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CHAPTER ONE
INTRODUCTION

NASA began its operations as the nation’s civilian space agency in
1958 following the passage of the National Aeronautics and Space Act. It
succeeded the National Advisory Committee for Aeronautics (NACA).
The new organization was charged with preserving the role of the United
States “as a leader in aeronautical and space science and technology™ and
in its application, with expanding our knowledge of the Earth’s atmos-
phere and space, and with exploring flight both within and outside the
atmosphere.

By the 1980s, NASA had established itself as an agency with consid-
erable achievements on record. The decade was marked by the inaugura-
tion of the Space Shuttle flights and haunted by the 1986 Challenger
accident that temporarily halted the program. The agency also enjoyed
the strong support of President Ronald Reagan, who enthusiastically
announced the start of both the Space Station program and the National
Aerospace Plane program.

Overview of the Agency

NASA is an independent federal government agency that, during the
1980s, consisted of 10 field installations located around the United States,
the Jet Propulsion Laboratory (a government-owned facility staffed by
the California Institute of Technology), and a Headquarters located in
Washington, D.C. Headquarters was divided into a number of program
and staff offices that provided overall program management and handled
administrative functions for the agency. Each program office had respon-
sibility for particular program areas (see Figure 1-1). Headquarters also
interacted with Congress and the Executive Branch.

NASA’s structure was quite decentralized. Although Headquarters had
overall program responsibility, each installation was responsible for the
day-to-day execution and operations of its projects, managed its own facil-
ity, hired its own personnel, and awarded its own procurements. Each
installation also focused on particular types of projects and discipline areas.
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Program and Project Development

NASA called most of its activities programs or projects. The agency
defined a program as “a related series of undertakings which are funded
for the most part from NASA’s R&D appropriation, which continue over
a period of time (normally years), and which are designed to pursue a
broad scientific or technical goal.” A project is “a defined, time-limited
activity with clearly established objectives and boundary conditions exe-
cuted to gain knowledge, create a capability, or provide a service. . . . A
project is normally an element of a program.™

NASA’s flight programs and projects followed prescribed phases
(with associated letter designators) in their development and execution.
This sequence of activities consisted of concept development (Pre-Phase
A), mission analysis (Phase A), definition or system design (Phase B), exe-
cution (design, development, test, and evaluation) (Phase C/D), launch and
deployment operations (Phase E), and mission operations, maintenance,
and disposal (Phase F). Although most concepts for missions originated
within a field installation, Headquarters retained project responsibility
through Phase B. Once a program or project was approved and funded by
Congress, the principal responsibility for program or project implementa-
tion shifted to the field installation. Internal agency reviews were held dur-
ing and between each phase of a project. Before moving to Phase C/D,
NASA held a major agency review, and approval and funding by Congress
were required. Particular activities never moved beyond Phase B, nor were
they meant to. For instance, many aeronautics activities were designed as
research efforts and were intended to be turned over to the private sector
or to other government agencies once Phase B concluded.

NASA’s Budget Process

NASA's activities relied on getting a reasonable level of funding from
Congress. The federal budget process was quite complex, and a brief
description as it relates to NASA is presented here. Additional information
can be found in Chapter 8, “Finances and Procurement,” in Volume VI of
the NASA Historical Data Book.

NASA operated on a fiscal year (FY) that ran from October 1 through
September 30 of the following year. Through FY 1983, the agency bud-
get was broken into three accounts or appropriation categories: Research
and Development (R&D), Research and Program Management (R&PM),
and Construction of Facilities (C of F). An additional appropriation,
Space Flight, Control, and Data Communications (SFC&DC) was added
in FY 1984 for ongoing Shuttle-related and tracking and data acquisition
activities. Although a program office could administer activities from

'NASA Management Instruction 7120.3, “Space Flight Program and Project
Management,” February 6, 1985.
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more than one appropriation category, such as the Office of Space Flight,
which managed both R&D and SFC&DC activities, all funds were desig-
nated for particular appropriation categories and could not be transferred
between accounts without congressional approval.

Congress appropriated operating funds each year. These appropria-
tions were the culmination of a series of activities that required at least
two years of effort by the installations and Headquarters.

Two years before a budget year began, Headquarters sent guidelines
to each installation that contained programmatic and budget information
based on its long-range plans and the budget forecasts from the Office of
Management and Budget (OMB). Each installation then prepared a
detailed budget, or Program Operating Plan (POP), for the fiscal year that
would begin two years in the future. The installation also refined the bud-
get for the remainder of the current fiscal year and the next fiscal year that
it had already submitted and had approved, and it provided less detailed
budget figures for later years. Upon approval from each installation’s
comptroller and director, this budget was forwarded to the appropriate
Headquarters-level program office, to the NASA comptroller’s office,
and the NASA administrator.

Headquarters reviewed the budget requests from each installation,
held discussions with the installations, and negotiated with OMB to arrive
at a budget that looked realistic and had a fair chance of passage by
Congress. Following these negotiations, NASA formally submitted its
budget requests to OMB. This became part of the administration’s budget
that went to Congress in January of each year.

When Congress received the budget, NASA’s proposed budget first
went to the House and Senate science committees that were charged with
authorizing the agency’s budget. Each committee held hearings, usually
with NASA administrators; reviewed the submission in great detail;
debated, revised, and approved the submitted budget; and sent it to the
full House or Senate for approval. The authorization committees could
limit how much could be appropriated and often set extensive conditions
on how the funds were to be spent. Each house approved its own autho-
rization bill, which was then submitted to a House-Senate conference
committee to resolve any differences. After this took place, the compro-
mise bill was passed by the full House and Senate and submitted to the
President for his signature.

The process to appropriate funds was similar, with the bills going to
the proper appropriations committees for discussion, revision, and
approval. However, in practice, the appropriations committees usually
did not review the proposed budget in as great detail as the authorization
committees. Upon committee approval, the appropriations bills went to
the full House and Senate, back to a conference committee if necessary,
and finally to the President. After approval by the President, OMB estab-
lished controls on the release of appropriated funds to the various agen-
cies, including NASA.
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Once NASA received control over its appropriated funds, it ear-
marked the funds for various programs, projects, and facilities, each of
which had an “account” with the agency established for it. Funds were
then committed, obligated, costed, and finally disbursed according to the
progression of activities, which hopefully coincided with the timing of
events spelled out in the budget. NASA monitored all of its financial
activities scrupulously, first at the project and installation level and then
at the Headquarters level. Its financial transactions were eventually
reviewed by the congressional General Accounting Office to ensure that
they were legal and followed prescribed procedures.

In the budget tables that follow in each chapter, the “request” or “sub-
mission” column contains the amount that OMB submitted to Congress.
It may not be the initial request that NASA submitted to OMB. The
“authorization” is the ceiling set by the authorization committees in their
bill. The *“appropriation” is the amount provided to the agency. The “pro-
grammed” column shows the amount the agency actually spent during the
fiscal year for a particular program.
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CHAPTER TWO
LAUNCH SYSTEMS

Introduction

Launch systems provide access to space, obviously a necessary com-
ponent of all spaceflights. The elements of launch systems include the
various vehicles, engines, boosters, and other propulsive and launch
devices that help propel a spacecraft into space and position it properly.
From 1979 through 1988, NASA used both expendable launch vehicles
(ELVs)—those that can be used only once—and reusable launch vehicles.
This chapter addresses both types of vehicles. as well as other launch sys-
tem-related elements.

NASA used three families of ELVs (Scout, Delta, and Atlas) and one
reusable launch vehicle (Space Shuttle) from 1979 through 1988 (Figure
2-1). Each family of ELVs had several models, which are described in
this chapter. For the Space Shuttle, or Space Transportation System
(STS). the solid rocket booster, external tank, and main engine elements
comprised the launch-related elements and are addressed. The orbital
maneuvering vehicle and the various types of upper stages that boosted
satellites into their desired orbit are also described.

This chapter includes an overview of the management of NASA’s
launch vehicle program and summarizes the agency’s launch vehicle bud-
get. In addition, this chapter addresses other launch vehicle development,
such as certain elements of advanced programs.

Several trends that began earlier in NASA’s history continued in this
decade (1979-1988). The trend toward acquiring launch vehicles and ser-
vices from the commercial sector continued, as did the use of NASA-
launched vehicles for commercial payloads. President Reagan’s policy
directive of May 1983 reiterated U.S. government support for commer-
cial ELV activities and the resulting shift toward commercialization of
ELV activities. His directive stated that the “U.S. government fully
endorses and will facilitate commercialization of U.S. Expendable
Launch Vehicles.” His directive said that the United States would encour-
age use of its national ranges for commercial ELV operations and would
“make available, on a reimbursable basis, facilities, equipment, tooling,
and services that are required to support the production and operation of
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Figure 2—1. NASA Space Transportation System (1988)

U.S. commercial ELVs.” Use of these facilities would be priced to
encourage “viable commercial ELV launch activities.”

The policy also stated the government’s intention of replacing ELVs
with the STS as the primary launch system for most spaceflights.
(Original plans called for a rate flight of up to fifty Space Shuttle flights
per year.) However, as early as FY 1984, Congress recognized that rely-
ing exclusively on the Shuttle for all types of launches might not be the
best policy. Congress stated in the 1984 appropriations bill that “the
Space Shuttle system should be used primarily as a launch vehicle for
government defense and civil payloads only” and *“commercial customers
for communications satellites and other purposes should begin to look to
the commercialization of existing expendable launch vehicles.” The
Challenger accident, which delayed the Space Shuttle program, also con-

'Announcement of U.S. Government Support for Commercial Operations by
the Private Sector, May 16, 1983, from National Archives and Records Service’s
Weekly Compilation of Presidential Documents for May 16, 1983, pp. 721-23.

‘House Committee on Appropriations, Department of Housing and Urban
Development-Independent Agencies Appropriation Bill, 1984, Report to
Accompany H.R. 3133, 98th Cong., Ist sess., 1983, H. Rept. 98— (unnumbered).
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tributed to the development of a “mixed fleet strategy.” which recom-
mended using both ELVs and the Shuttle.’

Management of the Launch Vehicle Program

Two NASA program offices shared management responsibility for
the launch vehicle program: Code M (at different times called the Office
of Space Transportation, the Office of Space Transportation Acquisition.
and the Office of Space Flight) and Code O (the Office of Space
Transportation Operations). Launch system management generally
resided in two or more divisions within these offices, depending on what
launch system elements were involved.

The organizational charts that follow illustrate the top-level structure
of Codes M and O during the period 1979-1988. As in other parts of this
chapter, there is some overlap between the management-related material
presented in this chapter and the material in Chapter 3, “Space
Transportation and Human Spaceflight.”

Also during the period 1979 through 1988, two major reorganizations
in the launch vehicle area occurred (Figure 2-2): the split of the Office of
Space Transportation into Codes M and O in 1979 (Phase I) and the merg-
er of the two program offices into Code M in 1982 (Phase II). In addition,
the adoption of the mixed fleet strategy following the loss of the
Challenger reconfigured a number of divisions (Phase IlI). These man-
agement reorganizations reflected NASA’'s relative emphasis on the
Space Shuttle or on ELVs as NASA’s primary launch vehicle, as well as
the transition of the Shuttle from developmental to operational status.

Phase I: Split of Code M Into Space Transportation Acquisition
(Code M) and Space Transportation Operations (Code O)

John F. Yardley, the original associate administrator for the Office of
Space Transportation Systems since its establishment in 1977, continued
in that capacity, providing continuous assessment of STS development,
acquisition, and operations status. In October 1979, Charles R. Gunn
assumed the new position of deputy associate administrator for STS
(Operations) within Code M, a position designed to provide transition
management in anticipation of the formation of a new program office
planned for later that year (Figure 2-3).

‘NASA Office of Space Flight, Mixed Fleet Study, January 12, 1987. The
NASA Advisory Council had also established a Task Force on Issues of a Mixed
Fleet in March 1987 to study the issues associated with the employment of a
mixed fleet of launch vehicles and endorsed the Office of Space Flight study
results in its Study of the Issues of a Mixed Fleet. Further references to a mixed
fleet are found in remarks made by NASA Administrator James C. Fletcher on
May 15, 1987.
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Figure 2-2. Top-Level Launch Vehicle Organizational Structure
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Figure 2-3. Office of Space Transportation (as of October 1979)

The formal establishment of the new Office of Space Operations
(Code O) occurred in November 1979, and Dr. Stanley I. Weiss became
its first permanent associate administrator in July 1980. Code O was the
principal interface with all STS users and assumed responsibilities for
Space Shuttle operations and functions, including scheduling, manifest-
ing, pricing, launch service agreements, Spacelab, and ELVs, except for
the development of Space Shuttle upper stages. The ELV program—
Atlas, Centaur, Delta, Scout, and Atlas F—moved to Code O and was
managed by Joseph B. Mahon, who had played a significant role in
launch vehicle management during NASA’s second decade.

Yardley remained associate administrator for Code M until May 1981,
when L. Michael Weeks assumed associate administrator responstbilities.



Two new divisions within Code M were established in May 1981. The
Upper Stage Division, with Frank Van Renssalaer as director, assumed
responsibility for managing the wide-body Centaur, the Inertial Upper Stage
(IUS), the Solid Spinning Upper Stage (SSUS), and the Solar-Electric
Propulsion System. The Solid Rocket Booster and External Tank Division,
with Jerry Fitts as director, was also created. In November 1981, Major
General James A. Abrahamson, on assignment from the Air Force, assumed

LAUNCH SYSTEMS

duties as permanent associate administrator of Code M (Figure 2-4).

Office of Space
Transportation Systems
{Code M)

John Yardley

|
|

Orbiter Programs
M. Malkin (acting)

- Electrical Systems
- Engr. & In
- Structural Spt.

Y
- Flight Systems

Ground Systems & Relhability, Quality Advanced
Flight Tests & Safety Programs
E. Andrews H. Cohen J. Disher
- Flight Test - Adv. Concepts
- Launch & Landing - Adv. Development
Syst

Spt.
- 8TS Program &

(a) May 1981 —Expendable Equipment Division disestablished.

New divisions established

Budget Control

Engine Programs Systems Resource Mgmt/ Expendable
W. Dankhoft Engineering & [nt Administralion gpt(a)
{acting) LeRoy Day C.R. Hovel! F. Van Renssalaer
- Systems - Cost & Schedule - Solid Rocket
Engineering Analysis Booster
- STS Integration - Adm. & Program - Upper Stages
!

- External Tank

Upper Stages Division—Frank Van Renssalaer. Branches—Centaur, Solar Electric Propulsion Systems, IUS, and SSUS
Salid Rocket Booster and External Tank Division—Jerry Fitts, Branches—Solid Rocket Booster and External Tank

Figure 2-4. Code M/Code O Split (as of February 1980) (1 of 2)
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Phase II: Merger of Codes M and O Into the Office of Space Flight

In preparation for Space Shuttle operations, Codes M and O merged
in 1982 into the Office of Space Flight, Code M, with Abrahamson serv-
ing as associate administrator (Figure 2-5). Weiss became NASA'’s chief
engineer. Code M was responsible for the fourth and final developmental
Shuttle flight, the operational flights that would follow, future Shuttle
procurements, and ELVs. The new office structure included the Special
Programs Division (responsible for managing ELVs and upper stages),
with Mahon continuing to lead that division, the Spacelab Division, the
Customer Services Division, the Space Shuttle Operations Office, and the
Space Station Task Force. This task force, under the direction of John D.
Hodge, developed the programmatic aspects of a space station, including
mission analysis, requirements definition, and program management. In
April 1984, an interim Space Station Program Office superseded the
Space Station Task Force and, in August 1984, became the permanent
Office of Space Station (Code S), with Philip E. Culbertson serving as
associate administrator. In the second quarter of 1983, organizational
responsibility for ELVs moved from the Special Programs Division to the
newly formed Space Transportation Support Division, still under the
leadership of Joseph Mahon.

Jesse W. Moore took over as Code M associate administrator on
August 1, 1984, replacing Abrahamson, who accepted a new assignment
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James Abrahamson
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[ I
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{g} In 1986, the Orbital Maneuvering Venicla office was adoed to the Space Transporiation Support Division.

Figure 2-5. Code M Merger (as of October 1982)
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in the Department of Defense (DOD). Moore was succeeded by Rear
Admiral Richard H. Truly, a former astronaut, on February 20, 1986.

Phase 111I: Post-Challenger Launch Vehicle Management

From the first Space Shuttle orbital test flight in April 1981 through
STS 61-C on January 12, 1986, NASA flew twenty-four successful Shuttle
missions, and the agency was well on its way to establishing the Shuttle as
its only launch vehicle. The loss of the Challenger (STS 51-L) on
January 26, 1986, grounded the Shuttle fleet for thirty-two months. When
flights resumed with STS-26 in September 1988, NASA planned a more
conservative launch rate of twelve launches per year. The reduction of the
planned flight rate forced many payloads to procure ELV launch services
and forced NASA to plan to limit Shuttle use to payloads that required a
crewed presence or the unique capabilities of the Shuttle. It also forced
NASA to recognize the inadvisability of relying totally on the Shuttle. The
resulting adoption of a “mixed fleet strategy™ included increased NASA-
DOD collaboration for the acquisition of launch vehicles and the purchase
of ELV launch services. This acquisition strategy consisted of competitive
procurements of the vehicle, software, and engineering and logistical
work, except for an initial transitional period through 1991, when pro-
curements would be noncompetitive if it was shown that it was in the gov-
ernment’s best interest to match assured launch vehicle availability with
payloads and established mission requirements.

The mixed fleet strategy was aimed at a healthy and affordable
launch capability, assured access to space, the utilization of a mixed fleet
to support NASA mission requirements, a dual-launch capability for crit-
ical payloads, an expanded national launch capability, the protection of
the Shuttle fleet, and the fostering of ELV commercialization. This last
goal was in accordance with the Reagan administration’s policy of
encouraging the growth of the fledgling commercial launch business
whenever possible. The Office of Commercial Programs (established in
1984) was designated to serve as an advocate to ensure that NASA's inter-
nal decision-making process encouraged and facilitated the development
of a domestic industrial base to provide access to space.

During this regrouping period, the ELV program continued to be man-
aged at Headquarters within the Office of Space Flight, through the Space
Transportation Support Division, with Joseph Mahon serving as division
director and Peter Eaton as chief of EL Vs, until late 1986. During this peri-
od, the Tethered Satellite System and the Orbital Maneuvering Vehicle
also became responsibilities of this division. In late 1986, Code M reorga-
nized into the basic configuration that it would keep through 1988 (Figure
2-6). This included a new management and operations structure for the
National Space Transportation System (NSTS). Amold J. Aldrich was
named director of the NSTS at NASA Headquarters. A new Flight Systems
Division, still under the leadership of Mahon, consisted of divisions for
ELVs and upper stages, as well as divisions for advanced programs and
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Figure 2-6. Office of Space Flight 1986 Reorganization

Space Shuttle carrier systems. The Propulsion Division was eliminated as
part of the NSTS’s move to clarify the points of authority and responsibil-
ity in the Shuttle program and to establish clear lines of communication in
the information transfer and decision-making processes.

Money for NASA’s Launch Systems

From 1979 through 1983, all funds for NASA’s launch systems came
from the Research and Development (R&D) appropriation. Beginning in
FY 1984, Congress authorized a new appropriation, Space Flight,
Control, and Data Communications (SFC&DC), to segregate funds for
ongoing Space Shuttle-related activities. This appropriation was in
response to an October 1983 recommendation by the NASA Advisory
Council, which stated that the operating budgets, facilities, and personnel
required to support an operational Space Shuttle be “fenced” from the rest
of NASA’s programs. The council maintained that such an action would
speed the transition to more efficient operations, help reduce costs, and
ease the transfer of STS operations to the private sector or some new gov-
ernment operating agency, should such a transfer be desired.* SFC&DC
was used for Space Shuttle production and capability development, space
transportation operations (including ELVs), and space and ground net-
work communications and data systems activities.

Most data in this section came from two sources. Programmed (actu-
al) figures came from the yearly budget estimates prepared by NASA’s
Budget Operations Division, Office of the Comptroller. Data on NASA's
submissions and congressional action came from the chronological histo-
ry budget submissions issued for each fiscal year.

‘NASA, Fiscal Year 1985 Budget Submission, Chronological History,
House Authorization Committee Report, issued April 22, 1986, p. 15.
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Table 2-1 shows the total appropriated amounts for launch vehicles
and launch-related components. Tables 2-2 through 2-12 show the
requested amount that NASA submitted to Congress, the amount autho-
rized for each item or program, the final appropriation, and the pro-
grammed (or actual) amounts spent for each item or program. The
submission represented the amount agreed to by NASA and OMB, not
necessarily the initial request NASA made to the President’s budget offi-
cer. The authorized amount was the ceiling set by Congress for a particu-
lar purpose. The appropriated amount reflected the amount that Congress
actually allowed the Treasury to provide for specific purposes.®

As is obvious from examining the tables, funds for launch vehicles
and other launch-related components were often rolled up into the total
R&D or SFC&DC appropriation or other major budget category (*‘undis-
tributed” funds). This made tracking the funding levels specifically des-
ignated for launch systems difficult. However, supporting congressional
committee documentation clarified some of Congress’s intentions. In the
late 1970s and early 1980s, Congress intended that most space launches
were to move from ELVs to the Space Shuttle as soon as the Shuttle
became operational. This goal was being rethought by 1984, and it was
replaced by a mixed fleet strategy after 1986. However, even though the
government returned to using ELVs for many missions, it never again
took prime responsibility for most launch system costs. From 1985
through 1987, Congress declared that the NASA ELV program would be
completely funded on a reimbursable basis. Launch costs would be paid
by the customer (for example, commercial entities, other government
agencies, or foreign governments). Not until 1988 did Congress provide
direct funding for two Delta II launch vehicles that would be used for
NASA launches in the early 1990s. Although the federal government
funded the Shuttle to a much greater degree, it was also to be used, when
possible, for commercial or other government missions in which the cus-
tomer would pay part of the launch and payload costs.

In some fiscal years, ELVs, upper stages, Shuttle-related launch ele-
ments, and advanced programs had their own budget lines in the con-
gressional budget submissions. However, no element always had its own
budget line. To follow the changes that took place, readers should consult
the notes that follow each table as well as examine the data in each table.
Additional data relating to the major Space Shuttle budget categories can
be found in the budget tables in Chapter 3.

NASA'’s budget structure changed from one year to the next depending
on the status of various programs and budget priorities. From 1979 through
1983, all launch-related activities fell under the R&D appropriation.

“The term “appropriation” is used in two ways. It names a major budget cat-
egory (for instance, R&D or SFC&DC). It is also used to designate an amount
that Congress allows an agency to spend (for example, NASA’s FY 1986 appro-
priation was $7,546.7 million).
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Launch elements were found in the Space Flight Operations program, the
Space Shuttle program, and the ELV program. The Space Flight
Operations program included the major categories of space transportation
systems operations capability development, space transportation system
operations, and advanced programs (among others not relevant here).
Upper stages were found in two areas: space transportation systems oper-
ations capability development included space transportation system upper
stages, and space transportation system operations included upper stage
operations.

The Space Shuttle program included design, development, test, and
evaluation (DDT&E), which encompassed budget items for the orbiter,
main engine, external tank, solid rocket booster (SRB), and launch and
landing. The DDT&E category was eliminated after FY 1982. The pro-
duction category also was incorporated into the Space Shuttle program.
Production included budget line items for the orbiter, main engine, and
launch and landing.

The ELV program included budget items for the Delta, Scout,
Centaur, and Atlas F. (FY 1982 was the last year that the Atlas F appeared
in the budget.)

FY 1984 was a transition year. Budget submissions (which were sub-
mitted to Congress as early as FY 1982) and authorizations were still part
of the R&D appropriation. By the time the congressional appropriations
committee acted, the SFC&DC appropriation was in place. Two major
categories, Shuttle production and operational capability and space trans-
portation operations, were in SFC&DC. Shuttle production and opera-
tional capability contained budget items for the orbiter, launch and
mission support, propulsion systems (including the main engine, solid
rocket booster, external tank, and systems support), and changes and sys-
tems upgrading. Space transportation operations included Shuttle opera-
tions and ELVs. Shuttle operations included flight operations, flight
hardware (encompassing the orbiter, solid rocket booster, and external
tank), and launch and landing. ELVs included the Delta and Scout. (FY
1984 was the last year that there was a separate ELV budget category until
the FY 1988 budget.) R&D’s Space Transportation Capability
Development program retained upper stages, advanced programs, and the
Tethered Satellite System.

Beginning in FY 1985, most launch-related activities moved to the
SFC&DC appropriation. In 1987, NASA initiated the Expendable Launch
Vehicles/Mixed Fleet program to provide launch services for selected
NASA payloads not requiring the Space Shuttle’s capabilities.

Space Shuttle Funding

Funds for the Space Shuttle Main Engine (SSME) were split into a
DDT&E line item and a production line item from 1979 through 1983.
Funds for the external tank and SRB were all designated as DDT&E.
Beginning with FY 1984, SSME, external tank, and SRB funds were
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located in the capability development/flight hardware category and in the
Propulsion System program. Capability development included continuing
capability development tasks for the orbiter, main engine, external tank,
and SRB and the development of the filament wound case SRB. Congress
defined propulsion systems as systems that provided “for the production
of the SSME, the implementation of the capability to support operational
requirements, and the anomaly resolution for the SSME, SRB, and exter-
nal tank.”

Some Space Shuttle funds were located in the flight hardware budget
category. Flight hardware provided for the procurement of the external
tank, the manufacturing and refurbishment of SRB hardware and motors,
and space components for the main engine; orbiter spares, including
external tank disconnects, sustaining engineering, and logistics support
for external tank, SRB, and main engine flight hardware elements; and
maintenance and operation of flight crew equipment.

Tables 2—1 through 2-9 provide data for the launch-related elements
of the Space Shuttle and other associated items. Budget data for addi-
tional Shuttle components and the major Shuttle budget categories are
found in the Chapter 3 budget tables.

Characteristics

The following sections describe the launch vehicles and launch-related
components used by NASA during the period 1979 through 1988. A chronol-
ogy of each vehicle’s use and its development is also presented, as well as the
characteristics of each launch vehicle and launch-related component.

In some cases, finding the “correct” figures for some characteristics
was difficult. The specified height, weight, or thrust of a launch vehicle
occasionally differed among NASA, contractor, and media sources.
Measurements, therefore, are approximate. Height or length was mea-
sured in several different ways, and sources varied on where a stage
began and ended for measuring purposes. The heights of individual stages
were generally without any payload. However, the overall height of the
assembled launch vehicle may include the payload. Source material did
not always indicate whether the overall length included the payload, and
sometimes one mission operations report published two figures for the
height of a launch vehicle within the same report.

Thrust was also expressed in more than one way. Source material
referred to thrust “in a vacuum,” “at sea level,” ““average,” “nominal,” and
“maximum.” Thrust levels vary during a launch and were sometimes pre-
sented as a range of values or as a percentage of “rated thrust.”
Frequently, there was no indication of which definition of thrust was
being used.

This chapter uses the following abbreviations for propellants: LH: =
liquid hydrogen, LOX = liquid oxygen, N:H: = hydrazine, N:O. = nitro-
gen tetroxide, RJ-1 = liquid hydrocarbon, and RP-1 = kerosene.
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Expendable Launch Vehicles

From 1979 through 1988, NASA attempted seventy-four launches
with a 94.6-percent success rate using the expendable Atlas E/F, Atlas-
Centaur, Delta, or all-solid-fueled Scout vehicle—all vehicles that had
been used during NASA's second decade. During this time, the agency
continued to built Deltas and maintained its capability to build Scouts and
Atlases on demand. It did not emphasize ELV development but rather
focused on Space Shuttle development and the start of STS operational
status. However, the adoption of the mixed fleet strategy returned some
attention to ELV development

The following section summarizes ELV activities during the decade
from 1979 through 1988. Figure 27 and Table 213 present the success
rate of each launch vehicle.
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Figure 2-7. Expendable Launch Vehicle Success Rate
1979

NASA conducted nine launches during 1979, all successful. These used
the Scout, the Atlas E/F, the Atlas-Centaur, and the Delta. Of the nine launch-
es, three launched NASA scientific and application payloads, and six sup-
ported other U.S. government and nongovernment reimbursing customers.®

A Scout vehicle launched the NASA Stratospheric Aerosol and Gas
Experiment (SAGE), a NASA magnetic satellite (Magsat), and a reim-
bursable United Kingdom scientific satellite (UK-6/Ariel). An Atlas-
Centaur launched a FltSatCom DOD communications satellite and a
NASA scientific satellite (HEAO-3). Three launches used the Delta: one
domestic communications satellite for Western Union, another for RCA,
and an experimental satellite, called SCATHA, for DOD. A weather satel-
lite was launched on an Atlas F by the Air Force for NASA and the
National Oceanic and Atmospheric Administration (NOAA).

*Aeronautics and Space Report of the President, 1979 (Washington, DC:
U.S. Government Printing Office (GPO), 1980), p. 39.
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1980

Seven ELV launches took place in 1980: three on Deltas, three on
Atlas-Centaurs, and one on an Atlas F. Of the seven, one was for NASA;
the other six were reimbursable launches for other U.S. government,
international, and domestic commercial customers that paid NASA for
the launch and launch support costs.’

A Delta launched the Solar Maximum Mission, the single NASA mis-
sion, with the goal of observing solar flares and other active Sun phe-
nomena and measuring total radiative output of the Sun over a six-month
period. A Delta also launched GOES 4 (Geostationary Operational
Environmental Satellite) for NOAA. The third Delta launch, for Satellite
Business Systems (SBS), provided integrated, all-digital. interference-
free transmission of telephone, computer, electronic mail, and videocon-
ferencing to clients.

An Atlas-Centaur launched FltSatCom 3 and 4 for the Navy and
DOD. An Atlas-Centaur also launched Intelsat V F-2. This was the first
in a series of nine satellites launched by NASA for Intelsat and was the
first three-axis stabilized Intelsat satellite. An Atlas F launched NOAA-B,
the third in a series of Sun-synchronous operational environmental mon-
itoring satellites launched by NASA for NOAA. A booster failed to place
this satellite in proper orbit, causing mission failure.

1981

During 1981, NASA launched missions on eleven ELVs: one on a
Scout, five using Deltas (two with dual payloads). four on Atlas-Centaurs,
and one using an Atlas F. All but two were reimbursable launches for
other agencies or commercial customers, and all were successful.’

A Scout vehicle launched the DOD navigation satellite, NOVA 1. In
five launches, the Delta, NASA's most-used launch vehicle, deployed
seven satellites. Two of these launches placed NASA's scientific Explorer
satellites into orbit: Dynamics Explorer 1 and 2 on one Delta and the
Solar Mesosphere Explorer (along with Uosat for the University of
Surrey, England) on the other. The other three Delta launches had paying
customers, including the GOES 5 weather satellite for NOAA and two
communications satellites, one for SBS and one for RCA.

An Atlas-Centaur, which was the largest ELV being used by NASA,
launched four missions: Comstar D-4, a domestic communications satel-
lite for Comsat; two Intelsat V communications satellites for Intelsat; and
the last in the current series of FltSatCom communications satellites for
DOD. An Atlas F launched the NOAA 7 weather satellite for NOAA.

"Aeronautics and Space Report of the President, 1980 (Washington, DC:
GPO, 1981).

“Aeronautics and Spuace Report of the President, 1981 (Washington, DC:
GPO, 1982).
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In addition, ELVs continued to provide backup support to STS cus-
tomers during the early development and transition phase of the STS system.

1982

NASA launched nine missions on nine ELVs in 1982, using seven
Deltas and two Atlas-Centaurs. Of the nine, eight were reimbursable
launches for other agencies or commercial customers, and one was a
NASA applications mission.’

The Delta supported six commercial and international communications
missions for which NASA was fully reimbursed: RCA’s Satcom 4 and 5,
Western Union’s Westar 4 and 5, India’s Insat 1A, and Canada’s Telesat G
(Anik D-1). In addition, a Delta launched Landsat 4 for NASA. The Landsat
and Telesat launches used improved, more powerful Deltas. An Aerojet
engine and a tank with a larger diameter increased the Delta weight-carry-
ing capability into geostationary-transfer orbit by 140 kilograms. An Atlas-
Centaur launched two communications satellites for the Intelsat.

1983

During 1983, NASA launched eleven satellites on eleven ELVs, using
eight Deltas, one Atlas E, one Atlas-Centaur, and one Scout. A Delta
launch vehicle carried the European Space Agency’s EXOSAT x-ray
observatory to a highly elliptical polar orbit. Other 1983 payloads
launched into orbit on NASA ELVs were the NASA-Netherlands Infrared
Astronomy Satellite (IRAS), NOAA 8 and GOES 6 for NOAA, Hilat for
the Air Force, Intelsat VF-6 for Intelsat, Galaxy 1 and 2 for Hughes
Communications, Telstar 3A for AT&T, and Satcom 1R and 2R for RCA;
all except IRAS were reimbursable.

The increased commercial use of NASA’s launch fleet and launch
services conformed to President Reagan’s policy statement on May 16,
1983, in which he announced that the U.S. government would facilitate
the commercial operation of the ELV program.

1964

During 1984, NASA’s ELVs provided launch support to seven satel-
lite missions using four Deltas, one Scout, one Atlas-Centaur, and one
Atlas E. During this period, the Delta vehicle completed its forty-third
consecutive successful launch with the launching of the NATO-IIID satel-
lite in November 1984. In addition, a Delta successfully launched
Landsat 5 for NOAA in March (Landsat program management had trans-

‘Aeronautics and Space Report of the President, 1982 (Washington, DC:
GPO, 1983), p. 19.

“Aeronautics and Space Report of the President, 1983 (Washington, DC:
GPO, 1984), p. 17.
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ferred to NOAA in 1983); AMPTE, a joint American, British, and
German space physics mission involving three satellites, in August; and
Galaxy-C in September. Other payloads launched during 1984 by NASA
ELVs included a Navy navigation satellite by a Scout, an Intelsat com-
munications satellite by an Atlas-Centaur, and a NOAA weather satellite
by an\Atlas F vehicle. The launch of the Intelsat satellite experienced an
anomaly in the launch vehicle that resulted in mission failure. All mis-
sions, except the NASA scientific satellite AMPTE, were reimbursable
launches for other U.S. government, international, and domestic com-
mercial missions that paid NASA for launch and launch support."

In accordance with President Reagan’s policy directive to encourage
commercialization of the launch vehicle program, Delta, Atlas-Centaur,
and Scout ELVs were under active consideration during this time by com-
mercial operators for use by private industry. NASA and Transpace
Carriers, Inc. (TCI), signed an interim agreement for exclusive rights to
market the Delta vehicle, and negotiations took place with General
Dynamics on the Atlas-Centaur. A Commerce Business Daily announce-
ment, published August 8, 1984, solicited interest for the private use of
the Scout launch vehicle. Ten companies expressed interest in assuming
a total or partial takeover of this vehicle system.

Also in August 1984, President Reagan approved a National Space
Strategy intended to implement the 1983 National Space Policy. This
strategy called for the United States to encourage and facilitate commer-
cial ELV operations and minimize government regulation of these opera-
tions. It also mandated that the U.S. national security sector pursue an
improved assured launch capability to satisfy the need for a launch sys-
tem that complemented the STS as a hedge against “unforeseen technical
and operational problems” and to use in case of crisis situations. To
accomplish this, the national security sector should “pursue the use of a
limited number of ELVs.”"

1985

In 1985, NASA’s ELVs continued to provide launch support during
the transition of payloads to the Space Shuttle. Five launches took place
using ELVs. Two of these were DOD satellites launched on Scouts—one
from the Western Space and Missile Center and the other from the
Wallops Flight Facility. Atlas-Centaurs launched the remaining three mis-
sions for Intelsat on a reimbursable basis.”

"Aeronautics and Space Report of the President, 1984 (Washington, DC:
GPO, 1985), p. 23

“White House Fact Sheet, “National Space Strategy.” August 15, 1984,

“Aeronautics and Space Report of the President, 1985 (Washington, DC:
GPO, 1986).
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1986

In 1986, NASA’s ELVs launched five space application missions for
NOAA and DOD. A Scout launched the Polar Beacon Experiments and
Auroral Research satellite (Polar Bear) from Vandenberg Air Force Base; an
Atlas-Centaur launched a FltSatCom satellite in December; an Atlas E
launched a NOAA satellite; and two Delta vehicles were used—one to
launch a NOAA GOES satellite and the other to launch a DOD mission. One
of the Delta vehicles failed during launch and was destroyed before boosting
the GOES satellite into transfer orbit. An investigation concluded that the
failure was caused by an electrical short in the vehicle wiring. Wiring modi-
fications were incorporated into all remaining Delta vehicles. In September,
the second Delta vehicle successfully launched a DOD mission.*

Partly as a result of the Challenger accident, NASA initiated studies in
1986 on the need to establish a Mixed Fleet Transportation System, consist-
ing of the Space Shuttle and existing or new ELVs. This policy replaced the
earlier stated intention to make the Shuttle NASA’s sole launch vehicle.

1987

In 1987, NASA launched four spacecraft missions using ELVs, Three
of these missions were successful: a Delta launch of GOES 7 for NOAA
into geostationary orbit in February; a Delta launch of Palapa B-2, a com-
munications satellite for the Indonesian government, in March; and a
Scout launch of a Navy Transit satellite in September. In March, an Atlas-
Centaur launch attempt of FltSatCom 6, a Navy communications satellite,
failed when lightning in the vicinity of the vehicle caused the engines to
malfunction. The range safety officer destroyed the vehicle approximate-
ly fifty-one seconds after launch.”

1988

The ELV program had a perfect launch record in 1988 with six success-
ful launches. In February, a Delta ELV lifted a classified DOD payload into
orbit. This launch marked the final east coast Delta launch by a NASA launch
team. A NASA-Air Force agreement, effective July 1, officially transferred
custody of Delta Launch Complex 17 at Cape Canaveral Air Force Station to
the Air Force. Over a twenty-eight-year period, NASA had launched 143
Deltas from the two Complex 17 pads. A similar transaction transferred
accountability for Atlas/Centaur Launch Complex 36 to the Air Force."

“Aeronautics and Space Report of the President, 1986 (Washington, DC:
GPO, 1987).

“Aeronautics and Space Report of the President, 1987 (Washington, DC:
GPO, 1988).

“Aeronautics and Space Report of the President, 1988 (Washington, DC:
GPO, 1989).
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Also in 1988. a Scout launched San Marcos DL from the San
Marco launch facility in the Indian Ocean, a NASA-Italian scientific
mission, during March. Its goal was to explore the relationship
between solar activity and meteorological phenomena by studying the
dynamic processes that occur in the troposphere. stratosphere, and
thermosphere. In April, another Scout deployed the SOO0S-3, a Navy
navigation satellite. In June, a third Scout carried the NOVA-II. the
third in a series of improved Navy Transit navigation satellites, into
space. The final Scout launch of the year deployed a fourth SOOS mis-
sion in August. In September, an Atlas E launched NOAA H, a
National Weather Service meteorological satellite funded by NOAA.
into Sun-synchronous orbit. This satellite payload included on-board
search-and-rescue instruments.

In addition to arranging for the purchase of launch services from
the commercial sector, NASA took steps to divest itself of an adjunct
ELV capability and by making NASA-owned ELV property and ser-
vices available to the private sector. During 1988, NASA finalized a
barter agreement with General Dynamics that gave the company own-
ership of NASA’s Atlas-Centaur flight and nonflight assets. In
exchange, General Dynamics agreed to provide the agency with two
Atlas-Centaur launches at no charge. An agreement was signed for the
first launch service—supporting the FltSatCom F-8 Navy mission.
NASA and General Dynamics also completed a letter contract for a
second launch service to support the NASA-DOD Combined Release
and Radiation Effects Satellite (CRRES) mission. In addition, NASA
transferred its Delta vehicle program to the U.S. Air Force. Finally,
enabling agreements were completed to allow ELV companies to nego-
tiate directly with the appropriate NASA installation. During 1988,
NASA Headquarters signed enabling agreements with McDonnell
Douglas, Martin Marietta, and LTV Corporation. The Kennedy Space
Center and General Dynamics signed a subagreement in March to
allow General Dynamics to take over maintenance and operations for
Launch Complex 36.

ELV Characteristics
The Atlas Family

The basic Atlas launch vehicle was a one-and-a-half stage stainless
steel design built by the Space Systems Division of General Dynamics. It
was designed as an intercontinental ballistic missile (ICBM) and was
considered an Air Force vehicle. However, the Atlas launch vehicle was
also used successfully in civilian space missions dating from NASA's
early days. The Atlas launched all three of the unmanned lunar explo-
ration programs (Ranger, Lunar Orbiter, and Surveyor). Atlas vehicles
also launched the Mariner probes to Mars, Venus, and Mercury and the
Pioneer probes to Jupiter, Saturn, and Venus.
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NASA used two families of Atlas vehicles during the 1979-1988
period: the Atlas E/F series and the Atlas-Centaur series. The Atlas E/F
launched seven satellites during this time, six of them successful (Table
2-14). The Atlas E/F space booster was a refurbished ICBM. It burned
kerosene (RP-1) and liquid oxygen in its three main engines, two
Rocketdyne MA-3 booster engines, and one sustainer engine. The Atlas
E/F also used two small vernier engines located at the base of the RP-1
tank for added stability during flight (Table 2-15). The Atlas E/F was
designed to deliver payloads directly into —
low-Earth orbit without the use of an upper i
stage.

The Atlas-Centaur (Figure 2-8) was the
nation’s first high-energy launch vehicle pro-
pelled by liquid hydrogen and liquid oxygen.
Developed and launched under the direction
of the Lewis Research Center, it became g’;"_,
operational in 1966 with the launch of
Surveyor I, the first U.S. spacecraft to soft-
land on the Moon’s surface. Beginning in
1979, the Centaur stage was used only in
combination with the Atlas booster, but it had
been successfully used earlier in combination
with the Titan III booster to launch payloads
into interplanetary trajectories, sending two
Helios spacecraft toward the Sun and two Atias

Viking spacecraft toward Mars."” From 1979 | Sage™
through 1988, the Atlas-Centaur launched 18

satellites with only two failures (Table 2—16).

The Centaur stage for the Atlas booster
was upgraded in 1973 and incorporated an
integrated electronic system controlled by a
digital computer. This flight-proven “astrion-
ics” system checked itself and all other Sys-
tems prior to and during the launch phase;
during flight, it controlled all events after the
liftoff. This system was located on the equipment module on the forward
end of the Centaur stage. The 16,000-word capacity computer replaced
the original 4,800-word capacity computer and enabled it to take over
many of the functions previously handled by separate mechanical and
electrical systems. The new Centaur system handled navigation, guidance
tasks, control pressurization, propellant management, telemetry formats
and transmission, and initiation of vehicle events (Table 2-17).

_

Figure 2-8. Atlas-Centaur
Launch Vehicle

"For details, see Linda Neuman Ezell, NASA Historical Datu Book, Volume
{: Programs and Projects, 1969—1978 (Washington, DC: NASA SP-4012,
1988).
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The Delta Family

NASA has used the Delta launch vehicle since the agency’s incep-
tion. In 1959. NASA’s Goddard Space Flight Center awarded a contract
to Douglas Aircraft Company (later McDonnell Douglas) to produce and
integrate twelve launch vehicles. The Delta, using components from the
Air Force’s Thor intermediate range ballistic missile (IRBM) program
and the Navy’s Vanguard launch program, was available eighteen months
later. The Delta has evolved since that time to meet the increasing
demands of its payloads and has been the most widely used launch vehi-
cle in the U.S. space program, with thirty-five launches from 1979
through 1988 and thirty-four of them successful (Table 2-18).

The Delta configurations of the late 1970s and early 1980s were des-
ignated the 3900 series. Figure 2-9 illustrates the 3914, and Figure 2-10
shows the 3920 with the Payload Assist Module (PAM) upper stage. The
3900 series resembled the earlier 2900 series (Table 2-19), except for the
replacement of the Castor II solid strap-on motors with nine larger and
more powerful Castor IV solid motors (Tables 2-20 and 2-21).

The RS-27 engine, manufactured by the Rocketdyne Division of
Rockwell International, powered the first stage of the Delta. It was a single-
start power plant, gimbal-mounted and operated on a combination of liquid
oxygen and kerosene (RP-1). The thrust chamber was regeneratively

B
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Fairing
Sacond
Stage
3536 m
Oversil
Lengtn t@— Fuel Tank
First ]
je— Oxidizer Tank
Engine
Section
Figure 2-9. Figure 2-10.

Delta 3914 Delta 3920/PAM-D
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cooled, with the fuel circulating through 292 tubes that comprised the
inner wall of the chamber.

The following four-digit code designated the type of Delta launch
vehicle:
*  Istdigit designated the type of strap-on engines:

2 = Castor II, extended long tank Thor with RS-27 main
engine

3 = Castor IV, extended long tank Thor with RS-27 main
engine

* 2nd digit designated the number of strap-on engines
* 3rd digit designated the type of second stage and manufacturer:
1 = ninety-six-inch manufactured by TRW (TR-201)
2 = ninety-six-inch stretched tank manufactured by Aerojet
(AJ10-118K)
* 4th digit designated the type of third stage:
0 no third stage
3 TE-364-3
4 TE-364-4
For example, a model desig-
nation of 3914 indicated the use of
Castor IV strap-on engines, oy Stage
extended long tank with an RS-27 T Aftair A
main engine; nine strap-ons; a =
ninety-six-inch second stage man- — Antares 1A
ufactured by TRW; and a TE-364- Third Stage
4 third stage engine. A PAM U
designation appended to the last M)
digit indicated the use of a

McDonnell-Douglas PAM. ~— Castor llA
Second Stage

+~—Spacecraft

Scout Launch Vehicle

1=

The standard Scout launch =
vehicle (Scout is an acronym for
Solid Controlled Orbital Utility
Test) was a solid propellant four-
stage booster system. It was the “—Rigol lllA
world’s first all-solid propellant First Stage
launch vehicle and was one of
NASA’s most reliable launch
vehicles. The Scout was the small-
est of the basic launch vehicles A%@>
used by NASA and was used for -
orbit, probe, and reentry Earth
missions (Figure 2—-11).

Figure 2-11. Scout-D Launch Vehicle
(Used in 1979)
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The first Scout launch took place in 1960. Since that time, forty-six
NASA Scout launches have taken place, including fourteen between 1979
and 1988, when every launch was successful (Table 2-22). In addition to
NASA payloads, Scout clients included DOD, the European Space
Research Organization, and several European governments. The Scout
was used for both orbital and suborbital missions and has participated in
research in navigation, astronomy, communications, meteorology, geo-
desy, meteoroids, reentry materials, biology, and Earth and atmospheric
sensing. It was the only U.S. ELV launched from three launch sites:
Wallops on the Atlantic Ocean, Vandenberg on the Pacific Ocean, and the
San Marco platform in the Indian Ocean. It could also inject satellites into
a wider range of orbital inclinations than any other launch vehicle.

Unlike NASA's larger ELVs, the Scout was assembled and the pay-
load integrated and checked out in the horizontal position. The vehicle
was raised to the vertical orientation prior to launch. The propulsion
motors were arranged in tandem with transition sections between the
stages to tie the structure together and to provide space for instrumenta-
tion. A standard fifth stage was available for highly elliptical and solar
orbit missions.

Scout’s first-stage motor was based on an earlier version of the
Navy’s Polaris missile motor; the second-stage motor was developed
from the Army’s Sergeant surface-to-surface missile; and the third- and
fourth-stage motors were adapted by NASA’s Langley Research Center
from the Navy’s Vanguard missile. The fourth-stage motor used on the
G model could carry almost four times as much payload to low-Earth
orbit as the original model in 1960—that is, 225 kilograms versus fifty-
nine kilograms (Table 2-23).

Vought Corporation, a subsidiary of LTV Corporation, was the prime
contractor for the Scout launch vehicle. The Langley Research Center
managed the Scout program.

Space Shuttle

The reusable. multipurpose Space Shuttle was designed to replace the
ELVs that NASA used to deliver commercial, scientific, and applications
spacecraft into Earth’s orbit. Because of its unique design, the Space
Shuttle served as a launch vehicle, a platform for scientific laboratories,
an orbiting service center for other satellites, and a return carrier for pre-
viously orbited spacecraft. Beginning with its inaugural flight in 1981 and
through 1988, NASA flew twenty-seven Shuttle missions (Table 2-24).
This section focuses on the Shuttle’s use as a launch vehicle. Chapter 3
discusses its use as a platform for scientific laboratories and servicing
functions.

The Space Shuttle system consisted of four primary elements: an
orbiter spacecraft, two solid rocket boosters (SRBs), an external tank to
house fuel and an oxidizer, and three main engines. Rockwell
International built the orbiter and the main engines: Thiokol Corporation
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produced the SRB motors; and the external tank was built by Martin
Marietta Corporation. The Johnson Space Center directed the orbiter and
integration contracts, while the Marshall Space Flight Center managed
the SRB, external tank, and main engine contracts.

The Shuttle could transport up to 29,500 kilograms of cargo into near-
Earth orbit (185.2 to 1,111.2 kilometers). This payload was carried in a bay
about four and a half meters in diameter and eighteen meters long. Major
system requirements were that the orbiter and the two SRBs be reusable
and that the orbiter have a maximum 160-hour turnaround time after land-
ing from the previous mission. The orbiter vehicle carried personnel and
payloads to orbit, provided a space base for performing their assigned tasks,
and returned personnel and payloads to Earth. The orbiter provided a hab-
itable environment for the crew and passengers, including scientists and
engineers. Additional orbiter characteristics are addressed in Chapter 3.

The Shuttle was launched in an upright position, with thrust provid-
ed by the three main engines and the two SRBs. After about two minutes,
at an altitude of about forty-four kilometers, the two boosters were spent
and were separated from the orbiter. They fell into the ocean at predeter-
mined points and were recovered for reuse.

The main engines continued firing for about eight minutes, cutting off
at about 109 kilometers altitude just before the spacecraft was inserted
into orbit. The external tank was separated, and it followed a ballistic tra-
Jectory back into a remote area of the ocean but was not recovered.

Two smaller liquid rocket engines made up the orbital maneuvering
system (OMS). The OMS injected the orbiter into orbit, performed
maneuvers while in orbit, and slowed the vehicle for reentry. After reen-
try, the unpowered orbiter glided to Earth and landed on a runway.

The Shuttle used two launch sites: the Kennedy Space Center in
Florida and Vandenberg Air Force Base in California. Under optimum
conditions, the orbiter landed at the site from which it was launched.
However, as shown in the tables in Chapter 3 that describe the individual
Shuttle missions, weather conditions frequently forced the Shuttle to land
at Edwards Air Force Base in California, even though it had been
launched from Kennedy.

Main Propulsion System

The main propulsion system (MPS) consisted of three Space Shuttle
main engines (SSMEs), three SSME controllers, the external tank, the
orbiter MPS propellant management subsystem and helium subsystem,
four ascent thrust vector control units, and six SSME hydraulic servo-actu-
ators. The MPS, assisted by the two SRBs during the initial phases of the
ascent trajectory, provided the velocity increment from liftoff to a prede-
termined velocity increment before orbit insertion. The Shuttle Jettisoned
the two SRBs after their fuel had been expended, but the MPS continued
to thrust until the predetermined velocity was achieved. At that time, main
engine cutoff (MECO) was initiated, the external tank was Jettisoned, and
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the OMS was ignited to provide the final velocity increment for orbital
insertion. The magnitude of the velocity increment supplied by the OMS
depended on payload weight, mission trajectory, and system limitations.

Along with the start of the OMS thrusting maneuver (which settled the
MPS propellants), the remaining liquid oxygen propellant in the orbiter
feed system and SSMEs was dumped through the nozzles of the engines.
At the same time, the remaining liquid hydrogen propellant in the orbiter
feed system and SSMEs was dumped overboard through the hydrogen fill
and drain valves for six seconds. Then the hydrogen inboard fill and drain
valve closed, and the hydrogen recirculation valve opened. continuing the
dump. The hydrogen flowed through the engine hydrogen bleed valves to
the orbiter hydrogen MPS line between the inboard and outboard hydro-
gen fill and drain valves, and the remaining hydrogen was dumped
through the outboard fill and drain valve for approximately 120 seconds.

During on-orbit operations, the flight crew vacuum made the MPS
inert by opening the liquid oxygen and liquid hydrogen fill and drain
valves, which allowed the remaining propellants to be vented to space.
Before entry into the Earth’s atmosphere, the flight crew repressurized the
MPS propellant lines with helium to prevent contaminants from being
drawn into the lines during entry and to maintain internal positive pres-
sure. MPS helium also purged the spacecraft’s aft fuselage. The last activ-
ity involving the MPS occurred at the end of the landing rollout. At that
time. the helium remaining in on-board helium storage tanks was released
into the MPS to provide an inert atmosphere for safety.

Main Engine

The SSME represented a major advance in propulsion technology.
Each engine had an operating life of seven and a half hours and fifty-five
starts and the ability to throttle a thrust level that extended over a wide
range (65 percent to 109 percent of rated power level). The SSME was
the first large, liquid-fuel rocket engine designed to be reusable.

A cluster of three SSMEs housed in the orbiter’s aft fuselage provid-
ed the main propulsion for the orbiter. Ignited on the ground prior to
launch, the cluster of liquid hydrogen-liquid oxygen engines operated in
parallel with the SRBs during the initial ascent. After the boosters sepa-
rated, the main engines continued to operate. The nominal operating time
was approximately eight and a half minutes. The SSME:s developed thrust
by using high-energy propellants in a staged combustion cycle. The pro-
pellants were partially combusted in dual preburners to produce high-
pressure hot gas to drive the turbopumps. Combustion was completed in
the main combustion chamber. The cycle ensured maximum performance
because it eliminated parasitic losses. The various thrust levels provided
for high thrust during liftoff and the initial ascent phase but allowed thrust
to be reduced to limit acceleration to three g's during the final ascent
phase. The engines were gimbaled to provide pitch, yaw, and roll control
during the orbiter boost phase.
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Key components of each engine included four turbopumps (two low-
and two high-pressure), two preburners, the main injector, the main com-
bustion chamber, the nozzle, and the hot-gas manifold. The manifold was
the structural backbone of the engine. It supported the two preburners, the
high-pressure pumps, the main injector, the pneumatic control assembly,
and the main combustion chamber with the nozzle. Table 2-25 summa-
rizes SSME characteristics.

The SSME was the first rocket engine to use a built-in electronic dig-
ital controller. The controller accepted commands from the orbiter for
engine start, shutdown, and change in throttle setting and also monitored
engine operation. In the event of a failure, the controller automatically
corrected the problem or shut down the engine safely.

Main Engine Margin Improvement Program. Improvements to the
SSMEs for increased margin and durability began with a formal Phase I
program in 1983. Phase II focused on turbomachinery to extend the time
between high-pressure fuel turbopump (HPFT) overhauls by reducing the
operating temperature in the HPFT and by incorporating margin improve-
ments to the HPFT rotor dynamics (whirl), turbine blade, and HPFT bear-
ings. Phase II certification was completed in 1985, and all the changes
were incorporated into the SSMEs for the STS-26 mission.

In addition to the Phase II improvements, NASA made additional
changes to the SSME to further extend the engine’s margin and durability.
The main changes were to the high-pressure turbomachinery, main combus-
tion chamber, hydraulic actuators, and high-pressure turbine discharge tem-
perature sensors. Changes were also made in the controller software to
improve engine control. Minor high-pressure turbomachinery design changes
resulted in margin improvements to the turbine blades, thereby extending the
operating life of the turbopumps. These changes included applying surface
texture to important parts of the fuel turbine blades to improve the material
properties in the pressure of hydrogen and incorporating a damper into the
high-pressure oxidizer turbine blades to reduce vibration,

Plating a welded outlet manifold with nickel increased the main com-
bustion chamber’s life. Margin improvements were also made to five
hydraulic actuators to preclude a loss in redundancy on the launch pad.
Improvements in quality were incorporated into the servo-component coil
design, along with modifications to increase margin. To address a tem-
perature sensor in-flight anomaly, the sensor was redesigned and exten-
sively tested without problems.

To certify the improvements to the SSMEs and demonstrate their reli-
ability through margin (or limit) testing, NASA initiated a ground test pro-
gram in December 1986. Its primary purposes were to certify the
improvements and demonstrate the engine’s reliability and operating mar-
gin. From December 1986 to December 1987, 151 tests and 52,363 seconds
of operation (equivalent to 100 Shuttle missions) were performed. These
hot-fire ground tests were performed at the single-engine test stands at the
Stennis Space Center in Mississippi and at the Rockwell International
Rocketdyne Division’s Santa Susana Field Laboratory in California.
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NASA also conducted checkout and acceptance tests of the three
main engines for the STS-26 mission. Those tests, also at Stennis, began
in August 1987, and all three STS-26 engines were delivered to the
Kennedy Space Center by January 1988.

Along with hardware improvements, NASA conducted several major
reviews of requirements and procedures. These reviews addressed such
topics as possible failure modes and effects, as well as the associated crit-
ical items list. Another review involved having a launch/abort reassess-
ment team examine all launch-commit criteria, engine redlines, and
software logic. NASA also performed a design certification review. Table
2-26 lists these improvements, as well as events that occurred earlier in
the development of the SSME.

A related effort involved Marshall Space Flight Center engineers
who, working with their counterparts at Kennedy, accomplished a com-
prehensive launch operations and maintenance review. This ensured that
engine processing activities at the launch site were consistent with the lat-
est operational requirements.

External Tank

The external tank contained the propellants (liquid hydrogen and lig-
uid oxygen) for the SSMEs and supplied them under pressure to the three
main engines in the orbiter during liftoff and ascent. Just prior to orbital
insertion, the main engines cut off, and the external tank separated from
the orbiter, descended through a ballistic trajectory over a predesignated
area, broke up, and impacted in a remote ocean area. The tank was not
recovered.

The largest and heaviest (when loaded) element of the Space Shuttle,
the external tank had three major components: a forward liquid oxygen
tank; an unpressurized intertank, which contained most of the electrical
components; and an aft liquid hydrogen tank. Beginning with the STS-6
mission. NASA used a lightweight external tank (LWT). For each
kilogram of weight reduced from the original external tank, the cargo-
carrying capability of the Space Shuttle spacecraft increased one kilo-
gram. The weight reduction was accomplished by eliminating portions of
stringers (structural stiffeners running the length of the hydrogen tank),
using fewer stiffener rings, and by modifying major frames in the hydro-
gen tank. Also, significant portions of the tank were milled differently to
reduce thickness, and the weight of the external tank’s aft SRB attach-
ments was reduced by using a stronger, yet lighter and less expensive,
titanium alloy. Earlier, the use of the LWT reduced the total weight by
deleting the antigeyser line. The line paralleled the oxygen feed line and
provided a circulation path for liquid oxygen to reduce the accumulation
of gaseous oxygen in the feed line while the oxygen tank was being filled
before launch. After NASA assessed propellant loading data from ground
tests and the first four Space Shuttle missions, engineers removed the
antigeyser line for STS-5 and subsequent missions. The total length and
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diameter of the external tank remained unchanged (Figure 2—12). Table
2-27 summarizes the external tank characteristics, and Table 2-28 pre-
sents a chronology of external development.

As well as containing and delivering the propellant, the external tank
served as the structural backbone of the Space Shuttle during launch oper-
ations. The external tank consisted of two primary tanks: a large hydro-
gen tank and a smaller oxygen tank, joined by an intertank to form one
large propellant-storage container. Superlight ablator (SLA-561) and
foam insulation sprayed on the forward part of the oxygen tank, the inter-
tank, and the sides of the hydrogen tank protected the outer surfaces. The
insulation reduced ice or frost formation during launch preparation, pro-
tecting the orbiter from free-falling ice during flight. This insulation also
minimized heat leaks into the tank, avoided excessive boiling of the lig-
uid propellants, and prevented liquification and solidification of the air
next to the tank.

The external tank attached to the orbiter at one forward attachment
point and two aft points. In the aft attachment area, umbilicals carried flu-
ids, gases, electrical signals, and electrical power between the tank and
the orbiter. Electrical signals and controls between the orbiter and the two
SRBs also were routed through those umbilicals.

Liquid Oxygen Tank. The liquid oxygen tank was an aluminum
monocoque structure composed of a fusion-welded assembly of pre-
formed, chem-milled gores, panels, machined fittings, and ring chords. It
operated in a pressure range of 1,035 to 1,138 mmHg. The tank contained
antislosh and antivortex provisions to minimize liquid residuals and damp
fluid motion. The tank fed into a 0.43-meter-diameter feedline that sent
the liquid oxygen through the intertank, then outside the external tank to
the aft righthand external tank/orbiter disconnect umbilical. The feedline
permitted liquid oxygen to flow at approximately 1,268 kilograms per
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second, with the SSMEs operating at 104 percent of rated thrust, or per-
mitted a maximum flow of 71,979 liters per minute. The liquid oxygen
tank’s double-wedge nose cone reduced drag and heating, contained the
vehicle's ascent air data system, and served as a lightning rod.

Intertank. The intertank was not a tank in itself but provided a
mechanical connection between the liquid oxygen and liquid hydrogen
tanks. The primary functions of the intertank were to provide structural
continuity to the propellant tanks, to serve as a protective compartment to
house instruments, and to receive and distribute thrust loads from the
SRBs. The intertank was a steel/aluminum semimonocoque cylindrical
structure with flanges on each end for joining the liquid oxygen and lig-
uid hydrogen tanks. It housed external tank instrumentation components
and provided an umbilical plate that interfaced with the ground facility
arm for purging the gas supply. hazardous gas detection, and hydrogen
gas boiloff during ground operations. It consisted of mechanically joined
skin, stringers, and machined panels of aluminum alloy. The intertank
was vented during flight. It contained the forward SRB-external tank
attach thrust beam and fittings that distributed the SRB loads to the liquid
oxygen and liquid hydrogen tanks.

Liquid Hydrogen Tank. The liquid hydrogen tank was an aluminum
semimonocoque structure of fusion-welded barrel sections. five major
ring frames. and forward and aft ellipsoidal domes. Its operating pressure
was 1,759 mmHg. The tank contained an antivortex baffle and siphon
outlet to transmit the liquid hydrogen from the tank through a 0.43-meter
line to the left aft umbilical. The liquid hydrogen feedline flow rate was
211.4 kilograms per second, with the SSMEs at 104 percent of rated
thrust, or a maximum flow of 184.420 liters per minute. At the forward
end of the liquid hydrogen tank was the external tank/orbiter forward
attachment pod strut, and at its aft end were the two external tank/orbiter
aft attachment ball fittings as well as the aft SRB-external tank stabiliz-
ing strut attachments.

External Tank Thermal Protection System. The external tank ther-
mal protection system consisted of sprayed-on foam insulation and pre-
molded ablator materials. The system also included the use of phenolic
thermal insulators to preclude air liquefaction. Thermal isolators were
required for liquid hydrogen tank attachments to preclude the liquefaction
of air-exposed metallic attachments and to reduce heat flow into the lig-
uid hydrogen. The thermal protection system weighed 2,192 kilograms.

External Tank Hardware. The external hardware, external
tank/orbiter attachment fittings, umbilical fittings, and electrical and
range safety system weighed 4.136.4 kilograms.

Each propellant tank had a vent and relief valve at its forward end.
This dual-function valve could be opened by ground support equipment
for the vent function during prelaunch and could open during flight when
the ullage (empty space) pressure of the liquid hydrogen tank reached
1,966 mmHg or the ullage pressure of the liquid oxygen tank reached
1,293 mmHg.
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The liquid oxygen tank contained a separate, pyrotechnically operat-
ed, propulsive tumble vent valve at its forward end. At separation, the lig-
uid oxygen tumble vent valve was opened, providing impulse to assist in
the separation maneuver and more positive control of the entry aerody-
namics of the external tank.

There were eight propellant-depletion sensors, four each for fuel and
oxidizer. The fuel-depletion sensors were located in the bottom of the fuel
tank. The oxidizer sensors were mounted in the orbiter liquid oxygen
feedline manifold downstream of the feedline disconnect. During SSME
thrusting, the orbiter general purpose computers constantly computed the
instantaneous mass of the vehicle because of the usage of the propellants.
Normally, MECO was based on a predetermined velocity; however, if
any two of the fuel or oxidizer sensors sensed a dry condition, the engines
would be shut down.

The locations of the liquid oxygen sensors allowed the maximum
amount of oxidizer to be consumed in the engines, while allowing suffi-
cient time to shut down the engines before the oxidizer pumps ran dry. In
addition, 500 kilograms of liquid hydrogen were loaded over and above
that required by the six-to-one oxidizer/fuel engine mixture ratio. This
assured that MECO from the depletion sensors was fuel rich; oxidizer-
rich engine shutdowns could cause burning and severe erosion of engine
components,

Four pressure transducers located at the top of the liquid oxygen and
liquid hydrogen tanks monitored the ullage pressures. Each of the two aft
external tank umbilical plates mated with a corresponding plate on the
orbiter. The plates helped maintain alignment among the umbilicals.
Physical strength at the umbilical plates was provided by bolting corre-
sponding umbilical plates together. When the orbiter general purpose
computers commanded external tank separation, the bolts were severed
by pyrotechnic devices.

The external tank had five propellant umbilical valves that interfaced
with orbiter umbilicals—two for the liquid oxygen tank and three for the
liquid hydrogen tank. One of the liquid oxygen tank umbilical valves was
for liquid oxygen, the other for gaseous oxygen. The liquid hydrogen tank
umbilical had two valves for liquid and one for gas. The intermediate-
diameter liquid hydrogen umbilical was a recirculation umbilical used
only during the liquid hydrogen chill-down sequence during prelaunch.

The external tank also had two electrical umbilicals that carried elec-
trical power from the orbiter to the tank and the two SRBs and provided
information from the SRBs and external tank to the orbiter. A swing-arm-
mounted cap to the fixed service structure covered the oxygen tank vent
on top of the external tank during countdown and was retracted about two
minutes before liftoff. The cap siphoned off oxygen vapor that threatened
to form large ice on the external tank, thus protecting the orbiter’s ther-
mal protection system during launch.

External Tank Range Safety System. A range safety system, moni-
tored by the flight crew, provided for dispersing tank propellants if nec-
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essary. It included a battery power source, a receiver/decoder, antennas,
and ordnance.

Post-Challenger Modification. Prior to the launch of STS-26.
NASA modified the external tank by strengthening the hydrogen pressur-
ization line. In addition, freezer wrap was added to the hydrogen line.
This permitted the visual detection of a hydrogen fire (Table 2-28).

Solid Rocket Boosters

The two SRBs provided the main thrust to lift the Space Shuttle off
the pad and up to an altitude of about forty-four and a half kilometers. In
addition, the two SRBs carried the entire weight of the external tank and
orbiter and transmitted the weight load through their structure to the
mobile launcher platform. The SRBs were ignited after the three SSMEs’
thrust level was verified. The two SRBs provided 71.4 percent of the
thrust at liftoff and during first-stage ascent. Seventy-five seconds after
SRB separation, SRB apogee occurred at an altitude of approximately
sixty-five kilometers. SRB impact occurred in the ocean approximately
226 kilometers downrange, to be recovered and returned for refurbish-
ment and reuse.

The primary elements of each booster were the motor (including
case, propellant, igniter, and nozzle), structure, separation systems. oper-
ational flight instrumentation, recovery avionics, pyrotechnics, decelera-
tion system, thrust vector control system, and range safety destruct
system (Figure 2-13). Each booster attached to the external tank at the
SRB’s aft frame with two lateral sway braces and a diagonal attachment.
The forward end of each SRB joined the external tank at the forward end
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of the SRB’s forward skirt. On the launch pad, each booster also con-
nected to the mobile launcher platform at the aft skirt with four bolts and
nuts that were severed by small explosives at liftoff.

The SRBs were used as matched pairs. Each consisted of four solid
rocket motor (SRM) segments. The pairs were matched by loading each
of the four motor segments in pairs from the same batches of propellant
ingredients to minimize any thrust imbalance. The exhaust nozzle in the
aft segment of each motor, in conjunction with the orbiter engines,
steered the Space Shuttle during the powered phase of launch. The seg-
mented-casing design assured maximum flexibility in fabrication and
ease of transportation and handling. Each segment was shipped to the
launch site on a heavy-duty rail car with a specially built cover.

The propellant mixture in each SRB motor consisted of an ammoni-
um perchlorate (oxidizer, 69.6 percent by weight), aluminum (fuel,
16 percent), iron oxide (a catalyst, 0.4 percent), a polymer (a binder that
held the mixture together, 12.04 percent), and an epoxy curing agent
(1.96 percent). The propellant was an eleven-point star-shaped perfora-
tion in the forward motor segment and a double-truncated-cone perfora-
tion in each of the aft segments and aft closure. This configuration
provided high thrust at ignition and then reduced the thrust by approxi-
mately one-third fifty seconds after liftoff to prevent overstressing the
vehicle during maximum dynamic pressure.

The cone-shaped aft skirt supported the four aft separation motors.
The aft section contained avionics, a thrust vector control system that con-
sisted of two auxiliary power units and hydraulic pumps, hydraulic Sys-
tems, and a nozzle extension jettison system. The forward section of each
booster contained avionics, a sequencer, forward separation motors, a nose
cone separation system, drogue and main parachutes, a recovery beacon, a
recovery light, a parachute camera on selected flights, and a range safety
system. Each SRB incorporated a range safety system that included a bat-
tery power source, a receiver-decoder, antennas, and ordnance.

Each SRB had two integrated electronic assemblies, one forward and
one aft. After burnout, the forward assembly initiated the release of the
nose cap and frustum and turned on the recovery aids. The aft assembly,
mounted in the external tank-SRB attach ring, connected with the forward
assembly and the orbiter avionics systems for SRB ignition commands
and nozzle thrust vector control. Each integrated electronic assembly had
a multiplexer-demultiplexer, which sent or received more than one mes-
sage, signal, or unit of information on a single communications channel.

Eight booster separation motors (four in the nose frustum and four in
the aft skirt) of each SRB thrust for 1.02 seconds at SRB separation from
the external tank. SRB separation from the external tank was electrically
initiated. Each solid rocket separation motor was 0.8 meter long and
32.5 centimeters in diameter (Table 2-29).

Location aids were provided for each SRB, frustum-drogue chutes,
and main parachutes. These included a transmitter, antenna, strobe/con-
verter, battery, and saltwater switch electronics. The recovery crew
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retrieved the SRBs, frustum/drogue chutes, and main parachutes. The
nozzles were plugged, the solid rocket motors were dewatered, and the
crew towed the SRBs back to the launch site. Each booster was removed
from the water, and its components disassembled and washed with fresh
and de-ionized water to limit saltwater corrosion. The motor segments,
igniter, and nozzle were shipped back to Thiokol for refurbishment. The
SRB nose caps and nozzle extensions were not recovered.

Testing and production of the SRB were well under way in 1979. The
booster performed well until the Challenger accident revealed flaws that
had very likely existed for several missions but had resulted in little reme-
dial action. The 1986 Challenger accident forced major modifications to
the SRB and SRM.

Post-Challenger Modifications. On June 13, 1986, President Reagan
directed NASA to implement, as soon as possible, the recommendations
of the Presidential Commission on the Space Shuttle Challenger
Accident. During the downtime following the Challenger accident,
NASA analyzed critical structural elements of the SRB, primarily focused
in areas where anomalies had been noted during postflight inspection of
recovered hardware.

Anomalies had been noted in the attach ring where the SRBs joined
the external tank. Some of the fasteners showed distress where the ring
attached to the SRB motor case. Tests attributed this to the high loads
encountered during water impact. To correct the situation and ensure
higher strength margins during ascent, the attach ring was redesigned to
encircle the motor case completely (360 degrees). Previously, the attach
ring formed a “*C” and encircled the motor case 270 degrees.

In addition, NASA performed special structural tests on the aft skirt.
During this test program, an anomaly occurred in a critical weld between
the hold-down post and skin of the skirt. A redesign added reinforcement
brackets and fittings in the aft ring of the skirt. These modifications added
approximately 200 kilograms to the weight of each SRB.

Solid Rocket Motor Redesign. The Presidential Commission deter-
mined that the cause of the loss of the Challenger was “a failure in the
joint between the two lower segments of the right solid rocket motor. The
specific failure was the destruction of the seals that are intended to pre-
vent hot gases from leaking through the joint during the propellant burn
of the rocket motor.”"

Consequently, NASA developed a plan for a redesigned solid rocket
motor (RSRM). Safety in flight was the primary objective of the SRM
redesign. Minimizing schedule impact by using existing hardware, to the
extent practical, without compromising safety was another objective.

“Report at a Glance. report to the President by the Presidential Commission
on the Space Shuttle Challenger Accident, Chapter 1V, “The Cause of the
Accident.” Finding (no pg. number).
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NASA established a joint redesign team with participants from the
Marshall Space Flight Center, other NASA centers, Morton Thiokol, and
outside NASA. The team developed an “SRM Redesign Project Plan” to
formalize the methodology for SRM redesign and requalification. The
plan provided an overview of the organizational responsibilities and rela-
tionships; the design objectives, criteria, and process; the verification
approach and process; and a master schedule. Figure 2—14 shows the
SRM Project Schedule as of August 1986. The companion “Development
and Verification Plan™ defined the test program and analyses required to
verify the redesign and unchanged components of the SRM. The SRM
was carefully and extensively redesigned. The RSRM received intense
scrutiny and was subjected to a thorough certification process to verify
that it worked properly and to qualify the motor for human spaceflight.

NASA assessed all aspects of the existing SRM and required design
changes in the field joint, case-to-nozzle joint, nozzle, factory joint, pro-
pellant grain shape, ignition system, and ground support equipment. The
propellant, liner, and castable inhibitor formulations did not require
changes. Design criteria were established for each component to ensure a
safe design with an adequate margin of safety. These criteria focused on
loads, environments, performance, redundancy, margins of safety, and
verification philosophy.

The team converted the criteria into specific design requirements dur-
ing the Preliminary Requirements Reviews held in July and August 1986.
NASA assessed the design developed from these requirements at the
Preliminary Design Review held in September 1986 and baselined in
October 1986. NASA approved the final design at the Critical Design
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Review held in October 1987. Manufacture of the RSRM test hardware
and the first flight hardware began prior to the Preliminary Design
Review and continued in parallel with the hardware certification pro-
gram. The Design Certification Review considered the analyses and test
results versus the program and design requirements to certify that the
RSRM was ready to fly.

Specific Modifications. The SRM field-joint metal parts, internal
case insulation, and seals were redesigned, and a weather protection sys-
tem was added. The major change in the motor case was the new tang
capture feature to provide a positive metal-to-metal interference fit
around the circumference of the tang and clevis ends of the mating seg-
ments. The interference fit limited the deflection between the tang and
clevis O-ring sealing surfaces caused by motor pressure and structural
loads. The joints were designed so that the seals would not leak under
twice the expected structural deflection and rate.

The new design, with the tang capture feature, the interference fit,
and the use of custom shims between the outer surface of the tang and
inner surface of the outer clevis leg, controlled the O-ring sealing gap
dimension. The sealing gap and the O-ring seals were designed so that a
positive compression (squeeze) was always on the O-rings. The minimum
and maximum squeeze requirements included the effects of temperature,
O-ring resiliency and compression set, and pressure. The redesign
increased the clevis O-ring groove dimension so that the O-ring never
filled more than 90 percent of the O-ring groove, and pressure actuation
was enhanced.

The new field-joint design also included a new O-ring in the capture
feature and an additional leak check port to ensure that the primary O-ring
was positioned in the proper sealing direction at ignition. This new or
third O-ring also served as a thermal barrier in case the sealed insulation
was breached. The field-joint internal case insulation was modified to be
sealed with a pressure-actuated flap called a j-seal, rather than with putty
as in the STS 51-L (Challenger) configuration.

The redesign added longer field-joint-case mating pins, with a recon-
figured retainer band, to improve the shear strength of the pins and
increase the metal parts’ joint margin of safety. The joint safety margins,
both thermal and structural, were demonstrated over the full ranges of
ambient temperature, storage compression, grease effect, assembly stress-
es, and other environments. The redesign incorporated external heaters
with integral weather seals to maintain the joint and O-ring temperature
at a minimum of 23.9 degrees Celsius. The weather seal also prevented
water intrusion into the joint.

Original Versus Redesigned SRM Case-to-Nozzle Joint. The SRM
case-to-nozzle joint, which experienced several instances of O-ring ero-
sion in flight, was redesigned to satisfy the same requirements imposed
on the case field joint. Similar to the field joint, case-to-nozzle joint mod-
ifications were made in the metal parts, internal insulation, and O-rings.
The redesign added radial bolts with Stato-O-Seals to minimize the joint
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sealing gap opening. The internal insulation was modified to be sealed
adhesively, and a third O-ring was included. The third O-ring served as a
dam or wiper in front of the primary O-ring to prevent the polysulfide
adhesive from being extruded in the primary O-ring groove. It also served
as a thermal barrier in case the polysulfide adhesive was breached. The
polysulfide adhesive replaced the putty used in the STS 51-L joint. Also,
the redesign added an another leak check port to reduce the amount of
trapped air in the joint during the nozzle installation process and to aid in
the leak check procedure.

Nozzle. Redesigned internal joints of the nozzle metal parts incorpo-
rated redundant and verifiable O-rings at each joint. The modified nozzle
steel fixed housing part permitted the incorporation of the 100 radial bolts
that attached the fixed housing to the case’s aft dome. The new nozzle
nose inlet, cowl/boot, and aft exit cone assemblies used improved bond-
ing techniques. Increasing the thickness of the aluminum nose inlet hous-
ing and improving the bonding process eliminated the distortion of the
nose inlet assembly’s metal-part-to-ablative-parts bond line. The changed
tape-wrap angle of the carbon cloth fabric in the areas of the nose inlet
and throat assembly parts improved the ablative insulation erosion toler-
ance. Some of these ply-angle changes had been in progress prior to STS
51-L. Additional structural support with increased thickness and contour
changes to the cowl and outer boot ring increased their margins of safety.
In addition, the outer boot ring ply configuration was altered.

Factory Joint. The redesign incorporated minor modifications in the
case factory joints by increasing the insulation thickness and layup to
increase the margin of safety on the internal insulation. Longer pins were
also added, along with a reconfigured retainer band and new weather seal
to improve factory joint performance and increase the margin of safety. In
addition, the redesign changed the O-ring and O-ring groove size to be
consistent with the field joint.

Propellant. The motor propellant forward transition region was
recontoured to reduce the stress fields between the star and cylindrical
portions of the propellant grain.

Ignition System. The redesign incorporated several minor modifica-
tions into the ignition system. The aft end of the igniter steel case, which
contained the igniter nozzle insert, was thickened to eliminate a localized
weakness. The igniter internal case insulation was tapered to improve the
manufacturing process. Finally, although vacuum putty was still used at
the joint of the igniter and case forward dome, it eliminated asbestos as
one of its constituents.

Ground Support Equipment. Redesigned ground support equipment
(1) minimized the case distortion during handling at the launch site,
(2) improved the segment tang and clevis joint measurement system for
more accurate reading of case diameters to facilitate stacking, (3) mini-
mized the risk of O-ring damage during joint mating, and (4) improved
leak testing of the igniter, case, and nozzle field joints. A ground support
equipment assembly aid guided the segment tang into the clevis and
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rounded the two parts with each other. Other ground support equipment
modifications included transportation monitoring equipment and the lift-
ing beam.

Testing. Tests of the redesigned motor were carried out in a horizon-
tal attitude, providing a more accurate simulation of actual conditions of
the field joint that failed during the STS 51-L mission. In conjunction with
the horizontal attitude for the RSRM full-scale testing, NASA incorporat-
ed externally applied loads. Morton Thiokol constructed a second hori-
zontal test stand for certification of the redesigned SRM. The contractor
used this new stand to simulate environmental stresses, loads, and tem-
peratures experienced during an actual Space Shuttle launch and ascent.
The new test stand also provided redundancy for the original stand.

The testing program included five full-scale firings of the RSRM
prior to STS-26 to verify the RSRM performance. These included two
development motor tests, two qualification motor tests, and a production
verification motor test. The production verification motor test in August
1988 intentionally introduced severe artificial flaws into the test motor to
make sure that the redundant safety features implemented during the
redesign effort worked as planned. Laboratory and component tests were
used to determine component properties and characteristics. Subscale
motor tests simulated gas dynamics and thermal conditions for compo-
nents and subsystem design. Simulator tests, consisting of motors using
full-size flight-type segments, verified joint design under full flight loads,
pressure, and temperature.

Full-scale tests verified analytical models and determined hardware
assembly characteristics; joint deflection characteristics; joint perfor-
mance under short duration, hot-gas tests, including joint flaws and flight
loads; and redesigned hardware structural characteristics. Table 2-30 lists
the events involved in the redesign of the SRB and SRM as well as earli-
er events in their development.”

Upper Stages

The upper stages boost payloads from the Space Shuttle’s parking
orbit or low-Earth orbit to geostationary-transfer orbit or geosynchronous
orbit. They are also used on ELV missions to boost payloads from an
early stage of the orbit maneuver into geostationary-transfer orbit or geo-
synchronous orbit. The development of the upper stages used by NASA
began prior to 1979 and continued throughout the 1980s (Table 2-31).

The upper stages could be grouped into three categories, according to
their weight delivery capacity:

+ Low capacity: 453- to 1,360-kilogram capacity to geosynchronous
orbit

wSee Ezell, NASA Historical Data Book, Volume 111, for earlier events in
SRB development.
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*  Medium capacity: 1,360- to 3,175-kilogram capacity to geosynchro-
nous orbit

* High capacity: 3,175- to 5.443-kilogram capacity to geosynchronous
orbit

Inertial Upper Stages

DOD designed and developed the Inertial Upper Stage (IUS)
medium-capacity system for integration with both the Space Shuttle and
Titan launch vehicle. It was used to deliver spacecraft into a wide range
of Earth orbits beyond the Space Shuttle’s capability. When used with the
Shuttle, the solid-propellant IUS and its payload were deployed from the
orbiter in low-Earth orbit. The IUS was then ignited to boost its payload
to a higher energy orbit. NASA used a two-stage configuration of the [US
primarily to achieve geosynchronous orbit and a three-stage version for
planetary orbits.

The IUS was 5.18 meters long and 2.8 meters in diameter and
weighed approximately 14,772 kilograms. It consisted of an aft skirt, an
aft stage SRM with 9,707 kilograms of solid propellant generating
202,828.8 newtons of thrust, an interstage, a forward stage SRM with
2,727.3 kilograms of propellant generating 82,288 newtons of thrust and
using an extendible exit cone, and an equipment support section. The
equipment support section contained the avionics that provided guidance,
navigation, telemetry, command and data management, reaction control,
and electrical power. All mission-critical components of the avionics sys-
tem and thrust vector actuators, reaction control thrusters, motor igniter,
and pyrotechnic stage separation equipment were redundant to ensure
better than 98-percent reliability (Figure 2-15).
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Figure 2-15. Inertial Upper Stage
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The spacecraft was attached to the IUS at a maximum of eight attach-
ment points. These points provided substantial load-carrying capability
while minimizing thermal transfer. Several IUS interface connectors pro-
vided power and data transmission to the spacecraft. Access to these con-
nectors could be provided on the spacecraft side of the interface plane or
through the access door on the IUS equipment bay.

The IUS provided a multilayer insulation blanket of aluminized
Kapton with polyester net spacers and an aluminized beta cloth outer
layer across the IUS and spacecraft interface. All IUS thermal blankets
vented toward and into the IUS cavity. All gases within the IUS cavity
vented to the orbiter payload bay. There was no gas flow between the
spacecraft and the 1US. The thermal blankets were grounded to the IUS
structure to prevent electrostatic charge buildup.

Beginning with STS-26, the [US incorporated a number of advanced
features. It had the first completely redundant avionics system developed
for an uncrewed space vehicle. This system could correct in-flight fea-
tures within milliseconds. Other advanced features included a carbon
composite nozzle throat that made possible the high-temperature, long-
duration firing of the TUS motor and a redundant computer system in
which the second computer could take over functions from the primary
computer. if necessary.

Payload Assist Module

The Payload Assist Module (PAM), which was originally called the
Spinning Stage Upper Stage, was developed by McDonnell Douglas at its
own expense for launching smaller spacecraft to geostationary-transfer
orbit. It was designed as a higher altitude booster of satellites deployed in
near-Earth orbit but operationally destined for higher altitudes. The
PAM-D could launch satellites weighing up to 1,247 kilograms. It was
originally configured for satellites that used the Delta ELV but was used
on both ELVs and the Space Shuttle. The PAM-DII (used on STS 61-B
and STS 61-C) could launch satellites weighing up to 1,882 kilograms. A
third PAM, the PAM-A, had been intended for satellites weighing up to
1,995 kilograms and was configured for missions using the Atlas-
Centaur. NASA halted its development in 1982, pending definition of
spacecraft needs. Commercial users acquired the PAM-D and PAM-DII
directly from the manufacturer.

The PAM consisted of a deployable (expendable) stage and reusable
airborne support equipment. The deployable stage consisted of a spin-
stabilized SRM, a payload attach fitting to mate with the unmanned
spacecraft, and the necessary timing., sequencing, power, and control
assemblies.

The PAM’s airborne support equipment consisted of the reusable hard-
ware elements required to mount, support, control, monitor, protect, and
operate the PAM’s expendable hardware and untended spacecraft from
liftoff to deployment from the Space Shuttle or ELV. It also provided these
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functions for the safing and return of the stage and spacecraft in case of an
aborted mission. The airborne support equipment was designed to be as
self-contained as possible. The major airborne support equipment elements
included the cradle for structural mounting and support, the spin table and
drive system, the avionics system to control and monitor the airborne sup-
port equipment and the PAM vehicle, and the thermal control system.

The PAM stages were supported through the spin table at the base of
the motor and through restraints at the PAF. The forward restraints were
retracted before deployment. The sunshield of the PAM-D and DII pro-
vided thermal protection of the PAM/untended spacecraft when the Space
Shuttle orbiter payload bay doors were open on orbit.

Transfer Orbit Stage

The development of the Transfer Orbit Stage (TOS) began in April
1983 when NASA signed a Space System Development Agreement with
Orbital Sciences Corporation (OSC) to develop a new upper stage. Under
the agreement, OSC provided technical direction, systems engineering,
mission integration, and program management of the design, production,
and testing of the TOS. NASA, with participation by the Johnson and
Kennedy Space Centers, provided technical assistance during TOS devel-
opment and agreed to provide technical monitoring and advice during
TOS development and operations to assure its acceptability for use with
major national launch systems, including the STS and Titan vehicles.
NASA also established a TOS Program Office at the Marshall Space
Flight Center. OSC provided all funding for the development and manu-
facturing of TOS (Figure 2-16).

In June 1985, Marshall awarded a 16-month contract to OSC for a
laser initial navigation system (LINS) developed for the TOS. Marshall
would use the LINS for guidance system research, testing, and other pur-
poses related to the TOS program.

Production of the TOS began in mid-
1986. It was scheduled to be used on the
Advanced Communications Technology
Satellite (ACTS) and the Planetary
Observer series of scientific exploration
spacecraft, beginning with the Mars
Observer mission in the early 1990s.

The TOS could place 2,490 to
6,080 kilograms payloads into geosta-
tionary-transfer orbit from the STS and :
up to 5,227 kilograms from the Titan
Il and IV and could also deliver space-
craft to planetary and other high-ener-
gy trajectories. The TOS allowed
smaller satellites to be placed into geo-
stationary-transfer orbit in groups of

Figure 2-16.
Transfer Orbit Stage
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two or three. Two payloads of the Atlas class (1,136 kKilograms) or three
payloads of the Delta class (636 kilograms) could be launched on a sin-
gle TOS mission. Besides delivery of commercial communications satel-
lites, its primary market, the TOS would be used for NASA and DOD
missions.

The TOS system consisted of flight vehicle hardware and software
and associated airborne and ground support equipment required for
buildup. Table 3-32 lists its characteristics. Performance capabilities of
the TOS included:

*  Earth escape transfer capability

*  Geosynchronous transfer orbit capability
*  Orbit inclination change capability

* Low-altitude transfer capability

* Intermediate transfer orbit capability

*  De-orbit maneuver

* Satellite repair and retrieval

Apogee and Maneuvering System

The liquid bipropellant Apogee and Maneuvering System (AMS) was
designed to be used both with and independently of the TOS. The AMS
would boost the spacecraft into a circular orbit and allow on-orbit maneu-
vering. Martin Marietta Denver Aerospace worked to develop the AMS
with Rockwell International’s Rocketdyne Division, providing the AMS
RS-51 bipropellant rocket engine, and Honeywell, Inc., supplied the
TOS/AMS LINS avionics system.

When it became operational, the TOS/AMS combination would
deliver up to approximately 2,950 kilograms into geosynchronous orbit
from the orbiter’s parking orbit into final geosynchronous orbit. The
TOS/AMS would have a delivery capability 30 percent greater than the
IUS and would reduce stage and STS user costs. The main propulsion,
reaction control, avionics, and airborne support equipment systems would
be essentially the same as those used on the TOS. In particular, the avion-
ics would be based on a redundant, fault-tolerant LINS.

Operating alone, the AMS would be able to place communications
satellites weighing up to approximately 2,500 kilograms into geostation-
ary-transfer orbit after deployment in the standard Space Shuttle parking
orbit. Other missions would include low-orbit maneuvering between the
Shuttle and the planned space station, delivery of payloads to Sun-
synchronous and polar orbits, and military on-demand maneuvering capa-
bility. The AMS was planned to be available for launch in early 1989 and
would provide an alternative to the PAM-DII.

The avionics, reaction control system, and airborne support equip-
ment designs of the AMS would use most of the standard TOS compo-
nents. Main propulsion would be provided by the 2,650-pound thrust
Rocketdyne RS-51 engine. This engine was restartable and operable over
extended periods. A low-thrust engine option that provided 400 pounds of
thrust would also be available for the AMS.
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Centaur Upper Stage

NASA studied and began production in the early 1980s of a modified
Centaur upper stage for use with the STS for planetary and heavier geo-
synchronous mission applications. The proposed modifications would
increase the size of the propellant tanks to add about 50 percent more pro-
pellant capacity and make the stage compatible with the Space Shuttle.
This wide-body version would use the same propulsion system and about
85 percent of the existing Centaur’s avionics systems. Contracts were
negotiated with General Dynamics, Honeywell, Pratt & Whitney, and
Teledyne for the design, development, and procurement of Centaur upper
stages for the Galileo and International Solar Polar missions that were
scheduled for 1986.

However, following the Challenger accident, NASA determined that
even with modifications, the Centaur could not comply with necessary
safety requirements for use on the Shuttle. The Centaur upper stage ini-
tiative was then dropped.

Advanced Programs

Advanced programs focused on future space transportation activities,
including improving space transportation operations through the intro-
duction of more advanced technologies and processes, and on servicing
and protecting U.S. space assets. The following sections describe NASA’s
major advanced program initiatives. Several of the efforts progressed
from advanced program status to operational status during this decade.

Orbital Transfer Vehicle

NASA’s Advanced Planning/Programs Division of the Office of
Space Transportation identified the need for an Orbital Transfer Vehicle
(OTV) in the early 1980s, when it became obvious that a way was need-
ed to transport payloads trom the Space Shuttle’s low-Earth orbit to a
higher orbit and to retrieve and return payloads to the Shuttle or future
space station. The Marshall Space Flight Center was designated as the
lead center for the development effort, and the Lewis Research Center led
the propulsion system studies. An untended OTV was proposed for a first
flight in the early 1990s.

NASA believed that the use of aerobraking was necessary to make
the OTV affordable. Studies beginning in 1981 conducted at Marshall by
definition phase contractors Boeing Aerospace Company and General
Electric Reentry Systems determined that aerodynamic braking was an
efficient fuel-saving technigue for the OTV, perhaps doubling payload
capacity. This technique would use the Earth’s atmosphere as a braking
mechanism for return trips, possibly supplemented by the use of a ballute,
an inflatable drag device. When the transfer vehicle passed through the
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atmosphere, the friction of the air against the vehicle would provide
enough drag to slow the vehicle. Otherwise, a rocket engine firing would
be required to brake the vehicle. Aeroassist braking would save one burn,
and the extra fuel could be used to transport a larger payload to a high
orbit. The aeroassisted braking could result in about a twofold increase in
the amount of payload that could be ferried to high altitudes.

Boeing’s studies emphasized low lifting-body designs—"low lift-to-
drag ratio”—designs with a relatively low capability of lift to enable them
to fly, but ones that weigh less. General Electric Reentry Systems focused
on moderate lift-to-drag ratio designs—relatively moderate lift capability
and somewhat heavier weight.

In 1981, NASA designated the Lewis Research Center the lead cen-
ter for OTV propulsion technology. This program supported technology
for three advanced engine concepts that were developed by Aerojet
TechSystems, Pratt & Whitney, and Rocketdyne to satisfy a NASA-
supplied set of goals. The proposed engines would be used to transfer
loads—both personnel and cargo—between low-Earth orbit and geosyn-
chronous orbit, and beyond. In addition, because OTVs would face
requirements ranging from high-acceleration round-trip transfers for
resupply to very low-acceleration one-way transfers of large. flexible
structures. NASA investigated variable thrust propulsion systems, which
would provide high performance over a broad throttling range.

In 1983. NASA chose the same three contractors to begin a program
leading to the design, development, test, and engineering of the OTV.
These contracts expired in 1986. NASA sponsored another competitive
procurement to continue the OTV propulsion program. Funding was
reduced. and only Rocketdyne and Aerojet continued the advanced
engine technology development. Component testing began in 1988, and
further investigations into aerobraking continued into the 1990s.

The OTV would be used primarily to place NASA, DOD, and com-
mercial satellites and space platforms into geosynchronous orbit. The
OTV could also deliver large payloads into other orbits and boost plane-
tary exploration spacecraft into high-velocity orbits approaching their
mission trajectory. The vehicle was expected to use liquid oxygen-liquid
hydrogen propellants.

The OTV's reusable design provided for twenty flights before it had
to be refurbished or replaced. Because of its reusability, the OTV would
significantly reduce payload transportation costs.

At the same time, that Lewis was leading propulsion studies.
Marshall initiated studies in 1984 to define OTV concepts and chose
Boeing Aerospace and Martin Marietta to conduct the conceptual studies.
The studies examined the possibilities of both a space-based and an
Earth-based OTV. Both would initially be uncrewed upper stages. The
ultimate goal, however, was to develop a crewed vehicle capable of fer-
rying a crew capsule to geosynchronous orbit. The vehicle would then
return the crew and capsule for other missions. The development of a
crew capsule for the OTV was planned for the 1990s.
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The Space Shuttle would carry the Earth-based OTV into space. It
would be launched from the Shuttle's payload bay or from an aft cargo
carrier attached to the aft end of the Shuttle’s external tank. The OTV
would transfer payloads from a low orbit to a higher one. It would also
retrieve payloads in high orbits and return them to the Shuttle. The OTV
would then return to Earth in the Shuttle’s payload bay. The OTV would
separate from the Shuttle’s external tank at about the same time that the
payload was deployed from the orbiter’s cargo bay. The two components
would then join together and begin to travel to a higher orbit. This Earth-
based OTV offered the advantage of performing vehicle maintenance and
refueling on the ground with the help of gravity, ground facilities. and
workers who do not have to wear spacesuits.

A space-based OTV would be based at the future space station. It
would move payloads into higher orbit from the space station and then
return to its home there. It would be refueled and maintained at the space
station. Studies showed cost savings for space-based OTVs. This type of
OTV could be assembled in orbit rather than on the ground so it could be
larger than a ground-based unit and capable of carrying more payload.
Initial studies of an OTV that would be based at the space station were
completed in 1985.

A single-stage OTV could boost payloads of up to 7,272 kilograms to
high-Earth or geosynchronous orbit. A multistage OTV could provide up
to 36,363 kilograms to lunar orbit with 6.818.2 kilograms returned to
low-Earth orbit. After completing its delivery or servicing mission, the
OTV would use its rocket engines to start a descent. Skimming through
the thin upper atmosphere (above sixty kilometers), the OTVs aerobrake
would slow the OTV without consuming extra propellant. Then. because
of orbital dynamics, the OTV would navigate back to a low-Earth orbit.
When the OTV reached the desired orbital altitude, its rocket engines
would again fire, circularizing its orbit until it was retrieved by the Space
Shuttle or an orbital maneuvering vehicle (OMV) dispatched from the
space station.

NASA Administrator James M. Beggs stated in June 1985 that the
OTV would complement the proposed OMV. The OTV would transport
payloads from low-Earth orbit to destinations much higher than the OMV
could reach. The majority of the payloads transported by the OTV would
be delivered to geostationary orbit. Beggs envisioned that most OTVs
would be based at the space station, where they would be maintained.
fueled, and joined to payloads. In time, the OTV would also be used to
transport people (o geostationary orbit.

Orbital Maneuvering Vehicle
The OMV (Figure 2-17) was designed to aid satellite servicing and

retrieval. This uncrewed vehicle could be characterized as a “space tug,”
which would move satellites and other orbiting objects from place to
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place above the Earth. A reusable.
remotely operated unmanned propulsive
vehicle to increase the range of the STS,
the OMV was designed to be used pri-
marily for spacecraft delivery, retrieval,
boost, deboost, and close proximity visu-
al observation beyond the operating
range of the Space Shuttle. The vehicle
would extend the reach of the Shuttle up
to approximately 2,400 kilometers.

Concept definition studies were com-
pleted in 1983, and development began
toward a flight demonstration of the abil-
ity to refuel propellant tanks of an orbit-
ing satellite. In 1984, an in-tlight
demonstration of hydrazine fuel transfer
took place successfully on STS 41-G.
System definition studies were complet-

Figure 2-17. ed in 1985, and in June 1986, TRW was

Orbital Maneuvering Vehicle selected by NASA for negotiations lead-

ing to the award of a contract to develop

the OMYV. The Preliminary Requirements Review took place in 1987, and

the Preliminary Design Review was held in 1988, with the Marshall
Space Flight Center managing the effort.

NASA planned for the OMV to be available for its first mission in
1993, when it would be remotely controlled from Earth. In the early years
of use. NASA envisioned that the OMV would be deployed from the
Space Shuttle for each short-duration mission and returned to Earth for
servicing. Later, the vehicle would be left parked in orbit for extended
periods, for use with both the Shuttle and the space station. However, the
OMYV was the victim of budget cuts, and the contract with TRW was can-
celed in June 1990.

Tethered Satellite System

The Tethered Satellite System (TSS) program was a cooperative
effort between the government of Italy and NASA to provide the capa-
bility to perform science in areas of space outside the reach of the Space
Shuttle. The TSS would enable scientists to conduct experiments in the
upper atmosphere and ionosphere while tethered to the Space Shuttle as
its operating base. The system consisted of a satellite anchored to the
Space Shuttle by a tether up to 100 kilometers long. (Tethers are long.
superstrong tow lines joining orbiting objects together.)

The advanced development stage of the program was completed in
1983. and management for the TSS moved to the Space Transportation
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and Capability Development Division. In 1984, a study and laboratory
program was initiated to define and evaluate several applications of teth-
ers in space. Possible applications included power generation, orbit rais-
ing in the absence of propellants, artificial gravity, and space vehicle
constellations. In 1986, the Critical Design and Manufacturing Reviews
were conducted on the satellite and the deployer. In 1988, manufacture
and qualification of the flight subsystems continued. The twelve-meter
deployer boom, reel motor, and on-board computer were all qualified and
delivered. Also, manufacture of the deployer structure was initiated, and
the tether control mechanisms were functionally tested. A test program
was completed for the satellite structural and engineering models. The
flight satellite structure was due for delivery in early 1989. The develop-
ment of the scientific instruments continued, with delivery of flight satel-
lite instruments scheduled for early 1989. The first TSS mission was
scheduled for 1991,

Advanced Launch System

The Advanced Launch System, a joint NASA-DOD effort, was a Sys-
tems definition and technology advanced development program aimed at
defining a new family of launchers for use after 2000, including a new
heavy-lift vehicle. President Reagan signed a report to Congress in
January 1988 that officially created the program. Within this DOD-
funded program, NASA managed the liquid engine system and advanced
development efforts.

Next Manned Launch Vehicle

In 1988, attention was focused on examining various next-generation
manned launch vehicle concepts. Three possible directions were consid-
ered: Space Shuttle evolution, a personnel launch system, and an
advanced manned launch system. The evolution concept referred to the
option of improving the current Shuttle design through the incorporation
of upgraded technologies and capabilities. The personnel launch system
would be a people carrier and have no capability to launch payloads into
space. The advanced manned launch system represented an innovative
crewed transportation system. Preliminary studies on all three possibili-
ties progressed during 1988.

Shuttle-C

Shuttle-C (cargo) was a concept for a large, uncrewed launch vehicle
that would make maximum use of existing Space Shuttle systems with a
cargo canister in place of the orbiter. This proposed cargo-carrying launch
vehicle would be able to lift 45,454.5 to 68,181.8 kilograms to low-Earth
orbit. This payload capacity is two to three times greater than the Space
Shuttle payload capability.
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In October 1987. NASA selected three contractors to perform the
first of a two-phase systems definition study for Shuttie-C. The efforts
focused on vehicle configuration details, including the cargo element’s
length and diameter. the number of liquid-fueled main engines. and an
operations concept evaluation that included ground and flight support
systems. A major purpose of the study was to determine whether Shuttle-
C would be cost effective in supporting the space station. Using Shuttle-
C could free the Space Shuttle for STS-unique missions, such as solar
system exploration, astronomy, life sciences, space station crew rotation,
and logistics and materials processing experiments. Shuttle-C  also
would be used to launch planetary missions and serve as a test bed for
new Shuttle boosters.

The results of the Shuttle-C eftorts were to be coordinated with other
ongoing advanced launch systems studies to enable a joint steering group.
composed of DOD and NASA senior managers. The purpose of the steer-
ing group was to formulate a national heavy-lift vehicle strategy that best
accommodated both near-term requirements and longer term objectives
for reducing space transportation operational costs.

Advanced Upper Stages

Advanced missions in the future would require even greater capabil-
ities to move from low- to high-Earth orbit and beyond. During 1988,
activity in the advanced upper stages arca focused on the space transfer
vehicle (STV) and the possibility of upgrading the existing Centaur upper
stage. The STV concept involved a cryogenic hydrogen-oxygen vehicle
that could transport payloads weighing from 909.1 to 8.636 kilograms
from low-Earth orbit to geosynchronous orbit or the lunar surtace. as well
as for unmanned planetary missions. The STV concept could potentially
lead to a vehicle capable of supporting human exploration missions to the
Moon or Mars.

Advanced Solid Rocket Moror

The Advanced Solid Rocket Motor (ASRM) was an STS improve-
ment intended to replace the RSRM that was used on STS-26. The ASRM
would be based on a better design than the former rocket motor, contain
more reliable safety margins, and use automated manufacturing tech-
niques. The ASRM would also enhance Space Shuttle performance by
offering a potential increase of payload mass to orbit from 5454.5 kilo-
grams to 9090.9 kilograms for the Shuttle. In addition. a new study on lig-
uid rocket boosters was conducted that examined the feasibility of
replacing SRMs with liquid engines.

In March 1988, NASA submitted the “Space Shuttle Advanced Solid
Rocket Motor Acquisition Plan™ to Congress. This plan reviewed pro-
curement strategy for the ASRM and discussed implementation plans
and schedules. Facilities in Mississippi would be used for production
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and testing of the new rocket motor. In August 1988, NASA issued an
request for proposals to design, develop, test, and evaluate the ASRM.
Contract award was anticipated for early 1989, and the first flight using
the new motor was targeted for 1994.
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Table 2-25. Space Shuttle Main Engine Characteristics

93

Number of Engines
Thrust

Operating Life

Range of Thrust Level
Propellant

Nominal Burn Time
Prime Contractor

Three on each Shuttle
2,000,000 newtons each

7.5 hours and 55 starts
65%—-109% of rated power level
LOX/LLH:

522 sec.
Rockwell International
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Table 2-27. Space Shuttle External Tank Characteristics

Propellants

Length

Diameter

Weight of Propellant

Gross Liftoff Weight

Inert Weight of Lightweight Tank
Liquid Oxygen Max. Weight
Liquid Oxygen Tank Volume
Liquid Oxygen Tank Diameter
Liquid Oxygen Tank Length
Liquid Oxygen Tank Weight
Liquid Hydrogen Max. Weight
Liquid Hydrogen Tank Diameter
Liquid Hydrogen Tank Length
Liquid Hydrogen Tank Volume
Liquid Hydrogen Tank Weight (Empty)
Intertank Length

Intertank Diameter

Intertank Weight

Prime Contractor

LH:, LOX

46.8 m

84 m

700,000 kg
750,980 kg

30, 096 kg
617,774 kg
542,583 liters
8.4 m

15 m

5.454.5 kg empty
103, 257 kg

84 m

2946 m
1,458,228 liters
13,181.8 kg

6.9 m

8.4 m

5,500 kg

Martin Marietta Aerospace
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Table 2—-32. Transfer Orbit Stage Characteristics

Length 33m

Weight With Full Propellant Load 10,886 kg

Airborne Support Equipment Weight 1,450 kg

Payload to Geotransfer Orbit 6,080 kg from Shuttle

Payload to Planetary and High-Energy Orbits 5,227 kg from Titan 11 and 1V
Orbis 21 solid rocket motor

and attitude control system
1,360 ke to 3,175 kg capacity

Propulsion System

Capacity
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CHAPTER THREE
SPACE TRANSPORTATION/

HUMAN SPACEFLIGHT

Introduction

In April 1981, after a hiatus of six years, American astronauts
returned to space when they left the launch pad aboard the Space Shuttle
orbiter Columbia. This chapter describes the major technology used by
the Space Shuttle: each Space Shuttle mission through 1988, their pay-
loads, and the operations surrounding the missions; the events surround-
ing the 1986 Challenger accident and the changes that occurred as a result
of the accident; and the development of the Space Station program
through 1988, one of NASA’s major initiatives of the decade. It also
describes the budget for human spaceflight at NASA and the management
of human spaceflight activities.

The Last Decade Reviewed (1 969-1978)

The successful culmination of three major spaceflight programs and
steady progress in the Space Shuttle program highlighted NASA’s second
decade. The Apollo program concluded with its lunar landings: Skylab
demonstrated the possibility of a space-based platform that could support
human life over an extended period of time; and the Apollo-Soyuz Test
Project showed that international cooperation in the space program was
possible in the face of political differences. Steady progress in the human
spaceflight program encouraged NASA to commit major resources to the
Shuttle program.

The successful Apollo lunar expeditions caught the imagination of
the American public. The first lunar landing took place on July 20, 1969.
and was followed by the lunar landings of Apollo 12, 14, 15, 16, and 17.
(Apollo 13 experienced a major anomaly, and the mission was aborted
before a lunar landing could take place.) However, by the later missions,
enthusiasm over the scientific and technological advances gave way (o
budget concerns, which ended the program with Apollo 17.

Skylab was the first American experimental space station to be built
and could be considered a predecessor of the space station efforts of the
1980s. Skylab was an orbital workshop constructed from a Saturn IVB
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stage. It was launched in May 1973 and visited by three crews over the
next nine months, each remaining at the orbiting laboratory for increas-
ingly extended periods of time. The mission confirmed that humans could
productively function in a space environment. It also provided solar
observations, Earth resource studies, and tests of space manufacturing
techniques.

The 1975 Apollo-Soyuz Test Project involved the docking of an
American Apollo vehicle and a Soviet Soyuz vehicle. Joined by a dock-
ing module, the two crews conducted Joint activities on their docked vehi-
cles for two days before separating. Even though many hoped that this
program would be the first of ongoing cooperative ventures between the
two superpowers, the political situation prevented further efforts during
this decade.

Although a six-year period interrupted human spaceflights between
the 1975 Apollo-Soyuz mission and the first Shuttle flight in 198 I, devel-
opment of the new Space Shuttle moved slowly but steadily toward its
inaugural launch in 198]. The major component of the Space
Transportation System (STS), the Shuttle would perform a variety of
tasks in orbit, including conducting scientific and technological experi-
ments as well as serving as NASA’s primary launch vehicle. NASA
received presidential approval to proceed with the program in August
1972, and Rockwell International, the prime Shuttle contractor, rolled out
Enterprise, the first test orbiter. in September 1976, setting off a series of
system and flight tests. The production of C olumbia, the first orbiter that
would actually circle the Earth, already under way, continued during this
time. Even though qualifying Columbia for spaceflight took longer than
anticipated, as the decade closed, NASA was eagerly awaiting its first
orbital flight test scheduled for the spring of 198].

Overview of Space Transportation/Human Spaceflight ( 1979-1988)

The inauguration of Space Shuttle flights dominated the decade from
1979 through 1988. Twenty-seven Shuttle flights took place, and twenty-
six of them were successful. However, from January 28, 1986, the mem-
ory of STS 5I-L dominated the thoughts of many Americans and
effectively overshadowed NASA’s considerable achievements. The loss
of life and, in particular, the loss of individuals who were not career astro-
nauts haunted both the public and the agency. The agency conducted a
far-reaching examination of the accident and used the findings of the
independent Rogers Commission and the NASA STS 51-L Data and
Design Analysis Task Force to implement a series of recommendations
that improved the human spaceflight program from both a technical and
Management perspective. Two successful Shuttle missions followed at
the end of the decade, demonstrating that NASA was able to recover from
its worst accident ever.

The first twenty-four Shuttle missions and the two following the
Challenger accident deployed an assortment of government and com-



SPACE TRANSPORTATION/HUMAN SPACEFLIGHT 109

mercial satellites and performed an array of scientific and engineering
experiments. The three Spacelab missions highlighted NASA's investiga-
tions aboard the Shuttle, studying everything from plant life and monkey
nutrition to x-ray emissions from clusters of galaxies.

The 1980s also included a push toward the development of a perma-
nently occupied space ctation. Announced by President Ronald Reagan in
his 1984 State of the Union address, which directed NASA to have a per-
manently manned space station in place within ten years, NASA invested
considerable time and money toward bringing it about. The European
Space Agency (ESA), Canada, and Japan signed on as major participants
in both the financial and technical areas of the Space Station program,
and by the end of 1988, Space Station Freedom had completed the
Definition and Preliminary Design Phase of the project and had moved
into the Design and Development Phase.

Management of the Space Transportation/Human Spaceflight Program

The organizational clements of the space transportation program have
been addressed in Chapter 2, “Launch Systems.” Briefly. Code M. at dif-
ferent times called the Office of Space Transportation, Office of Space
Transportation Systems (Acquisition), and Office of Space Flight, man-
aged space transportation activities for the decade from 1979 through
1988. From November 1979 to August 1982. Code M split off the opera-
tions function of the spaceflight program into Code O. Office of Space
Operations. Also, In 1984. the Office of Space Station. Code S, super-
seded the Code M Space Station Task Force. in response to President
Reagan’s directive to develop and build an occupied space station within
the next ten years. Space Station program management is addressed later
in this section.

The Space Shuttle program was the major segment of NASA's
National Space Transportation System (NSTS), managed by the Oftice of
Space Flight at NASA Headquarters. (The Space Shuttle Program Office
was renamed the National Space Transportation System Program Office
in March 1983.) The office was headed by an associate administrator who
reported dircctly to the NASA administrator and was charged with pro-
viding executive leadership. overall direction, and effective accomplish-
ment of the Space Shuttle and associated programs, including expendable
launch vehicles.

The associate administrator for spaceflight exercised institutional man-
agement authority over the activities of the NASA field organizations
whose primary functions were related to the NSTS program. These were
the Johnson Space Center in Houston. the Kennedy Space Center at Cape
Canaveral, Florida, the Marshall Space Flight Center in Huntsville,
Alabama, and the Stennis Space Center (formerly National Space
Technology Laboratories) in Bay St. Louis, Mississippi. Organizational
elements of the NSTS office were located at NASA Headquarters, Johnson,
Kennedy, Marshall, and at the Vandenberg Launch Site in California.
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Figure 3-1. NSTS Organization

The organization of the NSTS was divided into four levels (Figure
3-1). The NSTS director served as the Level [ manager and was respon-
sible for the overall program requirements, budgets, and schedules. The
NSTS deputy directors were Level II managers and were responsible for
the management and integration of all program elements, including inte-
grated flight and ground system requirements, schedules, and budgets.
NSTS project managers located at Johnson, Kennedy, and Marshall were
classified as Level 11 managers and were responsible for managing the
design, qualification, and manufacturing of Space Shuttle components, as
well as all launch and landing operations. NSTS design authority person-
nel and contractors were Level IV managers (not shown in Figure 3-1)
and were responsible for the design, development, manufacturing, test,
and qualification of Shuttle systems.

Initially, the NSTS was based at Johnson Space Center, which was
designated as the lead center for the Space Shuttle program. Johnson had
management responsibility for program control and overall systems engi-
neering and systems integration. Johnson was also responsible for the
development, production, and delivery of the Shuttle orbiter and managed
the contract of the orbiter manufacturer.

Kennedy Space Center was responsible for the design of the launch
and recovery facilities. Kennedy served as the launch and landing site for
the Shuttle development flights and for most operational missions.
Marshall Space Flight Center was responsible for the development, pro-
duction, and delivery of the Space Shuttle main engines, solid rocket
boosters, and external tank.
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Robert F. Thompson served as manager of the Space Shuttle Program
Office until 1981. when Glynn S. Lunney assumed the position of NSTS
program manager. He had been with NASA since 1959 and involved in
the Shuttle program since 1975. Lunney held the position of manager
until his retirement in April 1985. He was replaced by Arnold D. Aldrich
in July 1985, a twenty-six-year NASA veteran and head of the Space
Shuttle Projects Office at Johnson Space Center. Aldrich’s appointment
was part of a general streamlining of the NSTS that took effect in August
of that year. which reflected the maturation of the Shuttle program. In that
realignment, the Level Il NSTS organization at Johnson was renamed the
NSTS Office and assimilated the Projects Office, consolidating all pro-
gram elements under Aldrich’s direction. Richard H. Kohrs, who had
been acting program manager, and Lt. Col. Thomas W. Redmond. U.S.
Air Force, were named deputy managers.

Aldrich took charge of the integration of all Space Shuttle program
elements. including flight software, orbiter, external tank, solid rocket
boosters, main engines, payloads, payload carriers, and Shuttle facilities.
His responsibilities also included directing the planning for NSTS opera-
tions and managing orbiter and government-furnished equipment projects.

Post-Challenger Restructuring

The Challenger accident brought about major changes in the man-
agement and operation of the NSTS. The Rogers Commission concluded
that flaws in the management structure and in communication at all lev-
els were elements that needed to be addressed and rectitied. Two of the
recommendations (Recommendations Il and V. respectively) addressed
the management structure and program communication. In line with these
recommendations, NASA announced in November 1986 a new Space
Shuttle management structure for the NSTS. These changes aimed at clar-
ifying the focal points of authority and responsibility in the Space Shuttle
program and to establish clear lines of communication in the information-
transfer and decision-making processes.

Associate Administrator for Space Flight Admiral Richard Truly
issued a detailed description of the restructured NSTS organization and
operation in a memorandum released on November 5, 1986. As part of the
restructuring, the position of director, NSTS, was established, with Arnold
Aldrich, who had been manager, NSTS, at the Johnson Space Center since
July 1985, assuming that position in Washington, D.C. He had full respon-
sibility and authority for the operation and conduct of the NSTS program.
This included total program control, with full responsibility for budget,
schedule, and balancing program content. He was responsible for overall
program requirements and performance and had the approval authority for
top-level program requirements, critical hardware waivers, and budget
authorization adjustments that exceeded a predetermined level. He report-
ed directly to the associate administrator for spaceflight and had two
deputies, one for the program and one for operations.
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NASA appointed Richard H. Kohrs, who had been deputy manager,
NSTS, at the Johnson Space Center, to the position of deputy director,
NSTS program. He was responsible for the day-to-day management and
execution of the Space Shuttle program, including detailed program plan-
ning, direction, scheduling, and STS systems configuration management.
Other responsibilities encompassed systems engineering and integration
for the STS vehicle, ground facilities, and cargoes. The NSTS
Engineering Integration Office, reporting to the deputy director, NSTS
program, was established and directly participated with each NSTS pro-
Ject element (main engine, solid rocket booster, external tank, orbiter, and
launch and landing system). Kohrs was located at Johnson, but he report-
ed directly to the NSTS director.

Five organizational elements under the deputy director, NSTS pro-
gram, were charged with accomplishing the management responsibilities
of the program. The first four was located at Johnson, and the last was at
the Marshall Space Flight Center.

NSTS Engineering Integration
NSTS Management Integration
NSTS Program Control

NSTS Integration and Operations
*  Shuttle Projects Office

The Shuttle Projects Office had overall management and coordina-
tion responsibility for the Marshall elements involved in the Shuttle pro-
gram: the solid rocket boosters, external tank, and main engines.

NASA named Captain Robert L. Crippen to the position of deputy
director, NSTS operations, reporting directly to the NSTS director and
responsible for all operational aspects of STS missions. This included such
functions as final vehicle preparation, mission execution, and return of the
vehicle for processing for its next flight. In addition, the deputy director,
NSTS operations, presented the Flight Readiness Review, which was
chaired by the associate administrator for spaceflight, managed the final
launch decision process, and chaired the Mission Management Team.

Three operations integration offices located at Johnson, the Kennedy
Space Center, and Marshall carried out the duties of the NSTS deputy
director. In addition to the duties of the director and deputy directors
described above, Admiral Truly’s memorandum addressed the role of the
centers and project managers in the programmatic chain and budget pro-
cedures and control. In the programmatic chain, the managers of the pro-
ject elements located at the various field centers reported to the deputy
director, NSTS program. Depending on the individual center organiza-
tion, this chain was either direct (such as the Orbiter Project Office at
Johnson) or via an intermediate office (such as the Shuttle Projects Office
at Marshall).

The NSTS program budget continued to be submitted through the
center directors to the director, NSTS, who had total funding authority for
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the program. The deputy directors, NSTS program and NSTS operations,
each provided an assessment of the budget submittal to the director,
NSTS, as an integral part of the decision process.

The restructuring also revitalized the Office of Space Flight
Management Council. The council consisted of the associate administra-
tor for spaceflight and the directors of Marshall. Kennedy. Johnson, and
the NSTS. This group met regularly to review Space Shuttle program
progress and to provide an independent and objective assessment of the
status of the overall program.

Management relationships in the centralized NSTS organization were
configured into four basic management levels, which were designed to
reduce the potential for conflict between the program organizations and
the NASA institutional organizations.

Office of Safety, Reliability, and Quality Assurance

Although not part of the Office of Space Flight, the Office of Safety.
Reliability. and Quality Assurance (Code Q) resulted from the findings of
the Rogers Commission, which recommended that NASA establish such
an office with direct authority throughout the agency. NASA established
this office in July 1986, with George A. Rodney, formerly of Martin
Marietta. named as its first associate administrator (Figure 3-2). The
objectives of the office were to ensure that a NASA Safety, Reliability.
and Quality Assurance program monitored equipment status, design val-
idation problem analysis, and system acceptability in agencywide plans
and programs.

Associate Administrator for
Safety, Reliability, Maintainabitity
and Quality Assurance

Deputy AA
Space Flight Deguly AA for
y
Safety Panel Assurance
Data Syatems
Support Staft y [Trend Assessment
Analysis Division Division
R R
[ .
Reliability, Center Saf(e)ty,
Maintainability & . Programs Realiability & Quality,
Quality Assurance Safety Division Assurance Division Assurance
Division Directorles

Figure 3-2. Safety, Reliabilitv, and Quality Assurance Office Organization



114 NASA HISTORICAL DATA BOOK

The responsibilities of the associate administrator included the over-
sight of safety, reliability, and quality assurance functions related to all
NASA activities and programs. In addition, he was responsible for the
direction of reporting and documentation of problems, problem resolu-
tion, and trends associated with safety.

Management of the Space Station Program

NASA first officially committed to a space station on May 20, 1982,
when it established the Space Station Task Force under the direction of
John D. Hodge, assistant for space station planning and analysis, Office
of the Associate Deputy Administrator in the Office of Space Flight
(Code M). Hodge reported to Philip E. Culbertson, associate deputy
administrator, and drew from space station-related activities of each of
the NASA program offices and field centers.

The task force was responsible for the development of the program-
matic aspects of a space station as they evolved, including mission analy-
sis, requirements definition, and program management. It initiated
industry participation with Phase A (conceptual analysis) studies that
focused on user requirements and their implications for design. The task
force developed the space station concept that formed the basis for
President Reagan’s decision to commit to a space station.

The task force remained in existence until April 6, 1984, when, in
response to Reagan’s January 1984 State of the Union address, NASA
established an interim Space Station Program Office. Culbertson, in addi-
tion to his duties as associate deputy administrator, assumed the role of
acting director of the interim office, with Hodge (former director of the
Space Station Task Force) as his acting deputy. The interim office was
responsible for the direction of the Space Station program and for the
planning of the organizational structure of a permanent program office.

Also during the first half of 1984, NASA formulated the Space
Station program management structure. Associate administrators and
center directors agreed to use a “work package” concept and a three-level
management structure consisting of a Headquarters office, a program
office at the Johnson Space Center, and project offices located at the var-
ious NASA centers.

The interim office became permanent on August 1, 1984, when NASA
established Code S. Office of Space Station. Culbertson became the
Associate Administrator for Space Station, and Hodge served as the deputy
associate administrator. Culbertson served until December 1985, when he
was succeeded by Hodge, who became acting associate administrator.

The Office of Space Station was responsible for developing the sta-
tion and conducting advanced development and technology activities,
advanced planning, and other activities required to carry out Reagan’s
direction to NASA to develop a permanently manned space station with-
in a decade. The program continued using the three-tiered management
structure developed earlier in the year. The Headquarters Level A office
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encompassed the Office of the Associate Administrator for the Office of
Space Station and provided overall policy and program direction for the
Space Station program. The Level B Space Station Program Office at
Johnson in Houston reported to the Headquarters office. Space Station
Level C project offices at other NASA centers also were responsible to
the Office of Space Station through the Johnson program office. Johnson
had been named lead center for the Space Station program in February
1984. The associate administrator was supported by a chief scientist, pol-
icy and plans and program support offices, and business management,
engineering, utilization and performance requirements, and operations
divisions.

On June 30. 1986, Andrew J. Stofan, who had been director of
NASA's Lewis Research Center in Cleveland, was appointed Associate
Administrator for Space Station. Along with this appointment. NASA
Administrator James C. Fletcher announced several management struc-
tural actions that were designed to strengthen technical and management
capabilities in preparation for moving into the development phase of the
Space Station program.

The decision to create the new structure resulted from recommenda-
tions made by a committee headed by former Apollo program manager
General Samuel C. Phillips. General Phillips had conducted a review of
space station management as part of a long-range assessment of NASA's
overall capabilities and requirements, including relationships between the
various space centers and NASA Headquarters. His report reflected dis-
cussions with representatives from all the NASA centers and the contrac-
tors involved in the definition and preliminary design of the space station,
as well as officials from other offices within NASA. His report recom-
mended the formation of a program office, which was implemented in
October 1986 when NASA Administrator Fletcher named Thomas L.
Moser director of the Space Station Program Office. reporting to
Associate Administrator Stofan.

Fletcher stated that the new space station management structure was
consistent with recommendations of the Rogers Commission, which
investigated the Space Shuttle Challenger accident. The commission had
recommended that NASA reconsider management structures, lines of
communication. and decision-making processes to ensure the flow of
important information to proper decision levels. As part of the reconfigu-
ration of the management structure, the Johnson Space Center was no
longer designated as Level B. Instead. a Level A" was substituted, locat-
ed in the Washington metropolitan area, assuming the same functions
Johnson previously held (Figure 3-3).

Fletcher said the program would use the services of a top-level, non-
hardware support contractor. In addition to the systems engineering role,
the program office would contain a strong operations function to ensure
that the program adequately addressed the intensive needs of a permanent
facility in space.
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Figure 3-3. Space Station Program Management Approach

NASA established a systems integration field office in Houston as
part of the program office organization. Project managers at the Goddard
Space Flight Center, Johnson, Kennedy, Lewis, and Marshall reported
functionally to the associate administrator. They coordinated with their
respective center directors to keep them informed of significant program
matters.

NASA assigned John Hodge the job of streamlining and clarifying
NASA’s procurement and management approach for the Space Station
program and issuing instructions related to work package assignments.
the procurement of hardware and services, and the selection of contrac-
tors for the development phase of the program. In addition, NASA tasked
Hodge with developing a program overview document that would define
the role automation and robotics would play in the Space Station program
and with conducting further studies in the areas of international involve-
ment, fong-term operations, user accommodations, and servicing.

At the same time, Fletcher authorized NASA to procure a Technical
and Management Information System (TMIS), a computer-based infor-
mation network. It would link NASA and contractor facilities together
and provide engineering services, such as computer-aided design, as well
as management support on items such as schedules, budgets, labor, and
facilities. TMIS was implemented in 1988.

The Space Station Program Office was responsible for the overall
technical direction and content of the Space Station program, including
systems engineering and analysis, configuration management, and the
integration of all elements into an operating system that was responsive
to customer needs. NASA approved a further reorganization of the Office
of Space Station in December 1986.
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Figure 3—4. Office of Space Station Organization {December 1986)

In addition to the associate administrator and two deputies. the
approved Space Station program organization included a chief scientist, a
senior engineer, and six division directors responsible for resources and
administration, policy, utilization, operations, strategic plans and pro-
grams, and information systems. There was also a position of special
assistant to the associate administrator (Figure 3—4).

Andrew Stofan continued in the position of associate administrator.
Franklin D. Martin continued as the deputy associate administrator for
space station. Previously director of space and Earth sciences at the
Goddard Space Flight Center. Martin had been named to the post in
September 1986.

Thomas L. Moser became the deputy associate administrator for
development in October 1986, a new position established by the reorga-
nization. In this position, Moser also served as the program director for
the Office of Space Station, directing the Washington area office that was
responsible for overall technical direction and content of the Space
Station program, including systems engineering and analysis, program
planning and control, configuration management. and the integration of
all the elements into an operating system. The creation of the program
director position was the central element of program restructuring in
response to recommendations of the committee headed by General
Phillips. The Phillips Committee conducted an extensive examination of
the Space Station organization.

As a result of this restructuring, NASA centers performed a major
portion of the systems integration through Space Station field offices that
were established at Goddard, Johnson, Kennedy. Lewis, and Marshall.
The space station project manager at each of the five centers headed the
field office and reported directly to the program manager in Washington.
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A program support contractor assisted the program office and field offices
in systems engineering, analysis, and integration activities.

Also as part of this reorganization, NASA named Daniel H. Herman
senior engineer, a new staff position. The senior engineer advised the
associate administrator on the policy, schedule, cost, and user implica-
tions of technical decisions. Previously, Herman was director of the engi-
neering division, whose functions and responsibilities were absorbed by
Moser’s organization, and was on the original Space Station Task Force,
which defined the basic architecture of the space station system.

David C. Black continued to serve as chief scientist for the space sta-
tion. Black. chief scientist of the Space Research Directorate at the Ames
Research Center, had served as chief scientist for the space station since
the post was created in 1984,

Paul G. Anderson acted as the director of the Resources and
Administration Division, which combined the former business manage-
ment and program support organizations. Anderson previously served as
comptroller at the Lewis Research Center.

Margaret Finarelli, director of the Policy Division, had functional
responsibility for the former policy and plans organization. This element
of the reorganization reflected the strong policy coordination role
required of the Space Station Program Office in working with other ele-
ments of NASA, the international partners, and other external organiza-
tions. Prior to this assignment, Finarelli was chief of the International
Planning and Programs Office in the International Affairs Division at
NASA Headquarters.

Richard E. Halpern became the director of the Utilization Division,
which had responsibility for developing user requirements for the space
station, including science and applications, technology development, com-
mercial users, and the assurance that those requirements could be effi-
ciently and economically accommodated on the space station. Halpern was
the director of the Microgravity Science and Applications Division in the
Office of Space Science and Applications prior to accepting this position.

The Operations Division had the responsibility for developing an
overall philosophy and management approach for space station system
operations, including user support, prelaunch and postlanding activities,
logistics support, and financial management. Granville Paules served as
acting director of the Operations Division.

Under the new organization, NASA formed two new divisions,
Strategic Plans and Programs and Information Systems. The Information
Systems Division provided a management focus for the total end-to-end
information system complex for Space Station.

Alphonso V. Diaz assumed the position of director of strategic plans
and programs and had responsibility for ensuring that the evolution of the
space station infrastructure was well planned and coordinated with other
NASA offices and external elements. As part of its responsibility, this
division managed and acted as the single focus for space station automa-
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tion and robotics activities and program-focused technology and
advanced development work.

The Strategic Plans and Program Division under Mr. Diaz became
responsible for determining requirements and managing the Transition
Definition program at Level A. The division maintained the Space Station
Evolution Technical and Management Plan, which detailed evolution
planning for the long-term use of the space station. The Level A’ Space
Station Program Office in Reston, Virginia, managed the program.
including provision for the “hooks and scars,” which were design features
for the addition or update of computer software (hooks) or hardware
(scars). The Langley Evolution Definition Office chaired the agencywide
Evolution Working Group, which provided interagency communication
and coordination of station evolution, planning, and interfaces with the
baseline Work Packages (Level C). (Work Packages are addressed later in
this chapter.)

William P. Raney, who had served as director of the Utilization and
Performance Requirements Division, served as special assistant to the
associate administrator. Stofan served as Associate Administrator for
Space Station until his retirement from NASA in April 1988, when he was
replaced by James B. Odom.

Money for Human Spaceflight

As with money for launch systems, Congress funded human space-
flight entirely from the Rescarch and Development (R&D) appropriation
through FY 1983. Beginning with FY 1984, the majority of funds for
human spacetlight came from the Space Flight, Control, and Data
Communications (SFC&DC) appropriation. Only funds for the Space
Station and Spacelab programs remained with R&D. In FY 1985, Space
Station became a program office with its own budget. Spacelab remained
in the Office of Space Flight.

As seen in Table 3—1, appropriated funding levels for human space-
flight for most ycars met NASA’s budget requests as submitted 10
Congress. The last column in the table shows the actual amounts that
were programmed for the major budget items.

Program funding generally increased during 1979-1988 (Table 3-2).
However, the reader must note that these figures are all current year
money—that is. the dollar amounts do not take into account the reduced
buying power caused by inflation. In addition, the items that are included
in a major budget category change from one year to the next. depending
on the current goals and resources of the agency and of Congress. Thus,
it is difficult to compare dollar amounts because the products or services
that those dollars are intended to buy may differ from year to year.

Tables 3-3 through 3—10 show funding levels for individual pro-
grams within the human spaceflight category.
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Space Station

NASA’s initial estimate of the U.S. investment in the Space Station
program was $8 billion in 1984 dollars. By March 1988, this estimate had
grown to $14.5 billion, even though, in 1987, the National Research
Council had priced the Space Station program at $31.8 billion.'

President Reagan strongly endorsed the program and persuaded an
ambivalent Congress of its importance. Program funding reflected both
his persuasive powers and the uncertainty in which members of Congress
looked at the space station, who took the view that it had little real scien-
tific or technological purpose. The congressional Office of Technology
Assessment reported that Congress should not commit to building a space
station until space goals were more clear and that the potential uses of the
proposed station did not justify the $8 billion price tag.

Congress passed the FY 1985 appropriation of $155.5 million for
starting the design and development work on the space station based on
NASA’s initial $8 billion figure. The FY 1986 appropriation reduced the
Administration’s request from $230 million to $205 million.

President Reagan’s FY 1987 budget asked for $410 million for the
Space Station program, doubling the station funds from the previous year.
Congress approved this increase in August 1986, which would move
space station into the development phase toward planned operation by the
mid-1990s. However, Congress placed limitations on the appropriation; it
stipulated that NASA funds could not be spent to reorganize the program
without congressional approval. In addition, $150 million was to be held
back until NASA met several design and assembly requirements set by
the House Appropriations Committee. About $260 million of the
$410 million were to be spent for Phase B activities, and the other
$150 million was reserved for initial hardware development. NASA must
comply with the following conditions: a minimum of thirty-seven and a
half kilowatts of power for initial operating capability, rather than the
twenty-five kilowatts envisioned by NASA; a fully equipped materials
processing laboratory by the sixth Space Shuttle flight and before crew
habitat was launched: early launch of scientific payloads; and deployment
of U.S. core elements before foreign station elements.

During the next month, NASA Administrator James Fletcher stated
that the $8 billion estimated for the Space Station program was now seen
to be insufficient and that the station must either receive additional funds
or be scaled down. The Reagan Administration submitted a request in

'National Research Council, Report of the Commitiee on the Space Station
of the National Research Council (Washington. DC: National Academy Press,
September 1987).

‘Report 1o accompany Department of Housing and Urban
Development-Independent Agencies Appropriations Budget, 1987, House of
Representatives.
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January 1987 for $767 million for the Space Station program. However,
after much debate, which raised the possibility of freezing the entire pro-
gram, Congress appropriated only $425 million. but again, conditions
were attached. In the FY 1988 Continuing Resolution that funded the pro-
gram, Congress ordered NASA to provide a rescoping plan for the space
station. In addition. only $200 million of the $425 million was to be avail-
able before June 1, 1988, while the rescoping was under discussion. By
the time the rescoping plan had gone to Congress, the cost of the Station
was up to $14.5 billion. Further talks in Congress later during the year
proposed reducing funding for FY 1989 to an even lower level.

The Space Transportation System

This section focuses on the structure and operation of the equipment
and systems used in the Space Transportation System (STS) and
describes the mission and flight operations. The overview provides a brief
chronology of the system's development. The next section looks at the
orbiter as the prime component of STS. (The launch-related elements—
that is, the external tank, solid rocket boosters, main engines, and the
propulsion system in general—have been addressed previously in
Chapter 2, “Launch Systems.") The last part of this section addresses STS
mission operations and support.

A vast quantity of data exists on the Space Shuttle, and this document
presents only a subset of the available material. It is hoped that the pri-
mary subject areas have been treated adequately and that the reader will
get a usctul overview of this complex system. It is highly recommended
that readers who wish to acquire more detailed information consult the
NSTS Shuttle Reference Manual (1988).°

Overview

The history of NASA’s STS began early in the 1970s when President
Richard Nixon proposed the development of a reusable space transporta-
tion system. The NASA Historical Data Book, Volume i, 1969-1978,
presents an excellent account of events that took place during those early
days of the program.’

By 1979, all major STS elements were proceeding in test and manu-
facture, and major ground test programs were approaching completion.
NASA completed the design certification review of the overall Space
Shuttle configuration in April 1979. Development testing throughout the

'NSTS Shuttle Reference Manual (1988), available both through the NASA
History Office and on-line through the NASA Kennedy Space Center Home
Page.

‘Linda Neuman Ezell. NASA Historical Data Book, Volume 111 Programs
and Projects, 1969-1978 (Washington, DC: NASA SP-4012. 1988).
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program was substantially complete, and the program was qualifying
flight-configured systems.

The orbiter’s structural test article was under subcontract for struc-
tural testing and would ultimately be converted to become the second
orbital vehicle, Challenger. The development of Columbia was proceed-
ing more slowly than anticipated, with much work remaining to be com-
pleted before the first flight, then scheduled for late 1980. The main
engine had accumulated more than 50,000 seconds of test time toward its
goal of 80,000 seconds before the first orbital flight, and the first external
tank that would be used during flight had been delivered as well as three
test tanks. Three flight tanks were also being manufactured for flight in
the orbital flight test program. By the end of 1979, Morton Thiokol, the
solid rocket booster contractor, had completed four development firings
of the solid rocket boosters, and the qualification firing program had start-
ed. Two qualification motor firings had been made, and one more was
scheduled before the first flight. Most of the rocket segments for the first
flight boosters had been delivered to Kennedy Space Center.

All launch and landing facilities at Kennedy were complete and in
place for the first orbital flight. Ground support equipment and the com-
puterized launch-processing installations were almost complete. and soft-
ware validation was progressing. All hardware for the launch processing
system had been delivered, simulation support was continuing for the
development of checkout procedures, and checkout software was being
developed and validated.

By the end of 1979, nine commercial and foreign users had reserved
space on Space Shuttle flights. Together with NASA’s own payloads and
firm commitments from the Department of Defense (DOD) and other
U.S. government agencies, the first few years of STS operations were
fully booked.

During 1980, testing and manufacture of all major system continued,
and by the end of 1980, major ground-test programs neared completion.
The first flight-configuration Space Shuttle stood on the launch pad.
Additional testing of the vehicle was under way; qualification testing of
flight-configured elements continued toward a rescheduled launch in the
spring of 1981.

In December 1980, Columbia was in final processing at the Kennedy
Space Center. The main engines had surpassed their goal of 80,000 sec-
onds of engine test time, with more than 90,000 seconds completed.
Technicians had mated the orbiter with the solid rocket boosters and
external tank in November and rolled it out onto the launch pad in
December. Contractors had delivered the final flight hardware, which was
in use for vehicle checkout. Hardware and thermal protection system cer-
tifications were nearly complete. Further manufacture and testing of the
external tanks and solid rocket boosters had also been completed.

The Kennedy launch site facilities were completed during 1980 in
anticipation of the first launch. The computerized launch processing sys-
tem had been used extensively for Space Shuttle testing and facility acti-
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vation. The high-energy fuel systems had been checked out, and the inte-
grated test of the Shuttle was complete.

The mission control center and Shuttle mission simulator facilities at
the Johnson Space Center were ready to support the first Shuttle flight.
Both the flight crew and ground flight controllers had used these facilities
extensively for training and procedure development and verification.
Seven full-duration (fifty-four-hour) integrated simulations had been suc-
cessfully conducted, with numerous ascent, orbit, entry, and landing runs
completed. The mission flight rules and launch-commit criteria had also
been completed.

Follow-on orbiter production was in progress, leading to the four-
orbiter fleet for the STS’s future needs. The structural test article was
being modified to a flight-configured orbiter, Challenger. Secondary and
primary structural installations were under way, and thermal protection
installations had begun for vehicle delivery in June 1982.

The Space Shuttle program made its orbital debut with its first two
flights in 1981. All major mission objectives were met on both flights.
Details of these missions and other STS missions through 1988 appear in
later sections of this chapter.

The following pages describe the orbiter’s structure, major systems,
and operations, including crew training. Because this volume concen-
trates on the period from 1979 through 1988, the wording reflects con-
figurations and activities as they existed during that decade. However.
most of the Space Shuttle’s physical characteristics and operations have
continued beyond 1988 and are still valid.

Orbiter Structure

NASA designed the Space Shuttle orbiter as a space transport vehicle
that could be reused for approximately 100 missions. The orbiter was
about the same length and weight as a commercial DC-9 airplane. Its
structure consisted of the forward fuselage (upper and lower forward
fuselage and the crew module. which could accommodate up to seven
crew members in normal operations and up to ten during emergency oper-
ations), the wings, the mid-fuselage. the payload bay doors, the aft fuse-
lage, and the vertical stabilizer. Its appearance, however, differed
markedly from a conventional airplane. High-performance double-delta
(or triangular) wings and a large cargo bay gave the Shuttle its squat
appearance (Figure 3-5 and Table 3-11).

A cluster of three Space Shuttle Main Engines (SSMEs) in the aft fuse-
lage provided the main propulsion for the orbiter vehicle. The external tank
carried fuel for the orbiter’s main engines. Both the solid rocket boosters
and the external tank were jettisoned prior to orbital insertion. In orbit, the
orbital maneuvering system (OMS), contained in two pods on the aft fuse-
lage, maneuvered the orbiter. The OMS provided the thrust for orbit inser-
tion, orbit circularization, orbit transfer, rendezvous, deorbit, abort-to-orbit.
and abort-once-around and could provide up to 453.6 kilograms of
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Figure 3-5. Space Shutile Orbiter

propellant to the aft reaction control system (RCS). The RCS, contained in
the two OMS pods and in a module in the nose section of the forward fuse-
lage, provided attitude control in space and during reentry and was used
during rendezvous and docking maneuvers. When it completed its orbital
activities, the orbiter landed horizontally, as a glider, at a speed of about
ninety-five meters per second and at a glide angle of between eighteen and
twenty-two degrees.

The liquid hydrogen—liquid oxygen engine was a reusable high-per-
formance rocket engine capable of various thrust levels. Ignited on the
ground prior to launch, the cluster of three main engines operated in par-
allel with the solid rocket boosters during the initial ascent. After the
boosters separated, the main engines continued to operate for approxi-
mately eight and a half minutes. The SSMEs developed thrust by using
high-energy propellants in a staged combustion cycle. The propellants
were partially combusted in dual preburners to produce high-pressure hot
gas to drive the turbopumps. Combustion was completed in the main
combustion chamber. The SSME could be throttled over a thrust range of
65 to 109 percent, which provided for a high thrust level during liftoff and
the initial ascent phase but allowed thrust to be reduced to limit acceler-
ation to three g’s during the final ascent phase.

The orbiter was constructed primarily of aluminum and was protect-
ed from reentry heat by a thermal protection system. Rigid silica tiles or
some other heat-resistant material shielded every part of the Space
Shuttle’s external shell. Tiles covering the upper and forward fuselage
sections and the tops of the wings could absorb heat as high as
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650 degrees Centigrade. Tiles on the underside absorbed temperatures up
to 1,260 degrees Centigrade. Areas that had to withstand temperatures
greater than 1,260 degrees Centigrade, such as the nose and leading edges
of the wings on reentry, were covered with black panels made of rein-
forced carbon-carbon.

A five-computer network configured in a redundant operating group
(four operate at all times and one is a backup) monitored all Space Shuttle
subsystems. They simultaneously processed data from every area of the
Shuttle, cach interacting with the others and comparing data.

During ascent, acceleration was limited to less than three g's. During
reentry, acceleration was less than two and a half g’s. By comparison,
Apollo crews had to withstand as much as eight g’s during reentry into
the Earth’s atmosphere. The Space Shuttle’s relatively comfortable ride
allowed crew other than specially trained astronauts to travel on the
Shuttle. While in orbit, crew members inhabited a “shirtsleeve™ environ-
ment—no spacesuits or breathing apparatus were required. The micro-
gravity atmosphere remained virtually the only non-Earth-like condition
that crew members had to encounter.

NASA named the first four orbiter spacecraft after famous explo-
ration sailing ships:

»  Columbia (OV-102), the first operational orbiter, was named after a
sailing frigate launched in 1836, one of the first Navy ships to cir-
cumnavigate the globe. Columbia also was the name of the Apollo 11
command module that carried Neil Armstrong, Michael Collins, and
Edwin “Buzz” Aldrin on the first lunar landing mission in July 1969,
Columbia was delivered to Rockwell’s Palmdale assembly facility for
modifications on January 30, 1984, and was returned to the Kennedy
Space Center on July 14, 1985, for return to flight.

»  Challenger (OV-099) was also the name of a Navy ship, one that
explored the Atlantic and Pacific Oceans from 1872 to 1876. The
name also was used in the Apollo program for the Apollo 17 lunar
module. Challenger was delivered to Kennedy on July 5, 1982,

*  Discovery (OV-103) was named after two ships. One was the vessel
in which Henry Hudson in 161011 attempted to search for a north-
west passage between the Atlantic and Pacific Oceans and instead
discovered the Hudson Bay. The other was the ship in which Captain
Cook discovered the Hawaiian Islands and explored southern Alaska
and western Canada. Discovery was delivered to Kennedy on
November 9, 1983.

s Atlantis (OV-104) was named after a two-masted ketch operated for
the Woods Hole Oceanographic Institute from 1930 to 1966 that trav-
eled more than half a million miles conducting ocean research.
Atlantis was delivered to Kennedy on April 3, 1985.
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A fifth orbiter, Endeavour (OV-105), was named by Mississippi
school children in a contest held by NASA. It was the ship of Lieutenant
James Cook in 1769-71, on a voyage to Tahiti to observe the planet
Venus passing between the Earth and the Sun. This orbiter was delivered
to NASA by Rockwell International in 1991.

Major Systems
Avionics Systems

The Space Shuttle avionics system controlled, or assisted in control-
ling, most of the Shuttle systems. Its functions included automatic deter-
mination of the vehicle’s status and operational readiness;
implementation sequencing and control for the solid rocket boosters and
external tank during launch and ascent; performance monitoring; digital
data processing; communications and tracking; payload and system man-
agement; guidance, navigation, and control; and electrical power distrib-
ution for the orbiter, external tank, and solid rocket boosters.

Thermal Protection System

A passive thermal protection system helped maintain the temperature
of the orbiter spacecraft, systems, and components within their temperature
limits primarily during the entry phase of the mission. It consisted of vari-
ous materials applied externally to the outer structural skin of the orbiter.

Orbiter Purge, Vent, und Drain System

The purge, vent, and drain system on the orbiter provided unpressur-
ized compartments with gas purge for thermal conditioning and prevent-
ed the accumulation of hazardous gases, vented the unpressurized
compartments during ascent and entry, drained trapped fluids (water and
hydraulic fluid), and conditioned window cavities to maintain visibility.

Orbiter Communications System

The Space Shuttle orbiter communications system transferred
(1) telemetry information about orbiter operating conditions and configu-
rations, systems, and payloads; (2) commands to the orbiter systems to
make them perform some function or configuration change; (3) docu-
mentation from the ground that was printed on the orbiter’s teleprinter or
text and graphics system; and (4) voice communications among the flight
crew members and between the fight crew and ground. This information
was transferred through hardline and radio frequency links.

Direct communication took place through Air Force Satellite Control
Facility remote tracking station sites, also known as the Spaceflight
Tracking and Data Network ground stations for NASA missions or space-



SPACE TRANSPORTATION/HUMAN SPACEFLIGHT 127

ground link system ground stations for military missions. Direct signals
from the ground to the orbiter were referred to as uplinks, and signals
from the orbiter to the ground were called downlinks.

Tracking and Data Relay Satellite (TDRS) communication took place
through the White Sands Ground Terminal, These indirect signals from
TDRS 1o the orbiter were called forward links, and the signal from the
orbiter to the TDRS was called the return link. Communication with a
detached payload from the orbiter was also referred to as a forward link.
and the signal from the payload to the orbiter was the return link. Refer
to Chapter 4, “Tracking and Data Acquisition Systems,” in Volume VI of
the NASA Historical Databook for a more detailed description of Shuttle
tracking and communications systems.

Data Processing System

The data processing system, through the use of various hardware
components and its self-contained computer programming (software).
provided the vehicle with computerized monitoring and control. This Sys-
tem supported the guidance, navigation, and control of the vehicle,
including calculations of trajectories, SSME thrusting data, and vehicle
attitude control data; processed vehicle data for the flight crew and for
transmission to the ground and allowed ground control of some vehicle
systems via transmitted commands; checked data transmission errors and
crew control input errors: supported the annunciation of vehicle system
failures and out-of-tolerance system conditions; supported payloads with
flight crew/software interface for activation, deployment, deactivation, and
retrieval; processed rendezvous, tracking, and data transmissions between
payloads and the ground: and monitored and controlled vehicle subsystems.

Guidance, Navigation, and Control

Guidance, navigation, and control software commanded the guid-
ance, navigation, and control system to effect vehicle control and to pro-
vide the sensor and controller data needed to compute these commands.
The process involved three steps: (1) guidance equipment and software
computed the orbiter location required to satisfy mission requirements;
(2) navigation tracked the vehicle’s actual location; and (3) tlight control
transported the orbiter to the required location. A redundant set of four
orbiter general purpose computers (GPCs) formed the primary avionics
software system: a fifth GPC was used as the backup flight system.

The guidance. navigation, and control system operated in two modes:
auto and manual (control stick steering). In the automatic mode, the pri-
mary avionics software system essentially allowed the GPCs to fly the
vehicle: the flight crew simply selected the various operational sequences.
In the manual mode, the flight crew could control the vehicle using hand
controls, such as the rotational hand controller, translational hand con-
troller, speed brake/thrust controller, and rudder pedals. In this mode,
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flight crew commands still passed through and were issued by the GPCs.
There were no direct mechanical links between the flight crew and the
orbiter’s various propulsion systems or aerodynamic surfaces; the orbiter
was an entirely digitally controlled, fly-by-wire vehicle.

Dedicated Display System

The dedicated displays provided the flight crew with information
required to fly the vehicle manually or to monitor automatic flight control
system performance. The dedicated displays were the attitude director
indicators, horizontal situation indicators, alpha Mach indicators, alti-
tude/vertical velocity indicators, a surface position indicator, RCS activi-
ty lights, a g-meter, and a heads-up display.

Main Propulsion System

The Space Shuttle’s main propulsion system is addressed in Chapter
2, “Launch Systems.”

Crew Escape System

The in-flight crew escape system was provided for use only when the
orbiter would be in controlled gliding flight and unable to reach a runway.
This condition would normally lead to ditching. The crew escape system
provided the flight crew with an alternative to water ditching or to land-
ing on terrain other than a landing site. The probability of the flight crew
surviving a ditching was very slim.

The hardware changes required to the orbiters following the STS
51-L (Challenger) accident enabled the flight crew to equalize the pres-
surized crew compartment with the outside pressure via the depressuriza-
tion valve opened by pyrotechnics in the crew compartment aft bulkhead
that a crew member would manually activate in the mid-deck of the crew
compartment. The crew could also pyrotechnically jettison the crew
ingress/egress side hatch manually in the mid-deck of the crew compart-
ment and bail out from the mid-deck through the ingress/egress side hatch
opening after manually deploying the escape pole through, outside, and
down from the side hatch opening.

Emergency Egress Slide. The emergency egress slide replaced the
emergency egress side hatch bar. It provided the orbiter flight crew mem-
bers with a rapid and safe emergency €gress through the orbiter mid-deck
ingress/egress side hatch after a normal opening of the side hatch or after
jettisoning of the side hatch at the nominal end-of-mission landing site or
at a remote or emergency landing site. The emergency egress slide sup-
ported return-to-launch-site, transatlantic-landing, abort-once-around,
and normal end-of-mission landings.

Secondary Emergency Egress. The lefthand flight deck overhead win-
dow provided the flight crew with a secondary emergency egress route.
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Side Hatch Jettison. The mid-deck ingress/egress side hatch was
modified to provide the capability of pyrotechnically jettisoning the side
hatch for emergency egress on the ground. In addition, a crew compart-
ment pressure equalization valve provided at the crew compartment aft
bulkhead was also pyrotechnically activated to equalize cabin/outside
pressure before the jettisoning of the side hatch.

Crew Equipment

Food System and Dining. The mid-deck of the orbiter was equipped
with facilities for food stowage, preparation, and dining for each crew
member. Three one-hour meal periods were scheduled for each day of the
mission. This hour included time for eating and cleanup. Breakfast, lunch,
and dinner were scheduled as close to the usual hours as possible. Dinner
was scheduled at least two to three hours before crew members began
preparations for their sleep period.

Shuttle Orbiter Medical System. The Shuttle orbiter medical system
provided medical care in flight for minor illnesses and injuries. It also
provided support for stabilizing scverely injured or ill crew members
until they were returned to Earth. The medical system consisted of the
medications and bandage kit and the emergency medical kit.

Operational Bioinstrumentation System. The operational bioinstru-
mentation system provided an amplitied electrocardiograph analog signal
from either of two designated flight crew members to the orbiter avionics
system, where it was converted to digital tape and transmitted to the
ground in real time or stored on tape for dump at a later time. On-orbit
use was limited to contingency situations.

Radiation Equipment. The harmful biological effects of radiation
must be minimized through mission planning based on calculated predic-
tions and monitoring of dosage exposures. Preflight requirements includ-
ed a projection of mission radiation dosage., an assessment of the
probability of solar flares during the mission, and a radiation exposure
history of flight crew members. In-flight requirements included the car-
rying of passive dosimeters by the flight crew members and, in the event
of solar flares or other radiation contingencies, the readout and reporting
of the active dosimeters.

Crew Apparel. During launch and entry, crew members wore the
crew altitude protection system consisting of a helmet, a communications
cap. a pressure garment, an anti-exposure, anti-gravity suit, gloves, and
boots. During launch and reentry, the crew wore escape equipment over
the crew altitude protection system, consisting of an emergency oxygen
system: parachute harness, parachute pack with automatic opener, pilot
chute, drogue chute, and main canopy; a life raft; two liters of drinking
water; flotation devices: and survival vest pockets containing a radio/bea-
con, signal mirror, shroud cutter, pen gun flare kit, sea dye marker, smoke
tlare, and beacon.
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Sleeping Provisions. Sleeping provisions consisted of sleeping bags,
sleep restraints, or rigid sleep stations. During a mission with one shift,
all crew members slept simultaneously and at least one crew member
would wear a communication headset to ensure the reception of ground
calls and orbiter caution and warning alarms.

Personal Hygiene Provisions. Personal hygiene and grooming pro-
visions were furnished for both male and female flight crew members. A
water dispensing system provided water.

Housekeeping. In addition to time scheduled for sleep periods and
meals, each crew member had housekeeping tasks that required from five
to fifteen minutes at intervals throughout the day. These included clean-
ing the waste management compartment, the dining area and equipment,
floors and walls (as required), the cabin air filters, trash collection and
disposal, and change-out of the crew compartment carbon dioxide (lithi-
um hydroxide) absorber canisters.

Sighting Aids. Sighting aids included all items used to aid the flight
crew within and outside the crew compartment. They included the crew-
man optical alignment sight, binoculars, adjustable mirrors. spotlights,
and eyeglasses.

Microcassette Recorder. The microcassette recorder was used pri-
marily for voice recording of data but could also be used to play prere-
corded tapes.

Photographic Equipment. The flight crew used three camera sys-
tems— 16mm, 35mm, and 70mm—to document activities inside and out-
side the orbiter.

Wicket Tabs. Wicket tabs helped the crew members activate controls
when vision was degraded. The tabs provided the crew members with tac-
tile cues to the location of controls to be activated as well as a memory
aid to their function, sequence of activation, and other pertinent informa-
tion. Controls that were difficult to see during the ascent and entry flight
phases had wicket tabs.

Reach Aid. The reach aid, sometimes known as the "‘swizzle stick,”
was a short adjustable bar with a multipurpose end effector that was used
to actuate controls that were out of the reach of seated crew members. It
could be used during any phase of flight, but was not recommended for
use during ascent because of the attenuation and switch-cueing difficul-
ties resulting from acceleration forces.

Restraints and Mobility Aids. Restraints and mobility aids enabled
the flight crew to perform all tasks safely and efficiently during ingress,
egress, and orbital flight. Restraints consisted of foot loop restraints, the
airlock foot restraint platform, and the work/dining table as well as tem-
porary stowage bags, Velcro, tape, snaps, cable restraints, clips, bungees,
and tethers. Mobility aids and devices consisted of handholds for ingress
and egress to and from crew seats in the launch and landing configura-
tion, handholds in the primary interdeck access opening for ingress and
egress in the launch and landing configuration, a platform in the mid-deck
for ingress and egress to and from the mid-deck when the orbiter is in the
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launch configuration, and an interdeck access ladder to cnter the flight
deck from the mid-deck in the launch configuration and go from the flight
deck to the mid-deck in the launch and landing configuration,

Crew Equipment Stowage. Crew equipment aboard the orbiter was
stowed in lockers with two sizes of insertable trays. The trays could be
adapted to accommodate 3 wide variety of soft goods, loose equipment,
and food. The lockers were interchangeable and attached to the orbiter
with crew fittings. The lockers could be removed or installed in flight by
the crew members.

Exercise Equipment. The only exercise equipment on the Shuttle
was a treadmill.

Sound Level Meter. The sound level meter determined on-orbit
acoustical noise levels in the cabin, Depending on the requirements for
each flight, the flight crew took meter readings at specified crew com-
partment and equipment locations. The data obtained by the flight crew
were logged and/or voice recorded.

Air Sampling System. The air sampling system consisted of air bot-
tles that were stowed in a modular locker. They were removed for sam-
pling and restowed for entry.

On-Board Instrumentation. Orbiter operational instrumentation col-
lected, routed, and processed information from transducers and sensors
on the orbiter and its payloads. This system also interacted with the solid
rocket boosters, external tank, and ground support equipment. More than
2,000 data points were monitored, and the data were routed to operational
instrumentation multiplexers/demultiplexcrs. The instrumentation system
consisted of transducers, signal conditioners, two pulse code modulation
master units, encoding equipment. two operational recorders, one payload
recorder, master timing equipment, and on-board checkout equipment.

Payload Accommodations

The Space Shuttle had three basic payload accommodation cate-
gories: dedicated, standard, and mid-deck accommodations:

* Dedicated payloads ook up the entire cargo-carrying capacity and
services of the orbiter, such as the Spacelab and some DOD payloads.

* Standard payloads—usually geosynchronous communications
satellites—were the primary type of cargo carried by the Space
Shuttle. Normally, the payload bay could accommodate up to four
standard payloads per flight. Power, command, and data services for
standard payloads were provided by the avionics system through a
standard mixed cargo harness.

*  Mid-deck payloads—smull, usually self-contained packages—were
stored in compartments on the mid-deck. These were ofien manufac-
turing-in-space or small life sciences experiments.
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Structural attach points for payloads were located at 9.9-centimeter
intervals along the tops of the two orbiter mid-fuselage main longerons.
Some payloads were not attached directly to the orbiter but to payload
carriers that were attached to the orbiter. The inertial upper stage,
Spacelab and Spacelab pallet, and any specialized cradle for holding a
payload were typical carriers.

Small payloads mounted in the payload bay required a smaller range
of accommodations. These payloads received a reduced level of electric
power, command, and data services, and their thermal conditions were
those in the payload bay thermal environment. Small payloads could be
mounted in either & side-mounted or an across-the-bay configuration.

The Space Shuttle could also accommodate small payloads in the
mid-deck of the crew compartment. This location was ideal for payloads
that required a pressurized crew cabin environment of needed to be oper-
ated directly by the crew. Payloads located in the mid-deck could also be
stowed on board shortly before launch and removed quickly after land-
ing.

Space Shuttle Operations

Although each Space Shuttle mission was unique, Space Shuttle mis-
sions followed a prescribed sequence of activities that was common to all
flights. The following sections describe the typical activities preceding
launch, the launch and ascent activities, on-orbit events, and events sur-
rounding descent and landing. Figure 3-6 shows the typical sequence of
mission events.
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Prelaunch Activities

Space Shuttle components were gathered from various locations
throughout the country and brought to Launch Complex 39 facilities at
the Kennedy Space Center. There, technicians assembled the compo-
nents—the orbiter, solid rocket booster, and external tank—into an inte-
grated Space Shuttle vehicle. tested the vehicle, rolled it out to the launch
pad. and ultimately launched it into space.

Each of the components that comiprised the Shuttle system underwent
processing prior to launch. NASA used similar processing procedures for
new and reused Shuttle flight hardware. In general, new orbiters under-
went more checkouts before being installed. In addition. the main engines
underwent test firing on the launch pad. Called the Flight Readiness
Firing, the test verified that the main propulsion system worked properly.
For orbiters that had already flown, turnaround processing procedures
included various postflight deservicing and maintenance functions, which
were carried out in parallel with payload removal and the installation of
equipment needed for the next mission.

If changes are made in external tank design, the tank usually required
a tanking test in which it was loaded with liquid oxygen and hydrogen
just as it was before launch. This confidence check verified the tank’s
ability to withstand the high pressures and super cold temperatures of the
cryogenics.

The processing of each major flight component consisted of indepen-
dent hardware checks and servicing in an operation called standalone pro-
cessing. Actual Shuttle vehicle integration started with the stacking of the
solid rocket boosters on a Mobile Launcher Platform in one of the high
bays of the Vehicle Assembly Building. Next, the external tank was
moved from its Vehicle Assembly Building location to the Mobile
Launcher Platform and was mated with the solid rocket boosters. The
orbiter, having completed its prelaunch processing and after horizontally
integrated payloads had been installed, was towed from the Orbiter
Processing Facility to the Vehicle Assembly Building and hoisted into
position alongside the solid rocket boosters and the external tank. It was
then mated to the external tank/solid rocket booster assembly. After mat-
ing was completed, the erection slings and load beams that had been hold-
ing the orbiter in place were removed, and the platforms and stands were
positioned for orbiter/external tank/solid rocket booster access.

After the orbiter had been mated to the external tank/solid rocket
booster assembly and all umbilicals were connected. technicians per-
formed an electrical and mechanical verification of the mated interfaces
to verify all critical vehicle connections. The orbiter underwent a Space
Shuttle interface test using the launch processing system to verify Shuttle
vehicle interfaces and Shuttle vehicle-to-ground interfaces. After comple-
tion of interface testing, ordnance devices were installed, but not electri-
cally connected. Final ordnance connection and flight close-out were
completed at the pad.
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When the Vehicle Assembly Building prelaunch preparations were
completed, the crawler transporter, an enormous tracked vehicle that
NASA originally used during the Apollo and Skylab programs, lifted the
assembled Space Shuttle and the Mobile Launcher Platform and rolled
them slowly down a crawlerway to the launch pad at Launch Complex
39. Loaded, the vehicle moved at a speed of one mile an hour. The move
took about six hours. At the pad, vertically integrated payloads were
loaded into the payload bay. Then, technicians performed propellant ser-
vicing and needed ordnance tasks.

After the Space Shuttle had been rolled out to the launch pad on the
Mobile Launcher Platform, all prelaunch activities were controlled from
the Launch Control Center using the Launch Processing System. On the
launch pad, the Rotating Service Structure was placed around the Shuttle
and power for the vehicle was activated. The Mobile Launcher Platform
and the Shuttle were then electronically and mechanically mated with
support launch pad facilities and ground support equipment. An extensive
series of validation checks verified that the numerous interfaces were
functioning properly. Meanwhile, in parallel with prelaunch pad activi-
ties, cargo operations began in the Rotating Service Structure’s Payload
Changeout Room.

Vertically integrated payloads were delivered to the launch pad
before the Space Shuttle was rolled out and stored in the Payload
Changeout Room until the Shuttle was ready for cargo loading. Once the
Rotating Service Structure was in place around the orbiter, the payload
bay doors were opened and the cargo installed. Final cargo and payload
bay close-outs were completed in the Payload Changeout Room, and the
payload bay doors were closed for tlight.

Propellant Loading. Initial Shuttle propellant loading involved
pumping hypergolic propellants into the orbiter’s aft and forward OMS
and RCS storage tanks, the orbiter’s hydraulic Auxiliary Power Units, and
the solid rocket booster hydraulic power units. These were hazardous
operations, and while they were under way, work on the launch pad was
suspended. Because these propellants were hypergolic—they ignite on
contact with one another—oxidizer and fuel loading operations were car-
ried out serially, never in parallel.

Dewar tanks on the Fixed Service Structure were filled with liquid
oxygen and liquid hydrogen, which would be loaded into the orbiter’s
Power Reactant and Storage Distribution tanks during the launch count-
down. Before the formal Space Shuttle launch countdown began, the
vehicle was powered down while pyrotechnic devices were installed or
hooked up. The extravehicular mobility units—spacesuits—were stored
on board along with other items of flight crew equipment.

Launch Processing System. The Launch Processing System made
Space Shuttle processing, checkout, and countdown procedures more
automated and streamlined than those of earlier human spaceflight pro-
grams. The countdown for the Space Shuttle took only about forty hours,
compared with more than eighty hours usually needed for a
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Saturn/Apollo countdown. Moreover, the Launch Processing System
called for only about ninety people to work in the firing room during
launch operations, compared with about 450 needed for earlier human
missions. This system automatically controlled and performed much of
the Shuttle processing trom the arrival of individual components and their
integration to launch pad operations and, ultimately. the launch itself. The
system consisted of three basic subsystems: the Central Data Subsystem
located on the second floor of the Launch Control Center, the Checkout.
Control and Monitor Subsystem located in the firing rooms, and the
Record and Playback Subsystem.

Complex 39 Launch Pad Facilities. The Kennedy Space Center's
Launch Complex 39 had two identical launch pads, which were original-
ly designed and built for the Apollo lunar landing program. The pads.
built in the 1960s, were used for all of the Apollo/Saturn V missions and
the Skylab space station program. Between 1967 and 1975, twelve
Apollo/Saturn 'V vehicles, one Skylab/Saturn V workshop. three
Apollo/Saturn 1B vehicles for Skylab crews, and one Apollo/Saturn 1B
for the joint U.S.-Soviet Apollo Soyuz Test Project were launched from
these pads.

The pads underwent major modifications to accommodate the Space
Shuttle vehicle. Initially, Pad A modifications were completed in mid-
1978, while Pad B was finished in 1985 and first used for the ill-fated
STS 51-L mission in January 1986. The modifications included the con-
struction of new hypergolic fuel and oxidizer support arcas at the south-
west and southeast corners of the pads, the construction of new Fixed
Service Structures, the addition of a Rotating Service Structure, the addi-
tion of 1.135.620-liter water towers and associated plumbing, and the
replacement of the original flame deflectors with Shuttle-compatible
deflectors.

Following the ftlight schedule delays resulting from the STS 51-L
accident, NASA made an additional 105 pad modifications. These includ-
ed the installation of a sophisticated laser parking system on the Mobile
Launcher Platform to facilitate mounting the Shuttle on the pad and emer-
gency escape system modifications to provide emergency egress for up to
twenty-one people. The emergency shelter bunker also was modified to
allow easier access from the slidewire baskets.

Systems, facilities, and functions at the complex included:

*  Fixed Service Structure

e Orbiter Access Arm

* External Tank Hydrogen Vent Line and Access Arm
*  External Tank Gaseous Oxygen Vent Arm

* Emergency Exit System

* Lightning Mast

* Rotating Service Structure

* Payload Changeout Room
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»  Orbiter Midbody Umbilical Unit

» Hypergolic Umbilical System

«  Orbital Maneuvering System Pod Heaters

«  Sound Suppression Water System

« Solid Rocket Booster Overpressure Suppression System
e Main Engine Hydrogen Burnoff System

»  Pad Surface Flame Detectors

»  Pad-Propellant Storage and Distribution

Launch Sites. NASA used the Kennedy Space Center in Florida for
launches that placed the orbiter in equatorial orbits (around the equator).
The Vandenberg Air Force Base launch site in California was intended for
launches that placed the orbiter in polar orbit missions, but it was never
used and has been inactive since 1987.

NASA’s prime landing site was at Kennedy. Additional landing sites
were provided at Edwards Air Force Base in California and White Sands,
New Mexico. Contingency landing sites were also provided in the event
the orbiter must return to Earth in an emergency.

Kennedy Space Center launches had an allowable path no less than
thirty-five degrees northeast and no greater than 120 degrees southeast.
These were azimuth degree readings based on due east from Kennedy as
ninety degrees. These two azimuths—thirty-five and 120 degrees—rep-
resented the launch limits from Kennedy. Any azimuth angles farther
north or south would launch a spacecraft over a habitable land mass,
adversely affect safety provisions for abort or vehicle separation condi-
tions, or present the undesirable possibility that the solid rocket booster
or external tank could land on foreign land or sea space.

Launch and Ascent

At launch, the three SSMEs were ignited first. When the proper
engine thrust level was verified, a signal was sent to ignite the solid rock-
et boosters. At the proper thrust-to-weight ratio, initiators (small explo-
sives) at eight hold-down bolts on the solid rocket boosters were fired to
release the Space Shuttle for liftoff. All this took only a few seconds.

Maximum dynamic pressure was reached early in the ascent, approx-
imately sixty seconds after liftoff. Approximately a minute later (two
minutes into the ascent phase), the two solid rocket boosters had con-
sumed their propellant and were jettisoned from the external tank at an
altitude of 48.27 kilometers. This was triggered by a separation signal
from the orbiter.

The boosters briefly continued to ascend to an altitude of 75.6 kilo-
meters, while small motors fired to carry them away from the Space
Shuttle. The boosters then turned and descended, and at a predetermined
altitude, parachutes were deployed to decelerate them for a safe splash-
down in the ocean. Splashdown occurred approximately 261 kilometers
from the launch site.
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When a free-falling booster descended to an altitude of about
4.8 kilometers, its nose cap was jettisoned and the solid rocket booster
pilot parachute popped open. The pilot parachute then pulled out the
16.5-meter diameter, 499-kilogram drogue parachute. The drogue para-
chute stabilized and slowed the descent to the ocean.

At an altitude of 1,902 meters, the frustum, a truncated conc at the top
of the solid rocket booster where it joined the nose cap. separated from
the forward skirt, causing the three main parachutes to pop out. These
parachutes were thirty-five meters in diameter and had a dry weight of
about 680 kilograms each. When wet with sea water. they weighed about
1,361 kilograms.

At six minutes and forty-four seconds after liftoft, the spent solid rock-
et boosters, weighing about 7.484 kilograms, had slowed their descent specd
to about 100 kilometers per hour, and splashdown took place in the prede-
termined arca. There. a crew aboard a specially designed recovery vessel
recovered the boosters and parachutes and returned them to the Kennedy
Space Center for refurbishment. The parachutes remained attached to the
boosters until they were detached by recovery personnel.

Meanwhile. the orbiter and external tank continued to climb, using
the thrust of the three SSMEs. Approximately eight minutes after launch
and just short of orbital velocity, the three engines were shut down (main
engine cutoff, or MECO), and the external tank was jettisoned on com-
mand from the orbiter.

The forward and aft RCS engines provided attitude (pitch, yaw. and
roll) and the translation of the orbiter away from the external tank at sep-
aration and return to attitude hold prior to the OMS thrusting maneuver.
The external tank continued on a ballistic trajectory and cntered the
atmosphere, where it disintegrated. Its projected impact was in the Indian
Ocean (except for fifty-seven-degree inclinations) for equatorial orbits.

Aborts. An ascent abort might become necessary if a failure that
affects vehicle performance, such as the failure of an SSME or an OMS.
Other failures requiring early termination of a flight, such as a cabin leak,
might also require an abort.

Space Shuttle missions had two basic types of ascent abort modes:
intact aborts and contingency aborts. Intact aborts were designed to pro-
vide a safe return of the orbiter to a planned landing site. Contingency
aborts were designed to permit flight crew survival following more
severe failures when an intact abort was not possible. A contingency abort
would generally result in a ditch operation.

Intact Aborts. There were four types of intact aborts: abort-to-orbit.
abort-once-around. transatlantic landing, and return-to-launch-site
(Figure 3-7):

«  The abort-to-orbit (ATO) mode was designed to allow the vehicle to
achieve a temporary orbit that was lower than the nominal orbit. This
mode required less performance and allowed time to evaluate prob-
lems and then choose either an early deorbit maneuver or an OMS
thrusting maneuver to raise the orbit and continue the mission.
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Figure 3-7. Types of Intact Aborts

The abort-once-around (AOA) mode was designed to allow the
vehicle to fly once around the Earth and make a normal entry and
landing. This mode generally involved two OMS thrusting
sequences, with the second sequence being a deorbit maneuver. The
entry sequence would be similar to a normal entry. 