PRESENTATION 4.4.2

SPACE SHUTTLE REQUIREMENTS / CONFIGURATION EVOLUTION

E. P. Andrews Lockheed Space Operations Company

June 27, 1990

SPACE SHUTTLE

REPEATED VOYAGES INTO SPACE, RETURN AND REUSE

SPACE SHUTTLE

- · 1940's, 1950's, EARLY 1960's: TECHNOLOGY NOT AVAILABLE
 - EMPHASIS ON CONVENTIONAL ROCKETRY
 - EXCEPTIONS: DYNASOAR & FRONT END STEERING
- · MID 1960's: NO WAY TO DESIGN A COMBINED, SINGLE STAGE AIRCRAFT/SPACECRAFT

PROBLEMS: WEIGHT

PROPULSION

THERMAL PROTECTION

- TWO VEHICLES REQUIRED
 - 1) REUSABLE CARGO/PEOPLE CARRIER
 - 2) BOOSTER (REUSABLE OR EXPENDABLE)
- · DECISION TO PROCEED AND DESIGN ASSISTED BY AEROSPACE TECHNOLOGY ADVANCES
 - X-15
 - LIFTING BODIES
 - MERCURY, GEMINI, APOLLO
 - SUPERSONIC MILITARY & AIR TRANSPORT AIRCRAFT
- FALL 1969: REUSABLE SPACE TRANSPORTATION SYSTEM
 - TECHNICALLY FEASIBLE
 - ECONOMICALLY JUSTIFIED

SPACE SHUTTLE CHRONOLOGY

• NASA DOD JOINT REPORT TO THE SPACE TASK FORCE	JUNE 1969
· FEASIBILITY STUDIES WITH INDUSTRY (PHASE A)	FEB NOV. 1969
· SPACE SHUTTLE SYMPOSIUM - SMITHSONIAN INST.	OCTOBER 1969
• DEFINITION STUDIES WITH INDUSTRY (PHASE B)	JUN. 1970 - MAR. 1972
· REVIEW BY PRESIDENT'S SCIENCE ADVISOR	AUG. 1971 - JAN. 1972
. MATHEMATICA REPORT ON SHUTTLE ECONOMICS	JANUARY 1972
· PRESIDENT NIXON'S SHUTTLE ANNOUNCEMENT	JANUARY 1972
· NASA DECISION ON SHUTTLE CONFIGURATION	MARCH 1972

SPACE SHUTTLE COMPARISON

SPACE SHUTTLE COST COMPARISON (1971)

SPACE SHUTTLE COST COMPARISON (1971 Dollars)

PROGRAM GROUND RULES

- MINIMIZE DEVELOPMENT COSTS
 - DDT&E \$5.15B (1971\$)
- MINIMIZE COST PER FLIGHT
 - CPF \$10.5M (1971\$)
- MAXIMIZE PAYLOAD ACCOMMODATIONS TO SATISFY USERS

SPACE SHUTTLE PERFORMANCE

BASELINE

- 7 DAYS MISSION DURATION WITH CREW OF FOUR
- 65,000 LBS TO 100 x 100 MI DUE EAST ORBIT/32,000 LBS TO 100 x 100 MI 104° INCLINATION ORBIT
- 32,000 LBS DOWN PAYLOAD

EXTENSION KITS

- UP TO 30 DAYS DURATION WITH CREW UP TO SEVEN (ELECTRICAL POWER/LIFE SUPPORT/CREW PROVISIONS/PROPELLANTS)
- ORBIT ALTITUDES UP TO ~ 650 MI WITH VARYING PAYLOAD WEIGHTS AT VARIOUS INCLINATIONS (ORBITAL MANUEVERING SYSTEM PROPELLANT KITS)

ORBITER SIZING CRITERIA

CREW/PASSENGER PROVISIONS

- EARTH-LIKE ENVIRONMENT
 - CABIN ATMOSPHERE IS OXYGEN-NITROGEN AT 14.7 PSI
 - TEMPERATURE REGULATED 65 80°F (+/- 2.0°F)
 - HUMIDITY CONTROL
 - CARBON DIOXIDE CONTROL
- · HOT AND COLD FOOD
- · PROTECTED SLEEP STATIONS
- · MALE AND FEMALE HYGIENE PROVISIONS
- · MAXIMUM ACCELERATION IS 3 G's

SPACE SHUTTLE MAIN ENGINE CHARACTERISTICS

THRUST

- SEA LEVEL 375 KLBS

(1,668,080 N)

- VACUUM

470 KLBS (2,090,660 N)

• CHAMBER PRESSURE 2970 PSIA (2048 N/CM 2)

• LIFE 7.5 HOURS 55 STARTS

SPACE SHUTTLE PROGRAM MILESTONES (1983)

•				ι,	303	' /								
Activities	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
AUTHORITY TO PROCEED (ATP)	AUG													
SYSTEMS REQUIREMENT REVIEW (SRR)		AUG				ļ Ī								
ORBITER PRELIM. DESIGN REVIEW (PDR)			▲ FEB											
ORBITAL FLIGHT PDR				≜										
ORBITER 101 ASSEMBLY & ROLLOUT		_			SEP									
FIRST CAPTIVE FLIGHT						▲ FEB								
APPROACH & LANDING TEST (ALT)						AUG								
CRITICAL DESIGN REVIEW (CDR)						JUL								
ORBITER 102 ASSEMBLY & ROLLOUT				_				WAR .			:			
FIRST MANNED ORBITAL FLIGHT (STS-1)										APR				
KSC INITIAL OPERATIONAL CAPABILITY											A NO			
ORBITAL FLIGHT TEST PROGRAM											+			
VAFB INITIAL OPERATIONAL CAPABILITY														▲
	1				<u> </u>		1	<u> </u>	<u> </u>		1			J

SPACE SHUTTLE REQUIREMENTS

- · RETURNABLE, REUSABLE SPACE HARDWARE
- · PAYLOAD WEIGHT, VOLUME & ALTITUDES
 - Down Payload
- · SUPPORTING SYSTEMS FOR PAYLOADS
 - Pointing & Stability
- CROSS RANGE
- · CROSS WIND LANDINGS
- ORBITAL INCLINATIONS: 29° TO 104°
- CREW ACCOMMODATIONS
- EVA
- CONTINUOUS ABORT PATHS
- ELECTRICAL POWER
- · ENVIRONMENTAL CONTROL
- · COMMUNICATIONS, TRACKING & DATA MANAGEMENT
- GN&C
- · MISSION KITS
- COSTS: DEVELOPMENT & PER FLIGHT

DROPPED IN EARLY 1970's: Separate Solid-Fuel Rockets For Abort From The Launch Pad and Jet Engines For Orbiter Flyback