnx m
which the first row equals X, the second equals Y and the last contains the values from Z

34 More Basics

Shapmng functions are the only class of built-ins which accept a vamnable length argument
st Others have a fixed number of arguments, each of a specified data type As stated
above, the functions mn the “algebraic’ class all take one scalar arpument and return a scalar
result However, one basic rule in HAL/S 1s that wherever a scalar 1s expected an integer may
be used, and vice-versa. In the assignment below,

DECLARE I INTEGER INITIAL (4),
1 =TAN (1),

first 1 15 converted to a scalar, then the tangent is taken and finally the resulf 1s rounded to
the nearest integer hefore assignment mnto I

Rounding 1s defined 1n the usual way INTEGER (3 5) =4, INTEGER {(~14)=—1,
and INTEGER (4999) = 0 As indicated, there are INTEGER and SCALAR. shaping func-
tions analogous to the VECTOR and MATRIX functions Since integer and scalar hiterals
are wrtten straightforwardly, and integer/scalar conversions are automatically performed,
the INTEGER and SCALAR functions are less often needed than VECTOR and MATRIX
More applications of these fuonctions will arise after arrays and non-anthmetic data types
have been mntroduced

Rounding can also be performed by the ROUND funciton, thus function allows exphert
rounding without using an integer vanable, as n

DECLARE SCALAR, OLD, NEW,
WRITE(6) ‘CHANGE 1S’, ROUND(100(NEW—OLD)/0LD),
‘PER CENT’,

Character strings are descmbed mn chapter eight, character literals, such as ‘per cent’, are out-
put unchanged by the WRITE statement If OLD=3 and NEW=35, the statement above would

produce
CHANGE IS 67 PER CENT

The anthmetic functions inclede ROUND, TRUNCATE, FLOOR, and CEILING, The
distmctions are shown i the following table

X =3 5 -1.7 -13 16
ROUND (X} 0 1 -2 -1 2
TRUNCATE (X) 0 0 ~1 -1 1
FLOOR (X) 0 0) -2 1
CEILING (X) 1 1 -1° —1 2

In words, TRUNCATE 1gnores the fraction, FLOOR always rounds down, and CEILING
always rounds up These funchions always return an mnteger reswit

Builttn Funenons 3-5

-
The artthmetic class also includes ABS {absolute value) and MOD (modulus) The re-
sult refurned by these functions 15 of the same type as thewr argument(s) If the two arpu-
ments to MOD are of different types, the resuit 1s scalar

The remaming functions mn tis category, DIV, MIDVAL, ODD, REMAINDER, SIGN
and SIGNUM, are descnibed 1n Appendix A It should be noted here that the DIV function
causes an mnfeger dwvision The remainder 1s discarded and the quotient 15 returned No

roundmng 1s performed When integers appear in a quotient wrxtten with /), they are con-
verted to scalars prior to the division

The only remaimng category of functions to be discussed 1 this chapter 1s vector/matnx
buiftn functions

Name Argument Result Comments
ABVAL Vector Scalar Magmtude, length
’ 2
Z Vv
1
UNIT Vector Vector Vector of length I 1n the
same direction
VIABVAL(V)
INVERSE nxn Matnx nxn Matrix Same as M™*(-1)
TRANSPOSE nxm Matrx mxn Matrx Same as M**T
DET nxn Matnx Scalar Determinant
TRACE nxn Matrix Scalar Sum of diagonal elements
n
z M1,1
1=1

The program below llustrates some of the power and convenience of HAL/S vector/
mainx facthbes [f first reads in four 3-vectors, X, Y, Z and V, and determines whether X, Y
and Z span 3-space Then it constructs an orthonormal set from X, Y, and Z vielding vectors
Al, A2 and A3 Finally, these vectors are taken as the axes of a coordinate system, and V
{the fourth wnput vector) 1s expressed 1n them

In thus program, the determinant is used to find out whether X, ¥ and Z are linearly
mdependent If they are not, the second assignment statement (after La Gram-Schmdt)
may result 1n a runtime error, since unit of the zero vector 1s undefined Since the problem
15 m 3-space, A3 can be computed by a trick A1*A2 15 orthogonal to bath Al and A2, A2
(A1*A2)=0), and of the length 1 {ABVAL(AI) 2 tines ABVAL(A2) times sine(30%)) The
transformafion of V in the last assignment 1s convemently done with a matnx, if, as m this
program, the matrx 1s not saved, 1t may be more efficient to use the equvalent form

V = VECTOR(V Al,V A2,V A3),

36 Maore Basies

The remaning bwiltan functions are much the same as those presented here Each 1s
an expression of some data type, the arguments to each are of speaified types, may be any
expression, and so forth They will be discussed after the appropnate concepts and data
types have been defined.

H ORTHOMORMAL

n | prOGRAM,

¢ | THIS PROGRAM COMSTRUCTS AM GRTHONORMAL
C SET FROM X,Y AND Z AND THEN EXPRESSES
c| vimir

H DECLARE VECTOR,

M X, ¥y Zy Vs AL, AZ, A3,

E - - -

H WRITE(&) DET(HATRIX(X, Y, Z)J,

€ | IF RESULT IS ZERD, X, Y AND Z DO NOT #0RM
C BASIS ... EXPECT ERROR BELOHW

E - -

H Al = UNIT(X):

E - - - - -

H A2 = UNITIY - (¥ . AL} A1),

E - - -

M A3 = Al » A2,

E - - - - -

H V = MATRINCAL, AZ, A3) Vi

H | cLose;

Exercises

3 1A What are the types of values of the following expressions?

a) ROUND (ABVAL(VECTORS2(SIN(D 5), COS(0 5))))
b) TRANSPOSE (MATRIX(],3%2,3,3,4,5,6))
¢) MATRIXS (2,3) (1,0,0,1,1,1) VECTOR(1,2,3)

3 1B Wnfe a HAL/S program to multiply the 3x3 matnx

e 8 17
6 5 4
|

by 1ts transpose and wrte the result on channel 6.

Subseripts 3-7

31C Transkate these mathemafical expressions into HALSS

1+cos2x
a) 5

b) tan—1 % (tng function 1s arctangent (inverse tangent))

c) m(ri—zr)mnﬂ —mrzfcosd
(use names ke R_DOT, PHI, PHI_DOQT, etc)

) cos—] mfr—majin
(2mE+m232)

n2

e) In{tan® +T))
2 4
{In = natural loganthm, use PI for r)

3 2 SUBSCRIPTS

Subscripts are used to operate on components of larger entities If V 15 a vecior, V31
refers to the first component

Any vector or matnx varable or constant may be subscripted Thus 15 done by ap-
pending a dollar sign (8) and 4 subscnipt expression If the subscnpt expression 1s a smgle
token, as i X$3, no parentheses or other punctuation is needed Any expression may be
parenthesized X3 (((3))) 15 equivalent Parentheses are required 1f the subseript involves any
operators, e g , V3(I+1)

Since matnx subscripts are wrtten with a comma (and thus are not a single token), they
are always parenthesized, as

MS(LY) = M28(1,1) M38(J,1) + M25(1,2) M33(J,2) +
M2§(1,3) M35(1,3),

Subscripting may be viewed as of higher precedence than the operators (+,—,%,%%,etc)
Thus, VEI**2 15 the square of the Ith component This precedence 1s natural, since subsenpt
computanions seldom involve exponentiation

If a subscnpt expression 1s of scalar type 1t 15 rounded The result must be in the rangé |
to N, where N 15 the declared dimension. Ary integer or scalar valued expression may be
used as a subscript

A single component of a vector or matrix s a scalar, and may be used 1n any context
where a scalar vaniable 1s alldwed

When an exponent contans a subsenpt, as m E¥*(V§1), the subscnipted vaniable appears
in the single hine (source) format on the exponent hine of the cutput histing

EVSi

3-8 More Basios

In all other cases, & subscript 15 indicated naturally by 1ts position in the histing rather than a
dollar s1an When a subscnipt (or exponent) 1s lowered (or raised) 1 the listing, the outer
parentheses (1f any) are removed In AS(BRCY**(N—1), all of the parentheses are removed

N-—1
A
B
C

RN

A posttion 1n 3-space can be represented by a 3-vector in a vanety of ways The program
below uses subscnphing to convert cartestan to polar coordinates. The resulis consist of
bearmg (angle from X axis i horizontal plane), elevation (angle from x axis m vertical
plane), and total distance Angles are i radsans, distance 15 1n the original units

XYZ_TO_POLAR:
PROGRAM» *
DECLARE P VECTOR,

READ(LE) P;
WRITEC(&) ARCTANC(P / P), ARCTAN{P / ABVALIP) ABVAL(P},,
2 1 3 2 AT 1

MWIMIAIMIIZ

=

CLOSE XYZ_TOC_POLAR; N

This program assumes that the duwection of P isin the same hemisphere as the positive x
axis A more general solution can be wntten using the ARCTAN2 function

One new consfruct appears in. the example P32 AT 1) 15 equal to VECTORS2
(P$1,P52) A 2-vector, consisting of the X and Y components of P ABVAL(PS(2 AT 1)) 1s
the distance from the ongin to a point 1n the honzontal plane directly beneath P

2 AT 17" 15 one type of partition subscript It can be used to specify a shice of a vector
it terms of the partition width and the number of the first mncluded component The generat
form 15 mamber AT expression “Number” 18 any integer-scalar compile-time expression,
greafer than one and less than the corresponding declared dunension While partition widths
must be known at compile-time, the starfing component number may be any integer or
scalar expression

Any partition of 2 vector 1s a vector A partition of length N can be used in any con-
struet where a declared VECTOR(N) 1s allowed

PS(2 AT 1} can also be wntten as PS(1 TO 2) Here, the indices of the first and last
components to be included are given, 1nstead of the width and the first component

The dimension of PS(x TOw) 15 1+y—x Since the dimensionality of every vector-matrix
expression must be pre-deterrminable, both x and y must be known, neither may be an ex-
pression mivolving a varnable

Subscripts 3-9

Grven V = VECTOR(10,20,30,40,50,60,70),
V$2 = 20,

V$(2 TO 4) = (20,30,40),

VS(3 AT 2) = (20,30,40),

V$(3 AT V$3/10) = (30,40,50),

V$(4 TO #) = (40,50,60,70), and

V(2 AT #-1) = (60,70)

The sharp character (#) which appears in the last two partrhons means “the last” V3§
(4 TO #) can be read as “‘the fourth through last components™ 2 AT #—1" 15 a way of
specifymng the last two components For the 7-vector above, any occurrence of # can be
replaced by 7 .

A subscripted vector 1s either a scalar or a vector, depending on the type of subscript A
subseripted matrix may be a scalar, a vector, or a matrix If both subscripts are simple (1,1)
the result 15 scalar If one 1s sumple and the ofher a partition (1,1 TO #), the result 15 a
vector If both are partsbons (2 AT 1, 1 TO 2), the result 15 a matnx Output listing over-
marks indicate the resuitant of type after subsenipting

As usual, a matnx that has been subscripted down to type and:-dimension “X™ can be
used 1 any context where a varable of type and dimension “X™ 15 allowed

The I™ row of a matnx M 1s M$(1, 1 TO #) This can also be wnitten as M$({I,”} The

1t cofumn 1s M3S(*,]) The astenisk means “all of 4 dimension™ In every case, 1t 15 equiva-
lent to “1 TO #”

Using this form of partifion subscript, the elementary row operations used in reducing
matrices can be expressed compactly

H ROWS

H PROGRAH,

H DECLARE M HATRIX.

H C SCALAR,

H TEHMP VECTOR,

1 I INTEGER:

M - IMTEGER.,

[HULTIPLY A ROK BY A (HONZERD) COMSTANT:
E - -

H N =CH H

5 I,% I,

c ADD A COMSTANT MULTIPLE OF ROM J TD ROM I
E - - -

M H =M +En H

S I:% T, Je

Continued

3-10 More Basies

c EXCHANGE ROWS I AHD J=
E - -

H TEMP = M ¥
5 Iy
E - -

H H =H H
s I Ja ¥
E - -

M H = TEHP,
s g%

H CLOSE POUS,

Before leaving the topic of subscnipting, one caution 18 16 order HAL/S stores matrices
m row-major order This means that a row of matnx 15 stored mn a contignous block of
memory The scalars in a column of 2 matnx do not occupy consecutive locatrons This may
make operafions on matrx columns less efficient than corresponding .operations on rows
A few restrictions on the use of matrix columns (ASSIGN parameters, the mput FILE state-
ment and NAME variables) are descrabed later Matnx columns are acceptable m all con-
structs presented so far

This section has described component subscripting Most of the maternal also applies to
array and structure subscripts, but there are some differences These topics are discussed
chapters 6 and 9 Component subscripting applies to vectors, matrices, character stnngs and
bit strings

The term subscript expression has been used to stress the fact that there are forms which
can occur only m subscnpts These are parfitions The forms A TO B, A AT B, ¥, and #=N
are used only 1n subscript expressions

An mmportant pomt fo remember from thus section 15 that the set of contexts 1n which
a variable may be used does not depend on the presence of subscripting, but on the data-
type which results after the subscript has been applied

Subscripis 3-11

Exercises

3 2A For the following vectors and matrices,

32B

10
11 74 1-2-5
vl = v2 =12 M22 = [5 6] M35=|63 0-3-6
13 78 59 —1 —4 —7

14

[E NIV NS

a) Give the values of V15(2), M2238(2,1), and M353(2,3)
b) Give the values of V23(3 AT 4), M2235(*,1), and M353(2 TO 3, 4 AT 2)

c) Wnte the necessary declarations and mutighzations to produce V, Vo, M22, and
M35

Write a HAL/S program that will compute the dot products of

i

with each of the columns of

1 2 3
4 5 6
78 9

leave the results m a vector, RESULT _ X, and wrife the resufts on channel 6

3-12 More Bastes

32C The dizgrams below represent the values of vanous vectors and matnces

0 7 11
V3] = [1] V32 = [8} V33 = [12] M22 = [%; gi-l
2 9 13 4

-1 -2 3
M33 = -4 -5 -6
-7 -8 -9

What values will the following code print

v41 = VECTORS4(M22),

M22 = MATRIXS(2,2) (M338(2 AT 2, 2 AT 2)),
WRITE(6) V41,

WRITE(6) M22,

M33 = MATRIXS(3,3)(V31,V32,V33),

WRITE(G) M33,

M22 = MATRIX+(2,2)(V31,V3252),

WRITE(6) M22,

33 THE REPLACE STATEMENT

The REPLACE statement provides a capabilify similar to the macros of other languages
The REPLACE statement contamns an idenhfier (termed the replace name or macro name)
and a sequence of characters, termed the macro text The REFLACE sfatement insiructs
the compiler to substitute the macro text for every subsequent occurrence of the macro
name

The REPLACE statement 15 not executable, it may only occur m the declare group
The following represents one common use of REFLACE

REPLACE PRINT BY “WRITE(6)”,
REPLACE PUNCH BY “WRITE(7)”,
REPLACE CARDS BY 5%,

The REPLACE Statement 3-13

Any occurrence of PRINT subsequent to these statements will be converted to WRITE(6)
by the compiler The REPLACE statement causes the compiler to substitute the replace text
for the replace or macre name wherever 1t occurs as a token 1n the following source Usmg
the replace macros defined above,

READ(CARDS) X, becomes READ(S)‘X,

PRINT X, Y, Z, becomes WRITE(G) X, Y, Z,
and

PUNCH X, Y, becomes WRITE(T) X, 7,

The macro 1s not expanded in the hsting Only the macro name appears Eachreferance
to a macro 1s automatically underlined, however, this informs the reader thaf a replacement
was done 1n order to avoid a possible mis-interpretation

The replace text 1s enclosed in double quotes (") This is the only use of the double-
quote character in HAL/S The replace text may be any sequence of characters not con-
tmming ” ‘The replace name or macro name 15 an wentifier and follows the conventions
described 1n chapier two Since REPLACE 15 a HAL/S statement, 1t ends with a semi-colon

The macro name 15 only recognized when 1t appeats as a token Grven,
REPLACE A BY *1~,
and
DECLARE ABLE SCALAR CONSTANT(A),

only one replacement 1s performed The other A’s are part of keywords and an identifier,
not complete tokens

Replace macros are commonly used to parametenze IO channels, as mdicated above,
and the dimensions of vanables, as

REPLACE UNKNOWNS BY “6”,
DECLARE AUGMENTED MATRIX{UNKNOWNS,UNKNOWNS+1),

HAL/S does not allow vanables to be used for erther channel numbers or dimenstons,
but smce REPLACEments are done at compile-time, macro names may be used where

numbers are required, provided the replace fext 1s an expression computable at compile-
time

The compiler will process the DECLARE statement above as if DECLARE AUG-
MENTED MATRIX(6,6%1), had been coded

3-14 More Basies

Replace text 1s commonly a single number, but may be any string For example,
REPLACE DUMP BY “WRITE(6) X.Y,Z,GAMMA™,

could be a useful abbreviafion while debuggng The use of replace macros to abbreviate
HALIS kevwords 15 sirongly discouraged HAL[S was designed to maximize readablity
rather than “wniteabihty™, It can be very difficult to decipher a program mn which macros
are used mappropnately. The time spent actually typing a program i1s generally insignafi-
cant'compared to the time spent reading 1t

The program below llustrates a parametenzed replace statement Here the macro 15
used to generate a fable (for section 3 4) without wnting & loop

TABLE"
PROGRAN,
REPLACE LOGZ{X) BY "LOGIX)/L0G(2)"}
REPLACE ENTRY(N) BY '"HRITE(&) M, 2¥%(N-1),N/LOG2(10)",
ENTRY(3)}
ENTRY(12])5
EHNTRY{16],
ENTRY(1G),
ENTRY(243
ENTRY(32])3

ENTRY{3&);
CLOSE TABLE,

TIMIMIMIMIMIMIMIIII

In this example, X and N are macro arguments Wherever N appears i the replace text of
the ENTRY macro, the actual parameter (8, 12, etc) 1s substituted Whenever the pars-
meter, X, of the Log2 macro occurs 1n the text, the value 10 15 substituted

The ENTRY macro generates an enfire statement Note that no final semi-colon was
placed inside the ending quote This produces a better hstng simce a semi-colon must
terminate each reference o the macro, tnggering a new listing hine

The names of previously defined macros may be used in the replace fext, as 1 LOG2
above The compier will contintue to make substitutions untl no macro names remain,
before any other processing An mfitute expansion results if a macro’s own name 1s used
in its replace text Statements like,

REPLACE X BY “X+17,
not only cause error messages, but may abort the rest of the compilation

The above 15 a brief mtroduction to the HAL/S macro capabihty Additional features
and more detail can be found 1n the Language Specification

The Frecision A tertbutes 3-15

3 4 THE PRECISION ATTRIBUTES

Most of the matenial so far has been concerned wiath the arthmetic expression Rules
for forming expressions from identifiers, operators, hterals, and keywords have been pre-
sented Every expression has a data type, the type is determined by the types of the idents-

fiers and functions used, the operafors which combine them, and the order of evaluation
Each expression also has a precision

Anthmetic identiffers and expressions are of either SINGLE or DOUBLE precision
All previcus examples have been single precision Double precision variables represent
valugs to more sigmficant digits than single precision variables

Any anthmetic operation 1avolving a double precision operand 15 done 1n double pre-
cision The result s also of double precision Thus, the usual method for speafymg that a

computation should be carned out to more digits 18 by declanng some of all of the vanables
to be double precision

The computation in the write statement below 15 performed m double precision

PARALLAX
PROGRAM,
DECLARE EARTH_ORBIT CONSTANT(92.9E61}3
DECLAPE VECTOR(E]),
SPRIHG_READING, FALL_READING,
DECLARE UEVIATIDQ SCALAR UDUBLE‘

READIS) SPRING READING. FALL READING»
DEVIATION = ABVALISFRING READING - FALL | READINE! /2

HRITE({Sd 'DISTAHCE=', EARTH_ORBIT / TAN(BEVIATION), 'HILES',
CLOSE PARALLAX:

TIImMIMIITIITIITX

Thus program could be used to compute the distance fo a star based on its apparent
change of posttion as the earth moves 180% 1 1fs orbat (93 milhion nules) The mput data is
a pair of angles m radians representing the star’s direction 1n the Fall, and another set taken
in the Spnng The diagram below ilustrates the algonthm 1n 2-space

3-16 More Basics

Double pracision 1§ used in the example because a very large number 1s computed from
a very small number using the tangent function near a zero The double precision tangent
routme 15 mvoked, and the division of 93 milhon by the result 1s performed 1n double pre-
cision Thus, the expression, “EARTH_ORBIT/TAN(DEVIATION)" 15 of fype double
precision scalar The WRITE statement outputs 2! the digts of 1ts operands

The arithmetic m the preceding assignment statement 1s done 1 single precision
Whether or not this 15 adequate depends on the provision of the measuremenis and the
number of digits 11 a SCALAR SINGLE One radian 1s approximately 2 x 107 arc-seconds
If the physical measurements are accurate to the nearest half second, then six decumal
digits of preciston would be enough * The value of the expression 1s converfed to double
precision before 1t 15 stored 1nto deviation

The mamber of digts 1n the zepresentation of a scalar (of erther precision) 15 1mple-
mentation-dependent These numbers are speaified in the Users Guide A rule of thumb
for scalars 15 one decimal digt for every 3 1/3 its of mantissa

If the measurements have more sigmficant digits than can be contained 1n a single pre-
cis1on scalar, the whole program could be done 1 double precision

DECLARE VECTOR(Z) POUBLES,F,
READ(3) S,F,
WRITE(6) EARTH_ORBIT/TAN(ABVAL(S—F)/2),

This version 15 wniten less mnemonically, and the assipnment and wnte sfatements are
combined These simplfications have no effect on precision

All of the computations 1n fhis form are done m double precision This 15 triggered
entirely by the DOUBLE keyword mm the declaration of S and F Note that there 1s only
one name each for the fangent and absolute value functions, whether single or double
preciston The double precision form of a bult-in function 15 automatically invoked when
one or more arguments are of double precision The value returned by a bult-in function
15 of the same precision as us argument Smce ABVAL(S—F)/2 15 a double precision ex-
pressron, the double precision version of TAN 15 selected

Double precision expressions are formed under exactly the same rules given for single
precision No restrictions apply to double preciston vanables that do not apply to smgle
precision variables of the same type Precision 1s normally specified 1n deciarafions rather
than expressions

*This program also assumes that the earth’s orbit 15 exactly 92 9E6 miles, and that the readings are made
at exactly the same time of day

The Preciston Attributes 3-17

The variables [, 8, V, and M used 1n previous sections could have been declared as

DECLARE I INTEGER DOUBLE,
3 SCALAR DOUELE,
V VECTOR DOUBLE,
M MATRIX DOUBLE,

This would not necessitate any changes to the expressions used

The DOUBLE attnibute follows the data type in an atinibuie list It may be either
before or after the other mmor attnbutes such as ihahzation, LOCK, and AUTOMATIC,
€L,

DECLARE COVAR MATRIX(5,5) INITIAL(C) DOUBLE,
DECLARE V VECTOR(S) DOUBLE INITIAL{S#1),

Precision applies to all four anthmetic types Erther SINGLE or DOUBLE may be
spectfied in the attubute st of any mnteger, scalar, vector, or matnx Swmce single precision
15 the defaulf, 1t need not be specified 1n declarations

Double precision vectors and matrices are composed of double precision scalars All
of the vector-matrix operators and functions have both single and double precision mmple-
mentations As before, double preciston routines are selected when either operand 15
double, or when any bulr-in function argument 1s double

Smee integers, double mtegers, single scalars and double scalars may be freely mixed
and substituted for each other, these four combmatiens typically correspond to different
sets of computer registers or machine instructions Conversions of infeger to scalar and
single to double are made automatically when operand types are mcompatible Since in-
teger and single precision operations are generally more efficient, data 1s left in the simpler
forms whenever possible

The type and precsion of an expression are determined solely from the expression
ttself Nether attnbute depends on the context in which the expression 1s used The pre-
ciston of the expression 1n an assignment statement 1s not determmed by the Precision
of the target vanable on the left hand side In the following, “10000 N” 15 a single pre-
CIS10n ¢XPression, smce netther operand of the multiphcation 1s double

DECLARE I} SCALAR DOUELE,
DECLARE N INTEGER INITIAL(20),
D = 10000 N,

The nght-hand side is of type single precision integer It will be converted to scalar double
before assignment to I, but the multipheation 18 done n single infeger mode.

3-18 More Basics

Table 1 shows the range of mtegers with vanous word sizes If the code above 15 ex-
ecuted on a computer which represents single integers in 16 bits, the wrong answer will
be produced The cade can be corrected by adding an expheit precision specifier

‘D = 10000 NS(@DOUBLE), '

The forms “@SINGLE” and “@DOUBLE" may be attached as subscnpts to any anth-
mefic variable In the example above, “NS(@DOUBLE)” 1s of type integer double Thus,
the multiphcation s done i1 double precision and no accuracy 15 lost

The precision specifier may also be attached to shaping functions, as1n

DECLARE VECTOR, VI, V2, V3,
DECLARE M MATRIX DOUBLE,
M = MATRIXS(@DOUBLE,3,3)(V1,V2,V3),

The precision specifier precedes any subscripts 1n a shaping function

Table 1
Range of

i of Bits Integer # of Diguis
3 128 24082393
i2 2048 36123590
i6 32768 4 8164796
18 131072 54185390
24 8388608 7 2247190
32 214748360 9 6329593

37 3435973300 10 837079

Empinically, double precision algebraic routines give better performance near zeros
and smgularities than theiwr single precision counterparts These roufines are generally
mplemented via polynomials, prefaced with code to identify the quadrant or other range
of the argument The tangent routine, for an argument 0 < X < /2, might use a poly-
nomial of the form

Tan x = A + Bx + CX2 + DX3 + EX4 + XS

If the value DEVIATION 1n the parallax example has the value 1E—6 then the tangent
will be

A + Bx10—6 + cx10—12 + Dx10-18 + pEx10—24 & Fx10—30

The operation X = X + 10—N X, where n 1s greater than the number of digits confamed
a scalar, does not change X

Suminary of the Anithmene Expression 3-10

-When two floating point numbers are added, the exponents are first equalized by
shifting one of the mantissas It 1s thus shifting that causes the loss of significant digits When
two floating pomnt nembers are multiplted, no shifting 18 required The same sttuation holds
m fixed pomnt, though any shifts required for addition and subtraction must be exphicitly
coded

In the parallax example, double precision allaws the addition of more terms of the poly-
nomial used to approximate the tangent funcfion Double precision generally 15 needed
when numbers of greatly different magnitudes are added or subtracted, and when a larpe
number of output digtts are needed The latter case 15 less common, since nerther humans
nor digttial-analog converters can use more than a few digts direcily

The anthmetic exprassion 18 summanzed i the next sechion All of the statements made
apply equally to single precision, double precision, and mixed Operations which reference
one or more double precision values are done in doubie precision More digits are obtamed,
at greater expense 1n memory and execution time Some mplementations have fixed point
scalars, the Language Specification describes the exphat scaling (shufting) operators which
are used m these implementations More details can be found in the appropnate User’s
Manual

3 5 SUMMARY OF THE ARITHMETIC EXPRESSION

An anthmetic expression has one of the following forms

1 An dentifier This may be an integer, scalar, vector, or matnx vanable or constant
of either precision

2 A hteral No sub-classes of numenc literals are defined.

3 A subscripted identifier Partrtron and simple subscripts are allowed, as well as ex-
phicit precision specifiers and scaling operators

4 A function invocation Both bulf-m and user functions may have zero or more
arguments, which are themselves anithmetic expressions Shapimg functions may also
have subscripts

5 A further expression prefixed by a munus sign Any arithmetic type may be negated
An expression preceeded by “+” 15 allowed, but functionless

6 A further expression in parentheses The parentheses overnde precedence rules, and
allow scaling operators and precision specifiers to be attached to expressions

T Two expressions separated by an operator Qnly certan combmations of operand
types are allowed for each operator.

The List above 1s a recursive defimtion of the syntax of the arrthmetic expression
Expressions may be nested via forms three through seven

The compiler evaluates an expression outward from the most deeply-nested parentheses
Within a set of parentheses, the compiler first evaluates any subscnipts Operators are apphied
to the components selected by the subsenpting

320 More Basics

The table below shows the anthmetic operators in the order m which they are evaluated
when not overnidden by parentheses

multiplication

Operators in Decreasing Precedence

Exponentiation Apphes toinfegers and scalars For matnces,
the exponent must be either an mteger or the character ““T”
Raising a matnx to the *T°" power always indicates trans-
position of rows and columns Integer powers apply only to
square matnces If I1s negatve, M**({) 15 equal to INVERSE
(MY**(~D)

Indicated by a blank Multiplication 1s allowed between any
two types, provided the “‘mmner dimensions’ match Resulting
tvpe given by outer dimensions

Cross product Apples only to 3-vectors The resulf 15 a
3-vector, given by

Result = Vector(X9¥3—X3Y9,X3Y =X | Y3,X Y —X0¥)
The resuliing vector 1s orthogonal fo X and Y, and of magni-

tude (ABVAL(X)ABVAL(Y)SIN(#)), where & = the angle
between X and Y

Dot, scalar, or mner product Applies to vectors of equal
dimension The result 1s a scalar equal to the sum of the
products of corresponding components It also equals the
product of the magmitudes of the vectors and cosine of the
angle between

Dmision The left operand may be integer, scalar, or vector
The right must be integer or scalar The result has the same
dimension as the left operand, but 18 never integer

Addition and Subtraction If one operand 1s scalar, the
other may be erther mteger or scalar Otherwise, the two
operands must be of the same type and dimension

Negation Applies to any data type The resultis of the same
type

Operators of equal precedence are evaluated left to right, except for exponentiation and
division which are evaluated nght to left

Before non-anthmetc expressions are introduced, a number of statements which alter
the sequential flow of cantrol will be presented 1in chapters four and five

Summary af the Arithmetic Expression 321

Exercises

35A HAL/S has seven infix operators

3A

3B

Hd
+3—9<>) » :J{: wE

Which infix operators are Iegal for the following pamrs of data types? The characters
< 2> represent a blank, meanng multiplication

Of what datatype 1s the result for each legal operation?

1) SCALAR SCALAR
u) SCALAR INTEGER
u1) INTEGER SCALAR
) INTEGER INTEGER
v} VECTOR VECTOR
vi) VECTOR MATRIX
vn) VECTOR INTEGER/SCALAR
vin) INTEGER/SCALAR VECTOR
1x) MATRIX MATRIX
x) MATRIX INTEGER/SCALAR

End Of Chapter Problems

Write a HAL/S program that will read 2 vectors from channel 5 and write the angle
between them on channe! 6.

Remember, V| V, = | V1 I VZE cos

where & 15 angle between V| and V5

There are occasions when 1t 1s necessary or advaniageous to shaft one’s frame of ref-
erenceé These occasions call for a translation andfor rotation of the coordinate sys-

temn Say the old axis (x, y) 15 shifted to the new axis (x°, ¥*) 1 the followmng
manner, the x, ¥ otign 15 shufted to (x, ¥,) and rotated by a degrees as shown

322 More Basics

The resulting translation equations are

3

¥ = (x — xg) cosa t (¥ — ¥,) sina

y' = —{X — Xg) sma t+ {y — y,} cosa

Wnte a HAL/S program that will franslate 2 coordimmates 1n the x, v system to new
coordinates 1n x°, y” where x = 54000, y, = 118000, @ = 17° The two coordinates
are avatlable on channel 5 and should be written on channel 6

Remember that HAL[S trigonometnc built-ins require angles in radians

3C Wnie the nght half of the following 4 assignments for the partibons 1n matox M

below

a) V4 = where V4 1s a4 vector

b M22 = M22 152 2x2 matnx
c) M34 = M34 15 a 3x4 matnx
d) Vi0o = V101sa 10 vector

12 3 45 6 7 8 9 10

[4]
)
o ¢ e

o
Mo
PeoPd

X
X
X

Yoo o O th B W e

d
XEXXXXXXXXZX

—
=]

IF THEN ELSE 4-}

4 0 CONDITIONAL EXECUTION

The statements i1 a program are executed sequentially, except when a flow control
statement 18 executed The flow control statements can be loosely categorized by their use
for decisions, loops, and subroutines These groups are descnibed in chapters four, five, and
seven

Althongh .the HAL/S assmignment statement 1s quafe flexible, only a limated set of pro-
Jgrams can be wntten without flow control statements The ability of digital computers to
evaluate conditions and select alternatives 1s the essence of their power

41 IF THBEN ELSE

A choice between two alternatives can be written with the HAL/S IF statement

IF A = 0 THEN WRITE(6) ‘“ZERC’,
ELSE WRITE(6) A,

In thaos mstance, the two alternatives are execntable statements and the test 15,2 comparison
The first alternative 1s called the then clause, the second the else clause

IF 15 4 compound statement,1¢ 1t 15 composed of further statements The concept of
a statement contaiming “sub-statements’ 15 common in HAL/S It will be useful to define
the entite sequence, “IF comparison THEN statementr BELSE staterrens” as a single state-
ment, thereby

Unless the then or else clauses contam further flow control statemenis®, control passes
to the next sequential statemeny after an IF statement

There are two equivalent graphical representations of the IF statement

Standard Flow Structured Flow
IF THEN
TRUE FALSE THEN
CONDITION CLAUSE
, LBl muse
CLAUSE
THEN ELSE
CLAUSE CLAUSE

!

*And only from the set EXIT, REPEAT, RETURN and GQ TO

GoriCEDING PAGE BLANK NOT FReth:

4-2 Conditiong] Execution

The form on the left illustrates the rule above by the expleat joming of two amrows at
the bottom The system illustrated on the nght 1s appropnate to structured programming
languages 1 which complex decisions are represented through pesting of compound state-
ments, all of which have one path in and one path out All of the HAL/S flow control
staternents (except GO TO) can be represented i structured flowcharts

The directions of the hnes 1n a structured flowchart are implhied Vertical Ines are always
traversed top to'bottom Hornizontal lines are always followed left to night and baqﬁ; Lines
may nfersect only at the pomnts of IF and DO CASE statements There 1s no provision for

overniding the natural direction

The above rules obwiously Lt the class of programs that can be represented However,
the forms that have been ruled out have been shown to be symptomatic of programs that
are difficult to read and maintam Any algonthm which can be expressed by a standard
flowchart (where square boxes contamn HALfS assignments) 1s equivaleat to some HAL[S
program, without GO TO statements, which can be represented by a structured flowchart

The IF statement can select an alternative based on the results of a boolean combination
of several compansons A cemparison consists of two expressions separated by a relational
operator, as "

IF A =0 THEN .
IF N > 12 THEN .
IF B**2 < 4 A C THEN

The complete list ofirelational operators 1s

= exgct equality

1= not exactly equal

NOQT =

> greater than

> o= greater than or equal

<) 1ess than

< = y less than or equal

1> not greater than (same as <=)
NOT >

< not less than (same as >=)
NOT <

Smce the c¢haracter *“ T does not have a standard grapluc across all systems, the keyword
“NOT” may be freely substituted for 1t ’

All of the operators above may be used between any combination of integer or scalar
smgle or double expressions When necessary, mtegers are antomatically converted to
scalars, and single precision 15 raised to double befere the companson

IF THEN ELSE 4-3

However, only the first two relafional operators (= and 71=) can be used between vectors,
and matrices Two vectors or matrices may be compared for equality or mequality if they

have the same dimension They are equal if each pair of components 15 exacily cqual, and
unequal otherwse

It 15 not generally useful to compare scalars, vectors, or matrices for equality In the
statement,

JF A = B THEN WRITE(6) ‘PURE COINCIDENCE’,

where A and B are scalars, the WRITE statement 15 executed only 1f every digif in A 1s the

same as m B Due to the finite precision of scalars and roundoff problems, 1if B had been set
by

Il

B
B

Al3,
B+ 72 A/3, J=1/3 A + 2{3. A¥]

B would probably not be equal to A Scalars can be tested for approximate equality as in
IF ABS(A~B) << EPSILON THEN

where EPSILON 15 “sufficiently small”, e g,
DECLARE EPSILON CONSTANT(000001),

or

EPSILON = (A+B)/16**(25 MANTISSA_LENGTH),

efc

The keywords AND, OR, and NOT {or their equivalents, &, |, and " may be used to
combine several compansons 1n one IF statement Parentheses are generally required around
each simple comparson For example,

IF (A>0) AND (A<100) THEN
IF NOT{(A<=0) OR (A>=100)) THEN

Both of these forms will result tn the execution of the then clzuse if (and only if)
0 << A << 100 The first test checks whether A 1 1n the given range The second test 15
equivalent since 1t checks whether A 15 not outside the range The sensz of any comparison
or combnation thereof can be reversed using the NOT keyword as shown in the second
test This use of NOT requures a parenthesized argument

44 Condthonal Execution

Suppose a number 1s divided into one of three ranges, as shown

IF N < 10 THEN R = 1,
ELSE IF N < 20 THEN R = 2,
ELSE R = 3,

Here, the else clause of an IF statement 15 an entire IF THEN . ELSE group It may
be diagramimed as follows

THEN
IF N<10 R=1

ELSEbyr <20 =2

=3

The THEN clause of an IF statement may nof be an IF THEN ELSE group *
A four way branch can be wntfen with a DO END group, as described 1n the next
section

The IF statement allows the selection of one or two alternatives based on the evaluation
of a companson When no action 1s required unless the test succeeds, the else clause may be
omtted entirely

IF A > 0 THEN B = SQRT{A),
Thuis statement 15 functionally equuvalent to

IF A NOT > 0 THEN,
ELSE B = SQRT(A),

Here the then clause 1s just a semicolon, which 1s the HAL/S equivalent of a no-op or nuil
statement

IF. . THEN ELSE may be viewed as a single statement The then and else clauses
each contamn a further single statement Any executable stalement 15 allowed in the else
clause, the then clause may contain any executable statement except a further IF THEN

.ELSE The else clause may also be omitted entirely

*Thas rule avotds the “danghng else™ problem common to ALGOL-like languages

IF THEN ELSE 4-5

Exercises

4 1A What 15 wrong with the followmg HALJS conditional statements (in whach all van-

41B

ables are of SCALAR type)

a) IF A <B < C THEN MIDDLE = B,

b) IF B < C THEN
IFC<DTHEN B = D,
ELSE B = C,

ELSE C = B,

c} IF RADIUS > 0 & NOT RADIUS > | THEN
WRITE(6) PI RADIUS**2,

Where possible, convert these standard flowcharts to structured flowcharts, without
duplicating or eliminatimg boxes Indicate why the others cannot be converted

a)

TRUE Zl\ FALSE

TRUE /CzKFALSE

~NS
2l
TRUE AFALSE
A4 |

46 Condittonzl Execunon

)

a4

TRUE /-3 FALSE

A5

c)

IF THEN ELSE 47

d)

FALSE

Al

4 1C Tell whether the followimg conditions are satisfied, not satisfied, or illegal Assume
that

A, B, C, D are scalars
S are 3-vectors

70 €=120
40 D=32

-

(246).5=03412,

v,
A
B
v

e

A A<E

b) C > (NOT B)

¢) ~(A 1= -B)-& (C.> = D)

d) S F=V) OR (31> Q)

) V<s *)

D (VVZ O &MMOT(VS <)

48 Conditional Execution

Write the following deseniptions in relational expressions

2) A s preater than B but less than C

h) The vector 7 1s not equal to the vector § and C not less than D unless D 1s
equal to 4

41D Write HAL/S code implementing this flowchart

IF THEN _
W<l - sg =0
ELSE WIE . THEW S0 = 0
T ELSE s =1
AREA = WL
IF \ THEN WRITE (6)
s = 0 / 'NO SQUARE'
ELSE I THEN WRITE (6)
AREA < 4 ("SMALL SQUARE'
ELSH WRITE (6)
'"LARGE SQUARE'

The DO END Group 4-9

42 THEDO. END GROUFP

A series of executable statements may be combined into a do group, which may then
be used anywhere a single statement s required, e g , in the then clause

Thas allows, for example, the following coding of a four way decision

IF X < 0 THEN M = 0,
ELSE DO,
IF X < 106 THEN DO,
IF X > 10 THEN M = 2,
ELSE M = 1,
END,
ELSE M = 3, .
END,

This example, which sets M to the order of magnitude of X, can be dizgramed

N\ THEN THEN
IF X<100 IF X>10 M=2

L

ELSE
v ELSE e

Since 1t 15 only one statement, the entire sequence above could be further nested m IF or
other compound statements

A do group consists of a DQ statement, any number of executable statements® and an
END statement,e g

DO,
I =
I =2,
END, I=1

—
-

*Or TEMPORARY statements

4-J¢ Conditronql Execunion

The example below computes PI by an mefficient but illustrative algorithm

\ X X’X
FOR 1= _x
1 to 1000 ‘ X
X
X=RANDOM RIT+MISS = HIT
l AL "
Y=RANDOM
IF x**2+v*;;\\ THEN) py7=niT+1
<=1
- ELSE j1ss=MIss+1

FRITE(6)=4HIT/(HIT+MISS}

Here it can be seen that loops are shown with the same shaped symbol as IF statements
HAL/S has several types of loops, ail of which use the DO and END keywords The simplest
type 15 shown above, and 1n the following compiled hsting

The BO END Grouwp 4-1}

DARTBOARD _APPROXEHATICH™
PROGRAM,
DECLARE SCALAR,
¥ Y3
DECLARE INTEGER,
I, HIT. HISSF
DO FOR I = 1 T 1000,
¥ = RANDOM,
Y = RAHDOH,
2 2
IF X +Y <=1 THEM
HIT = HIT + I,
ELSE
HISS = HISS + 1,

END»
WRITE(S) 4 HIT / HISS:
CLOSE.

SXIXIZIIIMITIXXAITIR

Since the compiler used 1n prepanng hstings for this manunal antomatically indents pro-
grams to correspond to a structured flow, diagrams will not be prowided for subsequent
examples The same information 1s contained in the indenting as in the flow

The simple do group (without 1teration) ss classified as ap executable statement No
additional machime code 15 generated however An extra do group, like an extra sef of paren-
theses, 1s sometimes used for clanty In the order of magnitude example, the else clause of
the outer IF statement 18 bracketed by an unnecessary DO END pair It 15 common
practice to use a do group as a then or else clause even when 1t 15 not required by the syntax
Thus allows for the possibility of later insertions

There 1s no way to branch into any part of a compound statement from outside the
statement HAL/S has a GO TO statement, and any executable statement may be Iabelled,
but restrictions are imposed A label inside a do proup, a then clause or an else clause can
only be used 1n GO TC statements whach are themselves i the same group or clause

The do group has fwo uses Primanly, if allows the nesting of statements i tests and
loops The secondary purpose 1s to define the scope of temporary daia

The TEMPORARY statement 15 stmular to the DECLARE statement It allows a tem-
poraty vanable of any type to be created, as shown on the followmg page

4-12 Cendittonal Execution

1 | exapLE 2

H | rrocran,

H DECLARE VEL VECTORs

M HY_FRAME HATRIX,

H DECLARE VECTOR,

H RESULTL, RESULTZ, E.
€ .

i Do,

M TEHPCRARY V_FRIME VECTOR;
E - * -

H V_PRIHE = HY_FRAHE VEL;

E - -

H RESULTL = UNIT(V_PRIHE);
E - - -

H RESULTZ = V_PRIME * E,

END,

4 | tLoSE EXAMPLE_Z.

The vector, V_PRIME, exists only for the duration of the do group If the next do
group contamed

TEMPORARY S SCALAR,

S would probably occupy one of the storage locations that had just been used for
V_PRIME

Temporary variables may be of any type and premsion They may not, however, be
mfiaized of given other minor attmbutes TEMPORARY statements can only be used
within do groups Storage 1s allocated to temporary vanables for the duration of the
execufion of the ymmediaiely enclosing do group The TEMPORARY statement mforms the
compiler of the range over wluch a vaniable wall be needed The actual allocation and freeing
of storage i1s done 1 an implementation-dependent manner

Very few restrictions are made on the use of temporary vanables They may not be ref-
erenced at all from outside of the contammg do group, otherwise, they are usable in all of
the constructs miroduced so far Proper use of the TEMPORARY statement can reduce
a program’s size without substantially increasing ifs execution time

The DO END Group 4-12

Exercises

42A Q A standard means of flowcharting s to use a system where
THEN ELSE
{——@—} means a conditional execution along one of
the paths {but not both!) depending on the
condition represented by ‘CX°

represents a DO END group without
any condrtional branches 1 the group

Consider the following ﬂowhcar%

THEN @ ELSE
& represent DO END

groups each 5 state-
ments long

C represenis a DO END
group 150 statements long *

Rewrite this flowchart 1n 2 way to represent 2 shorter program

Can this change be made 1n a valid HAL/S program?

42B Wnte a HALJS program that will solve a system of 2 equations in 2 unknowns
as 1 problem 2—0

However, do not assume a solubion exists, mcorporate a fest to insure that the
denominator 15 not zero

42C TImplement the followmg structured flowchart segment m HAL/S, using a few
Do END groups as possible

4-14 Condiional Execurion

1F THEN 1¥ . THEN
v < X / Y <X =1 % ¥=Y +
ELSE vy -
ELSE IF THEN e
Y >x+ 1 / =X
ELSE X =%+
4 2D Consider the folowing flowchart on the next page
@ means a conditional execurtion on CX
M means a single statement represenfed by M

2} There 15 a construct 1n the flowchart that s not legal in HAL/S What 15117

b) Rewrnte the flowchart to eltminate the illegal construct, and wnfe a code frag-
ment corresponding to this structure Do not mmtroduce or ehminate any

conditions

¢} How would a structured flowchart have made this mustake more easily

available?

The DO END Group 415

ELSE raEN ~ ELSE THEN

4 2E In problem 4 2D, we have seen that if the branches are to be preserved as shown,
the code corresponding to

(<]

had to be repeated

Lets say that

is 250 statements long, whereas all the other
are still a single statement Rewnte the flowchart and the code to allow the code for

to appear only once

4-I6 Conditional Execurion

4 3 BOOLEANS

The test between IF and THEN 1 the IF statement 1s erther a COMPpArison or & boolein
expresston A boolean expression 1s 2 boolean variable or a combination thereof Both types
of tests can be.compounded using AND, OR, and NOT, but they cannot be mixed in one IF
statement A boolean expression always can be converted to a companson as i

- 0

EXAHPLE_3-

H

H PROGRAM,

4] BECLARE Q1 BOOLEAH,
E .

H IF Q1 = TRUE THEH
H Do,

c ..

c .

c

M END,

H

CLOSE EXaMPLE_3:

The IF-statement can also be wntten IF Q1 THEN)
TRUE 15 a boolean Iiteral It 15 equivalent to BIN‘fz or ON_ Booleans can take on one

of only two possible values The other 15 written FALSE, BIN'O’ or OFF The three differ-

ent representations for each value allow mnemomc comparisons and assignmenis asm

DECLARE BOOLEAN INITIAL{OEF),
POWER, READY,
IF READY = FALSE THEN POWER = OFF,

As the example shows, the form of the declare and assignment statements 15 the same for
booleans as for other data types Booleans are annotated by the compiler with a * * on the
E line '

Booleans are used for flags, signal states and to optrmize complex comparisons The
keywor¢ BOOLEAN 1s nterchangeable with BIT(1) Bat stnings of lengfh greater than one
are discussed in chapter 13 Since the concept of a “flag’ 1s so common, the BOOLEAN
keyword 15 meluded mn the language and the apphicable subset of BIT operations s pre-
sented here.

The preceding IF stgtement would normally be wrnitten

IF NOT READY THEN POWER = OFF,

Boolegns 417

NOT READY 1s a boolean expressiom, which can also be wntten 7] READY Boolean.ex-- i
pressions are composed of boolean vanables, the operators AND, OR, and NOT, and
boolean functlons The operators are defined via thelr truth tables below

& J

A AND B A OR B ' NOT A
B B A
TRUE FALSE {TRUE FALSE [TRUE FALSE
TRUE |[TRUE ~ FALSE TRUE {TRUE TRUE [FALSE TRUE
A A
FALSE|FALSE FALSE FALSE | TRUE FALSE

OR 15 the trclusive or operator. Exclusive or 1s provided as a buitt-an funetion,
IF XOR(A,B) THEN

but the equvalent statement,
IF A 7= B THEN

15 preferred

There are sixteen possible distinct binary operators oh booleans These mclude AND,
OR, and NOT as well as exclusive or, the bi-conditional, etc Any of them can be expressed
by 2 combmation of AND, OR and NOT Any boolean expression can be converted to an
equavalent boolean expression using only NOT and one of the other two One such trans-
formation 1s expressed by DeMorgan’s rules

A AND B = NOT(NOT A OR NOT B)
and

A OR B = NOT(NOT A AND NOT B)

+ 1

For another example, XOR(A,B) could also be whitten “A AND(NOT B) OR (NOT A) AND
B”

The expression A&(T1 B)'| (C1A)&B 15 the same as “A exclusive-or B, or “A 15 not equal
to B Because AND has hugher precedence than CR, the expression 1s mterpreted as

{A&(1B)) OR (((1A)XB)

The boolean operators, AND, OR, and NOT, have considerable'similanties to the anth-
metic operators, multiphcabion, addifion and negation, respectively This results in the con-
ventron that A&B | C&D 1s interpreted as the OR (logreal sum) of two ANDs (logical pro-
ducts)

418 . Conditronal Execittion

Consider: the; following example of the transiation from an Enghsh statement of a con-
dition-to a boolean expression . .

énghsh " If the power 15 on and either it 15 not overheated orathe overnde 15 set, and
either.switch 6 15 on or 1t 15 off and switch 7 15 set

HAL/S Power & (not overheated or override) & (switch 6 or (not switch 6 and switch
) ‘ '

- ‘ - - R
Careful study of the English form may fail to reveal how the precedence 15 commumcated,
but most readers will see the: correspondence between the two forms Symbolic logic shows
that while there are 2 number of relable rules for translation, much rests on the readers

understanding of the situation to whichan assertion applies

The boolean expression above 1s written with the minmum number of parentheses,
taking advantage of the precedence of NOT over OR and AND The expression, (NOT
SWITCH 6 and SWITCH 7), has the truth table

SWITCH 6

SWITCH 7 OM FALSE TRUE
OFF | FALSE FALSE

and 15 equvalent to

t

{(NOT SWITCI{ #6) AND SWITCH 7)

In summary,

Precedence of boolean operators
First NOT

AND
Last OR

In addition to the fest in an IF statement, boolean expressions may be used 1n assign-
ment statements (the left hand side must also be boolean), in compansons wrth other
boolean expressions, and m WHILE and UNTIL loops (as described 1n the next chapter)
Boolean expressions may appear in WRITE statements, boolean vanables may be read

No other data type 15 automatically converted to boolean, and boolean 15 not auto-
matically converted to any other type Booleans cannot be used in anthmetic expressions,
and anthmetic vanables cannot be. used 1n boolean expressions The concept of precision
does not apply.- to booleans,mbut bit strings may be viewed as sets of booleans on which
operations’can be performed in parailel

Booleens 419

Both types of test m the IF statement can be witien using the AND, OR, and NOT
operators These operators combine either compansons or booleans via precedence rules
like these of anthmetic Patentheses can be used to override the normal precedence When
comparisons are combined, each should be parenthesized

IF(I < 0) OR (I > 9) THEN

In boolean eapressions, the precedence rules make most parentheses unnecessary, an ex-
ception 1s as

IF A OR (NOT B) THEN

It 15 1ot possible fo combine comparisons and booleans i a single expression If a statement
{or group) 1s to be executed based on both a boolean and a companson, the test should be
written

IF (CHECKRING = TRUE) AND (I < 0) THEN I = -,

oL as

IF CHECKING THEN IF] << 0 THEN I = -],

Exercises

43A For each of the following, tell whether 1t 1s a boolean expression, a relational ex-
pression, or ilegal For the boolean expressions, tell whether the value 1s TRUE
or FALSE, for the relational expression, tell whether or not the condition 1s satis-
fied Assume that

A, B are INTEGER
V, S are 3-vectors
UPFLG, TRFLG are booleans

A=12 B=6
V=246 S=(3417
UPFLG = TRUE TRFLG = FALSE

a) UPFLG = TRFLG

b) NOT UPFLG

c) NOT(V = 8)

d) NOT TRFLG OR A > B
e} (A < B) = TRUE

f) VPFLG = TRUE

g} TRFLG & (UPFLG)

420 Condinonel Execuiion

44 DO CASE AND GO TO

The most basic flow control constructs-are loops, the IF statement, and the DO group
These may be combmed and compounded to implement complex structures of decisions
The remaimng flow control statements fill in a few gaps They are not as heawily used as
the vanous forms of IF and DO

The IF statement allows a two-way decision based on a compansen -or boolean An
n-way branch based on an integer can be writen with the DO CASE statement, for
example

EXAHPLE_&
PROBRAH, -
DECLARE SCALAR,
A, Bs Ci Dy
DECLARE NUM_GGQD INTEGER;
DECLARE SCALAR,
VALUE, OLD_VALUE,

DO CASE MU_GOOD,
ELSE
Do,
VALUE = DLD_VALUE,

VALUE = {A + BY 7 2»
= HIDYAL{A, Bs Ci,

IITTTIIIXIX N ITTIIIIX

[y]
&
.
.
.

END3
END,
OLD_VALUE = VALUE,
CLOSE EXAHPLE 4,

I3

This code sets VALUE to some combination of the vanables A, B, C, and D It could
be part of an algonthm for combmmng redundant vahues from a set of sensors The code 15
diagrammed

DO CASE and GO TO 421

O 500 :} ELSE} yALUE=0LD_
! VALUE
RETURN
OLD_VALUE
YALDE 1 -
’ VALUE=A
2 {yaLuE=
(A+B)/2
3 | vaLue=
MIDVAL(A,B,C)
4

—

Any integer or scalar expression may appear after the word-CASE The expression 1s eval-
uated and rounded fo the nearest mteger if necessary. In this example, 1f the expression,
NUM__GOOD, 1s less than one or greater than four, the else clanse 15 executed Otherwise,
one of the four statements between the end of the else clause and the end of the DO CASE
statement 15 executed The.fourth statement (fourth cese) 15 a DO group Thus 15 another
anstance of the use of DO END {fo combine several statements where one 1s required

Only one of the cases 15 executed After the selected case 15 done, control passes to the”
statement afterthe END statement which matches DO CASE (in this example, to the assign-
ment of OLD_VALUE) :

Each case may be any executable statement This includes assignment, IF THEN

ELSE, IO, a DO group, a loep, or a further DO CASE statement The only way to pass

contrel to one of these nested statements 13 by executing the DO CASE header with an
appropniate value of the expression

4-22 Condwmronal Execution

The compiler counts the cases and pants a case number to the extreme right of each 1n
the histing If an else clause 1s suppled, code 1s generated to compare the value of the case
expression agamst the bounds, one, and the number of cases If the expression 15 out of
range, the else clause executes and contrel then continues after the END of the DO CASE
The else clause may be omitted entirely, in which case no checking 1s performed Qmassion
of the else clause may be nsky, as under some circumstances, control can be passed com-
pletely out of the HAL/S program if the expression selects a missing case and no else clause
18 supplied

In the example above, 8 RETURN statement appears tn the else clause When RETURN
18 used 1n a program, 1t 1s equivalent to transfersing conirol to the close statement It exits
the program

In chapter five, the EXIT and REPEAT statements are described They are drawn 1n the
same way

Each 1s an unconditional transfer of control to a point defined by the structuze of the pro-
gram rather than to a user label Thus completes the set of symbols used in a structured flow
diagram

The flow control statements include those described m thas chapter, loops, and {in a
sense) the statements for defining and mvoking procedures and functions Some of the
real-time statements of chapter 12 may be thought of as transferning control, though there
are conceptual differences

The only other flow control statement 1n HAL/S 13 GO TO The expenence of 2 number
of large HAL/S programmung projects has shown that the GO TO statement 15 not neces-
sary 1t is provided cluefly for mechanical transtations from other languages

Once a degree of famubarity weth the use of compound statements for flow control 15
achieved, 1t can be seen that the concept of a *conditional transfer™ or branch mstriction
15 merely 2 free form notation for flow diagrams a line with an arrowhead The restrictions
on the use of GOTO correspond to the rules for a structured flow diagram presented m
Section 9 1 GOTO’s are not allowed at all m a proper stinefured flow, but HAL/S permits
some excephions

1) between unnested statements in the same program or other block,
2) between statemnents nested at the same Ievel in the same compound statement,

3) to a less deeply nested statement 1n the same block, provided that the tarpet state-
ment 15 not contamed in any compound statement which does not also contain the
GO TO statement

DO CASE and GO TO

Exercises

' wo, -

El ' - . tir
444 R?wnte the fol'l&(rmiung,codedseg{m;:int usmg ihe,DO CASE statement
' “ IF I = 0 THEN SCRAMBLE = 4,
ELSE IF I = 1 THEN SCRAMBLE = 0,
ELSE IF I = 2 THEN SCRAMBLE = 5,
ELSE IF I = 4 THEN SCRAMBLE = 1,
ELSE IF I = 5 THEN SCRAMBLE = 2,
ELSE SCRAMBLE = 3

423

The [terutive DQ FOR Statement 5-1

3.0 LOOPS

A loop 15 a construct whuch causes a set of statements to be executed repetitively In
HAL/S, a loop 1s a compound statement The statements to be 1terated are nested withun
the loop Four types of loop are provided, so that the need for explicit backward branches
(GC TO%) 15 virtually elminated.

A loop 1s created in HAL/S by attaching one or more iteration control phrases to the
simple DO END construct which was described in the previous chapter These 1teration
control phrases govern the number of times the loop 1s executed and may provide a counter
or “loop contrel vanable” which can be referenced from withun the loop

The example below uses the most common type of loop, the iferative DO FOR, fo
compute the factomal of a number The number, N_MAX, 15 read from channel 5 and
(N_MAX)' 1s written {o channel six

FACTORIAL
FROGRAH,

DECLAPE INTEGER,

RESULT, B_MAX, I,

READ(S N_HAX,

RESULT = 1,

U0 FOR I = 2 TO N_MAX BY 13

RESULT = I RESOLT.

END;

KRITE(E) RESULT,
CLOSE FACTORIAL,

§

XIXILIITTZIIZ2

Note that the body of the loop 1s executed repetitively untit the control vanable exceeds the
final value specified after the keyword “TO” The example shown computes factonal
(N_MAX) by domg N_MAX--1 multiphes by the conivol vanable, which takes on the
values 2, 3,4, ,N_MAX on successive iterations

In addition to the rferaftive DO FOR, other forms of ateration control are The discrete
DO FOR, the WHILE phrase and the UNTIL phrase

These constructs probably are famihar to the reader who has used other algebraic pro-
gramming languages, therefore, the remamder of the discussion in thus chapter 1s pnimanty
concerned with the himatations and restrictions of HALfS loops, and the ways i wiach
these constructs may be combined with each other and with other features of the langnage

51 THEITERATIVE DG FOR STATEMENT
In the preceding example, the loop kody 1s a single statement.

RESULT = I RESULT,

In general, the loop body may contain any number of executable statements Smce the loop
1s constructed from a simple do group, the TEMPORARY siatement may also oceur mn
the loop body

52 Loops

In the phrase,
FOR 1 =72 TO N_MAX BY I,

I 15 termed the loop control vanable, 2 15 the intial value, N_MAX 15 the fingl value, and 1
18 the mcrement

HAL/S places very few restrictions on these’ four parameters In particular, the loop
cofitrdl vanable may be any single or double precision integer or scalar vanable * For
example, gven the declaration

DECLARE A INTEGER,
B INTEGER DOUBLE,
C SCALAR,
D SCALAR DOUBLE,

all four of the following combinations are permissable

DO FOR A = B TO C BY D,

DO FOR B = D TO C BY -1,
DO FOR C = D TO B/A,
DO FOR D = A-B TO A+B BY D, ~

There 15 one addifional vanation on the control vanable, 1t may be erther previousky
declared as in the previous example, or 1t may be “declared” withan the DO FOR statement
itself The latter 1s accomplished by placing the word TEMPORARY before the name of the
loop control vanable, as in

DO FOR TEMPORARY I = 2 TO N_MAX BY 1,

A TEMPORARY loop control variable created mn this way may be used within the body of
the loop 1n any way that a declared varrable could be used, but outside of the leop the TEM-
PORARY vaniable does not exist Since the TEMPORARY control vanable 15 effectively
unDECLARED at the end of the Ioop, the memory locations occupied by the variable may
be re-used, thus reducmg the storage requurement of the program containing the DO FOR
TEMPORARY Under some versmns of the compiler a speed advantage may also result

TEMPORARY control vanables created 1n a loop are always single precision mtegers therr
names must not duphcate declared d;ata or other TEMPORARY vaniables m the same loop

The umntsal and final values and the mcrement used 1n an iterative DO FOR loop may be
any anthmetic expression That 15, each may be any éxpression which evaluates to a positive

or negative, single or double precision nteger or scalar value Each expression 15 evaluated
only once, at entry t0 the loop Thus; :f varables used m the expressions are modified

withm the loop, the iteration parameters of the loop are not affected

*Single precision mtegers are gencrally the most efficient

The Irerative DO FOR Statement 5-3

Note that in HAL/S the loop control varlabie may be a scalar, ¢ g

DECLARE SCALAR, X, PI CONSTANT (3 14159),
DO FOR X = —PI TO Pl BY 001,

WRITE(6) X, SIN(X), COS(X), TAN(X),
END,

Thus code will produce a sef of tngonemetre tables, grving sine, cosine, and tangent values
for 2000 7 different angles

The operation of the loop 15 the same as for integers On each rterafion, the mcrement 1s
added to the loop control vanable, and 1f the {inal value 1s not exceeded, the loop body 1s
execufed The values taken on by X are —n, —mt 001, —r+ 002, , et¢ The last value
will not exactly equal @, because 1f 15 generated by a sequence of additions of 001

In the event that the result produced by adding the increment to the current value of the
loop vanable 15 not of the same type or precision as the loop varmble, the usual rules-for
mixed mode assignment statements govern the conversion For instance, 1f the loop vanable
15 an integer and the increment 1s less than one, rounding will oceur on each pass throngh
the loop In this case, if the mncrement 1s positive but less than 5, the value of the loop con-
trol vanable would never be changed and the loop would never fermnate

As previously stated, any or all of imitial value, final vaiue, and Increment may be negative
For mstance, the loop below 1s functicnally equivalent to the one 1n the ongmal form of
FACTORIAL

DO FOR I = N_MAX TO 2 BY -1,
RESULT = I RESULT,
END,

When a negative mcrement 1s specified, the termination condition becomes “1s the loop
vanable algebraically fess than the final value?”

The only way that the body of a HAL/S loop may be entered 1s by execution of the DO
statement which heads the loop, however, coniral may leave the loop by a vanety of means
other than the control vanable exceeding the final value (e g, RETURN, EXIT, and GO TO
statements, etror condibions, etc) Since the merement has been added to the loop vanable
before the test agamst the final value 15 made, at normal exit from an Iterative DO FOR
loop the locp vanable will be greater than the specified final vatue (af the mcrement 1s posi-
tive} or less than the final value (if the increment 1s negative) This fact may be used to
determime whether or not the loop was exited prematurely Use of this feature 15 llustrated
m the sample below, which sets the vanable NEG_PART to the number of the first negative
component 1n a vector, or to zero 1f there 1s no negative component

DECLARE V VECTOR(S),
DECLARE NEG_PART INTEGER,
DO FOR NEG_PART = 1 TO s,

IF VSNEG_PART < 0 THEN EXIT,
END,
IF NEG_PART > 5 THEN NEG_PART = 0,

5~ Loops

The EXIT statement 1s not fully described until later mn thus chapter, but in this case the
meanmg 15 mitwmtive If component pumber NEG_PART of V 1s less than zero, control exafs
from the loop (to the second IF test) Thus, NEG_PART will be greater than the 5 if only
if the entire vector was examined without finding a negative value

Smce 1t 15 necessary to test NEG__PART outside of the loop, a femporary loop control
vanable would not be appropriate 1n this example

To find the second negative component 1 a vectof, the following loop could be added
after the one above

DO FOR NEG_PART = NEG_PART TO S5,
IF VSNEG_PART < 0 THEN EXIT,
END,

Simce the mutial and final values and the mnerement specified in an iterafive DO FOR
loop are evaluated only once (prior to the first iteration), there 15 no conflict 1 using
NEG_PART both as a loop control value and as the mifiai value This new loop will con-
tinue where the first stopped

The “BY 17 cluase has been omatied above, singe 1 15 the most commonly used incre-
ment, 1t 15 the defauli and need not be specified

In snmmary, the iterative DO FOR takes four parameters, the first, the contrel van-
able, may be any previously declared anthmetic identifier or may be a TEMPORARY
umteper created within the DO FOR statement The mmitial value, final value and incre-
ment may be any anthmehc expression, the mcrement may be allowed to default to one
by omitting the BY clause These expressions are evaluated pnor to the first pass through
the loop, and the resulfs determine whether the loop 15 executed once, many times or not
at all The loop termmates when the value of ihe control vanable passes the final value
specified mn the TO clanse Later mn thus chapter, we will see how the addition of a WHILE
or UNTIL clause can modify the execution of a loop, buf first we will examme another
form of the DO FOR construct

Exercises

5 1A Consider the following code fragment where

I & N are integers,
S 15 scalar

N =10,

S=1,

DOFORI=1TO2BYS,
N=N+1,

END,

What 1s the value of N on exat from the loop?

5 1B Consuler the example where NEG_PART was set fo the number of the first ex-
ponent of a vector less than zero, or zero if no elements were negative

5 1cC

51D

the Diserere DO BOR Statemen: 55

Change the code given it the example to leave the number of the last negative.com-
ponent mstead of the first

Consider the following code fragment where

N & I are integers

N=9,

DOFORI=1TONBY 2,
N=N+1,

END,

What 15 the value of N on exit from the loop?

Consider the following code fragment where

A 153 5x5 matnx,
X and Y are mtegers

X=1,

ROWS Y=1,

LOOP AS(X.Y)= 2,
IF ¥ =5 THEN GOTO QUT,
Y=Y+1,
GOTQ LOOP,

OUT IF X =35 THEN GOTO DONE,
X=X+1,
GOTO ROWS,

DONE

a) What does tius do?

b) Rewnte thus using HAL/S sterative do for ioops

3-8 Loops

572 THE DISCRETE DO FOR STATEMENT

In order to understand the utihiy of another type of DO FOR statement, consider the
problem of recogmzing prume numbers The code below sets a boolean vanable, PRIME, to
TRUE if NUM 1s pnime and fo FALSE otherwise (for ssmpheity, NUM 15 assumed to he
between one and one-hundred)

DECLARE PRIME BOOLEAN INITIAL{ON),
DECLARE INTEGER, NUM, I,
READ(5)} NUM,
DO FOR 1 =2 TO 10,
IF REMAINDER(NUM,I) = 0 THEN PRIME = FALSE,
END,

This code produces the comect answer over the range 10 to 100, but 1s mefficient A
better algorithm 1s to test the divisibility of NUM only by numbers which are themselves
pnme This can be conveniently expressed using the discrete DO FOR

DOFORI=2 357,
IF REMAINDER(NUM,I) - 0 THEN PRIME = FALSE,
END,

In thus case, the loop 1s executed only four fimes, with the loop conirol vanable, 1, equal
to two on the first pass, three on the second, five on the third and seven on the final itera-
tion The reader may note that both programs contain a lopical error mn that the wrong
result 15 obtained when NUM 1s equal to 2, 3, 5, or 7 This error will be fixed when the
WHILE phrase 15 introduced 1n the next sechion of thus chapter

The form of the diserete DO FOR 1s similar to the iterative version The discrete form
specifies a list of values (expressions) to be assigned to the loop control vanable rather than
an algonthm (mtial value, final value, and mcrement) for compuling successive values

On each pass through the loop, the control vanable 1s st to the value of one of the
expression o the mght of the equal sign The expressions are used from left to nght on
successive wferations of the loop, each one must evaluate 1o an integer or scalar value If
the type or precision of any expression 15 different from that of the control vanable, the
vswal rules for mixed code assignments are applied

Unbke the expressions in the iterative DO FOR, the expressions m the discrete DO
FOR are not evaluated uniil the iferation of the loop on whuch they are to be assigned into
the control vanable This means that the value of the control vanable on future passes
through the loop can be changed by stoning into vanables referenced 1n the expressions from
the body of the loop,e g

DO FOR I = 1, 1, 21, 31,

At exat from a diserete DO FOR loop, the conirol vanable retamns the walue of the last
expression, unless the vanable was TEMPORARY, mn which case 1t 15 undefined

The WHILE Clause 3-7

The remaming rteration control phrases, WHILE and UNTIL, provide for looping with-
out the use of a control variable The next two sections of this chapter describe how to

create a loop with these phrases, and show how they may be used to modify the effect of a
DO FOR

53 THE WHILE CLAUSE

The WHILE clause may be appended to a simple DO . END group to create a loop, or
it may be appended to either form of the DO FOR to miroduce an addifional condition for
continnation of a loop The general form of the WHILE clause 15

WHILE boolean expression
or

WHILE relational expression

The boolean or relational expression represents a condibon for continuation of the Joop, as
long as 1t evaluates to the TRUE state, the loop continues For example

DO WHILE TRUE,
END,

15 an mnfimte loop, whereas

DO WHILE X < 2
END,

continues untl X=2

The expression 1n the WHILE clause 15 evaluated pmor to each execntion of the first
statement of the loop body If on any pass the expression evaluates to FALSE, the loop
body 15 skipped and execufion continues at the statement after the END of the DO WHILE
or PO FOR. WHILE loop The DO WHILE loop 1s particularly useful when the number
of 1terations that should be made through a loop 1s not known m advance Consider, for
example, Newton’s method for computing the square root of a number, X. The methad
generates closer and closer approxmmations untd the current approximation 1s “good
cnough™ “Good enough® 15 defined as the point where the gam m accuracy from the last
1teration was neghigible {less than EPSILON)} The example below 1llustrates the pomnt

NEHTON_SQRY*
PROGEAN, '
DECLARE X SCALAR;
DELCARE EPSTILON CONSTANTC(.001),
DECLARE SCALAR, OLD_APPROXs NEW APPROX,
READ(5} Xs
NEH_APPROX = % / %3
OLD_APFROX = 0,
00 HHILE ABS(MNEW_APRROX -~ OLD_APPROX) > EPSILON;
OLD_APPROX = HEW_APPROX;
NEW_APPROX = (OLD_APPROX + X / OQLO_APPROX) /7 23
END;
MRITEI6) *SGRT OF ', X; ' IS °*, NEW_APRROX;
CLOSE MEWTON_SART;

IIZITIXLIXITITTIIIX

3-8 Loops

Note that this program can be made to.produce more accurate results (at the expense of
greater execution fime) merely by decreasmg the constant EPSILON Note also that if
X 15 equal to zero, the WHILE test will fail on the first evaluation and the correct answer
will be produced but no division by zero will oceur

When the WHILE clause 15 added to a DO FOR, a new loop 15 not created, but an
addifional condition for confinnation of the existing loop 15 1mposed This eombination
can be used to correct the deficiency in the PRIME program of Sechien 52 as shown
below

DECLARE PRIME BOOLEAN INITIAL (TRUE), I INTEGER, NUM INTEGER,
READ(5) NUM,
DO FOR I = 2, 3, 5, 7 WHILE I < = SQRT (NUM),
IF REMAINDER (NUM,I) = 0 THEN PRIME = FALSE,
END,

To see how the WHILE clause corrects the bug in the old version suppose X equals 3
Under the old version, REMAINDER (3,3) would be computed on the second pass through
the loop, the result would be zero, and PRIME would be set to FALSE Now, however,
pror to each execution of the loop body, the test “is I <= SQRT (NUM)?” 1s made On the
first execution of the DO FOR statement, I 1s set to two Then I is compared wath SQRT
(NUM), whach here 1s SQRT (3) or [732 Since 1t 2s 1ot the case that 2 <=1 732, the loop
bady 1s not executed and PRIME remains TRUE Adding the WHILE clause i this example
also has the effect of determining the pruneness of most numbers in fewer 1terations For
example, when X = 17 the loop 15 1terated only twice since 2 1s less than or equal to SQRT
(17 and 3 1s less than or equal to SQRT (17), but the next number in the DO FOR, 5, 15
greater than SQRT (17)

EXERCISES

53A Change the code m the last example i Section 5 1 that finds the number of the first
component < 0, elirmnating the need for the line

IF V$NEG_PART < THEN EXIT
by using a WHILE clause

54 THE UNTIL CLAUSE
The general form of the UNTIL clause 15
UNTIL boolean expression

or
UNTIL relational expression

The UNTIL Clause 5-9

it may be used m the same contexts as the WHILE clause with the simple DO END
group or with erther form of the DO FOR staternent Unlike the WHILE clause, however,
the UNTIL clause specifies a condition under which 1teration of the loop 1s to fermmate
When 1t cvalutes to TRUE, the loop ternunates For example,

DO UNTIL 3 = 4,
END,

1s an mfimte loop, whereas

DO WHILE 3 = 4,
END,

15 effectively 2 NO-OP (never executes) UNTIL 1s no#, however, sumply an iaverse of
WHILE for the following reason An UNTIL clouse never termnates a Ioop before ihe first
pass through the loop body This property of the UNTIL clause may be used to avoid the
need to 1mhahze variables used in the termination condition of a loop Suppase, for instanee,
that a program is to read veciors from channel 5 When a zero vector 1s read, the sum of the
previous vectors 1s printed and another set 1s read The program 15 to run indefimtely

Thas could be expressed via two WHILE Ioops

DECLARE VECTOR, TOTAL, V,
DO WHILE TRUE,
TOTAL = 0,
V = VECTOR (1, 1, 1),
DO WHILE V > = 0,
READ(S) V,
TOTAL = TOTAL + V,
END,
WRITE(6) TOTAL,
END,)

In thas example, the assignment
v = VECTOR (1, 1, 1),

15 used to force V to be non-zero before the mner loop executes If this statemment were not
provided, the mner loop would not execute after the first iteration of the outer

The essential diffienity 13 that the mner loop written with WHILE will test the value of
V before 1t has been read

3-8 Loops

If the UNTIL foim 1s used for the inner loop, the imtiahization of V 15 nof nesded

DO WHILE TRUE,
TOTAL = 0,
DO UNTIL V = 0,
READ(S) V,
TOTAL = TOTAL + V,
END,
WRITE(6) TOTAL,
END,

Since the UNTIL clause cannot terminate the loop hefore the first iteration, the mitial
value of V 1s unimportant

When, as 1 this case, the UNTIL clause 15 used with a ssmple DO END group, 1t 1s
useful to conceive of the terminafion test as being done at the end of the loop (after the last
statement of the loop body)

Like the WHILE clause, UNTIL may alsc be used as an additional condition on erther
type of DO FOR statement, as in

DO FOR I =1 TO 10 UNTIL ASI = 0,
END,

This example 15 a loop (with no loop body) which sets I to the mdex of the first zero
component tn a vector, A However, since the UNTIL cannot termunate the loop on 1ts first
iteration, if AS1=0, the loop will continue to look for an additional zero

When used with a DO FOR statement, the UNTIL clause causes a test for termnation
on the second and 2all subsequent iferations of the loop, on the second through last iteration,
the test 15 performed after the (DO FOR) loop control variable has been updated, but
before the first statement of the loop body 15 executed

Exercises

54A Consider the problem of exercise 5 3A A proposed solution 1s shown below

DECLARE V VECTOR(5),

DECLARE NEG_PART INTEGER,

DO FOR NEG_PART = 1 TO 5 UNTIL VSNEG_PART < 0,
END,

IF NEG_PART < 5 THEN NEG_PART = 0,

Why 15 this not an acceptable solution?

EXIT and REFEAT 5-11

5 5 EXIT AND REPEAT

The constructs already introduced 1n this chapier provide for the repeated execution of
a loop body, and for a condition fo be specified under which control 1s fo exat from aloop
These language features, however, only govern the execntion of an entwe loop body, the
statements to be introduced 1 this section allow a porfion of a loop to be repeated and for
a termnation test to be made at gny pomt in the loop body rather than only at the begin-
nmg or end To see how these statements, EXIT and REPEAT, augment ihe other loop
control statements, consider the following program

{~ THIS PROGRAM READS A SERIES OF ANGLES EXPRESSED IN DEGREES,
CONVERTS THEM TO RADIANS, AND KEEPS A RUNNING TOTAL ON EACH CYCLE
IT PRINTS THE CURRENT TOTAL (IN RADIANS) AND THE TANGENT OF THE
TOTAL ANGLE PRCDUCED IT AUTOMATICALLY STOPS WHEN THE RUNNING
TOTAL EXCEEDS 5 7, OR IF THE COMPUTATION OF THE TANGENT COMES TOO
CLOSE TO' A SINGULARITY */

TAM_SUHS
PROGRAM,
REPLACE CARDS BY "5V, /%CARD READER IS DEVICE 5%/
PEPLACE LIST BY "&", /¥PRINTER 15 DEVICE &%/
DECLARE SCALAR,
X,
TOTAL IMITIAL{O],
PE CCHSTANT(3 141592561},
RAD_PER_DEGREE COMSTANT{PI / 180,
SHIFT CONSTAHTCEY / 2),
DO UNTIL TOTAL » 5 PI,
READICARDS) X,
TOTAL + TOTAL + X RAD_PER_DEGREE}
IF HOD(TOTAL - SHIFT, PI) < .001 THEN
EXIT,
HRITE(LIST} TOTAL, TAN{TOTAL);
END
CLOSE TAM_SUMS,

SITZTTIAXIIAZTTITIEZIT

In this example, the statement
“IF MOD(TOTAL-SHIFT,PI) < 001 THEN EXIT,*

causes the loop to termunafe 1f TOTAL gets within 001 of #/2, 37/2, etc If the BXIT
statement 1s executed, control pagses to the statement after the END of the loop (1e to
the CLOSE staiement)

The program mught be more vuseful, however, if instead of termunating at a singulanty,
it allowed the user to emter another value and conttnued This can be accomplished by
changimg the EXIT statement to REPEAT as follows

IF MOD{TOTAL—SHIFT,PI) <C 001 THEN REPEAT,

5-12 Loops

If the REPEAT statement 1s executed, control will refurn to the fop of the loop, where
TOTAL will be compared with 5 PI If this fest fauls (TOTAL 15 not greater than 5 PI), the
loop body will be re-executed

Thus example shows how EXIT may be used to insert a completion test at any point in
the loop body, and how REPEAT may be used. to cause iterafion of a porfion of the loop
body

The general form of the EXIT statement 15

EXIT,
of
EXIT label,

When used without a Iabel, EXIT causes an unconditional' transfer of control out of the
nearest enclosing DO END group (1 e io the statement following the ENI} of the imme-
diately enclosimg loop or sumple DO END group) If a lzbel 15 supplied, it must maich
the label on some DO END group in which the EXIT statement is nested, thus form
causes transfer of control out of the correspondmng loop or simple DO, END group
Similarly, the general form of the REPEAT statement is

REPEAT,
or

REPEAT label,

Uniike the EXIT statement, however, REPEAT apples only to loops When used without a
label 1t causes repetition of the nearest enclosing DO WHILE, DO UNTIL, or DO FOR loop
Repetition, 1 this sense, means that the loop control varable (if any) 1s updated, the ter-
mnation condition (if any) 1s re-evaiuated, and 1f the conditions for termination are not met
then controi 15 passed fo the first statement of the loop body Thus, the presence of a
REPEAT statement mn 2 loop does not chiange the number of iterations of the loop, but
does determine which porfion of the loop body 1s execuied on each iferation

EXIT and REPEAT are conitrolled forms of GO TO The location to which control 1s
transferred 15 defined by the structure of the program Thus, whenever these statements are
used, thewr funenions are what thew names imply EXIT always “pets out of*’ 2 compound
statement REPEAT always repeats a loop GO TO, on the other hand, has a variety of
functional uses When GO TO s used, the reader must find the corresponding label to gain
any 1dea of the effect of the GO TO

The following code fragment uses arrows to dlustrate the transfer of control caused by
EXIT and REPEAT

EXIT and REPEAT 5-13

SAMPLE_FLOH
PPOGRAM,
DECLARE INTEGER,
I, b Ky Ls i,

DO UMTIL FALSE,
IF I = 0 THEM
oo,
J =0
REPEAT»

EHO .
ELSE
EXIT, Pt -

oGP2:
20 FOR K = 1 TO 10,

LOGPS D0 FOR L = M. Hy, H + H»
IF J = 0 THEN
REPEAT LLROP23
ELSE

! EXIT,
EHD:

END,
EMD,
CLOSE SAMPLE_FLOM,

IIIZTIIZIXIIIITITIZIIIIIIIIT

Smee REPEAT apphes only to loops, 1fs effect 15 not changed by placing 1t 1n a simple
DO END group This fact can be used to make the TAN_SUM program more informa-
tive’ as shown below

IF MOD(TOTAL-SHIFT,PI) < 001 THEN DO,

WRITE(LIST) ‘TANGENT UNDEFINED’,

REFEAT, f* READ ANOTHER ANGLE *{
END,

Exercises

55A Given

a) DO FOR X =1 TO 100,

EXIT,

END,

3-14 Loops

SA

3B

and,

#) DO FOR X = 1 TO 100,

REPEAT,
END,

Assume that the EXIT and REPEAT are executed in some conditional branch some-
#ime dunng the execution of the lcop These are the only EXIT’s and REPEAT s 1n
the loops and there are no branches out of the loops

What can be said about the value of the control vaniable 3 n a) and b) above when
the first statement after the END 1s executed?

End Of Chapter Problems
Wnie a HALS program to use Simpson’s rule to approximate the area under the
curve v = /% usmng smaller and smaller segments, delta The process continues unfil
the area resulting from (delta/2) size segments differs from the result obtamned using

delta by less than (100 EPSILON) percent

Read the limits of iiegration from channel 5 1n scalar form, and write the resulting
area out on channel &

Remember, Simpson’s Rule 18
3 P

FINAL delta
j fi(x}dx= 5 [f(mtal}+2 fINITIAL+DELTA)+

INITIAL +2H(FINAL-DELTA)+{FINAL)]
Include any assumptions you make
Consider the following code

PROBLEM_PROG PROGRAM,
DECLARE INTEGER,
NUMBER INITIAL(3),
DIVIDER,
TEST_INIT DIVIDER = 2,
TEST IF MOD (NUMBER, DIVIDER) = 0 THEN GO TO LOSE,
DIVIDER = DIVIDER + 1,
IF DIVIDER = NUMBER THEN GO TO WIN,
LOSE NUMBER = NUMBER + 1,
[F NUMBER = 500 THEN GO TO DONE,
GO TO TEST,

EXIT and REPEAT 5-15

WIN WRITE(6) NUMBER,
NUMBER = NUMBER + 1,

IF NUMBER = 500 THEN GO TO TEST_INIT,
DONE CLOSE PROBLEM_PROG,

MOD(a,b) vields a{rmod b), the remainder when the greatesi infegral multiple of b
less than a 15 subtracted from a

a) What daoes this program do?

b} Rewrite 1t using do for end loops so that the program 1s easter to read

Arrays of Integers and Scalors 6-1

60 ARRAYS

An ARRAY 15 an ordered set of vatables of identical type which are accessed by a single
name Asrays aie completely distinct from vectors and matnces The primary uses of
ARRAYs1in HAL/S are

1) For performing identical operations on simalar data as in

DECLARE IMU_ STATUS ARRAY(4) INTEGER,
DO FOR I =1 TO 4,

IF IMU_STATUSSI NOT = 0 THEN CALL RING_BELLS,
END,

2) For mamtammg a lastory of previous data values asin
DECLARE ALT_HISTORY ARRAY(100) SCALAR DOQUBLE,

CYCLE = CYCLE+],
ALT_HISTORYSCYCLE = NEW_ALTITUDE,

and
3) For maintamnmg tables of all serts, as n

DECLARE DAYS_PER MONTH ARRAY(12)
INTER INITIAL(31,28,31,30,31,30,31,31,30,31,30,31),

HAL/S allows arrays of any data fype, however, the most frequently used are single
dimensioned arrays of INTEGERs and SCALARSs Iike those in the examples above There-
fore, the basic concepts of declanng and subscnpting arrays will be thoroughly examined
m this context before arrays of other datatypes and more advanced array operations are
discussed

61 ARRAYS OF INTEGERS AND SCALARS

Arrays are created using the ARRAY keyword in the DECLARE statement, a parenthe-
sized compile-tune expression or list of expressions must follow the ARRAY keyword to
denote the sze of the array. Arrayness 15 an atinbute of a vatiable of some data type rather
than a new type Hence, grven the statements

DECLARE A ARRAY(3) SCALAR,
DECLARE V VECTOR(3),

the datatype of A 1s SCALAR and the type of V 1s VECTOR even though both consist of
three single precision SCALAR elements

Following the word ARRAY is a parenthesized list of dimensions Each dimension 18
described by a compie-time expression, which 1s the size of the dimension and the mdex
of the last element X, Y, and Z in the next figure could be REPLACEd with any mtegral
vzlue up to an inplementation-dependent Iimit

6-2 Arrgys

ARRAY (X) ARRAY (X,Y)

1 X 1 Y
Li] | feeel I} '

ARRAY {X,Y,Z)
Z

| AN

1

I——Y

Arrays are mtialized in the same manner as VECTORs and MATRIXs, a list of values 1s
provided msparenthesis following the keyword INITIAL or CONSTANT The special charac-
ters * and # may be used for partial initialization and repetition as before. Thus,

DECLARE A ARRAY(S) INTEGER INITIAL(3,5,14,2,0,
creates

A = (3,5,14,2,0)

and,

DECLARE B ARRAY(12) SCALAR INITIAL(0,1,~1,SQRT(2),
—SQRT(E),#E,*},

creates

B = (0:1 L l: ﬁ: %;222)2)‘2;,}???}

Arrays of Integers and Sealars §-3

Since 1t 15 often desirable to initialize an entire array to the same value, HAL[S also allows an
inttial (or consiant) list to consist of only one value, 1n this case every element of the array
15 set to the value provided Thus the forms

DECLARE X ARRAY(5) INTEGER INITIAL(SEQ),
and
DECLARE X ARRAY(5) INTEGER INITIAL(O},

are equivalent Finally, the ARRAY atiribute may also be *“*factored” or specified only
once m a DECLARE statement which creates multiple arrays as shown below

DECLARE ARRAY(3),
GYRO_INPUT INTEGER,
ATT_RATE SCALAR DOUBLE,
SCALE CONSTANT(.013, 026, 013},

The arrays declared above mught serve as the mputs and outputs of a sunple program
which does linear scalwyg of data read from an accelerometer assembly Assume that
GYRO_INPUT contans three values which represent the rates of vehucle rotafion along the
pitch, roll, and yaw axes A simple routine to convert the data to more convenient units and
data representation maght be

DECLARE N INTEGER,
DECLARE BIAS SCALAR INITIAL(57 296),
DO FOR N = | TO 3,
ATT_RATESN = SCALESN GYRO_INPUTSN + RIAS,
END,

In this example, the various arrays are subscripted in the same fashion as VECTORs, and
m general, the same rules apply The subscript of a one-dimensional array may be any
anthmetic expression which evaluates t0 a number between one and the size of the array
If the expression does not preduce an mtegral result, 1t 15 rounded to the nearest integer
An array element, such as ATT_RATES1#* or SCALES(N+2), may be used 1 any context
in which a smmple vanable of the same data type can be used For instance, given two
SCALAR ARRAY{10Y’s, A and B, the following statements are all legal

ASI,AS2 = SIN(AS3),
AS(BS(AS3)) = 29,

DO UNTIL A3 = AS2,
IF AN < AS(N+1) THEN

*Zome readers may wish to review the discussion of simgle and multiJine formats 1n Chapter 2

64 Arrays

Another example of the use of arrays appears in example 1 This program defermines
the muimum, maxunum, and average time required to wmvert a 5x5 MATRIX containing

random data

EXAMPLE_1*
FROGRAM,
DECLARE M MATRIXI5, 5);
DECLARE-N-HATRIX(5, 51;
DECLARE TIME ARRAY(100) SGCALAR INITIAL(0);
DECLARE SCALAR,
THIM, TMAX, THEAN; .
DECLARE INTEGER,
I, 4, Ki
DO FOR I = 1 7O 100,
DO FOR J = 1 TO 53
DO FOR K = 1 TO 53

H = RANDON;
JaK
END»
END,
TIME = RUNTIME. '
i

* %]

’ N='H,

MITIM VNIZIZ NI XIIXIIZIIIX

TINE =.RUNTIME - TIME ;
I I
END,
HOW PROCESS THE HUNDRED-SAMPLES IN THE ARRAY [TIME]

THAY; THEANs THIN = TIHE 5
1 .

DO FOR I =2 TO 1003
TMEAH = THEAN + TIHME .,
I

IF FIME. > TMAX THEN
I

wMEx WwIIXT wIx O &=

THAX = TIME ,
I -

K

« IF TIHME < THIN THEN
i

THIN = TIHNE &
I

END,
THEAN = THEAN / 100;
CLOSE EXAHPLE_L,

TIXET U=z X (3, 4

In thas example, two previously undefined functions, RANDOM and RUNTIME are mvoked
RANDOM 15 used to set the matnx to a sei of pseudo-random numbers, and RUNTIME
returns the value of the system’s real time clock

Afrays of integers and Scalars 6=

It may be noted that the mun, max, and mean could have been computed within the
main loop without saving all of the values m an array. Saving the data allows additional
statistics, such as the median to be computed (see exercises) This method of obtamng
timang data may be maccurate if the time requared to read the clock is significant

HAL/S provides for multr-dunensional arrays These are typically used for ease of
subscriptmng and to coninbute to the readabiity of a program by logical grouping of data
For example, suppose that instead of one accelerometer assembly as descmbed earlier,
there were four of them, for reasons of fault-tolerance Then, we might declare the nput
data as a two-dumensional array

DECLARE GYRO_INPUT ARRAY(4,3) INTEGER,

Now, GYRO_INPUTS35(3,2) 15 the second measurement from the fhid umd,
GYRO_INPUTS(1,1) 1s the first measurement from the first wnut, and GYRO_INPUTSE(1,*)
15 all the data from unit one, 12 the same three measurements we had before The use of
an astensk to mdicate ““all of a particular dimension” 1s the same as ;1 VECTOR/MATRIX
subscripting, the #, TO, and AT forms also apply Thus, GYRO_INPUTS(*,1) 15 an array
containing the first measurement from each of the four accelerometer units, and
GYRO_INFUTS(2 AT #—1,7) 15 a 2x3 amay contaming thres measurements from ¢ach of
the last two umts In the next section we will see how these complex subscrpts are used,
but first we shall examme the general form of multi-dimensional arrays (and finish process-
mg the redundant accelerometer data along the way)

The maxmnum number of dmmensions 1n an array depends on the particular HAL/SS
comptler 1 use, All present HAL/S compiers allow from one to three dimensions In
declaring an array, the number of dimensions 1s denoted by the number of expressions
in parenthesis following the keyword ARRAY Thus,

DECLARE A ARRAY(5,9,4) SCALAR,
B ARRAY(180) SCALAR,

creates two arrays of 180 scalars, but A 1s 3-dimensional while B 15 linear The first element
of B 1s B31, whereas the first element of A 15 AS(1,1,1) Imtizlization works the same as
single dimensional arrays Either a list of values containing one value per array element may
be provided, or a smgle value may be assigned to all elements Thus, the array A may be
mhalized as

DECLARE A ARRAY(5,9,4) INITIAL(D),
or
DECLARE A ARRAY(5,9,4) INITIAL(180%0),

If we want A to be all zero except that AS(*,*,3) = —1,-the following imhal List can be
used

INITIAL(S#(94(0,0,—1,00))

6-6 Arrays

To understand why this 15 correct, 1t 15 necessary to know that HAL/SS stores arrays m
“Row-major order” This means that the values 1n the mitial list are assigned n the follow-
ing order

A%(1,1,1) = value]
A3(1,1,2) = value 2
AR(1,1,3) = value 3
A%5(1,1,4) = value 4
A%(1,2,1) = valne 5
AS(1,2,2) = value &

et celera

The way to remember this fact 1s by notmg that the nght-most index 1s incremented the
most rapidly

Now, to illustrate the usefulness of multi-dimensional arrays, we will retum to the
examples of four accelerometer assemblies The entire set of twelve measurements could
be processed as shown below

M 1 EXAHPLE 2-

H | PROGRAM,

H DECLARE GYRO_INBUT ARRAY(4, 31 INTEGER,

H DECLARE ATT_RATE ARRAY(4, 3} SCALAR,

H DECLARE SCALE ARRAY(3) CONSTAHTL.O13, .026, 013);
H DECLARE BIAS SCALAR INITIALISY 2%96);

H DO FOR TEMPORARY I = 1 TO &,

H DO FOR TEHPORARY J = 1 TO 3,

M ATT_RATE = GYRO_INPUT SCALE + BIAS,
S I,J IsJ J

H END,

H END,

M | CLOSE EXAMPLE_2Z.

In this code, SCALE 1s stll declaved as a amray of three Since the four mstrumentis are
idenfical, there 15 no need to keep four sets of scale factors Note, however, that if
GYRO_INPUT had been declared as a hnear ARRAY(12), we would have to either make
the SCALE armay also of size twelve, or miroduce more complex code to associate the
night scale factor with each of the twelve measurements Thus, a two dimensional array
may be a mechamsm for performing wdentical operations on a set of similar Linear arrays
just as a hinear array may be used to perform identical operations on a set of similar mtegers
or scalars

6 11 Additional Examples

1) Po a matnx mulhply, M1 = M2 M3, wath M1, M2 and M3 declared as ARRAYSs
rather than as matnces

IIZIXIZIx2aI

XTI o

2)

Arrays of Integers and Scalars 6-7

EXAMPLE_3°
FRCGRAH;
DECLARE ARRAY(3, 3),
M1, M2, M3,
DECLAPE INTEGER,
ROWy COL,
DO FOR ROW = 1 TO 3,
D0 FOR COL = 1 TG 33
M1 = N2 H3

RCR, COL ROW,I 1.COL

END3
END%
CLGSE EXAMPLE_3,

+ H2 H3

ROW.2 2,C0L

+ Hz

RO, 3

n3

I.CoL

Rotate the contents of an array of five scalars as shown by the dfustration

5

H | EXANPLE_4-

M | PROGRAM,

H

M

M TEHP = A,
51~ 1

|

H A = A H
s T T+l
] END,

h A = TENP3

5

H

CLEASE EXAHPLE 43

DECLARE A ARRAY(5) SCALAR DOUBLE;
DECLARE TEMP SCALAR DOUSBLE,

GO FOR TEMPORARY T = 1 70 &,

-8 Arrays

3) Find the square root of the mean of the squares of all the values m an array of
100 scalars

EXAMPLE_5°
FROGRAM]
DECLARE A ARRAY(1080),
DECLARE RHS SCALAR.,
DECLARE TOTAL SCALAR DOUBLE INITIALID),
DO FOP TEMPORARY H = 1 TO 180,
2
TOTAL = TOTAL + A
M

END»
RMS = SORT(TOTAL ~ 100}3
CLOSE EXAMPLE_B;

IIX WwIMIZTIIIX

Exercises

6.1A Which of the following declarations lists are legal?
If they are legal, what do they creafe?
If not Iegal, why not?

a) DECLARE X INTEGER INITIAL(3), .
DECLARE LIST_ONE ARRAY(X) SCALAR INITIAL(6# 1),

b) DECLARE X CONSTANT(4),
DECLARE ARRAY(X),
LIST_ONE SCALAR INITIAL(4# 2),
LIST_TWO INTEGER,

¢) DECLARE LIST_THREE ARRAY(18) SCALAR INITIAL(I0#.1,%),

d) DECLARE LIST_FOUR ARRAY(9,3) SCALAR INITIAL (G# 1,
3F#(3%.2),%),

¢) DECLARE LIST_FIVE INTEGER ARRAY(5),

6 1B

6 IC

61D

Arrays of Integers and Sealars 6-§

a) In example 1 1n the text, the mmanum, maximum, and mean times required to
mvert a 5x5 matnx are computed Modify the code of the example to include a
computation of the standard deviation, defined as follows

T (X, ~X)2
o= [2ETR"
n

where X 1s the mean value of the time, and n 1s the number of samples

b} An alternate defimition for standard dewatton, easily shown to be equivalent
to the above, 15

2
X EX 2
u=\/"l—(11)
n n

Usimng thes formulation, 1t 18 possible to compute the standard dewviation without
saving all the tyme valees 1n an ayray Rewrite the program of part a), ehmmatig the
array of time values Is it possible to compute the median value without saviag all
the values?

In example_2, GYRO_INPUT and ATT_RATE are declared ARRAY (4,3}

The text staies that if these varmables were declared ARRAY(12) etther SCALE
would have to be declared ARRAY(12) or more complex code would be needed

Keeping SCALE declared an ARRAY(3), modify the code given for example 2
such that GYRO_INPUT and ATT RATE are declared ARRAY(12), whale sl
keepmg the basic structure of the code gven.

Instead of the modification of the array shown in EXAMPLE_4, wnte code that
will perform the following modification.of array A. B

IR
IRIR!

6-10 Arrays

6.2 OPERATIONS ON ENTIRE ARRAYS

Most of the examples m thas chapter have rebed upon the iterative DC FOR loop io
sequence through ihe elements of an array Commonly, the loop has been used to apply
one statement to each array element, 1.2

DO FOR 1 =1 TO ARRAY_SIZE BY 1,
(statement)
END

2

Smee this type of operation 1s so common, HAL{S prowvides a mechanism for combimning
these three siatements into one For example, to add one to each element of an array
could be coded as follows

DECLARE A ARRAY(10) INTEGER,
DECLARE 1 INTEGER,
DO FOR 1 = 1 TO 10,
AST = ASI + 1,
END,

or, by elimmating the subscript and the loop, could be recoded as shown below ~

DECLARE A ARRAY(10) INTEGER,
A = Atl,

This assignment 15 an example of an arraved staterment A statement which operafes on all
the elements of an array Here the effect 35 the same as i the form with a loop,1¢ each
clement of A 1s incremented In general, an arrayed assignment statement results whenever
the target (left-hand side) of the assignment 15 an array There are two posaibibties for the
expression to the reht of the = sign It may be erther a sunple expression (eg “1°” or
“SQRT(3)”) or it may be an arigyed expression (e g “[A) +1°’ or “[A]/2") In the former
case, every element of the target array 1s sef to the value ¢f the expression In the latter case,
one additional rule applies The arrayness {(number and size of dimensions) of an arrayed
expression must be exactly the same as the arrayness of the variable to whach it 1s assigned.
This must be true because each element of the target array 15 set to the corresponding
element of the arrayed expression An arrayed expression follows the same rules as an
unarrayed cxpression except that some or all of the vanables are arrays (of rdenfical
dimenstons) Thus, if ,

A=CX2+DX +5,

18 a legal HALSS statement mnvolving sunple variables A, C, D, and X of any data type,
then

[A] = [C] {X]? + DIX] * 5,

*The HAL/S compiler annotates arrays with square brackets in the cutput listing Thus, the assignment
statermnent would appear as [A] = [a] +1, -~

Operations on Entire Arrays 6-11

where A, C and X are 1dentical arrays of the same data types, 1s also legal In general, ail of
the arrthmetic operators (e g +, >~, /, ete) will accept erther two simple vanables, a simple
vanable and an array, or two arrays of identical dimenstons

Note, however, that the machine code generated to correspond to an arrayed statement
still contains a loop, this fact 1s snportant when assessing the efficiency of 2 computation

The following shows how the partition form of array subscripting1s used Given
DECLARE GRID ARRAY(6,6) SCALAR,
a varety of re-arrangemenis of the array can be done 1n a very few statements

1) Seti the top half to the boitom half
GRIDy g 3, = GRID4 10 6~
2} Set the upper left quarter to the lower nght comer
GRID; 1o 3, 1 TO 3 = GRID3 AT 4,3 AT 4 >
3) Set the first row to the sum of the other five
GRIDL* = GRIDZ;c + GRID:,;,* + GRID4’Y +
GRIDs - + GRIDG,:-G s
4) Set the border to zero
GRIDI,;: . GRID*,ﬁ , GRIDG,*) GRIDw,l =0,

Tius fast example 15 a mulfiple assignment statement, to whach one addiional ruie
applies If one or more of the fargei vanables in a multiple assignment statement 1s an
array, then alf of the target vartables must be arrays and of identical dimensions

One caution 15 In order regarding assignments hike these Consider the assignment,
GRIDS(1,2, TO #) = GRID3(1,I TO #-1),

This statement mught be mtended to shuft the top row one position to the nght Instead, 1t
sets GRIDS(1,2 TO #) to GRIDS(1,1), the first clement 15 propagated throughout the row
The reason can be seen when the arrayed assignment 1s unravelled

GRIDS$(1,2) = GRIDS(1,1),
GRIDS(1,3) = GRIDS(1,2),

This adverse effect can occur whenever a partition of an amray 15 set from an iniersecting
partition of 1tself Such assignments should always be checked by partially expanding them
by hand i,

GINAL PAGE 1§
OF POOR QUALITY

6-12 Arrays

Usmg the feature miroduced n tlus section, we can make the redundant accelerometer
example of Section 6 I more compact

M | EXAHPLE_&

M | PROGRAH,

H DECLARE ARRAY(4, 3),

H GYRO_INFUT INTEGER,

M ATT_RATE SCALAR;

H DECLARE SCALE ARRAY{3) SCALAR COMSTANT(.013, .026,- 013),
H DECLARE BIAS SCALAR COMSTANT(STY 294),

H DO FOR TEMFORARY DEVICE = 1 TO 4;

H [ATT_RATE] = [GYRD_INFUT] ISCALE] + BIAS:
S DEVICE, * DEVICE,*

H

J]

END,
CLOSE EXAMPLE 63

Hers, we have converfed an unarrayed statement in double loops to an arrayed state-
ment in a single loop Since the SCALE asrray 15 of size 3 and the other arrays are 4x3, we
cannot ebminate both loops without getting an arrayness mismatch n the assignment
statement But it is possible to have an assignment statement with more than one dimension
of arrayness as long as all of the variables match Thus, we could compuie a set of four
attriude amrays

DECLARE ATTITUDE ARRAY(4,3) SCALAR,
DECLARE ATT_RATE ARRAY(4,3) SCALAR,

from the attifude rates m a single statement merely by
[ATTITUDE] = [ATTITUDE] + {ATT_RATE] DELTA_T,

where DELTA_T 15 a SCALAR representing the time between samples This one state-
ment 1s functionally the same as

ATTITUDES(1,1) = ATTITUDES(1,1) + ATT_RATES&(1,1) DELTA_T,
ATTITUDES{1,2) = ATTITUDES(1,2) + ATT_RATES$(1,2) DELTA_T,
ATTITUDES$(1.3) = ATTITUDES(1.3) + ATT_RATES3(1,3) DELTA_T,
ATTITUDES(2,1} = ATTITUDES(2,1) + ATT_RATES$(2,1) DELTA_T,

ATTTTUDES(4,3) = ATTITUDES(4,3} + ATT_RATE$4,3) DELTA_T,

(a total of twelve simple assignments) N
~
In addition to arrayed assignments, HAL{S alsc allows arrayed compansons It is
possible to compare an entire array or arrayed expression, either wath a simple xanable
or wrth an 1denfically dimensioned array or arrayed expression For example, we could
create a 4 by 4 array showmng mismatches between the four sets of ATTITUDE data (each

an ARRAY(3) partitton) as shown -

Cperations on Entire Arrays 6-13

EXAMFLE_7.
PROGRA;
DECLARE ATTITUDE ARRAY(4, 3) SCALAR,
DECLARE MISHATCH ARRAY(4, 4) INTEGER;
DECLARE INTEGER.
I 1 J b]
DG FOR I = 1 10 4,
HISHATCH = 03
1.1

NZIIZT IR

DO FOR J =1 + 1 70 &,
IF [ATTITUDE) = [ATTITUDE} THEN
I,% Ja%

HISHATCH , MISHATCH 13

]

W X wIIx

JrI I,J

ELSE
HISHATCH + MISHATCH = 05
4,1 I.,J

wWwIXE

EHD,
END,
CLOSE EXAMPLE_7,

. e i 4

In this example, the statement

“IF ATTITUDES$(L,*) 71 = ATTITUDES({J,*) THEN »
15 an arrayed companson Each element of ATTITUDES(I,™) s compared with the corre-
spondmg element of ATTITUDES(],~) If any of the pawrs of elements 1s unequal, then the

companson succeeds and MISMATCH(LI) 1s set fo 1 Thus, this statement 1s functionally
equivalent to

IF (ATTITUDES(I,1) 1 = ATTITUDES(7,1)} OR
(ATTITUDES(L2) 7} = ATTITUDES(J,2)) OR
(ATTIDUDES(I,3) 1 = ATTITUDES(I3,)) THEN

Two arrays are considered unequal if they differ in eny element, they are equal if they do
not differ in any element (1 e they are equal if all elements are the same)

It 15 also possible to compare an array with an arrayed expression, for mnstance the
statement

“IF ATTITUDES$(1,*) = (ATTITUDES$(2,*) + ATTITUDES(3,~)) /2 THEN *

would determune whether or not the first set of readings was equal to the average of the
second two. Fimally, an array may be compared with a simple vanable or expression, e g

IF [MISMATCH] 1= 0 THEN ’
or

IF ATTITUDES(2 TO 4,1) = ATTITUDE$(1,1) THEN

ngWAE PAGE g
FOOR qQuaripy

6-14 Arrays

Regardiess of the data types mvolved, the only companisons which may be made between
arrayed operands are equal (=) and unequal (=) This restriction 1s made for the same
reason as in YECTOR/MATRIX comparisons The question, “Is A = {1, 57, 3) greafer than
B =(2, 4, 3)7” has no clear answer

Exercises

6.2A Which of the following are legal ammayed statements (expressions).

ere

Wh
A ARRAY(S) D ARRAY(5,5)
B ARRAY(S) E ARRAY{10,10)
C ARRAY(10)

X INTEGER

Y SCALAR

2) A = B,

by A =C,

c) A=X,

d) D3(*,5} = B,

e} DS(5,*) =Y,

fi ES(5,=) =B,

g ES(5AT2,3TO7) =D,

h) A,B =X,

) AY =X,

1) CS(5AT3) = A + B,

k) CS(5AT4) = A+ X,

) CB) = X,

m) DO WHILE A > X,

n) DO UNTIL A = B,

o) DO UNTIL A 71 = C,

p) DO WHILE DS(2 AT?2,2AT3) = ES(2T03,3T04),
@ DO WHILE D$(*3) = A,

r) DO WHILE A$(1,1) = X,

s) DO UNTIL A = CS(5ATA4),

t) DO UNTIL B = E$(7,6 TO #).

6 2B What are the major benefits of the abilsty to do operations on entire arrays in one
line of code?

Arrays of Other Date Types 6-15

63 ARRAYS OF OTHER DATA TYPES

So far in ilus book, five data types have been introduced INTEGER, SCALAR, VEC-
TOR, MATRIX, and BOOLEAN An array of any of these types can be created in a manner
completely analogous to the INTEGER/SCALAR arrays already described For instance,
one amray of each fype can be created m a smgle DECLARE statement

DECLARE ARRAY(10),
I INTEGER,
S SCALAR,
V VECTOR,
M MATRIX,
B BOOLEAN,

Each of these arrays consists of ten array elements, each element behaves sn the same way
as a simple vanable of the same dalta type In the case of an ammay of VECTORs (eg V
above), each array element m turn conmsis of several components (in this case, three
scalars) Hence, 1f V were to be completely matialized, 10 x 3 = 30 values would be re-
quired As m INTEGER/SCALAR amays, the INITIAL hist may contam etther a value for
every array element or a “single” value (1e¢ mmtiahzation for one VECTOR or for one
MATRIX) For example

DECLARE A ARRAY{(2) VECTOR INITIAL(1,0,0,1,0,0),

creates
1 1
A= 0|, {10
0 0

as does

DECLARE A ARRAY(2) VECTOR INITIAL(1,0,0),
and,
DECLARE M ARRAY(3) MATRIX(2,2) INITIAL(1,2,3,4,5,6,7,8,9,10,11,12),
creates
[1 27T5 6 9 10
M=
3 4 4°17 8} |11 12
The same 1mitial Iist could also be used to imtiabze 2 three by two array of 2-VECTORS

DECLARE X ARRAY(3,2) VECTOR(2) INITIAL(1,2,34,5,6,7,8,9,10,11,12),

6-16 Arrays
But 1n thus case, the layout of the data 1s sigmificantly different
1 3 5
2 4 6
7 gl |11
g 10 12

Thas 15 rot merely a distinction of graphical representafion The concepts of data type
and arrayness are complefely mdependent Thus given

X

1}

DECLARE M MATRIX(2,2) INITIAL(a,b,c.d),
DECLARE N MATRIX(2,2) INITIAL (e,f.gh),
DECLARE A ARRAY(2) VECTOR(Z) INITIAL{ef,gh),

the assipnment statements,
* E .
N=MN,

and

[A] = M [al,

perform very different operations “N =M N,” 15 a sumple matax multiplication as described
m Chapter 2, but “A =M A7 15 an arrayed statement, 1t does two (the arrayness) multiphica-
tions of a vector by 2 matnix The results would be

*®
N= e + dg cf + dh

- ae + bf ag + bh
(Al = ([ce + df] : |:cg + dh])

As indicated above, arrayed statements may be formulated from arrays of VECTORs
andfor MATRIXes according to the usual rules All of the VECTOR/MATRIX opezrations
may be appled to two simple vanables {(or expressions), to an array and a simple vanable,
or to two arrays of mdentical dimensions To see how arrayed operations on these data
types might be used, consider the following sifvation An aircraft has a posihon VECTOR,
MY_POSN, and access to an array of five other vectors, [POSITIONS], which gives the
locations of five other aircraft The code below, which executes every DELTA T seconds,
compuies the velocity of each mrcraft, the distance between each arcraft and MY __POSN,
and the rate of approach of each toward MY POSN

[ae + bg af + bh]

TZEmImMmIMIM O FIIIIIIIIIIT

Arrays of Other Date Types 6-17

EXAMPLE_B8:
PROGRAM »
DECLARE POSITICNS ARRAY(S5) VECTOR,
DECLARE OLD_POSH ARRAYLS) VECTOR,
DECLARE ARRAY(5),
VELQCITY VECTOR,
DISTARCE SCALARS»
APPROACH_RATE SCALAR, /¥THE AMSWERSK/
DECLARE HY_FOSN VECTOR,
DECLARE DELTA_T SCALAR,

OBTAIM POSITIOMS FROHM QUTSIDE

{vELocITY] = (IPosITIcns] ~ [OLD_POSHI) / DELTA_T; '
-~ [DISTANCET = ABVAL([POSITIONS) - MY_POSH);
[APPROACH_RATE) = ({YELOCITY] . UNIT(IPOSITIONS] ~ MY_POSN);

[oLD_PoSN] = IPOSITIONSI;
CLOSE EXAMPLE_8;

Each of these assignment statements has an arrayness of five The second one, for
mstance, first subtracts MY _POSN from each of the five VECTORS 1n POSITIONS, pro-
ducing an array of five “distance” VECTORS Then the ABVAL funchion operates on
each VECTOR 1n furn producing a scalar distance which 1s stored mnto the corresponding
element of DISTANCE

Se far we have been deliberately avording any subscnipts of arrays of VECTORs and
MATRIXes This 15 because a long st of subscripts can be rather confusing For mstance,
a three dimensional array of MATRIXes could have up to five subscrpts, Given

“DECLARE M ARRAY(2,3,4) MATRIX(3,5),”

one mught expect the first MATRIX to be referenced as “MS$(1,1,1,%,")” which 15 farrly
complicated, though more comprehensible than “MS(J+1,2 AT J—1,*3 AT #-4,2) " To
ad 1 dealing with these difficulties, HAL/S makes a distinction between array subscripts
and component subscnpts The first three subscnipts of M are array subscripts and the last
two are component subscripts, To make subscript expréssions more readable, HAL/S en-
forces the followmng rule: Whenever both array and component subscripts are appled to a
vanable, they are separated by a colon instead of a comma Thus, the first MATRIX mn the
array M 1s actually “M$(1,1,1 *,*)”" Usmng this syntax, we can re-write the second assign-
ment statement from the example above the hard way, that 15

{Distance] = ABVAL([POSITIONS]-MY_POSN),

15 equivalent to

ORIGINATL PAGE 18
OF POOR QUALITY,

618 Arrays

I

DISTANCE; = SQRT((POSITIONSS(] 1)-MY_POSN;)**2
+ (POSITIONSS(1 2)—-MY_POSN,)**2
+ (POSITIONSS$(1 3)-MY_POSN)**2),
SQRT((POSITIONSS(2 1)-MY_POSN,)**2
+ POSITIONSS(2 2)-MY_POSN,)**2

+ POSITIONS3(2 3)-MY_POSNg)"*2),

DISTANCE,

SQRT((POSITIONSS(S 1)-MY_POSN,)**2
+ POSITIONSS(S 2)-MY_POSN,)**2
+ POSITIONSS(S 3)-MY_POSN3)~*2),

DISTANCE;

Aside from the use of the colon, all of the possibilities for subscripting stifl apply All
of the TO, AT, and * partitions may be used on either side of the colon, any anthmetic
expression may be used as a subscript, and a subscnipted varrable may be used mn any con-
text m which a sumple vanable of the same data fype could be used

The data type of a subscripred array is not necessanly the same as the data type of the
cntire array For instance, given

DECLARE A ARRAY(3,2) MATRIX,,

Aois a two-dimensional array of type MATRIX,*)
AS(1,” =,*) 15 a one-dimensional array of type MATRIX,*
AS(1,> 1,%)1s a one-himengsional array of type VECTOR,»

and

A3(1,1 1,1) 15 a single SCALAR

It 13 more common to reference an entire amay element or sub-array than it s to refer
ence a component of an array element or some sub-array of partitions, etc Therefore,
HAL/S provides a more compact form for referencing an entire element of an array to
which component subscripting could also apply When an entire array element 1s selected,
the astensks (component subscripis) to the right of the colon may be omitted Hence,
the first MATRIX 1n the array A above can be referenced as “AS(1,1 Y The convenience
of thus form of subscripi 15 1flustrated by the program below which processes an array of
“N™ 3-VECTORs and saves the three having the greatest magnitudes 1n a second array

*Each ocourrence of A in ihe hsting will automatically be aunotated with an overpunch reflecting the effect
of subsenpting on A

Adrrays of Other Data Types §-19

| Exaipie_o:
H FPCGRAM;

H DECLARE V ARRAY(999]} VECTOR(3),

H DECLARE BIGTHREE ARRAY{3} VECTOR(3) INITIALIO};

n DECLARE N IHTEGER, /*HUMBER OF

M D0 FOR TEMPORARY T = 1 TO N, ACTUAL ENTRIES I v
H INHER

H DO FOR TENFORARY J = L T0 3; ’
E - -

M IF ABVALIY) > ASVAL(BIGTHREE) THEN

5 I: J

M vo,

H DO FOR TEMPORARY K = J +) TO 33

£ - -

H BIGTHREE = BIGTHREE »

5 K3 K=1.

H END,

E - -

M BIGTHREE =V

5 1

H EXIT IHHER, S TRY N

o — Y HEH X #»/

b END THNER.

H END,

M }CLOSE ExaHFLE_9,

631 Arrays of BOOLEANs

BOOLEAN arrays are not substantially different from arrays of other data types The
only attnbute of BOOLEAN arrays that does not directly follow from the previous discus-
sion 15 Whenever a BOGLEAN array 15 subscripted, the subscript must end with a colon
The reason for tius restrctron 1s that BOOLEAN 1s actually a special case of BIT strings =~
Like VECTORs and MATRIXes, bit stnings may possess component subscripts Thus, even
though a BOOLEAN has only one component (a single bit), the colon must be supphed
to mdicate that the subscript 15 an array subscnipt rather than a component subscript

Aside from this restinietion, BOOLEAN arrays are used in the same way as arrays of
other types, declaration and mifiahization fake the same forms

DECLARE ARRAY{(12) BOOLEAN,
AJ
B INITIAL(OFF), -
C INITIAL(OFF,ON,9#0N,0FF),

and arrayed assignmenis and compansons also function as before

[AIS(1 TO6.) = [BI&(ITO6) & (AS(1) OR [BIS(7TO 12),
IF[A] = TRUE THEN

One typicai use of BOOLEAN arrays 1s for mantaming status tables For instance, if
we had a set of redundant altuneters producing an array of altitude values

*%B1t strings are fully desenbed 1n Chapter 13 The word BOOLEAN 15 exactly equivalent to “BIT(1)”

6-20 Arrays

DECLARE ALT ARRAY(4) SCALAR |

ang a “parallel” array containing the hime at which cach value was read
DECLARE TIMETAG ARRAY(4) SCALAR,,

then 1t might be useful to define a boolean array of the same size
DECLARE DATA_VALID-ARRAY(4) BOOLEAN,,

each element of which indicates the validity of the corresponding altitude value One pos-
sible form of ttus reasonableness check 15 shown below

EXAMPLE_A-
FROGRANS
DECLARE ARRAY(41,
ALT SCALAR,
TIMETAG SCALAR,
DATA_VALID BOOLEAN,
DECLARE SCALAR INITIAL(Q),
TOTAL, KUMBER_GOOD;
DECLARE AVERAGE SCALAR;
DD FOR TEHFORARRY 1 = 1 TO 43 -~ -
IF RUNTIME = TIMETAG > .l OR ALT <= 0 QR ALT = 50000 THEN
J J J

WITITIZITITITIIX

“

DATA_VALID 7 FALSE]

I
ELSE -
1
DATA_VALID = TRUE,
e
HUMBER_GOGOD = NUHBER_GODD + 1;
TOTAL = TOTAL + ALT ;
J
]
END;
END .

AVYERAGE = TOTAL / NUMBER_cOOD,
0O FDR TEMPORARY X = 1 TD 43

IF DATA_VALID THEN

I:
IF ABS(ALT =~ AVERAGEY > 1 AVERAGE THEM
» I -
DATA_VALID = FALSE;

I
END ;

HOW WE HAVE SCREEMED OUT DATA WHICH IS HEBATIVE OR ZERG,
OR TOO LARGE OR TCO OLD'OR TUO FAR FROM THE AVERASE

CLOSE EXAMRLE_A:

O X2 OIM 0T WIMIINT vz WIAIMIIT wIm

e

Arrays of Other Data Types 6-21

Exercises

6 3A Wnte out graphucally the results of the following mitializations

6 3B

63C

1} DECLARE X ARRAY(3) MATRIX(3,3) INITIAL{9# 1,%)
u) DECLARE Y ARRAY(3,3) VECTOR(3) INITIAL(S# 1,%)
u) DECLARE Z ARRAY(Y) VECTOR(3) INITIAL(S# 1,7)
) DECLARE A ARRAY(27) SCALAR INITIAL(S# 1,%)

In the previous problem, the itiahizations lists were transformed into thewr graphi-
cal interpretairons Using this data, assign the twenty-first element of the lineariza-
tion of X, Y, Z, and A to a scalar vanable, §

Given a vanable M, declared MATRIX(3,9)

Assign the 16th through 22nd elements of the lineanzation of X, Y, Z, and A to
the 2nd through 8ih elements m the hneanzation of M

63 1A The Sieve of Eratosthenes 15 an ancient Greek method for computing prime num-

bers, but it still works today and 1s quute suitable for a computer The algorithm
works as follows

Start with a list of imtegers from 2 to the largest number of 1aterest Cross out all
multiples of 2, then all multples of 3, and so on The remaining numbers are then
all prime

Write a HALJS program to pnnt out all prames less than 1000, using the Sieve of
Eratosthenes (Hint Use an ARRAY of BOOLEAN type to windicate if a number
1§ prime ornot)

0-22 Arrays

6 4 FUNCTIONS OF ARRAYS

In Section 6 2 we saw that the statement
“[A] = (8112

where A and B are identically dimenstoned arrays, results in each element of A bemg set to
the square root of the corresponding element of B As the reader mught expect, the same
result may be obtamned by the statement

“[A] = SQRT((B]),” -

Whenever any of the built-in functions introduced so far 1s apphed to an array, the result
15 an wdentically duimensioned array where each element 15 the result of applying the function
to the corresponding element of the arrayed operand Sumlarly, the rules for functions of
two arguments, such as MOD or DIV, are the same as for infix operators (e g +, —, ¥=, eic),
both arguments may be unarrayed, or one may be arrzyed and the other unarrayed, or both
may be arrayed (and of 1dentical dimensions) This usage, the arrayed invocation of a func-
tion, has been amply illustrated in the previous section, HALSS also provides a set of func-
tions that will only accept arrayed arguments

One of the examples 1 Section 6 | gathered some statistics on the execution ftime of
the matrnx mverse operation A SCALAR ARRAY(100), TIME, was filled with 100 samples
of the execufion time of an assignment statement Then the vanables T MIN, T MAX,
and T_MEAN were set fo the mmumum, maximum and mean values from the amray by
means of a loop More compact code for the same function 18 shown below

T_MIN = MIN([TIME]),
T_MAX = MAX([TIME]),
T_MBAN = SUM({TIME])/100,

Here, the built-n functions, MIN, MAX, and SUM, reduce an array to a single unarrayed
value Each of these functions (and a fourth, PROD) requires an arrayed operand The
array may be either INTEGER or SCALAR. (of either precision), and the result 1s an unar-
rayed value of the same data type and precision

The SUM function simply adds all of the array elements together

“SuM([A])”
15 equavalent to

“A%1 + AS2 + + A$n”
The PROD function multiphes all of the elements together in a smmilar manner (A$1)
(A32) {AS3) (A3n} MIN and MAX both search through the array, and return the

valre of the amray element wluch is algebraically smallest (MIN) or largest (MAX) All
of these functions will accept a multr-dimensional array, but the result returned 1s always

unamrayed Thus, given

Functions of Arraps 6-23

[A] = (SII 71_312])1

MIN([A]) = -3,
MAX([A]) =21,
SUM([A]) = 40,and
PROD([A]) = -5355

The results will be exactly the same whether A 15 declared as
DECLARE A ARRAY(2,2) INITIAL(5,17,—3,21),

or as a Imer ARRAY(4)

64 1 Shapmg Functions

Throughout tlus chapter we have stressed the fact that a linear array 1s not the same
type 2s 2 VECTOR, and that a two dimensional array is not the same fype a5 a MATRIX
Sometimes, however, 1t 1s useful fo be able to convert one type to the other For instance,
we maght want to use arrayed statements to compute the X, y, and z components of a
vehicle’s posihion from seme complex sensor, and then to treat the resuits as a 3-VECTOR
for further computations We already know from Chapfer 2 that given

“DECLARE A ARRAY(3) SCALAR,
V VECTOR,”

the conversion can be made by
“Y = VECTOR(AS1,A$2,A83),”

In fact, the form, “V = VECTOR([A]),” is completely equivalent Both the VECTOR
and MATRIX conversion functions will accept any muxture of arrays and simple vanables
as operands, provided the total number of elements 15 correct When an array 1s specified
as an operand to one of these funchons, 1t 15 “unraveled”, 1 e 1t 15 effectively replaced with
a st of 1fs elements In the same way, an array of vectors can be unraveled for assignment
to a larger vector

DECLARE AV ARRAY(Z) VECTOR(3),
DECLARE VEC6 VECTOR(S),
VEC6 = VECTOR¢ {[AV]),

The statement above 1s functionally equivalent to
ViaT1 =AYy,
V3AT4 T AV
R ! e P
ORIGINATIPAGE IS,
OF POOR QUALITY,

6-24 Arrays

The MATRIX function works in much the same way, a 3 by 3 MATRIX, M, can be assigned
as

M = MATRIX([AVI,[A]),
yielding

AVS(1 1), AVS(I 2), AVS(1 3)
M= AVS(Z 1), AVS(2 2), AVS(2Z 3)
AS], A$2 | AS3

To perform the reverse conversion, the INTEGER and SCALAR functions are used
These functions have already been introduced as explicit type conversions, when they atre
used with multiple simple arguments or any type of data aggregate (arrays, VECTORs,
gte) they retumn an arrayed result. Thus, using the previous declaration, we can set an array
to a VECTOR as

[A] = SCALAR;(V),

The SCALAR {or INTEGER) function will accept any number of arguments of any anth-
melic type so long as the toial number of SCALAR or INTEGER values agrees with the
subscript of the funchion

These functions have a number of uses They may be used to convert the type of data as
shown above, to nitialize an atray, as n

[SMALL_PRIMES] = INTEGERs(1,23,5,7),

or, to re-arrange the elements of an array (hence the term “shapmg functions™)

DECLARE Al12 ARRAY(12) INTEGER,
DECLARE A4X3 ARRAY(4,3) INTEGER,
DECLARE A3X4 ARRAY(3,4) INTEGER,

[A12]) = INTEGER;,)[A4X3]),
[AdX3] = INTEGER, 3([Al12]),
[A3X4] = INTEGERj 4([A4X3]),

When, as 1n the last two statements above, the INTEGER or SCALAR functions possess
multiple subscripts, the result 13 a multi-dumensjonal array Each subscript denotes the size
of one dimension of the array

Each subscript of the INTEGER or SCALAR function must be computable at comple-
hime (1 e sach must be an anthmetic expression invelving only literals and CONSTANTSs)
In addition to the subscnpt, the precision specifiers, @SINGLE and @DOUBLE may be used
to change the precision of the operand Just as in the VECTOR, and MATRIX functions,
the precision specifier 1s used as a subscnipt and must precede the array dimenstons Thus, an
ARRAY(12) SCALAR, S5, can be converted to a 2x6 INTEGER DOURBLE array, I by

(1l = INTEGER@pOUBLE 2,6(151):

Functions of Arrays 6 25

Exetcises

64A Change the solution of the 3rd exercise 1n Section 6 3 from the rather unwieldy and
hard to read asstenments to smpler ones using the vector shaping functions

6 4B Assummng the following declarations

DECLARE X ARRAY(23) SCALAR INITIAL(2#(1.1,2 2,3 3)),
DECLARE V VECTOR(3) INITIAL(3# 1),

Depict graphically the results of the following shaping functions applied to X and V

1)
1)
)

1v)

V)

V1)

INTEGER(X)
INTEGER(X,X)

SCALAR(V)
INTEGERS$(2,6) (2#X)

MATRIX(3#V)
VECTORS(6)(X)

64 1A Use vector shapmg functions to provade a clearer solution to exercise 6 3-C

(Note This problem requires that the reader see Section 6 51 of the Lanpuage
Specification)

6 4 1B Given the following declarztions

DECLARE X ARRAY(23) SCALAR INITIAL(2#(1 1,2 2,3 3)),
DECLARE V VECTOR INITIAL(1}

State the types and depict graphically the values of the following expressions

a)

b)

c)

d)

2)

INTEGER(X)
INTEGER(X,X)
SCALAR(V)
INTEGERS(2,6) (2#X)
MATRIX(3£V)

§-26 Arrays

6A

5B

End of Chapter Problems

The medman value of the elements of an array of odd dimensicn may be computed
by sorfing the elements in mereasing order The mddie element of a soried atray is,
n fact, the median value Write a program fo find the median value of an amray of
25 integers A simple, though not very efficient, sort zlgonthm may be described
as follows

Find the smallest element of the array 1f 1t 1s not the first element, exchange 1t with
the first Then find the smallest of the remammg elements If 1t 1s not the second
element, exchange it with the secopd Confinue until the entire array 1s sorted

An advantage of thus algonthin for the median-value problem 1s that it is not neces-
sary to sort the entire array, finding the 13th smallest element is sufficient

We have made many tinings of 3 processes A, B, and C The results of our timings
are n an array TIM_ VALUES declared,

TIM_VALUES ARRAY(325) INTEGER

We now wish to process this mformation, finding the sum for all 25 timangs of each
process A, B, and C, and the sums of the times for each set of timings for A, B, and
C (1e, row and column totals) Tius information 1s to be put 1n an array together
with the raw data, and thus array 15 to be called TIMING__DATA

Wnte a segment of code that will create thus new array and do the necessary mfor-
mation processing *

Include any assumptions made and any new vanables declared

User Defined Functions 7-1

7.0 PROCEDURES AND FUNCTIONS

In HAL/S, the concept of a subroutine 1s realized in two forms PROCEDURES and
FUNCTIONS Each 1s a block of code delumited by a block header and a CLOSE statement
These code blocks may be nested within PROGRAMS or witlun each other to any degree,
scoping rules restnct the vanables each block may reference, thus avonding a jarge class of
potential programming errors HAL/S PROCEDUREs and FUNCTIONs have two basic
uses to share a sequence of statements among different paths through an algonithm, and to
segment a programming probiem mto manageable parts

7 1 USER DEFINED FUNCTIONS

HAL/S includes a large assortiment of builtan functions These mnclude trigonometric
routines (SIN, ARCTAN), algebraic routines (SQRT, EXP), conversion functions (INTE-
GER, VECTOR) and many others These functions may be used in expressions along with
vaniables, constants and operators, they add to the power of the language by eliminating
much low level coding and allowing sophisticated operations to be expressed very com-
pactiy The set of bualtan functions 15 a part of the language, but HAL/S also allows the user
to define new functions which may then be used 1 exactly the same way as the built-ns

One type of operation which occurs frequently 1n flight software 1s the limiting of a var-
able to a given range A FUNCTION to perform this operation 1s shown below

LINIT-
FUNCTIONE VALUE, BOUND) SCALAR,
DECLAPE SCALAR,
YALUE, BOUND,
IF VALUE > BOUHD THENW
RETURN BOUHD,
IF VALUE < -BOUND THEM
RETURN -BOUND;
RETURN YALUE,
CLASE LIMIT,

ZITIITIIITITX

The function block s delrmited by FUNCTION and CLOSE statements The CLOSE state-
ment 15 the same as 1n PROGRAMs, 1t consists of the word CLOSE and an optional block
name The FUNCTION statement contains three pieces of mformation the label on the
statement, which defines the name of the function, the names of the formal parameters
(sometimes called dummy arguments), and the return-type of the function

LIMIT 15 a scalar valued function of scalars Thus fact 1s denoted by the word SCALAR
ont the FUNCTION statement and the declaration of the formal parameters In general, a
function’s parameters and retum value may be of any data type, hence the return type must
always be specified on the FUNCTION statement and the formal parameters must always be
declared Declanng the formal parameters prior to any local data 1s good programmimg prac-
tice and should be treated as a requirement PR

b

The operation of the LIMIT function rnay be seen from the followmng 1llustration, winch
15 a graph of Y=LIMIT(SIN(X),1/2), for (% x <5 pyf2 -

1’

DRIGINAL PAGE IS
OE PQPR QUALITY,

7.2 Procedures and Funchons

10y
I 5T \ /—i
=
3 (1] T :
= n/2 \ /2 /1:
2
£ -5T
=
vl x
107

Lyt Function

Functions must always end by executing a RETURN statement The RETURN state-
ment always has one operand which represents the value of the function The value returned
may be a vanable, as ;n LIMIT, or any expression of the appropnate data type Sometimes
the executable code of a function consists of only the RETURN statement, for instance

ZIITIMIIIIITT I

HASS
FUNCTION(REST_MASS, SPEED) SCALAR;

DECLARE SCALAR,

REST_MASS, SPEED;

AU
FUNCTIONIVY SCALER;

DECLARE ¥V SCALAR,

DECLARE C CONSTAHT(29200001,

2 2

RETURM SQRTII = ¥ / C)}
<CLOSE TAUjF

RETURN REST_MASS / TAU{SPEED!;
CLOSE HASS:

Using these functiens, the apparent mass of a 100-ton vehicle moving at 20 kilometers
per second can be computed by

APPARENT_MASS = MASS(100,20),

User Defined Funerions 7-2

As 1t turns out, the MASS function 1s not going to be very useful Twenty kilometers
per second 18 50 slow (compared with the speed of light) that the relativistic mass increase
will be lost 1n the round-off errors inherent m the computation To find the range over
which this effect can safely be ignored, we could execute the following code

DECLARE V SCALAR,

DO FOR V = 250000 TO 0 BY —100 UNTIL
ALMOST_EQUAL(1,MASS(1,V)),

END,

WRITE(6) 'THE ANSWER IS °, V,

Thas code references an additional user function, ALMOST_EQUAL, which could be
wiitten as shown below

ALHOST_EQUAL -
FUNCTION(A, B) BOOLEAN;
DECLAKE SCALAR,
A’ B;
DECLARE TOLERAMCE SCALAR,
IF 8 == 0 THEH
TOLERANCE = QDOQROI ABS(B)I,
ELSE
TOLERANCE = 000001,
IF ABS(A - B) > TOLERANGE THEM
RETUPN FALSE,
ELSE
RETURH TRUE;
CLOSE ALMOST_EGUAL;

XIEFIITXTIXIITITIT

ALMOST EQUAL is a BOOLEAN-valued function of sealars, as denoted by the word BOO-
LEAN on the function header and the declaration of the formal parameters Hence the RE-
TURN statements have BOOLEAN operands TRUE and FALSE

Since no other data type 1s antomatically converted to BOOLEAN, a BOOLEAN expres-
ston 1s the only permissable operand to the RETURN statement of a BOOLEAN function

Likew:se, the RETURN statement of a YECTOR or MATRIX function must be supplied
with a VECTOR or MATRIX expression, respectively Exact matching of data type 1s not
always requured, however, the same mmpheit conversions that can be performed 1n an assign-
ment statement can also result from a RETURN statement These conversions are

Single to double precision
Double to single precision
Integer to scalar

Scalar to integer

L T N L R S I

Inteper or scalar to character

7-4 Procedures and Functions

Aside from these exceptions, the value returned by a function must be of exactly the same
type as that spectfied on the function header

The function header serves as a declarabion of the function Vanables must always be
declared before they are used m expressions, the same rule apples fo funchions as well
Thetrefore, funchion bodies are usually placed before their first mnvocation m a program

However, 1n the previous example, ALMOST_EQUAL was defined after 1t had been
used 1 an UNTIL phrase In thus caseit 15 possible to make a valid HAL/S program-without
moving the funchion body, by DECLARING the function before 1t 15 used, as shown in the
example below

ERANPLE_N
PROGRAM,
DECLARE V SCALAR;
DECLARE ALMOST_EGUAL FUNCTION BOOLEAN: R ==
MASS
FUNCTIOMIPEST_IMASS, SPEED) SCALAR:
DECLARE SCALAR,
REST_MASS, SPEED;
TAU-
FUHCTICH(Y) SCALAR,
DECLARE V SCALAR,

-
-

-

CLOSE TAU:

CLOSE MASS,

DD EDR V = 250000 TQ 0 BY -106 UMTEL ALMOST_EGUAL{L, MASS{l, V});
END,
WRITE(S) ‘THE AMSHER IS', V5
ALMOST_EGUAL
FUNCTIONCA, B) BUOLEAN,
DECLARE SCALAR,
A, Bs

-

CLOSE ALNOST _EQUAL3

£ T OONMN IIIIIIXMIT OO0OMN X OO0 I ITIIIITIIIX
‘

CLGSE EXAMPLE_N3

The FUNCTION DECLARE statement has the same general form as a vanable declaration
except that the word FUNCTION (with no argument list) precedes the type specification
Of course 1t 15 always possible to place a function body before 1ts first mvocation as was
done wrth MASS and TAU above, in which case the DECLARE statement 1s unnecessary

User Defined Functions

Exercises
7 1A What values will be writen by the followmg HAL/S program?

PROBLEM PROGRAM,
DECLARE I INTEGER INITIAL(1),
PROC! PROCEDURE,
DECLARE I INTEGER INITIAL(1),
CALL FROC2,
I1=1+1,
WRITE(S) I,
CLOSE,
PROC2 PROCEDURE,
I=1+1,
CLOSE,
CALL PROCI,
CALL PROCZ,
I=1+1,
WRITE(6) 1,
CLOSE PROBLEM,

75

7-6 Procedures ernd Functions

7 1B What are the syntax errors i the following HAL/S program? (Line numbers are for
reference only)

13 PROB2 PROGRAM,

2) DECLARE X INTEGER,
3) CALL PROCI,

4) CALL PROC2,

35) Y=Y +1,

63} PROCI PROCEDMRE,

7) DECLARE Y INTEGER,
8) CALL PROCI,

9 CALL PROC2,

10} X=X+1,

11} PROC2 PROQCEDURE,

12} X=X+1,

13) Y=Y +1,

14) CLOSE,

15) CLOSE,

16) CLOSE PROB2

71C

Arguments end Parameters 7-7

Consider the above nesting diagram that depicts the scoping of blocks

For each of the procedure blocks numbered 2-6, write the numbers of the blocks from
which that procedure may be invoked

72 ARGUMENTS AND PARAMETERS

The types of the arguments passed to a function must agree with the declaration of the
formal parameters The formal parameters (which some languages term “dummy argu-
ments”} are declared in the function body, the function erguments are those expressions
specified 1n the function mmvocation For example i the invocation

UNTIL ALMOST_EQUAL({] MASS{1,V)),

The two arguments are scalar expressions The formal parameters are declared m the func-
tion body

ALMOST_EQUAL FUNCTION(AB) BOOLEAN,
DECLARE SCALAR,A,B,
DECLARE TOLERANCE SCALAR,

CLOSE,

Formal parameters

Local variable

Formal parameters i the functions discussed so far have all been scalars, but 1t 1s possi-
ble for them to be of any basic data type Integer, Scalar, Vector, Matrix, Boolean, Charac-
ter, Structure or Brt The type of a formal parameter 13 determined solely by its declaration
The aciual arguments supphied when a function s invoked must be of the same data types as
the formal parameters The exception to this rule 1s that under some circumstances the
actual argnment will be automatically (mplicitly) converted to the type requured by the
function The conversions that are permitted are the same set that are allowed 1n an assign-
ment statement Those that were listed earlier as allowable type conversions 1 ihe
RETURN statement

The declatatton of a formal parameter takes exactly the same form as any other
DECLARE statement The INITIAL and CONSTANT attnbutes may not be used, but
otherwise, any attnbute is acceptable A function may have any number of formal param-
eters, mcludmg zero The following 15 an example of a funchion i which no arguments

appear

—
oy
'POOR Qgﬁﬁﬁ f§

Abtry

7-8 Procedures and Functions

ROLL

FUMCTION IHTEGER:
RETUPN 5 RANDOM + I»

CLOSE ROLL;

T

The ROLL funcition returns an integer in the range I to 6% It may be 1nvoked as
DO UNTIL ROLL + ROLL = 7,

Functions without parameters usually erther access global data or perform some sort of m-
put ROLL gets its “input” from the RANDOM function, though reading cards or sensors 1s
actually more typical

A function has only a data type, but formal parameters may have other attributes In
parficular, a formal parameter may be arrayed The following example 15 a matnx-valued
function of arrays of vectors The resulting matrix consists of the dot products of each par
of vectors

noTs
FUMCTICH{ A1, A2) HATRIX(10, 10);:
DECLARE ARRAY{10) VECTOR(3}»
Als AZ;
DECLARE RESULT MATREX(10, 10),
DO FOR TEMFCRLRY I = 1 T& 103
DG FOR TEMPORARY J = 1 TO 10,
RESULT = Al Az,
1,4 1 Jz

END3
ERD3
*
RETURN RESULT,
CLOSE DOTS;

IIMII OIXIMIFTAIIIT

Before leaving the subject of functions, one more very important point must be made
No furction may wmodify any of uts forinal parameters That 15, parameters are viewed as
constants withm the function body Asa consequence, for example 2 formal parameter can-
not be used as a loop control vanable since 2 loop control varable 1s modified on each rtera-
tion

*but #or uniformly distnbuted See exercises

FProcedures 7-%

The pnmary mtent of thus rule 1s to make HAL/S code easier to read and mamntain In
Janguages which do not have this restriction, 1t 15 not possible to determme which vanables
are being modified by mspection of a statement ke “A = USERFUNC(B,C,D),” In any
language, 1t 15 reasonable to assume that A 15 the only vanable modified In HAL/S, this
assumpiion will always be correct

Exercises

7.2A In example 6, ALMOST_EQUAL 18 declared a function 1n the declare group of the
main-program block

With a minor modification to the program, this declaration is unnecessary What 1s
the change?

7 2B In example 7, 1t 15 stated that while ROLL returns an integer in the range 1-6, 1t 18
not unformly distnbuted

a) Why?

b} Modify the function ROLL so that it 1s uruformly distributed and mecorporate 1t
into a program that will count how many times a pawr of “dice™ must be rolled
to have 7 come up 5 tines

72C Wnte a HAL/S program that will read from channel § two arrays of 5 integers
apiece, then check if corresponding elements of the two arrays are relatively prime
(1 e, thewr greatest common divisor, or GCD, 15 1) If they are not relatively prime,
print out the pair and thew GCD

A standard algonthm for computing the GCD of two numbers 15 called the
Euchidean algorithm, and may be descrabed as follows

Start with integers m and n, whose GCD 1s desited If n= 0, then GCD{m,n) = abso-
lute value of m Otherwise, let r be the remainder resuliing from dividing m by n If
r — 0, then GCD(m,n) = absolute value of n Otherwise, 1t 15 the case thaf GCD{m,n)
= GCD(n,r} Smnce, by the defimtion of the remainder, r wall decrease 1n absolute
value on each iteration, 1t will eventually become zero The algorithm is thus guaran-
teed to termunate

Note The algonthm will work for any pair of mtegers, positive, negative, or zero
The HAL/S bulltan function REMAINDER (M, N) gwves the remamnder when M 1s
divided by N, as requured by the algorithm

73 PROCEDURES

A procedure 15 a code block similar to a function The primary distinction 1s that proce-
dures do not return values The RETURN statement can be used m a procedure, bt no
operand may be provided When the RETURN statement 1s executed m a procedure, control
15 returned to the caller The RETURN statement 158 not required in a procedure, as proce-
dures (unlike functions) will return if the flow of control reaches the CLOSE statement

-

7-10 Procedures and Functions
The only way to mvoke a procedure 15 via the call statement FProcadure invocations are

not used 1N expressions

The CALL statement consists of the keyword CALL followed by a procedure name and
a st of arguments (1f the procedure has defined any parameters), e g

CALL PROCI (X,Y,Z),

¥, Y, and"Z arc the arguments, the procedure defines 1fs formal parameters just as m func-
tions

" PROCI PROCEDURE (A,B,C),
DECLARE SCALARABC,
DECLARE Q VECTOR,

Formal parameters

Local vanable

RETURN,
CLOSE PROCI,

Formal parameters to procedures are ke funcfion paramefers in all regards, and may
not be modified witlun the procedure Procedures also have ASSIGN parameter, described

below

Suppose that the DOTS funchion of seetion 7 2 was typically used m statements Iike

In this statement, the DOTS function 1s not used in an expression, but 15 directly assigned
mto LOCAL_ VAR In such a case, some mefficiency results from coding DOTS as a func-
tion Thus 15 because when the RETURN statement 13 exccuted, the 100 scalar components
of RESULT are copred mto LOCAL_VAR A better arrangement would be to code DOTS
as a procedure and invoke 1t by

CALL DOTS{[V1].,[V2]) ASSIGN(LOCAL_VAR),

The DOTS procedure could be coded as shown below

poTS*
PFROCEDURE(AL, A2) ASSIGH(PESULT):
DEELAPE ARPAY(10} VECTOR(3),
Al, A2}
DECLAFE PESULT MATRIX(10: 10);
DO FO® TEHRGRAPY I = 1 TO 18,
00 FOP TERPORARY J = 1 TO 10;
RESULT = Al A2 3
I,J 1 J

EHD3
END,
CLOSE DOTS,

X wIMIITIIZI

Procedures 7-11

Here we see an example of an assign parameter, RESULT The statement, “DECLARE RE-
SULT MATRIX(10,10),”” does not create a vanable as 1t did mm the function DOTS, but
merely defines the data type of the assign paramefer Each assignment mio RESULT
directly modifies LOCAL_ VAR Thus, no copying of data 1s needed

Since vanables used as assign parameters to procedures can be directly modified from
the procedure body, no conversions whatsoever are permitted The type of the varuable
passed as an assign parameier must agree exactly wul the declaration of the assign param-
erer In the program segment below, A 1s the only variable which may be passed to P

P

DECLARE A INTEGER,
B INTEGER DOUBLE,
C SCALAR,

D ARRAY(2) INTEGER,

PROCEDURE ASSIGN(X),

DECLARE X INTEGER,

X=40,

CLOSE P,

A procedure may have any number of formal and assign parameters in any combmation

Thus, several values can be computed in a single procedure, as shown below

STATISTICS
PROCEDUPE(DATA} ASSISN(LO_VAL, HI_VAL, MEAND,

DECLARE DATA ARRAY(100) SCALAR,

DECLARE SCALAR,

LO_VAL, HI_VAL, VEAN,

LO_VAL = HMINLIDATAI,

HI_VAL = HAX([DATAD),

MEAN = SUMCIDATAI} / 100,
CLOSE STATISTIES,

XIITIIIIIIX

This procedure could then be used asn

DECLARE SAMPLES ARRAY(100) SCALAR,

DECLARE SUMMARY ARRAY(3) SCALAR,

CALL STATISTICS(SAMPLES)

ASSIGN(SUMMARYS$1 SUMMARY$2,SUMMARYS3),

WRITE(6) ‘Min, max and mean are *SUMMARY,

~ Unhke formal parameters, assign parameters may also be modified, as in the following
procedure which sets “AUG_LAST4” to the average of the four most recent values of

INPUT

7-12 Procedures and Functions

FILTER
PROCEDURE(TNFUTY ASSIGH(AUG_LASTG, BUFF);
DECLARE SCALAR,
INPUT, AUG_LA3TS,
DECLAPE BUFF ARPAY(4) SCALAR,
[BUFF] = [BUFF] s
1TO3 2 T0 &

BUFF = INPUT,
4

AUG_LAST4 = SUH([BUFF 1) /4;
CLOSE FILTER;

XX I WwWIIIXIEZTT

In thus example, components of BUFF appear on the left and night sides of assignment state-
ments BUFF 15 probably not used by the code which mvokes FILTER It 1s passed as an
assign paranteter because a separate version must be mawmntawmed for each user of FILTER

The rules concerning arguments and parameters are summarized helow

1. Arpuments may be expressions of any complexity, but their types must match those

73A

specified 1n the formal parameter declarations The automatic conversions of preci-
sion and between integers and scalars are performed, however

Assign arguments must be variables (possibly subscnipted, butf not expressions 1n gen-
eral}) They must match the types of the corresponding assign parameters exactly

Formal parameters may not be modified by the procedure or function which
declares them Assign parameiers may be both referenced and modified

Copying of aggregate dafa (such as vectors or arrays) occurs only as a result of func-
tion returns If an argument (of any type) will nof fit in a machine register or accu-
mulator, 1ts address 15 passed to the procedure or function Thus HALSS uses “call
by name” for aggregate formal parameters as well as for assign parameters, even
though the restriction on modification of formal parameters gives the appearance of
“call by value™

Exercises

Rewrite the improved ROLL function of exercise 7 2B as a procedure, and modify
the surroundimg program to mvoke it properly This provides an alternate solution
to 728

Which of the two solutions s preferable? What general observations does thus suggest
about the choice between precedure and function forms, when both are possible?

Scoping Rules 7-13

7 4 SCOPING RULES

The HAL/S scopmng rules for variables may be summarized as follows

1 A vanable may be referenced throughout the block in which 1t 15 declared and

throughout any blocks nested 1n that blogk, provided that the nested blocks do not
declare another variable of the same name

A varmable declared 1n a nested block cannot be referenced from an outer block

3 If vanables of a given name are declared 1n several blocks, each reference selects the
version in the nearest enclosing block

HAL/S procedures and functions may be nested wrthin programs, or within their proce-
dures and functions to any degree

This block structuring capabshty mn conjunction with the scoping rules above enables a
measure of functional modulanty 1n the development of software In other words, HALSS
allows the collection of related procedures (and functions) mto functional entities (them-
selves procedures or functions) The local resources witlun these entities, viz declared vari-
ables and nested procedures become unavailable, actually unseen, to ‘outsiders’ Commum-
cation takes place only on the haghest, most visible levels

Procedure and function names are also affected by scoping rules 1n that a procedure or
function may be nvoked from the immediately enclosing block and from any other blocks
which are nested in the immediately enclosing block An exception 1s that 2 procedure or
function may not be referenced from withan itself HAL/S does not allow recursion

The followmg diagrams illustrate the scopmg of block names In each diagram, the

shaded area mdicates the region from which the block marked with an asterisk may be m-
voked

*

,
wil
=

7-i4 Procedures and Functions

75 ARRAY(*}, AUTOMATIC, AND NONHAL

In the previous section, a procedure was written to find the munimum, maximmum and
mean of an array of 100 scalars The STATISTICS procedure would be more general 1of 1t
would accept an array of any size. The routine 1s rewntten as follows

STATISTICS:
FROCEDURE(DATA) ASSIGH(LO_VAL, HI_VAL, HEAN);
DECLARE DATA ARRAY(#) SCALAR:
DECLARE SCALARS
LO_WAL, HI_VAL, HEANM,
LO_VAL = HINUIDATAL:;
HI_VAL = max{[DATAL);
MgaM = strcipatall / SIZE([DATADSS
CLOSE STATISTICS;

XTI T XXX

Two changes have bean made First, the formal parameter, DATA, has been declared as an
ARRAY(*) DATA 13 still a hinear array, but 1ts s1ze may now vary from invocation to mvo-
cation Second, the constant 100 1n the computation of MEAN has been changed to the ex-
pression SIZE(DATA) SIZE 15 a2 bwlt-n funchion which returns an mteger denoting the
number of actual elements i an ARRAY(*)

The astensk may be used as an array dimension only m the declaration of a formal pa-
rameter An array of any data type may possess thys attmbute, but all such arrays must be
linear (smgle-dimenstonal)

Even though a procedure or fanction may be wntien to accept an array of arbitrary size,
the size of each actual argument must still be known at compile-time Thus, given the
STATISTICS procedure above and the declarations

DECLARE A ARRAY(1000) SCALAR,

DECLARE SCALAR.X)Y,Z,

DECLARE J INTEGER INITIAL(60),

The statements,

CALL STATISTICS(AS(]1 TO 60)) ASSIGN(X.Y,Z),

and

CALL STATISTICS(AS(61 TO #)} ASSIGN(X,Y,Z),

are both legal

Arrayi*), Automanc, and NONHAL 7-15

But,
CALL STATISTICS(AS(I TO 1)) ASSIGN(X,Y.Z),

15 nof legal because J 1s not 2 constant,1 e the width of the partition (1 TO J) 15 not known
untd runfime

751 Automatic Initialization

The followmg function will correctly sum the array of vectors, V, only on 1s first invo-
cation

vEuM

FUHCTION(V} VECTOR,
DECLAPE V ARRAY{¥) VECTOR;
DECLARE TOTAL VECTOR INETIALIOZ;

DO FOR TEMPCRARY N = 1 TO stz&(lv]);

ZIMIMIIIX

TOTAL = TOTAL + V 3§
N

QUALIT’E END;

RETURN TOTAL,
CLDSE VSR,

The problem 15 that TOTAL 1s imtralized to zero only on the first invocation of VSUM One
way of correcting the problem 1s to add the statement, “TOTAL = 0,” before the loop. A
more convenient means of attaming the same result 15 to replace the declaration of TOTAL
with

DECLARE TOTAL VECTOR INITIAL(Q) AUTOMATIC,

The AUTOMATIC attmbute conirols the manner of mitialization of a vamable An
AUTOMATIC varnable s set to its INITIAL value on each eniry to the contaimng code
block In effect, the compiler generates an assignment statement for each automatically
inmrtialized vanable immediately after the declare group of the contamning block

It 15 1mportant to remember that by default, imitialization 15 STATIC (the opposite of
AUTOMATICY If the AUTOMATIC attribute 1s not specified, mmitiahzation occurs only
once, at the time when the program 15 first loaded

7 5 2 The NONHAL Attribute

Sometimes 1t 1s desirable to program an apphcation m a mixture of HALfS and non-
HAL/S code, either to capitahze on existing software or to make machine-dependent
operating system interfaces which are not available in HAL/S When the non-HAL code
consists of subroutines (procedures andfor functions) there 1s a convenient way of making
them accessible to HAL/S This 1s the NONHAL attribute, used mn z declare statement An
example 15

DECLARE CPU_COST FUNCTION SCALAR NONHAL(L),

7-16 Procedures and Funchons

The form of thus statement is essentially the same as the declaration of 2 HAL/S function
that will be referenced before 1t 15 defined The only difference 1s the NONHAL attribute,
which indicates that the function body 1s nof meluded i this compilation Note that the
data type of a NONHAL function must still be supphed

A similar form may be used to define a procedure written 1n some other language, e g
DECLARE PEARSON_CORRELATIONS PROCEDURE NONHAL(2),

Since a procedure has no data type, none 15 supplied i the declaration NONHAL proce-
dures and funchions may have formal parameters (though no assign parameters), the number
and types of these parameters 1s not specified 1n the declaration, and in fact, may vary from
¢all to call No type checking 1s performed on the arguments to a NONHAL procedure or
function, and these blocks may even modify thewr input parameters Hence, great care
should be taken when using the NONHAL attnibote

The operand to the NONHAL attnbute, which consists of a positive mieger, indicates
the particular language m which the subroutine was written The association of each number
with a parficular lJanguage 1s implementation dependent, and some compilers may notsup- «
port NONHAL at all corag !

These statement may rot be used to interface separately compiled HAL/S modules A
means of sharing HAL/S subroutines between separate HAL/S programs will be presented m
Chapter 11

End of Chapter Problems

TA As 1n exercise 2B, a ball 15 thrown from a height of 110 feet with a honzontal veloc-
1ty of 4 ftfsec Suppose that it now rebounds to 75% of its previous height on each
of 10 bounces, and consider the following skeleton of a program to compute the
time unti the tenth bounce

DO FOR I = | TO NUMBER_OF_BOUNCES,
DROP_TIME = TIME_TO_DROP (HEIGHT),
CALL HORIZ_MOTION (DROP_TIME) ASSIGN (HORIZ_DIST),
TIME = TIME + DROP_TIME,
WRITE(6) ‘BOUNCE’, I, ‘TIME’, TIME, ‘HORIZONTAL

DISPLACEMENT’, HORIZ_DIST,

CALL BOUNCE ASSIGN (HEIGHT, BOUNCE_TIME),
CALL HORIZ_MOTION (BOUNCE_TIME) ASSIGN (HORIZ_DIST),
TIME = TIME + BOUNCE_TIME,

END

CLOSE DROP,

Complete the program by wrfing all necessary declarations, mitializations, proce-
dures, and functions

1B

7C

Array(*}], Automatic, antd NONHAL 717

In exercise 5A, a program was Written to compute the value of a definite mtegral of
the SQRT function using Simpson’s rule Modify that program to compute the value
of a defintte integral of a function of the form f(x) = ax® + bx? + cx +d Assume
fhat the quantities a, b, ¢, d, intial, final, and epsilon are avarlable in that order on
channel 5

The mereased modularity and readability brought about by the use of procedures
and functions 1s not without cost Procedure and function calls are typically some-
what expensive in terms of computer time, and their over-use can unnecessarly slow
down a program

For example, in problem 7A, the function HORIZ_MOTION could easily be elimi-
nated Furthermore, on the last bounce, the height and tume of the next bounce are
computed, even though they will never be used Assuming that efficient use of com-
puter time 1s here of primary mmportance, rewnte the solution so as to elinunate
these two sources of wmefficiency

The WRITE Statement &1

8 0 IfO AND CHARACTER STRINGS

The HALSS IO statements, READ, READALL, WRITE and FILE, are designed to pro-
vide a convenient mterface to external devices used for software checkout and non-flight
apphcations The READ, READALL, and WRITE statements perform sequential character
1/O to such devices as card readers and line pnnters The file statement iransfers bary
(unformatted) data to and from random-access devices such as drums and disks These
statements are all designed to provide the basic capabiity of getting data in and out of a
HAL/S program with a mummum of programmer effort

For sophishicated ground applications, the sumpherty of these statements can be a dis-
advantage when highly formatted cutput 1s required To give the programiner complete
control over input and output formats for those applications that require 1t, HALSS provides
a comprehensive set of character mamypulation faciities Any data type may be converted
to a character string, operations on the resulfing string can produce any desered representa-
tion of the onginal data

Although most flight computers do not have interfaces to character devices such as ine
prmiters, it 15 common practice to use ground based computers for early checkout of HAL/S
code HAL[S I/O statements can then be used to address the wide range of external devices
{penipherals) found on such computers

8.1 THE WRITE STATEMENT

The WRITE statement has afready been used m the examples of the previous chapters
A typical instance was

WRITE(6) ‘THE ANSWER IS, V,

Although tlus statement was not fully descnibed at the time, the assumption was made that
the stong *“the answer 18” and the value of V (a scalar) would come out on some sort of
prnnter The following paragraphs descnibe the manner 1n which the output 15 sent to a
particular device and the format 1 which 1t 1s pnnted

The routing of ounfput to a particular device 15 controlled from outside of the HAL/S
program Each WRITE statement specifies a channel number (in thus case, channel 6)
Achannel may be thought of as a virtual device or as a port between the HAL/S program and
some petipheral HAL/S defines ten channels, numbered zero through nine, which are
used 1n READ and READALL statements, as well as 1n the WRITE statement At the
HAL/S level, all channels are equivalent, 1t 1s only at execution-tume that the channels arz
associafed with actual devices This associabion 1s made in an wmplementation dependent
manner It 15 usually done threugh some type of “job confrol language™ or through com-
mands at an mieractive ternmnal The appropriate HALSS User’s Manual must be consulted
for detaills In most systems, however, channel 6 15 automatically associated with a Ime
pnnter

O
Op pgz’\@b
Op Q;’@(;@

8-2 IJO and Charaeter Strings

The channel number used ;n HAL/S IO statements must be an mnteger expression which
15 compuiable at compile tume {1 ¢., composed entirely of hterals, constants, and the basic
anthmetic operatoss). It 15 good practice to give a name to each channel via the REPLACE

statement, as shown below

REPLACE PRINT BY “6™,

REPLACE CARDS BY *5%,

REPLACE TERMINAL BY “77,

DECLARE T INTEGER, S SCALAR, D SCALAR DOUBLE,

READ(CARDS) 1, 8, D,
WRITE(PRINT) 1, S, b,
etc

Naming channels m tlus way has several advantages Fust, 1f the channels are well named
the program will be more readable Second, 1t 18 easier to change the number i one
REPLACE statement than the channel numbers m a collechon of WRITE statements
Fmally, 1t 15 possible to find all of the IfO statements which use a particular channel by
looking up the cross reference for the channel name The namng could alternately be done
by declanng infeger CONSTANTSs

After the channel number, the remaimder of the WRITE statement consists of a senies of
expressions There may be any number of expressions of any datatype Any construct
which has been terthed an expression in thus book may be used mm a WRITE statement. In
the previous examples, the expressions have all been simple vartables, but they may be of
any complexity Thus, values that are needed only for cutput need not be stored m a
varable A program to compute one of the roots of a quadratic equation mven scalar
coefficients A, B and C, might consist only of

READ(5) A, B, C,
WRITE(6) (—B + SQRT(B**2—4 A (C))/2 A,

When any type of data aggregate (¢ g, VECTOR, ARRAY) 1s written, 1t 15 first unraveled
mto its mndividual integer, scalar, character, or bit components These componentis or array
elements are then transmitted to the external device The sequence 15 the same as was
described m conjunction with shaping functions tn chapter s;x For instance

DECLARE M ARRAY(2) MATRIX,
WRITE(6) M,

results 1n the components of M bemng transmitted i the sequence

MS(L LI MS(1 1,2) M8 1,3),M8(1 2,1).M$(1 2,2). MS3(1 3,3),
MS$(2 1,1) MS$(233)

The WRITE Statement 8-3

When a data aggregate 15 unraveled in a WRITE statement, the onigimal structure may not
be retamed ¥ In the abgence of the IfO control functions (discussed in the next section),
ali of the output from a single WRITE statement 1s placed on as few hnes as possible, with
only spaces separating the operands and the elements of each operand The number of
spaces placed by default between successive values (termed the default tab) 1s implementa-
twon dependent

After the operands of the WRITE statement are reduced to a sequence of Integer, Scalar,
Character, or Bit components, cach component 1s converted to 1ts standard external format,
which 15 a character representation of its value, Each of the four basic data types above has
1ts own format

The standard extemal format of an integer 15 4 sting of decimal digits, preceded by a
munus sign if the iteger1s negative Enough leading blanks are appended to make the length
of the resuliing stnng constant for all mtegers of 2 miven precision. Thys standard length
vanes from compiler to compiler, but 1s always large enough to contain any possible integer
value Leading zeros are never included i the representation of an mteger The following
table shows the outpuf format of a few integer values for a compiler which assumes an
mteger field width of 6

Value Standard External Format
0 0 '
256 256
—32,768 —32768
-2 -2

Double precision integers have the same format, except that the field width 1s approxi-
mately twice as large.

The standard exiernal format of scalars 15 scientific notation 1n a fizxed-width field
Scalars always take the form “bd dddE£dd™ or *“‘—d dddExdd”, where each “*d” represents
a decimal numeral Exactly one non-zero digit always appears to the left of the decimal
point and posttive numbers are always presented with a leading blank The number of dimts
to the nght of the decimal point and the number of digts 1n the exponent are constant for
any parhcular version of the compiler These numbers are always chosen so that all of the
precision contamed in the scalar can be presented The fixed field width simplifies the
witting of code to re-format scalar values as will be seen wn subsequent sections The foi-
lowang table illustrates the cutput representation of vanous scalar values on a computer
with an eight digst mantissa and a two digit exponent

Value Stanrdard External Format
P 3.1415927E4+00
172 5 0000000E-01
-3 1/8 ~3 1250000E+00
0001 1 QO00000E—04
~1,000,000 -1 0000000E+06
0 00

*Some umplementatrons will print matrices one row per hne automatically, but this 15 not a language
requurement

B
“or @ggb
4z,

8-4 If0 and Character Strings

Note 1 the table above that zero 1s treated as a speciat case Double precision scalars are
presented identically except that the standard width of the mankissa 15 greater

The remainung data types, character and bt (nacluding BOOLEAN), each have two
standard external formats These formats are very sumular, but one 1s more sutable for
prmnied lstings and the other 13 more swtable for output that 13 to be read back 1n by
another HAL/S program

The programmer specifies wluch format 1s to be used for character and bt output by
means of the dewice directive The device directive 15 not a2 HALSS statement, 1t 15 2 com-
mand to the compuler which affects the way that subsequent WRITE (and READ) state-
ments are mterpreted The device directive speafics whether the output on a particular
channel 15 paged (the format swtable for pnnting) or whpaged (the machime-readable
format) .

Paged output 1s orgamuzed nto hnes and pages Since the WRITE statement 1s most
frequently used to obtain prninfed dwagnostics and results, paged output 15 generally the
default

Unpaged output 15 stmply a stream of data values m a format compatible with the
READ statement To designate a particular channel as unpaged, the device directive 1s used,
as shown below

colump | channel number 0—9
4 4
D DEVICE CHANNEL=6 UNPAGED

1».

no semicolon

Compder dizectives may vary from mmplementation to mmplementation All present
compilers mclude the device directive as shown above Qther duectives are descnbed 1n
HAL/S Users Manuals These directives should not be considered as executable statements
The presence of a device directive anywhere m a compilation governs a/f uses of the specy-
fied channel

‘The standard external format of character strings on a paged file 15 simply the content
of the string, with no conversions or padding On an unpaged file, the character string 1s
enclosed 1n single quotes () The output from the statement

WRITE(8) “The answer 15°, V,
wiil be

THE ANSWER IS 7 5836210E+05
on a paged file, buf will be

‘THE ANSWER I8’ 7 5836210E405

on an unpaged file

The WRITE Statement §-5

The standard external format for bit strings 15 a series of ones and zeros As 1n character
strngs, bit output 1s enclosed in quotes on an unpaged file A BOOLEAN consists of a single
bit, so there are only four possible outputs as shown below

Boolean Value Paged Quiput Unpaged Output
TRUE/ON 1 ‘1°
FALSE/OFF 0 o

Longer bit strings {see Chapter 13) are output with a blank between every set of four bits to
enhance readability The value HEX1234' would be output as 0001 0010 001! 0100 on a
paged file, and as ‘0001 0010 0011 0100® on an unpaged file

For character and bit types, only the unpaged format 15 compatible with the READ
statement Since these types are of a vanable length and may contmn embedded blanks,
the quotes are needed to indicate the end of one value and the start of the next

In summary, the WRITE statement will evaluate a list of expressions of any data type,
convert the resulting values to their standard external formats, and transmit these to the
device which has been associated with the specified channel There are no restnictions on
the expressions 1n a WRITE statement, and 1 no case will any data be lost i the transla-
iton to the standard externsa] formn As a resuif, the WRITE statement 1s exiremely easy
to use 1f the format of the output 15 of lLitle concern, this makes it convement for diagnos-
tics, but less appropnate for report generation

Exercises

8 1A Why 1s it penemally considered good programiung practice to give a name to each
channel for IfO functions and use the HAL/S REPLACE statement to assign the
channel number?

8 1B What happens when an executing program encountiers a HAL/S WRITE statement
followed by a lhst of expressions? What hmitabons are there on the expressions
that are legal in a WRITE statement?

8 IC Given the following declarations

DECLARE S SCALAR,
1 INTEGER,
V VECTOR,
M MATRIX,
B BOOLEAN,
C CHARACTER,

8-6 IO end Characier Stnings

Which of these WRITE statements will produce output compatible with the HAL/S
READ statement

a) Ona PAGED device?

b) On a UNPAGED dewice?
1) WR\ITE(G) S, I, V, M,
2) WRITE@) T="1 4 V="V,
3) WRITE(6) VI, V3, V32, B,
4) WRITE(6) B, C,
5) WRITE(6) S, M, VS(2 TO 3), 1,

8 2' I/O CONTROL FUNCTIONS
When the statement

WRITE(6), M,

wheve M 15 a matnx, 1s execuled, the three-by-three strueture of M 1s lost The arrangement
of the components of M depends only on the field width of a scalar, the amount of the
default tab, and the maximum number of characters per printed hne If the width of 2
scalar 13 13, the defaunlt tab 1s 5 and a line 1s 132 characters, then seven components will
be prnnted on the first line, and the remammng two on a second hne To obtain a betfer
arrangement, the following WRITE statement may be used

WRITE(6) M3S(1,¥), SKIP(1), COLUMN(IL), M3(2,*), SKIP(1), COLUMNC(1),
M3(3,%),

Thus statement will cause one row of the matnx to be printed on each ontput line

SKIP and COLUMN are I/O control funciions Syntactically, they resemble other
functions, but they may only be used as arsuments to the sequental /O statements, WRITE,
READ, and READALL Each has 2 single argument which may be any integer or scalar
expression, if the expression 1s scalar-valued, 1t 15 rounded to the nearest integer These
functions do not return a value, but only control the location m a file where subsequent
data will be read or wntten.

The IfO contrel functions may be thought of as mowing a read/write mechanism across
a two dmensional medmum The SKIP, LINE, and PAGE functions cause vertical movement
and the COLUMN and TAB functions cause hormzontal movement , In the example above,
“SKIP(1), COLUMN(1)” moves the wnite mechamsm to the beginnmg of a new hne The
SKIP function causes relative movement (down one line}, and the COLUMN function
causes abselute positionung {to the first column of the new hne)

The sequence, “SKIP(1), COLUMN(1)”, 1s implied at the beginmung of cach WRITE
statement This aufomatic positiomung will be overndden 1f the WRITE statement has
explicit honzontal and vertical posittonung functions prior to the first data operand If only
honzontal or vertical positiomng 1s speaified, then the default movement 1s partially over-
ndden In the statement

HO Control Functions 87

WRITE (6} COLUMN(10), M$(1,"},

the default horizontal posttionng to column one is overridden, but the default vertrcal
posthionming to the next line 1s not Likewise, the statement

WRITE(6) MS(1,1), TAB(12), M8(1,2), TAB(12), MS(1,3),

would leave twelve blanks between the end of one component and the start of the next
Unless overnidden by exphert honzonfal mohion commands, a TAB function 15 imphed
between each pair of datg operands to the WRITE statement The amount of the default
TAB 15 implementation dependent

Ustng these functions, an array of matrices
DECLARE AM ARRAY(2) MATRIX(3,3},

can be output 1n a readable form by
WRITE(6), SKIP(2), COLUMN(I0}, AMS(1 1,=), TAB(20), AM§(2 1,*), SKIP(I),
COLUMN(L), “AM=", COLUMN(10}, AMS(1 2,%), TAB(20), AM3(2 2,7), SKIP(l),
COLUMN(I0), AMS3(1 3,%), TAB(20), AMS(2 3,*), SKIP(2),

vielding

AM =

AMS(L) AMS(2)

The effect of the remammng 1/O control functions, LINE and PAGE, depends on whether
they are used on a paged or an unpaged channel On a paged channel, the LINE funchion’s
arpument must be m the range one to the maxumum number of lines per page The device
mechamsm 15 moved forward untit the current Line number 1s the same as that specified in
the LINE function This may cause the device mechanism to cross a page boundary The
most common use of the LINE function 15 to advance to the fop of the next page, as in

WRITE(6) LINE(1), ‘This 15 a page header’,

When used on an unpaged channel, the LINE function causes movement to an absolute
line number wathun the entire file

The PAGE function may only be used on paged files PAGE(n) results in relative move-
ment by “n’” pages The curreni column and bne numbers are not affected A typieal use of
the PAGE function 15 to slap over unwanted pages of header on input

ORic
o Pog Py
Wy, 3

8-8 I}O and Characier Strings

The preceding paragraphs apply equally to all implementations of the HAL/S language.
The prncipal vanations between mmplementations are the number of columns per line
(and hnes per page) and the result of requesting backward movement of the readfwnite

mechanism
The statement
WRITE(6) ‘results follow’, TAB(—14), *___ >,

may have any of several results, depending on the compiler 1n wse On some systems, the
two character strings may both be printed i the same columns of the same line, yielding
RESULTS FOLLOW On other systems, the second character sinng may overlay the first,
yielding just the underscores Sumlarly, backwards hne movement may or may not be
supported and may be device dependent the effect of executing SKIP{—1) may vary from
system to system The relevant User’s Manual should always be consulted before requesting
negative column or line movement

The following table swummarizes the IO control functions

I/O Control Function Operation
SKIP(K) Relafive line movement
Lme = {Line + K) mod page size
LINE(K) Absolute line movement
Line = K
TAB(K) Relative column movement
Col = Cof + K
COLUMN(K} Absolute column movement
Col = K
PAGE(K) Relative page movement

Page = Page + K

Exercises

82A Consider the following HAL/S statements

DECLARE ARRAY(3) MATRIX, MAT ARRI, MAT_ ARR2,

WRITE(6) MAT_ARRI, MAT_ARR2,

The READ Statement 89

a) Describe what the resulting output would look hike
b} Change the WRITE statement such that the resnling output will be formatted

as thus

[MAT_ARRI]] [MAT_ARR2,]
{MAT_ARRI;] [MAT_ARR2,]
[MAT_ARRI3] [MAT_ARRZ |

8 2B For each of the IO control functions below, which of the following statements
apply to 1ts use ;n HAL/S WRITE staiements?

a) default characteristics mplhied unless overrrdden)
b) causes absolute verfical movement

¢) causes relative vertical movement

d) causes relative honzontal movement

e) causes absolute honzontal movement

1y LINE(1) 5) COLUMN(1)
2) SKIP(I) 6) SKIP(0)

3) TAB(2O) 7) SKIP(5)

4) PAGE(2)

83 THE READ STATEMENT

The syntax of the HAL/S READ statement 1s also quite simple Some examples (e g,
“READ(5) A, B, C,”) have alrecady appeared 1n thuz manual, the general form 1s not much
more elaborate The READ statement consisis of the word READ and a channel number
followed by a kst of vanables and/or I/O control functions There are no restrictions on the
variables, and the IO control functions work the same way as in the WRITE statement

When any type of data aggregate appears in a READ statement, the components are
filled mn the “natural sequence™, 1e, 1 the same order m which they would be wniten
in the code

DECLARE A SCALAR, V VECTOR, I ARRAY(2) INTEGER DOUBLE,

READ(5) A, V, I,

data from the external file will be assigned m the sequence

A, V81, V§2, V83, 181, 182
If the file was onginally produced (stored on disk, punched on cards, etc), by a HAL/S
WRITE statement, 1ts contents will be 1n the appropriate format for the READ statement
Except for character and bif strings on paged files, the standard forms produced by the
WRITE statement are all acceptable on mput

Input data prepared manually may be wntten in free format, all of the following lines
are acceptable input for the READ statement above

8-10 IO and Character Strings

2y ,0,0,0,0,0
b) 1 3E5 3271E+06 001 24 =2
c) 1,234,546

The examples i[tustrate several pornts First, it 1s not necessary to dishngmsh between
mteger and scalar values Any sequence of characters which compnse a valid integer or
scalar literal (as descnbed i chapter two) 15 suatable to be read into erther an mteger or a
scalar, non-integral values read umito an mteger will be rounded

Individual values (in tilus case, numbers) m the input file must be separated by blanks
ot other delimiters One or more blanks, a single comma, or a single comnma and any number
of blanks are all equivalent. Multiple commas are a spectal case, winch mdicate ““missing
data™ If the input file contamed

1, ,2, 3 4,5

then the value of the sgcond scalar in the READ statement above (V$1) would not be
changed

-

When a semicolon 15 encountered 1n the mput stream, the current READ statement 1s
terminated If the mput consisted of

15, 26,

then only two values would be read, regardless of subsequent values and punctuation 1n
the file This fact can be useful when a program must process a variable number of input
values For mstance, a program to sum a sequence of numbers could be coded as

it | AbD:

H | FROGRAH,

H DECLARE TOTAL SCALAR INITIALEO) AUTOMATICS
M DECLARE A ARRAY{100) SCALAR INITIAL(O};

H READ(5) [Als

M B0 FOR TEHPORARY I = 1 7O 100 UNTIL A = 0}
5 1l

H TOTAL = TOTAL + A ;

S b g

u END;

4] HRITE(6) 'TOTAL IS5 °, TOTAL:

M [CLOSE ADD,

One valid mput to thus program could be
-3 95, =1731, —993, 57235, —250, +1 10, — 45, +7 50,

In this case, the READ statement would terminate when the semicolon was reached, leaving
the rest of the array (AS (9 TO 100)) equal to zero

The READ Statement 8-11

As illustrated above, a READ statement may take data from many lines of a file Lines
will be processed until eather a semicolon 1s reached or values are found for all of the oper-
ands of the READ statement The end of each line of input (e g, card column 80) serves
as a delimuter equivalent to a blank Hence, indvidual values may not be split across itnes

As m the other sequential IfQ statements, WRITE and READALL, 2 SKIP(l},

COLUMN(1) operation 1s imphed at the bemnmng of each READ statement This may be
overridden by the same means used m the WRITE statement, e g,

READ(5} SKIP{0), TAB(D), X,
can be used to read data to the mght of a sericolon whach terminated the previous READ
staternent If the input data happens to be stored in fixed card columns, then the TAB and
COLUMN functions can be used to skip over unwanted data

Any attempt to read past the end of a file will resulf mn a Tunfime eror Chapter ten
describes a mechanism for recovenng ffom this and other errors

EXERCISES
83A Let the program ECHO begm as follows
ECHO PROGRAM,
DELCARE INTS ARRAY(3) INTEGER, INITIAL(l),

SCALS ARRAY(3) SCALAR, INITIAL(0),
READ(5) INTS, BCALS,

What will INTS and SCALS contamn given the following mpuis?

a) 8,7, 655, -1, 225E2, 4,
b) -1E-1,,,72,
c) 249,,251,249,,251,

8 3B Suppose input mntended for the program ECHO of problem 8 3A has been formatted

as follows

Col | Col. 8 Col 78
4 4 }
INTS 3 4 5 00000001
SCALS 61 72 83 QopGo00n2

Modify the READ statemeni in ECHO to ignore the labels on the leff and the
sequence numbers on the nght, and read 1 the values for INTS and SCALS
properly.

812 IO and Character Strings

384 CEARACTER STRINGS

A HAL/S character variable may contain a strng of characters, the number of charae-
ters 1s allowed to vary at runfime from zero up o & maxumum specified 1n the declarafion
of the vanable The character datatype 15 declared in the same genera]l way as other daia

fypes,e g,
DECLARE STARS CHARACTER({3) INITIAL(“*#®*=*",

The vanable STARS 15 a character sinng of maximum length five and mutially con-
tamng five astensks Each character varable has both a maxmmum length and a current
length The current length 1s adjusted every fume the vanable s assigned, though 1t can never
become greater than the declared maximum If the length of the sinng on the nght-hand
side of an assignment exceeds the maxmnum length of the target vamable, characters are
truncated from the nght before assignment In the code below, RATING starts with a
length of zero (t 15 wmtialized to the null stnng), but after the assigniment the current
length becomes three r

DECLARE RATING CHARACTER(3) INITIAL{"),
DECLARE QUALITY INTEGER INITIAL(3),
RATING = STARSS(1 TO QUALITY),

As shown, the general form of character subscrnpfing is the same as vector subscopting,
except that the wadth of a partiion does not have to be known at compile-time

In addition to subscriptmg a character string to pick out a single character or a sub-
stong, HAL/S provides an operator for putting two strings together Thas 15 the catenation
operator, denofed by the keyword “CAT™ or by the sign “| I* The effect of this operator
15 to append the night-hand operand to the end of the left-hand opetand

‘ABC' t| ‘DEF
yields

‘ABCDEF’

Character strings may also be compared with each other, asin

IF RATING NOT = **** THEN EXIT,
and may be compared for “greater than” or “less than® 1n order to sort them alphabetically
The latter capability 15 affected by the collating sequence and s therefore implementation-
dependent More details can be found in the appropriate Users Manual

HALSS also prowides a set of bultn character functions (hsted m Appendix A) The

following paragraphs describe some of these functions as well as providing some practical
examples of character operations

Character Strings 8-13

One of the major uses of character vanables and operafions m HAL/S 1s formatting out-
put In the WRITE statement below, the value of the integer vanable N will be inserted
i a hne of output

DECLARE N INTERGER,

WRITE(S) ‘the answer 1s ‘I INL¥ fps’,
If N 1s sax, the output from this statement will look hike
THE ANSWER IS 6 FPS

This statement dlustrates an mportant rule Whenever an integer or scalar 1s used 13 a
character expression 1t 15 converted to its standard external format (a character strng)
The standard extiernal format of an mteger includes leading blanks These blanks can be
removed by means ¢of the TRIM bwltan function, as shown below

WRITE(6) ‘the answer 1s “| [ITRIM(N) | F Fps’,
Thus statement will produce
THE ANSWER 1S 6 FPS

The TRIM function removes all leading and traiing blanks from a character string Its argu-
ment must be a character expression, thus N 1s converted to character before the invocation
on TRIM in the statement above

Sumilar character functions are RIUST and LIJUST, which add leading and tralling
blanks, respectively Each of these functions fakes two arguments, a character expression
and a field widith These functions nght or leftqustify the value of the character expres-
sion 1n a field of speafied width With N= 6, RIUST(N,2) yvields © 6" and LIUST ('XYZ’ 4)
veelds “XYZ’

Note that within the quotes of a character hteral, blanks are treated the same as any
other character 4ny character may be used 1n a quoted strng

8-14 [IfO and Character Strings

Like vaniables of any data type, character strings may be arrayed The following func-
tron could be used to display the value of a boolean (B) in the format specified by an
nteger (TYFE)

STATE:
.FUHCTION(B, TYPZ) CHARACTER(S);
DECLARE & BOOLEAN,
TYPE INTEGER»
DECLAPE YES ARRAY(4) CHARACTER(5) INITIAL('TRUE', 'ON', 'OPENT", *VALID');
DECLARE MO ARRAY(%) CHARACTER(S) IMITIAL('FALSE': °OFF", 'SHUT®, 'ERROR')};

IF B THEH

r
RETURH YES H
TYPE:

ELSE

»
RETURN WO H
TYPE:

T WHWIMIT VWMIMIMIIITIIX

CLOSE STATE:

This function could be invoked as shown below

DECLARE BOCLEAN INITIAL(OFF), VALVE, POWER,
WRITE(6) ‘VALVE=",STATE(VALVE,3),'POWER=",STATE(POWER,2),

This example would produce
VALVE=SHUT POWER=0FF

The concepts of marxamum length and current length apply to eack element of an array,
and to the value returned by a character function The maximum lengths of all elements of
a character array are equal, but the curmrent lengths may vary Thus, the length of the vaiue
returned by STATE can vary from two to five The maxymum length on the function
header can never be exceeded, however, if “RETURN ‘ABCDEFH’,” was executed, the
string would be fruncated at the nght yielding ‘ABCDE’

It should be noted 1n the example above that the n! element of a character array such
as YES 1s represented by “YESI(N) and not “YESSN” The trailing colon must be sup-
plied to indicate the absence of component subscrpting just as 1n arrays of vectors, matrices
and Bit Strmgs (Booleans) As before, both array and component subscnipts may be supphed
if neaded YESS(3 2)1s the second character of the third element of YES ‘P

A few examples of automatic conversion to character type have appeared above It 15
also possible to expheitly convert to chamacter type via the CHARACTER shaping funchion
Tlus function 15 syntactically 1dentical to the INTEGER, SCALAR, VECTOR, and MATRIX

Character Strings 8-15

shaping functions descnbed previously It converls iis argument or arguments to thenr
standard external formats It has an additional form that allows conversions to octal or
hexadecunal as shown below

WRITE(S) CHARACTERS(@OCT)(BIT{(N)),
If the mteger N 1s equal to 29, this statement will produce the output

‘0000000035”

When the CHARACTER function 1s subscripted with a radix (@0CT or @HEX), its oper-
and must be a bit stnng The BIT function above 1s not fully described until Chapter 13,
but m this case it merely returns a bit paitern equivalent to its arpument

Another use of the character mampulation facihities 15 readmng data that 15 not m the
standard HAL/S format Inteper data that has been punched on cards in the format shown
by the table below could be read m by the HAL/S statements wiach follow 1t

Input Format

Colunmns Description
1-3 case nimber
4-5 age
& I=male, 2=female
7-10 X factor

Example of Input

1152612781

AGE
ERDGRAM,
DECLAFE € CHARACTER(BO0),
DECLARE INTEGER,
CASE_NUM, AGE, SEX; X,

r
READALL(B) C3

mITImaamxIII X

¥
CASE_HUM = INTEGERI(C 13
1703

1
INTEGER(T 1.
47085

AGE

SEX

INTEGEPIC)»
&

L]
® = INTEGER(C IH
7 70 10

2z UwXm OIm HImM

CLOSE AGE,

8-16 IO and Character Strings

This would yield the following values

CASE_NUM = 115
AGE = 26
SEX =]

X = 2781

When the argument to the INTEGER shapmg function is a character stnng, all of the
characters must be in the range-0—9 (1 e , compnse-a valid integer) Thus, this code would
not work if the CASE_NUM field (for mstance) was coded with leading blanks mstead of
leading zeros The TRIM function can be used to make the program more tolerant as m

CASE_NUM = INTEGER(TRIM(CS(I TO 3))),

The READALL statement used to obtan C from channel 5 (probably a card reader) will
be fully described 1n the next section of this chapter

Since the standard extemal format for scalars 15 not always convenient, a character func-

tion like the one below can be used to write a more readable XX YYY notation

-

REFORMAT:
FUNCTION(X, DECIMALS, WIDTH) CHARACTER(20),
DECLARE X SCALAR,
DECIMALS INTEGER,
HIDTH INTEGER,

X IS THE NUMBER TO BE CONVERTED, DECIMALS IS THE NUMBER OF
DIGITS TQ BE PRINTED AFTER THE DECIMAL PODINT, AMD WIDTH IS
THE TOTAL LENGTH OF THE STRING RETURNED

DECLARE Y SCALAR;
DECLARE € CHARACTERI201;
DECLARE § CHADACTERI(1);
DECLAPE ZEPOS5 CHARACTER(20) CONSTANT(CHAR(20)'D"};
IF X « 0 THEH
DO,
¥ = =%

g5 = *=?;

END;
r DECIHALS
C = CHARACTER(INTEGER (10 e I
. 200UBLE

UIMIIMIATIXIIMIAIITIIINIT OO0 Iz

’
IF LENGTHIC) < DECIMALS THEHW
2 2 3
¢ = ZEPOS il c,
1 TO DECIHALS-LEMBTH(EC)

WImIm

1 TO #-DECIHALS #-DECIMALS-1

T wIm

CLOSE REFORMAT,

»] »
RETURN RJUST(S I € I+ Ilc T0%#2» WEDTHS

Characier Strings 8-17

With the function befgre,
WRITE(6) REFORMAT(SQRT(2), 3, 5),
would yreld
‘1 414°,1 ¢, a five character field with three decimal places

Two new features are mtroduced in this example First, the expression “CHARQRO0)0™
18 a shorthand notation for the stnng consisting of twenty zeros It 18 a character hteral
which may also be used 1n an assignment statement such as

C = CHAR(80)* °, Fblank card*/

An additional budtan function, LENGTH, 1s also used LENGTH tfakes a character vanable
OrF eXpression as an argument and returns an mteger representng 1ts current length

The REFOQRMAT function shown here has one deficiency It does not check X for
bemng too large for a field of width WIDTH A good fixup would be to return part of X 1n
scientific notation 1f 1t 15 too large for the field Thus improvement s left as an exercise

Exercises

84A Which of the following expressions are legal character subscripts? Whach are legal
vector subscripis? (Assume all vanables are of integer type)

a) (4

b) (I+1}

c) (7 AT 3)
d) (2 TO I-2)
e} (6 AT I+))
D aTO D
£} (K TO K1)

848 What will the output be from the followmng program?

PROG_B PROGRAM,
DECLARE CH CHARACTER(IS) INIFIAL(*ABCY),
REPLACE PRINT BY “WRITE(G)”,
PRINT CH, CH!ICH,
CH = “123’tICH | 1456,
PRINT CHS$(1 TO S), CHS(5 TO #),
CH = CHS$(I TO 2)1ICHS(3 AT #-5),
PRINT CH, CHG@E2 TO #),
CLOSE PROB_B,

8-18 IfO and Character Strings

g 4C Given the following declarations and assignments, which of the following compan-
sons are true? Assume the ‘A’ << ‘B* < < 2

DECLARE Cl15, CHARACTER(15)
DECLARE CHARACTER(I)
C11, €Iz,

Cls
Cl1
Cl2

!A:,
(A!,
IB’,

a) ‘A" = Cil

b) €15 = ‘A’

¢ CI5 = Cli

d) €15 1= cli2

e) ‘A’ < Ci2

f) ‘A’ < AR’

g) Cll < ‘AB’

h) Ci5 < Cll CAT CI2
N o< P

D owhEr <

85 OTHER HAL/S IJO CONSTRUCTS

The READ and WRITE statements already described allow data to be transferred
between a HALSS program and a sequential character oriented file The data 15 always
transferred 1n a standard format according to 1ts type, though IO control funchicns allow
arbafrary positiomng of the data Smnce character operations aliow output reformatting, the
addition of an unformatied read (READALL) gives the programmer complete conirol
over sequential character files

HAL/S also supports random-access files, which do not necessanly contain charac-
ter data, via the FILE statement, and provides some features which aid m {ransfernng data
to and from special purpose sensors and effectors

Other HALLS IO Constructs 819

Exercises
85A What HAL/S data types may be read using the READALL statement?

8 5B How are character stings surtable for input via the READALL statement different
from those suitable for anput via the READ statement?

8 51 The READALL Statement
One example of the READALL statement,

DECLARE C CHARACTER(80),
READALL(S) C,

was used in the previous section Aside from the READALL keyword, the format of thus
statement 15 exactly that of the READ statement, although a restriction 15 made that all var-
1ables be of character type

The READALL statement can input up to one line of characters from a HAL{S channel,
the characters read are placed directly i the character vanable or vanables wathout any
special interpretation of the dehmuters blank, comma, and semicolon Characters are trans-
ferred unfil either ali of the vanables have been filled to theiwr declared maximum lengths, or
the entire line has been read, whichever comes first Unless the READALL statement begins
with I/O control functions (e g SKIP, LINE) the device mechamsm 1s advanced to the be-
ginmng of a new line before the first character 1s transferred

When a list of varables or a character array 1s specified, each vanable or element 15 filled
m turn There 1s no automatic movement of the device mechamsm between varables This
allows & line of data to be broken mto fields, a card could be read as eight 10-character
fields by

DECLARE CARD ARRAY(8) CHARACTER(10),
READAIL(5) CARD,

I/O control functions may also be used with READALL Using the declaration above,
Just the {first and last fields could be read by

READAYI(5S) CARDS(1), COLUMN(71), CARDS(8),
READATL uses the same set of channels as READ and WRITE Input and oufput

should not be mixed on the same channel, but READ and READALL may both be used
on the same mput file or even the same card as in the following example

8-20 {0 and Character Strmgs

DUTER: -
PROGRAM:

DECLARE SCALAR.
PHI, ALFHA,
DECLARE IMNITIAL_POSH VECTOR DOUBLE;
DECLAPE HODE INTEGER.,
PRINT BCOLEAN.

IHNETIALIZE"
FROCEDURE,
DECLARE V MAME CHARACTERES)S
REPLACE INFILE BY "5,
DO WHILE TRUE.
READALL{INETILE) VHANE,
VHAHE = TRIMIVNANEL.

IF VNAME = "PHI® THEMN READ(INFILE) SKIP(O), COLUMHI®)s PHI;
IF WYHAHE = 'ALFHA' THEM READ(INFILE) SKIP(Q), COLUNNI{9)s ALFHAS
IF VNAHE = *T_POSH' THEM READIINFILE) SKIP(Q), COLUMN{9}», INITIAL_POSH,
IF VNAHE = 'FODE' THEN READ(INFILE) SKIP{0), cOLUMN(9), MODE,
IF VHNAME = 'FRINT' THEN READCINFILE) SLIP {0}, COLUMNES), PRINT,
IF YNAME = 'END" THEM £X1T;
END,

IF FRINT THEMN

WRITE(&) PHI, ALPHA, INITIAL_POSH, HODE;:
CLGSE INITIALIZE.

TEMIMITITIIIIIIZIZIIRXIXE NN IIX2X 2

-

oon

H | CLOSE OUTER: 1

The INITIALIZE procedure above could be used to read mmtal values for a simulation
run. The mput lines would consist of a varnable name m the first eight columns followed by
an mrtial value in the standard extemnal format for thar data type,e g

PHI 00137
PRINT ‘1’
I_POSN 1, 1, 1
END

This type of mibiahization module takes ittle memory and 1s faurly efficient 1f there are
not {00 many vanables Its mamn advantage 1s that i1t 15 very easy to code, particularly if a
parametenzed REPLACE macro 13 used to abbrewiate the repeated code

Other HALJS IO Construcis 5-21

REPLACE TEST(ID, VAR) BY “
IF VNAME = ID THEN REAL(5)
SKIF(0), COLUMN(9), VAR",

TEST('ALPHA’, ALFHA},
TEST(I_POSN’, INITIAL _POSN},

etc

8 5.2 The FILE Statement

The FILE statement 1sused to read and wrate random access files These files (which are
numbered separately from channels) are crgamized into records which may be accessed 1in
any sequence Genesrally speaking, any record may be read or written 1n the same amount
of fimes as any other (hence the term “random access’™)

The FILE statement has two forms

FILE(number, address = expression,
and

variable = FILE(number, address),

The construct FILE{number, address) 15 called a file expression: When the file eXpression 1s
used on the left of the equais sign (the output file' statement), the value of “expression™ s
wntten to the record specified by *‘address” on the file specified by “number” When the
file expression 15 used on the right hand side (the input file statement), the record denoted
by the file expression 1s read into “vanable”

The FILE statement 1s hughly implementation-dependent The appropmate User’s
Manual should be consulied before 1t 15 used

The “number” and “‘address” operands of the file expression may be any integer or
scalar anithmetic expression “Number” must be computable at compile-time If the ex-
pression 1s scalar, it will be rounded to the nearest integer The lepitimate ranges of these
mtegers are mplementation dependent

There are no restnctions on “expression” 1 the output file statement All of the fol-
lowing statements are legal

8-22 IfO and Character Stnings

DECLARE MATRIX(10,10), M1, M2,
DECLARE A ARRAY(99) INTEGER,
DECLARE C CHARACTER(20),
DECLARE 1 INTEGER INITIAL(17),
REPLACE HIST BY “5”,
FILE(HIST, 12) = M1,

FILE(S, I+1) = MI + M2+T,
FILE(HIST,8) = M1$(2 TO 7,%),
FILE(HIST,9) = A+l,

FILE(HIST,10) = C || I,

There are, however, some restnctions on “‘vanable” in the mnput file statement These
are the same restrichions that apply to assign parameters of procedures “vanable’” must be
one of the following

1 An unsubscnipted vanable
2 An enfire amray element
3 A contigunous parhition of a single vector or matrx

The following mput file statements are all legal

M1 = FILE(HIST,2),
C = FILE(3,3),

AS]1 = FILE(4,4),
M13(1,%) = FILE(S,6),

It 13 not possible to read mto a non-conhguous partition of a MATRIX (M15(*,1)) or an
array paration (A$(5 TO 10)) or a partitien of a character stnng (C§(3 TO #))

Both versions of the file statement cause the transfer of unformatted binary data Thus,
if the file statements are to be used rebiably, a record should always be read mto a variable
of the same 1ype and orgamization as the expression that was writien Smce the compiler
cannot know how a file was ongnally wrniten, it 1s up to the programmer to ensure
compatabihity

853 Avioncs [fO

HAL/S does not mnclude any specific avionics IfO statements, principally due to the fact
that there 1s:currently no standardization of arrbome IO systems Some flight computers
have one or more mdependent I/O processors or channels with their own unique mstruction
sets Qther computers erther have CPU instructions for I/O or have a section of memory
that 1s “hard wired” to external devices (e g storing into locafion 5432 [octal] might lower
the landing gear}

Operating systems also vary widely m thus regard In some systems I/O 1s requested by
application programs, while i others it 1s all done *‘automatically” on a perniodic basis
Finally, every system will have a different complement of sensors, displays, effectors, ete,
each of which may have i1ts own unmique formathing and protocol requirements

Other HALJS IO Constructs 8§23

Although there 15 presently no way to implement generalized aviomics I/O as a HAL[S

statement, the lanpuage does provide a number of features that allow mdividual systems to
be tailored

Stmetnre (chapter 9) and compool {(chapter 11) templaies allow a section of
memory to be mapped 1nto a collection of varmables of assorted types

Procedures and functions can be coded assembly language and mterfaced to a
HAL/S program (see chapter 11)

Bit strings (chapter 13) allow low-level formatting via subscmpfing and logical
operators (AND, NOT, etc)

IfO errors may be handled via the ON ERROR statement described m chapter 10

Event vanables (chapter 12) allows warting for I/O completion, and may tngger
transactions when signalled

The following code Mlustrates some of the ways that I/O mught be performed 1n alter-
nate systems

TR HEITIMITTITIIZXAIXTIZTII

AZSORTEDIOD
PROGRAM,
PEFLACE GEARDCLM BY “INTEGER[OCT'S432')M,
DECLAPE DCYWAVPEAD EVENT,
DECLAPE MEMMAME ARRAY(I2768) BIT(L6) INITIAL(MAME(NULLI),
STRUCTLPE IQFARH
1 DEVICE IHTEGEP.
1 STATUS BIT(16]),
1 BUFFER HAME APPAY(LID! IMTEGER, -
1 LDEBS INTEGER,
DECLAFE FHOSE SCRS IOPARM-STRUCTURE IMITIAL(1&, HEX'0", HULL, 27},
QECLAFE 10 FRCCEDURE RCHALIL)
PEPLACE OP5YS BY ' 1"
D0 CASE DSS1E,

SENCRL, /¥PERCENT MACRO®/
+
CALL IO(FHDSEHSORS). HASSEMBLY LAHGUAGEW/
HEM = OMy
GEARDCHE
SIGHAL GOHAVREAD, Z¥EVENT VARTABLEW/
» FARD-0fS
EHD,

CLOSE ASSORTEDID,

This program only indicates a few alternatives, there are many other possibthities

8-24 IfO and Character Strings

8A

8B

3C

End Of Chapter Problems

Write a HAL/S program that will read, from channel 5, 2 arrays of character strings
(5 elements per array, maximum 5 characters per stnng), remove leading and trailing
blanks from each string, reverse each string, and write the results on channel 6 1n the

form

Column 5 Column 15
CHAR_ARRI, CHAR_ARRZ;
CHAR_ARR1, CHAR_ARR?,
CHAR_ARRI, CHAR_ARR2;

wnte a HAL/SS program to perform the following fask

Input on channel 5 contans the names of 50 peaple, each consisting of a first name,
one blank, and a last name Names are separated by commas, the maxmmum Jength
of any name 15 25 characfers, and there are no blanks in the input except those fol-
lowmg the last comma i a hne (no name is broken across two lmes) The final
name 15 nnot followed by a comma

The program should read in alt 50 names into an array, and wnte on channel & all
names whose last name beping with ‘S’

An example of possible program mput 15

SAMUEL COLERIDGE,CHARLES BAVOELAIRE,EMMY NOETHER,
WILLIAM SHAKESPEARE,TYCHO BRAHE,DAVID HILBERT, etc.

Wnte a HAL/S program that will read from channel 5 a - fo 3- digit mteger, and
wrrte on channel 6 the Enghsh equuvalent, e g,

173 -+ ONE HUNDRED SEVENTY-THREE
0 - ZERO
15 = FIFTEEN etec

Declaring and Referencing Structures 9-1

9 0 STRUCTURES

HAL/S structures provide 2 means of collecting a group of vartables under a simgic name
This grouping capability has a number of uses, one of which 1s illustrated below Suppose a
utiity function which requires many paremeters 1s defined at the outer level of 2 program
and invoked from lower level code as shown below

t e »
PP
ot L — '

! a ' Vees ottt b

QUTER
PROSPAM,
DECLARE SCALAR,
Gl. G2,

o’

UTIL-
FURCTION{A; By C, O, E) VECTCR;
DECLARE A VECTQR}
DECLARE SCALAR.
B, D
DECLARE C JMTEGER:
E BOOLEANW,

RETUPN A,
CLOSE UTIL,
NESTED
PRCCEDURE,

ITIZIITM NOO IITIITIXIXITR

3]

A PROCEDURE HHICH TNVAXES UTIL

DECLARE RESULT VECTOQR.
DECLAPE V YECTOR INITIAL(G: 1, 0),
DECLARE SCALAR,
51, 52,
DECLARE € INTEGER IMITIAL(83),
E BCOLEAN INITIAL(OFF},

51
s2

6l 7 3,
SINIGYL + G271,

Hon

RESULT = UTIL(V, 51, Cy S2» EI;

[« Nu Ny XIMITIT OO IAIIXIIIIXX

CLOSE NESTED,

L - 4

It 18 advantageous to keep the actual arguments passed fo UTIL (1e V, 81, 52, etc)
declared at the lowest possible level because of the protection afforded by scopmg rules, and
to show that these vanables “belong’ with the NESTED code block On the other hand,
some nefficiency results from passing all five parameters separafely The code 1n the next
figure shows how structures can be used to reduce the number of UTIL parameters to one

ORIGIN 4 ;-
ALPA"“ N
-@‘EEQQQ U CE 13

9-2 Structures

OUTER:
PROGRAM,
DECLARE SCALAR,
Gl, GZ,
STRUCTURE UTIL_PARM:
1 ¥ VEETOR»
1 51 SCALAR,
1 C INTEGER»
1 52 SCALAR,
! 1 E BODLEAN;
UTIL: s ' '
FURCTION(X) VECTOR;
DECLARE X UTIL_PARH-STRUCTURE,

.
.

-

RETURN X.¥3
CLOSE UTIL,
KESTED
FROCEDURE,
DECLARE RESULT VECTCR:
DECLARE LOCAL UTIL_PARH-STRUCTURE INITIAL(O, 1, O, O, 83, 0, OFF);

NOTE THAT THE TEHPLATE IS NOT REPEATED

LOCAL.S1 = G1 / 3.
LOCAL 52 = SINIGl + G2),

OG0 I N OZIIIXIIIM OOONN ITIIIIIIXIIIITR

E - +
Ly RESULT = UTIL(LOCAL)»
c

c

c

H | CLOSE MNESTED,

c

c

c

M | CLOSE OUTER,

Several new language constructs are used 1 this example Fust 1s the statement begin-
nmg with “STRUCTURE UTIL_PARM > This statement creates a struciure template
named UTIL_PARM which defines the Iayout of the UTIL_PARM-STRUCTUREsS declared
later In addition to structure declaration and mitializafion, the example shows references
to the compenents of a structure, strucrure rermmels, such as “LOCAL SI” and an entmre
structure, LOCAL

The next section describes all of the constructs used in the example, although some of
the more complex forms are deferzed to the end of the chapter

http:LOCAL.S1

Deeclaring end Referencing Sitructures 9-3

9.1 DECLARING AND REFERENCING STRUCTURES

Int the statement
DECLARE LOCAL UTIL PARM-STRUCTURE INITIAL(0,1,0,0,83,0,0FF),

the phrase “UTIL_PARM-STRUCTURE’ takes the posiion usually occupied by a data
type This 1s actually consistent syntax because X-STRUCTURE, where X 1s a template
name, I5s a data type Hence, a template name with the word STRUCTURE attached by a
hyphen can be used in most of the construcis from previous chapfers which require a data
type or “type specification” Examples mclude factored declare statements such as

DECLARE UTIL_PARM-STRUCTURE,
LOCAL,
X,
Y INITIAL(1,2,3,4,5,6,True),
ZERO CONSTANT(0,0,0,0,0,0,011),

and funciion type speaification, asin
SHAPE FUNCTION{A,B,C,D) UTIL_PARM-STRUCTURE,

It 15 zmportant to note that STRUCTURE by 1tself 1s not 2 data type The type of a
structure 15 entirely defined by the layout of its template From this rule, and the descrip-
tion of parameter passage in chapter seven 1t follows that when a strucrure is possed to a
procedisre or function, the template of the aciual arguntent passed must be 1denfical to the
template of the formal parameter

The condrtions under which two templates are identical for purposes of data type
matching (in parameter passage, assignments, etc) will be discussed 1n Section 9.2 However,
the eastest way of assuring that two structures are of the same data type 15 to use the same
template in their declarations In the example, the STRUCTURE statement which defines
the UTIL_PARM template 15 part of the program level declare group It can be used n the
declarations of X and LOCAL i nestéd routines because the scopmg rules for structure tem-
plates are the same as for declared varmables Thus, a template defined at the program level 15
global and may be used 1n declarations anywhere in the program

In addition to parameter passage, entire structures may be used 1n assignment statements
and m the vanous I/Q statements For example, a set of ten test cases could be run through
the UTIL function by executing the following code

5o

~ K,

24 Structures

OUTER
PROGRAM;
DECLARE SCALAR,
&1, 623
STRUGCTURE UTIL_PARM:
1 ¥ VECTOR,
1 S1 SCALaAR,
1 C INTEGER,
1 S2 SCALAR,
1 E BOOLEAM,
DECLARE ARG UTIL_PARM-STRUCTURE,
UTIL-
FUNCTIONEX) VECTOR,
DECLARE X UTIL_PAPM-STRUCTURE.,

000 IXXTIIIIIIIITITT

.

RETURN X.V»
CLOSE UTILS
DO FOR TEMPORARY I = 1 10 107

+
READLIE) ARG,
+ +
HRITEESG} 'UTIL OF', ARG, '=', UTIL[ARG),

END5
CLOSE DUTERT

T SAMXIMIIITm

The statement “READ(5) ARG,” 1s functionally equivalent to
READ{3) ARGV, ARG 81, ARG C, ARG 82, ARGE,

In other words, the components of the structure are read in the “natural sequence”, which
13 the order in which they appear in the structure template The components are output m
this same sequence when ARG appears in a WRITE statement

The Structure Template 9-5

Simlarly, given

DECLARE UTIL_PARM-STRUCTURE, A, B,
the statement

A=B

15 equvalent to the sequence

AV =BV,
AS1 = BSI,
AC =BC,
AS2 = BS2,
AE =BE,

Structure components, such as LOCAL V and A Si, follow exactly the same rules as
simple vaniables of the corresponding data type No restrictions whatsoever are nnposed o1 a
structure component that would not also apply to a sumple vanable of that type Thus, the
vector component, V, of a UTIL_PARM-STRUCTURE, A, can be subscripted

AVl = AVS2,

used m a compatison,

»

DO UNTIL AVE(@ AT 1) =0,
passed fo a bullt-in function,
A Sl = ABVAL{A V),

read, wntten, or filed, or used m any other construct i which a vector is allowed Further-
more, there is no addibonzl runtime overhead {either hime or space)} involved 1n referencing
a component of a struciure rather than a simple vanable

Structure 1mtialization 1s essentially the same as array nutiahzation The mnitial list con-
sists of a value or set of values for cach component of the structure, separated by comas
The CONSTANT attribute 1s also acceptable Theres 1s no way to wnie a structure iteral, but
the CONSTANT attnbute may be used to obtain the same effect For example, a convensent
way of setting all of the components of a structure to zero 1s

DECLARE UTIL_PARMS-STRUCTURE,
A
B,
ZERO CONSTANT(0,0,0,0,0,0,011),
A = ZERO,

¥

9-6 Structures

In addition to assignment statements, paramefer passage, and IfQ statements, compari-
son of enfire structures 1s permitted As was the case with arrays, the only compansons that
can be made between structure operands are equal (=) and not equal (71=)

In this section we have discussed all of the ways that entire structures can be used m
executable statements and made the assertion that components of a structure may be used
1 any way that simple variables of the same types can be used We have discussed declara-
tion and mutialization of structures using the template names as a dafa type All of the ex-
amples have used the same template (UTIL_PARM), but the rules for creating templates
have been omitted and the naming of structure components has only been ymplied by exam-
ple In section 9 2 we will clear up these pomnts and show additional examples of the use of
structures This chapter concludes wath the presentation of two additional attributes “Copi-
ness”, which 1s analogous to arrayness of other data types, and unqualified structures, which
are easter to reference but more limuted m capability

92 THE STRUCTURE TEMPLATE

A structure template describes the layout of a structure m terms of the order and data
types of 1fs components A structure template 15 created viz the STRUCTURE statement
Thus statement beging with the word STRUCTURE followed by the name of the template
being defined and a colon The remainder of the stafement 15 a list of component descrip-
tions separated by commas Each component 1s described by a level mimber, a name, and 2
data type The statement below creates a template named SUFER_VECTOR which has
three components

STRUCTURE SUPER_VECTOR
1 V VECTOR,
1 STATUS BOOLEAN,
1 TIMETAG SCALAR,

The phrase “1 V VECTOR™ defines a component named V of type VECTOR at level one
These level numbers require some explanation, but first we will state the rules about names
and data types

[} The name of a structure component may be any valid HAL/S identifier

2) The names of structure compenents need not be umque, provided they can be un-
ambiguously referenced (1 e. structures A and B may both have a component named
X since they can be distinguished by referencing A X and B X)

3) The components of a structure may be of any data type They may be of single or
double precision and they may be arrayed

Since SUPER__VECTOR-STRUCTURE 1s a data type by the defimtion in ths chapter,
le three above makes the following template lezal

STRUCTURE STATEVEC
1 POSITION SUPER_VECTOR-STRUCTURE,
1 VELOCITY SUPER_VECTOR-STRUCTURE,
1 ACCEL SUPER_VECTOR-STRUCTURE,

The Structure Template 9-7

Given the following structure declaration
DECLARE STATE STATEVEC-STRUCTURE,

how are the low-level components referenced? The answer follows from the nformation al-
teady presented Since the V component of POSITION 1s named ‘“POSITION V”, the POSI-
TION V component of STATE may be referenced as “STATE POSITION V** This process
may be camed to any level Given,
STRUCTURE 52
1 STATE STATEVEC-STRUCTURE,
i ATTITUDE_INFO ARRAY(3) VECTOR DOUBLE,
DECLARE STATE2 S2-STRUCTURE,

the components are named

STATE2 STATE POSITION ¥,
STATE2 STATE POSITION STATUS,

STATE2 STATE ACCEL TIMETAG,
STATE2 ATTITUDE INFOS$(1),

and so forth The components listed above are called siruckure ferminals A structure termi-
nal 1z any component of a structure which 1tself 15 not a structure. Structure components
which are also structures are termed sfructure nodes, this terminology stems from viewing a
structure as an inverted tree, as shown below

ATTITUDE_INFO

POSITION

STATUS STATUS T%ﬁg-

¢ 8 Struetures

In this diagram, rounded boxes are used to represent nodes, or forks in the tree The

square boxes represent structure termmals which are the leaves of the tree

In Section 9 1 1t was stated that a component of a structure may be used i any context
n which a simple varable of the same type can be used This statement apphes fo both
structure termnals and to entire nodes of a structure Since the nodes STATE2 STATE PO-
SITION and STATE? STATE ACCEL are of type SUPER_VECTOR-STRUCT URE, they
may be read, wntten, filed, assigned to each other, compared, or passed as parameters fo a
procedure or function which expects a SUPER_VECTOR-STRUCTURE as an argument

Thus, these components of STATE2 STATE mught be manipulated as shown below

R
FPOGRAH,
STPUCTUPE SUPEP_VECTOR
1 V¥ VECTOR .
1 STATUS EDOEEAH,
1 TIMETAS SCALAR:
STPUCTUSE STATEVEC
1 POSITICY SUFER_VECTCR-STRUCTURE,
1 VELQCITY SUFER_VECTCR=-STRUCTURE,
1 ACCEL SUPER_VEGYGR-STRUCTURE,
DECLAFE STAYE STATEVEC-STRUCTURE.
STRUCTLRE s2
1 STATE STATEVEC-STRUCTURE,
1 ATTITUDE_IMEQ ARRAY{3) VECTOR DOUBLE,
DECLARE STATEZ S2-STRUCTURE,
PEPLACE TEST_DATA BY "1*,
DECLARE CYCLE INTEGER IMYTIALLQI)
DECLARE DELTA_T COMSTAHT() / 10), #%TIME BETHEEH SAHPLES®/

TmzIIITIIIIXIITIAIIIIII

+ *
STATEZ2 STATE AGCEL = READ_ACCCITVH

1]

ASSIRSE THAT 17 SELECTS THE CORRECT ACCELERCHEVER

* +
CALL IKTEGPATE{STATEZ STATE AGCEL) ASSIGHISTATEZ STATE VELOCITY).
* +

CALL IMTEGOATE(STATER STATE VELOUETY) ASSIGM(STATEZ STATE POSITICH},
CYCLE = CYCLE + 1.

IHTECPATE
FPCCEOURE{ IHPUT) ASSICH{QUTRUT),
DECLARE SUPEP_VECTOR-STRUCTURE,
IHPUT, QUIPRJT,

IF IMPUT STATUS - FALSE THEW
0o,

QUTPUYT STATUS = FALSE,
RETUPH,
EHD.
OUTFUT TIMETAG = IHPUT TIHETAG,

OUTFUT ¥ = QUTPUT Vv + INPUT V DELTA_T,
CLOSE IHTEGRATE,
CLGSE Py

ZEETMIXIIMIIMITAAIMITIEIMImM

*
FILEL{TEST DATA, CYCLE) = STATEZ STATE. Z%SAVE FOR POST FROCESSIHG«S

The Structure Tempigte 9-9

An alternate way of coding the S2 template used m declaring STATE2 appeais in ithe
followang figure This example shouid make the use of level numbers clear Level numbers
provide the capability of creating nodes i a template without referencing other templates
No change whatsoever would be required to the previous program 1if this §2 template was
substituted for the earlier formulation

p:
PROGRAM;
STRUCTUPE SUPEP_VELTCR:
1 Vv VECTOR,
1 STATUS BODLEAM,
1 TINETAG SCALAR,
STRUCTU=E 52.
1 STATE,
g FOSITION,
3 V VECTOR,
3 STATUS BODLEAN,
3 TIMETAG SCALAR.
Z VELOGITY,
3 V VECTOR,
3 STATUS BOOLEAH,
3 TIMETAG SCALAR,
2 ACCEL SUPER_VECTOR-STRUCTURE,
1 ATTITUDE_INFO ARRAYE3) VECTOR DOUBLE;
CLOSE P,

IIIITIIIIIITITITIIIX

By referning back to the tree diagram of the STATE2 structure, 1t can be seen that the
level numbers represent the distances between the top of the structure and each component
Another iflustratron of this correspondence appears below

STRUCTURE X Leval
I A,
2 B INTEGER, 1
2 C, —
3 D INTEGER, 2
3 E INTEGER, A
I F INTEGER, 3

In these examples, the structure templates have been mdented to show the contents of
each node This indenting 1s supphed by the compiler based on the level numbers Since the
HAL/S language 15 written mn free format, the number of blanks coded on source cards 13
irrelevant Hence, the previous example could also be written as

STRUCTURE X 1 A, 2 B INTEGER, 2
C, 3 D INTEGER, 3 E INTEGER, 1 F INTEGER,

and the same output hsting would resnlt

918 Structures

Coding stracture templates 1 the above form 1s not recommended, however Properly in-
dented source code gencrally makes desk checking and subsequent modification much
gasier

Exercises

92A Wnte siructure templates for the following trees

NN
ANWAN A\

Cl D1 El
where
Cl1, El are 3-vectors,
D2, F1 are 3x3 matrces,
D2, E2 are arrays of length 5 of 3-vectors,
All other terminals are scalar
928
a) For the following sequence of structure templates and the single declarztion below,

draw the tree for the declared structure TEST DATA

STRUCTURE X
1 A INTEGER,
1 B,
2 V1 VECTOR,
2 V2 VECTOR,
STRUCTURE Y
I A,
2 B INTEGER,
2 V1 VECTOR,
1 C SCALAR,
STRUCTURE DATA
1L,
2 M X-STRUCTURE,
2 N Y-STRUCTURE,
11,
2 J X-STRUCTURE,
2 K Y-STRUCTURE,
DECLARE TEST_DATA DATA-STRUCTURE,

b

€)

d)

92C

The Structure Template 9-11

Write, m the natural sequence, the expressions used to reference each terminal of
TEST_DATA

Wnte an alternate structure template for DATA that allows the termmnals to be ref-
erenced exactly asn part (b), but does not use structures X and Y

Call the structure template of part {c) DATA_PRIME, and make the followmng
declarattons

DECLARE STRUCI DATA-STRUCTURE,
STRUC2 DATA _PRIME-STRUCTURE,

Whuch of these assignments are legal

1) STRUCILMA = STRUC2LM A,
2) STRUCI = STRUCZ,

3) STRUCIIK = STRUC2IK,

4) STRUCI.LM = STRUC217,

53) STRUCZL = STRUC2I,

Rewnte the followng segment of HAL/S code, using structures to eliminate the DO
FOR loop How must the procedure PROCESS be changed to allow this? Be sure the
data can be read in the same order as before

DECLARE VEC_ARR ARRAY(5) VECTOR,
DECLARE TIM_ARR ARRAY(5) SCALAR,
DO FOR I = 1 TO 5,

READ(5) VEC_ARRS(),TIM_ARRSI,
END,
CALL PROCESS(VEC_ARR,TIM_ARR),

92 1 Template Matching .

Throughout this chapter, the data {ype of a structure has been named by referring to the
template used 1n 1ts declaration The statement has been made that two structures are of the
same data type tf their templates are 1dentical For the purpose of matching data types, two
structure templates are 1dentical 1if and only if the otrder and data types of all of their com-
ponents are exactly the same For structure termunals, all of the attnbutes including preci-
sion and arrayness must match The ferm “components™ used above also includes structure
nodes, Tweo nodes are of the same type 1if and only 1f therr components are of the same data
types and in the same order

ORIGIN

UALITY

2-12 Structures

This tule can he stated in two different ways

1) Two structure templates are identical f and only if the order, data fypes, and
herarchicel grrangement of thewr terminals are the same

2) Two structure templates are identical if the only differences between them are the
names of terminals and nodes

Most of the mmformatron about structures has already been presented We have seen how
to declare and reference structures and thewr components, and how to code structure tem-
plates The use of structures to group data for parameter passage, assigmment as a block, and
the simphfication of 1JO statements has been dlustrated Subsequent sections will add a few
more capabilities to structure declaration and referencing by buldding on the basic concepts
of templates, nodes, terrminals, and nser-clefined data types presented here

.23 MULTI-COPIED STRUCTURES

Mulfi-copied structures provide a capability sumilar to arrays of ssmpler data-types The
uses of structure coprress are much the same as the uses of arrayness described m chapter
six If several structures are to be processed identically, 1t 15 convernent to reference them by
number within a loop An example of this usage 15 described below

The SUPER_VECTOR template from Section 9 1 (repeated below) might be used to
contain sensed velocity data from an inerfial measurement unit Since these devices are
usnally redundant, 1t 1s nseful to define a multi-copied SUPER_VECTOR to contam the
data The following figure shows how such an entity can be declared and referenced

EXANPLE_N:
PROGRAH,
STPUCTURE SUPER_VECTOR
1 ¥ VECTOR,
1 STATUS BOOLEAN,
1 TIMETAG SCALAR,
DECLARE VEL SUPEP_VECTOR-STRUCTURE(Z),
GECLARE BEST INTEGER,
00 FOR TEMPORARY I =7 TO 3,

+
CALL REAQ_IMUCX} ASSIGNC(VEL)3
I,

END,

+
CALL SELECT_BESTC{VEL)}) ASSIGNI(BEST}:
+
CALL GUIOANCE{VEL);
BESTS

WIXIMIMIT LIMAZIZIzazxz

+
CALL OTHER_SM{VEL);
BEST:

wxm

X2 XT O ITIIIITAXXTI ONHBIXIIX OMHIIT AZMIIIIIX I

ZExxIxT O

[y

X

Mult: Copred Structures 9-13

SELECT_BEST
FROCEDURE(V) ASSIGH(SELECYED]};

DECLARE ¥ SUPER_YECTOR-~-STRUCTURE(3),
SELECTED IHNTEGER,
DECLARE W INTEGER;
DECLARE FHOSY_RECEHT SCALAR INITIAL(O) AUTOMATICS
Do FCR M =t TO 3,

IF v STATUS = OFF THEN
N3}

REPEAT,
IF V.TIHETAG > HOST_RECENT THEN
2

oo,
SELECTED = N,
KOST_RECENT = ¥ TIMETAG
N!

END3
END3
IF HOST_RECENT = 0 THEMW
SELECTED = 1, /#ALL EQUALLY BAD®/

CLOSE SELECT_BEST,
GUIDANCE
PROCEDURE(BEST_VEL);

DECLARE BEST_VEL SUPER_VECTOR-STRUCTURE;

-

CLGSE GUIDANCE;
OTHER_SH
PRCCEDURELV),
DECLARE ¥V SUPER_VECTOR-STRUCTURE,

CLOSE OTHER_SM,
READ_IMY*
PROCEDUPE(UNIT HUM} ASSIGHISTRUC!,
DECLARE UNIT_NUM INTEGER.
STRUC SUPER_VECTOR-STRUCTURE;

CLOSE READ_IMU:
CLOSE EXAMPLE_N;

9-14 Structures

Several pomnts arz dlusirated by this example First, 2 multi-copied structure is created
sumply by appending a copmmess specifier to the structure declaratton The copiness specifier
1s a parenthesized integer which mmmediately follows the word STRUCTURE As with
VECTOR or ARRAY dimensions, the number of copies may be specified by any anthmetic
expression which can be computed at compile fime*™

The next new construct in the example appears 1n the statement
CALL READ_IMU(I} ASSIGN(VELS(I,)),

This statement 15 mtended to obtamn the Ith copy of [VEL] from an external device
VELS(,) 138 a SUPER_VECTOR-STRUCTURE with no copiness, the fact that it 15 con-
tammed 1in a multi-copied structure does not by itself mpose any restrictions on 1ts use The
semucolon i the subscript separates structure subseripts from the other types of subscripts
for the same reason that the colon 1s used to set off array from component subscripts Struc-
ture subscripts may of course be combmed with the other types For instance, the second
component of V within the third copy of VEL can be referenced as VEL V$({3,2) Some of
the many combintations are illustrated below Given,

STRUCTURE X
1 M ARRAY(10) MATRIX,
1 1T ARRAY(3,2) INTEGER,
DECLARE BIG X-STRUCTURE(100),
the very first scalar component 15
BIG MS$(1,1 LI}
and the last scalar i1s
BIG M3{100,10 3,3)
* The first four integers are
BIG I5(1,] TO 2.,
which 1s a two-by-two infeger array

BIG M3(1,* 1,%)

1s an array of ten 3-vectors composed of the first rows of all the matrices 1n the first copy of
EIG

There 15 also an equivalent to ARRAY{) which will be descnbed later

Muint Copred Structures 9-15

Partitions are also allowed 1n structure subsenpts, the statament
BIGS (1 TO 50,) = BIGS(51 TO #),
would set the first fifty copies of BIG t¢ the values contammed in the last fifty

The data type of BIG5({1 TC 50,) 1s “multi-copted X-structure™ When the structure sub-
script 15 apphed to a fermunal (e g BIG [), the result 1s no longer a structure In this case, the
copiness 15 converted to arrayness BIG M3(1 TO 50,), belraves ke a 30 x 10 anay of matn-
ces Likewsse, BIG I3(1 TO 50,1,1) behaves like an ARRAY(50) INTEGER even though all
of the actual arrayness was subscopted away With respect to terminals (but not nodes),
artayness and copiness are interchangeable

Returning to the ongnal example i which VEL was declared as a three-copied
SUPER_VECTOR structure, we can see how the conversion to arrayness 1s used The fol-
lowing are arrayed statements whach functions exactly as described 1n Section 6 2

[VEL STATUS] = ON, [*set all three status booleans to TRUE*/
MOST_RECENT = MAX(fVEL TIMETAG]),

AVG_Z_ COMPONENT = SUM(VEL V$(*,3))/3,
AVG_Y_COMPONENT = SUM(VEL V3(*,2))/3,

VEL V = VECTOR(],1,1),

In many ways, multr-copied structures are hke arrays of other data fypes We have ai-
ready seen that subscripting 1s essentially the same except for the use of a semicolon instead
of a colon, and that termmals of multi-copied structures can participate in arrayed state-
ments One copy of a multi-copled structure may be used m any context where a simple
vanable of the same structure type can be used This rule 1s also the same as stated previ-
ously for arrays and their elements This section has also shown that the uses of copiness are
roughly the same as the uses of arrayness Identical operations on simlar data, saving a set
of structures mn & list, and mamntamng tables

Another way m whuch multrcopied structures resemble arrays 1s in uutalsizafion A
multi-copred structure can be mibalized by hsting the imitial values for each copy separated
by commas, as shown

STRUCTURE MONTH
I NAMEOF CHARACTER(S),
I DAYS INTEGER,
I COLD BOOLEAN,
DECLARE YEAR MONTH-STRUCTURE(12) INITIAL(‘JAN’, 31, TRUE, ‘FEB’,
28, TRUE, ‘MARCH’, 31, TRUE, *APRIL’, 30, FALSE, =)},

Here, the asterisk (*) 15 used to indicate that only part of the structure 15 to be initiahized
The mutial values of copies five through twelve are indeterminate The use of a multi-copied
structure for this type of diverse fable instead of a set of parallel arrays (shown below) 15
largely a matter of style The referencing of entries 15 about equally convenient, but the

9-16 Struetures

inihal list groups all of the mformation about eath entry in the case of a structure whereas
the information for arrays must be grouped by type as shown mn the alternative below

DECLARE NAMEOF ARRAY(12) CHARACTER(5) INITIAL(JAN’, ‘FER’,
‘MARCH’, ‘APRIL’, ¥),

DECLARE DAYS ARRAY(12) INTEGER INITIAL(31, 28, 31, 30, %),

DECLARE COLD ARRAY(12) BOOLEAN CONSTANT(TRUE, TRUE, TRUE,

PAUSE, *),

Finally, procedures may be wntien to accept a structure with a vanable number of
copies The syntax 1s the same as for arrays, as shown below, which is a re-work of the

example before

WZMIZTIIIZIXITIZ

MIXImImIT

mIm

ZIITZT O O PEIMImMIIIX

EXAMPLE_N
PROGRAM,

STRUCTURE SUPER_YECTOR

1 ¥ VECTOR,

1 STATUS BCOLEAH.

1 TIMETAG SCALAR,
DECLARE VEL SUPER_VECTOR-STRUCTURE(3);
DECLARE BEST YNTEGER.
D0 FOR TEMPOPARY I = 1 TD 33

+
CALL READ_YHMU(I) ASSIGHIVEL),
Is

END;

+
CALL SELECT_SEST{{VEL}) ASSIGH(BEST),
+
CALL GUIDAMCE(VEL Yy
BEST,

+
CALL OTHER_SWEVEL ¥
BESTS

SELECT_BEST:
FROCEDURE(Y) ASSIGN(SELECTED),

DECLAPE ¥ SUPER_VECTCR-STRUCTURE(¥);
DECLARE SELECTED INTEGER,

+
DD FOR TEHPOPARY N = 1 TO SIZE({V}),

IF V.STATUS = OFF THEH
Hy

REFERTy

END3

CLOSE SELECT_BEST;:
GUIDAHCE
PROCEDUPEIBEST_VEL});

DECLARE BEST_VEL SUPER_VECTOR-STRUCTURE,

CLUSE GUEDANCE,
OTHER_SHt
PROCEDURE(VY,
DECLARE V SUPER_VECTOR-STRUGTURES

XTI O

CLOSE GTHER_SH,

READ_THU

PROCEDURE (UNIT_HUM) ASSIGNISTRUC);
DECLARE UNIT_MUH INTEGER,

TTAXAIXT Ly]

o

-

CLOSE READ_IMU;
CLOSE EXAMPLE_N;

b o 4

STRUC SUPER_VECTOR-STRUCTURE,

Multe Copied Structuras 9-17

Note, however, that there are a few ways i which multi-copied struciures are different
from arrays

1}
2)
3)

93A

93B

Only one dimension of strueture copmess 1s allowed

Arrays may be used as structure components, but multi-copied structures may not

There are no operators or burlt-m funciions for processing structures

Exercises

Rewrite the solution of problem 9 2C using mult-copred structures

Consider the following structure template and declaration

STRUCTURE Al
1 B ARRAY(5) INTEGER,
1 C SCALAR,
1 D VECTOR(S),
DECLARE A Al1-STRUCTURE(100),

Write a HAL/S expression to reference the following data items, and mdicate their type and
arrayness/copiness

a) The 25th copy of A

b) The 3rd component of B from ‘all copies‘of A
¢) C from the 10th through 20th copies of A

di D from 75th to 85th copres of A

e) The 1st element of D from ihe first copy of A

D-18 Structures

93C The following information about 2 company’s 100 employees 1s available

a) S8 number (integer)
b) salary (scalar) (scalarj
¢) J0b code (integer)
d) name (character)}

Write & HAL/S program to read n all the data from channel 5 and compute the average
salary Create a structure to hold all of the available information

9 4 DENSE, RIGID, AND “UNQUALIFIED”

DENSE and RIGID are minor attnbutes that can be appled to structures and their
nodes to give the user more control over the layout of structure data in storage The ferm
“unqualified”” refers to a type of structure 1n which 1t 1s not necessary to qualify each refer-
ence to a terminal by the name of the contaming structure These features may not be fre-
quently used, but they do provide additional capabilities required by some applications

9.4 1 The DENSE Attnbute

The DENSE attribute instructs the compiler to pack portions of a structure into as hittle
storage as possible, generally at the expense of efficient references to the data The DENSE
atinbute 1s specified on a structure template or a node of a template as shown 1n the figure
below

P
PROGRAH;
STRUCTURE FLAGS DENSE*
* 1 Bl BOOLEAN,
L B2 BOOLEAM,
1 MODE INTEGER,
1 B2 BOOLEAH,
1 C CHARACTER(5);
CLagEC!’ARE STATUS FLAGS-STRUCTURE IMNITIALLOFF, GFF, 0, DEE, '')3
H

L

IAITIIXIIxITIT

DENSE, RIGID, and “Unqualified’” 9-19

The effect of the DENSE attribute 15 implementation dependent This is because the
mappmg of HAL/S data types mto bits, bytes, words, double words, etc , vanes according to
the storage formats of individual target machines Most computers have operand ahgnment
requirements, for instance requinng that floating point numbets be stored at an address
which 15 a multiple of two or four The HAL/S programmer 15 normaily 1solated from these
considerations Since variables are only referenced by their symbolic names, the compiler is
free to re-arrange declared data to meet the requirements of the machine

Unless the DENSE attribute 1s specified, all data 15 ALIGNED (1 ¢ placed on appropriate
storage boundanes) DENSE daia 15 packed whenever there 1s a reasonably efficient means
of bypassing the computer’s operand alignment reguirements Thus, the only general state-
ment that can be made about DENSE structures 1s that they fend to requare less storage but
more fime to access than ALIGNED structures

It turns out, though, that most compilers will pack booleans and bit stnngs m DENSE
structures In.the example above, B1, B2 and B3 would occupy the same amount of storage
that would be allocated to a single ALIGNED boolean Note that B3 1s placed in the same
byte, word or other addressable umit as B! and B2 even though an mteger 15 between them
m the template Whether or not DENSE 1s specified, the compiler 1s free to rearrange the
crder of structure components to muumize the number of alignment gaps or to optimze
the addressing of certain components In fact, alf declared data 1s subgect to the rearrange-
ment uniess the RIGID attribute 1s specified {see Section 94 2)

Components of a DENSE structure are referenced mn the ustial way, some additional re-
strictions on thesr use apply, but where they are allowed, they behave exactly lke compo-
nents of a corresponding ALIGNED structure Thus, statements like

STATUS Bl = ON,
STATUS B2, STATUS B3 = FALSE,
IF STATUS Bl AND STATUS B2 THEN STATUS MODE = 9,

work as descnbed previously The additional restrictions* imposed on ferminals of dense
structures are

13 Bit or boolean terminals of a dense structure may not be passed as ASSIGN param-
cters to procedures

2) Bt or boolean terminals of dense structures may not be used on the left hand side of
a FILE statement

3) Bit or boolean termmals of dense structures may not be used 1n NAME expressions
See Chapter i3

*These resinctions averd the need to pass both an address amd starting bit number to Library or USEV-
supplied routines

9-20 Structures

These are the only restrictions inposed on the DENSE attribnte, note that they apply
only to bit and boolean types and do not apply to enfire structures with the DENSE attni-
bute even if these siructures contam it or boolean terrmnals Thus,

[STATUS] = FILE(1,1),

15 legal, but
STATUS B1 = FILE(1,1),

15 ot legal

9.4 2 The RIGID Attribute
Consider the following structure

STRUCTURE INTEGER_LIST
1 81 INTEGER,
1 D1 INTEGER DOUBLE,
1 82 INTEGER,
1 D2 INTEGER DOUBLE,
DECLARE IOTA INTEGER_LIST-STRUCTURE,

On a computer whuch requures that double precision integers be stored on even ad-
dresses, the compiler would probably rearrange the dafa as follows

word (lJ D1
2

D2
3

4 S1

5 82

If the data was kept 1n the natural sequence, the following would be needed

word 0 S1
S,
2
3 D1
4 52
5 W
g D2

The shaded areas mdicate alignment gaps which are effectively wasfed storage These dia-
grams show how zllowing the compiler to re-arrange data can result m a substantial savings
of memory

DENSE, RIGID, and “Unqualified” 9-21

Occasionally, however, 1t 15 necessary to prevent this rearrangement, generally to inter-
face with external devices or NONHAL routmes The RIGID attribute 13:supphed for thus
purpose The second diagram shows the storage assignments that would be made 1f the
word RIGID appeared immediately before the colon of the STRUCTURE statement . An
approprate use of the RIGID attribute appears below

STRUCTURE IMU_DATA. RIGID
1 DELTA_V ARRAY(3) INTEGER DOUBLE,
1 ATTITUDE ARRAY(3) INTEGER,
1 TIME BIT(32}, ‘
1 STAT DENSE,
2 1 BOOLEAN,
2 F2 BOOLEAN,
2 F3 BOOLEAN,
2 UNUSED BIT(13),
1 OP_MODE INTEGER,
DECLARE IMU_DATA IMU-DATA-STRUCTURE,
CALL ASM_TO_ROUTINE ASSIGN(IMU_DATA),

In addition to the syntax for declaring a RIGID structure, tlus example shows the
DENSE attribute applied to the STAT node IMU_DATA STAT 15 both RIGID and
DENSE The RIGID attribute on the structure’is inhented by all of its nodes If any addi-
trional nodes were defined below STAT, they would alse be RIGID and DENSE, unless the
ALIGNED keyword was specified The RIGID attmbute 1s always mhented {cannot be
turned off) since there is no *“‘non ngid”* keyword

The RIGID attribute allows any data layout to be mapped into HAL/S data types It
does not impose any restrictions on the use of a structure or 1ts components However, two
structures cannot be of the same data type unless neither 1s RIGID or both are.

In the example above, note that “IMU_DATA™ 15 the name of the template and the
name of the declared structure Ths fact makes IMU_DATA an unqualified structure

9 4 3 Unqualified Structures

When a structure template 1s to be used 1n only one declaration, 1t 15 convement to give
the structure the same name as the template This permats the name of the structure to be
omitted when referencing 1ts nodes and terminals Again refernng fo the structure above,
the statement,

DO CASE IMU_DATA OF_MODE,
18 legal, but the more convenient form,

DO CASE OP_MODE,

13 also perrmtied

9-22 Siructures

Unqualified stractures differ from qualified structures (all previous examples) ondy in
the form of references {o therr components It has already been stated that there 15 no exe-
ention-tyme penalty mvolved m using a structure termunal insfead of a simple vadable Ifan
unqualified structure 1s used, no distmetion has te be made 1n the source code exther Thus,
there 1s no disadvantage to using a ngid unquahfied structure to force a collection of van-
ables to be allocated 1n a particular sequence, except for possible ahignment gaps

Sometumes 1t 1s useful to convert a set of declared vanables to the components of an un-
qualified struéture, since all of the vanables (now structure terrminals) can be transferred to
or from a random-access device 1 a single FILE statement Varables are also sometimes col-
lected 1 an ungualified structure for documentation purposes since this allows them to be
discussed as a group under an “official” name which appears i the source code

Now that structores and their uses have been fully described, only two data types re-
mam PBit strngs, which are the general case of booleans, are discussed in Chapter 13, and
event vanabies, which may be thought of as “real-time booleans””, m Chapter 12 The mate-
r1al covered thus far 1in the text shouid allow most appheations to be coded 1in HALJS The
handling of errors and exceptional conditions will be discussed 1n the next chapter Then we
will proceed to put a collection of programs together and execute them as an mtegrated sys-
tem 1 Chapters 11 and 12 Chapter 12 descrbes how the user may control execution rates
and inter-process commurcation and synchronization The book concludes by discussing
several consiructs that arc prowided for wnting “'system programs” such as 1/0 device drivers
and memory management routines

DENSE, RIGID, ands""Unqualified”

Exercises

94A Given

STRUCTURE A RIGID
1B,
2 C INTEGER,
2 D VECTOR,
1 B,
2 F,
3 G MATRIX(4,5),
3 H ARRAY(2,3) INTEGER DOUBLE,
2 1 INTEGER,

STRUCTURE AF
1 G MATRIX{4,5),
1 H ARRAY(2,3) INTEGER DOUBLE,

STRUCTURE RAF RIGID
1 G MATRIX(4,5),
i H ARRAY(2,3) INTEGER DOUBLE,

DECLARE X A-STRUCTURE,
Y AF_STRUCTURE,
Z RAF_STRUCTURE,
DECLARE INTARR ARRAY(2,3) INTEGER DOUBLE,

Are the following assignments legal?

a) XEF = Y,
b) Z= XEF,
¢) XEFH = YH+ZH,
d) YG = ZG,
e) XBC = YHS(1,1),

94B Consider the following structure template and declarafion

STRUCTURE A
1 B SCALAR,
1 C INTEGER,
1 D VECTOR(S),
DECLARE A A-STRUCTURE(20),

Q%RIG AL »
== 2oog AGE Is
%

923

9-24 Srructures

What do the following HAL/S subscripted vanables reference, and what are their types and
arrayness/copiness

a) A$(20)

b) AS(2 AT 10)
c) Cs(1)

d) DS TO 6)
e) DS(*, 4 TO 6)

End of Chapter Problems

9A What are somc of the capabihities that HAL/S structures give the program that would
otherwise be unavailable?

9B Wrte a HAL/S program that will read simulated datz from 3 redundant sensors on
channel 5 and compute the middle value of the 3 redundant pieces of data

Read an acceleration, veloaity, attitude (3-vectors), and a scalar time tag.after each
from each measurement umt First read from uvmf 1, then 2 and 3 1 that order
Compute the middle value of the three neasured valués for each quantity (using the
MIDVAL buwitan function or any equivalent code), and store these values with their
associated time-tags m a siracture with the following template

1 BEST_ACCEL,

2 ACCEL VECTOR,

2 ACCEL_TIM SCALAR,
1 BEST_VEL,

2 VEL VECTOR,

2 VEL_TIM SCALAR,
1 BEST_ATTITUDE,

2 PITCH VECTOR,

2 PITCH_TIM SCALAR,

The ON ERROR Statemenr 1(Q-1

10 0 ERROR RECOVERY

Each mmplementation of the HAL/S language defines a set of mintime errors These
eIrors, or excepiwons, include

1) 1nvalid arguments to builtan functions, such as SQRT (—1),
2) IfO errors, such.as reading past the end of a file,
3) hardware detected errors, such as attempting to divide by zero,

4) and other conditions which may anse while executing certain HALSS stalements,
e g mverting a singular matrix and usmg mvald character subscripis

By default, when one of these errors oceurs, a stendard fixup 15 performed, on ground-
based systems, an error message may be generated as well In some cases, the standard fixup
1§ to pant diagnostic mnformation and termunate the program, but usually some innocuous
value 15 substituted for the offending expression and execution continues For insiance, 1f
SQRT(X) 1s mvoked with a negative X, the standard fixup 1s to return SQRT(ABE(X)) The
standard fixups for all errors defined 1n a compiler are bsted 1n the comesponding Users
Guide

The standard fixup may not be appropiate for all applications fence, HAL/S provides
a mechamsm that allows usersupphed HAL/S statements to gamn control when an error
occurs In this figure, an ON ERROR statement'is used to handle an end of file error

TEST_X
PROGRAM, \
REPLACE I0 BY "10",
DECLARE SCALAR,
INFUT, OUTFUT, EXPECTED;
DECLARE IMTEGER INITIAL(O},
RIGHT, LRONG,
OH ERROR
05

GO TO DOHE;
D0 WHILE TRUE,
READ(5) INPUT, EXPECTED.
CALL X(XNPUT) ASSIGH(OUTPUT),
IF OUTPUT = EXPECTED THEM
RIGRT = RIGHT + 1,
ELSE
WRONG = WRONG + 13
END:
DONE:
HRITE(&) "RESULTS DOF TESTING X*»
KRITE(S) RIGHT, ' SAHPLES CCPRECT: ', WROMG, ' SAHPLES IMCORRECT'S
X2
FROCEDURE(I) ASSIBN(D):
DECLARE SCALAR,
I, 0,

CLOSE X;
CLOSE TEST_X;

RIANOTIAIITIIIITIIIITITITTIE HEITII I

10 2 Error Recovery

Only one new construct s used mn this exaniple
ON ERRORS (EOF 5) GO TO DONE,

Thus 15 an execuigble statement which establishes “GC TO DONE,” as a handler for the end
of file error When the ON ERROR statement 15 executed, the default error handhng (1 ¢
standard fixup) for the end of file error 1s replaced, by the GO TO statement supplied The
function of the ON ERROR statement 15 to selectively replace the standard error handlers
under program control

101 THE ON ERROR STATEMENT

Like the IF statement, ON ERROR 15 2 compound statement (1 e a statement which
contans another statement) It specifies an action to be performed when an error occurs
Thas action may be an executable statement, but GO TO 1s the most commonly used 1n this
context In fact, the action portion of an ON ERROR statement should be the most fre-
quent use of GO TO HAL/S The example above, however, can be re-wrnitten without a
GO TQ, as m this figure

TEST_X"
FROGRAH,
REPLACE IO BY “Ip',
DECLARE INTEGER IMITIAL{O),
RIGHT, HRONG;

ON ERROR
05

DO;
HRITE(&) "TEST RESULTS FOLLOHW';

WRITE(6) RIGHT, HRONG;
RETURHN,
END,
bt HKHILE TRUE,
END3
CLOSE,

TTONOIXITIT IX VIOONDIZIIIX

In this example, a DO . END grounp serves as the action of the ON ERROR statement
Note that mn makmg this change 1t was necessary to add a RETURN statement after the
WRITE statements Tlus 1s because after the action of an ON ERROR siutement has been
executed, control falls through to the following statement If the RETURN were not coded,
the DO WHILE TRUE loop would be re-executed after the WRITE stalements and the
error probably would recur, resulting i an infinite loop The next figure 1llustrates the flow
of control around an ON ERROR DO END group

we

The ON ERROR Statement I10-3

I Ty
247~ wd - P i L 1 17 T R
» - - - s »
“ bl ~ - P ! _..E
M gﬂ igm LI I I -~ "
* A~ d . =
S :q;‘ 1) LS 4 Y - PO
1 ~ -
VI NN <8 i1 AR RS ammays Ve SN
2 DIyl Lo Red s o JPPREY L)
3. PRI - VR A TRV Palls s s TR |
. i 1.7 4 gn vy Pobe - [T BTl ,1 - . « E I 5
;‘ h , " 4 ‘; Tan 4‘ . A L
ax - [gl
[T a4 PP “"L ‘. ‘:‘ * \l‘: dv e Yo~ _:- %
- - 2 ¥ < - 1.(~ -
Ny . ot N 2 [LR - i
i ‘n L " Tl
A A . 4
o, LI N s e IR LY s op "%
- i A - - P | a
P R L S r3
o e - -)
"’4,! :; . __” (_ io' H K“ b j“"‘ xi, ‘, ii {(:)r ’;'i
. DL TIPS AP O S .
e 7o - W T I s L B A
- r .
' . e o UL Y 1T 3 = 4?) I
B o« . - 4 [>, « 7 -
e [- -y L 29 - i A
] ~ ¢ - 4
Toe e I . *_(” it
- - -~ - »"
A T i 5 fea i u i 1 St 1 -
5:' ‘414 _‘N:. -,! = iy :.“ B Py i A) }{-‘
N R A IR N ERY ' TR
N Lo Taate w7 o~ "7
R ISR SRR USSP Do bt
T oo T T B Wy e
t. \t‘ ' . - . J O B I
[} o - - -
B 1 TSN VSIS ST A L.L.........‘..h:?-ﬁ
E =5, i
i

READ(5)X,

\m———=END OF FILE ERROR-—-

normal control flow

error exit

on error compeund statement

10-& Error Recovery

After an error occurs and 2 userspecified action 15 taken, there 15 no way to resume
execution at the point that the error was detected, for efficiency reasons, the state of the
program nmediately after the error 1s not saved, and hence cannot be restored

The end of file example #lustrates one difference between the HAL/S ON ERROR sys-
tem and the sysiem of alternate returns or “END= ** vsed 1 many languages The ON
ERROR statement was coded outside of the DO WHILE loop, thus the overhead associated
with defining an end of file handler 1s paid only once, rather than at each READ statement

The subscript 1n the ON ERROR statement consists of two numbers separated by a
colon The left number 18 an error group, the nght number 15 an error code withun that
group Denoting errors by both a group and a code allows enfure groups of errors to be
handled identically (see Iater) The group and code assignments of 4 parficular error are gen-
erally the same among various implementations of the language, though this 15 not guaran-
teed by the HAL/S Language Specificatton The User's Mannal which corresponds to the
compaler 1n use should be consulted before ustng ON ERROR statements

The compiler used m producing the hstings for this book follows the same convention as
several HAL/S compilers All I/O errors are assigned to group 10, and codes 0-9 1n this
group represent end of file errors on channels 0-9 Thus, ON ERROR3 (10 5) sets up a
handler for end of file on channel five Use of the macro

REPLACE EOF BY “10™,

15 used to 1mprove readabiity

If a program reads data from several devices, an end of file handler can be created for
each,e g

ON ERRORS (EOF 4) GO TO NO_MORE_CARDS,
ON ERRORS (ECF 5) GO TO END_OF_TAPE,
{1

It may be more convemient to write one handler for any IJO error, this can be easily done
by omitting the error code as m

ON ERRORS {EQF) GO TO DONE,

or
ON ERRORS (EOF) GO TO DONE,

These forras both specify “any error code with the given group™ Finally, the statement
ON ERROR GO TO DONE,

sets up “GO TO DONE,” as the handler for all errors (including end of file)

WIONOIZTT

IO IMmMIIMITIME

p.
PROGRAl,
DECLARE ¥ HATRIX:
r

0N ERROR
4:27

[H]
*
M= 03
GO TO L5
END;
* #*=1
=M 3
L1
*
HRITE(S)Y M3

CLOSE P3

The ON ERROR Statement 10-5

ON ERROCR 15 the standard means of handling exceptions whach anse from operations
on mvalid daia For example, a runtime error will result from attempting to invert a singular
matnx The standard fixup for {fus error 1s to print a message, return the 1dentrty matnx,

and contimue exectnfion In the program segment above an ON ERROR statement 15 used
to substitute a zero for the identity matrix

It should be noted that use of this form of the ON ERROR statement repiaces the
standard fixup Hence it prevents the generation of an error message Many implementations
mpose 2 ot on the number of errors that may occur before the program 1s terminated by
the system When a usersupplied handler 15 mnvoked, the ervor 15 not counted toward this

it

Once an ON ERROR statement 15 execuied, the speafied error handler remains in effect
until it 15 deactivated One means of deactivating an error handler 15 shown below

OOaOxXTITXX

pe
PROGRAM;S
DECLARE M MATRIX,
I INTEGER:
BOFOR I = 1 TO 10,

10 § Error Recovery

H oM ERKUR

g G:27
H ek

E *

H =8,
H &0 TO L1,
M EHD3

E * *=1

M M=t 3

E %
H L1* HRITE(S) H»
c -

c -

c

H END»

11 ON ERROR SYSTEHM,
5 4727

C .

C

C

M{ CLOSE P;

Here, the keyword SYSTEM 1s used m place of an execufable statement as the action of the
ON ERROR This statement has the effect of restoring the standard fixup for ERRORS
(4 27y To see why this staternent 1s nesded, suppose that additional 1nverse operations were
coded later i the program, and this statement was omitted If one of these operations
caused an error, control would be transferred to the user handler m the middie of 2 foop

This would be disasterous, since the compiler assumes that a loop can only be entered by
execution of the DO statement at 1ts head Thus, if an error handler 1s coded m a loop,
i showld always be deactivated at exut from: the loop In generl, 1f 15 good practice to de-
activate error handlers as soon as they are no longer needed

The statement

ON ERRORS (X Y) SYSTEM,
restores the default (system) recovery achion for error X Y (group X, code Y) In addition
to SYSTEM and an executable statement, IGNORE can be used as the action of an ON
ERROR statement, asip

ON ERRORS (4 27) IGNORE,

This statement informs the error recovery system that mverting a singular matnx 15 not fo
be considered an error,1e that the standard fixup (returming wdentity) 15 appropnate and
that execution should contmue without an error message or other notification Depéending
on the compiler in use, IGNORE may not be permitted for certam errors

The ON ERROR Sratement IG-7

When an ON ERROR statement 15 executed, an error recovery action is established for
an error or group of errors Three recovery actions are possible

1) an executable statement to recerve control, (im lien of the standard fixup and an
eIFOr message),

2) SYSTEM, which 1s the imtial state and includes both the standard fixup and an érror
message, and

3) IGNORE, which requests the standard fixup without an error message

Any number of recovery actions may be in effect af one ime In a sense, the actions are
cumulafive If the code below were executed, four recovery actions would be 1n effect

=4
PROGRAHM,
DECLARE SCALAP,
Ay Ba G
DECLARE IMTEGER,
X Ye Zs
OR ERFOR
Do,
WRITE{(S)Y As B: Cy X» ¥y Zs
RETURH,
EHDs
ON EPROP
le 5

RETUPH;
ON EPPOR IGMNORE,
10

GHR EPFOR SYSTEH:
& 2

LAST_CARD
CLOSE P,

==X NOon wIx WIIT VIIIIIZZIIITIIX

The net effect of these statements 15 Ay end of file error, excent on channe] {ive, will
be 1gnored, and any other error, except 4 2, will cause the WRITE and RETURN statements
to be executed If emror 4 2 occurs, the system action will be taken, and when 10 5 occurs,
P will close Tis shows that the handler for ermor § (10 5) takes precedence over the
handier for error § (10) The general rule that applies 15 When the error specifications i
severgl active OGN ERROR siatermenis in a single block apply to q particular error, the most
specific iakes precedence Thus, as each of the last three ON ERROR statements in P s
executed, the number of errors handled by the first and most general one 15 reduced

Note that the rule above applies only to ON ERROR statements m a single block
(program, procedure, function, etc) The effect of ON ERROR statements in nested blocks
will be discussed 1n the next section Note also that an ON ERROR statement has no effect
unty 1t 15 executed

108 Errar Recovery

Exercises

10 1A Where does the flow of control go after the action of an ON ERROR statement has
been executed?

10 18 Why 1s 1t good programmmg practice to deactivate any error handler that 15 coded
mswde a loop when that loop is exited?

10 1C What are the three possible recovery acfions in the event of a untime error?

10 1D Wnte the precedence relattons for the 3 general forms of subscnpting for the ON
ERROR statement when they occur in the same code block

102 DEACTIVATING ERROR HANDLERS

An error handler can be deaciivated in three ways

1} by overnding 1t with a new handler,
2) by exiting from the contaming block,
3) by using the OFF ERROR statement

All of these methods are affected by the HAL/S block structure A procedure or function
cannot moke any permanent change to the error environment of uts caller Ths statement 18
a consequence of several rules which will be described with reference to the figure below

A~
FROGRAM,
ON ERROR IGHORE:
-

CALL B,
CLLL €3

3
FROCEDURE,

CH EPROR
1-2

wx T IXX oI

G0 TG X,

CALL Cj§
X MRITE(S) 'GOT AN ERROR',
CLOSE B
C:
FROCEDUPE,
CLOSE C3
CLOSE A3

o A e e e e e §

Deactivating Ervor Handles 10-9

None of the statements shown can produce an error, however we will discuss what
would happen 1f ERRORS (] 2) were caused by an additional statement inserted at various
points

If the error occurs in block A proper (1 outside of B and C), the IGNORE action will
be taken, even after B is called and retums This 1s because any error handler defined i
block 15 cancelled when that block RETURNs or executes s CLOSE statement When B
returns, the error environment reverts to that i effect when B was called In this case, the
IGNORE action 1s re-instated

When the ON ERROR statement in B 1s execuied, the IGNORE action 1s temporarily
overndden by the GO TO action This action then remams m effect unfil B retums If the
error occuis m B, but before the GO TO action 15 set up, the IGNORE action 15 taken
Merely invoking a block does not change the error environment When B calls C, the GO TG
achion 1s sill in force, if ERRORS (1 2) ocenrs in block C, control will be passed to the
label X in block B In effect, C returns to X instead of to the point of invocation When thas
happens, the error environment 15 restored to that wluch prevailed before Cawas cailed, just
as 1f € had returned normaliy

In the example, block C1s also called directly from block A In this case, of course, the
ON ERROR statement in B has no effect If the error occurs i C when 1t has been called
from A, the IGNORE action 1s taken Thus, we see that the range over which an ON
ERROR statement 1s active 1s not determined by the static block structure, but by the
actual sequence of CALLs and RETURN;s

The left-hand diagram below shows the static block structure of a program A, which
18 surtable for describing the scoping rules for vanables

A A
B / \\
B C
C
C
Block Sfructure Call Tree
“outer” vanable can be “upper’” blocks affect error
referenced environment
ORIGIy

OF Pogg

10-10 Error Recovery

The night-hand diagram illustrates the range of ON ERROR statements within A, Band C C
occurs twice 1n the diagram, at the ends of different hinbs Since all ntervening blocks
between a given block and the top of the tree may be scanned for handlers when an error
occurs, a block’s error environment depends not only on local OIN ERROR statements, but
those m the calling block, and in the caller’s ¢aller, and so forth Block C may be affected by
B’s error environment even though it cannot access B’s vanables

Now that the basic- concepts have been illustrated, the rules for deactivation of error
handlers can be stated preaisely

1} When a code biock exits (by RETURN, CLOSE, or due to an ¢rror) the error envi-
ronment 15 restored to that m effect when the block was enterad

2} An etror handler may be replaced by execution of an identically subscripred ON
ERROR statementun the same block

3} An error handler may be temporanly overmden by creating another handler in a
*lesser” block (1 e. lower mn the call tree) which applies to the same error(s)

4} An error handler may be completely erased by execution of an idenncally sub-
seripred OFF ERROR statement i1 the same block

These are the only ways that an error handler may be deactivated Note that there 15 no
limit to how far up the call tree the system will search for a handler when an error occurs
As stated previously, when a particular block contamns several handlers that could apply to
the same error, the most specific 13 selected Other active blocks are searched only if no
handler at a1l for {lus error 15 found 1n the current block

The OFF ERROR statement may be used {o cancel the error handler created by a cor-
respondig ON ERROR statement There are only four possible forms

OFF ERROR,
OFF ERRORS (nl n2),
OFF ERRORS {(nl),
OFF ERRORSnl,

and of these, the last two are equuvalent The effect 1s simply to cancel an identically sub-
scripted ON ERROR statement in the same block If no such ON ERROR statement has
been executed, the OFF ERROR statement has no effect

The prnimary use of the OFF ERROR statement 15 0 re-instate an error handler m the
calling block which had been overndden by a local ON ERROR statement An example of
this usage appears in the following figure

Deactivating Error Handles 10.11

Az
PROGRAHS

CGH ERROR
GO TO X3
CALL B3

B-
PROCEDURE,
ON ERROR IGNORES
OFF EPROR»

CLOSE B,

IN0ONIZOO0ONITIO0OINNOOIZIITITIOONOITX

CLOSE A7

It should be noted that the handler cancelled by an OFF ERROR statement must not
only be m the same block, but 1t must descibe exactly the same error(s) Forinstance, the
sequUence

ON ERRORS$1 IGNCRE,
ON ERRORS2Z IGNORE,
OFF ERROR,

would leave two handlers active, since the OFF statement 15 more general than the ON
statements To cancel them both would requure two statements

OFF ERRORS3(1),
OFF ERROR3Z,

Likewise, ihe sequence

ON ERRORS(1) IGNORE,
OFF ERRORS3(1 2),

does not exclude ERRORS(1 2) from the handler Unless there 15 an identically (plus or
minus a tralig colon) subscrrpted ON ERROR statemient in the same block, OFF ERROR
wil do nothing

10-12 Error Recovery

Exercises
10 2A In what ways 1s 1t possible for an error handler to be deactivated?

1028 In the following examples of sequences of ON .ERROR and OFF ERROR state-
ments, which handlers are left active after the sequence?

a) ON ERRORS]1 IGNORE,
ON ERROES(1 2) IGNORE,
ON ERRORS(2 1) IGNORE,
OFF ERROR,

OFF ERRORS(1 3)

b) ON ERRORS$!1 IGNORE,
ON ERRORS(1 1) IGNORE,
ON ERRORS$(2.) IGNORE,
OFF ERROR3(1-),

OFF ERRORS(2 1),

103 OTHER ERROR CONTROL CONSTRUCTS

In addition fo ON and OFF ERROR, which achvate and deactivate error handlers,
HAL/S provides the SEND ERROR staiement, which annunciates an error condition, and
a parr of buliqn functions which allow information to be obtained from the recovery
system

The SEND ERROR statement has two uses To sunulate the occurrence of systen-
defined errors for testing and other purposes, and to allow the user to define additional
error types It has only one form

SEND ERRORS$(nl n2),

where il and n2 are infegers computable at compile-time and in the valid range of error
groups and codes specified by the appropnate HALSS User's Manval The effect of the
SEND ERROR statement 1s merely to trigger whatever handler has been set up for the
specified error

When a SEND ERROR 1s exceuted, the error environment 1s searched for an applicable
ON ERROR handler If the acfion 1s an executable statement, control 1s passed to it and
execubion continues without an error message If the IGNORE option was specified, execu-
tion contmmues at the statement following the SEND ERROR, also without a message If
the action 15 SYSTEM, or no error handler 15 found, then an error message 1s generated,

Orhier Error Control Constructs 10-13

and extherthe ran s terminated, or execufion confinues at the statement following the SEND
ERROR The User’s Manual states whether execution will continue™ after an error of each
system-defined type Generally, if the group and code are not system-defined (1 & not hsted
in the User’s Manual) the SYSTEM action allows execution to continue Thus, 1t 15 possible
to write a ““standard fixup” for a user-defirted error, as shown below.

LGG1o-
FUHCTION(X) SCALsR,
DECLARE X SCALAR:
IF ¥ > 0 THEH
RETURN LOG(X} / LGGI10};
ELSE
frle H
S$EMD ERROR H
931

RETURN LOG(ABSIX)) / LOG{10),

END 3
CLOSE LOGIO0;

Ix I UIXTTTIZ

Now, wiken LOGI0 is mmvoked with a negative argument, error 9 1 wall result This error
may be handled by the calling routine m the usual way,e g

DECLARE N SCALAR INITIAL{-1),
ON ERRORS(? 1) DO,
N = 100,
END,
WRITE(6) LOGIO(N),

Thus code wiil wnie 10310(100) If the next two statements were

OFF ERRORS(1),
WRITE(6) LOGI0(—99),

there would be no active handier for error ¢ 1, so an error message would be printed and
execufion would confumue at the second RETURN statement i LOG10. This RETURN
statement serves as a “standard fixup’ for a negative argument to LOGI0, i this case,
log1g(99) would be returned by the function

*Some wnplementations may allow an errof to oceur {or be synuiated) a given number of tunes before ter-
muanating Gthers may always continue or always terminate

SHomE n

10 14 Error Recovery

SEND ERROR 1s a relatively expensive statement, when an error 1s sent, many machine
mstruchions may be needed to search the error environment for an appropnate handler
Hence, 1t should be used only to indicate excepiional condifions, or “errors”, not condi-
hons which are expected to occur frequently The SEND ERROR statement is most
appropnately used in utility routines {procedures and functions that are invoked from many
places) to wdicate mvald arguments, and in instances where a *“*catastrophic™ condition 1s
detected by very low level code but can only be handled 1n an outer block, perhaps by some
sort of controlled restart

In addition to the ON, OFF, and SEND error statements, HAL/S provides two builtan
functions, ERRGRP and ERRNUM, which prowide mformation about previous errors
These functions do not require any arguments, they retum mtegers which represent the
group and code, respechively, of the last error that ocourred in the process* that invokes
them If no errors have occurred, they retern zero

These functions are wsed primarily when a number of errors are handled by a single
ON ERROR statement, as illustrated below

ON ERROR DO,
WRITE(6) ‘RUN STOPPED DUE TO ERRCR’
| ERRGRP| | ** | | ERRNUM,
RETURN,
END,

Cne addrfional form of ON ERROR statement is provided This form allows erent
varighbles to be manipulated when an error occurs The form of this type of error recovery
action is described in the language specification Eveni variables are discussed in Chapter
Twelve

Exercises
103A What are the two uses for the HALJS SEND ERROR construct?

103B Say we enfer a program block, P, which calls some procedure A, wlhuch in turn
calls procedure B In the code block for B, there 15 an ON ERRORS(!) IGNORE
statemnent and no other error handlers Now say error (1 3) oceurs during the
execution of the program Does the program need to search code blocks A and P
for the error handlers for error {1 3} or wall 1f automatically 1gnore the error because
the statement ON ERRORS1 was found in that block?

*The term process 15 defined m Chapter 11 Here it may be taken to mean a program and all of ts 1nternal
blocks

Other Error Control Constructs 10-15

End of Chapter Problems

10A Consider a HALSS program with the following lexical structure

P PROGRAM

ON ERRORS1 IGNORE,
ON ERRORS$2 IGNORE,

@

A PROCEDURE,

®

ON ERRORS(1 2) IGNORE,
OFF ERRORS$(1),

(@)

B PROCEDURE,
OFF ERRORS(] 2),
ON ERRORS(Z 1} IGNORE,
ON ERRORS(2 1) IGNORE,
ON ERRORS(3) IGNORE,

@

OFF ERRQRS3(2),

O,

CLOSE B,

CLOSE A,

@

CLOSE P,

Say the execution of the program
procedes as follows

A — @ executed

Pealls A

A — @ executed

Acalls B

B - @ executed
B —~ ® executed
B returns to A

@ executed
@ executed

Areturns to P

r - @ executed

execution stops

A =
A =

What happens if the following
errors occur at these times (e,
eIror Message Or no error message)?

a) ERRORS(1 1) at
b) ERRORS(3 1) at
¢) ERRORS(2 1) at
d) ERRORS(22) at
e) ERRORS(1 2) at
f) ERROR3(2 1) at
g) ERRORS(2 1) at
h) ERRORS(L 1) at
1) ERRORS(I 2) at
J) ERROR3(1 3) at
k) ERRORS(3 3) at
1) ERRORS{1 1} at

BREEEEREEEDD

ORIGIN

5
§
=]

o

§
&7

&

The Un:t of Compriation 1]-1

11 0 STRUCTURING LARGE APPLICATIONS

In thes chapter the discussion of the HAL/S facilities for building 2 program complex
consisting of many separately compiled pieces 15 presented First, we will describe the vt
of compilation, which has been 2 PROGRAM mn previous chapters but 1s not restricted to
this type Then we wiil discuss means of putting these umts together 1n a way that 1s suit-
able for a particular application Fmally, we will introduce the concept of muli-program-
rmung and discuss some of the methods of safely shanng code and data between programs that
execute ‘‘stmultaneousty” Tlus discussion will lead imto the real-trme control statements to
be presented 1n chapter twelve

11.1 THE UNIT OF COMPILATION

A unit of compilation 15 a sequence of HAL/S statements which comprise a complete,
valid mnput to the compiler It must be either a program, a procedure, a function or a com-
pool {common data pool) Programs have already been discussed at length, though no means
of invoking them has yet been presented This 1s because programs recewve control directly
from an operating system, not from other HAL/S code

Procedures and functions can be compiled independently so they can be shared among
programs, a compool 15 a block of data that can be shared among separately compiled units
Thus, programs are the pnimary compiation umts while the others provide global code and
data

There are two major reasons for dunding a software system into separately compilable
umts Obwviously, when several programmers collaborate on a system, it 1s convenient 1f they
can compile thewr own work mdependently A more important reason stems from the way
program umts receive ¢ontrol The capabihties of the operating system mn use mav determine
the appropnate structure for an appheation

Under an operating system wiuch supports the full HALJS real-time syntax {described m
chapter 12), many programs may be “sunulfaneously’” active and compete for the use of the
compufer hardware based on a user specified prionty Provision 1s made for programs to be
run cyclicly, to wait for given occurrences and to receive control when interrupts occur The
operating system provides these capabilifies for the mvocation of PROGRAMs and TASKs
(coliectively called processes) Thus, a software system may be divided into programs to
mmplement a desired dynamic (real-tume) structurs

Unlke procedures, functions and tasks, programs and compools may no! be nested in
any other blocks

The following figure showshow these blocks mght be used 1n 2 simple flight application

11-2 Structuring Lorge Appheanions

common Comnon
data subroutines
LIMIT
FUNCTION
GHC_POOL
COMPOOL B
s s e emes e o ae 4 {anformation flow) FILTER
position PROCEDURE
velocity -
. pitch command
* roll command .
. INTERPOLATE
. PROCEDURE
&
\ 1 Yy
CONTROL GUIDANCE ¥ * NAVIGATION '
PROGRAM: ’ PROGRAM PROGRAN
COMPUTE_ INTERNAL '
PITCH FUNCTION
£ R) '
s OCEDURE KALMAR
|5
2 f1s0 PROCEDURE,
‘S ETC HUTHER
PROCEDURE PROCEDURE,
A 4 A
1/0 /0 110

‘ Sensors ' c cantrols l ' SENsSors '

The Unit of Compriation 11-3

This diagram shows the software divided into three programs, each with intemnal pro-
cedures and funchons, and a compool and three mdependently compiled subroutines All
together, there are seven compilable unifs which must be compied mn an appropnate se-
quence and linked together In the remainder of this section we will discuss the rules for
writing the components of a program complex

The LIMIT funchon and the procedures, FILTER and INTERPOLATE, are compiied
separately so that they can be called from any of the programs Such procedures and func-
tions are called cemsubs {(from “common subroutmes™y A comsub may be coded exactly as
if it were contaned m some program For mstance, the LIMIT function might be exactly as
1t appeared m chapter seven

LIMIY
FUNCTIORIVALUE, BDUND) SCALAR,
DECLAPE SCALAR,
YALUE, BOUTD,
IF VALUE > BOLND THEM
PETLSH BCULD,
IF VALUE < -QQUND THEN
RETUIN -EBECGUNLD;
RETURH VALUE,
CLOSE LINIT,

III I

Aside from the fact that a comsub is not contained n any block, and thus cannot reference
outer vanables via home scoping rules, all of the statements about procedures and functions
made in previous chapters also apply to comsubs

Seme of the consequences of this general statement may not be mamediately cbvious
For one, comsubs may have additional procedures and functions nested within them Scop-
g tales apply to blocks contmned m a comsub just as they would o biocks contamed mm a
program In fact, the only sigmficant difference between an independently compiled proce-
dure without parameters and a program is the manner of mvocahon Programs are never
CALLed and procedures normally do not recewve control directly from the operating sys-
fem

It 15 also worth noting that the error recovery system does not distinguish between com-
subs and internal procedures and functions If an error occurs in a comsub and noe focal ON
ERROR statement applies, the eiror environment of the calling block 1s searched, whether
that block 15 a program, another comsub, or an mternal procedure of some program or
comsub

Comsubs are also referenced in the same way as correspondmg internal blocks There 1s
no way to tell by inspection of a CALL statement or function invocation whether the refer-
enced block 1s mnternal to the compilation unt or external (a comsub) Comsubs may have
any number of arguments of any type, exactly as descrnibed 1n chapter seven. The various

11-4 Structuring Large Applhicanions

rules about matching data types, restricthions on ASSIGN parameters, automatic conversions,
ete, still apply In order to enforce these rules the compiler needs to know the declared
types of comsub’s formal parameters This information 1s commumnicated via the block tem-
plate

Under most implementations of the HAL/S compiler, a block template 15 automatically
generated whenever a program, comsub, or compool 1s compiled The block template con-
tains all the mformation needed to reference that block from another compilation umt In
the case of a comsub, this information consists of 1ts name, the sequence and types of 1ts
formal parametess, and the type of 1ts return value, if any A comsub is made accessible to
a compilation by mmcluding 1ts template For instance, a program which uses the LIMIT com-
sub 15 shown below

D INCLUDE TEMPLATE LIMIT
P PROGRAM,
DECLARE X SCALAR INITIAL(12},
X = LIMIT(X, 10},
CLOSE P,

INCLUDE 15 a compiler directive, as denoted by the character D in column one It -
structs the compiler to merge the template for block LIMIT inte the compilation at the
pomt of the INCLUDE directive Any number of templates may be so mecluded, the NAVI-
GATION prograin might be compiled as

columni 1
il
D INCLUDE TEMPLATE GNC_PQOOL
D INCLUDE TEMPLATE LIMIT
D INCLUDE TEMPLATE FILTER
NAVIGATION PROGRAM,

CLOSE NAVIGATION,

MNote that these templates are wncluded pror to the program statement This syntax
emphasizes the fact that the blocks GNC_POOL, LIMIT, and FILTER are external fo NAV-
IGATION The pnnted output from the compiler contains a listing of each template that
was included The template for LIMIT appears below

LIMIT EXTERNAL FUNCTION(VALUE,BOUND) SCALAR,
DECLARE SCALAR, VALUE, BOUND,
CLOSE LIMIT,

The template for a comsub consists of the header line with the word EXTERNAL mnserted,
the declarations of any formal and assign parameters, and the CLOSE statement These are
the only portions of a procedure or function block that are relevant outside that block*

*Scoping rules make other data items irrelevant, and no way of branching into the middle of a block 1s
provided

The Untt of Compilation 11-5

The format of a block template 15 umimportant when a compiler wath antomatic fem-
plate generation and the include directive 1s used These features are present in all carrent
compilers, but they are not mcluded m the HAL/S Language Specification and thus are not
guaranteed to be present in all implementations The format of 2 template is specified, how-
ever Hence, if the template cannot be INCLUDED, 1t-may be hand-coded as.part of the
source prior to the program statement

A program may mvoke a comsub if 1f includes the template for that comsub prior to the
program statement This mechamsm provides for executable code to be shared among sepa-
rate compilation units

Programs generally need to share data as well The only way to pass information from
one program to another 1s via a compool A compool 15 4 named block of DECLARE, RE-
PLACE, and STRUCTURE statements, the vaniables 1n a compool are accessible to any com-
pilation unit which INCLUDESs the compool’s template

The diagram at the beginning of this section shows how a compool 15 used to interface
the Gudance, Navigation, and Control programs This compool could be coded as shown
below

BHC_POOL.-
COMFCOL:

FOLLONING DECLARES ARE HAY TO GUIDANCE INTERFACES

DECLARE POSITION VECTOR;
DECLARE YELOCITY VECTOR.

Ix 0 I

Q

FOLLOMING DECLARES ARE GUIDANCE TO CONTROL COMHANDS

DECLARE PEITCH_COHHAMD SCALAR;
DECLARE POLL_COMHAND SCALAR INITIAL(O);
CLOSE GRC_POOL,

IX X

As this indicates, a compool 15 delimited by a block header and a CLOSE statement
much like the other block types Unlike other HAL/S blocks, however, a compool consists
only of @ DECLARE group, no executable statements or nested blocks are allowed It may
contain DECLARE and REPLACE statements and structure templates Generally, any
DECLARE statement which may appear 1n a program may appear in a compool There are
only two exceptions, both resulting from the lack of executable code 1 a compool No
AUTOMATIC data 1s allowed m a compool, and no-label (e g function and NONHAL pro-
cedure} declarations are allowed i a compool It should be noted from the example that
static inihialization 15 allowed, and takes the same form as in other blocks

ORte;
OF POOQEQ??E ¥

11-6 Structuring Large Applications

Compiling a compool serves two puiposes To Teserve a block of storage containing any
specified 1nihal values, and to generate the compool template A compool template contams
all of the mformation present in the compool source In fact, 1f automatic template genera-
tion 15 not avatlable, the template may be constructed from the source merely by mserting
“EXTERNAL” before *COMPOOL’ in the block header Normally, however, only an IN-
CLUDE directive 1s needed to make compool variables accessible to another compilation
unit

When a program 1ncludes a compool template, the vanables i that compool may be ref-
erenced, assigned, and used in any way appropnate to therr data types Flacing a vanable in
a compool rather than at the program level does not, by itself impose any restnctions on the
way that vanables may be used by the program This mcludes references to the vanable
from nested blocks We will discuss the apphcation of scoping rules to compool vanables
and comsubs in the next section

Exercises

11 1A What are the major reasons for burlding a program complex with comsubs and com-
pools, as opposed to a single Iarge program?

11 1B Say an error oceurs in some comsub, and no ON ERROR statement that apphes to
the erroris found 1n the comsub What determmes the error handler in this casa?

11 1C a) Since a compool contamns no executable statements, why must 1t be compiled at
all?

b) What s the purpose of a compool template?

11 2 BUILDING A PROGRAM COMPLEX

From the viewpomt of scopmg rules, the templates mncluded 1n a compilation comprise
an outermost block in which the mam compilation unit (1 e. the program, comsub, or com-
pocl being compiled) 15 nested

Chapter seven described the HAL/S scopimg rules m terms of block diagrams like the one
following From these rules it follows that

1) The comsub S can be called from anywhere withun blocks P and Q
2) The vanables A and B can be referenced from anywhere m blocks P and Q
3) The vanable X can be referenced only from block S

This example :llusirates the posttion of template with regard to the main commlation
unit

Compilation

C EXTERNAL COMPCOL,
DECLARE SCALAR,A,B,

CLOSE C,

5 EXTERNAL PROCEDURE(X),
DECLARE X SCALAR,

CLOSE S,
P PROGRAM,

Q PROCEDURE,

CLOSE Q,
CLOSE P,

Buildwmg A Program Complex |17

Block Structure for Scoping Rules

COMPOOL DATA

DECLARE SCALAR, A,B.
L

$ PROCEDURE,
DECELARE X,

P PROGRAM,

Q PROCEDURE ;

From the diagram, one might conclude that A and B can be referenced from block S
This 15 true if and ondy 1f the template C 1s mcluded when 8 1s comptled Thus, the “outer-
most block™ 15 not umversal, 1ts contents may appear different {o each compulation unit,
depending on which templates are included This mechamsm support *“prvate’ compools
and comsubs, as we shall see

Returning to the example of communicating Guidance, Navigation, and Control pro-
grams, suppose that the templates included by each of the seven compilation unifs are as -

dicated below

Compilation Unit

NAVIGATION
GUIDANCE
CONTROL
GNC_POOL
LIMIT

FILTER
INTERPOLATE

Type

PROGRAM
PROGRAM
PROGRAM
COMPOOL
FUNCTION
PROCEDURE
PROCEDURE

Templates Included

GNC_POOL, LIMIT, FILTER
GNC_POOL

GNC_POOL, FILTER, INTERPOLATE
NONE

NONE

LIMIT

GNC_POOL

With this structure, the contents of the “outermost block’™ vary considerably from compila-
tion to compilation, as shown

11-8 Structuning Large Apphcations

POSITION, VELOCITY POSITION, VELOCITY
PITCH_CMD, ROLL_CHD LIMIT PITCH_Cf1D, ROLL_CHD
I LIMIT | m
FILTER
NAVIGATION

*mdicates the module bemg compiled

As the previous table imphes, any {ype of compulation unit may include the template of
any other compilation umt Thus, comsubs may access compool vanables or call other com-
subs, compools may wclude the temptates of other compools, for mstance to utilize global
REPLACE statements defining array sizes Program blocks also have templates which may be
mcluded by any type of comptation unit We will see the ulility of program templates 1n
later sechions

From thus discussion 1t can be seen that access to comsubs and compool vartables 1s con-
trolled by the 1nclusion of templates In bwlding a particular program complex 1t may be
desirable to sef up manageriai rules concermng which modules may access which data and
subroutines Comsub templates are mcluded one at a time, but when a compool template 15
mcluded, alf of the variables in that compool become accessible If 1t 15 desirable to partifion
compool data, eifther of two approaches may be taken The ACCESS system may be used or
multiple compools may be created

ACCESS 15 a HALSS keyword Under some versions of the compiler, an externally main-
tamned data base of access-nghts mformation can augment the normal scoping rules to
further resinct {not expand) the visibility of comsubs and compool data Thas system 15 1m-
plementation dependent, somewhat complicated, and will not be discussed further in ths
book However, further details are contamned m the Language Specification

The simplest method of restnicting access to compool vanabies 15 via multiple compools
For instance, the following structure might be a better arrangement of the compool data for
the example program complex

Buitding 4 Program Complex 11-9

G_T0 C COMPOOL N_TO & COMPOOL
PITCH_CMD, ROLL_CMD POSTTION, VELOCITY
~—] CONTROL ; GUIDANCE NAVIGATION

' ! ’

Here, the mnterfaces between Guidance and Control are 1in ope compool, and the mter-
faces between Navigation and Guidance are m another The Navigation and Control pro-
grams would include oniy one compocl each, 1in this way multiple compocls fend fo limat
the possible mfluences of one compilation urut on another. In this case, no datz 1s shared be-
tween Navigation and Control

The Gudance program weould have to mclude the templates for both compools The
order in which these templates are included 15 irelevant All compeols are mcluded at the
same level Thus, the previous diagram of scoping rules while compiling Guidance still holds
Since there 13 always only one scope level outside of the main unit of complation, the
rames of varigbles 1n one compool must not duphcate the names of variables mr another
compool if both are included by a single compiztion unrt

There are, of course, other considerafions mn structunng an application as a set of com-
pilation umits For instance, it may be convenient to use enly one compool so that all global
data can be found in a sigie hsting or so 1t will be contiguous in memory for telemeiry pur-
poses The addressing modes of some computers may create an efficiency trade-off between
the number of compools and their average sizes Finally, in the next sectron, we will see that
compools can be ehminated through the use of TASK blocks, this decision involves add)-
fional trade-offs . B

Suppose, however, that the onginal configuration of three programs, one compool, and
three comsubs, has been chosen In this and the previous section we have described how the
various compilation umts are coded The remaining problem 15 to compile them 1 the
appropnate crder Since templates are automatically generated* when each block 15 com-
piled, the “lowest level” compilation vnis must be compiled first Given the table of tem-
plates included per compilation presented earlier, an appropriate sequence for this program
complex 1s

*If automatic template generation 1s not avaiable, the order of compilation ts rrrelevant

1i-10 Structunng Large Appheations

GNC_POOL, LIMIT, FILTER, INTERPOLATE, GUIDANCE,
NAVIGATION, CONTROL

Generally, the necessary order of compilation can be determimed by mspection Starbing
with compools, then proceedmg to “utility” comsubs, other comsubs, apphcation programs,
and finally “control” programs 1s usually adequate However, the followmg algonthm will
always produce an acceptable sequence 1if one exists

1) Produceralist of templates included by each complahion (like the one given here)

2) Compile each module which requires no templates (except for those templates al-
ready generated)

3) Remove the modules that have been compiled from each hist

4) If not done, repeat step two

It 15 possible that a point will be reached where every module requires af least one template
If so, then there 15 no sutable sequence This can happen for three reasons, all of which are
Iare

1) Recursion If A ealls B and B then Calls A, no sequence is appropnate Solution
Change the struciore, recurston will not work anyway

2) A par of programs schedule or wait for each other Solution Hand-code one tem-
plate or re-structure

3) Trouble with mmtahzed NAME vanables Solution Break the loop of cireular refer-
ences (see Chapter 13)

These difficulties almost never oceur in well designed program complexes

The construets we have discussed i this chapter are mtended for putfing a collestion of
HALJS modules together A means of mvoking NONHAL procedures and functions was pre-
sented 1n chapter seven If part of a program complex (e g special-purpose hardware inter-
faces) must be wetien m assembly language, 2 few additional constructs arve helpful These
are

1) RIGID compools, which are similar 1n concept to RIGID structures,

2) EQUATE EXTERNAL statements, which ¢can make HAL/S vanables accessible from
assembly language, and,

3) the abiity to wrrte comsubs in assembly language A sef of macros for this purpose
13 generzlly supplied with the compiler system

More detail on these features may be found in the Language Specification and the appropn-
ate HAL/S User’s Manual

Another option i designing a program complex 1s the use of TASK blocks mstead of

programs The software we have been discussing could be written as the single compilation
unit shown 1n the figure on the next page

Butlding A Program:Compiex I-11

ml ®
“I1'| PROGRAM, *
H. N DECLARE VECTGH, '
M. POSITION, VELOCITY:
M- DECLARE SCALAR,
H PITCH_CHD, ROLL_CHD;
M § LIMIT-
¥ | FUMCTICH SCALAR,
c ..
H | CLOSE LINIT;
M| FILTER- *
K| [PROCEDURE;
C ee-
H CLOSE FILTER;
Hr| INTERPOLATE:
H | PROCEDURE,
c
| clLosE IMTERFOLATE, '
¥ | GUIDANGCE:
M| TAsK:
C fi -CONTENTS GF GUIDANCE PROGRAM UNIFODIFEED
H | CLOSE GUIDANCE, '
M | MAVIGATION:
H| TASK;
[.- .
"M {" CLOSE HAVIGATION,
M| COMTROL:
O TasK;
c
H | CLOSE CONTROL:
M} CLOSE P,

. Like programs, tasks.are code.blocks that -receive control directly from the operatmg
system Tasks cannot be CALLed, they are used to implement real-time requirements in-the
same way as programs In fact, the only distinchion between programs and tasks 1s that tasks
must always be nested 1n programs, and may not themselves contain further program or task
blocks Thus, the only change needed to.convert a program. to a task 1s in the header state-

ment, the declare group, executable statements, and any nested procedures and functions
remam exacily the same

11-12 Structurning Large Apphcations

HAL/{S allows one level of nested real-time processes Tasks withun programs Scoping
rules treat all blocks the same Thus, a task and all of its mternal procedures and functions
may access data declared at the program level

Task blocks allow any real-imme structure to be implemented within a single compilation
unit In chapter twelve, a set of real-time control statemenis will be presented These state-
ments mnstruct the operating system to starf execoling 3 program or task at some rate and
prionity, to stop cyeling a process, and so forth The use of tasks as well as programs to -
plement-a-real-fime structure tends to mimmize the amoun{ of compool data, and allows re-
lated processes to be consohdated mn a single compilation unit One disadvantage of using
task blocks s that they can only be SCHEDULEd, CANCELLed, etc , from within the con-
tanmng program If a system consists of several programs, each contamnimng tasks, then the
“control” code which activates and de-activates the various processes must be distnbuted
among the several programs

Exercises

11 2A Consider the following block stmecture of a program complex

DECLARE SCALAR, A, B,

P PROGRAM,

[FUNCTION,
DECLARE INTEGER, A, B ,

P PROCEDURE ,
DECLARE T INTEGER ,

From.which blocks can the scalars A and B be referenced?

11 2B In the figure on page 11-2, 1t 1s shown that the compool GNC_POOL 55 not mcluded
i the compilation of the vt FILTER Why not?

Mult-Programmng Considerations 11-13

11 2C Why 15 1t desirable that the names of vamables 1n a compaool be unique with respect
to the names of vanables i other compools?

112D The text states that a reasonable order for compiling the varzous units for the exam-
ple on page 11-001s

GNC_POGL, LIMIT, FILTER, INTERPOLATE, GUIDANCE,
NAVIGATION, CONTROL

For each of the following possible orders of complation, state whether they will
necessitate the hand coding of one or more templates, and why

a) GNC_POOL, INTERPOLATE, GUIDANCE, LIMIT, NAVIGATION, FILTER,
CONTROL

b) GNC_POOL, INTERPOLATE, LIMIT, CONTROL, FILTER, GUIDANCE,
NAVIGATION

¢) GNC_POOL, INTERPOLATE, GUIDANCE, LIMIT, FILTER, CONTROL,
NAVIGATION

d) NAVIGATION, CONTROL, GUIDANCE, LIMIT, FILTER, INTERPOLATE,
GNC_POOL

11 3 MULTI-PROGRAMMING CONSIDERATIONS

We have used the term “process™ to refer to either a program or a task, this termnology
1s used throughout the HAL/S documentation The term multi-processing, however, has
come to refer to the exeenbion of software on a compuler or set of-itnked computers which
can liferally execute more than one piece of code at a time, ¢ g programming multiple
physical processors The term “mulb-programmumng’™ refers to the appearance of this situa-
tion The use of either actual multiple processors or simulated multiple processors In the
latter case, the computer’s central processing umt 15 “time-shared™ or allocated to each
active process for a bnef interval i succession Reallocation of the CPU may result from
rartiation or completion of IfQ, expiration of a time lrmuf, or other factors Since 1t 15 not
possible to predict which HAL/S statement will be executing when a “‘process-swap”
occurs™, programs must be designed s¢ that a swap can safely occur at any pomnt

*In fact, the tunmng may not be repeatable

DRIGINAL paGe g
DE POOR qQuaLITy

11-14 Structurning Large Applications

H MULTI:

M PROGRAMS

] DECLARE SCALAR,

M, A Bs T, '
c .

c

C -

" IF A NOT = 0 dHEH
H Dos

H B=C/A

c .

C .

C .

n END3

M H

H TASKS
] A2 D .
M CLOSE T,

<}

CLOSE HULTI;

Consider the above code Suppose that MULTI recewves control and execntes the IF
statement, finding A not equal to zero, then, for some reason, the processor is reallocated
to task T When T completes, MULTI will resume where 1t left off, and divide by zero
The problem 15 that two processes share data (viz A) without any protection from an un-
timely process-swap If we could guarantee that the swap would never occur between the
test for A=0 and the division by A, the problem would be solved This can be done by
means of the UPDATE block and locked data, as shown below -

Il

« BETTER:
PROGRAMS .
DECLARE A SCALAR 1OCK(1)3
DECLARE SCALAR, '
' By Cy

IEZTIXIIIT LI OOON O XIXIITZ

UFDATE,
IF A NOT = O THEH
00, i
B=C/ A
ENDs .
ELOSE,
T ¥
TASK, . ,
UPDATE; ..
A= 0;
CLOSE,
cLosE T3
€LOSE BETTERS

Mult-Programrng Considerations 1i-13

Three changes have been made in the BETTER program The variable A has been de-
clared with the attnbute LOCK(1), and both uses of A have been enclosed in UPDATE
blocks The parenthesized “1°” mdicates the assignment of A to lock group one The use of
other lock groups 1s discussed later 1n this section

Data which 1s used by more than one process should normally be loecked Locked data
can only be referenced from withm an update block, the system ensures that only one up-
date block which uses a given lock group is active at any instant of time Thus, this capabil-
1ty 15 as good ag preventing process swaps over 4 sequence of statements A swap may occur,
but the new process wili not be permitted to execute an update block that pertans to the
same fock group An update block allows a process to obtath exclusive dceess (0 one or more
focked varigbles When an update block fimshes, the locked vanables become available {o
other processes, which also must access them via update blocks

An update block 1s executed when the sequential flow of control reaches it In this re-
gard 1t.behaves hike a simple DO END group. However, from the viewpont of scoping
rules, an update block 1s equivalent to any of the other block types, it may even have its
own DECLARE group. An update block behaves hke 2 procedure with respect fo ermror re-
covery, except that the “‘calling’ block 1s defined fo be the immediately contaimng block
An update block may be nested m a block of any other type (eacept compool), and may
contain further procedure or function blocks There are some restrictions on the executable
statements that may be used 1 an update block The followng are prohubited

1) IO statements,

2} Calls to procedures or invocation of functions, except for those nested in the update
block, and

3} Real-time statements except for SET, RESET, and SIGNAL ({see chapter twelve)

These statements are not allowed in update blocks, primarily becavse they potentially take a
long time to exccute It 1s desirable to mimimize the time spent in an update block becanse
while an update block 15 executing, other processes may be stalled gven 1f those processes
are more critical (of a higher prionty)

It 15 almost always necessary to LOCK data which 1s used by more than one process The
compiler does not enforce this rule, and there are cases (¢ g read only data) in which the
protection offered by locked data 1s not requured These cases are the exception rather than
the rule For instance, the GNC_POOL compool from the earhier example should be ceded
as

GNC_POOL COMPOOL,
DECLARE POSITION VECTOR LOCK(1),
DECLARE VELOCITY VECTOR LOCK(1),
DECLARE PITCH_CMD SCALAR LOCK(2),
DECLARE ROLL_CMD SCALAR LOCK(2),
CLOSE GNC_POOL,

11-16 Structurmg Large Appheations

Here,. two lock groups (1 and 2) are used Group 1 1s used for the Navigation to Guid-
ance mnferface, and group 2 1s used for the Guidance to Conirol mterface The selection of
lock groups 1s entirely up to the user, the only constraint imposed by the HAL/S system 1s
ah ymplementahon-dependent maximum number of lock groups It would be possible to use
the same group for all locked data, and this may be convemient during inrtial development
An appropnate assignment of lock groups, however, can lead to improved throughput This
15.because scveral update blocks can be active simulfaneounsly provided that each vses a dif-
ferent lock group, or set of groups, with no overlap Hence, the overhead associated with a
number of process swaps may be avorded Furthermore, the amount of nitter mn cyclhic proc-
esses may be reduced, since the chances of being stalled or suspended due to update biock
conflicts are lessened In our example, Control will never have to wait for Navigation since
their update blocks reference variables from different lock groups

The Gudance program might bezin as in the figure below As this code mmplies, 1t 18
sometimes preferable to copy a small amount of data (POSITION and VELOCITY) rather
than extend the update block to mmclude all of the computations mvolving these vanables
This minimizes the impact to other processes while still affordmmg the protechion against, for
mstance, processing a vector that has been only partially updated

GNC_PQOL
EXTERHAL COMPCOL,

DECLAPE FUSITIOM YECTOR(3];

DECLAPE VELOCITY VECTOR(3),

DECLARE PITCH_COMMAND SCALAR,

DECLARE ROLE_COMMAND SCALAR INITIAL(D),
CLOSE,

INCLUDED
TEMPLATE

b e e e e e 4

VERSION 1

o

GUIDANGE
PROGRAM,
DECLARE VECTOR,
vELZ, Foshz,
DECLARE X Y, Z. OTHERS
COPY_THPUTS
URDATE,

VEL2 = VELOCITY,
POSHZ = PQSETICH,
CLOSE COPY_INPUTS,

AIMIMITIIITIXIX

.

= o9nn

CLOSE GUIDANEES

This example also shows a Jabelled update block The label is optional, and s used here
only for self-documentation

There 15 one excepiion to the general rutle that locked data may only be referenced from
within an update block A locked vanable may be passed as an assign parameter to a proce-
dure. Thus does not defeat the protechion, however, singe the corresponding paramefer
declaration must also specify the LOCK attmbute, thus 1f m turn can only be referenced
from within an update block or passed to further procedures

Muin Pregramnung Constderarigns 11-17

-~

The update block and locked data provide a means of safely sharing data among inde-
pendent real-time processes, a sumlar mechansm for shared code 15 provided via EXCLU-
SIVE procedures and functions This type of protection 15 specified more sumply Just the
appearance of the word EXCLUSIVE on a procedure or function header makes that block
accessible to only ong process at a time To see how and why this feature 15 used, consider
this function

MEAN
FUNCTION{A} SCALAR EXCLUSIVESZ
DECLARE A ARRAY(%) SCALAR;
DECLARE TOTAL SCALAR IHITIAL(OQ) AUTOMATIC,
DC FOR TEMFORARY I = 1 TO SIZE(L[AD),
TOTAL = TOTAL + A
I

END,
RETURN TOTAL ~ SIZE(LAD,
CLOSE MEAN;

XIXIIT wWwWIITIITITXI

Suppose the MEAN function was not exclusive If two processes inmvoked 1, there could
be a confiict 1 the use of TOTAL, even though 1t 15 only assigned from withun MEAN If
one process had executed part of the loop when the other invoked MEAN and AUTO-
MATICally reamtialized TOTAL, the first process would get an invalid result Thus, the
problem with sharing procedures and functions among processes 15 a shared.dafe confhict on
the lpcal data declared 1n the shared block Tlus problem can be avoided by making shared
code blocks EXCLUSIVE Mo new construct 1s needed when an exclusive procadure or func-
fion 15 mvoked, but the system will prevent muibtple simultaneous vsers of the block by
stalhng the second process that tries to mvoke it Exclusive rouhines are sometimes used for
operational reasons having nothing to do with shared data For mstance, a procedure to do
mertial measnrement unit (IMU) calibration mght be made exclusive simply to avord the
rnisk of calibrating more than one at 2 time

Another keyword that can be specified mstead of EXCLUSIVE 1s REENTRANT
Meither one 15 the default If a procedure or function i1s not EXCLUSIVE or REENTRANT
then 1t cannot safely be mvoked from multiple processgs, but no protection mechanism is
present

A REENTRANT procedure or function may be executed “simultaneously” by several
processes That 1s, 1if program A s executing a reentrant procedure, R, when 1t 15 interrupted
by program B which also mvokes R, when B compietes and A resumes, there will be no ad-
vetse affect.

Simply coding the keyword REENTRANT 1s not sufficient to make a block safely “re-
enterable” The following rules must aiso be obeyed

1} Any block invoked by the reentrant biock must also be reentrant, and
2) Any local data must be declared to be AUTOMATIC whether it is imtialized or not

11-18 Structuring Large Applications

We have already stated that the dafficulty m sharng a code block 1s really a conflict in
the use of local data fnside @ procedure or funciton with the REENTRANT attnbute, the
effect of the AUTOMATIC attnbute is expanded Each user of a reentrant procedure ac-
cesses a separate copy of the local vanables if they are automatic Thus, any conflict 1s pre-
vented Parameters and TEMPORARY data c¢annot and need not be automatic The MEAN
function can be made reentrant sumply by changing the EXCLUSIVE keyword to RE-
ENTRANT The necessary conditions for successful re-entrancy are descnbed more fully
in the HAL/S Langunage Specification

Thus chapter has defined the umit of compilation, and mtroduced the 1dea of a program
complex, consisting of severa) real-fime processes It has described how global code and data
can be made accessible to these processes, and how the adverse effects of “simultaneous™
access can be avoided In chapter twelve, we will describe the HAL/S statements for creating
and controllmg these processes and further discuss multi-programming concepts and their
application to acrospace systems

Exercises

11.3A A bank runs several programs to modify savings and checking accounts in a multr-
programming environment The procedure MOVE_SAVE_TO_CHECK, used to
move money from a savings account to a checking account, 15 shared by all the pro-
grams, and looks hike this

MOVE_SAVE_TO_CHECK, PROCEDURE(ID, AMOUNT),

.SAVINGSSID = SAVINGSSID—AMOUNT,
CHECKINGSID = CHECKINGSID+AMOUNT,

CLOSE,
SAVINGS and CHECKING are compool vaniables shared by all the programs
a) What potential error is present in this system?

b)Y How can it be fixed?

1138 The bank mn exercise 11 3A awards nterest periodically and records each interest
transaction for later printing on the customer’s statement The shared procedure
AWARD_INTEREST performs this task

AWARD_INTEREST PROCEDURE(ID),
DECLARE INTEREST INTEGER,

Multr Programupung Considerations 11-19

INTEREST = SAVINGSSID INTEREST_RATE,
SAVINGSSID = SAVINGSSID+INTEREST,
CALL LOG_INTEREST(ID, INTEREST),

CLOSE,
a) What potential error 15 present?

b) How can 1t be fixed?

ORIGINATL PAGE 13

The SCHEDULE Statement 12-1

120 REAL-TIME STATEMENTS

Most aerospace applhications have a set of tmng constrants which comprise a major
facet of the entire problem defimtion Meeting these constramts generally requires mierac-
tions with an operating system

Real-time operating systems for flight or process control applications can vary 1 many
ways Nonetheless, certamn capabibities, such as invoking a code block at a specified fre-
quency, are almost always provided By examining several operating systems, 1t 15 possible
to abstract a set of primitives {1 ¢ conceptual operatimg system funcfions) in wiuch the var-
ous facilities can be expressed Then the real-time requirements of an applhication can be
described without referencing any parficular operating systemn The HAL{S statements de-
scribed 1n this chapter are such a set of primitives, through which real-time requirements can
be expressed 1 a machine-1ndependent manner

HAL/S suggests the point of view that real-tune constraints are an mninnsic part of the
appircation, 1 e that timing 18 part of the algorithm rather than something to resolve “later”
As a result, real-time statements are mtegral to the language, and allow the programmer to
express the entire algotithm directly and 1n one place

Real-time statements 1solate the programmer from operating system details m the same
way that anthmetic expressions isclate the programmer from details of machine instructions
and data formats A standard syntax for real-time operating system interactions greatly en-
hances the portabihty of application programs In pariicular, it allows flight programs to be
simulated on ground-based computers, since the timing interactions are expressed m HALS,
rec-compiling 15 sufficient to translate the enfire algonthm

The mechamisms for commumnication among real-time processes were desciibed in
chapter 11, thus chapter will discuss the set of HAL/SS statements which control the mitia-
tion, termination and synchromzation of processes These statements are all executable,
each implementation includes some technique outside of the HAL/S language for specifying
ane or more imitial processes which can then use the real-time statements to create and con-
trol additional processes

The figure on the next page shows the use of SCHEDULE statements fo create new
processes As the syntaximphes, these statements create cyclic processes which will recerve
control from the operating system at the specified mtervals The mtervals may be specified
by any arithmetic expression 1 the REPEAT EVERY clause, the wts are implementation
dependent but generally these values are expressed 1 seconds In any case, the units of time
values throughout amy particular mmplementation will be consistent Seconds will be
assumed in the rest of this chapter Hence, the three processes scheduled by STARTUP
would repeat at the rates of once, six fumes, and twenty times per second

122 RealTime Sigtements

STARTUP
PROGRAM,
GUIDANCE:
TASK»

+an

CLOSE GUIDANCE,
HAVIGATION-
TASKS

-

CLOSE MAVIGATIOM.
CONTROL-
TASK:

=X O XXX O XXX

[x]

P

CLOSE COWNTROL:
SCHEDULE NAVIGATION PRIGRITY(50), REPEAT EVERY 1 0;
SCHEDULE GUIDAMCE FRIORITY(70), REPEAT EVERY 1 / &,
SCHEDULE CGHMTROL FRIORITY(&0), REPEAT EVERY 1 / 20,
CLOSE STARTUPR,

=Ix=x

HAL/S does not impose any resinctions on the perods of cyclic processes created n
this way, however, 1t may not be prachical to provide complete generality 1n a flight oper-
ating system Simphficafions such as rounding all time values to the nearest millisecond are
to be expected in fhght systems The appropniate HAL/S User’s Manual and any operating
system documentation should be consulfed It has become common praclice, however, to
develop and test HAL/S software on large ground-based computers (host computers)before
executing on flight (target) equipment These ground-based 1mplementations generally do
not impose any restrictions on real-tume statements other than those descnibed in the Lan-
gnage Specification, thus allowing a large range of operating system types to be simulated
In this chapter, a complete implementation will be assumed, but the reader should not ex-
pect to find all of these capabilities in any particular fhght operating system

12 1 THE SCHEDULE STATEMENT

Suppose that the average execution times of the Guidange, Navigation and Control tasks
are as shown n the table below

Task Rate Average Time Total Time
Guidance) 50ms 3 sec
Navigation 1 100 ms 1 sec
Control 20 25 ms 5 sec

.~ T Total Time = 9 sec

The SCHEDULE Statement [2-3

Since these tasks together oceupy only 9/10 of a second per second, 1f 13 clear that the speci-
fied rates are attainable However, 1t would be extremely difficnlt to mmplement thes struc-
ture using CALL and DO CASE statements 2s was done in chapter seven The difficulty can
be seen by examiming a tume-line of these tasks’ execution

wavigation | |1 [1]
GUIDANCE (I 1 O O O OO
CoNTROL noooooooooooooonoponn

1 second {

The trouble 15 that no matter how the 1uhiation of these processes 15 phased, a time will
ocour when more than one process is due to execute If only CALL statements were uged, 1t
would be necessary to either tolerafe a substantial ufter in the execution frequency of each
task, or to break each task mto many small procedures which would be called 1n a very com-
plex sequence

By the use of SCHEDULE statements, as shown n the example STARTUP, the timing
conflicts can be zutomatically resolved As we have already stated, the operating system can
re-allocate the central processor at any point 1t the execution of a process, subject to the re-
strictions resulting from update blocks and exclusive procedures [f fwo processes are due
sunulianeously, the ghest priority process recewes conirol The purpose of the prionty
clause 1n the SCHEDULE statement 1s to allow the system fo resolve conflicting requests
for the hardware resources In the example, Guidance becomes ready while Control 1s ex-
ecutmg about half the time Since 1fs priority 15 less than that of Control, Guidance 1s stalled
unti} Control completes Every time Guidance execuies, Control comes due in the middle
Here agan, the prionties govern the situation, and Gudance 15 stalled (interrupted) whele
Control runs When Control completes, Gurdance resumes at the point of interruption As
long as the shared data protection features of chapter eleven are used, this system action has

ne unpact on the coding of either task, although some overhead 15 associated with the
Process swap.

Since Conirel can interrupt either of the other two processes, the jitter m its penod of
execution will be very small Aside from the system overhead mvolved 10 swapping proc-
esses, delays 1n the execution of Control can result only from awaiting the release of locked
data or an exclustve procedurs by one of the other processes Guidance can be delayed by
the unavailabihiy of a shared resource or by the execution of Control, Navigation can be n-
terrupted by either of the others Consequently, Navigation will generally run m very short
bursts spread out through the entire second

12-4 Real-Tune Statements

The example actually consists of four processes The three tasks and the STARTUP pro-
gram The priority and other charactenstics of STARTUP are determined externaily, either
throngh a SCHEDULE statement 1n another commlation umt or by default dunng system
startup, Uswally a HALfS real-time executive will start a single program as a nosi-cyclc,
process, fhis program must then schedule all other programs and tasks The prionty of the
STARTUP program affects the sequence in whach the tasks are imitiated IF STARTUP 15 at
prionty fifty, when it schedules Navigation at prionity sixty, Navigation becomes the highest
prionty ready process and therefore receives control immediately STARTUP 15 stalled until
Navigation rehnguishes the processor This happens when Navigation reaches its CLOSE
statement, since 1t was scheduled to run only once per second, 1t enters an mter-cycle wait
and ceases to be a ready process This makes STARTUP agamn the mghest prionity ready
process, so 1t recewves control-and executes the second SCHEDULE-statement The-same sit-
uation 1s repeated with Guudance and Control

The effect of these SCHEDULE statements, then, seems very much like a sef of CALL
statements One major difference 12 that the Gudance, Navigation and Condrol tasks will
continue to execute at the specified rates after STARTUP reaches its CLOSE statement,
aven though STARTUP executes only once Furthermore, each HALLS real time process has
its own error environment Any error handlers it STARTUP have no effect whatsoever on
the action taken 1f an error occurs 11 one of the tasks Fnally, the sitvation would be dif-
ferent 1f STARTUP had a lagher prionty -

With STARTUP at pnionty fifty, the following time-line descnibes the first few cycles

STARTUP [3 _ & ¢ i

NAVIGATION :])

GUIDANCE [1] [$])
CONTROL] 10

That 15, Navigation and Guidance each complete a full execution uninterrupted before the
higher prionify task(s) are scheduled Thss may well sumplfy the system If STARTUP was at
pnority one hundred, however, the tunelme would be completely different .

The SCHEDULE Statement 12-3

STARTUP []

NBYIGATION (3¢]

GUIDANCE 1 [3% ¢
CONTROL 1 O O 0O O d

In this case, STARTUP executes all three SCHEDULE statements before any other process
recewves control Hence, the first cycle 1s not substantially different from any other

When STARTUP reaches 1ts CLOSE statement, 1t enters the wait state This 15 stmular to
an mter-cycle wait, but dogs not result from timing considerations A program. remans
active as long as any of its tasks are active, due to the possibihity of shared data and utility
routines at the program level It 1s said to be “‘waiting for dependent processes” The mem-
ory allocated to the program cannot be released If the tasks are subsequently cancelled (1 e
cease to cycie), the program completes as well 1t 15 neither ready nor waiting, but simply
done and forgotten In the terminclogy of the Language Specification, 1t 15 no longer “mn the
process queues”

The mummum form of the SCHEDULE statement contains only a4 process name and a
priorty, as

SCHEDULE STARTUP PRIORITY(100},

If no repetition option 15 spectfied, the program or task executes only once The REPEAT
EVERY specifies cyclic execution with a fixed interval between the begimmngs of the
cycles The REPEAT AFTER option 1s very simmlar, but the fixed interval 1s between the
erd of one cycle and the start of the next, as illustrated 1 thus figure

|a— DT —|t— DT —|— DT —>ac— 7]

» | 0 a1 0O 0

l— DT —3| |—DT —»1 |~ DT —3| l— DT—3~I

s | [] L] O O

e — o ey | ————

i2-8 Real-Tune Starements

The REPEAT AFTER form specifies the length of the mter-cycie pertod of waitimg 1f RE-
PEAT AFTER i1s specified, the average time between executions 1s the sum of DT and the
average execution time whereas 1f 1s simply DT 1n the case of REPEAT EVERY The primary
advantage of the REPEAT AFTER form 1s that a cvcle overlap error cannet occur 1f proc-
ess A m the previous example executes more than DT seconds in a particular cycle, 1t will
come due agamn before 1t completes Thisresultsin a runtime error for wiuch no ON ERROR
handler can be wnitten Process B above can execute for any length of titme without an gver
lap, since the start of the next cycle 1s delayed until DT after the previous cycle completes

The pnmary disadvantage of the REPEAT AFTER option 15 that 1t may make system
vertfication more difficult Use of thus option fends {o make the tuime-line of the entire sys-
tem unrepeatable If the outputs of a control system depend on the sequence i which van-
ous processes are executed, a huge number of runs may be requured to show that no unac-
ceptable transients are introduced by timing fluctuations On the other hand, 1f REPEAT
AFTER 15 used for less critical processes, the enfire system may respond better fo overload
conditions

If REPEAT 1s specified without erther AFTER or EVERY and a time
SCHEDULE X PRIORITY(17), REPEAT,

the process 15 immediately restarted at the end of each cycle This 15 equivalent to “ RE-
PEAT AFTER (,”. This option 15 generally used for processes mtended to use “left over”
time for self-test, efc, and for processes whiclt issue WAIT statemenis Use of the simple
REPEAT option 15 not substantially different from codma an mfimte loop around the task
body and schedulmg it as a “one-shot™ The effect of the CANCEL statement 1s different,
and under some implementations error recovery may differ as well

The SCHEDULE statement has several other options in addition to the three REPEAT
forms These options allow the start of a process to be delayed unti a specific condition 15
met, and allow cancellation cnitena to be specified at the time a process 1s scheduled Both
begin and end conditions and a repetition option may be used 1n a single SCHEDULE state-
ment, as shown below

Y

M) oX:

¥ | PROGRAH:

Ml o

M | Task;

M | cLose p;

H SCHEDULE P IN 5.4 FRIODRITY(4%), REPEAT EVERY .03 UNTIL RUNTIME + 160,
1 § CLOSE X3

The SCHEDULE Stetement 12-7

This statement will cause the program or task P to be imtiated at priority 49 five pomnt
four seconds after the execution of the SCHEDULE statement Subsequently, it will be ex-
ecuted* every 03 seconds for 94 6 seconds and then be ternunated

The IN and UNTIL options allow any anthmetic expression This expression 13 a time
value n the same units as 1n the repeat ophions, generally seconds The IN option requires an
interval of time whereas UNTIL expects an absolute tume This 15 the same as the normal
English usage of these words Since the RUNTIME function returns the current value of the
system clock, “IN 5 4" 15 equivalent to “AT RUNTIME+5 4", a form which 15 also accept-
able to the compiler

All of the anthmefic expressions in 2 SCHEDULE statement are evaluated only once,
when the statement ifself 15 executed Subsequent changes fo the variables used m these ex-
pressions do not affect the schednled process

The various scheduling options must be specified 1n the correct sequence, and only one
of a given type 15 allowed 1n a single statement The sequence of phrases in a SCHEDULE
statement 18

1) SCHEDULE and a process name,

2) An ophional begm condition IN, AT or ON,
3) A pnionty,

4) An optional REPEAT clause,

5) An optional end condition UNTIL or WHILE

The ON and WHILE conditions reference event varrables, which will be described 1in Section
12 2 Furst a few special cases of the time opiions need mention

Normally, the IN or AT time used m a schedule statement 15 in the future If the speci-
fied time has already passed, the process is readied immediately There 15 one exception [f
AT 15 used with the REPEAT EVERY option and the time has already passed, phased sched-
uling 15 performed The first execution of the process occurs at the time given by the sum of
the “AT” time and the period (REPEAT EVERY delta) of the process This allows a “‘syn-
chronous™ real-ime structure, which 1s further described m the Language Specification
Phased schedulmng tends to mmmmize the number of processes that are ready at any one
tume

Normally, the UNTIL time specified 15 in the future If 1t is already passed, then the
SCHEDULE statement has no effect The UNTIL clause can never stop aq process it ntid-
execution, If the UNTIL time arnves while the process 1s executing, 1t 1s allowed to finish 1ts
current cycle The UNTIL and WHILE clauses can only stop a process before 1ts first execu-
tion or dunng an inter-cycle wait When the end condition specified in a SCHEDULE state-
ment 1s safisfied, the process 1s CANCELIled rather than TERMINATEd, a distinction which
will be explamed in Section 12 3

*Assuming that its priority 1s sufficient to obtain necessary resources

ORIGINAL P .
AGE,
OF POOR .QUAIJT@

128 Real-Tune Statements

Exercises

12 1A Draw a time-hne for one second’s execution of the processes scheduled below As-
sume that each process executes for 80 ms per cycle

SCHEDULE A PRIORITY(100), REPEAT EVERY 1/s,
SCHEDULE B PRIORITY(99), REPEAT EVERY I/3,
SCHEDULE .C PRIORITY(98), REPEAT EVERY 1/2,

12 1B Draw a time-leme for the processes m exercise 12 1A, but with all occurrences of
EVERY changed to-AFTER

12 1C Given two tasks, X and Y, both of which use one half second per iteration, wnte
schedule statements that will run X continuously for two seconds, then alternate X
and Y for two seconds, and then run Y half the trme for two more seconds Use only
two schedule statements -

122 EVENT VARIABLES
The three forms of begin-condition i 2 SCHEDULE statement are

IN “anthmetic expression’,
AT “amthmetic expression’, and
ON “event expression’

Two of these forms descnbe a begin-conditron wn terms of time, the thurd form, ON, lets
scheduling depend on conditions or occurrences which do not happen at a predetermined
time Suppose, for example, that the Gumdance, Navigatron and Control tasks of the previcus
example are used during launch of a spacecraft, but when orbit 15 achieved, Guidance and
Conirol are to be replaced with another task, Freefall I the time af which orbat will be
reached 1s known 1 advance, this can be done with the AT and UNTIL clauses already pre-
sented Otherwise, 1t 15 appropnate to declare an event vanable to correspond to this occur-
rence as m

DECLARE ORBIT EVENT,

Then the desired transition can be specified 1n the SCHEDULE statements as shown in the
next example When an eventi variabie 15 signalled, as in

SIGNAL ORBIT,, .

all active.event expressions which reference that event are evaluated In this case three active
event expressions reference ORBIT When the SIGNAL statement causes ORBIT to become
TRUE, these expressions are all satisfied Guidance and Control are ¢ancelled via the UNTIL
clauses, and Freefall 1s started via the ON clause

An acfive event eapression 15 a boolean combation of event variables-used-in-a-real-
time statement which has not vet been satisfied Evenf expressions are formed in the same

Eveny Variables 12-9

way as boolean expressions using the AND, OR, and NOT operators However, ail varables
1 an event expression must be events In the simplest case, an event expression consists of a
single event vanable, e g “ORBIT” in the SCHEDULE statements above A boolean.com-
bimnation of event variables 15 only considered an event:expression when 1t 1s used m one of
the real-time statements An ective event expression is one that has never evaluated to
TRUE since the contamng real-time statement was executed Once OREIT 1s signalied, the
event expresstons m the SCHEDULE statements are no longer active Signalling ORBIT
again will have no effect unless additional real-time statements wiuch reference 1thare exe-
cuted

STARTUP

PROSRAM;
DECLARE ORBIT EVENT; * T - T ’

GUIDANCE

TASK, « -

CLOSE GUIDANCE;
HAVIGATICH:

TASK] - . el .-

1 -

T O ITEZXIXX

iy

v -

CLOSE MAVIGATIOM.
CONTROL"
TASI,

PR

CLOSE COMTROL:
FREEFALL
TAShK

CLOSE FREEFALL, i
SCHEDULE HAVEIGATION FRICRITY(60), REPEAT EVERY: I 03
SCHEDULE GUIDANCE PRICRITY(70), REFCAT EVERY 1 / & UNTIL ORBITS
SCHEOULE CONTROL PRIGRITY(20), REPEAT EVERY 1 / 20 UNTIL ORBITS
SCHEDULE FREEFALL ON CRBIT PRIDRITY(7E), REPEAT EVERY 1 / 10;
CLOSE STARTUP,

ZZxXaxx OH I 0O T

When an event expresston is used 11t the UNTIL or WHILE clause of a SCHEDULE state-
ment, 1t can cause cancellation of a process When used in the ON clause of g SCHEDULE.
statement or 1n a WAIT statement, 1t can cause a process to be readied or stalled "Event ex-
pressions ate used only in SCHEDULE and WAIT statemends, and always serve as a condi-
tion under wlich the state of some process 1s to be changed

- E

There are three types of eve.nt vanables Latched and unlatched declared events, and

process events All evenis have only two states, ON and OFF, the "distinction between

12-10 Real Time Statements

latched and unlatched events 1s that an unlatched event does not retam its state, ORBIT 15
an unlatched event since the LATCHED keyword was not specified m its declaration Itis
mmhally OFF or FALSE When the SIGNAL statement 1s executed 1t becomes momentanly
TRUE, just long enough for all active event expressions which reference it to be evaluated
SIGNAL 1s the only statement which can affect the value of an vnlatched event

As stated above, an event expression can be a boolean combination of event vanables
Since an unlatched event 15 only true dunng the execution of a SIGNAL statement, and
only-one event can be signalled at a time, the logical congunction (A & B) of two unlatched
events will never be satisfied This 15 one rezson for using LATCHED events, as illustrated
below

B

M | PROGRAH;

M DECLARE ORBIT EVEMT LATCHED IHITIAL(FALSE);

H DECLARE EMSIME_OFF EVENT LATCHED INITIAL(FALSE}:

H | GUIDANCE:

M| TASK,

H | CLOSE,

: CLuggHEDULE GUIDANCE PRIORITY(70), REPEAT EVERY I / 6 UNTIL GRBIT AND ENGEIHE_QFF,
, -

Here, Guidance will continue to cycle until both ORBIT and ENGiNE_'OFF are true at the
same time This can happen mt several ways The sequence

SET ORBIT,
SET ENGINE_OFF,

will cause Guidance to be cancelled When a latched event vanable 1z SET 1t remains true un-
tif 1t 15 RESET A latched event may also be SIGNALled In this case, the state of the event
15 momentanly nverted for the duration of the SIGNAL statement, just as in an unlatched
event Thus,

SET OREIT,
SIGNAL ENGINE_OFF,

will aiso cause Guidance to be cancelled, as will

SET ENGINE_OFF,
SIGNAL ORBIT,

However, if one event 1s first signalled and then the other set, there will be no time at which
both are true, and Guidance will confinue The advantages of using unlatched events will be-
come clearer when the WAIT statement 15 introduced

Event Varmbles 12-11

, The thurd type of event is a process event These events are not declared by the program-
mer, but automatically defined to correspond to the statc of each program or task The
process.event has the same name as the program or task, and 1s true from the time the proc-
€55 18 scheduled unti] 1t cmnpletes its. last cycle The process event of a cyciic pracess re-
mams true during, the miter-cycle wait, and dunng any other stall or wait state Process
events cannot be SET, RESET or SIGNALIed, they simply reflect the state of the process of
the same name

c %
-

Process events can be used to solve a problem m the Guidance and Control to FREE-
FALL transihon of the previous example Since a process cancelled via the UNTIL clause
of 1ts SCHEDULE statement 1s allowed to finish 1ts current cycle, FREEFALL wll start
before the other tasks have finished if they are active at the tume the event expression
becomes-true This difficulty 1s corrected m the following code

- - * b . h

STARTUP -

PROGRAM, g
DECLARE ORBET EVENT LATCHED;

GUIDAHCE:

TASK,

Y ..

CLOSE GUIDANTE: _
NAVIGATION
TASK,

——

CLOSE HAVIGATION,
CONTROL-
TASK,

. -

CLOSE CONTROL:
FREEFALL:
TASKS

Tz N I .0 OIIXZE O TIXTIX

(3}

saa

CLOSE FREEFALL;
SCHEDULE NAVIGATION PRIORITY(6D3, REPEAT EVERY 1.0;
SCHEDULE GUIDANCE PRIORITY{70}, REPEAT EVERY 1 / & UNTIL ORBIT;
SCHEDULE COHTROL PREORITY(BG}, REPEAT EVERY 1 / 20 URTIL ORBIT,
SCHEQULE FREEFALL OH ORBET PRIORITYE75), REPEAT EVERY 1 / 10,
CLOSE STARTUP, -

I

The’ FREEFALL process is mnrtiated when ORBIT 1s true and both other tasks have com-
pleted their last cycles In this case, ORBIT must be a lafched event and 1 should be SET
rather than SIGNALled

The effectcof SET, RESET and SIGNAL on Jaiched and unlatched events 1s summanized
in the table on the next page As shown SET and RESET leave a latched event 1n the TRUE
or FALSE states, respectively When a latched event 1s SIGNALLed, 1is state 1s momeniardy
mverted Unlatched events are always FALSE, except when SIGNAL makes them momen-
tarily TRUE

12-12 Reagl-Tune Statements

Set Reset Signal
Take all event actions
unlatched event illegal flegal depending on TRUE
state of <event var>>
old 1 Set event state Take all svent actions
value to TRUE dependmg on TRUE
latched 1S 2 Take all event no action state of <event var>
event FAISE | actions depending
on TRUE state of
<event var>
old 1 Set event sfate | Take all event actions
value to FALSE depending on FALSE
iatched 5 no action 2 Take all event | State of <event var>
event TRUE actions depending
on FALSE state
of <{event var>

Events can also be tested 1n non-real-time statemenis, e g
IF ORBIT THEN DO,

Booleans and events may be freely mxed in boolean expressions However, when used m
any statement other than SCHEDULE or WAIT, an unlarched event 15 always false

The SCHEDULE statements allow begin and end conditions to be specified in terms of
erther fime or event expressions, but the repetition option can only be specified in terms of
a constant mterval of time The WAIT statement allows a prece of code to execute at irregn-
lar intervals

Suppose a process 18 required to execute whenever ORBIT 1s false and ENGINE_OFF 15
true The schedule statement can be used to imtrate a process the first fime this combimation
15 true, as in

SCHEDULE RE_IGNITE ON NOT ORBIT
AND ENGINE_OFF PRIORITY(999),

A convenrent means of allowing this process to execute every twne the event expression 15
true 15 shown on the next page

Event Vaniables 12-13

p-
FROGRAH,
DECLARE EVENT,
EHGINE_OFF,
ORBIT LATCHED:
SCHEDULE RE_IGHITE FRIORITY(999);
RE_IGNITE
TASK,
DO WHILE TRUE,
WALT FOR ENGIME_OFF & ~ORBIT:

END,
CLOSE RE_YGHITE;
CLOSE P3 -

ITaIx GO0 XIXIIIIIXIITIIX

When the WAIT statement 1s executed, 1f the event expression 1s true, execufion continues
at the next statement If the event expression is false when the WAIT statement 1s executed,
the process is stalled until the expression becomes true as a result of event vanable changes
by other processes If the event expression in 2 WAIT statement 15 not immediately satssfied,
it 15 put into the pocl of active event expressions, the process contamnmng the WAIT state-
ment 35 stalled (taken out of the READY state) and the nghesi pnonty ready process re-
cewves control The process issuing the WAITT can only continue when the speafied condi-
tion 1s satisfied

Suppose that ORBIT and ENGINE_OQFF are both latched events If they are SET and
RESET from some process other than RE_IGNITE, 1t 1s possible that RE_IGNITE will exe-
cute too many times Since it 1s of such a ugh prionty, RE_IGNITE may fimsh processing
and re-execute the WAIT statement before the other process has a chance to RESET
ENGINE_OFF In fact, if RE_IGNITE 15 the lughest prionity process and contains no olher
WAIT statement, 1t will continue to loop to the exclusion of every other process If the RE-
SET statement can be placed in RE_IGNITE night after the WAIT statement the problem 1s
solved, but the situation could be avoided altogether by using a SIGNAL statement instead
of SET Since SIGNAL leaves an event 1n the true state just long enough for all active event
¢xpressions to be evaluated, there 1s no possibility that RE_IGNITE will re-ssue the WAIT
statement while the event 1s still true The SIGNAL statement 1s generally used when an
event 1s expected to change tts state repeatedly, as there 1s no need to RESET* 1t 1n prepara-
tion for the next use. Note, however, that if the process which is to wait for the event has
not already executed 1ts WAIT statement, the SIGNAL has no effect

*Signal momentanly mveres the state of a latched event If a process wats for the false state, SIGNAL
avouds the need to SET the event before the neat cycle

12-14 Reagl-Tume Statements

Consider the two communicatimg processes below

TITTIXXIITITTITAL

In this example, if the poority of P s greater than 50, neither process will ever complete If
the progty of P 1s less than 50, T will execute 1ts WAIT statement before DO. SOME-
THING 35 signalted, and both processes will complete If P 15 the lgher priority process, it
must pause before signalling DO. SOMETHING to give T 2 chance to execute its WAIT

P.
PROGRAH; 1 .
DECLARE DO_SOMETHING EVENT,
DECLARE DONE EVENT LATCHED IMITIAL(DFFJ;
SCHEDULE T PRIGRETY{50);
STGHAL DO_SOMETHINGS
WAIT FOR DCHE, t

TASK 3
WAIT FOR DO _SOMETHING: !
SET DOME;

CLOSE T; iy

CLOSE P,

statement Thus could be done by adding

WAIT 1,

just before the SIGNAL statement

12 2A Why does the SCHEDULE statement have both AT and ON clanses?

Exercises

Event Varables 12-15

12 2B In the program segment below, at which of the pomnts A-D 1s the event expression Q
actve?

DECLARE Q EVENT LATCHED INITIAL(OFF),

SCHEDULE TASK! ON Q PRIORITY(57),

SIGNAL Q,

SET Q,

12 2C Let X be a latched event which 15 mmtially OFF How 1s SIGNAL X, different from
the sequence SET X, RESET X,?

12 2D Re-do problem 12 1C wiih the two transifions based on events assume that un-
latched events, tranl and tran2 are signailed at appropnate fimes by another process

12-16 Real-Tune Statements

12 2E Is a.latched or unlatched event more appropriate m each of the following sstuations
a) As the single operand of an ON clause
b) As part of a complex event expression
¢) In a boolean expression
d) In the RESET statement
e) Ina WAIT statement mside a Joop

12 2F Wrte code that will canse the state of one event vaniable, COMPL, to always be the
mverse of another event, MASTER, which s set and reset by some other ¢code Do
not examine the state of MASTER more often than necessary

12 3 OTHER REAL-TIME STATEMENTS

The SCHEDULE statement creates a process of some prionty and possibly with some
repetition rate Begin and end conditions can be specified 1n terms of either time or event
varrables These event vamables may be SET, RESET and SIGNALled by other processes
The WAIT statement allows a process to voluntanly release control pending some future
condition This condition, like those in the SCHEDULE statement, may be esther a combim-
ation of event vanables or the passage of time.

In addition to the fime option of the WAIT statement, this section presents the CAN-
CEL and TERMINATE statements, which allow a process to discontinue ifself or some
other process, and the UPDATE PRIORITY statement, whuch 1s used to modify the pnionty
of a process which has already been scheduled

The WAIT statement has three forms

WAIT FQR ‘“‘event expression”,
WAIT “delta time”, and
WAIT UNTIL ‘“time”,

The effect of the statement 15 the same 1n all cases If the speaified condition s already true,
execution continues, otherwise, the process 15 stalled until the condition becomes true

As,m the SCHEDULE statement, the expressions “delfa time™ and “time”™ may be any
arithmetic expression, both are m the same umts as hime valugs mn other real-time state-
ments Fhe two forms distinguish between a particular time, and an interval of time, which
15_the same distinction as bgtween the IN and AT options of the SCHEDULE statement As
before, ’)

Ls 3

WAIT 1,
15 equivalent to

WAIT UNTIL RUNTIME + 1,

Cther Real-Time Statements 12-17

These forms of the WAIT statement are generally used 1n ““sequencing™ applications, for m-
stance to fire a vehicle control jet for a given duration or to wat between commands to
some slow moving mechanical device They are also useful 1n testing, to generate a scenano
of simulated mputs as a function of time

Note that the anthmetic expressions in the time-onented WAIT statements are evaluated
only once, when the WAIT statement 15 executed The expression “RUNTIME + [does
not keep shding into the future, but 15 converted {o a scalar value when the WAIT statement
1s executed It 1s only event expressions that are repeatedly evaluated by the system

A further example of the WAIT statement, 15 shown below Here, the acceleration
of a vehicle 15 controlled to get from HERE o THERE in minimum tume by accelerat-
ing halfway and deaccelerating halfway “Steering 15 1gnored, as 1s any initial velocity

p.
PROGRAM,
DECLARE VECTER,
HERE, THERE;
DECLAPE HMAX_THRUST CONSTANT(1234),
VEH_MASS CONSTANT(5670),
DECLARE SCALAR,
As S» T3
DECLARE BOOLEAM,
ACC_CHD, BECG_CMD;
HAX_THRUST / VEH_MASS,

A

ABVAL(HERE - THERE) / 23
SORT(Z A 51,

g
T

ACC_CHD = OM,
WATT T3

ACC_CMD = CFF3

DECC_CMD
UAIT T3

O,

DEGC_CHD
CLOSE P,

OFF,

TEIMIIMIOIIMNTIIMEIITIIII IR

In this example, “*WAIT T,” introduces a delay of T seconds between setting ACC_CMD
on, and back off

The WAIT statement femporanly deactivates a process, a process can also be perma-
nenfly deactivated A non-cyclic process (no REPEAT clause in the SCHEDULE statement)
termenates by executing1ts CLOSE statement, by cavsmg a fatal runtime error, or as a result
of the TERMINATE statement A cychc process can cease execuimg as a result of the
WHILE or UNTIL clause used when 1t was scheduled, the occurrence of a fatal error, or the
execution of a CANCEL or TERMINATE statement

The CANCEL and TERMINATE statements are similar in fori, each consisting of a
keyword (CANCEL or TERMINATE) followed by a list of process names, for example

CANCEL GUIDANCE,
TERMINATE STARTUP,
CANCEL NAVIGATION, CONTROL, P, T,

12-18 Regl-Time Statements

The TERMINATE statement causes mmmediate, abrupt cessation of the hsted processes
Since it may stop a process at any pomt mn ifs execution, its use s strongly discouraged The
HAL/S Language Specification imposes additional rules on the use of TERMINATE The
only use of TERMINATE whaich 15 generally considered acceptable 15

TERMINATE,

When-no hst.of processes is.supplied,.selfstermination 15 mmphed This form of the TERMI-
NATE statement can serve as a “‘super return” statement at the PROGRAM or TASK level
Since the process “knows” its own stats, this form 1s relatively safe When other processes
are termnated, it s iImportant to consider all possible points at which they might be exe-
cuimg to ensure safety

The CAMNCEL statement allows an orderly shut-down of the speaified processes Like
the WHILE and UNTIL clauses of the SCHEDULE statement, CANCEL can only stop a
process before us first cycle or during the ntercycle wart This allows processes to be
stopped without the risk of leaving parfielly updated results

Since a cancelled process i1s allowed to fimish its curfent cycle, the CANCEL statement
may not have immediate effect Process events can be used to key on the completion of the
last cycle before scheduling a “replacement™ process, as shown below

CANCEL X, Y, Z,
WAIT FOR TIX & Y & "Z,
SCHEDULE XYZ_NEW PRIORITY(i0), REPEAT,

Exercises

12 3A Surround the statement “WRITE(6) RUNTIME,” with other statements so that the
vatues 1/10, 1/8, 1/6, 1/4, 12, and 1 will be sent to channe! 6 Use no other IfO
statemenis Do not worry about numenc acouracy

123B Given

P PROGRAM,
DO WHILE TRUE,
f*something™/
END,
CLOSE,

SCHEDULE P PRIORITY(100),
What does “CANCEL P,” do” How should thus be done?

Other Real-Time Statements 12-19

End of Chapter Problems
Part of the specification of the flight software for the XYZ arcraft might read as
follows
Category Rate Functions
A Ry input processing
- elevon commands
telemetry
B 2Ry rudder commands
gudance
C 1f/4 R A flight control gains
D 1/8R A navnigation display
updates

-
The software functions are dinided into four categones as shown The category

A software 1s to be executed at the highest possible rate consistent with the through-
put of the machine and the total workload The category B software shall execute
one-half as frequently as category A, the rate of category C shall be half that of
category B, and the rate of category D shall be one-half that of category © (12 one-
eighth the rate of category A) ™

12A Implement the above example via the real-time statements Explam your choice
of prionties Fix raie A at one-tenth

1ZB Re-do the problern under the onginal “as fast as possible” groundrule

Bit Strings 13-1

13 0 SYSTEM PROGRAMMING AIDS

The mformation presented in earlier chapters apphes equally well to any HAL/S com-
piler Except for numeric precision, the examples shown will produce the same resulfs under
any complete implementation of the HAL/S language This transferrability was one of the
major design goals of the language It decreases the dependence on the availlabiity of fhght
hardware and encourages the re-use of debugged software

In order to provide this degree of machme-independence, the language 150lates the user
from detads of the underlyimg hardware, e g, the number of bits 1n a scalar The anthmetic
data types, Integer, Scalar, Vector and Matnx correspond to mathematical abstractions For
most users, the mapping of these data types mnto the data formats supported by a giwven
computer 15 of no concern The operations that can be performed on these data types are
defined 1 a way thatis completely independent of any computer archutecture The character
string, boolean, and event types also are defined abstractly Users do not normally need to
know how much memoty 15 occupted by a boolean or what character code (ASCII, EBCDIC,
etc) 1s used internally Since these low level decisions are made m the compiler, HAL/S
code 1s nsually machime-ndependent

Whale most flight code implements algonthms that are defined 1n machine-independent
mathematical or logical terms, small portions of many projects are specified i terms much
closer to the computer in nse Examples of this low level code are formatting sensor data,
handhng mterrupts, managing real-time clocks, commanding special purpose avionics, ete
These functions are intnnsically machine-dependent Algonthms are designed 1 terms of
hardware capabilities and concepts Thus, there 15 Iittle chance of sharing this type of soft-
ware between different projects Transferrabilrty of *“systems programs®™ is not a practical
goal, mven the diversity of flight hardware

Even though system software 1s generally specific to a given computer, the other advan-
tages of high order languages still apply Also, the use of a single language for both apphca-
tron and system programs tends to sunplfy mterfaces, documentation and traiming Hence,
HAL/S prownides some features for writing system software, mcluding the use of pointers
and low-level bit mampulation

These features are most frequenily used in software that s intnnsically non-transfer-
rable The restnction of bit mampalation to the BIT data type, and sinmlar constraints on
addresses, separate the possibly machine-dependent systems programs from applications
code

13 1 BIT STRINGS

A bit stoing 15 a sertes of bmary digits Each digit or bit behaves like a hoolean The
forms, BOOLEAN and BIT(1), are completely interchangeable A bit string of length four
can be created via |

DECLARE FLAGS BIT(4),
Like vectors, character stmngs and other aggregate data types, bit strngs may be sub-

scripted to select single components or partitions The first, leftmost, or most significant bt
of FLAGS 1s denoted FLAGSS1 The last two bits would be referenced as FLAGSS(2 AT 3)

13-2 System Programt Awds

That catenation operator (I [) also apphes, though it strings differ from character strings
in that bit strings are of fixed length The AND, OR and NOT operators can be apphed to

entive strings as well as their boolean components

The length of a bif string must be less than an implementation-dependent mit This
hmit generally equals the maximum number of bats that can be loaded into a general pur-
pose accumulator or register on the target machine

Operations on single bit components of a bit string are generally slower than correspond-
mg operations on BOOLEANs or entire bit stnngs The machine mstructions to perform
these operations also tend fo occupy more space *

Because of the mefficiency of operating on a component of a bit sinng whale leaving the
other its alone, bat strings should not routmmely be used to pack the indrvidual booleans of a
program mto a simgle word One type of sitvafion 1n which bit strings can be used effectively
15 iilustrated below

H DECLARE I INTEGER,
M DECLARE B BIT(S);
H DECLARE BOOLEAN,
H ci, c&, €3, €4, C5, Cé&, C7, CB,
c
H 00 WHILE CH»
H PO FOR I = 1 TO 1003
E .
H IF B = HEX'00' THEN
b} oo,
C ..
H EMD§
H ELSE
H jals H
c
H END'3
M END,
E .
[iF C1 THEN
E .
H B = OH,
s 1
. E - ' - B - + ~F
MR Tl RS IF C2 THEN _
E .
H B = OH;
1 2
c .
c
[

*This 13 because most memory vmts are designed to irmsfer many bats (a byte or word) to or from the CPU
in one operahion Modifving a single bit generally requires the use of logical or shuftimg instructions to
preserve the state of adjacent bits

Bt Strings 13-3

H IF C& THEN

E -

] B = ON;
-5 8

H END;

In tlus code, eight booleans are packed 1 a bit sinng called B This makes the statements,
B31=0N, BS2=0N, etc, less efficient than references to the mdmvidual boeoleans, C1, C2,
etc However, the statement

IF B = HEX‘0O0'THEN DO,
1s mueh more efficient than

IFNOT (Cl IC2 1C31C41C51C6 [C71C8) THEN

DO,

Smce this statement 15 executed much more frequently than the mndividual assignments, the
savings from making a simpler test more than offsets the cost of the component assignments
Thus, one apphcation of bit stnngs 1s to collect boeleans for testing as a group

The example above tests whether all cight bits are false Other compound condifions can

be tested via the AND and OR operators For instance, the followmng statement tests for the
odd-numbered bits equal to zero

IF (B & BIN‘1010101010) = HEX‘0(" THEN
DO,
The test that bats 1 and 3 are on and 2 and 5 are off can be coded as

IF (B & BIN‘11101000" = BIN‘10100000 THEN
DO,

Gy

&F PGOQLQPAGE i3

—

13-4 System Program dids

When booleans are ¢olliected 1n a bit string, 1t 1s still possible to give symbolic names to
individual components viz REPLACE statements, asin

REPLACE MEANINGFUL_NAME BY *“B§3",

The only comparisons that may be made between bit strngs are equality and non-
equality (= and 1=) As with arrays, the components are compared 1 pairs Two bt strings
are equal 1f all paws match, and unequal 1f any pawr mismatches If two bit strings of unequal
lengths are compared, the shortest 15 padded on the left with bmary zeros before the

comparison

This left padding also occurs prior to logcal operations on bt strings of unequal lengths
The followmnsg assignment statements all have the effect of setttg BS6 to ON while leaving
the other bits alone

Bﬁ = ON,
B = B OR HEX'Q4,
B = B OR HEX#,

B = B OR BIN'100,

Provided that the implementation dependent hmit on bit string lengths 15 not less than
tweniy

B = B OR HEX‘00004

will also produce the same results A copy of B 15 padded to length twelve before 1t 15 ORed
with the HEX004>, and the result 1s truncafed at the left (the most sigmificant four bats are
removed) before 1t 15 stored back into B

Partitions of bit stnngs may be used 1n the same ways as entire strings, e g

IF B = OCT17" THEN
17TO 4
DO,

The width of every it partition must be known at compile-time This means that in the
form BS(X AT Y), X must be an anthmetic expression composed solely of Literals, CON-
STANTs, REPLACE names and the anthmetic operators In the form BS{X TO Y}, both X
and Y must be compuiable at comple-time * Character sfiings are the only data type for
which vaniable-width partition subscnpting 1s allowed

As we have stated, bit strings should not be roufinely used to pack booleans The over-
head of referencing the boolean components generally outweighs the savings of compressing

Bit Strings 13-%

them. In the first example, a bit string was appropnate since the entire string was referenced
more often that 1fs components

Tt may also be appropriate io use bit strings to pack a fable of booleans *Since there are
generally fewer HAL(S statements which reference a table than entnes in the table, 1t 1s
possible to save memory (at the expense of execution time) by compressing the table while
expanding each reference For mstance, m the table of 1000 booleans,

DECLARE INFO ARRAY(1000) BOOLEAN,
each array element can be easily referenced as 1n

IF INFOS (1) THEN DO,

but the table itself will occupy a lot of memory Each boolean uses a whole byte, word, or
other addressable unit To save some storage, this table could be packed as shown below

DECLARE THNFO ARRAY{1 + 1000 / 16) BIT(16é);
TEST:
FUNCTIONII) BOOLEANS

DECLARE T INTEGERF

DECLARE IMTEGER:

WORD . BETHUM:,
KORD = DIV(I. 161;
BETHUM = Y - 16 HCRD,

RETURN IHFO '
HORD#+1 .BITHUN+1

S VUIMIITIIIIIX

CLOSE TEST.

Now the value of entry number I 1t the table can be referenced as TEST() This will be a
less efficient reference, but the table size has been greatly reduced

This example assumes that the computer on which the code execufes can address
memory by the 16-bit unat If not, this code could be very much less efficient Thus, this
example 1s not machine-independent It would still compile and produce the correct results
on, say, a 24-;it machine, but to achieve the same efficient use of memory would require
changing the four occurrences of 16 to 24 Thus, one reason why programs contaming bit
sirings fend to be less transferrable 15 that bit stnngs are sometimes used to control the
packing of nformation in “wards™ of memory

The expression INFOR(WORD BITNUM) contamns both array and component sub-
scripts As before, many combimations of simple and partition, component, array, and
structure subscripts are allowed

13-6 System Program Auds

One of the most common uses of bit strings 1 aerospace apphcations s for formatting
sensar and display data For example, a sensor might produce a value in “packed decimal™
format Six four-bit fields, each contaimng a number from 0 to 9 (BIN0000° to BIN*1001°),
packed 1n a 24-but word This couid be converted 1o a syumpie mnieger by the followmng code

H PECLARE INPUT BIT(24};

H DECLARE OUTPUY INTEGER INITIAL{O):

lE‘i DO FOR I =1 TO 21 BY &,

H QUTPUT = 10 QUTPUT + INTEGER(INPUT 1
S 4 AT I
H END»

Here we see that the INTEGER shapmg function will accept a bt string as its operand
The effect 1s merely to treat the strmg as a binary number rather than a senes of booleans

Conversely, the BIT function allows an mmteger to be freated as a bt stong The length
of the string returned 1s always equal to the implementation-dependent maxumum bt
length The code below assumes that the maximum 15,16

M DECLARE I INTEGER,

i B BITi16)5

H READ(S) I;

E .

H B = BIT(IN; .

E -

M IF B THEN

5 1

M WRITE(6) *WALUE OF ¥ HaS NEGATIVE'.
E .

H IF & THEN

S & !
H

WRITE(6) "VALUE OF I WAS 0DD*3

This example produces correct resulis only on a 16-bit 2% complement or sign-magnitude
computfer Here the machine dependence results from both the string length of 16 and the
assumptions made about the mnterpretation of the first and Iast bits of an INTEGER

B Strings 13-7

Conversions between it and mnteger types use the BIT and INTEGER funchons The
BIT function will also accept a scalar argument, and the SCALAR function will accept a
bit argument However, an wnfermediate conversion to mieger occurs in scalar-to-bit and
bu-to-scalar conversions Thus, BIT(3 3) = BIN“0000000000000100°, and SCALAR(BIN
‘0100") =4 0 BIT of a scalar between zero and one-half generates a string of binary zeros

The value returned by the BIT funchon 15 always of the maximum legal length for bit
stnings, as defined for the compaler version in use This fact must be considered when the
BIT function itself 15 subserpted The last four bits of an integer, I, can be referenced as

BIT5(4 AT #-3) ()
but the expression

BIT3(1 TO 4) (1)

may or may not select the first four bits of I If the number of buts in the representation of
an mteger 18 less than the it stnng length hmit, the BIT function will left-pad the bit
pattern of I with binary zeros up to the hmit The subscript apphed to a BIT funchion
selects bits from the maximum-length resuit of the conversion, rather than from the ongmal
operand, so BITS(1 TO 4) (I) may pick out padding mstead of data

The CHARACTER funciion can convert a bit string to 1ts binary, octal, decimal, or hex-

adecimal character representation This 15 specified via a radix, which 15 written as a sub-
script, for example

H DECLARE B BITLSB),

E

H B = BIT(25);

E .

M WRITE(6) CHARACTER [B),
s AMER

E .
M HRITELS) CHARACTER (B)s
5 2DEG

E .
M WRITE(S) CHARACTER ___ (B);
3 a0eT
E .
M LRITE(6) CHARACTER [B)s
s 2BIH

£ .

M MRITEL6) B}

Orryy
% Poog 2008 gy

13-8 System Program Aiwds

would produce

419)
‘25!
‘3],
‘0001 1001~
‘0001 1001°

The BIT function can convert a character string back to a bit strmg The radix 15 sup-
plied here as Well Every character in the stnng must be a digt in the valhd range for the
specified radix BITS(@HEX) (*12°) 1s BIN®10010°, BIT$(@0OCT) (*12°) 1s BIN* 1010, and
RITS(@BIN) (‘12" would result in a runtime error Note that conversions between character
and bt do not depend on the codes used to represent numerals withen character strngs

Another function, SUBBIT, allows any data type to be referenced, assigned, and sub-
scapted as if if were a bit string SUBBIT obtans the mteimnal representation of a vanable
with no modifications at all Since these representations of HAL/JS data types vary from
computer to computer, programs which use SUBBIT can not be machineandependent

The SUBBIT function 1s used in the code below to convert a character striig contaimng
decimal digits to the packed decimal form discussed earlier This routine assumes that the
digits are represented 1n the EBCDIC character code Tn this code {which 15 not used mn al
implementations) the deaimal digits 0-9 are represented by the binary codes HEX'F{
through HEXF9’

DECLARE C CHARACTER (4) INITIAL(‘1234?),
DECLARE B BIT(16) INITIAL(HEX‘0000"),
DO FOR TEMPORARY I = 1 TO 4,
B = B 11 SUBBIT $(5 TO 8)(CSD),
END,

The expression SUBBITS(5 TO 8)(C3I) selects bits five through eight of the binary rep-
resentation of the Ith character of C SUBBIT can also be used to modify a vapable as 1if
it were a bif string The SUBBIT funcfion 15 descnibed further in the HAL/S language

specification
As a [inal example of bit sinngs, consider the following problem A set of three redun-

dant sensoss produce an ARRAY(3) BIT(16), where each sensor contiibutes cne array
element contaiming four fields as shown below

nl n2 n3 validity bit

I T T I O I I I N I O
1 2 34 5 6 7 8B 9101112131415 16

Bt Strings 13-9

The probiem 1s to produce a fourth word 1n the same format which contamns average values
The five bit fields will be treated as unsigned méegral numbers, the validity bit in the averape
will be true 1f and only if all three mput vahdity bits are true

The data can be declared as

DECLARE DATA ARRAY(3) BIT(l&),
DECLARE AVERAGE BIT(16)},

and the computation can be done 1n a single statement

AVERAGE = BIT 15U IHTEGERI EDATA | /s 33 b oeIT ¢ (SWICINTEGER({DATAI
& ¥1705 b

5 AT %- S AT #-4% 5 AT

MEM WIEm

1/ 3 11 BIT tS!JHI!HTEGERE[BA‘Tk] ¥ /3 |] bata AND DATA + DATA .
6 5 AT ¥4 5 AT 116 2 16 316

Note that the bits in the diagram were numbered from one to sixteen, starting at the left
{or most significant bat) HAL/S always numbers bifs m this way, regardiess of any conven-
trons that may be used in hardware documentation

The expression BITS(5 AT #4) () selects the last five bits of 1ts operand Smnce the
length of the sinng retumed by the BIT function 1s implementation dependsnt, the use of
“H#-4 instead of “12” or “28”, et , 15 generally preferred

DATAS(* 1 TO 5)1s an ARRAY(3) BIT(5), this expressxlon selects a bit partition from
each array element Thus, the INTEGER function 1s bemg presented with an array of *N1*’
fields)

This example also shows the use of the catenation oﬁeratlor on bit strings, which
operates in the same way as on character strings

In this section, two major uses of b1t strngs have been presented First, bit strings were
used to collect booleans mto a smgle word so that a complex booledn expression could be
reduced to a simple companson, the examples would work under any HAL/S implementa-
tion The other major use of bif strings 15 for mampulatmg quantities of less than one
addressabiaity atom Bit subscrpts can be used to pick apart a word of memory This allows
gxplicit user control over the packing of data, and provides a facility for reformattng
avionics IfO data In this case, such considerations as the word size of the target machme
and the internal representations of HAL/S data become important, hence, there 1s a degree
of implementation-dependence 1n the use of bit strings

13-1G System Program Aids

I3 1A

13 1B

13 1C

131D

Exercises

Given,
DECLARE FLAGS BIT(12},

wnte'expresmons that test for each of the following conditions without using
subscnpts

a) buts 1 and 2 on,

b) even numbered bits off,

¢) first six buts off or last six on,

d) buts 1,3, 5,11 on, others off, and

e) bits 1,3, 5, 11 on, 2, 12 off, others 1rrelevant

Fill 1n the followmng function so it agrees with the comment

FLIF FUNCTION(B) BIT(12)},
DECLARE B BIT(12),
C Retumn string of bits 1n reverse order,
C 1e, FLIP(HEX'00I?) should be HEX 800’
CLOSE FLIP,

Six bits can represent an infeger vafue between zero and 63 If a table of 200 such
values were fo be stored in a computer with a 24-bit word, 1t would be advanfageous
to pack four values per word Wiite a procedure,

SET_BITS PFROCEDURE(ENTRY,VALUE},

which can be called to set one of the 200 6-brt entnes to value, and a function,
GET_BITS FUNCTION(ENTRY) INTEGER,

which returns the value of one entry Use the declaration

DECLARE TABLE ARRAY(50) BIT(24),

A common format for floafing point numbers consists of a sipn bit, followed by
seven exponent bits, and 24 manfissa bits The value of the number is

+ mantissa x 1gexkponent —64

A non-zero number 1s said to be “normalized™ if the first four hats of the mantissa
are not all zero Write a procedure which mterprets 1ts BIT{32) arsument as a
floating pomnt number, and returns a BIT(32) which has the same floating pomt
value as the mput, but 1s normalized If the mput manthssa 1s 0, then retum true
zero (1 e, all bits = 0} When would such a routine be ugeful?

Name-Vanables, i3-11

13 LE Re-do the packed decimal to mnteger conversion example in the text using only one
execntable statement

13 IF Re-do the problem above without any anthmetic operators Hint Use characler
operations

13 2 NAME VARIABLES

Name variables are pointers or addresses, they allow data to be referenced mdirectly
Name vanables are sometmes called “pomters-t0”, since each name vanable can pomnt only
at vanables of a given data type The type of the data pointed to is specified’m the declara-
tion of the name vanable 1tself

The most prevalent use-of pomters 1n general 1s to pass the gddress of a data aggregate
(such as MATRIX) to a subroutine In HAL/S, this 15 done implhicitly via ASSIGN param-
eters, hence, the need for name variables 1n apphication programs 1s almost ehimmated In
system programs,.name vanables may be used for efficiency 1in mantaimng linked hists and
queues, for buffer control and storage management, and for mterfaces to non-HAL/S code
or IfO hardware (e g , a DMA channel)

Ancther common use of name varmables 1s {0 avoid a repeated structure subscnipt opera-
tion Suppose an inertial sensor produces data i the format indicated helow

STRUCTURE IMU_DATA
| DELTA_Y ARRAY(3) INTEGER DOUBLE,
1 ATTITUDE ARRAY(3) INTEGER,
1 STATUS BIT(16), -

There are three of these sensors
DECLAREIMU_INPT IMU_DATA-STRUCTURE(3),

A low rate process 15 1o select the best of the three copes of IMU data, the entire structure
1s to be read and the selected-copy processed at 2 higher rate One way™ to pass the selection
wnformation between the processes is as a strticfure subscnipt An integer,

DECLARE BEST INTEGER,

could be located 1n a compool visible toboth processes /It would be assigned to 1, 2 or 3 at
the low rate, and the high rate would have computations involving IMU_INPTS(BEST,) No
tame variables are used so far, but tlus solution will work Indinidual components of the
selected structure can be referenced as in

PITCH ANGLE = SCALAR(IMU_INFT ATTITUDEBEST,]),

*without using name vanables

ORIGJN

& p
OQR Acy
,Q%I ;:S‘

13-12 System Program Aids

Every reference to the selected structure copy includes the subscripting operation This
conceptually involves adding the base address of the structure to the product of the struc-
ture width and the value of BEST Multiphcation 1s relatively slow on most computers It
would generally be more effictent to compute the address of the BEST copy of IMU_INPT
only once and reference 1t directly through this saved address Both “indexmng™ and “‘mn-
directron™ are performed 1 a vanety of ways on different computers, but when the mndex
requires mulbiphcation, m ths case by the widih of ten mtegers, indwrection 15 qmcker Thus
1s rot to say that 1t 1s always preferred Some of the nsks of usimg name vanables will be

discussed later

Before giving the name vanable solution, we note that the address can be computed and
saved by adding an additional procedure

5 CALL XTRA ASSIGHC muimm' H

s BEST;

nl xrea:

1 FROCEDURE ASSIGHE BEST___II‘HJH

H DECLARE BEST_IMU IMU DATA-STRUCTURES

£ wma

H PITCH_ANGLE = SCALAE[BEST_II‘M.ATTITUDEI);
S

C .

o CLOSE XTRA;

Here the structure subscript 15 ehtmnated throughout the XTRA code block, since HALSS
ASSBIGN parameters are a case of ‘‘call by reference” rather than “call by value” The
address of the argument 15 passed to the-procedure Name vanables allow the same type of
indirect reference without the overhead of calling an extra procedure This 1s shown below

STRUCTURE IMU_DATA
T DELTA_V ARRAY(3).INTEGER DOUBLT:
1 ATTITUDE ARRAY(3) INTEGER»
1 STATUS BIT(16),

DECLARE IHU_IHPT IMU_DATA-STRUCTURE(Z)S
DECLARE BEST INTEGER,
DECLARE PITCH_ARGLE SCALARS

DECEARE BEST_EHU HAME INU _DATA-STRUCTURE;

X I gxax

Name Varmbles 13-13

H | LOW_RATE:

M| TASKS

14 DECLARE BEST INTEGER,

M CALL TBD ASSIGM{BESTI;

E + +

M HAHEIBEST_IHU) = HAHEC(IRU_INPT bH

5 BEST;

H CLGSE LOW RATE,

C

M | HI_RATE

M TASK,

[.

1] PITCH_ANGLE = SCALAR(BEST_IMU ATTITUDE 33 -
) 1
o ..

M CLOSE HY_RATE:

This pregram 1s much the same as before In particular, the HI RATE task is the same as
when BEST_IMU was an assign parameter, except that the XTRA procedures 1s gone

The name vanable, BEST _IMU, occurs thiee fimes i1 the program above Farst is the
declaration A vanable 1s specified to be a name by placing the keyword NAME before
the data {ype The second 1s when 1t appears as an operand foe the NAME function in the
LOYW_RATE task Inthis context(and only 1h this context) the name)s treated as a poanter
Here 1t 15 set to the address of the best copy of IMU_INPT The only way to “re-pomt’ the
name vanable BEST_IMU 1s by executing a statement of the form

NAME(BEST_IMU) = NAME():
The only {x.ray to reference a name vanable’s pointer value at all 15 by use of the NAME
function Normally, BEST_IMU 1s of type IMU_DATA-STRUCTURE It may be used any-
where that a non-name vanable of type IMU DATA-STRUCTURE is allowed In a normal
context, outside the name function, a name vatiable serves as an alas for data of some other

type, hence the terminology NAME mstead of “pomter’ Ths 1s not at all the same as the
use of a REPLACE macro as n

REPLACE BEST_IMU BY “IMU_INPTS (BEST,)”,
because the replace macro resulis m the subscript operation performed every time In the
case of name vanables, changes to the value of BEST only affect which data 1s referenced by
BEST_IMU when the

NAME(BEST_ IMU) = NAME(IMU_INPT$ (BEST,),

name assignment 15 executed

K}~(f{__"‘

OG'R % - A@E’« E?

http:NAIEIBEST.IU

13-14 System Program Aids

Name vanables may be of almost any data type, though the most useful 1s structure The
types of data 10 which names cannot point are those which require more than a simple
address to descnbe These are the same types that are disallowed as assign parameters, ex-
amples incliude it pariitions, matrnx columns, etc

A name vanable can only refer to data of exactly the same type as specified in 1fs decla-
ratton This means that all of the type atimbutes must match, including precision, arrayness,
structure hierarchy, and so on The INITIAIL atfmbute 1s an exception The statement

+

DECLARE BEST_IMU NAME IMU_DATA-STRUCTURE INITIAL{HAME(IMU_INPFT));
2!

wIm

mitializes NAME(BEST_IMU), 1¢, the pointer value When a name vanable 1s declared,
the amount of storage reserved 15 just enough for one address The INITIAL attnbute
specifies the value to be placed in this address word The block of storage needed to contain
an IMU_DATA-STRUCTURE 15 not allocated when the name 15 declared, thus the instial
values for the structure pointed at must be specified elsewhere The statement shown causes
the name vanable BEST_IMU to point initially at the second copy of IMU_INFT

If the INITIAL atinbute 15 not specified 1n a name declaration, the name mitially pomts
nowhere A specral value 1s used as a null address so that all unimtialized names have the
same values This nuoll value 15 an address at which 1t 1s imposstble to locate data and can be
watten erther as “NULL” or as “NAME(NULLY” It 1s posstbie fo determme whether or not
a name vaniable points anywhere, as shown below

*
IF HAME(BEST_INUI = HAME(NULL) THEN
KRITE(&) 'BEST IHU HOT CHOSEN',

XIm

The basic NAME syntax has been shown 1n the context of one example The forms of
declanng, imtralizing, re-poinhing, and dereferencing {1 e | accessing the data pomied at) have
been shown The main example used 1s maclhune-mdependent and at least somewhat apphca-
tion onented Nonetheless, there are pitfalls in the use of name vanables It is difficult to
find out what a name vanable 15 pointing at by examming the code surroundng a reference
to it Datz which 1s accessed via name variables 15 not fully tracked i the cross reference
listing Name vanables allow a single Iocation to be referenced by severalidentifiers, possibly
resulting 1 obscure side-effects of assignments Name vanables also tend to bypass compiler

Lists and Quenes [3-15

optimzation, since they make 1t difficult to find a segment of code over which a particular
vanable 1s not modified It 1s hard for either the programmer or the compiler to be certain
what 15 bemng changed when name vanables are assigned 1nto Thus, 1t 1s frequently worth-
while to use a less efficient buf less dangerous construct such as structure subscnpting A
common lament 1s “‘I though I undersfood this code until I saw these name vartables!”

In most apphcation code, name variables should be avoided The possible gamn 1n effi-
ciency 15 generally outwejghted by the loss in reltability and maintamabibhty Name varn-
ables are provided i HAL/S primanly to allow the writing of systern software

Exercises

13 2A Name any three HAL/S data items which cannot appear as an operand of the NAME
psendo-function

i3 2B Which of the following can be done with name variables

a) bypass HAL/S scoping rules,

b) declare a structure node with copiness,

c) reference a single data 1fem by several names or identifiers,
d) reference absolute addresses, and

e) change the type of data

13 3 LISTS AND QUEUES

The HAL/S language does not provide syntax for dynamic stotage allocation Tempo-
rary vanables and space for intermediate results may be allocated and freed by the runtime
code, but all decisions are made based on the statre block structure, DO END grouping,
etc List processing languages can automatically release data that 15 not on any Lst and
allow the space so created to bz used for new bisis HAL/S does not prowide this type of
storage management because 1t 15 not possible to guarantee that such systems will not run
out of storage this would be an unacceptable condition in fhght

Aside from storage management, the most valuable feature of lists 15 that entries can be
deleted or inserted m the middle without copying data This capability 15 avarlable ;n HAL/S
through structures and name variables

Consider the timer queue, a concept which 1s central to many operating systems Each
entry mm the gqueue contamns a fune and an acfion to be taken The queue 1s mantamed 1n
order of increasing time the top entry 1 loaded inte an mnterval timer This could be coded
1m HAL/S as shown on the next page

*nalitatively speaking, a program’s relrability 15 the probabality that 1t has no idden bugs s mamntan-
ability 15 the probability that 1t can be changed or extended witheul reducing reliabahty

13-16 System Program Awds

STRUCTURE TQE-

TIHER QUEUE ELEMENT

1 TIHE SCALAR,
1 ACTION INTEGER,
1 AFFECTED_PROCESS HAME FRCCESS _COHTROL-STRUCTURE.
1 HEXT NAHE TQE-STRUCTURE,
DECLARE TQ TQE-STRUCTUREL10DI;

LSIEIITIIT OO

These statements create a 100-copy structure, with four fields in each copy Two fields
are name vanahles, they are referenced in the usual manner,e g,

TQ AFFECTED_PROCESSS(1,)

1s the thurd field of the first copy of TQ 1t 15 of type PROCESS_CONTROL-STRUCTURE
Only the address 1s physically contamed 1n TQ$(1,), but the structure elsewhere 1s accessed
when the name vanable 15 referenced 1n a normal context (1 ¢, outside of the NAME func-

tron) The other name vanable ponis to a TQE structure The last field of TQE 1s the name
of another TQE We will explore the mmphcations of this later As it sfands, all of the fields

m TQ are null The guene could be initialized as shown below

DECLARE FREE_Q MAHME TQE-STRUCTURE,
DECLARE ACTV_Q HAME TQE-STRUCTURE;

| INITIALIZE
+ +
HhHE(FREE_Q! = HAHMEITQ)3
1;
DO FCOR TEMFQRARY M = 1 T 99,

X UIIMI LI MIT =TI

+ +
HAREETQ.HEXT) = MAHELITQ),
H, H+l3

END»

Lists and Quewes 13-17

Now the entries in the queue are tied togather with pointers, as shown betow

@/@/@ 7 G

The structure copy numbers are shown 1n the diagram, but each field can now be referenced
without using a copy number, as Indicaied m the following table

Referenced Data Pomted To By

TQS(1,) FREE_Q

TQR2.) FREE_Q NEXT
TQS(3.) FREE_Q NEXT NEXT
TQ TIMES(2)) FREE_Q NEXT TIME

Since FREE_Q WNEXT 1s the name of a TQE structure, 1t also has a NEXT field Thus field
ponts at the third entry m the free queue, which ar the moment 15 aiso the third copy of

TQ

The procedure below creates an entry in the active queus by removmalt from the free
quene and mserting 1t at the appropnate point i ACTV_Q based on the tune field

ENGUEUE
FROCEDLRE(WHEH, HHAT, FRCCHAHE),
PECLARE FHEH SCALAR.
FHAT INTEGER.
PPOCHANE MatE PROCESS_COMTROL-STRUCTURE,
PECLARE HEW HAME TGE-STRLCTURE,

I I

THE FOLLOWIMG MAHE VARIABLE IS USED LIKE A LODQP
VARIABLE TH A SEARCH

(s Rz

x

DECLAFE EHT NAE TRE-STRULTURE,

n

IF NO FREE EMTRY THEN AN EPRCR

+
IF HAHE{FREE_Q) = NULL THEH
RETURM,

ZXm

13-18 System Program Awls

L4

L) xm

= m

TXmMmITm on :,:::m:l::t:m:!m:t::::m::m:m:c:l:lm::m:; (s Xs Rz k=] Zm==>X

ELSE USE TOP FREE EMTRY fOR MEW ACTIVE Q ELEMENT

* ¥
NAHE(HEW) = NAMEIFREE_@1,
REHMOVE HEW ENTRY FROH FREEZQ

+ +
HAME(FREE_Q) = HAHME({FREE_Q HEXT),

PUT INFD INTO HEW EHIRY

HEW TIME = WHEH,
NEW ACTIOH = WHAT,

+ +
HAPE(HEH AFFECTED_FPOCESS) = RANE{PROCHAME}S
HCW IMSERT MEW EHIRY IN APPROFRIATE PDINT OF ACTV QUEUE
EITHER BEFCRE FIPST,
BETHREEH EHY A 'D EHT MEXT FOR SOME EMT
OR AT ERD OF QUEUE

IF HEW TIHE < ACTY_G TIMNE THEH

Do,
+ +
HAME(HER HEXT) = HAHELACTY_Q),
* +

HAHE[ACTV_Q) = HAHME(HEHW],
RETUPH,

END »
+ +

HAMELEHT) = HAHE(ACTY_QI,
+

D0 UHTIL HAHE(EHT HEXT) = HAHE(HULL).
+ +

HAHE(EHT) = HAHELACTY_QI,
If EMT HEXNT TIME > HEH TIHE THEN

Do,
+ +
NAHECHEH MEXT) = HARECENT MEXT),
+ +
HAMECENT HEAT) = HAMELHEW],
RETUPH,
EHD,
* .

HAMECLEHNT) = HAHEUEMT HEXT),
EXD,

AT THIS POINT._, THE WHOLE G HAS SEARCHED UNSUCCESSFULLY,
50 ADD HEH TO THE END

L] +
HAHE(EHT NEXT) = HAME(HEHW].
+
NAHE(HEM HMEXT) = HULL.
CLOSE ENQUEUE.

7% PUT FIRST%®/

/%5TART AT TCP®/
/% SEARCH Q®/

H4START AT TOPHS

/% HEW ENTRY INSTRTED #/

/% TRY HEXT EMTRYw,

".t".t T
PR Y !
A
! i.“ ‘:."*
v L}) .‘{-\t\’*
* r ‘t
i ;_b.igi

Lists and Quenes 13-19

This procedure can msert an entry mn the imddle of the quene without physically moving
subsequent entnes down, since the sequence information 15 encoded 1n the links (name
vanables) rather than the posiiton 1n memory (the copy number) After

CALL ENQUEUE(0, 1, NULL),

13 executed, the queue looks like

— G N\
OO0 1@

ACTY Q - h) = = e)

If the next calls are

CALL ENQUEUE(20, 1, NULL),
CALYL ENQUEUE(IS, 1, NULL),

the queue looks like

FREE_Q

ACTV

Now, ACTV_Q1s TOS(1,),
ACTV_Q NEXT1s TQS(3,), and
ACTV_QNEXT NEXT1s TQS(2,)

13-20 System Program Auds

Thus when viewed as a hist structore, the elements of ACTV_Q are sorted by increasing
TIME, even though

TQ.TIME(2,) > TQ.TIMES(3,)

This queue could be used in mnplementing the HAL/S real tmne statements The code
below iliustrates how the timer queue mght be used The CALL SET_CLOCK and WAIT
FOR event statements are miended to load the value ACTY_Q TIME mto an mierval timer,
and wait for-the-mterrupt Thus would have to be done via assembly language or %-macros
“Percent™ macros are implementation-dependent They allow a pre-defined sequence of
machine mstructions to be inserfed m a HAL/S program More detail 15 given in each Users
Manual

INT_HANDLER
TASK,
DECLARE CLOCK_INTERRUPT EVENT,
DECLARE TEMP NAHE TRE-STRUCTURE;:
B0 WHILE TRUE}
CALL SET_CLOCK{ACTY & TIME) ASSIGN(CLOCK _INTERRUPT);
WAIT FOR CLOCK_EIMTERRUPT;
DO CASE ACTV. Q.ACTION,

+
CALL RECYCLE[AETV_Q AFFECTED_PROCESS),
+
CALL CANCEL_PROC(ACTY_ Q.AFFECTED_FROCESS),
+
CALL READYUACTV_Q AfFECTED_F’RDCESS);

+
CALL SCHEDULE AT(ACTY_Q AFFECTED_PROCESS);
. 7% ETC */

»
END;

HoM REHOVE TQE FROM ACTIVE CHAIN

+ +
HAHMEC(TEMPY = NAMELACTV_ Q)5
¥ +
HAMELACTY_G) = HAMECACTY _Q.REXT};

+ +
NAMECTEMP MEXT] = MAHE(FREE_Q1,
+ +
NAMECFREE_&) = MAMELTEMNF);
END,
CLOSE,
RECYCLE
PROCEDURECX) 3
DECLARE X PROCESS_CONTROL-STRUCTURE,
CLOSE,
CANCEL_PROC
FROCEDURECX)
DECLARE ¥ PFOCESS_CONTROL-STRUCTURE;

IIIIIIIIIMIMIMAM O ITIMIMIMIMIIIZITIIIZ

Lisis and Quenes 13-21

With the process INT_HANDLER runming, and appropnate roufines £o recycle, cancel, and
otherwise change process states, ENQUEUE could be called as a result of several HALYS
statements “WAIT 5,” executed by some process X might be transtated to

CALL ENQUEUE(RUNTIME + 35, 3, NAME(D),
CALL STALL(NAME(X)), fventer wait state™/

Here we arc assumung that X 15 a process_controlstructure Such a structure maght
consist of

STRUCTURE PROCESS_CCHTROL®

1'SAVE_AREA RIGID,
2 FIXED_REGS ARRAY(16) BIT(32)
2 FLDAT_REGS ARRAY(S) SCALAR DOUBLE.
2 OTHER BIT(32),

1 PRICRITIE INTEGER.

1 STATUS INTEGER.

1 HEXT HAME PROCESS_CONTROL-STRUCTURE,

1 LAST NAME PROCESS_CONTROL-STRUCTURE,

TIAXIIZETEXX

when the node, SAVE _AREA 15 machine dependent This 15 a double haked list Each
entry has both forward and backward ponters To see how this 1s useful, suppose that there
are three queues contamng process control blocks (PCBs) FREEPC will be the anchor
(saumple name vanable pomfing at the first element of) of a gqueue of unused PCBs,
READYPC will be the anchor of a queue of PCBs representing ready processes, {(sorted by
pnorty), and STALLED will be a queune representing blocked processes (e g , those m the
wait state) One of these queues 15 diagrammed on the next page All three have the same
form The STALL routine that was called above mmight simply remove the mdicated process
from the READYPC queue and add it to the STALLED queue The argument to STALL 15
the address of the PCB to be removed from the READYPC It could be written as

M DECLARE READY_PC MAME PROSESS_CONTROL-STRUCTURE,
H DECLARE STALLED MAHE PROCESS_CONTROL-STRUCTURE,
H DECLARE FREEFC HAME FROCESS_COHTROL-STRUCTURE,
c 1

c

H | STALL:

H | PROCERURE ASSIGH(PCB);

H DECLAPE PCB PROGESS_CONTROL-STRUGTURE,

t REMOVE FROM READY QUEUE

13-22 System Program Aids

+ +
NAHE(PCB LAST MEXT! = NAME(PCB NEXT},

+ +
NANE{PCB _HEXT LAST)} = NAME(PCB LAST):

ADD TO STALLED QUEUE AT THE BEGINNING

+ +
NAHE{PCE NEXT) = NAME(FREEFC);
* +
NAMECFREEFC) = MAHE(PCB),
CLOSE STALL;
CLOSE LAST_EXAMPLE;

XITIXITMIH 0O XX

The reason a double inked list 13 needed 1s that STALL receives the address of a PCB 1n the
miuddle of a chamn

READYPC of—""

PCB -

To remove 1f, the links of both neighbors must be changed A sinpgly lnked hist would suf-
fice if 1t was always searched starting from READYFC

In this section, we have sketched portions of one possible implementation of the HAL/S
real fime statements This design does not necessanly correspond to any actual operafing
system The pownt of tlus section 15 to give a degree of familianty with sophisticated vses of
name vanables, and to illustrate that large portions of “‘system programs™ can be written in
HAL/S

This system presented 1s not at all complete A routine 15 tieeded fo make a process
ready It could be essentially the same as the ENQUEUE routine shown earlier The roufine
that readies a cyche process when the tumer goes off should put a new entry in the queue for
the next cycle Also, some low-level control code 1s needed to dispatch the hughest pnonty
ready process This process 18 always the one that corresponds to READYPC, since the

Lists and Queues 13-23

ready queue 1s sorted, the top routine 1s always the one to receive confrol However, there 1s
no HAL/S syntax for branching to a program or for loading/storng specific machine regis-
ters At some level, assembly language has to be used, though HAL/S does allow certain
canned machine-mstruction sequences to be generated via % macros These mactos make
machine dependencies hughly visible 1n the hsting If the %-macros defined for a parficular
mplementation are not sufficient, assembly language comsubs can fill the gap

Name vanables, percent macros, bit strings, EQUATE EXTERNAL*, and the ability to
call assembly langnage routines all contribute to making HAL/SS swtable for systems pro-
gramming Use of these features in application programming 15 discouraged, nonetheless,
some safety 1s provided by the type checking mules (as apphied to name varables and bat
stnings) and other safegurards Even in the system-language portion of HAL/S, many forms
of bad programmng practice are precluded by compiler restnctions These [eatures are
designed so that reliable, readable and efficient programming 1s siill encouraged even though
it cannot be as thoroughly enforced when the system programming features are used

Exercises
13 3A Declare and imtialize a structure, CIRCLE, such that the following statement 1s true
NAME(CIRCLE NEXT) = NAME(CIRCLE)
13 3B Change the declaration of the tirner queue so that each element (TQE) 1s the head of

an arbitrary-length list of action-affected process paws zll to be done at the same
time, as ilustrated

' i
S I e L ' Je

| -Jr b b
| - .

| D D

| |

ﬁ. ACTION i[{ etc.
I AFFECTED_PROC! | i

] ru Y - %

i NN

(. | f

I ACTION I]

| |AFFECTED_PROC| | [

| - {

| Actions at W} Actions at i

i time 1 time 2 '

*See appropriate User's Manual for details

13-24 System Frogram Avds

133C

13A

13B

Change the ENQUEUE routime to either add the new element to the end of an
existing list, if there 1s already one, or more actions at that time, or insert a new List
consisting of a header and the new 1tem

As written in the text, the procedure STALL may fail with some inputs When wiil
this happen? Modify the procedure to remove this problem

End of Chapter Problems

Wnie a procedure winch will msert a PROCESS CONTROL-STRUCTURE 1 the
READY_PC queue (both defined as 1 Section 13 3) after all entnies having an equal
or higher PRIORITIE and before all entries that are lower Remember fo mantain
both, forward and backward hinks

Wnte a program which will read i two hexadecimal numbers (of up to six digits)
separated by euither d plus of munus sign, and print their sum or difference 1n both
decamal and hexadecimal

Appendix A A-1

Appendix A

ARITHMETIC FUNCTIONS

* Arguments may be integer or scalar

s The data type of the result maiches the areument type unless otherwise
noted

» Arrayed argumenis generate multiple invocations of a function, one for
each element i the array When two or more arguments arc arrayed,
their arrayness must match ¥

Name < Argumenis{s)> Comments
| &

ABS(GD Absolute value 1X|

CEILING(X) Smallest integer > X

CEILING{—3 4) returns —3

DIV(X,Y) Integer davision X/Y, where scalar arguments are
rounded io integers This construct 1s the only way to
do integer diviston in HAL

DIV(5,2) returns 2

Note Where X, Y, Z are mntegers X = 5, Y = 2 The
statement Z = X/Y results in two miteger to scalar con-
versions and a scalar divide Frally, the result 15 con-
verted to an mteger type Intluscase Z = X/Y sets Z
to3

FLOOR(X) Largest integer << X
FLOOR{~3 4) returns —4

MIDVAL(X,Y.Z) The valug of the argument which 1s algebraically be-
tween the other two If two or more arguments have the
same value, that value 1s refurned

MIDVAL(— 4, — 6,3 5) refurns — 4

MOD(X,Y) R X MOD Y {modulus) The result 15 scalar unless both
arguments are integers

MOD(5,3) returns 2
MOD(5,—-3) returns 2
MOD(—3,3) returns !
MOD(—5,—3) returns]
MOD(—5.2 1} retarns 1 3

L]

*For a discussion of arrayness, see Section 6 2

A-2 Appendix A

ARITHMETIC FUNCTIONS (CONT’D)

Name <Argument{s)>>

Comments

——

ODD(X)

Result 158 BOOLEAN True if X 15 odd, false 1f X 1s even

IF(ODD(X))
THEN ..

Note Scalar arguments are rounded to integer

REMAINDER(X,Y)

Signed remmnder of integer division X/Y

REMAINDER(—5,3) refurns —2
REMAINDER(5,—3) returns 2.
REMAINER(—5,—3) retums —2.

Note Scalar arguments are rounded to integers

ROUND(X)

Nearest integral value to X, essentially the same as HAL
scalar to 1nteger conversion

SIGN(X)

Retoms an mteger +11f X > 0,
-11fX<0

SIGNUM()

Retumns an integer +11f X > 0,
01f X=0,
—11fX<0.

DO CASE(SIGNUM(X)+2)

TRUNCATE(X)

Strip off fractional part of the scalar (X)

TRUNCATE(=3 4) returns —3
TRUNCATE(7 8) returns 7

Appendix A A-3

ALGEBRAIC FUNCTIONS

o Arguments may be integer or scalar types — conversion to scalar occurs
with integer arguments

Result type 15 always scalar

® Arrayed arguments cause multiple invocaticns of the function, one per
each array element

-

* Angular values are supphed or delivered 1n radrans *

¢ Arpuments that are outside the domain specified 1n the comments result
in HAL/S runhime errors, (see Chapter 10)

Name <Argument(s)> Comments

ARCCOS(X) Xl<i

ARCCOSH(X) X>1

ARCSIN(X) IXi< 1

ARCSINH(X)

ARCTAN2(X,Y) Returns 8 = tan~' (X/Y) where the proper quadrant for

—1 < & < 7 15 deternuned from the signs of X and Y
Proper quadrant results if

Yk koo
ARCTAN(X) Principle value only, see above
ARCTANH(X) XI<1
COS(X)
COSH(X)
EXP(X) e
LOG(X) log, X, X> 0.
SIN(X)

*One radian equals 57 2957795131 degrees, so that
m rédians equals 180 degrees,
7f2 radians equals 90 degrees

A4 Appendix A

ALGEBRAIC FUNCTIONS {CONT’D)

Name <Argument(s)> Comments
—_ — ——_:_m

SINH(X)

SQRT(X) VX ,X=0

TAN(X)

TANH(X)

Appendix 4 A-5

ARRAY FUNCTIONS

s Arguments may be single or multrdimensional arrays of scalars or
integers

o The type of the resull matches the type of the argument and 1s

unarrayed
Name <Argumeni(s)> Comments
S e ———
MAX(X) Maximum of ali elements of X
MIN(X) Mimumum of all elements of X
PROD(X) Product of all elements of X
SUM(X) Sum of all elements of X

A6 Appendix A

BIT FUNCTIONS

s HAL/S provides AND, OR, and NOT operators for bit operands XOR
(exclusive OR) 1s available as a bult-n function

Name <Argument(s)>

Result Type

Comments

XOR(X,Y)

BIT

Exclusive OR, where X and Y are bit
siings The length of the result 15 the
length of the longer argnment The shotter
argument 15 padded on the left with zeros

Appendix 4 A-7

CHARACTER FUNCTIONS

e The first argument in each of the funchions below is a character stnng If
a scalar or integer 1s specified where a character stning 1s expected, a con-
version to character type 1s performed

Name <Argument(s)> Result Type Comments
e ——e e e — —— e — — — — — — @ — m m m§ § e
INDEX(C1,C2) Integer C2 15 a character stning If string C2 1s con-

tained wirthm string C1, an index which 1s
the Iocation of the first character of C2 m
.| C1 15 returned, otherwise, zero is returned

INDEX(‘*CHARACTER’, ‘ACTER") returns
5.

INDEX("ALPHA’, ‘BETA’) returns 0

LENGTH(C) Integer Returns the current lenmgth of character
string C
LIUST{C1,n} Character n is integer type — the stnng Cl 15 ex-

panded to length n by padding on the right
with blanks If n 15 less than the current
length of C1, an ervor 15 signaled and C1 15
truncated to length n

r

RIUST(CI ,n) Character n 1s integer type — the strng Ci 15 ex-
panded to lensth n by padding on the left
with blanks If n 15 less than the current
iength of Cl1, an error 15 signaled and C1 15
truncated to length n

TRIM{C1) Character Leading and traling blanks are stripped
from Cl

A-& Appendix A

MISCELLANEOUS FUNCTIONS

arguments

¢ Result type s as indicated

e Arguments are as windicated, if none are mndicated the function has no

Name <Argument(sp>

Result Type

" Comments

CLOCKTIME

Scalar

Elapsed time since midnight {format 15 1m-
plementation dependent) See Chapter 12

DATE

Integer

Returns date (umplementation dependent
format)

ERRGRP

Integer

Returns group number of [ast error de-
tected, or zero if no error was detected See
Chapter 10

ERRNUM

Integer

Returns number of last error detected, or
zero if no error was detected See Chapter
10.

NEXTIME
{(<label>)

Scalar

<label> 1s the name of a program or task
The value returned 1s determined as
follows

a) If the specilied process was scheduled
with the REPEAT EVERY opticn, and:
has begun at least one cycle of execu-
tion, then the value 15 the time the next
cycle will begin

b) If the specified process was scheduled
with the IN or AT phrase, and has not
vet begun execution, then the value 1s
the time 1t will begin execution

¢} Otherwise, the value 1s equal to the cur-
rent time (RUNTIME function)

PRIO

Integer

Returns prnionty of process calling func-
tion

RANDOM

Scalar

Returns pssude-random number from rec-
tangular distribution over range 0-1 *

*Note that for any particular HAL program complex which contamns references to random and/or randomg,
the same set of “random’ numbers will be generated m each executton

Appendix 4 A-9

MISCELLANEQUS FUNCTIONS (CONT'D)

Name <Argument(s)> Result Type Comments

RANDOMG Scalar Refurmns pseudo random number from
Gaussian distribution with a mean of zero,
vanance of one *

RUNTIME Scalar Time smce the software began executmng
(implementation dependent format) See
Chapter 12

SHL(X,Y) Integer X shifted left Y bat posifions X and Y may

be scalar or integer, but scalars are con-
verted to mieger before shufting This 1s an
anthmetic (signed) shaft

SHL(-2,2D) returns —8

SHR(X,Y) . Integer X shufts night Y bat positions As above, this
15 an anthmetic shaft

SHR(—4,2) returns —1

SIZE(X) Integer One of the followrmg must hold

— X 15 an unsubscnpted arrayed vanable
with a one-imensional array specifica-
tion — function returns length of array.

— X 15 an unsubscnpted major structure
with a muitiple copy specification —
function returns number of copics

— X 15 an unsubscripted structure termi-
nal with a one-dimensional array speci-
ficatton — function returns length of
atray

Result 1s of infeger type

*Note that for any particvlar HAL program complex which contains references to random andfor randomg,
the same set of “random’ numbers will be generated m each execution

Appendix 8 B-1

Appendix B

Although the main body of this manual has avorded references to specific compilers,
there 15 considerable simjarity i the compilers now available In this appendix we will de-
scabe additional software development support which 1s typrcally provided

The HAL/S compiler 15 not simply a language translator All current implementations in-
clude features not usually found in other common compilers, such as PLf1, FORTRAN, etc
These mclude special processmg and annotabion of the Iistings, facihties for restriciing usage
of variables or language features, and additional outputs for post-compmlation tools

In addition to annotating identifiers and indenting as descnibed 1n the text, the compiler
adds several types of summary mformation to the listing At the end of each procedure or
function block, that block’s interfaces are hsted The informathion presented includes hists of
global variabies referenced or modified, external procedures called, event. variables modified,
conmpool REPLACE macros used, and so forth At the end of the listing a table of 1denhiiers
15 printed, including the data type and a Iist of all statements which use the identifier Some
compulers produce a hsting of annofated assembly language which corresponds to the
machine code actually generated Thus aids in debugging on fhght hardware, aithough more
sophisticated debugging supports 1s also provided

Two facihities provide for the estabhshment of managenal control over HAL/S usage
ACCESS nights allow restrictions to be placed on the modtfication of selected variables or
on the wsage of blocks Smce this can be done separately for each complation unit,
ACCESS nights provide managers with an important tool for controlling the miterfaces be-
tween modules Another device 15 the SUBSETing capabiiity, which provides the ability fo
restrict the usage of a user selected subset of HAL/S language features or bult-in functions
This mechamsm does not affect the code generated but merely flags by a warmng message
on the prmary lishing those statements violating the SUBSET

The efficiency and reliability of program complexes can be improved by use of a special-
purpose link editor or binder These programs (e g , HALLINK) can reduce storage require-
ments by generating the call tree beneath each program or task and allocating a temporary
storage area (or stack) just large enough for the longest imb of the tree If a compiler sys-
tem 1ncludes an appropriate link editor, 1t may also add to software rebability While the
varous HAL/S modules are being bound together, they can also be checked for consistency
The template generation system (chapter 1 1) passes mformation to the hink step that, for n-
stance, allows venfication that every program used the same comgpool template

Another output of each compilation 15 a Simulation Data File or SDF This 15 2 random
access data base containmmg attribute and cross reference information for vanables and code
blocks Data conceriing executable statements 15 also included, as well as global statistics
found in the primary histing It 15 this large database that allows for many post-compilation
analysis tools, ranging from execution-ime debuggers to HALSTAT, a statistics and analysis
package

B-2 Appendix B

Programmers have many modes of execution available to them m most smplementations
of HAL/S Even runmng stand-alone (on a host computer) one can obtain detalled error
dragnostics related directly to the HAL/S source by statement number and block name, and
optionally obtain an end of run formatted dump of all variables And if a program termi-
nates abnormally, a full- traceback; showng the flow of control from block to block; will be
piven Another package allows one to request dumps and traces of vanabies while runmng m
a batch environment This package can also provide a detailed log of real-time transactions,
showing the transitions from.process {o process Moreover, certain implementations provide
the ecapabihty of “functional simulation,” or FSIM, of another target computer In this
usage, the amount of memory used 15 approximated by allocating variables mn the same fash-
10n as on the target maching Also, the extent of CPU utibzation 1s estimated for the target
maclune with a runnmg accumulation of time mamtaned automatically The FSIM facility
1s very useful in cases where the target machine 1s not commonly available or 15 difficult.to
use One very valuable feature available under FSIM 1s the “profile’” capability . A listing can
be generated which shows the number.of times each HAL/S statement n the program com-
plex was executed The estimated total exccution tume for each statement, and other statis-
tics, allow the efficiency programs wntten in HAL{S-to be attacked at the pont of greatest
leverage

One host computer contains an interactive HALSS debugger This program uscs informa-
tion from the stmulation data files as well as “hooks™ tnserted 1n the machine code to allow
debugging at the HAL/S level (e, without knowing any details of the underlymg com-
puter) Breakpoints can be set by statement number or label For mstance, “AT LOOP + 3,”
sets a breakpowt three HAL/S statements after the label “‘Loop”. Vanables can be mspected
and modified by therr symbolic names, all values are entered or presented in the standard
external format Data apgregates may be subscripted or printed 1n entirety Since the SDIs
contan full type mformation, there 15 no need to debugin hexadecimal or octal, or to con-
tinvally specify display formats Since HAL/S programs reference vartables via scoping rules,
thus debugger provides a SCOPE command This command has a block name as 1ts argu-
ment References to vanables 1 subsequent commands are mnterpreted as they would be in
the named biock A SCOPE command is automatically performed when a breakpoint 1s
reached Thus commands at a breakpoint can reference any vanable that 15 visible from the
block un which the breakpomt was hit The SDFs contain sufficient information to allow
similar capabihities 1n a “cross-debugger” to test actual fhight code

The large amount.of data contained 1n the compler’s outputs, especially the SDE’s and
the object modules, permts the development of many post-compilation analysis programs
Perhaps the best known of these 15 the HALSTAT program, which 1s used to accumulate
atobal data about a program complex HALSTAT performs three major functions Venfying
the consistency of SDF’s, printing statistics for:each module, and giving a global dictionary
of vanables SDF’s ars consistent 1f all vanables shared by processes are in agreement with
respect fo such factors as data type, size, location, and so on Vanablesiare also checked on
a global basis to msure that none are referenced that have not ever heen assigned, 1f thus sifu-
ation oceurs a warming message will be given Multitudinous statistics are printed for cach
HAL module in the program complex, giving the name of the module and the date of com-
pilation, size statistics, and the modules’ pattern both in terms of HAL/S blocks mncorpo-
rated and location.of ‘code sechions The global-symbol directory (GSD) portion of HAL-
STAT 15 a histing of every vanable used 1n every madule of the program complex, mcluding

http:location.of
http:number.of

Appencix B B-3

both compool and local vanables It shows not only vanable attributes and locations, but
also the cross reference data for each vanable across ali modules i which 1t 15 used The
cross reference shows both the HAL/SS statements, by number, where an 1tem 15 vsed, and
also the way in which 1t 15 used, e £ , REFERENCED, ASSIGNED, SUBSCRIPT, etc

Additional programs have been developed to meet the needs of specific installations
One program provides a complete disassembly histing of a HALSS load module, which shows
clearly the relationstups between the machme code mstructions and the HAL/S source
Since the typical program complex’s load module incorporates code from both HAL/S mod-
ules and assembly language modules (from the runtime hbrary), a hst showing both of these
i3 essential to review the mtegrated system Anoiher program provides the above disassem-
bly capability but liruts 1t to uscr-specified rachine instructions, a facihity that 1s very use-
ful 1n assessing the impact of mstrctions that are not correctly implemented i a machine’s
hardware, or mn determuung the extent and nature of operating system mterfaces There s
also a program which produces a hist of all locations deemed to be mvanant After executing
the load module for a period of time, one can dump the contents of memory and see 1f
these “never-changing” memory locations have mdeed changed, which would ndicate a
problem 1n the load module Another program 1s used to compile, based upon programmer
speaification of the data items desired, a list of all parameters that will be patched This hist
mcludes defarled information about each vaneble, such as type, size, and location, to allow
1t to be modiiied in the correct fashion

As more installations use HAL/S on an ever-growmg number of target machunes, the
amount and diversity of the support software 15 certarn to grow. The capabilifies described
here may and may not be present 1n a particular system, but hike the HAL/S commler itself,
these utilities are wnitten 1n a hugh order language, and as machine-mdependently as possible
The functional simulation and post-compifation analysis tools have proved so valuable in the
Space Shuttle program that they may eventually become required components of any
HAL/S compiler system

21A

22A

a)
b)
c)
d)
e)
f)
g)
h)
1)
1)
k)
1)

Appendix C: Answers to Exercises

Solutions

vahd, identifier
vald, reserved word
mvahd

vahd, hiteral

vahid, identifier
mvalid

valid, 1dentifier
vahd, reserved word
mvahd

vahd, reserved word
nvahd

vahd, identifier

m)} vahd, literal

a)
b)

d)
e)

g
h)

A X+B Y+C Z
(A+B(C + D)/(E+F)
RHEN-1)/2**N-1)
X**3.3 X*#*243 X-1
(X—1)<*3

107 =X*+*Y

(10> #3)**Y
VW (v v

Appendix € C-I

.2 Appendix €

22B

23A

ZA

a} ¥ 1s not the multiphcation operator 1n HAL/S
Correct expression M X+B
b) Incorrect operatoy precedence
Correct expression 2 {X+1)
¢) Multiplication 1s represented by™a blank between two operands
Correct expression X*¥*(—235 N)
d) Two operators may not occur 11 sUCCEsSION
Correct expression C**(—5)
¢) Order of evaluation 15 normally from left to nght

Correct expression A Cf(B D) or (A O)f(B D) -

DECLARE SCALAR INITIAL(1) X_DELTA, Y_DELTA,
DECLARE TIME_DELTA SCALAR CONSTANT(1),
DECLARE DELAY FACTOR SCALAR CONSTANT(5),
DECLARE SCALAR, TEMP1, TEMP2, TEMP3,

DECLARE COUNT INTEGER INITIAL(1),

DECLARE POINT_A VECTOR,

DECLARE ORIGIN VECTOR CONSTANT(0,0,0),

DECLARE TRANSFORM MATRIX INITIAL(1,0,0,0,1,0,0,0,1},

RooTS.
PROGRAM .
DECLARE SCALAR,
A, B, - ROOTYL, ROOTZ,
READ(S) &, By €3
b4 0.5
ROOTL = (~B + (B =4 A C} Y/ 2 A
2 0.5
ROOTZ = (~B - (B ~ 4 A C) Y/ 2 A
HRITE(&6) ROOT1, ROOTZ;
CLOBE ROOTS;

MITEIMIMIIIII

Appendix C C-3

2B
1 | BOUNCE-
M | PROUGRAM,
o DECLARE SCALAR,
M HEIGHT,
M TIME INITIAL{O),
n HEIGHT = 11u,
E 12
H TIHE = (2 HEIGHT / 32) ' <% BOUNCE 1 #*/
M HEIGHT = 35 HEIGHT,
E /2
M TIHE = TIME + 2 (2 HEIGHT / 32) i /% BOUNCE 2 %/
M HEIGHT = 35 HEIGHT,
E 1/2
i TIME = TIME + 2 (2 HEIGHT / 32) ; /% BOUNCE 3%/
;] KRITE(&) TIME,
H HRITE(S) & TIHE,
H | CLOSE BOUNCE;
2C
M | EX2C
1 | PROGRAM, 4
H DECLARE MASS_OF_EARTH SCALAR CONSTANT(5 983E27),
it DECLARE PI SCALAR CGNSTANT{3 141592651),
M DECLARE RADIUS SCALAR INITIAL(GGO0 160934 43,
| DECLARE PERIGD SCALAR;
3 2 3 0.5
M PERIOD = (£& PI RADIUS) / (MASS_OF_EARTH 6.67E-8))} 3
1 HRITE(&) PERIOD,
| CLOSE EX2C,
2D
SOLUTION:
PROGRAM,

DECLARE SCALAR,
Ay Bs Cy Dy E5 F4 X, Y
READ{5} Ay B; Cs Dy E5 3
X=(ED-BF)/71AD-BC),
Y={AF=-EC)/(AD-B L),
WRETELS) X, Y35
CLOSE SCGLUTION,

ZIXIITITIIXTXIT

-4 Appendix C

Solutions
3 1A

a) Infeger, value1s 1.

1 2 4
b) Matrx (3 by 3},valuess {2 3 5].
2 3 o6

¢) 2-vector,value 15 [é]

31B

TRAN_MUL:
PROGRAH,
DECLARE M MATRIX CONSTANT(9, &, Vs ©» 5 4y 35 2, 11,
* *

WRITE(&) H TRANSPOSE(H),
CLOSE TRAM_HUL:

IIMIIIZII

31C
a} (1+COS (2 X))2
b} ARCTAN(Y/X)
¢} M (R Z_DOT — Z R_DOT) SIN(PHIY — M R Z PHI_DOT COS{IHI)
d) ARCCOS((M/R—M A/N)}SQRT(Z M E+M¥**2 A**¥2jN*+2))
¢) LOG(TAN(X/2+Pl/4)

3.2A
ay 1,7, 0

13
5 3 0 -3 -6
vl 14 HE]
I:l 5] 7 2 -1 -4 -7
&) DECLARE VI VECTOR(6) INITIAL(0,1,2,3,4,5),

DECLARE V2 VECTOR(6) INITIAL(10,11,12,13,14,15),

DECLARE M22 MATRIX(2,2) INITIAL(5,5,7,8),

DECLARE M35 MATRIX(3.5) INITIAL(7,4,1,—2,—5,6,3,0,—3,—6,5,2,—1,—4,

'_7):

32B

Appendix € -5

This 15 an example of how over-specifymg a program may lead to mefficiency Two
answers are given here, the first follows the statement of the problem Literally, while

the second produces the same result in a different way

M | CCHMP_DOT"

M PROGRAM»

H DECLARE VECTOR.

M ORIG_VEC INITIALL{L, 2, 3],
M RESULT_X3

M DECLARE ORIG_MAT MATRIX IMITIALIL, 2, 3, 4, 5; 65 75 & %)
E - -

H RESULT_X = OPIG_VEC . ORIG_MAT ;

§ 1 *,1

E - -

i RESULT_X = ORIG_VEC GORIG_MAT

) 4 ¥:2

E - -

H RESULT_X = ORIG_VEC . ORIG_MAT 3
5 3 *,3

E -

M WRITE(S) RESULT_X:

M | CLOSE COHP_DOT;

H Cohlp_bOoT

M PROGRALH,

H DECLARE VECTCR,

) ORIG_VEC INITIAL(1, 2, 31,
H RESULT_X.,

H DECLARE ORIG_MAT MATRIX THITIAL(L, 2, 34 %, 5, 6y Tr By 933
E - - E)

H RESULT_X = QRIG_VEC ORIG_MAT;

E -

M WRITE(6)} RESULT_X;

il | CLOSE €OHP_DOT,

C6& Appendix C

32C

35A

3A

21
22
23
24

WRITE(6) V41 will output the vector

The first WRITE(G) M22 will output the matrix [:g :g]

0 1 2
WRITE{6) M33 will output the matrnx 8 8 9
i1 12 13

The second WRITE(6) M22 will output the matrx [g é]

ok = <> results scalar
mo+, = <>, [, results scalar
) ok, —, <>, f, results scalar
w) o+ =, <> results integer,
Lo resu[ts scalar
v) o, e, results vecfor,
<> result matnx,
result scalar
Vi) <> result matrix
iy <>,/ results vector,
Vi) <> result vector
iX) 4, =, <> results matrix

X) <>, [, ** results matnx

ANGLES:
PROGRAH,
DECLARE VECTOR,
Vi, va;

RE&D(%) Y1, V&,

XTIMIMIITITI

CLOSE ANGLES;

WRITE{6) ARCCOS{{V1 . V23 / {ABVALIVL) ABVALIVZ1});

3B

3C

Appendix C -7

TRANS
FROGRAH;
DECLARE SCALAR,
ALPHA» X1, X2, Y1, Y2,
PI CONSTANT(3.1515},
READIB) X1; Y1,
ALFPRA = 17 PI /7 180,
Kz = (X1 ~ 54000} COSCALFHAZ + (Y1 - 118000) SIH(ALPHA),
Y2 = —{X¥1 - 54000) SIN{ALFHA! + (Y1 - 118000) COS{ALFHAJ;
WRITE(G) X2, Y23
CLOSE TRAMS;:

XTI XITID

a) V4 = VECTORS4(MS(2,2), MS(3,3), M$(4.4), MS(5,5)),
b) M22 = MS(2 TO 3, 8 TO 9),

¢) M34 = MS(5 TO 7, 7 TO 10),

d) V10 = MS(9,%),

C8 Appendix C

41A

Solutions

a} Compound conditions like ‘A < B </ €’ are not recogruzed by HALSS

b)) In HAL/S, two ‘ELSE’ statements may not follow one another Sectron 4 2 1n-
troduces a2 way to avoid this problem

¢) The expression following the ‘NOT’ operator must be parenthesized

418
a)
> Al
C3 > a4
A5
——
[c2>— A2
A3

b) Impossible the ELSE clause of C2 branches mto the ELSE clause of €3

c) Impossible the THEN clause of C2 loops around, which would requure travers-

16g a hine upward

d)

ELSE

[l <, e [c2 >

THEN |

[a1]

THEN |

Cc4

(G >—ci >——

THEN

A2

Appendix C C-9

41C
IF W < I THEN 5Q = 0,
ELSE IF W > L THEN 5Q = 0,
ELSE 3Q = 1,
AREA = WL,
IF SQ = 0 THEN WRITE(6) ‘NO SQUARE’,
ELSE IF AREA < 4 THEN WRITE(s) SMALL SQUARE’,
ELSE WRITE(6) ‘LARGE SQUARE’,
41D
a) Not satisfied) Not satisfied
b} Ilegal g) (A>B) & (A<C)
¢} Satisfied h) (V1=8) & (C>=D)(D=4)

d} Safisfied
€) Illegal.

424 r——— —————-I

The onginal code was over 300 state-

Cl I ments, while the new code 15 about
\/ l 160 statements
L 1
A B I This change cenr be made mn a vahd

HAL/S program group C 1s removed
[enfirely from the IF statement, which
now consists only of the section of
v the flow chart lymg withan the dotted

|:CL:| rectangle

—————
|

|

|

L

C-10 Appendix C

Note that fhis flowchart

&

Y

A | B

does represent a shorter program than the ongmal, though 1t cannot be translated
mnto a valid HAL/S program, as this would require.branching.mto the ELSE clause
of the condition, which is not legal in HAL/S

4 2B
M SOLUTION-
H FROGRAM
L] DECLARE SCALAR,
H Ay B Cy Oy Ey Fy Xy Y3
H READIS) Ay By €5 Dy Es F3
4 IF EA D - B C) = 0 THEN
4] WRITE(&) 'HO SOLUTICH EXISTS®,
H ELSE
4] Do;
4] X={(ED-BF}Y/(AD=BC);
] Y={AF-EC)/(AD=-BC),
] HRITE(S) X, Y,
M EMD,
M CLOSE SOLUTIOM,
42C

IF Y < X THEN DO,
IFY<X_—1THEN Y =Y + I,
ELSE Y = Y — 1,
END,
EISEIF Y > X+ | THEN X = X — 1,
EISE X = X + 1,

Appendix C C-il

42D

a) The hne from C4 to C represents a branch mto the ELSE clause of C3, which s
legal mn HAL/S

b) The followmg flowchart removes the difficulty without making any change 1n
the order of execution of any statements

ELSE THEN

N

IF ¢l THEN DO,
IF C3 THEN D,
ELSE C,
END,
ELSE IF C2 THEN C4 THEN C,
ELSE A,

C-12 Appendix C

¢) If the flowchart had been structured, 1t would have been awkward even to draw
lines from both C3 and C4 to C, and the fact that there was an illegal construct

in the flowchart would have been obvious To tlustrate

THEN THEN

[c1> —{c> D
ELSE
ELSE THEN

THEN

ELSE

A

4 2E There are several possible sofutions, one of which 1s given here
THEN
C1&C2&
C4)
ELSE THEN C
/CN

ELSE THEN

[a

Appendix C C-13

HAL/S code to implement the revised flowchart would be
IF (C1 AND (NOT C3)} OR (NOT CI AND C2 AND C4) THEN C,
ELSE IF Ci THEN D,

ELSE IF 71 C2 THEN A,
43A

a) Relational expression

b} Boolean expression

¢) Relatronal expression

d) Illegal

e) Illegal

f) Relational expression

g) Boolean expression

444

DO CASE I + 1,
ELSE SCRAMBLE = 3,
SCRAMBLE = 4
SCRAMBLE
SCRAMBLE
SCRAMBLE
SCRAMBLE
SCRAMBLE

END,

E

mnmnmmnmn
M= Wy o

-

14 Appendix C

51A

51B

51C

51D

Solutions

Since the loop control vanable 15 an mteger, while the increment 1s the scalar value

1, on each iteration 1 will be added to 1, the resulting 1 1 wall be rounded to 1, and
the control vanable will never change That 1s to say, the loop will never terminate,
so the question 1s unanswerabie

DECLARE V VECTOR(S),

DECLARE NEG_PART INTEGER,

DO FOR NEG_PART = § TO 1 BY -1,
IF VSNEG_PART < 0 THEN EXIT,

END,

Note.thataf no compenent of V 1s.negative, NEG_PART will equal zero upon exat
from the loop

N 15 equal to 14 on exit from the loop, because m DC FORT=1TONBY 2,N1s
evahrated only once, upon entry to the loop, when 1ts value 15 9 The loop will there-
fore be executed five tunes, leaving N equal to 14

a) The code assigns the value 2 to all the elements of A
b)

DO FOR X =1 TO 5
DO FOR Y =170 5,
ARX,Y) = 2,
END,
END,

52A

53A

54A

Appendex € 15

a) The program will write the values
2 INITIAL_VALUE
4 INITIAL VALUE
8 INITIAL_VALUE
16 INITIAL VALUE
b) DO FOR X =1 TO 4,

N =2N,
WRITE(6) N,
END,

15 one possibilify,

DO FOR X =1 TO 4,
WRITE(6) 2**N,
END,

is another, and clearly*there are many others

DECLARE V VECTOR(5),

DECLARE NEG_PART INTEGER,

DO FOR NEG_PART = 1 TO 5§ WHILE VSNEG_PART >= 0,
END,

IF NEG_PART 5 THEN NEG_PART = Q,

It V81 = 0, the code shown will not exit with NEG_PART = 1, as 1t should This
occurs because the UNTIL clause will not be evalvated for the first trme until 2 has
been assigned to NEG_PART in the DO FOR loop

16 Appendwx C

5A

IITIIIITIIXIIXXITI=IIII

5B

For this solutien, we take the onginal DELTA to be FINAL‘;NITIAL, and assume
that INITIAL << FINAL

SIMPSON*

FROGRAH,

DECLARE SCALAR,
INITIAL_VALUE, FINAL_VALUE, OLD_AFFROX, NEW_AFFROX, FOINT:
DECLARE SCALAR,
BELTA, EPSILON,
OLD_AFPROX, HEW_APFROX = 0;
READ(S5) IMITIAL_VALUE, FIMAL_VALUE, EPSILON,
DELTA = (FIMNAL_VALUE — INITIAL_VALUE) / E;
DO UNTIL {HEW APPROX ~ OLD_APPROX3 < EPSILON,
OLD_AFFRON = HEW_APFROXS
MEL_AFFROX = SQRT(INITIAL_VALUE) + SGRT(FINAL_VALUE};
DO FOR FOINYT = INITIAL VALUE + DELTA TO FIMAL VALUE - (DELTA / 2] BY DELTA;"
HEW_APFROX = HEW_APPROX + 2 SGRT(POINT),
END »
NEW_APPROX = KEH_APPRUXDELTA / 2,
DELTA = DELYA / 2,
EHD,
KRYITE(S1 KEW_APPROX:
CLOSE SIMPSCH;

a) This program, adnutted an mefficient one, will prnt all prime numbers from 3
through 499

b) A solutron that does not change the computations performed 1s

BETTER:
PROGRAM?
DECLARE INTEGER,
HUHBER, DIVIDER;
BG FOR HUMBER = 3 TD 499.
DD FOR DIVIDER = 2 TO HUMBER - 1,
IF HOD(NUMBER, DIVIDER} = ¢ THEN
EXLT.
END,
IF DIVIDER = NUMBER THEN
WRITE(S) NUMBER:
END}
CLOSE BETTER,

ITIAIIIXTITIIITIXX

6 1A

6 1B

a)

b)

d)

e)

a)

Appendix C C-17

Solntions

Nlegal X 15 set to 3, but a vanable with the INITIAL attribute 1s not considered
to be computable at compile time, so the declaration of LIST _ONE is errone-
Ous

Legal LIST_ ONE 15 an array of 4 scalars, value (2, 2,2, 2) LIST _TWO 15 an
atray of 4 mtegers, values unknown

Legal LIST_THREE 15 an array of [8 scalars, value
(l’ ‘lﬁ 1? l’]’], 1’ 1!]’J 11?3?!"!‘?’?19)?}‘?’)

Legal LIST_FOUR 152 9 by 3 array of 27 scalars, value
o1 1 2 2 2z 2 2 2
2 2 9 2 2 9 2 9 9
I T B S T B S

Illegal The ARRAY specification must precede the type specification

EXERCISE_2+
PROGRAM;
DECLARE H HATRIX(5, 513
DECLARE TIHE APRAY(100} SCALAR INITIAL(O);
DECLARE SCALAR IMITIAL{0),
THIN, THAX, VHEAN, SUM_OF_SQUARES, STAN_DEVY:
DECLARE INTEGER,
I, Js Ks
DO FOR I =1 TO 108,
D0 FOR J=1T0 5,
DO FORK =1 T0 &,
H = RAHDOM;
J:K

END,

EMD ,

TIME = RUNTIHE,
I

MIIX HITIIAXAIIXITTI

* *-]

H=H »

TEIHE = RUNTIHE - TINE 3
I ¥

END:
NOW PROCESS THE HUNDRED-SAMPLES IN THE ARRAY [TIME!

THAX: THEAN, TMEN = TIME 3
1

wT O X aIITOIMmM

c-i8 Appendix C

ZRZX2ZT WEMIZIT OMNMOON XX VI OIT wx (I @I

o
P

NIXTIIIIITITIITIIXI

TISMIITIITIIIMIIIMIIX

Do FOR 1

= 2 70 140,
TEZAM =

THEAN + TIHE
1

IF TIME > THAX THEM
I
TH~X = TIFE ,
I
IF TIHE < THIM THEN
I

THIN = TIHE ,
I

EHD,
THEAN = THEANR /7 100,

COMPUTE STAMDARD QEVIATION

SUH_OF_SQUARES = 0,
60 FOR I = 1 To 100,

2
SUH_OF_SQUARES = SUM_OF_5GUARES «+ (TIME - THEAH) ,
I
ERD»
ETAN_DEY = SGRTULSUN_OF_SQUARES / 1901,
KAITE(6) HIN = ', THIH, " HEAH = , THEAN, ' HEX = '

CLOSE EXERCISE_ 2,

THAX, ' STANOARD DEVIATION = ', STAH DEV,

EXEPCISE_Z
PROSRAH,
DECLARE H HATRIL(S, 51
DECLAPE TIHE SCALAR IMITIAL(O).
DECLARE SCALAR INITIALID),
THIN, THAXs TMEAM, SUM OF_SQUARES. STAN_DEV,
DECLARE INYEGER,
I, J) he
THEAM, SUM_OF_SaUARES = 0,
THAX = -1,
THIM = 1900,
po FOR I = 1 7O 100,
Q0FR J=171065,
DO FOR R = 1 T0 5,

H = RANDCH,
4K
ErD
END
TIME = PUNTIME,
L3 ¥=1
.
H=HN , i

TIFE = RUHTINE = TIME.
THPEAM = THEAN + TINE,

z
SUM_OF_S(UMRES = SUN_OF_SQUARES + (TIMED .
EF TIME > THAN THEM
THAX = TIME.
IF TI™C < THIH THEH
THIM = TIME,

nAan

ENG .
THEAN = THEAH / 108,
2
STAR DEV = SIRTE{S4™ OF_STULRES £ 1001 ~ THERH),
HRITE(S] HMIM = ', Ti*iH,. MEAY = ', THEAM,. Han =
CLOSE EXERCISE_Z,

/% LESS THAN ANY POSSIBLE TIME VALUE
/% GREATER THAM AhY FEASIDLE TIHE WALUE =

THAX . STANDARD DEVIATIOM = ', STAM_DEV.

61C

61D

62A

6 2B

Appendix C C-17

EXAMPLE _2-
FROGRAM,
BECLARE GYRO_INPUT ARRAY(12) INTEGER IMITIAL(D):
DECLARE ATT_RATE ARRAY{12) SCALAR;
DECLARE SCALE ARPAY(3) CONSTANT(013, 026, 013),
DECLARE BIAS SCALAR THITIAL(S? 296),
D0 FOR YEMFORARY I = 0 TD 9 BY 3,
D0 FOR TEMPORARY J =1 TO 3,
ATT_RATE = GYRO_INFUT SCALE + BIAS.
I+ I+d J

END,
END,
CLOSE EXAHPLE_2;

XTI WXZTIIFIXI

EXAMPLE_4A:
FROGRAH:
DECLARE A ARRAY(ES) SCALAR;
DECLARE TEHP SCALAR:
TEMR = A »
5

DO FOR TEWFORARY T = & TO 1 BY -1,
A = A,
T+ T

END,
A = TEHP:
1

T wWIZ NI 0wz X

CLOSE EXAMPLE_%A,

kY T
nF
m) F
n T
o) F
p) F
QT
0D T
) T
) T

b)
c)
d)

g)
h)
1)
1

@
o I TR B B B I T R < B

A single arraved statcment takes the place of one or more loops and a statement to
perform the same operation on each array element that the arrayved statement per-
forms on the entire array If the programmer writes these loops, loop vanables must
be declared, correct loop limts must be coded, and such loops must be nested 1f the
array 15 of two or more dimensions This means extra work for the programmer, and

G20 Appendix C

more complhicated and potentially incorrect or unreadable code If an atrayed state-

ment 15 coded, the compiler does the bookkeepmg, and may even be able to produce

more efficient code, since loop vanables will not need to be saved for later reference
6 3A

a) 1 .1 1y 7 71
X = 1 1 1 I L B
S S T I A A B 2 2 7

b) [17 17 113
1 [I 1

1) L] L1

_4,-! '_l,-‘ _fJ-
Y = 2 ? ?
2| Lo ?

~2

0 [
- H BB E

d) A = (]') 1’ 1:! lJ lJ l) 13 1J.))qJ.),.?!93.?).)192019;}‘!?):’3‘)!?)‘)3959)
6 3B
S = XS0 1,3),
S = Y¥3§(3,13),
S = 2507 3),
S = AS21,
6 3C
M$(1,2 TO 4 = XS(2 3,%),
M$(15 TO 7) = XS 1,9, from X
M%(1,3) = X33 2,1),
M$(1,2 TO 4) = Y823 %),
M$(15 TO D = Y$(3,1%), from Y
M3(1,8) = Y$(3,2 1),
MS(1,2 TO 4 = Z$(6),
MS$(1,5 TO7) = Z$(7 9, from Z
M$(1,8) = Z$(8 1),

M$(1,2 TO 8) A%(le TO 22},

631A

64.1A

ZITITX HIIMIIT AIMITIITIITI

PRIHES:

PROGRAM,
REPLACE LIHIT BY "100";
DECLARE FRIME ARRAY{LINIT) BCOLEAN INITIAL{TRUE!:
DO FOR TEHFORARY I = 2 TO LIMIT.

IF PRIME THEN
I

Doj
D@ FOR TEMPQRARY J = 2 I TOQ LIMIT BY I,

PRIME = FALSE:
J:

END,
HRITE(S) I3
END3
END
CLOSE PRIMES)

DECLARE TEMP VECTOR(27),

TEMP = VECTORS27(X),
M§(1,2 TO 8) = TEMPS(le TO 22},

TEMP = VECTORS27(Y),
M$(1,2 TO 8) = TEMP$(16 TO 22),

TEMP = VECTORS527(Z),
MS$(1,2 TO 8) = TEMP&(16 TO 22},

The assignment from A 15 already quite sumple

Appendix ¢ C-21

C-22 Appendx C

64 1B

=
=

D ARRAY(23) INTEGER (| 5 3

b)) ARRAY(12) INTEGER (123123123123
c} ARRAY(3) SCALAR (1 1 D

& o 123123
ARRAY(2:6) INTEGER (| 5 3 ; 5 3
& 1 1 1
MATRIX(3,3) 11 1
r'a

I B

VECTOR(6)

o= L R

Mz ITXEAATEITITRX

wIX WwIZTIZIXTI

w X

X wmIxxX

MEUTAN
FROGIAM,
DECLARE INTEGER.
Xy TEHPR, SHALLEST,
DECLARE WALUE_LIST ARPAY(25) IMTEGER IMITIALI76. 87, 65, 54, 43, 3Zs 21, 12, 23, 3%, &5y 56, &7,
78 123, T34, 345, 486, 867, 678, V49, 5Y0, 987, 8T F65),
oo FOR X =1 TO 13
SYMALLEST = ¥,
CO FOR TEHFCRARY J = X + 1 TO 25,
IF VALUE_LIST < VALME_LIST THEH
J SHALLEST

SHMALLESY = 1
END,
IF SHALLEET =< X THEHW
20,
TEHP = VALDE_LIST .
SMALLEST

VALUE LIST = VALUE_LIST 3§
SHALLEST X

YALUE_LIST = JEMP.
¥

EHD,

ERD.
RRITE(G) 'HEDIAN = , VAWE LIST »

CLGSE MEDIAM,

Appendix C C-23

6B

DECLARE TIMING_DATA ARRAY(4,26) INTEGER INITIAL(Q),
DECLARE 1 INTEGER,

DO FOR 1 =1 TO 25,
TIMING_DATAS(l TO 3,I) = TIME_VALUESS(*.1),
TIMING_ DATAS(4,1) = SUM(TIM_VALUESS(-,I}),

END,
DO FORI =1 TO 3,

TIMING_DATAS(L,26) = SUM(TIM_VALUESS(1,*)),
END,

C-24 Appendix C

Solutions

TIA
2
4
71B
line4 the outer block may not call procedure PROC2, which 15 nested with
PROCI
line 5 the variable Y 15 known only within the scope of procedure PROC1
Ime 8 Procedure PROCH cannot call itself
71C
Block May be invoked from block(s)
2 1,34,56
3 1,2 .
4 3,56
5 34
6 5
T2A
Move the code block defining ALMOST_EQUAL from-the end of the program to a
point before ALMOST_EQUAL 1s wnvoked, 1e, immediately before or after the
block MASS
728

a The function RANDOM returns a scalar X with umform distnbution m the range
0< X <1 The function ROLL uses the implicit scalar-to-integer conversion sup-
phed by HAL/S, with imphied rounding Its results may be described by a table

a random value in the range yields an amount of

0= X <1 l
I X <3
3= X <35
S X <7
T=s X <9
9 X <1

Sy Lh R W

Thus, 1t 15 clear that the probabilities that ROLL will return 1 and 6 are 1/10,
while the probabiities of 2,3,4, and 5 are 1/5

72C

FAXIXIITITIIIZIIII

VI TIXIITIZITZIINITIIITIIXX

(4 = 4

==

FIX_ROLL.
PRGGRAY,
OECLARE COUNT INVEGER INITEIAL{G)S
DECLARE I INTEGER,
ROLE:
FUNCTION INTEGER,
RETURN TRUNCATE(S RANDOH + 1),
CLOSE,
D0 FOR I = 1 Ta 5;
DO LWTEL ROLL + ROLL = 7,
EOUNT = COUNT + 1,
END;
EMD,
WRITE(6) COUNT,
GLOSE FIX_ROLL,

FIND_GCDS:
PROGRAH;
DECLARE ARRAY{E) INTEGER.
x> Y3
DECLARE I INTEGER:
GCD
FUNCYION(IL, E2)} INTEGER.
DECLARE IMNTEGER:
I, T2, ¥, Y: R}
= X2;
Y = Il;
O HHILE X -= 07

R = REHAINDER(Y, X}
Y = X3
X =R3
EHD§
RETURN ABS(Y};
CLOSE GCD,

ReEaD{5) (%), [¥],
on FOR X = 1 70 53
IF gCOIX , ¥) == 1 THEN
T I

HRITE(E) ¥ » T 4 GCBUX , ¥ 33
I I T I
END3
CLOSE FIMD_GCOS,

Appendre € 25

C-26 Appendix C

7 3A

FIX_ROLL-
PROGRAM,
DECLARE COUNT INTEGER INITIALIDI};
DECLARE IHVEGER,
i, ROLLL, ROLLZ,
ROLL
PROCEDURE ASSIGNIA)Y;
DECLARE A INTEGER;
A = TRURCATE{& RAHDOM + 1)3
CLOSE ROLL:
DO FOR I =1 TO B3
DO UNTIL ROLLY + ROLLZ = 73
COUNT = COUNT + 13
CALL ROLL ASSTIGH(ROLL1):
TALL ROLL ASSIGHIRDLLZ]D,
]
END3
HRITE(S) COUNT;
CLOSE FIX_ROLL;:

TIXXIIATIIIIIZIZIITEIX

The solution 11 which ROLL 1s a function 1s clearly preferable, because the code to
invoke ROLL 1s much simpler 1n that case

In general, when a block 1s to produce as output a single value of any HAL/S type,
the FUNCTION form will tend to produce more comprehensible code than the
PROCEDURE form This 15 because the calling sequence for a function mirrors
closely the mathematical notatton for a funciion, and because often (as 1n this ex-
ample) use of the functional form avords the introduction of “dummy”™ vanables
with no mitonsic meamng to the algonthm bemg mplemented In the procedure
form, these dummy varrables must be used as ASSIGN parameters

~]
h

IXIITITIITIIIIIZTIITITIIIIIIATAAIZIAAAIIIZIIZISTS

Appendiz & C-27

DROP=
PRGSRAM:
BECLARE SCALAR.

DROP_TIME, BOUNCE_TIME;

DECLARE SCALAR INITIALL(G),
TIME, HORIZ DIST,

DECLARE HEIGHT SCALAR INITIAL(1103;

DECLARE HORIZ_SPEED CONSTANT(4);
DECLARE © COMSTANT(32):

BECLARE I INTEGER,

REPLACE NUMBER_OF BOUNCES BY “1o0";

TIME_YO_DROP
FUNSTIONIH Y,
DECLARE H SCALAR,
RETURH SGRTIZ H / B);
CLOSE TIHE_TOC_DROF,
HORIZ_MCTIDN
PROGCEDURE(T) ASSIGH(H),
DECLARE SCALAR,
T, Ha
H = H + HORIZ_SPEED T:
CLOSE HORIZ_MOTION;
BOUNCE
PROCEBURE ASSIGM(H, T3
DECLARE SCALAR,
Hy T3
H= 75H;
T = SQRT{2 H / ©6);
CLOSE BOWMICE;

00 FOR I = 1 TO HUKBER_OF_BOUNCES;
DROP_TENME = TIME_TO DROPLHEIGHT);
CALL HGRIZ_MOTIOR(DROP_TIMEY ASSIGR{HORIZ DIST),

TIME = TIME + DBROP_TIME,
WRITE(&) *BOUNCE's I, *TIME', TIME, 'HORIZOMTAL DISPLACEHENT', HORIZ_DIST:

CALL BCUNCE ASSIEM{HEIGHT, BOUNCE_TIME],

CALL HCRIZ HOTICN(BGUNCE_TIME) ASSIGH(HORIZ_DIsST).
TINE = TIHE + BOUMCE_TIME:

END,
CLOSE DROP:

C-28 Appendix C

7B

SIMPSON:
FROGRAMS
DECLARE SCALAR,
INITTAL_VALUE, FINAL_VALUE:; OLD_APPROX, HEW_APPROX, POINT;
BECLARE SCALAR,
DELTA» EPSILOH, As B:s €, B}
FOLY
FUNCTION(X) SCALAR;
DECLARE X SCALAR»
3 2
RETURN A X + B X + C X+ Dy
CLOSE FOLY:
OLD_AFPROK, NEM_APPROX = 0,
READ{5) A, B, €, D, INITIAL_VALUE, FIMAL_VALUE, EPSILON;
DELTA = (FINAL_VALUE ~ INITIAL_VALUE) / 5;
PO UNTIL (NEW APFROX - OLD_APPROX) < EPSELONS
OLD_APPROX = MEM_APFROXS
MEM_AFFRGX = POLY{INITIAL_VALUE} + POLYEFIHAL VALUE),
DD FOR POINT = INITIAL_VALUE + DELTA TO FINAL_VALUE - (DELTA / 2) BY DELTAS
HEW _APPROX = NEM_AFPROX + 2 POLY(POINT),
END,
HEM_APPROX = HEW_APPROX DELTA 7 25
DELTA = DELYA / 2,
END,
MRITE(S) NEM_APPROX:
CLOSE SIHMPSCH3

TEIIIIIAITIIIIIZIIMIIIAITIATI

-1
9]

I I I I X IN IR AT I TIEIIILTIITIITTX

Appendix C 29

DROP
PROGRAH;
DECLARE SCALAR,
'DROP_TIME, BOUNCE_TIME;
DECLARE SCALAR INITIAL(OD,
TIME, HOREZ_DIST:
DECLARE HEIGHT SCALAR IMITIALC110):
DECLARE HORIZ_SPEED COMSTANT(4),
DECLARE G CONSTANT(321),
DEGLARE I INTEGER,
REPLACE HUNBER_OF_BOUNCES BY "10';
TIME_TO_DROP
FUNCTIOHRIH)S
DECLARE H SCALAR;
RETURH SGRT{2 H / G}
CLOSE TIME_TO_DROP;
BOUNCE
PROCEDURE ASSIGHM(H, T).
DECLARE SCALAR.
Hy T3
H= .75 H,
T = SERT(Z H / G,
CLOSE BCOUNCES
DG FCR T = 1 TO NUMBER_OF_BOUNCES - 1.,
DROP_TIHE = TIME_TO_DROF{HEIGHT};
HORIZ_DIST = HCGRIZ_DIST + HORIZ_SPEED DROP_TIHE;
TIHE = TIHE + DROP_TIME:
KRITE(&) 'BOUMCE's I, 'TIME'; TIME, 'HQRIZONTAL DISPLACEMENT®, HORIZ_DISY,
CALYL BOUNCE ASSIGN{HEIGHT, BOUNCE_TIME),
HCGRIZ_DIST = HCORIZ_DIST + HORIZ _SFEED BOUNCE_TIHE,
TIME = TINE + BOUNCE_TIME,
END,
DROP_TIME = TIME_TO_DROP(HEIGHT):
HORIZ_DIST = HQRIZ_DIST + HORIZ_SPEED OROPF_TIME,
FIHE = TIME + PROP_TIME,
WRITE(S) 'BOUNCE', I, 'TIME', TIME, 'HORIZOMTAL DISPLACEMENT*, HORIZ_DIST;
CLOSE BROP.

http:HORIZ_O.1T

C-30 Appendix C

31A

81B

81C

82A

Solutions

There are several advantages to nammg I/O channels

1) If several channels are m use, mving them descripfive names makes 1t clearer
what any particular IO statement is domng

2) References-to REPLACE macros are collected 1n the cross-reference table, allow-
ing all I/O sfatements to be found quickly and casily

3) If 1f becomes necessary to reassignt a channel, the channel number need only be
changed once, 1n the REPLACE statement, and all 1/O statements, referencing
that channel will automatically be changed

The expressions 1 the list are evaluated-one by-one, and dafa items converted fo
character sinng standard external format These strings are then assembled nto lines
and transmitted in an umplementation dependent fashion to the output device asso-
ciated with the channel number specified in the WRITE statement

Any legal HAL/S expression may appear 1n a WRITE statement There are no restrie-
trons whatsoever on output

a) land5
b) 1,3,4,and 5.

a) First, the three matnces in MAT_ARRI will be printed, then the three matrices
m MAT ARR2

b) The easiest way to do this 1s with loops

DO FOR TEMPORARY 1=1 TO 3,
DO FOR TEMFORARY I =1 TO 3,
WRITE(6) MAT_ARRIS(1,*), TAB(20),MAT_ARR2S5(I 1,),
END,
WRITE(6} SKIP(2),
END,

It could also be done with a single WRITE statement

WRITE(6) MAT_ARRIS$(1 1,*),TAB(20),MAT_ARR2S(1 1,*),5KIP(1),

COLUMN(I)MAT_ARRIS(I 2,*),TAB(20)},MAT_ARR2%(1 2,*),SKIP(1),
COLUMN(1)MAT_ARRIS(1 3,%),TAB(20), MAT_ARR23{1 3,#),SKIP(3),
COLUMN(1),MAT_ARRIS(2 1,%),TAB(20),MAT_ARR28(2 1,7),SKIP(1),
COLUMN(I)MAT_ARRIS3(2 2,*),TAB(20), MAT _ARR2${2 2,%),SKIP(1),
COLUMN(I),MAT_ARRIS(2 3,7),TAB(20),MAT_ARR2S(2 3,%),8KIP(3),
COLUMN(1)MAT_ARRI13(3 1,*),TAB(20),MAT_ARR23(3 1,%),SKIP(1),

Appendx C C-31

COLUMN(1),MAT_ARRIS(3 2,),TAB(20)MAT_ARR2S(3 2,%),SKIP(1),
COLUMN(1),MAT_ARRIS(3 3,7),TAB(20) MAT_ARR2S(3 3,),

8 2B
)b
2) a,c
3Hd
4) ¢ (paged files only)
5) a,e
6} none of a-g, overrides the defanit SKIP(1)
7 c

8 3A
ay INTS = (8,7,7), SCALS = (—1,225,4)
b) INTS = (0,1,1), SCALS = (7 2,0,0)
¢} INTS = (2,1,3), SCALS = (249,0,2 51)

838
Change the READ statement to
READ(5) COLUMMN(8),INTS,SKIP(1),COLUMN(8),SCALS,

8 4A

All are legal character subscripts Only a, b, ¢, and e are legal vector subscripts, all
the others have partifion sizes not computable at compile time

84B
The output will be sumilar to this

ABC ABCABC
123AB BC456
1223ABC456

ABCABC ABC

8.4C

All the expressions listed are true

85A
Only character strings may be read using the READALL statement

QRGN+,
O QOQQLQ?GE Iy

Ay

C-32 Appendwx C

8§5B

8A

All characters on the input file are refrieved by the READALL statement, no matter
what they are Character strings to be input using the READ statement must be sur-
rounded by single guotes, which are nor placed mnto the target varable Further-
more, single quotes represent themselves m READALL input, while they must be

represented by a parr of quotes in succession in READ mmput

REVERSE:
PROSRAN;
DECLARE ARPAY(5) CHARACTER(5),
CHAR_ARR1, CHAR_ARRZ.
DECLARE X INTEGER:
REW:
FUNCTION(CY CHARACTER(5)S
DECLARE € CHARACTER(®):
DECLARE CHAPACTER(S),
CTEHP, CHAR_REV,
DECLARE INTEGER.
I, Ly

3 Ll ?
CHAR_REV, CTEMP = C,

IF CTEMP = "' THEM
RETURH "'3

?
L = LENGTH{(CTEMP),
DO FOR I =X YO L,

¥]
CHAR_REV = CTEHP 3
I L+1-X

END:

2
RETURM CHAR_REV,
CLOSE REV,

+ >
READ(S) [CHAR_ARR11, [CHAR_ARRZI;
GO FOR X = 1 70 5,

] »
CHAR_ARRL = TRIMICHAR_ARR1);
% e

MIMIIMIIMIT OWIMIIMIITMIMITIIITITIXLIIIX

H b
EHAR_ARRZ = YRIM(CHAR_ARRZ 1,
%- X

hIxXm yIm

L ’ 1 ’
HRITE(G) COLUMNLS), REV(CHAR_ARAL), COLUMN{15), REV(CHAR_ARRZ 1,
X HH

END,
CLOSE REVERSE,

I

3B

WMIMIXXmMmITIIXN

wIxm

IITITTMEIMITE BIM OHIMCMTIMIZIIZIZT vadm WEmXZSIMATITMIAMIATITE

DECODE_NAMES:
PROGRAM,
DECLARE HAMES ARRAY(58, 2) CHARACTER(15),
DECLARE INLIRE CHARACTERI(80);
DECLARE I INTEGER;
REPLACE HOQ_OF_MAHES BY "'50";

INLINE = *',
DO FOR I = 1 TO KO_OF_MAMES;
CALL GET_HAMELID,

’
IF MNAHES = 'S' THEH
I.2*1
¥ H
KRITE(&) HAHES I " ' 1] HaHES H
I,1¢ 2
END»
GET_MAHE™
FROCEDURE(NM),
DECLARE INTEGER,
Hy K3

Rl
IF INLINE = ** THEM
CALL GET_LINE,

3
¥ = INDEX(INLINE, *»');
IF K = 0 THEKR

»
CALL FIRST_AND_LASTEINLINE, H),

ELSE
oo,
?
CALL FIRST_AND LAST(INLINE » NJ»
I T0 K-1
’ ’
INLINE = TRIM(CINLINE 1
K+#1 TO %

END3

FIRST_AND_LAST
PROCEDURE(C, M),
DECLARE € CHARACTER(®),
N INVEGER,
I INTEGER,

I = IHREXIC: ' *)»

L) »
NAMES =G)
H1- 170 1-1

1 >
NAHES =C i
Hal" 1 T0%

CLOSE FIRST_AND_LAST;
GET_LINE:
PROCEDURE 5

READALL(S) IMLIHE,

] 3
INLIMNE = TRIM{INLINE),
CLDSE GET_LINME,
CLDSE GET_MARE,
CLOSE DECODE_MAHES,

B
OF RooR QUALII;S

Appendix C C-33

¢34 Appendix C

8C

MUAMBER_TO_EHSLISH
PROGRA
DECLARE INTEGER,
Ry Te Uy
DECLARE CHAPACTERI30],
LEFT_PART, RIGHT_PART,
SEVEMIY', EIGHTY®s 'HIFETY"),
. SI¥TEEM , "SEVEHNTEEH', "EICHTE
DECLARE UMITS ARRAY(Q) CHARACTER(
y "EICHT , 'HINE X
READ(S) H,
IF H = 0 THEN
[nis

L
LEFT_FARY = *'§

»
RIGHT_PART = “ZERD »

END,
ELSE

DO,
DEVIN, 1001,
DEVIREHAIRDER (Ha
PEMATHDERIN, 100,
IF H > @ THEN

H
T 10313,
L

W

r r
LEFT_PART # UHITS 1| *

H

CIMEIZ I EITIIMIMITIIITIZIATTITIIAISE

ELSE

r
LEFT_PART = *
IF U = 0 THEH
]
EN3

?
RIGHT_FART = T| *

ELSE
00,
IF T > 1 THEN

L] .
RIGHT_PART = TENS
T

ELSE IF T = 1 THEH

v
RIGHT_PART

ELSE

F
VHITS
u

RIGHT_PART

END»
EHD»

IEIMIIT IMIT pxmI VWIMIZEI pgxzmIImA

L} L]
HRITELG) LEFT_PART !l RIGHT_PART,
CLO5E,

DECLARE TERS ARRAT(9) CHARACTERLT) IMETIAL(“TEH",

FTREHTYY, "THIRTY'

EH", HINETEEHN 1.

5) IHITIALCCHE®s TRO » 'THREE's

101,

HUKDRED *,

.
=" 1 wrs
U

L]
TEEMS

]

3

'FORTY', FIFTY , "SIXTY'.

DECLARE TEENS AFRAY(S) CHARACTER{9Y INITIALL'ELEVEH > "THELVE', ‘THIRTEEH'. 'FOURTEEH', “FIFTEER

FOUP*, FIVE', ‘SIX", 'SEVEH

Appendix € C-35

Solutions

92A

STRUCTURE X
1 Al
2 Cl1 VECTOR,
2 DI MATRIX,
1 BI,
2 El VECTOR,
2 FI MATRIX,

STRUCTURE Y
I AZ SCALAR,
1 B2,
2 D2 ARRAY(5) VECTOR,
2 E2 ARRAY(5) VECTOR,
1 C2 SCALAR,

928
a) TEST_DATA

L I
M< >N < >
A/ N - B A h
AN S B N
V1l V2 B V1 V1l V2 B Vi

b) TEST DATALM A
TEST_DATA LM B V1
TEST_DATA.LMB.v2
TEST DATALNAB
TEST_DATALN A V1
TEST_DATALNC
TEST_DATAIJA
TEST_DATA.ITB V1
TEST_DATATIB V2
TEST_DATAIKAB
TEST_DATAIK A V1
TEST_DATAIKC

C-36 Appepdx C

¢) STRUCTURE DATA
1 L,
2 M,
3 A INTEGER,
3 B,
4 Vi VECTOR,
4 V2 VECTOR,

© 3 A,
4 B INTEGER,
4 V1 VECTOR,
3 C SCALAR,

3 A INTEGER,
3 B,
4 V1 VECTOR,
4 V2 VECTOR,

3 A,
4 B INTEGER,
" 4 V1 VECTOR,
3 C SCALAR,

d) All of the assignments’shown are legal

9.2C

STRUCTURE MINGR
1 V VECTOR,
1 T SCALAR,
STRUCTURE MAJOR
1 X1 MINOR-STRUCTURE,
1 X2 MINOR-STRUCTURE,
1 X3 MINOR-STRUCTURE,
I X4 MINOR-STRUCTURE,
! X5 MINOR-STRUCTURE,
DECLARE DATA MAJOR-STRUCTURE,

READ(5) DATA,
CALL PROCESS(DATA),

The procedure PROCESS must be modified to accept 2 MAJOR-structure as mput
wmnstead of the ARRAY(2) it onginally took

93A

93B

93C

94A

STRUCTURE MINOR
1 ¥ VECTOR,
1 T SCALAR,
DECLARE DATA MINOR-STRUCTURE(S),

REAIMS) DATA,
CALL FROCESS(DATA},

Now PROCESS must be changed to accept 2 5-copy MINOR-structure as jis argu-
ment The data 15 still read 1n the same order as before

a)
b)
c)
d)
e)

b)
c)
d)
€}

AS(25) or AS25 type Al-STRUCTURE
A B3(*3) type ARRAY(100) INTEGER
ACSI10 TO 20 tvpe ARRAY(11) SCALAR
A D85 TO 85) type ARRAY(11) VECTOR(6}
A DS, type SCALAR

M | HEAM:

M | FRGGRAM,

M STRUCTURE PERSON:

H 1 55 INTEGER DOUBLE,

M 1 SALARY SCALAR,

M 1 JOB_CODE INTYEGER,

t 1 PHAME CHARACTER(32);

H DECLARE EOMPANY PERSOM-STRUCTURE{1001,

E

4] REARI(S) {EBM;ANYL

M WRITE{6T SUHL{COHPANY SALARY}! 7/ 100;

H | CLOSE MEAN;
No X E F has the RIGID attribute, Y does not.

Yes

Yes.

Yes
Yes

Appendx € C-37

C-38 Appendx €

9 4B

A

a) The 20th copy of A type A-STRUCTURE

by The iOth and 11th copes of A type A-STRUCTURE(2)

¢) C from the first copy of A type INTEGER

d) D from the 4th-6th copies of A type ARRAY(3) VECTOR(S)

e) The 4th=6th components ¢f D
from all copies of A type ARRAY(20} VECTOR(3)

Structures allow the programmer to orgamuze data of mixed types mto onec logical
unit that may be imput, output, assigned, and passed as a parameter When a struc-
ture 15 passed as a parameter, overhead s saved, as all the components of the struc-
ture became available to the called procedure or function without bemng passed.in-
dividually as separate parameters

The use of structures aiso allows the transfer of an aggregate of assorted data in a
sigle FILE IfO statement In 1fO contexts, multiple-copy structures are particularly
converent for reading or woiting large blocks for the sake of efficiency

o=
=)

WMZE UIm MIZTIITIIIIITIIIIIIIR

M GITmMmIMI BIXM M Im

T ¥ Tm

Appendix C -39

BEST_OHE
PROGRAH:
STRUCTURE ITEM_DATA
1 VEC VECTCOR,
1 TIHETAG SCALAR,
STRUCTURE UHIT_DATA
1 ACCEL TTEN_DATA-STRUCTUPE.
1 VEL ITEH_DATA-STRUCTUPE,
1 PITCH ITEM_DATA-STRUCTUPE,
STRUCTUPE BEST
1 BEST_ACCEL ITEM_DATA-STRUCTURE,
1 BEST_VEL ITEM_DATA-SIRUCTURE,
1 BEST_PITCH ITEM_ DATA-STRUCTURE,
DECLAPE BEST DATA BEST-STRUCTURE,
DEGLARE SYSTEM_DATA URIT_DATA-STRUCTURE{3),
HIDDLE
FUNCTICHUOFU) ITEH_DATA-STRUCTURE,
DECLARE OFU ITEN_DATA-STRUCTUPE(3),
IF DFY TEHETAG s MIDVALIDFU TIMETAG » DFU TIMETAG
1 i,

*
RETURH DFU
1,
IF DFU TIKETAS = HIDVAL(DFU TIMETAG » DFU TIMETAG
23 1s

¥
RETURN DFU

2y

+
RETURH DFU

3
CLOSE HIDDLE,

+

READ(BY {5YSTEt1_DATA},
¥ + +
BEST_DATA BEST_&CCEL = MIDPLEC {SYSTEM_DATA ACCELY),
- ¥y

- + +

BEST_DATA BEST_VEL = MIDDLER {SYSTEM _DATA VEL}),
“y

+ + *
BEST_DATA BEST_PIVCH = MIDDLEL {SYSTEH_DATA PITCH} 1,

e
CLOSE BEST_CHE,

2,

2y

» DFUY TIHETAG

» DF TIMETAG

/% DAYA FROM UNIT »/
) THEH
3,

1 THEN
3

40 Appendix ©

10 1A

10 1B

10 1C

101D

Solutions

Control falls through to the statement following the ON ERROR statement, unless
the ON ERROR statement has

1) caused a GO TO or RETURN statement to be executed, or

2} specified"SYSTEM or IGNORE, in which case either control returns to the pro-
gram at the pomnt where execution was interrupted, or the program terminates,
depending on the particular etvor

If the error should occur after control has left the loop, an unexpected transfer of
control into the loop will accur, potentially causing disastrous results since loop van-
ables may have unusnal valucs, and TEMPORARY variables may even have been re-
defined since leaving the loop

The compuler normaily enforces a ban on branchmg into DO BEND groups In tlus
case where the compiler 1s unable to do se, the programmer should follow the same
course

1) SYSTEM If no ON ERROR statement 1s active for the current error, or if the
active one 1s ON ERROR SYSTEM, the standard action, if any, 1s taken and an
BITOT message 15 sent

2) IGNORE If an ON ERROR IGNORE statement 15 m effect for the error m
question, the standard fix-up 15 taken and no error message is sent

3) If an ON ERROR statement defimng a user action 1s i effect for the specified
error, then the user code receves control without possibility of returmng to the
point where the error oceurred No error message 15 sent

Error Specification Precedence
ERRORS(m n} 1 first
ERRORS3(m) 2

or
ERROR$(m) 2

ERROR 3 last

10 2A

I102B

1034

10 3B

10A

Appendix C C-4]

An error handler may be deactivated
1) when flow of control leaves the block contamnmmg the handier,
2) when 1t 15 superseded by another error handler, and

3) when an OFF ERROR statement of the same form 15 executed

a) All three error handlers are still active both OFF ERROR statements were 1g-
nored

b) ON ERRORSE(1 1) IGNORE, and ON ERRORS$(2) IGNORE, are siill active
The first OFF error statement cancelled the first ON ERROR statement, and the
second had no effect

The SEND ERROR statement 15 used
1) to simulate the occurrence of system-defined errors for testing, and

2) to allow the user to define errors and write error handlers for them

When an apphcable error handler is found i the local block, higher level bloeks need
not be searched, as handlers m the calling blocks are overndden by the local handier

a} WNo message
b} Message
¢) No message
d) No message
&) Maessage
f) No message
g) No message
h) Messape
1) No message
1) Message
k) Message

I} No message

ORrg
L3y,

g

42 Appendix C

1114

111

11 1C

112A

112B

i12C

Solutions

1 If several programmers are working on a single large project, 3t wiil probably be
eonvenient to assign them separately-commlable sections of the program com-
plex

2 In a multiprogrammung environment where several PROGRAMs are to run con-
currently, there 15 no way to compile them all 1n a single compilation step, so a
program complex must be created

3 If the overall structure of a program 1s fixed, but small sections are under-going
revision, separating those sechons out as COMSUBs may allow those parts fo be
revised and recompiled without requring recompifation of the entire program

Just as 1f the COMSUR were an mntaernal procedure, the error environment of the
caller s searched for an appheable error handler, then the environment of the caller’s
caller, and so on

a) Compiling a COMPOOL reserves space for the vanables declared thercn Also,
mn most implemeantations, a template 15 produced when the COMPOOL 15 com-
pied

b} The COMPQOL template, when included m the compilation of another compila-
tion umt, makes the vanables declared i the COMPOOL known to that compila-
tion unat, without causing any space to be reserved for those variables

The SCALARs A and B can only be referenced inside the program P but outside the
FUNCTION block F Inside of F, scopimng rules will cause A and B to refer to the
local INTEGER vatiables

FILTER does not require any of the data in GNC_PQOOL, so there 1s no need to in-
chude the template for GNC_POOL 1n the complation of FILTER

If several compool templates are included 1n a single compilation, names of varrables
inust be unique, because there 15 only one scoping level outside the main block of a
compiation Hence, 1t 15 mn general desirable to give comipool variables unique
names, 50 that 1f 15 possible to refer to any compool from any other compilation
unat :f necessary

112D

113A

11 3B

a}

b)
c}
d)

a)

b)

a)

b)

Appendix C 43

A template for FILTER 15 needed 1n order to compile NAVIGATION, and with
this order of compilation, 1t would need to be hand coded

In this case, CONTROL needs the template for FILTER
No template need be hand coded, as all will be available when they are needed

This order of compilation 1s particularly inconvement, all templates will need to
be hand coded.

It 15 possible that the savings account for one ID mught be updated, then the pro-
cedure mterrupt and another account updated When contro] returned to the
first task, the updating of the checking account would then be done mcorrecily,
transferning funds from one customer to another

If SAVINGS and CHECKING are declared with the LOCK attnbute, and the
transfer 15 enclosed 1 an UPDATE block, there 1s no possibility of an incorrect
transfer of funds as descnibed above

in this case, any wmterruption of an execntion of AWARD_INTEREST by an-
other process that calls AWARD INTEREST may cause either an error in np-
dating the account, or 1n logging the mterest

Make the procedure AWARD_INTEREST EXCLUSIVE Then there 1s no possi-
bility that two processes will attempt fo run AWARD_INTEREST concurrently.

C-44 Appendix C

12 1A

12 1B

121C

1224

1228

{22C

Soluticns

v L [

0 80 200 280 400 480 600 680 B0OO 880 GO0 msec

; | I I N
80 160 480 560 740 380
c {] |
0 160 320 630
A -
G 80 280 360 560 640 840 920
: 1 1] I
80 160 493 653 986
Cc
160 240 740 820

SCHEDULE X PRIORITY(1), REPEAT UNTIL 35,
SCHEDULE Y IN 25 PRIGRITY(2), REPEAT EVERY 1 UNTIL 6,

The AT clause allows a process to be scheduled at a defirute, predetermined time
The ON clause, on the other hand, allows a process to be scheduled depending on
occurrences of an unpredicfable nature Either one ean be appropriate, depending
on the desited effect

Qs active gnly at B

SIGNAL X, will cause X to become TRUE just long enough for all active event ex-
pressions referencing X to be evalvated In pariicular, no code testing X as a
BOOLEAN vanable will ever find it TRUE as a result of SIGNAL X, The sequence
SET X, RESET X, will also cause X to become TRUE, then return to FALSE, but if
it the meantime the process executing the SET and RESET statements relinquishes
control, X will remain SET dunng execution of some HAL/S code, and may be
found to be TRUE if tested

Appendix C 45

122D -

SCHEDULE X PRIORITY(1), REPEAT UNTIL TRAN2Z,
SCHEDULE Y ON TRAN! PRIORITY(2), REPEAT EVERY 1 UNTIL 6,

12 2E
a) Unlatched, there is no need to specify LATCHED, so take the default
) Latched, it 35 not possible to signal several events sunultancously
c) Latched, an unlatched event will always test FALSE
d) Latched, RESET 15 illegal for an unlatched event

e) Unlatched, presumably the Ioop 1s to execute once for each event transition,
which would probably not happen 1if the event were SET and remained on

12 2F
SCHEDULE T ON MASTER PRIC(999) REPEAT,

-

T TASK,
RESET COMPL,
WAIT FOR IMASTER,
SET COMPL,
WAIT FOR MASTER,
CLOSE T,

1234

P:
PRCGRAH,
DECLARE DENOH INTEGER INITIAL(10);
SCHEDULE T PRIORIYY($9%), REPEAT UNTIL 1;
T
TASK,
KAIT UNTIL 1 / DEHOH.
WRITE(S) RUNTIHE;
DENOM = BEHOM - 2,
IF BEHOM < 1 THEN
DENOH = 13
CLOSE T,
CLOSE P,

ITXITIIIITITITITI

Urlless something causes P to exat from the DO WHILE TRUE loop, CANCEL P will
have no effect

I X 15 necessary to keep P as it 1s, 1t can be stopped with
TERMINATE P,

However, 1t 1s safer simply to remove the DO WHILE TRUE, and END, staterents
from P, and denive the same effect from wnting

Ny
%OQ QP‘QG@ S

C-46 Appendix €

124

3]
FROGRAM,
DECLARE VECTIORS
FOSITION. ATTITUDE, VELOCIYY,
DECLBRRE SCALAR.
PITCH_CONMHAND, ROLL_CCMMAMD,
«DECLARE DESTIHATIOM VECTOR.
DECLARE ARRAY(G4L,
SENSED_ATTITUDE VECTOR,
SEHSED_VELLCITY YECTOR,
INPUT_FROC
PPOCEGURE . /% SCALE AHD FORHAT DATA FROM SERSORS *
CLOSE INFUT_FROC.
ELEVON_CMDS
FROCEDRE, A% COHYAMD AEPOSURFACES x/
CLOSE ELEVOM_CHOS.
TELEMETRY
FROCEDURE, /% DDEHLINK STATUS YARIABLES %
CLOSE TELEMETRY,
RUCDER_CrDS
PROCEDUPE, F# COHTROL Yabl AMIS5 #r
€LOSE RUDDER_CHDS,
GUIDANCE
FROCEDUSE . /% COMPUTE DESIRED FLIGHT PATH %
CLGST GUIJAMCE,
FC_GAIWS
PPGCEOURE, <% COMPUTE COHTFOL LAM GAINS #
CLOSE FC_GAINS,
HAVIGATION
PROCEBUPE, /% COHPUT REAL FOSITION AMD VELQCITY
CLOSE NAVIGATIOQN,
DISFLAY_VUFDY
PROCEBURE, /% REFRESH CRT #/
CLOSE DISPLAY_UPDT.
SCHEDULE TI FRICRITY(4), REFEAT EVERY 1.
SCHEDULE T2 PRIDRITY(3), REPEAT EVERY 2,
SCHEOULE TX PRICRITY{Z), REPEAT EVERY &,
SCHEDULE T4 FRICRITY(11), REFEAT EVERY &.
T1
TASK,
call INPUT_PROC,
CALL ELEYOH_CHUS,
CAEL TELEMETRY.
CLOSE T2,
T2
TASK;
CALL RUDDER_CHDS.
CALL GUIDAMNCE,
CLOSE T2,
T3
TASKS
CALL FC_BAINS,
CLOSE T3,
T4

TASK
CALL MNAVIGATIOM,
CALL DISPLAY_LFDY,
CLOSE T4,
CLOSE FSMW,

:IZ:I:I:[:I:I:I:!Z:‘:ﬂ:‘::l!:l:!:l::!:I:!'.'l:!:::‘.‘.t‘.‘!::II::‘::‘:‘E:Z:II:Z::::::::=:‘:I.'.‘:‘=
r

The prionifres here serve to fix the order of execution to be 1dentical with that in the
chapter seven example

>
w

Appendix C C-47

AR I I IO I O I IR I IR I I I I IO E IR I I IS IIIIISISITIIITITITIIATITITOINT

FSH
PROGRAM,
DECLERE VECTOR,

POSIVION, ATTETUDE, VELOCITY,

DECLARE SCALAR,

PITEH_COMHMEND, ROLL_COMMAMD,

DECLARE DESTINATION YECTOR,
DECLARE ARRAY(G],
SENSED_ATYITUDE VECTOR,
SENSED_VELOCITY VECTOR.
DECLAPE T1_DONE EVENT.
IHPUT_FROC
£ROCEDURE ,
CLOSE IHPUT_PROC,
ELEVOI_CHDS
PROCEDUPE,
CLOSE ELEVOH _CHDS,
TELERMETRY
PROTECURE,
CLOSE TELEMETIRY»
RUDDER_C“DS
FROCEGLPE,
CLOSE RUDDER_CHDS,
GUIDELCE
PROCEDURE,
CLOSE GUIDAMCE,
FC_GAIRS
PROCEDURE s
CLOSE FC_GAINS,
HAYIGATION
PROCEOLURE,
CLOSE RAVIGATICH,
DISPLAY_UPDT
PROCEDLRE,
CLOSE DISPLAY _UPDT,
SCHEDULE TI PRIORITY(1), REPEAT:
SCHEDULE T2 FRIGPITY(2), REFEAT,
SCHEZDULE T3 FPIORPITYL3), PEFEAY.
SCHEDULE T4 BRIORITY(G), REPEAT.
T
TASK
CALL INPUT_FROCT
CALL ELEVCY_CMOS.
CALL TELEMETRY,
SIGHAL Ti_DOHE,
CLDSE T1,
T2
TASK,
WALT FOR TY_DOHE,
HAIT FGR T1_DOMEs
CALL RUDBER_CHDs,
CALL GUIDAMCE,
CLOSE T2,
T3
TASK,
B0 FOR TEHPORARY I = 1 TO &,
HAIT FOR T1_BOME,
ENDy
CALL FC_GAXINS,
CLOSE 13-
T4
TASK,
BO FOR TEMPORARY T = 1 To &,
WAIT FCR TI_DONE,
EHD,
CAEL HAVIGATIOM,
CALL DISPLAY_UPDT.
CLOSE Téy
CLOSE FSH.

/% SCALE AND FOSHAT DATA FFDH STHSORS %/
/% COHHAND AEROSUREACES */
/% DOAHLINK STATUS VARIAGBLES #y
/% COHTRDL YAW axis =/

/% COMPUTE DESIRED FLIGHT PATH ¥~
£% COHRUTE CONTROL LAW GAINS ¥r

/% COHPUTE REAL PGSITION AND VELQCITY %~

/% REFRIZSH CRT ¥/

This solution guarantees that the vanous fasks will never be executing any of their
procedures simultaneousty Thus avording the need for UPDATE block protection

of any shared vanable

48 Appendix C

13.1A

1318

131C

NIMIETZIIIXIZ

22X OIMIXITIT

Solutions

I

BIN®110000000000”
BIN*0000000000060°

If FLAGS AND BIN‘110000000000”

If FLAGS AND BIN‘010101010101°
or
FLAGS AND BIN‘Op0000111111* = BIN*000000i11111”

If FLAGS = BIN‘101010000010"
If FLAGS AND BIN‘111010000011° = BIN‘101010000010°

| FLIP-
M | FUNCTION(B) BIT(12};
M DECLARE B BET(1213
" DECLARE FLIFPED BIT(12),
M DD FGR TEHFORARY ¥ = 1 70 1z,
£ . .
H FLIFFED =B 3
5 X 13-%
M EHD,
E
H RETURN FLIFPED;
H | CLBSE FLIR. .
EXERCISE_C:
PROGRAH,
DECLARE TABLE ARRAY[EO) BIT(24)5
SET_BITS?
PROCEDURECENTRY: VALUE};
DECLARE INTEGER,
ENTRY, VALUE;
TABLE = BIT {VALUE);
DIV(EMIRY,436 AT (4 MOD(EMTRY,4)+1) & AT #-5

CLOSE SET_BITS:

GET,_BITS"

FUNCTIONCENTRY) INTEGER,
DECLARE ENTRY INTEGER;

RETURN INTEGER(T#.éLE I H
DIVIENTRY,%) "6 AT &€ MOD{ENTRAY,4)141

CLOSE GET_BITS;
CLOSE EXERCISE_C;

13 1b

13 1E

13 IF

1324

iy
2)
3)

Appendex C C 49

NORMAL

FUNCTION(UHNORM) BIT(32),
DECLARE UMMORM BIT(3I2),
DECLARE B BIT(32),
BECLARE COUNT INTEGER,

IF UNNORM 5 BEX'00DQ000' THEW
9 TO 32

RETURH HEX'00000000";

B = UNNORH,

DO FOR COUNT = 1 TQ & WHILE B = HEX'0'3}
4 AT 9
B = BITE{SHLEINTEGER(B 1x 413
2% AT 9 26 AT 9
= BIT (INTEGER(D) -1ih
7 AT 2 7 AT %-6 TAT 2

END;
RETURH B,

SIMIT HEMm ©IMm OImMIMIT VWIMIIILR

CLOSE HORMAL,

OUTPUT = 1E5 INTEGER(INPUTS(4 AT 1)) + |E4 INTEGER(INPUTS
(4 AT 5)) +
1E3 INTEGER(INPUTS(4 AT 9)) + IE2 INTEGER(INPUTS
(4 AT 13)) + ,
1E] INTEGER(INPUTS(4 AT 17)) + INTEGER(INPUTS
(4 AT 21)),

OUTPUT = INTEGER(BIT(CHARACTERS(@HEX) (INPUTY)),

Partitions of bit strings
Columns of a matrix

A siructure nade with copiness

ORIGINA

QUAIJI:g

50 Appendix C

13.2B

13 3A

13 3B

Iine 28

after

Iine 37

a} Yes, if a name vanable poiats to some vaniable m an outer code block and a van-
able 15 checked 1 an nner code block with the same 1dentifier as that the name

vanable pomts to, the outer vanables can be referenced

b} Mo, need more information than the address which 1s all the name vanable

allows

c) Yes, name vanables allow sharing Several name variables can point to the same

data ifem

d) No, 1t 15 posstble to go up and down name pomnters but not reference an absclute

address

e) No, name vanables can only pomnt to datz of the same type they were declared

STRUCTURE LOOP

i VALUE INTEGER,

1 NEXT NAME LOOP-STRUCTURE,
DECLARE CIRCLE LOOP-STRUCTURE,

NAME(CIRCLE NEXT) = NAME (CIRCLE),

STRUCTURE TQE
1 TIME SCALAR,
1 ACTION NAME ACTIONS-STRUCTURE,
1 NEXT NAME TQE-STRUCTURE,
STRUCTURE ACTIONS.
1 ACTION INTEGER,
1 AFFECTED-PROCESS NAME PROCESS_CONTROL-STRUCTURE,
1 NEX NAME ACTION-STRUCTURE,

DECLARE NAME TQE-STRUCTURE, NEWTQE, ENT,
DECLARE NAME ACTIONS-STRUCTURE, NEWACT, ENTACT,

NEW TQE TIME = WHEN,
NEWACT ACTION = WHAT,
NAME(NEWACT AFFECTED_PROCESS) = NAME{(PROCNAME),

NAME(ACTV_Q ACTION) = NAME(NEWACT),

Appendix C C-51

affer
line 40

IF ENT NEXT TIME = NEWTQE TIME THEN DO,

IF NAME(ENT ACTION) = NAME(NULL) THEN DO,
NAME(ENT ACTION) = NAME(NEWACT),
RETURN,

DO UNTIL NAME(ENTACT NEXT) = NAME(NULL)
" NAME(ENTACT) = NAME(ENTACT NEXT),

I?i%E(ENTACT NEXT) = NAME(NEWACT),
RETURN,
after 44
NAME(ENT ACTION) = NAME(NEWACT),
after 50

NAME(NEWTQE ACTION) = NAME(NEWACT),

13 3C

If PCB 1s first or last in the ready queue, the code to remove PCRB from the ready
queune will not work To avoid the difficulty, rewnte STALL as follows

STALL PROCEDURE ASSIGN(PCB),
DECLARE PCB PROCESS_CONTROL-STRUCTURE,

C

C Remove from ready quene

C
1IF NAME(PCB LAST)=NULL THEN NAME(PCREADY)=NAME(PCB NEXT),
ELSE NAME(PCB LAST NEXTNAME(PCB NEXT),
JF NAME(PCB NEXT) 1=NULL THEN NAME(PCB NEXT LAST)=NAME
{PCB LAST),

C

C Add to stalled queue same as in the text

C

NAME(PCB NEXT) = NAME(STALLED),
NAME(STALLED) = NAME(PCB),
CLOSE STALL,

C-52 Appendix C

13A PC_ENQUEUE PROCEDURE ASSIGN(PCB),
DELCARE PCB PROCESS_CONTROL-STRUCTURE,
DECLARE PCPTR NAME PROCESS_CONTROL-STRUCTURE,

IF NAME(READYPC) = NULL THEN DO/ /{rempty queue*/
NAME(READYPC) = NAME(PCB),

NAME(PCB LAST), NAME(PCB NEXT) = NULL,
RETURN,

END,

NAME(PCPTR) = NAME(READYPC),
DO WHILE NAME(PCPTR NEXT) 7= NULL,

IF PCPTR PRIORITIE<PCB PRIORITIE THEN DO,
NAME(PCB LAST) = NAME(PCPTR LAST),
NAME(PCB NEXT) = NAME(PCPTR),

IF NAME(PCB LAST) = NULL THEN
NAME(PCB LAST NEXT) = NAME(PCB),
RETURN,
END,

NAME(PCPTR) = NAME(PCPTR NEXT),
END,

cC PCB IS LOWEST PRIORITY TAG ON END OF LIST

NAME(PCPTR NEXT) = NAME(PCB),

NAME(PCB NEXT) = NULL,

NAME(PCB LAST) = NAME(PCFTR),
CLOSE PC_ENQUEUE,

13B

nmEMIXIZMIMIIIMETIMIMIMIIIIIII

wZEm

X NWXIXIIM

HEXCALC:
PROGRAM;
DECLARE INTEGER DOUBLE,
INT1, INT2,
DECLARE INMLINE CHARACTER(S8Q),
DECLARE PLUS BOOLEAN,
DECLARE K INTEGER,

»
READALLEE} INLINE;
» >
IRLINE = TRIMCINLINE,

L4
K = INDEX(INEIHNE, '+7),
IF K > 0 THEN

PLUS = TRUE,
ELSE
b0,
PLUS = FALSE,

»
K = INDEX(INLINE, *-*),

END,
INTL = INTEGER (BIT C(INLINE 3
J00UBLE SHEX 1 70 K-1
¥
INT2 = INTEGER (BIT CINLINE 1,
IDOUBLE SHEX kel TO %
IF PLUS THEN *
INTL = IHT1 + INV2,
ELSE

IHNTL = INT1 = INTZ,
WRITE(S) INT1, CHARACTER (BIT(INT1)};
SHEX

CLOSE HEXCALC;

Appendix C C-53

ABS
ABVAL
ACCESS
AFTER
ALIGNED
AND
ARCCOS
ARCCOSH
ARCSIN
ARCSINH
ARCTAN
ARCTANH
ARCTAN2
ARRAY
ASSIGN
AT
AUTOMATIC

BIN

EIT
BOOLEAN
BY

CALL
CANCEL
CASE

CAT
CEILING
CHAR
CHARACTER
CLOCKTIME
CLOSE
COLUMN
COMPOOL
CONSTANT
COs

COSH

DATE

DEC
DECLARE
DENSE
DEPENDENT
DET

DIv

DO

Appendix D

HAL/S Reserved Words

DOUBLE

ELSE

END
EQUATE
ERRGRP
ERRNUM
ERROR
EVENT
EVERY
EXCLUSIVE
EXIT

EXP
EXTERNAL

FALSE
FILE
FLOOR
FCR
FUNCTION

GO
HEX

IF
IGNORE
IN
INDEX
INITIAL
INTEGER
INVERSE

LATCHED
LENGTH
LINE
LIUST
LOCK
LOG

MATRIX
MAX
MIDVAL
MIN
MCD

NAME
NEXTIME

NONHAL
NOT
NULL

OCT
QDD
OFF
ON
OR

PAGE

PRIO
PRIORITY
PROCEDURE
PROD
PROGRAM

RANDOM
RANDOMG
READ
READALL
REENTRANT
REMAINDER
REPEAT
REPLACE
RESET
RETURN
REMOTE
RIGID
RIUST
ROUND
RUNTIME

SCALAR
SCHEDULE
SEND
SET

SHL
SHR
SIGN
SIGNAL
SIGNUM
SIN
SINH

Appendix D D-]

SINGLE
SIZE

SKIP

SCRT
STATIC
STRUCTURE
SUBBIT

SUM
SYSTEM

TAB

TAN

TANH

TASK
TEMPCORARY
TERMINATE
THEN

TO

TRACE
TRANSPOSE
TRIM

TRUE
TRUNCATE

UNIT
UNTIL
UPDATE
VECTOR
WAIT
WHILE
WRITE

XOR

ABS 35
ABVAL 3.5
ACCESS 11-8
addmion 2-3, 1-5, 3-20
aggregate 3-3
ALIGNED 9-19
AND 4-3,4-16, 12, 13-2
argumenis 7-7,7-12
arrays 1-1,61
of boolean 6-19
mult-dimensional -5
arrayed expression 6-10
Assembly Language 1.
assignments 2-15
ASSIGN parameters 7-10, 9-19
astenisks (¥) 2-15
AT (arrays) 13-8
AT (real-time) 12-7,12-8
atfributes 2-3, 2-11

AUTOMATIC 7-14,7-15,11-18

BIN 134

BIT 1-2,4-16,13-1, 13-4

bt stoings 4-18, 8-5, 13-1
length of 13-2

blanks 2.3

block structure 11-7

BOOLEAN 1-2, 4-16,4-20,13-1

branchung 4-20

CALL 7-10
CANCEL 12-6,12-17
CAT 8-12
CEILING 34
channels 2-5,2-16, 8-1
CHARACTER 8-12
character strings 8-12
CLOSE 25
COLUMN 86,88
columns 2-5
common blocks 1-1
comments 2-1,2-2
compansons 4 19, 4-20
compdation umt E1-1
comptler 1-4
compder directives 8-4
components 3-3
compool 11-1,11-3
compound statements 4-1
concaienation 8 12
mt 132

comsub 11-3
CONSTANT 2.4, 2-12
conversions 2-16

DECLARE]-2
group 2-1
simple 2-11
factored 2-11
compeund 2-11
defavlt tab 8-3
DENSE 9-18,9-21
DET 35
DEVICE directive 8-4
division 2.3, 3-20
dollar sign (5) 3-7
DOUBLE 3-16
DO 44
CASE 4-20,4 21
FOR 5-1
FOR (discrete} 56
UNTIL 5-1,5-8
WHILE 5-1,5-7
dynamue storage allocation 1-3

EBCDIC 138
element 2-13
ELSE 4-1,44
END 4.9, 5-1
EQUATE EXTERNAL 13.23
ERRGRP 10-14
ERRNUM 104
error 10-1
codes 104
handler 1035
group 10-5
recovery 10-F, 107
deactivation of 105,108
ifo 104
EVENT 128
event varables 12-9

FALSE 416

FILE 8-1,9-19

file 821
address 8-21
expression § 21
number 8-21
random access 8-21

fixed point 3-19

fixup 106-1
restoration 106

Index Lj

http:7-10,9.19

I-2 Index

floating point 3-12
FLOOR 34
format
smgle Iine 2-9
multiple ine 2.9
FORTRAN 1-1
FSIM 1-3,14
functions 7-1, 11-1
bwltan 3-1,3-3
invocations 319
of arrays 622
user defined 7-1

GOTO 1-1,1-2,4-2,4-11,4-22, 5-1

HEX 134
hooks 1-3

wdentifier 2-1, 2-3, 5-19

IF 4-1,4-2,44, 420

IGNORE 10-6

v 12.7,128

INCLUDE 114
mdexing 13-12
mdwrection 13-12

INITIAL 2-12

miegers 1-1,24

INTEGER 2-11

INVERSE 3-5

ifo 1.3, 14, 8-1

1/o control funetions 8 6

ifo errors 104

job centrol language 8-1
keywords 1-3,2-3

lzbels 2-3
LATCHED 12-10
LENGTH §-17
hbrary routines 3-1
LINE 8-6,8-8
lines 2-2
hsts 13-15
ltsting
compiler 2.9
source 2-9
hterals 2-3,3-1%
LOCK. 11-15,11-16
locked data 11-i5

machine language 1-1
macros 14

macro names 3-13

mantissa 3-16

matnx 1-1,2-12,2-13

MOD 3-5

multiphcation 1-3, 2-5,3.20
cross 1-3

mulfi-programming 11-13

NAME 9-19, 13-13

name vaniables 13-11
declanng 13-13
disadvantage 13-14
mtralizing 13-14
referencing 13-14

NASA 1-1

negation 3-20

NOT 12,48,43,4-16,13-2

NONHAL 7-14,7-15

abject module 1-3

OFF ERROR 10-8, 10-10
ON 12-8

operators 2-3

OR 1-2,4-3,4-16, 132

packing 13-5
PAGE 38-6,8-8
PAGED 8-4
parzmeters 7-7,7-12
partition subscrpt 3-8
percent macros 13-20
peinter value 13-18
precedence

cperator 2-6

expression 3-19

operations 3-20
precswon 3-15

specafier 3-18
PRIORITY 125
PLf1 1-3
process queues 12-5
process prioeity 12.3
pracess procedures 7-9, 11-1
product

dot 1-3,2-8, 3-20

cross 1-3,2-8

matnx 28

mner 3-20

vector matnix 2-8

vector outer 2-8

scalar 3-20
PROGRAM 2-1

queues 13-I5

READ 2-16,2-1,8-1,89
READALL 8.1, 8-19

real -1

real-time 1-1, 12.1
recussion -3
REENTRANT 11-17
register 1-5

REPEAT 4-22, 5-11
REPEAT AFTER 12-6
REPEAT EVERY 12-1,125,12-6
repetition factor 2-14, 2-15
REPLACE 3-12,8-2
RESET 12-11,12-12
RETURN 4-22,5-3,7-2,79
RIGID 2.20,9-21

ROUNKD 3-4

rounding 34

SCALAR 2-11
scalars 24
scaling
vector 2-8
mainx 28
SCHEDULE 12-1,12.2,12-12
scoptng rules 7-13, 11-7
SEND ERROR 10-12
SET 12-1},12-12
shaping funchons 3-2, 34, 6-1, 13-6
CHARACTER 8-15,13.7
sharp sign () 2-15,39
SINGLE 3-17
SKIP 86,88
source 1-1
Space Shutile 1-1
stmctures 9-1
components 9-11
copiness 9-12
copiness specifier 9-13
declaration 93
matching 8-11
multi copred 9-12
template 9-2,9-6
ternunals 9.6
unqualified 9-21,9-22

SUBBIT 138

subroutines 1-1
subscipts 1-2, 2.2, 3-7
subscripted rdentifier 3-19
subtraction 1-3, 2-5, 3-20
system 1-3

TAB 86,88
tasks 11-11,11-12
template 114
TEMPORARY 4-11,4-12,5-1
TERMINATE 12-16,12-17
THEN 41,4-4
TO 5-1
tokens 2.3,2 4
TRACE 3.5
TRANSFER
conditional 4-22
unconditional 4.22
TRANSPOSE 3-5
TRIM 8-13
TRUE 4-16
TRUNCATE 34

UNIT 3-5

UNPAGED 84

UNTIL 12-7,12-9,12-10
update block 11-15,11-17
UPDATE PRIORITY 12-16

vanable type 29
VECTOR 2-12

vector 1-1,2-13
vector-matrix product 2-8
vector outer product 2 8

WAIT 129, 12-12, 12-16
WRITE 22,216, 8-1, 85

XOR 417

fndex [-3

