
.
·f

111111111111111111111111111 11111111111111111111 1111/111" 111111/
3 1176 00131 0003

NASA Contractor Report 159016

THE DESIGN OF RELATIVELY MACHINE~INDEPENDENT

CODE GENERATORS

Robert E. Noonan

COLLEGE OF WILLIAM AND MARY
Williamsburg, Virginia 23185

NASA Contract NASl-14972, Task 14
Februa ry 1979

NASA-CR-159016

/97[(JO/ 04S7

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

k1j\;~ ~ '1919

lAt-iGLEY RESEARCH CENTER

LIBRARY, NASA
t1lill1~t.QJ::.JL YlRGlIiIA'

•

•

•

FINAL REPORT

The Design of Relatively Machine-Independent
Code Generators

Robert E. Noonan
Dept. Of Mathematics and Computer Science

College of William and Mary
Wi 11 i amsb urg I Va. 23185

(804) 253-4481

- 1 -

-

ABSTRACT

The goal of the research was.to investigate the design of
code generators which. are 'relatively machine-independent.
Two complementary approaches were investigated. In the
first approach software design techniques were used to
design the structure of a code generator for Halmat. The
maJor result of this research was the development of an
intermediate code form known as 7UP. The second approach
viewed the problem as one in prOViding a tool ~o the code
generator programmer. The' maJor result of this
investigation was the development ofa non-procedural,
pr6b1em oriented langOage 'knownas CGGL (Code G~~e~at~T
Generator Language).

- 2

..

- .

..

1. INTRODUCTION

This is a final report on the grant entitled liThe .. Design
of Relatively Machine-Independent Code Generators" conducted
under contract to NASA Langley Research Center under
contract NASI-14972, task order 14.

A compiler for a programming language can be logically
divided into the following phases: scanner, parser, code
improver (or optimizer), and code generator. In the last 20
years a great deal of research has been expended on" the
first 3 pha~esl whi.le little work has been. done on the las~'

.phase. Th~design and implem~ritation of cod~ ~ene~~tprs i~

widely thought to be an error-prone, expensive,'. highly
machine-dependent tas~. . .

The goal of this research was to investigate the design
of code generators which are relatively machine~independent.

Specifically this means that for two machines with similar
architectures (~g., one-address with inde~ing arid a single
accumulator), large portio~s of the code generator would
remain the same. Two separate but complementary approach~s

to this problem were investigated with fruitful results.

In the first approach software design technique~ were
used to design and iteratively improve the design of a code.
generator from the inter~ediate code HALMAT(for th~

language HALlS <1975» to the Intel 8080. The major r&5ult
of this approac~ was the design of an intermediate. code form
known as 7UP. This design was implemented under s~parate

contract by NASA to Computer Sciences Corp. (contract
NASI-14900>' This work is described in the next section.

The second approach viewed the problem as one of
providing a tool to the programmer who implements a code
generator. Th~ major result in this area was the
development of a non-procedural, problem-oriC'nted
programming language known as CGGL (Code Generator Geneiator,
Language). An 8080 code generator was coded in· CGGL"and
compared to the 7UP implementation. This research is
discussed in the third section .

- 3 -

2. 7UP

In this part of the research various so~tware design
methodologies were to be used in the design of a code
generat~r for the sUbset of HALlS given in Figure J.
Specifically the techniques of Jackson <1975> and of
hierarchical machine design <OiJkstra, 1972; Mills, 1971>
were combined to produce an initial design. This initial •

integer ~ohs~ants

integer variables
integer expressions
subscripted variables

HALlS

=, +, -

indexing

=,=, >,

GO TO
labels

IF .. ,
THEN
ELSE

DO WHILE

DO UNTIL

>=, <, <=

HALMAT Operators

operand tag LIT
operand tag SYT
operand tag VAC
operand tag' SREF

IASN, IAOO, ISUB

DSUB

IEGU, INEG, IGT, INGT,
ILT, INLT

BRA
LBL

I FHD (I F h e a de r)
FBRA (branch to ELSE)
BRA (branch to end IF)
LBL (ELSE label)
LBL (end IF label)

OT8T (DO WHILE header)
CTSTW (DO WHILE condition end)
ETST (DO WHILE end)

OT8T (DO UNTIL header)
CT8TU(00 UNTIL condition end)
ETST(DO UNTIL end)

,.

Figure 1: HALlS Subset

design is shown in Figure 2~

This design was implemented Cunder contract NASl-14900 to.
Computer Sciences, Corp.) "using HALI'1ATas the' intermedi.at.e.·
.code form and the In.te"l 8080 as the" targetmachi"ne. ·This·
implementation (inPascC3l) wassubJett toamodularity "'

- 4 -

•

•

•

analysis <Myers, 1975>; ·the results of this analysis are
summarized in Figure 3. Note that the term class in Figure
3 refers toa group of related modules. The code generator
itself consists of approximately 40 routines. .

In analyzing the module calling tree of this
implementation, several problems became ev~dent. The most
serious of these was the lack of clear separation of levels,
depicted in Figure 3 as classes 4 and 6 (accumulator
management and Ie generator). It was apparent.that the
internal code generated within the code generator should be
made explicit.

Emphasis now ~hifted to the de~ign of this int~rnal ~ode,

which was named 7UP (or sometimes HAL/P). This .inte~nal

code was to be closer to machine language ~han HALMAT and
was to include accumulator management but not explicit
addressing (that is, other than symbolic addressing>. 7UP
evolved into a hypothetical, one-address, single-accumulator
machine. The operators and operands for this machin~ are
shown in Figures 4 and 5.

The 7UP machine was analyzed and a number of
recommendations were .made. Some of these were aimed at
eliminating ~edundant operations, while others wer~ aimed at
allowing as much local optimization as possible to be done
in the HALMAT-to-7UP translation as possible. (Note that
these recommendations were not implemented as of th.dat~ of
this report). These revised 7UP operators are given in
Figure 6.

The design goal for 7UP was to put as much of the work
and local optimization as. possi~leinto the HALMAT-t6-7UP
translation and as little as possible into the 7UP-to­
machine-language translation. The implementation 'was
revised to explicitly generate and u~e 7UP. Although ~his

implementation was not retargeted for a machine other thin
the Intel 8080, it was still felt that the goals were
largely achieved. A modularity analysis of t~e revised
implementation is given in Figure 7.

The goal of doing local optimization in the translation.
to 7UP waS cl~arly perceived to make this transl~tion ever
more complex. It was desired to develop some form of tool ...
to simplify this task. A programming language approach was'
adopted for this problem and the r~sultof this resear~h' was
the development of the language CGGL, which is described in
the next section. .

- 5 -

Only level to knm.,r·· ins t ~c~_
tion -format. Resolves
forward references. '

Only level to deal with
operand addressing. Knows
about actual machine
instructions.

Only leve~'to kno~.,r hen" m,any
accumulators there are.
Store~ itito tecipor~ries as
needed.

Deals with in~tructions

necessary to handle 'a
specific HAL~T operation.

HAI11AT

_____----- I__~ ------
1: Levell

Template Hanager

----------- ------------
Level 2

,11

Accumulator Hanager

----------- ------------
Level 3

,II

Instruction Generator) Address !'1anager

----------- -----------
Level 4

II

Binary Emitter

----------- -----------

II

Binary Relocatable Code

Figure 1: Preliminary Design of a Code

Genera tor for I~;TEL 8080.

. ~ .'

-6-

,

Class

~ :

No. Class Name 1 2- 3 4 5 6 7 ·8
• h

1 8080 ·Suppoi:"t. 3 ..
. -

2 IC Support
I·

3 HALMAT Support 2

4 Accumulator Hanagement 2 1 2

5 Storage Allocator 1 1

6 IC Generator 3 2 2 4

7 8080 Generator 3 2 2

8 Template 6 3 3

9 CODEGEN 1 2 3 . 3 2 1
..

Figure 3: Fan OUt of :-!oc.ule Classes
Code Generator (v.· l)

".-.. "

-7-

'.-: .

'.',
':, .

Notation:

ACC = accumulator
EA =effective address (see Table 2)
PC = program counter
Ce •••) = conients of •••

'rnt~~pret~tion

C(ACC) + C(EA)'

C(EA) 4o, C(ACC)

HAL/p machine halts

EA + C(PC)

'if C(ACC) = false then EA + C(PC)

1£ C(ACC) = true then EA 4o' C(PC)

subroutine call

return from a 5ubroutine

C(ACC) .+ C(EA) .~ C(ACC)

C(ACC) -. C(EA) + C(.h.CC)

C(ACe) .* C(EA) + C (ACC)

(if C(ACC) f C(EA) then~ else false) + C(AC(J)'

(ifC(ACC) = C(EA)" then true else falSe) + C(ACC)

(1£ C(ACC) <- C(EA) then ~else false)~.C·(ACC)

(if C(ACC) >C(EA) then true else :alse)-+C(ACC)

(if C(ACC) .>= C(EA) then true else false)-+C(ACC)

(if C(ACC)< C(EA) then true else false) -+ c(ACC) ,

programinitializ2tion

C(ACC) + EA -+ C(ACC)

EA+ C(ACe)
C(ACC) + EA.~ C(ACC)
C(ACC) .aresa'ved in an addresstenporary
C(ACC) -+ C(TE:1P)

associate the PC with the address fieid
. -~ "

"'1

. ','

Figure A: ,impiemented'7upOperations'

-8-

". '..:.

Tag Code Nneumoni'c

1 SYT

2 . INL

3 VAC

4 XPI
5 LIT,

6 .,. 'um
7 AST

8 CSZ

9 ASZ

10 OFF

11 SREF

15 XREF' ,

, .
~ . ,"

Interpretation'

Effective address: determined by 8080~tra:~slqtb.~S·

Internal 1abe1~ address determined by LABEL
operation .'

.Temp.orary

Literal:' 8080 can use ·:i.mmedi:atei'itst:b.i6t:iPns~'

lIIiIliedia~e:·:.op~~and.nulIlb~ri's atoll.st~n t
'. -;. -.' .'." ~"';.': '. ;".-: :. ." ..~'. ", . ';.' .' "': .,..

.... ',

'. > .:.,
; ",

.. '"

,Q~he,r.:t:han.in a SAVE' APDRop.er~tioil indi~atTs'~a
:" .sti~s·cr.ip,te·d. re~~:'erenc'~':"' - -".".

Address' of an: extern~l_proce(ftir:e .
....

. .

',;: .

. "

.!"

figureS:
: . "."

7up 'Operand ,Tags. .'

':".

' ..
.~. ", ..

"

......

:
, '0

.... ."

,"

'.,
"0 ", -'.

-9-

: .•...

...

.·4···••

. , ..

"-.': •..: .

".-,:,:,

Notation:

ACC == accumulator
EA == effective address (see Tabl~ 2)
PC == program counter
cC ••.) = contents of, •• ~

~.;:. ' ..."-

Opcode "
"., .;

. ." . ~. .

"'......
"." "' ..

o
1

2

3
4 "

5

6

7

8

9

10,

11

12

13

14

15

16

It

18

19
20

21

,22

, " 23

,24

STORE'

LOAD

HALT

JUHP

JFALSE

" JTRUE'

CALL

RETURN

ADD

SUB

MULT

CNEQ

CEQ "

CNGT

CGT ,

CNLT

CLT

,INIT

SUBSCR

SAVEADDR

LABEL

PROC

INCR

DECR,

CaNST

, 'C (Ace) +C (EA)

C(t:A) +C(ACC)

HAL/p ma~hine halts

return hom a subrouHne

C{ACC) '+ C:(EA)+C(ACC)

C(ACC) -C(EA):+ C(AC,C)

C(ACe) ,*:C (EA)" +C{ACC}

{if G(AGC) I C(EA)thehtrueelse false) ,-l!- C(ACC)"
. ",

(if, C(ACC}'== C(EA)theri'trueelsefalse)+C C-\CC)

(ifC (ACC) <~ C(EA) ." theti'tru~ 'els'efals~)+C(ACC) ,

'(if C(ACC) >:,C (EA) then tr~ee:lse false)+C(ACC)

(ifC(ACC) >== C(EA)', then true else fals'e) '.+c (ACC)

(if C(ACC)'< 'c ('EA.) 'then, ~fueelse,f aise) +' C(ACC)

prograoinitializa ti,On

'G(ACC)" + EA-+ C(A'CC) . '

C(ACe) a're' saved in an addres~tenp.6rary
." .

a~~6ciate.thepC with the address field '

associate.thePCw'ith th~addre:~s,field
Generate cQde tosa'liethe retu~n addr~s.5.'

t (EA) + C(ACC) -+' C(EA)

'C (EA~", :..;,q(A~t) -":C (tA) .. '
.' ~. ".:';'

. ". ",

..

Figure 6: Redsed 7up Operations

-10-

•

Class

~
.

No. Class Name 1 2 3 4 5 6 7 8 9 10

1 8080 Support 12 1 I
I

2 7UP SupPort I
3 HAIl-tAT Su~~ort 2 3

4 Accumulator :-:a~aq€r.lent 2 1 2

5 Storage Allccator 1 1 I
6 7UP Generator 1 1

7 8080 Generator 5 1 1 1

8 Code Generator 3 1 1 3 2 1 1

9 :-liscellaneous 3

10 Ten~late 6 3 1 1 I 1

11 7UP Address ~'~ar:acer 2 2 1 I I
Figure 7: Fanout of Y.odule Classes

(iup \'ersi-on)

-11-

3. A CODE GENERATOR GENERATOR LANGUAGE

CGGL (pronounced sea-gull) is'a non-procedur~l, problcm­
oriented language for writing code gen~rators for compilers.
The output from a CGGL compilation is a high-level language
(in our case Pascal) program for generating machine code.
CGGLis based on the work of Donegan <1973>.

Thus, CGGL is a language in which to expre~sa program
From which a code generator (CG) can be produced. Theinput
to the. latter is binary trees and the outp~t~achine or
assembl.ycode. In order to remain' indepe~dent·of the exact
form of bdth the intermediate code .(IC) and·o'·the ~achin~

languag~, CGGL is used to generateoniy a p6rt~on ·(th~
Translate routine) of the actual code generator, as
illustrated in Figure 8. The remainirig routines mtist be

Code Generator
in CGGL

CGGL
Compiler

Pascal

Intermediate Code

Tree Build/Input
••

Translate

IC Dependent Routines

ML Dependent Routines

V
Machine Language

Figur~ 8: Role of CGGL in CodeGene~~tion

coded by hand in the CG 12ng U.1 9 e (in 0 urc as eI Pas c a 1) .

A description bf the language CGGL is given in Appendi~

A. The language itself can be used in a variety of ways ..
For example. it could be used to translate fromHALMAT tb
7UP and from 7UP to machine code. As cn ~xperimt'nt it was
decided totrans.late HAU1AT'oirectly to 8080ma'hine 'co'd'e

. using CGGL. .Th,is,code generator is giyenin Appen .i.x",C.

- 12 -

.'

As a point of comparison, i~ was decided tb co~pa~e the
quality of code generated in the 7UP implementation ve~~us

the CGGL implementation. (Note at that "time no CGGL
compiler e~isted). CGGL generated code which used
considerably less time and space than 7UP~ These results,
are given in Figure 9. It should~e note~ that at'the time
the 7UP implementation was done, the quality of code was not
a consideration, only the speed with which the

7UP CGGL

HAL/Snyt~sCyclesBytestycles

x = 1 834~20

x =x + 112 ~1833

x = x '+ y12 511043
x - (y + 2) .•• 281191251

IF x = y + 1 THEN351381247
x$(3) = 0221041148
x = y$(i - 1)582501672

Figure 9: Comparison of 7UP and CGGL

implementation could be completed.

In addition the CGGL implementation was considerably
faster to code and easier to modify. One indication of this
was the ease with which subscripting (indexing) was added.
In the 7UP implementation this caused considerable problems,
since the 8080 lacks true index registers. The basic
addressing mechanism had to be substantially changed as well
as the accumulator management routine~. Howeve~, in the
CGGL implementation only one new operation <DSUB itself),
two new states were added to condition AROP, three new
transitions were added to transition AROP, and three new
terminal configurations to bperation IASN. Unlike the7UP
implementation, substanti~l changes to previous work was not
required. Thus, for assignments o~ expr~ssions_. not
involving ,indexing, the same code is gen~rated as previously
(that is, before the addition of SUbScTipting). "In
additi~n, unlike 7UP 16-bit temporaries were not intro~uced.

Another 'example of the ease with which a CGGLprogram can
be modifi~d was the int~oduction of immediate inst~uction5.

This change involved modifying one transition and adding two
terminal configurations.

In conclusion, implementing a HAL MAT (or any oth~rIC)

,code generator in CGGL is quite straightforward fora single
accumulator machine. CG~L is best at expressingt~~ com~l~~
case analysis r~quir~d to gener~te ~oodlocal code.-
Expe~ience (~dmittedly limited) ha~ shown that cod~

- 13 -

° generators expressed in CQ@L are easilg modi?iable to add
new operators, to improve the code generated, and to ?ix ..
bugs.

-. .,. .
• , •,, ,

- 14-

4. CONCLUSIONS

The _esearch into the application o? so?tware design
methodologies .to the design of code generators took some
surprising directions. After an initial design had been
implemented, a modularity analysis showed problems in the
design. This lead to the development of an internal form

" called 7UP which is closer to machine language than HALMAT.
This internal form is expected to decrease the effort

. necesssarg to retarget a HAL/S compiler.

As the investigation into implementing a large_ Subset oe
HAL proceeded, it became clear that the code generator would
become not onlg larger, but also more complex. The
investigation lead to the development of the non-procedural
language CGgL.

A code generato_ ?or the Intel BOBO was written in this
new language. However, the code generator could not be
tested because of the lack of a CggL compiler. Preliminarg
experience indicates that CggL mag have a revolutionary
impact on the development o£ code generators.

G

• • • -

- 15-

5. REFERENCES

1. DiJkstra, E. W. Notes on structured
Structured PrCJqr"Hllfnin9,.' by O. -J. Dahl, E.
and C. A. R. Hoare. Academic Press, 1972.

programming.
W. Di J kstra,.

2. Donegan, M. K. An ADProac:h to the Automatic Generation
of Code GenerCltor~. Ph. D. "(hesis, Rice University, 1973.

3. HALlS Languan~ §necification.
Intermetr i c s, 1975.

Technical Report IR-61-6,

4. Jackson, M. A.
Press, . 1975.

Principles .Q.f. Program Design. Ac ad em"i c:

5. Mills, H. Top down programming
Debuggin~ Techniques in L~T'ge Systems,
Prent i c e-Ha 11, 1971.

in
ed.

large
by R.

systems.
Rustin.

6. Myers, G. J. Reliuble Software through Composite Design.
Petrocell i/Chc:lT'ter, 1975.

- -16

APPENDIX A: CGGL

•

A CGGL program consists of ctinditions, variabl~sl

transitions, conflicts, operation~, and procedures. The
elements of a CGGL program can be arranged in any convenient
order, although the compiler may insist on a specific order.
A complete grammar for CGGL is given in Appendix B.

The input to the code generatoi generated i~ assumed to
be an IC tree consisting 'of operators and operands (end
nodes), The exact desc~ip~ign of a nod~, is independent of
CGGL.

A conditionst~tement specifies a n~med cl~ss" of stat~s

which an operand can take on. For example:
.condition AROP = input ,LIT, VAC, SYT

internal INACC, INREG, ONSTACKi
says that an operand of type LIT, VAC, or SYT belongs ~othe

class ARO? In addition, three internal states are defined.
All of these states are mutually exclLlsive, L e., the
operand can be in' at most one of th em. Th e c and it i o'n
statement

condition FLOW = input ·iNLi
says that an operand of type INL belongs to the class FLOW;
this class has no other input or intern~l states.' States
are used in CGGL to keep track of the' status ofa given
operand, for elample, whether an operand is in the
accumulator INACC.

Variables in CGGL are u~€d to pass information down the
tree. Such variables, may be used to c~ntrol decisions in
both transit~ons and operations. For example:

~CMP_t'1ODE= (ASSIGN_CMP, JMP_T, JMP_F); ,
declares a variable with thr~e possible values; one of thesi
ASSIGN_CMP is its initial value. One method of changing the
value of a variable is by means of the ll1. statement, which
can be used, only within' an operation. For example,
consider:

condition FBRA (FLOW, AROP)i
let CNP _mod e = JI'1P _F;

On entry to this operation, the current value of Cr-1P_MODE is
saved and is then-replaced by the value JMP Fi J~st before,
exit, the ol~ ~alue is restored. The values of varfables
can also be changed by transitions, as will be seen.

A transition statement defines all of the state changes
which can occur on 'a given, named condition. A state change
X -> Y specifies how an operand moves from an inp~t or
internal state X to an intern~l state Y. Forexampl,e"
consider:

transition AROP;
, LIT -> INACC: GEN2(MVI_A, #)i

17

This transition specifies what code is required to move a
literal into the accumulator for an INTEL 80BO. The sgmbol
stands for the operand in question. gEN2 is a call on a
Pascal routine for generating 2 bgte instructions for the
INTEL 8080. Thus, transitions associate (Pascal) code .to be

generated with state changes on operands.

Since certain operations, e.g. indexing on the 8080, mag
also require the use of the accumulator, COOL allows the
explicit statement of conflicting states for pairs of
operands, for example"

conflict AROP, AROP_
INACC, INACC_

The above example states that if gou have one.operand in-the
accumulator, Jris incorrect to put the other op-erand into " " ..
the accumulator. All such conflicts are assumed to be

commutative. Note that the pair ONSTACK, ONSTAC|_ .is not a
conflict.

Another, more subtle wag o_ specifging conflicts is
through the use of variables and transitions. Consider the
?oliowing;

vat ACC_STATUS = (ACC_FREE, ACC_BUSY);
transition AROP usin_ ACC_STATUS;

LIT, ACC_FREE -> INACC, ACC_BUSY: gEN2(MVI_A, #);
This speci?ies that i? one wants to load a literal into the
accumulator, the value o? ACC_STATUS _ust be checked and i?
necessarg, the accumulator ?reed (bg means of another
transiti-on) Although unnecessarg ?or the single
accumulator machine, such an approach appears necessarg ?or
multiple accumulators inorder to prevent an explosion of
states.

An operation specifies for each operator the number of
arguments and condition class o? each argument and the
internal state (if ang) computed bg the operation. The
operation lists terminal con?igurations and their associated
code generator statements. Possible transitions are
entirelg determined bg the transitions given for each
condition class and bg the terminal states allowed. For
example:

operation IADD(AROP, AROP) returns AROP;
INACC, ADDR_LOADED -> INACC: _ENI(ADD_M)_
ADDR_LOADED, INACC -> INACC: gENI(ADD_M);

specifies that IADD has two operands o? condition class.
AROP, leaves its result in the ACC •(state INACC), and

requires that one of its arguments be INACC and the other be
ADDR_LOADED: The operation IADD is easilg seen to be
commutative. Like transitions, operations mag also use
global variables, as ?or example:

operation IEOU(AROP, AROP) usinq C_IP_MODE ._..e._urns.... _.:
AROP ; •. _- ._:.:i:

INACC, ADDR_LOADED,...JMp_T -> INACC: ,.
GENI(CMP_M), GEN3(JZ, OMP_TAROET)_

- 18-

It should be noted that the returns clause as well as its
associated state on the right-hand-side of an -> is entirely
redundant. This information has already been specified in a
transition.

A procedure specifies a group of statements. It is
useful fo: specifging long sequences of code. A proceduTe
call is specified by a call <proc name>. An example of a
procedure is the following:

• _E_T_._CNP_EQ_
GEN2(MVI_At ONE), gEN3(JZ, PC+4), gENI(ZAC)_

- 19-

<CGGL program:>
<statemEnt list>

<statement:>

<val" decl)

APPENDIX B: ·CGGL SYNTAX

.. = <statement list:> eOT

.,= <statement list> <statement:>
<statement>

.,= <val" decl:> I <condition> :
<transition:> I <conflict:>
<operation:> I <proc>

::= Y.S.1:.<id:> = «list:>)i. •

<condition>

<internal part:>

<transition)

(conflict)
<conflict list)

. <operation)

:: =

.0. =

.. =

condition <id> = input <list:>
<internal part:> i

internal <list:> : e

transition <list> <using part:>
<test set> end tr ;

conflict <conflict list:> end co i

<conflict list:> <list:>; : <list:>

operation <id:> (<list:>)
<using part:> <return part>
<assign list> <test set> end op ;

<assign list:>
<assign:>

, ,= <assign list:> <assign:> I e
- ~ <id:> = <id> ;

<proc:>

<using part:>
<returns part:>

.. =~ <id> <PL code:>

,'= usinq<list:> e
- returns <id:> e

end· pr

<test set:>
<test:>
<result:>

.. =
<test set:> <test:> I <test>
<list:> <result> <PL code:>
-:> <list:> I e

-:'PLcode:>

<list:>

.. =' <text:>'

, , = < I is t:> , <: i d)

- 20 -

<id:>

Remarks

andletters, digits,
must be a letter.

blank may occur and is

An <id> can be composed of
underscores, the fir'E·t of which
A comment may occur anywhere a
defined as:

<comment> .. - <* <text> *)
Certain characters in the reference language require
special treatment in the implementation. All underlined
words such as Y..§!.!.. are reserved.
~n <text> is replaced by the operand name OP.

1.

2.

4.

3.•

•

•

- 21 -

OPERATION ISUB(AROP, AROP) RETURNS AROP_

IN_ACC, LIT -> IN_ACC" "gEN2(SUB_I, #2)';
IN_ACC, ADDR_LOADED -> IN_ACC: 'OENI(SUB_M) ';
IN._ACC, IN_RE(_-.'> IN_ACC: '(_ENI(SUB_C)'_

END OP;

OPERATION DSUB(AROP, AROP) RETURNS AROP;

SYT, IN_.ACC -> IN_ACC" "OENI(MOV_C_A); OEN2(MVI_B, ZERO);
OEN3(LXI_HL, #1); OENI(DAD_BC)'_

END_OP ;

OPERATION IEQU(AROP, AROP) USINO CMP_MODE RETURNS AROP; "
IN_ACC, ADDR_LOADED, JMP_T-> IN_ACC:

"OEN1 (CMP_M)_ " " "
OEN3(JZ, UMP_TAROET)';

ADDR_LOADED,. IN_ACC, dMP,T. ,.'>IN._ACC:
"(_ENI(CMP_M) ;
OEN3(dZ, dMP_TAROET)';

IN_ACC, IN_REO° JMP_T-.'> IN ACC:
'OEN1 (CMP__C) ;
OEN3(JZ, dMP_TAROET)';

IN_ACC, ADDR_LOADED, JMP_F-> IN_ACC:
'QENI (CMP._M) ;
OEN3(JNZ, JMP_TARGET)';

ADDR_LOADED, IN_ACC, dMP_F-.'> IN_ACC:
'OEN1 (ClIP_M)
OEN3(JNZ, JMP_TAROET)';

IN_.ACC, IN...RE¢, ,JK,P._F-> IN_.ACC'
'OEN1 (CMP_C) ;
OEN3(,JNZ, ,JMP_TAROET)'5

END_OP;

OPERATION IOT(AROP, AROP) USINO CMP_MODE RETURNS IN_ACC_
IN_ACC, ADDR_LOADED, JMP_T-> IN_ACC"

'OEN1 (CMP_M) ;
OEN3(JZ, PC+2) ;

OEN3(dNC, JMP_TAROET) '_
IN_REO, IN_ACC, ,JMP_T-> IN_ACC"

'gEN1 (CMP_C) ;
OEN3(,JC, JMP_TAROET)';

ADDR_LOADED, IN_ACC, JMP_T -1> IN_ACC'
'OEN1 (ChIP_M) ;
_EN3(,JC, aMP_TARgET)';

• IN._ACC, ADDR_LOADED, J['IP...F->IN._ACC"
"OENI (CMP._M) ;
OEN3 (JZ, JMP_TAROET) ;
QEN3(JC, JMP_TARGET)';

ADDR_LOADED, IN_ACC, ,JMP_F-> IN_ACC"
'OEN1 (CMP_M) ;
OEN3 (,.tNC, ,JhP_TARGET) '

IN_REO, IN_ACC, ,JMP_F -> IN_ACC"
'C-EN1 (C[:P-C) i

¢EN3(,JNC, JHP_T,%RGET) ';
END_OP

- 23 -

OPERATION BRA (FLOW) RETURNS FLOW;
INL -) INL: 'GEN3(J~1P, #1) ';

END_OP;

OPERATION LBL(FLOW) RETURNS FLOW;
INL -) INL: 'SET_ADDRn~l, PC) ';

END_OP;

OPERATION IFHD(FLOW) RETURNS FLOW;
INL -) INL: ' ';

END_OP;

OPERATION DTST(FLOW) .RETURNS FLOW;
INL -) INL: .'PUSH_DOSTACi<.<PC, #1) ';

END_OP;

9P~RATION ETST(FLOW) RETURNS FLOW;
INL -) INL: 'POP_DOSTACk~(OLD_PC);

GEN3 (\",ll'lP , OLD_PC)';
END_OP;

OPERATION FBRA(FLOW, AROP) RETURNS FLOW;
LET CMP_MODE = JMP_F;
INL, VAC-) INL: '13LD_HALMAT(JMP_TARGET, #1);

TRANSLATE (#2) ';

OPERATION CTSTW(AROP) RETURNS FLOW;
LET CMP_MODE = JMP_F;
VAC -) I NL: 'TOP _DOST AC K (Jr-,p _TARGET) ;

TRANSLATE(#l) ';
END_OP;

OPERATION CTSTU(AROP) RETURNS FLOW;
LET CMP _r.ODE = ,..Jr·lP _T;
VAC -) INL: 'TOP_DOSTACf\(Ji1P TARGET);

TRANSLATE(# 1) ';

- 24 -

.~

ACKNOWLEDGEMENTS

I would like tO acknowledge the help and support of Dr. Terry Straeter
and Dr. John Knight of the NASA Langley Research Center in this research.

I would also like to thank Patti Timpanaro of Computer Sciences Corp. for
her work in helping to design the 7UP code generator and for her work in
implementing it.

- 25 -

.-. o

_r

