
1

Evolution of the Space Shuttle Primary Avionics Software and
Avionics for Shuttle Derived Launch Vehicles

Roscoe C. Ferguson
United Space Alliance

As a result of recommendation from the Augustine Panel, the
direction for Human Space Flight has been altered from the
original plan referred to as Constellation. NASA’s Human
Exploration Framework Team (HEFT) proposes the use of a
Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an
Orion derived spacecraft (salvaged from Constellation) to
support a new flexible direction for space exploration. The
SDLV must be developed within an environment of a
constrained budget and a preferred fast development
schedule. Thus, it has been proposed to utilize existing assets
from the Shuttle Program to speed development at a lower
cost. These existing assets should not only include structures
such as external tanks or solid rockets, but also the Flight
Software which has traditionally been a “long pole” in new
development efforts.

The avionics and software for the Space Shuttle was primarily
developed in the 70’s and considered state of the art for that
time. As one may argue that the existing avionics and flight
software may be too outdated to support the new SDLV
effort, this is a fallacy if they can be evolved over time into a
“modern avionics” platform. The technology may be
outdated, but the avionics concepts and flight software
algorithms are not. The reuse of existing avionics and
software also allows for the reuse of development,
verification, and operations facilities. The keyword is evolve
in that these assets can support the fast development of such
a vehicle, but then be gradually evolved over time towards
more modern platforms as budget and schedule permits. The
“gold” of the flight software is the “control loop” algorithms
of the vehicle. This is the Guidance, Navigation, and Control
(GNC) software algorithms. This software is typically the most
expensive to develop, test, and verify. Thus, the approach is
to preserve the GNC flight software, while first evolving the
supporting software (such as Command and Data Handling,
Caution and Warning, Telemetry, etc.). This can be
accomplished by gradually removing the “support software”
from the legacy flight software leaving only the GNC
algorithms. The “support software” could be re-developed for
modern platforms, while leaving the GNC algorithms to
execute on technology compatible with the legacy system. It
is also possible to package the GNC algorithms into an
emulated version of the original computer (via Field
Programmable Gate Arrays or FPGAs), thus becoming a “GNC
on a Chip” solution where it could live forever to be
embedded in modern avionics platforms.

1

Evolution of the Space Shuttle Primary Avionics Software and
Avionics for Shuttle Derived Launch Vehicles

Roscoe C. Ferguson
United Space Alliance

1. INTRODUCTION

As a result of recommendation from the Augustine Panel, the
direction for Human Space Flight has been altered from the
original plan referred to as Constellation. NASA’s Human
Exploration Framework Team (HEFT) proposes the use of a
Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an
Orion derived spacecraft (salvaged from Constellation) to
support a new flexible direction for space exploration. The
intent is to start development of the Shuttle Derived Heavy
Lift Launch Vehicle (Figure 1) in 2011 (or shortly afterwards)
with possible flights as early as 2016. The SDLV must be
developed within an environment of a constrained budget
and a preferred fast development schedule. Thus, it has been
proposed to utilize existing assets from the Shuttle Program
to speed development at a lower cost. These existing assets
should not only include structures such as

Figure 1: Shuttle Derived Launch Vehicles (Courtesy
of NASA)

external tanks or solid rockets, but also the Flight Software
which has traditionally been a “long pole” in new
development efforts. The avionics and software for the Space
Shuttle was primarily developed in the 70’s and considered
state of the art for that time. As one may argue that the
existing avionics and flight software may be too outdated to
support the new SDLV effort, this is a fallacy if they can be
evolved over time into a “modern avionics” platform. The
technology may be outdated, but the avionics concepts and

flight software algorithms are not. The reuse of existing
avionics and software also allows for the reuse of
development, verification, and operations facilities. This is
another hidden or forgotten cost that can over strain a
budget and schedule due to challenges such as parallel
development efforts.

This paper discusses an approach to evolve the current Space
Shuttle avionics and software assets to support the proposed
SDLV. The keyword is evolve in that these assets can support
the fast development of such a vehicle, but then be gradually
evolved over time towards more modern platforms as budget
and schedule permits. The “gold” of the flight software is the
“control loop” algorithms of the vehicle. This is the Guidance,
Navigation, and Control (GNC) software algorithms. This
software is typically the most expensive to develop, test, and
verify. Thus, the approach is to preserve the GNC flight
software, while first evolving the supporting software (such
as Command and Data Handling, Caution and Warning,
Telemetry, etc.). This can be accomplished by gradually
removing the “support software” from the legacy flight
software leaving only the GNC algorithms. The “support
software” could be re-developed for modern platforms, while
leaving the GNC algorithms to execute on technology
compatible with the legacy system. It is also possible to
package the GNC algorithms into an emulated version of the
original computer (via Field Programmable Gate Arrays or
FPGAs), thus becoming a “GNC on a Chip” solution where it
could live forever to be embedded in modern avionics
platforms.

2. OVERVIEW OF SPACE SHUTTLE
AVIONICS AND PRIMARY AVIONICS
SOFTWARE

2.1 Avionics

The Space Shuttle avionics system consists of multiple
computers and multiple buses (Figure 2). The computer set
consists of five AP-101S General Purpose Computers (GPCs)
which are from the IBM Modular Military Computer (MMC)
technology line [1].

A GPC can be separated into a CPU and Input Output
Processor (IOP). Each GPC has twenty-six independent
processors consisting of a CPU, Master Sequence Controller
(MSC), and twenty-four Bus Control Elements (BCEs). The

2

MSC and BCEs are part of the IOP. The CPU performs general
processing, while the IOP performs input and output
processing [1].

 Figure 2: Space Shuttle Avionics (Courtesy of
NASA)

The IOP interfaces to the twenty-four serial data buses.
Twenty-three of the buses are cross strapped (available to all
GPCs) while the twenty-fourth is not. The twenty-four buses
are grouped into seven categories. These are Inter-computer
(five buses), Mass Memory (two buses), Flight
Instrumentation (five non-cross-strapped buses, one per
GPC), Payload (two buses), Launch Data (two buses), Display
(four buses), and Flight Critical and Sensor Control (eight
buses). The eight Flight Critical and Sensor Control Buses are
organized into four strings. Each string consists of two buses.
The concept provides two paths to the IO devices. This
renders four logical buses. However, if a bus path fails, the
option is provided to switch to the alternate path via a port
mode operation [1].

Figure 3: Synchronization Discrete Set (Courtesy of
NASA)

The IOP provides a discrete interface to support input and
output operations for switches and controls. The discrete set
also provides a fast communication path between GPCs to
support synchronization operations (Figure 3) [1].

2.2 Primary Avionics Flight Software (PASS)

The Primary Avionics Flight Software or PASS is the center
piece of the safety critical avionics of the Space Shuttle.
Without it, the vehicle is inoperable. Its failure can result in
catastrophic failures resulting in the loss of life or the inability
to achieving mission success [1]. The software has a proven
track record of low error rates and high quality [2] [3]. These
attributes were obtained via an enormous investment in all
aspects of the software life cycle of continuous process
improvements over 30 years.

The software is composed of system software and
applications. The system software interfaces with the
hardware and provides services to applications. It is an
aggregate of the Flight Computer Operating System (FCOS),
System Control, and User Interface. Applications provide the
behavior of the vehicle [1].

FCOS is the operating system and is responsible for the low-
level control over the general purpose computer (GPC). It
provides support for Process Management, IO Management
(“device drivers” for the IO devices), and Data Processing
System (DPS) Configuration. FCOS also provides built-in
support for redundancy management operations such as
identical input/output and synchronization [1]. Systems
Control provides support for the initialization and
configuration of the system including the bus network [1].

The User Interface manages the interface between the crew
and the software. Input from the crew is routed to the proper
application as required. In addition to crew support, the User
Interface also provides support for communication with the
launch center over the Launch Data Bus (LDB) for pre-launch
operations and the Mission Control Center (MCC) via Radio
Frequency (RF) transmission.

Applications are composed of Guidance, Navigation, and
Control (GNC), Systems Management (SM), and Vehicle Utility
(VU) [8]. GNC is responsible for managing vehicle position and
velocity for ascent, orbit, and entry. SM is responsible for
managing and monitoring the systems of the vehicle and
payloads. This includes performing fault detection,
annunciation, and control of the environmental systems. VU
provides support for the testing, integration, and certification
of the vehicle during ground and in-flight operations. It
provides both built-in self-test functions and command
scripting under the control of the ground and/or crews to
support vehicle testing. The command scripting is managed
by VU’s on-board Test Control Supervisor (TCS) logic. The TCS
accepts commands one at a time or in the form of a series of
commands (procedure) for which required processes are
automatically sequenced to completion.

3

The design of the PASS is based on a layered architecture
(Figure 4). FCOS is the bottom layer and provides an interface
through Supervisor Calls (SVCs). These calls and their data
parameters are encapsulated for applications using a macro
interface. The macro interface supports services such as
input/output request, bus configuration, overlay requests,
synchronization services, process management, interrupt
enable/disable, error handling, and time formatting.

 Figure 4: PASS Architecture

3. “GPC ON A CHIP” RESEARCH

From 2004-2006, research was conducted on the feasibility of
implementing Space Shuttle avionics assets in Field
Programmable Gate Array (FPGA) technology [4] [5] [6]. This
technology allows digital electronic designs to be represented
in a Hardware Description Language (HDL) where it can be
synthesized to hardware components. One such component
is a FPGA, which is a reprogrammable device (packaged as a
chip) that can be embedded as part of electronic hardware
boards. Use of such technology provides benefits such as the
reduction of risk due to obsolescence and the ability to
evolve hardware designs over time. Obsolescence is reduced
because the digital designs are realized in a HDL that can be
synthesized to new targets as technology changes over time.
Designs can be evolved for the same reason. The HDL can be
modified to fix hardware design flaws or incorporate new
functionality and synthesized to the FPGA as needed.

This research proposed a conceptual approach where the
digital design of the Space Shuttle GPC could be implemented
in a HDL and synthesized to a FPGA to support the reuse of
the flight software on a SDLV. At the high level, the approach
would allow for the instruction set of the GPC to be executed
on a FPGA. The benefits include the reuse of FSW and the
existing infrastructure required for developing, testing, and
verifying the FSW. Another benefit would be that the key

avionics assets could become expendable whereas new GPC
and/or Multiplexer/Demultiplexer (MDM) devices could be
synthesized from the HDL onto FPGAs as required.

Using this approach, the system could be evolved due to the
flexibility of having the legacy digital design in a HDL. For
example, the design of the IOP could be modified to support
varying bus technologies, while isolating the changes from
the legacy FSW. The instruction set supporting IO would be
unchanged, but the design could support other technology
such as 1553 or RS 422. Another aspect would be that a single
GPC from the legacy system could exist as one of multiple
cards in the backplane of a modern avionics computer. The
other boards could provide advanced functionality not part of
the legacy system such as advanced failure monitoring
algorithms or special interfaces to support the payloads for
the SDLV. Such a platform is shown in Figure 5 from “Use of
Programmable Gate Array Technology in Future Space
Avionics”.

 Figure 5: Legacy System in Conceptual Platform

During the research effort, the legacy Space Shuttle FSW was
executed on an Altera FPGA development kit containing a
prototype of a GPC on a chip. In essence, the prototype
version implemented GPC functionality in a 40 mm by 40 mm
package requiring less than 1 mw of power vs. the original
19.55 inches long by 7.62 inches high by 10.2 inches wide
version requiring 500 w of power (Figure 6).

4

 Figure 6: Prototype Repackage of GPC to FPGA

The FSW was executed on the setup in Figure 7 which also
provided support for legacy Shuttle displays (Figure 8).

 Figure 7: Prototype Setup

 Figure 8: Output from FSW on FPGA Platform

The positive results from the research reveal that it is
possible to incorporate Space Shuttle legacy hardware assets
into modern avionics systems. This provides a technology
insertion point to evolve the existing FSW for use in a SDLV
over time. Specifically, this could be used to support the
“GNC on a Chip” concept as indicated in Section 1 of this
paper.

4. PASS EVOLUTION FOR THE SDLV

The use of the PASS to support the initial development of an
SDLV provides a means for lower DDT&E cost. This lower cost
is due to the reuse of the on-board software, the reuse of
development and verification facilities, and the reuse of
operations assets. The reuse of on-board software reduces
the high cost of the software development lifecycle. There is
a reduction in the formulation of requirements, architecture,
design, testing, and verification. These are time consuming
activities where each requires analysis, human collaboration,
reviews, and artifacts. The ability to modify vs. create in this
case can result in initial DDT&E savings. The reuse of
development and verification facilities is important. Like the
on-board software, these facilities must also be developed
and verified. Furthermore, development of these
components in parallel to the on-board software can result in
chaos. Operations are another hidden cost in new
development efforts. The vehicle must interface with facilities
such as the Kennedy Launch Center (Figure 9) and Johnson
Space Center (MCC). The use of the PASS allows for the reuse
of the existing infrastructure supporting pre-launch
operations such as the “Launch Data Bus” interface and in
flight operations such as the uplink and downlink interface.

5

 Figure 9: Kennedy Space Center-Launch Operations

It may be argued that the limitations of the legacy hardware
and software may make it more feasible to start with a new
solution upfront. The legacy hardware is limited to 1 Mbytes
of RAM which restricts the size of applications and its support
software. Thus, it would appear that this limits the ability to
provide advanced functionality even if the PASS is executed
on a FPGA (repackaged GPC) embedded in a modern avionics
platform. Do these limitations negate the benefit of initial
lower DDT&E cost in the long run? The above arguments
against using the PASS in a SDLV are feasible unless it is
realized that the PASS and supporting infrastructure can be
evolved over time. For example, re-using legacy facilities may
still involve risk and cost in maintaining legacy systems.
However, the risk and cost can be reduced over time by
phasing out and modernizing such systems over time as
budget and schedule permits.

The GNC software is the most critical and most expensive to
develop, test, and verify. Therefore, it may be prudent to
evolve the PASS into a simple GNC controller that supports
the dynamic flight phase of the SDLV. This solution could
become a permanent fixture as a “GNC only” hardware chip
on a FPGA. This way, the “control loop” could be physically
isolated from other support software using a hardware
solution. Once the “control loop” implementation is stable, it
is the least likely of all software to be changed. There could
still be a “data” interface to the “control loop” to alter
behavior such as flight profiles.

The GNC controller hardware chip solution would be the end
product of the natural evolution of the PASS after the initial
DDT&E effort for the SDLV. The initial SDLV could use the
original or slightly modified PASS to support the first few test
and/or production flights. Over time, non-GNC functionality
could be stripped out of the PASS and migrated to new
software on modern avionics hardware. Thus, support
software such as telemetry, command and data handling, and
health monitoring could be implemented on new platforms
separate from the “control loop” on the legacy platform. The

“stripping” process could begin with the initial deliveries
because the development and verification facilities are
available for use upfront. This includes all the models and
simulators required to test the evolving system as it is
reduced in scope over time.

There are other variants to this evolved version of the PASS
where the GNC controller does not have to result in a
hardware chip solution. The solution could also result in the
same “GNC only” software executing on an original GPC
hardware platform. Thus, there could still be a separation of
the “control loop” from the rest of the support software. The
“control loop” software would execute in the GPC, while the
support software could be implemented and executed using
modern technology.

It may be argued that the “GNC only” version can be
rewritten in another language which is true. One might even
consider a solution where the “GNC only” version is cross
compiled to other platforms via modification to the existing
compiler supporting the Shuttle program. However, the
primary benefit once again is the availability of the
infrastructure to test and verify the software. The existing
assets provide an infrastructure with flight like hardware
interfaced with a production facility with modeling and
simulation support. There is also a library of verification and
test scripts that could be reused vs. being redeveloped. All
are important for initial lower DDT&E cost. The rewritten
version may require new target hardware which must be
incorporated into the legacy test and verification
infrastructure at an additional cost or the development of an
entirely new facility at a higher cost.

5. DESIGN OF AVIONICS AND PASS
PROMOTES GRADUAL EVOLUTION

The design of the avionics and PASS provides the means for
evolution towards a simple GNC controller. The primary
method of evolution is “pruning” or the removal of
functionality. The availability of the existing development and
verification facilities can aid the “pruning” process. As
“pruning” occurs, the behavior of the evolved system can be
compared with the legacy system using the results from
existing test scripts and simulation runs. The following are the
key concepts allowing for the evolution of the PASS into a
reduced form.

5.1 PASS Organized into Memory Configurations

The Space Shuttle was designed to support an entire space
mission (pre-paunch, ascent, orbit, and entry). Due to the
memory constraints of the Shuttle GPC, the PASS was
organized into memory configurations. Memory
configurations are self-contained units of software that each
support specific mission phases such as pre-launch, ascent,

6

orbit, and entry. Thus, to support the SDLV, the PASS can use
the pre-launch and ascent overlays as starting points. These
overlays already exclude functionality not related to a launch
vehicle such as orbit and entry functionality.

5.2 Ascent GNC Software has a Simple Software
Architecture

The software architecture for the Ascent GNC FSW is simple
and straight forward. At the high level, it is organized as three
processes that receive input, process input, and produce
output. The three processes support the three basic services.
These are flight control, guidance, and navigation. Flight
Control is the most important and executes at the highest
priority and rate. This is referred to as the High Frequency
Executive (HFE). Guidance executes at the next highest
priority and rate and is known as the Mid Frequency
Executive (MFE). Navigation is the lowest priority and rate
and is called the Low Frequency Executive (LFE). These
processes are shown in Figure 10.

 Figure 10: PASS GNC Processes

Within each of the processes, the GNC FSW is organized as an
executive that invokes functions using dispatcher tables.
These functions contain the pure logic supporting the mission
flight profile (Figure 11). The importance of the executive
approach is that the pure GNC algorithms are isolated from
logic supporting other functionality such as user interface
processing. This isolation supports the ability to effectively
“prune” the software. Most of the “pruning” occurs around
the algorithms and not within them. The GNC abort
processing could also be “pruned” as this functionality would
be obsolete due to technology such as launch abort systems
for capsule based spacecraft.

 Figure 11: PASS GNC High Level Design

5.3 System Related Services are Encapsulated
from Applications

The design of the PASS isolates the intricacies of the system
from applications. System Software provides a well-
documented interface to support services for applications.
System related aspects such as real-time programming
techniques (mutual exclusion) or redundancy management
are encapsulated. For example, the Space Shuttle provides a
redundant capability where multiple computers are
configured to support two-fault tolerance for reliability
(Figure 12). These computers are tightly synchronized and
deploy mechanism to discard failing members of a set of
synchronized computers. This functionality is primarily
implemented using software techniques. However, the
functionality is embedded within the System Software and
SVC calls isolated from application logic. Thus, the application
software contains a minimum amount of embedded code to
support system operation.

 Figure 12: RM is encapsulated from Applications

7

The relevance of this point is that the application software
interfaces with the System Software using an interface which
also supports the “pruning” process. Unneeded services can
be removed from applications at well-defined points.

5.4 Ascent GNC Software Receives Input and
Produces Output via “Buffers”

The algorithms of the GNC application receive input by
acquiring data stored in data buffers. The same is true for its
output. The use of input and output data buffers provides
well-defined points for data transfer to and from the
applications. Once again, this provides a clean boundary for
evolution. These data buffers are accessed by the Input
Output Processor (IOP) of the GPC. When the IOP acquires
data from sensors and other devices, that data is stored in
the input buffers accessible by the algorithms. When the IOP
sends output to effectors or other devices, that data is
acquired from the output buffers populated by the
algorithms. In essence, the buffers and IOP work like a Direct
Memory Access (DMA) engine on modern day computers.

5.5 The GPC was Originally Designed as a
Separate CPU and Input Output Processor

The original version of the Space Shuttle GPC had a separate
CPU and Input Output Processor (IOP). The CPU and IOP was
interfaced using shared memory where both the CPU and IOP
could access the same memory space (up to the first 128K).
The IOP provided an interface consisting of a set of registers
and an instruction set. The IOP instructions for a program are
stored in the shared memory space. Software in the CPU
initiates IOP programs supporting both input and output. The
upgraded version of the GPC combined the CPU and IOP, but
maintained the shared memory interface.

The relevance of this design is that the shared memory
interface and IOP instruction set provide another well-
defined point to decouple the CPU applications from the IOP.
The System Software could be modified to remove all traces
of support for the IOP and allow another technology to simply
place and gather data from buffers used by the applications.
Thus, an FPGA design could only implement the CPU portion
of the GPC and rely on other technologies to drive the input
and output. This effectively supports migrating towards a
controller that only supports the GNC application.

6. CONCEPTS OF EVOLUTION

There are many possible concepts or paths that can be taken
when evolving the PASS over time. The following are a few
listed in an intended order of evolution. The high level
approach for each concept is provided. They are not detailed
recipes, but are intended to provide direction. Although there
is an implied order of evolution, the process can start at any

step assuming all dependent steps from prior iterations are
performed.

6.1 Step 1 - Use of Existing Avionics Hardware

The use of the existing Space Shuttle avionics hardware can
potentially provide the fastest path to a 1st test or production
flight. For this path, the first step towards evolving the PASS
could be the removal of any user interface software
supporting human interaction. This includes the removal of
support for displays and keyboard interfaces. These
components are not required as the SDLV is a launch vehicle.
For interaction, this early system could still rely on launch
data bus commanding and/or uplink commanding over RF for
interaction.

The avionics software contains both “control loop” and
support functionality (such as command and data handling,
telemetry, or monitoring) from a slightly modified legacy
software system (Figure 13). This would also include the
redundancy management scheme supporting two-fault
tolerance for safety critical operation. Actually, only a subset
of the Shuttle avionics hardware may be required to support
these flights as this configuration is less complex than the
legacy (orbiter, external tank, solid rockets). Thus, software
supporting any of the removed hardware can also be
scrubbed. The development and verification activities would
be performed using the legacy facilities.

 Figure 13: Modified PASS in Legacy Avionics

6.2 Step 2 - Use of New and Existing Avionics
Hardware

For this phase of evolution, there is a hybrid of legacy and
new avionics hardware. The legacy hardware would support
the “control loop”, while the new hardware would provide
“support” functionality. Thus, functionality such as command
and data handling, telemetry, and monitoring could be
“pruned” from the legacy software and re-implemented to
execute on the new hardware. The legacy PASS evolves to a
“control loop” with redundancy management that executes
on the legacy GPCs. The legacy system could provide data to
the new system over the legacy data bus interface for insight

8

into its state. The new system would use this information to
support monitoring and telemetry operations. There would
also be a scaled down interface from the legacy to new
system to support commanding capabilities.

For this point in evolution, the “control loop” executing in the
legacy GPCs is responsible for acquiring all control related
input and producing output for vehicle control (Figure 14).
The new hardware supports applications for monitoring,
telemetry, and command and data handling. Thus, the legacy
software is further reduced due to a reduction in support
functionality. This version of software can support the
scenario where legacy hardware is available due to inventory
or a SDLV design that allows for the recovery of avionics
assets.

The development and verification activities of the “control
loop” software would be performed using the legacy
facilities. The development of the support software would be
performed on a new platform that may require concurrent
development. The concurrent development effort may be
more tolerable because the support software is not as safety
critical as the “control loop” software.

 Figure 14: “Control Loop” in Legacy Avionics

6.3 Step 3 - Use of New and Replicated Avionics
Hardware

At some point in time, there may not be any available legacy
Shuttle hardware assets or there may be a desire to work
more readily with modern technology (for avionics
hardware). For this case, the replication of legacy Shuttle
hardware assets such as the GPCs or
Multiplexer/Demultiplexer (MDM) units could be
implemented in HDL and FPGA based technologies (Figure
15). This can support the production of new components for
the SDLV and provide the flexibility to evolve the legacy
hardware to support new technologies.

The IOP of the GPC could be evolved to interface with new
bus technologies, while at the same time encapsulating these
changes from the flight software. The reduced version of the
PASS (as a “control loop”) with redundancy management
would execute on the replicated hardware. The replicated
hardware would still interface with the new avionics
hardware as in Step 2. Furthermore, there could be additional
simplifications such as the removal of legacy mass memory
units and legacy initial program loads. These activities could
be performed by starting from pre-stored memory images as
in the legacy check-point restart approach. This would result
in a simplification and reduction in the System Software.

 Figure 15: “Control Loop” in Replicated Avionics

6.4 Step 4 - Use of New Avionics Hardware with
Embedded GNC Controller (PASS)

For this point in evolution, the design for the replicated GPC
in a FPGA would remove the IOP functionality leaving only
the CPU (Figure 16). The PASS would be further evolved
where the System Software would remove all support for
Input and Output, redundancy management, and other
functionality not required to provide a platform that executes
the GNC algorithms. Thus, it would retain a small set of
functionality supporting such services as process, reduced
time and event management. The PASS would become a
compact solution with a small embedded RTOS. This small
solution would contain the critical flight control algorithm on
a chip which would be owned by the program

The new chip approach would have a shared memory
interface where input can be placed into buffers to be
consumed by the internal algorithms. Also, output could be
acquired from these buffers. The chip could generate
interrupts to indicate when to consume or provide data by
the external system. Or the chip could operate as a slave to
external signals or interrupts.

9

 Figure 16: “Control Loop” as GNC Controller

The chip could be inserted into new avionics hardware boards
using concepts such as PMC modules which allow custom
electronics to be plugged into standard processor cards
(Figure 17). The “control loop” would be isolated from the
rest of the platform via a controlled shared memory
interface. The new avionics platform would have to provide
the redundancy scheme if required as the PASS now functions
as a stand-alone GNC controller.

 Figure 17: Example of PMC Solution

6.5 Step 5 - Use of New Avionics Hardware (No
PASS)

At this point in evolution, there is a reduced version of the
PASS that executes in an FPGA embedded in a modern
avionics platform. The modern avionics platform has been
matured where it supports the majority of the avionics
functionality. The new development, test, and verification

facilities are operational and have been maturing as well. It
may be desired to phase out the PASS and any remnants of
the replicated hardware. This task should be manageable as
the scope of the work is isolated within an operational
infrastructure.

The system could be evolved to various implementations.
However, two such options are to (1) keep the “control loop”
functionality in a FPGA or (2) add the “control loop”
functionality with the support software. The first approach is
still feasible because FPGAs are reprogrammable. Thus, a new
version of the “control loop” could be supported by the
existing FPGA infrastructure (Figure 18) and maintain the
benefit of physical isolation (via controlled shared memory
interface) from the rest of the system. The other option
implements the functionality on the same platform as the
existing support software (Figure 19). Both options require
the update of the development, test, and verification facilities
to support the control loop functionality.

 Figure 18: New Control Loop in FPGA

 Figure 19: New Control Loop not in FPGA

7. BRIEF DISCUSSION

The plan to reuse Shuttle assets and the existing workforce is
a prudent one to streamline the development of an SDLV.
This lowers the initial development cost and schedule which
is important under the current constraints of the
environment. This provides the fastest and most affordable
path to give the United States heavy lift capability. If this

10

reasoning is feasible for the entire launch vehicle, then it
should also apply to the utilization of the existing Shuttle
avionics and its flight software. Like the entire launch vehicle,
this too can be evolved.

The resources and effort required to develop safety critical
GNC flight software can be enormous. This requires the
formulation, implementation, and verification of GNC
algorithms that can control the vehicle. There is also the
development of models and simulators to aid this effort. The
Shuttle program has made an enormous investment over the
years to develop and maintain product and facilities which
have been very reliable and successful. The question is, why
not make use of such an investment?

The approach to evolve the PASS towards a flight “control
loop” is feasible as this is the most critical application of the
legacy software. Once “pruned down”, this version of the
PASS should be less expensive to maintain over time until it is
phased out. Skeptics argue that the PASS is written in a
language that is not taught in school such as C or C++ and
that there are no people out of school that can program in it.
As technology progresses, every engineer has to learn to keep
up. Thus, learning the language of the PASS is no different
than learning the language of a new technology.

The flight “control loop” version of the PASS can execute on
the legacy avionics hardware or in replicated versions of the
legacy hardware. The non-flight “control loop” software could
execute on other platforms. This division of effort provides
the basis for initial savings and a path towards evolution. The
legacy facilities already exist to support the reduction of the
PASS today. There is no need for initial development or
fabrication. These resources support the most risky and
expensive portion of the vehicle flight software. The new
technology path can start with the development of the non-
flight “control loop” software. This lays the ground work to
incorporate new technology and facilities over time until the
legacy assets can be phased out. The PASS can evolve to a
useful form that would be needed on the proposed SDLV. The
evolution could be performed in phases as schedule and
resources permit.

8. ACKOWLDEGEMENTS

The author would like to thank Paul Tice for his contributions
to this paper.

REFERENCES

1. Hanaway, John F., Moorehead, Robert W., “Space
Shuttle Avionics System”, National Aeronautics and
Space Administration Office of Management
Scientific and Technical Information Division,
Washington, DC, 1989, NASA-SP-504.

2. Baatzm E.B., ”Out-of-this-World Software – The
space shuttle’s on-board-systems team proves that
error-free programming may be tough to achieve,
but isn’t rocket science”, CIO Magazine, February
15, 1995.

3. Fishman, Charles, ”They Write the Right Stuff”, Fast
Company Magazine, December - January 1997, pp.
95 – 99, 104 – 106.

4. Ferguson, Roscoe, Tate, William, “Use of
Programmable Gate Array Technology in Future
Space Avionics”, 24th Digital Avionics Systems
Conference, 2005.

5. Ferguson, Roscoe, Thompson, Hiram, Smithgal,
William, Tate, William, “Implementing Space Shuttle
Data Processing Systems Concepts in
Programmable Logic Devices”, 2006 Military and
Aerospace Programmable Logic Devices
Conference (MAPLD), Paper 139.

6. Ferguson, Roscoe, “Replication of Space-Shuttle
Computers in FPGAs and ASICs”, NASA Tech
Briefs, December 2008, (MSC-24141-1).

