w0000 e

NASA Contractor Report 159016

THE DESIGN OF RELATIVELY MACHINE-INDEPENDENT
CODE GENERATORS '

Robert E. Noonan

COLLEGE OF WILLIAM AND MARY
WiTlliamsburg, Virginia 23185

NASA Contract NAS1-14972, Task 14
February 1979

National Aeronautics and

Space Administration _ ~ o &ANGLEY RESEARCH CENTER
. S LIBRARY, NASA. .
Langley Research Center . HAMPTON, ViRaINi A

Hampton. Virginia 23665 -

FINAL REPORT

The Design of Relétivelg Machine—-Independent
Code Generators ’

Robert E. Noonan
Dept. Of Mathematics and Computer Science
College of William and Mary
Williamsburg, Va. 23185
(804) 253-4481

ABSTRACT

The goal of the research uas,tb investigate the design of
code generators which are relatively machine—independent.

Two complementary approaches were investigated. In the -
first approach software design. techniques were used to
design the structure of a code generator for Halmat. The
major Tesult of +this research was the development of an
- intermediate code form known as 7UP. The second approach
viewed the problem as one in providing a tool to the code
generator programmer. "The mayjor result of this

investigation was the development of a non-procedural,
problem oriented language known as CGGL (Code Generator
Generator Language). : - : - T '

1. INTRODUCTION

This is a final report on . the grant entitled "The Design
of Relatively Machine—-Independent Code Generators" conducted
under contract to NASA Langley Research Center under
contract NAS1-14972, task order 14. S o

A compiler 'For'a programming languvage can be logicalig .-'

divided into the following phases: scanner, parser:, -code
improver (or optimizer)., and code generator. In the last 20

years a great deal of research has been expended on- the

first 3 phases,» while little work has been done on the last
phase. The design and implementation of code generaturs is
‘widely thought to be an error—prone, expensive, ~ highly
machine—dependent task. : - o

The goal of - this rtesearch was to investigate the design
of code generators which are relatively machine~independent.
Specifically this means that for two machines with similar
architectures (e. g.. one-address with indexing and a single
accumulator), large portions of the code generator would
remain the same. . Two separate but complementary approaches
to this problem were investigated with fruitful results..

In the first approach software design techniques were
vsed to design and iteratively improve - the design of a cocde.
generator from the intermediate code HALMAT (for the
language HAL/S <1975>) -to the Intel 8080, - The major rTesult
of this approach was the design of an intermediate code form

known as 7UP. This design was implemented wunder separate

contract by NASA to Computer Sciences Corp. (contract
NAS1-14900). This work is described in the next section._;

The second approach viewed the problem as one -of
providing a tool to ¢the programmer ‘who implements a caode
generator. The magor ~ result in <this area was _the
development of a ‘non-procedural, problem—oriented
programming language known as CGGL (Cecde Generator Generator,
Language). An B0B0 code generator was coded in - CGGL and

compared ‘to the 7UP implementation. This rTesearch: is
discussed in the third section. : ' S

2. 7up

In this part of the research various software design
methodologies were to be wused in the design of a code

generator for the

Specifically the

subset of HAL/S given in Figure 1.
techniques of Jackson <1975> and Tof-

hierarchical machine design <Digjkstra, 1972; Mills, 1971>

were combined to produce an initial design. This initial
HAL/S HALMAT QOperators
ihtegéritdhéténts L dperandAtégfLIT‘
integer variahbhles ~operand tag SYT
integer expressions .~ . operand tag VAC
subscripted variables operand tag SREF
= +, - "IASN, I1ADD, ISUB

indexing

=, =, >, D=,
GO TO

labels

IF ...

THEN ...
ELSE ..

DO WHILE

DO UNTIL

design is shown in

This design was
Computer Sciences
code form and the

'DSUB
< <= '1IEQU, INEQ, IGT, INGT,
~ ' ILT, INLT 3
BRA.
LBL

IFHD (IF header)

FBRA (branch to ELSE)
BRA (branch to end IF)
LBL (ELSE label)

LBL (end IF label) "

DTST (DO WHILE header) |
CTSTW (DO WHILE cond1t1on end)'
- ETST (DO HHILE end) - ‘
DTST (DO UNTIL header)

CTSTU (DO UNTIL condition énd)*
ETST (DO UNTIL end) , e

Figbre 1 HAL/S Subset

Figure 2.

implemented (under contract NAS1-14900 to- |

.Corp.) -using HALMAT as the- 1ntermed1ate:

Intel 8080 as the target machine. This

implementation (in Pascal) _'was_-subJect to a modulafitg C

analysis <Myers, 1975>; the results of this analysis are
summarized in Figure 3. Note that the term class in Figure
3 refers to a group of trelated modules. The code generator
1tsel£ consists of approximately 40 rout1nes

In ‘analyzing the module callxng tree '.oF this
implementation, several problems became evident. " The most
serious of these was the lack of clear separation of levels,
depicted in Figure 3 as classes 4 and & (accumulator
management and IC generator). 1t was apparent _that the
internal code generated within the «code generator should be
made explicit. ' o '

Emphasis now shifted fO'the design of this internal code,.

which was named 7UP (or "sometimes HAL/P). This internal "

code was to be closer to machine language than HALMAT and
was to include accumulator management but not explicit
addressing (that is, other than symbolic addressing). 7UP
evolved into a hypothetical, one—address, single-accumulator
machine. The operators and operands for thls machine are
shown in Figures 4 and 5. -

The 7UP machine was analyzed and a number . of
recommendations were made. Some ‘of these were aimed _at
eliminating redundant operations, while others were aimed at
allowing as much 1local optimization as possible <to be done

in the HALMAT-to-7UP %translation as possible. {Note that
these recommendations were not implemented as of the date of
this report). These revised 7UP gperators are given in
Figure 6. C o ' :

The design goal for 7UP was to put as much of the work
and local optimization as. possible into the HALMAT-to-7UP
translation and as 1little as possible into . the 7UP-to-
machine—language translation. ""The implementation -was
revised to explicitly generate and wuse 7UP. Although this
implementation was not retargeted for a machine other than
the Intel 8080, it was still felt that the goals wuwere
largely achieved. A modularity analgs1s of the revised
implementation is given in Figure 7. ' ‘ -

The goal of doing_local obtimization in thé'trénslatioﬁf“
to 7UP was <cléarly perceived to mske this translation ever

more complex. 1t was desired to develop some form of tool. .-

to simplify this task. A programming langusge approach was’

adopted for this problem and the result of this researCh'wasgv'>

the development of the language CGGL, which is described in
the next section. : o ‘

HALMAT

l ‘. Level 1

- Deals with instructiohs
Template Manager ’ ' : - necessary to handle a
~ specific HALMAT operation. .

. Level 2

accumulators . there are. .
" Stores into temporarles as.
needed.

Accumulator Manager

Level 3

Only level to deal w1tH
operand addr9551ng. Knows -
about actual machlne » o
1nstructions. o

Instruction Generator |-——>| Address Manager

Level 4

Only level to know instruc-.
.tion format. Resolves

Binary Emi ;
y Emitter forward references..

y
_Binary Relocatable Code

Figure 1: - Preliminary Design of a Code

Generator for INTEL 8080.

P A - S ’0n1§AleVelwto.kn5w how mény SRR

Class Class No. _ -
No. Class Name 11293 4
1 8080-Support_ 13
2 IC Support
3 HAILMAT Support . 2
4 Accumulator Management | - 2] 1
5 Storage Allocator 111
6 IC Generator 13 2 2
7 8080 Generator b3 o2
8 Template o . 613
9 CODEGEN 12 3

_Figure 3: ran Qu£ of Module Classes
Code Generator (v. 1)

Notation:

ACC = accumulator

EA effective address (see Table 2)
PC = program counter

C(...) = contents of ...

¥

Opcode.' Mneumonic . :Iﬁtéﬁgfététi0n7
0 STORE - C(ACC) + C(EA)
1 LOAD ~ C(EA) - C(ACC) -
2 HALT - HAL/P machine halts
3 Joe EA > C(PC) = :
4 JFPALSE ‘if C(ACC) = false then EA - C(PC)
5 JTRUE ~ ° if C(ACC) = true then EA * C(PC)
6 CALL subroutine call o |
7 RETURN return from a subroutine
8 ADD C(ACC) -+ C(EA) + Cc(ACC)
9 SUB C(ACC) - C(EA) » C(ACC)
10 MULT Cc(ACC) * C(EA) + C(ACC) o
11 CNEQ - (if C(ACC) # C(EA) then true else 'Lalse) > C(ACC)
12 CEQ (Af C(ACC) = C(EA) then . true else ‘alse) > C(ACC)
13 CNGT - (4f c(acc) <= C(EA) then true else Fa1se) > C(ACC)
14 CGT (if C(ACC) > C(EA) then true el;e °alse) - C(ACC) -
15 CNLT . (if C(ACC) >= C(EA) then true else ;alse) > C(ACC)
16 CLT " (4f C(ACC) < C(EA) then true else false) > C(ACC)
- 17 INIT - - 'progran. inxtlallzatlon ' ’
18 SUBSCR ~ 'C(ACC) + EA ~ C(ACC)'
19 LOAD_IMD EA > C(ACC)
gg ADD_IMD C(ACC) + EA + C(ACC)

SAVE_ADDR C(ACC) are saved in an address temporary (iv-iv_
STORE_TEM?. .C(ACC) = C(TEP) ‘A.,_.~

GEN_LABEL _a55001ate the PC w1th the addres; rleld

NN
NN

.Figure:4:*_impiémented;7up"Opéfétibhé'"

Tag Code . Mneumonic ”Interpretatlon

1 ;SYT';_ o Effcctlve address determlned by 8080 translators

CINL Internal label: address determined by LABEL S
: ' operation ' : e .

N

VAC - = Temporary -

LII;e<{7“: Literai 8080 can use 1mmed1ate 1nstructrons
COUIMD L :;fImmedlate operand number 1s a constant i'f‘r' -

W LN W

10 - OFF .. . - T e e e T L e e
11 ' SREF ¢' ”LOther than in a SAVE" ADDR operatlon 1nd1cates a';;ﬁd”:i;;'-Jﬂ
S SRR S subscrlpted reference : LT con

5 - >XREF:;"r; Address of an external procedure f-T”

. Figure 5t Tup ~‘dp'é'r',éfnd,».[Ta'gs.?:' Dl

Notation:

ACC = accumulator '

Figure 6:

EA = effective address (see Table 2)
PC = program counter .
€(...) = contents of ...
> Opcode}-"Mnenmdnlcu;?'Interpretatlon o
0o dsTdRE'fh; - C(ACC) > C(EA) -
1 LoAD C(EA) » C(ACC) -
2 HALT . HAL/P machlne halts
'3 . JmP . EA> c(PC) | B
B 4; .vJFALSE Cif C(nCC) = false then EA > C(PC)h‘)
5 JTRUE . - if C(ACC) = true.then EA > C(PC)'
6 . CALL ‘Asubroutlne call = '
7 RETURN ‘return from a- subroutlne ;u'
§ ADD ';fc(Acc) £ C(EA) + C(ACC) -
9 sup “c(ACC) - C(LA) > C(ACC)
100 MULT '1c(Acc) * C(EA) » C(ACC) i -
1 cNEQ - (f c(40C) #.C(EA). then true else. false) > C(ACC) S
12 CEQ (if C(ACC) = C(EA) then true else Zalse) = C(acC) - o
13 CNGI Qig C(ACC) <-~C(EA) then true else *alse) > C(%CC)'dT:f “
14 C6T . “(4f CCACC): > C(EA) then true else: false) ~ C(ACC) |
15 .CNLT (4f C(ACC) >= C(EA) then true else_false) > C(ACC) - . _
16; CLT 1v<1£ C(nCC) < C(EA) then true else ralse) > C(&CC)'h”hzérdd
17 _;lNIT 1; d'hlhprogram 1n1t1allzat10n';t_,5f'ff?-f* a
18 SUBSCR _ C(ACC) + EA > C(ACC) . :
19 SAVE_ADDR - .C(ACC)” are saved 1n an address temporar
20 " LABEL - - assoc1ate the PC: w1th the address leld
21 f?ROC_;'-- V assoc1ate the PC: wlth the address ‘1eld _
' ' ‘Generate. code to-save: the return acuress. R
22 INCR C(EA) + cace) - C(EA) :
- 23 DECK - : . - "C(EA)" ~CCACE) » CEY o .
-;24 df'v CONSl:. ' ~f?1nd1cates complle-time address calculatlonh;;;iréitjﬂz.

Revised’7up Operations
-10-

Class _Class No. o
No. Class Name 1 3 8 10
1 8080 Support 12 1
2 7UP Support
3 HAIMAT Suvrort 2 3
4 Accumulator Manacement 2
5 Storace Allocator 1 1
6 7UP Generator ‘1
7 8080 Generator 5 1
8 Code Generator 3 l. 1
9. Miscellaneous 3
10 Template 6 1 1
11 7UP Address Manager 2

Figure 7: Fanout of Module Classes

(7up Version)

-11-

3. A CODE GENERATOR GENERATOR LANGUAGE

CGGL (pronounced sea—gull) is a non-— pfotedural.' pfoblem-

oriented language for writing code generators for compilers.

The output from a CGGL compilation is a high-level lanquage

(in our case Pascal) program for generating machine code.
CGGL is based on the work of Donegan <1973>.

Thus:, CGGL is a'language in which to ‘express & brogram

from which a code generator (CG) can be produtedp..The input

to the latter is binary trees and the output machine or

. assembly :code. ‘In order to remain independent of the exact - .

form of both the intermediate code (IC) and of - the mach1ne~*:

"language: CGGL is wused to generate only a port1on “(the ::}'

Translate routine) of the actual code generator, as
illustrated in Figure 8. The remaining routines -must be

-Code Generafor » ' Intermediate Code
in CGGL o -

Tree Build/Input

Translate

t

CGGL Pascal

- Compiler

IC Dependent Routines
i

ML Dependent Routines

" —- w- " we -
- m- - e e -

v S
Machine language .

Figure 8: Role of CGGL in Code Generation

coded by hand in the CG language (in 6ur'céSé,-PéStalfg~

‘ A deséription of the language CGBL is gzven in Append1x;
A, The language itself can be used in a variety of ways.

For example, it <could be uvszed to translate. from HALMAT to

7UP and from 7UP to machine. code. - As an °prrimnnt it was

- decided to translate HALMAT:- directly 'to 80 ‘machine’ code-,i-q?ﬁaff“ﬁs

'using CGGL. This: code gnnerutor is glven in Appendlx C

As a point of comparison, it was decided to cbhpafe‘the
quality of code generated in the 7UP implementation versus

the CGGL implementation. (Note at that "time no CGGL

compiler existed). CGGL generated code which used

considerably less time .and space than 7UP. . These results

are given in Figure 9. It should te noted that at the time

the 7UP implementation was done, the quality of code was not

a consideration, only the speed with which the
7UP CGGL

HAL/SBytes CuclasButescucles'
. x =1 8 34.520 :

x = x + 112 51 833
“x o= x + yl2 511043 :
Lo X = (y + z2) ...2811921251
SIF x =y + 1 THEN351381247

Cx$(3) = 0221041148
x = ys(i - 1)582501672

Figure 9: Comparison of 7UP and CGGL

implementation could be completed.

In addition the CGGL implementation was considerably
faster to code and easier to modify. One indication of this
was the ease with which subscripting (indexing) was added.
In the 7UP implementation this caused considerable problems,

since the 8080 lacks +true index rtegisters. The basic
addressing mechanism had to be substantially changed as well -
as the accumulator management routines. However, in the
CGGL implementation only one new operation (DSUB itself),
two new states were added to condition AROP, three new
transitions were added to transition AROP, and three neuw

terminal configurations to pperation - IASN. Unlike the 7UP

implementation, substantial changes to previous work was not ..

required. Thus, for assignments or vexpresszons, not
involving indexing., the same code is generated as previously
(that 1is, before the addition of sub:cr1pt1ng) In,

addition, unlike 7UP 16-bit temporar1es were not 1ntroduced_ an

Another ‘example of the ease with which a CGGL" program can .

be mod1F1ed was the introduction of. immediate instructions.
This change involved modifying one transition and addxng two .
terminal configurations. ' . :

In conclusion, implemehting a HALMAT (or éng other IC)
‘. code generator in CGGL is quite straightforward for a szngie;

‘accumulator machine. CGGL is best at expressing the complﬂx_‘

case analysis required to generate good - local _code. .
Experience (admittedly . limited) has shown ~ that .code

generators‘expfessed in CGGL are éasilg_modifiable “to édd'
new operators, to improve the code generated, and to fix
bugs. - : ’ o o :

- 14 -

4. CONCLUSIONS

The rtesearch into the application of software design
methodologies to the design of code generators tcok some
surprising directions, After an initial design . had been
implemented, a - modularity analysis showed problems in the
design. This lead to the development of an internal form
called 7UP which is closer to machine language than HALMAT.:
This internal form is expected to decrease the effort
necesssary to retarget a HAL/S compiler.

As the investigation into implementing a larger subset of
HAL proceeded, it became clear that the code generator would
"become not only larger, btut also more complex. " "The
investigation lead to the development of the non—procedural
language CGGL. :

A code generator for the Intel BOBO was written in this
new language. However, the code generator could not be
tested because of the lack of a CGGL compiler. Preliminary
experience indicates that CGGL may have a revolutionary
impact on the development of code generators.

5. REFERENCES

Dijkstra, E. W, - Notes on structured programming.
Structured Programming, by 0. -J. Dahl, E. W. Dijkstra..
and C. A R. Hoare. Academic Press:, 1972.

Donegan, M. K. An Approsch o the Automatic Generation
of Code Generetors. Ph. D. Thesis.vRice University, 1973.

HAL /S Languaone Specification. Technical Report IR-61-6,
Intermetrics, 1975. . :

 Jackson: M. A Princiblés,gﬁlproqram Deéiqﬁ:'-hAEadeﬁiQVM
Press, - 1975. I ' LT :
Mills, H. Top down programming in large systems.

Debugging Techniques in Large Systems., ed. by R. Rustin.
Prentice~Hall, 1971.

Myers, G. J. Reliable Sofiware through Composite Design.
Petrocelli/Charter, 1975.

-.14 -

APPENDIX A: COGL

‘A CGGL program consists . of conditions, variables:.
transitions, conflicts, operations, and procedures. The
elements of a CGGL program can be arranged in any convenient
order, although the compiler may insist on a specific order.
A complete grammar for CGGL is given in Appendix B. :

The input to the code generator generated is assumed to
be an IC tree consisting of operators and operands (end
nodes) . The exact description of a node is independent of -

A condition ‘statement specifies a named class of states
which an operand can take on. For example: '
- .condition AROP = input LIT, VAC, SYT
internal INACC, INREG, ONSTACK: ‘
says that an operand of type LIT, VAC, or SYT belongs to ‘the

class AROP. In addition, three internal states are definad.
All of these states are mutually exclusive, il e., the
operand can be in at most one of them. The .condition
statement . '

‘condition FLOW = input -INL;
says that an operand of type INL belongs to the class FLDN;

this class has no other input or internal states. - States
are used 1in CGGL to6 keep track of the status of 'a given

operand, for example, whether an operand 1is in the =~
~accumulator INACC. : . S

Variables in CGGL are used to pass information down the
tree. Such variables may be used to control dec1szons in
both transitions and operations. For example:

var CMP_MODE = (ASSIGN_CMP, JMP_T, JMP_F)i - _

declares a variable with three possible values; one of these.
ASSIGN_CMP is its initial value. One method of changing the
value of a variable is by means of the let statement, which
can be wused only within: an operation. . For example,
consider: S S '
condition FBRA (FLON. AROP)

' let CMP_mode = JMP_F; o
On entry to this operation, the current value of CHP MDDE is
saved and is then-teplaced by the. value JMP F. Just before .

exit, the old Value is restored. The values of varlablec'-

can also be changed by transitions, as will be seen.

A transition . statement defines all oF-the'_sfaté changes.

which can occur on a given, named condition. A state change.
X =>Y specifies how an operand moves from -an input or
internal state X to-an ~internal state Y. . For example, -
consider: TR R e T

transition AROP.,f" s T
‘ LIT => INACC: GEN2(MVI_A, #);

- 17 -

This transition specifies what code 1is required to move a
literal into the accumulator for an: INTEL 8080.. ~ The. symbol =
stands for the operand in question. ‘GEN2 is @ call on e
" Pascal routine for generating 2 byte instructions for the
INTEL 8080. Thus, transitions associate (Pascal) code to be
generated with state changes on operands. . ,

Since certain operations, e.g. - indexing on the 8080, may
also require the use of the accumulator, CGGL allows the
explicit statement of conflicting states for pairs of
operands, for example: : :

conflict AROP, AROP;
INACC, INACC; , o T
" The above example states that if you have one-operand in-the

accumulator, " it is incorrect to put the other opérand. into
the accumulator. All such conflicts are assumed to be
commutative. Note that the pair ONSTACK, ONSTACK is not a
conflict. , - ‘
Another, more subtle way of specifying conflicts is -
through the use of variables and transitions. Consider the

following:
var ACC_STATUS = (ACC_FREE, ACC_BUSY);
transition AROP uysing ACC_STATUS; :
LIT. ACC_FREE -=2> INACC, ACC_BUSY: GEN2(MVI_A, #);
This specifies that if one wants to load a literal into the
accumulator, the value of ACC_STATUS must be checked and if

necessary, the accumulator freed (by means of . another
transition). - Although unnecessary for the single
accumulator machine, such an approach asppears necessary for

multiple accumulators in order to prevent an explosion of
states. : ' : '

An operation specifies for each operator the 'humber of
arguments and condition «class of each argument and .the

internal state (if any) computed by the operation. The
operation lists terminal configurations and their associated
code generator statements. - Possible transitions are
entirely determined by the ¢transitions given for each
condition class and by the terminal states allowed. For
example: ' : : o

operatiocn JIADD(AROP, AROP) returns AROP;

INACC, ADDR_LOADED -> INACC: GENI1(ADD_M);
' ADDR_LOADED, INACC -> IMNACC: GEN1(ADD_M);i- ,
specifies that IADD has two operands of condition «class.

AROP, leaves its ‘Tesult in the ACC (state INACC), and
requires that one of its arguments be INACC and the other be
ADDR_L OADED. The operation IADD 1is " easily seen to be
commutative. .Like transitions, operations may also - use

globeal variabies, as for example:

operation IEQU(AROP, AROP) using CMP_MODE ~feturns ... -7 300

AROP; : R : S
INACC,- ADDR_LOADED, .JMP_T => INACC: ..
GEN1(CMP_M), GEN3(JZ, JMP_TARGET);

- 18 -

it should be noted that the =returns clause as well as its
associated state on the right—-hand—-side of an -> is entirely

redundant. This information has already been specified in a
transition. ' : ' : .

A procedure specifies a group “of 'statemeﬁts. It 1is
useful for specifuing long sequences of code. - A procedure
call is specified by a call <proc name>. An example of a

procedure is the following:

proc CMP_EQ; o _
GENZ2(MVI_A, ONE)» GEN3(JZ, PC+4), GEN1(ZAC);

" APPENDIX B: -CGGL SYNTAX

(statement'lisf§ eof :
Cstatement list> <statementd> |
<statement> : :

<CGGL program> :
<statement list> ::

nu

Cstatemeht> = <var decl> | <condition>
Ctransition> | <conflict> |
<operation> | <proc>

¢var decl> ::i= var <id> = (<list>)i

ccomdition> ::= condition <id> = input <list> o

<internal part> i

_ <internal parf> internal <list> | e

transition <list> <using part> ;
Ctest set> end trv

Ctransition>-

conflict <conflict list> end co i
Lconflict list> <list> 5 1 <list>

Seonflictd
{conflict list>

operation <id> (<list>)
<using part> <return partit> ;
Cassign list> <test set> end op

. <operation>

Cassign listd> <Cassign listd> Cassign> | e

<assign> let <id> = <id>
<procd> = proc <id> ; <PL code> ; gnd pr i
<using part> = ysing <list> | e
{returns part> = returns <id> | e

Ctest set> Ctest> | Ctestd>
Clistd> <resultd> : <PL code> i
-> <list> 1 e :

<test set>
{test>
<result>

-,

© Ctext>. !

]

<PL code>
<listd Cem Clistd> s <idd> 1 <id>

- 20 -

Remarks

‘1. An <id> can be composed of letters, digits,. and
underscotes,; the first of which must be a letier.
2. A comment may occur anyuwhere a blank may occur and is
defined as: ' - :
<comment> ::= (% <{textd> #)

3. Certain characters in the reference language réquire

special treatment in the implementation. All underlined
words such as yar are reserved. ' : :
4, # in <text> is replaced by the operand name 0OP.

€

OPERATION ISUB(AROP, AROP) RETURNS AROP;
IN_ACC:, LIT -> IN_ACC: ‘GEN2(SUB_I, #2)';
~ IN_ACC, ADDR_LOADED -> IN_ACC: ‘GEN1(SUB_M)“’;

. IN_ACC:, IN_REG

'END_OP;

=> IN_ACC: ‘GEN1(SUB_C) ‘i

OPERATION DSUB(AROR,. AROP) RETURNS AROP;

SYT, IN_ACC ~> IN_ACC: ‘GENI1(MOV_C_A); GEN2(MVI_B, ZEROD);

END_OP;

GENS(LXI_HL, #1); GENI(DAD_BC)’

OPERATION I:QU(ARDP. AROP) USING CHMP MODE RETURNS AROP;
~IN_ACC, ADDR LDADED; JMP_T -2 IN ACC

‘GEN1(CMP_M);
 GEN3(JZ, JMP_TARGET) 3
ADDR_LOADED, IN_ACC, JMP_T. -> IN_ACC:
‘GENI(CMP_M);i
. GEN3(JZ, JMP_TARGET) ’;
IN_ACC. IN_REG, JMP_T =-> IN_ACC:
‘GENT (CMP_C);

GEN3(JZ,

JMP_TARGET) *;

IN_ACC, ADDR_LOADED, JMP_F -> IN_ACC:

*GEN1 (CMP_M);
GEN3(JUNZ, JMP_TARGET)';
ADDR_LOADED, -IN_ACC, JMP_F -> IN_ACC:

'GEN1(CMP_M);

GEN3(JNZ, JMP_TARGET)‘;
IN_ACC, IN_REG, JMP_F -> IN_ACC:

‘GEN1(CMP_C)i .
A GEN3(JUNZ, JUMP_TARGET) '
END_DP; ' B

OPERATION IGT(AROP, AROP) USING CMP_MODE RETURNS IN_ACC;
IN_ACC. ADDR_LOADED, JMP_T =-> IN_ACC:
*GEN1 (CMP_M);
GEN3(JZ, PC+2);
GEN3(JUNC, JMP_TARGET) ‘i
IN_REG, IN_ACC, JMP_T -> IN_ACC:
‘GEN1 (CMP_C); '
GEN3(JC, JMP._TARGET) ‘;
ADDR_LOADED, IN_ACC, JMP_T -> IN_ACC:
*GEN1 (CMP_IM);
, GEN3(JC, JMP_TARGET) *;
IN_ACC, ADDR_LOADED, JMP_F -> IN_ACC:
 “GEN1(CMP_M); |
GEN3(JZ, JMP_TARGET); -
GEN3(JC, JHMP_TARGET)‘; .
ADDR_LOADED, IN_ACC, JMP_F => IN ACC
‘GEN1(CMP_M); -
GEN3 (UNC, »HP _TARGET) *;
IN_REG, IN_ACC, JMP_F ~> IN_ACC:
*GENI(CIWP.C)i
GENI(UNC, ~ JiP TﬁQbET)’"
END_OP; -

- 23 -

OPERATION BRA(FLOW) RETURNS FLOW;
INL -2 INL: ‘GEN3(JMP, #1)7;
END_OP;: :

OPERATION LBL(FLDH)‘RETURNS FLOW;
INL -2 INL: 'GET_ADDR#1, PC) ‘i
END_OP; '

OPERATION IFHD(FLOW) RETURNS FLOW;
INL => INL: /7;
END_OP; -

OPERATION DTST(FLOW) RETURNS FLOW;
: INL => INL: fPUSH_DDSTACK(PC:_#l)'r
END OP: ' ' ' '

OPERATION ETST(FLOW) RETURNS FLOMW;
CINL -> INL: ‘POP_DDSTACK(OLD_PC);

GEN3(JMP, OLD_PC) ‘;
END_OP;

OPERATION FBRA(FLOW, ARDP) RETURNS FLOW;
LET CMP_MODE = JMP_F;
INL, VAC-> INL: ‘BLD_MALMAT(JMP_TARGET,
TRANSLAT;(%“)'
END_OP;

OPERATION CTSTW(ARGP) RETURNS FLOW:
LET CMP_MODE = JiP_Fi
VAC -> INL: ‘TCP_DOSTACK(JMP_TARGET);
TRANSLATE (#1) *;
END_OP;

OPERATION CTSTU(AROP) RETURNS FLOW;

LET CMP_MODE = JMP_T;

VAC -> INL: ‘TOP_DOCSTACK(JMP_TARGET);
TRANSLATE (#1) *; '
END_OPR; :

i

- 24 -

#1);

&

- ACKNOWLEDGEMENTS

I would like to acknowlédge the help and suppor; 6£ Dr. Terry'Straetér
and Dr. John Knight "of the NASA Langley Research Center in this research.

I would also like to thank Patti Timpanaro of Computer Sciences Corp. for

her work in helping to desxgn the 7UP code generator and for her work in
implementlng it.

- 25 -

‘e

