N

cr 1]SE)3

v(NASA-CR—115513) ADVANCED SOFTRARE N72-21204
. TECHNIQUES FOR DATA MANAGEMENT SYSTEHNS. .
VOLUME 1: STUDY OF SOFTWARE ASPECTS OF THE
PHASE B SPACE F.H. Martin {Intermetrics, Unclas
Inc.) Feb. 1972 263 p CsCL 09B 63/08 24025

RECE
#ASA STH ,F\A/{:;EUQY

ﬁ;xduced by -
TIONAL TECHNIC
INFORMATION SERVléII-':'

U S Department of C
Springfield VA 202"11?1‘3":e

INTERMETRICS

OFFICE OF PRIME RESPONSIBITLITY

VRIS v
caro09

Volume I Final Report
Contract NAS-9-11778

ADVANCED SOFTWARE TECHNIQUES
' FOR
DATA MANAGEMENT SYSTEMS

. February 1972

STUDY OF SOFTWARE ASPECTS
OF THE PHASE B SPACE
SHUTTLE AVIONICS SYSTEM

Intermetrics Technical Report #12-72

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Foreword

This document is the final report of a study entitled "Advanced
Software Techniques for Data Management Systems". The study

was focused on an evaluation of key aspects of software for

the Phase B Space Shuttle avionics system including the

executive system, software verification,pprogramming languages
and computer features. This work was sponsored by the NASA
Manned Spacecraft Center in Houston, Texas, under Contract
NAS-9-11778. It was performed by Intermetrics, Inc., Cambridge,
Mass. over the period of 16 June 1971 to 1 February 1972, under
the technical direction of Mr. Joseph A. Saponaro. The

technical monitor for the Manned Spacecraft Center was Mr. Donald
Barron, EBS5.

This final report is presented in three volumes:

Volume I: Software Aspects of the Phase B Space Shuttle
Avionics System

Volume II: Space Shuttle Flight Executive System: Functional
Design °

‘

Volume III: Programming Language Characteristics and Comparison
Reference

The publication of this report does not constitute approval by
NASA of the findings or conclusions contained therein.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

ACKNOWLEDGEMENT

Several Intermetrics personnel contributed to the preparation
of material and the publication of this report:

Dr. Fred H. Martin

Mr. Alex L. Kosmala

Mr. Daniel J. Lickly
Mr. Thomas A. James

Dr. James T. Pepe

Mr. Woodrow H. Vandever
Mr. James H. Flanders

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Table of Contents

CHAPTER 1 Objectives and Summary 1
Introduction 1
1.2 Study Objectives and Scope 1
1.3 Background and Approach to the Study 3
1.3.1 Background 3
1.3.2 Approach. 4
1.4 Task Summary and Review -5
1.4.1 Executive System Design Task 5
1.4.2 Software Verification Task 6
1.4.3 Space Shuttle Phase B Review Task 8
1.4.4 Higher Order Programming Language Task 9
1.4.5 Computer Features Task °10
CHAPTER 2 Software Verification - 15
2.1 Introduction \ 15
2.2 Requirements and Specifications 18
2.2.1 The Formulation of Software Speéifications ' 19
2.2.2 Necessary Detail Within Software Specifications 21
2.2.3 The Phases of Software Development 22
2.3 Program Design _ 27
2.3.1 Program Structure 27
2.3.2 Program Modularity ' 30
2.3.3 The Role of the Programming Language 32
2.3.4 The Program Design Process 4 37
2.4 Implementation: Code and Test) 41
2.4.1 Implementation of System Programs 41
2.4.2 Implementation of Applications Programs 41
2.4.3 Program Confidence: Test Philosophy 51

i

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2.5 Verification : _ . 56

2.5.1 "Feedback" and "Feed-forward" 57
2.5.2 Phase 3: Verification through Software | 59
2.5.3 Phase 4: Verification through Hardware - 60
2.5.4 Independent Verification 62
2.5.5 Special Testing | 64
CHAPTER 3 Software Verification Facilities 67
3.1 Introduction | , : ' 67
3.2 Facilities Versus Levels of Development ' 68
3.2.1 Phase 1 Requirements , 68
3.2.2 Phase'z: Implementation Code and Test 69
'3.2.3 Phase 3: Verification through Software 69
3.2.4 Phase 4: Verification through Hardware °71
3.3 Software Development Facility - ‘ 73
3.3.1 Flight Computer Simulation 73
3.3.2 Advantages of Interpretive Simulation = - 74
3.3.3 Interpretive Computer Simulation Speed 75
3.3.4 Experience ' ' ' 77
3.3.5 Avionics Environment Simulator : 78
'3.3.6 Redundancy Simulation 80
3.3.7 Space Shuttle Simulation Speed Improvements 81
3.4 Direct Use of Higher Order Language on the Host Machine 81
3.5 Comparison of Interactive and Batch Computer Facilities 82

for Shuttle Software Development

CHAPTER 4 Space Shuttle Phase B Design Review 85
4.1 Introduction and Scope) 85
4.2 Summary of Phase B Designs . : 86
4.3 General Software Implications of Phase B Designs 91
4.3.1 Centralized Computer Software Management Problem 91
4.3.2 I/O Timing Difficulties A 94
4.3.3 Failure Identification, Isolation, and 95
Reconfiguration
ii

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.4 Software Implications of Differences Between 95
Two Phase B Contractor System Baselines

4.4,1 General - 95
4.,4,2 Computer Organization in Reduhdant Operation 96
4,4,3 Operating Memory _ 98
4.4.4 Secondary Storage and Utilization A _ : 99
4.4.5 Management of Redundant Subsystems by the 100
. Central Computer

4.4.6 Display Subsystem Interface to Computer 100
4.5 Onboard Checkout Software : _ : ' - 102
© 4.5.1 Overview A 102
4.5.2 Subsystem Monitoriﬁg ' _ 104
4.5.3 Fault Detection ' 105
CHAPTER 5 Higher Order Programming Languages ' 109
Introduction | 109
5.2 "Languages" on the Space Shuttle _ 110
5.2.1 Role of the Crew Language 110
5.2.2 Crew Language Requirements ' 112
5.3 Justification for Using a Higher Order Programming 113

Language . : _
5.3.1 Higher Order Programming Languagé Experience 115
5.4 Single Compiler Approach 116
5.4.1 Systems' Programming o N 117
5.5 Advantages of the HOL and Compiler to Software Modularity 120
5.5.1 Apollo Experience 120
5.5.2 Software Modularity 121
5.5.3 Additional Advantages of the HOL Approach 129
5.5.4 Summary | | 130
5.6 Checkout Languéges 131
5.7 HOL Compiler Implementation 131
5.7.1 Compiler Problem ‘ 131
5.7.2 Approaches to Efficient Codé Generation 132
5.7.3 Implementation Factors : 134

iii

INTERMETRICS INCORPORATED - 701 CONCORDV AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

CHAPTER 6

Flight Computer Features

6.1 Introduction

6.2 Scope and Objective

6.3 Background to Computer Features

6.3.1
6.3.2

Flight Computer Generation

Aerospace Software Characteristics:

6.4 Advanced Computer Features

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Higher Order Language Processing
Stacks '
Microprogramming

Descriptors

Run Time Diagnostic Aids

6.5 General Computer Features

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

6.5.9

6.5.10

Addressing

Static Versus Dynamic Addressing

Subroutine Linkage '

Floating'Point

Unimplemented Instructions

Short Form Instructions

Differing Memory Speeds

Standard Computer Features and Characteristics
Phase B Computer Requirements

Selection Criteria

6.6 Benchmark Programs as an Aid 'in Computer Selection

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

Appendix A

.Background

Hand Compiled HOL Benchmarks
Statistical Approach

Summary of the Approach

Problems with the Benchmark Approach

Phase B North American Rockwell (NAR)
Baseline System Summary

1. 1Introduction

2. General System Summary

iv

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

139

139
140

140
140
143
143
144
146
146
149
150
152
152
156
159
161
164
165
165
166 -
166
168
169
169
170
171
173
174

177

177
177

+ (617) 661-1840

Hardware Configuration (IBM-Generated)

177

. Software Requirements 183

. Size and Speed Estimates 187

. Equipment Interfacing with DMS and Data Requirements 189
Appendlx B McDonnell-Douglas Aircraft Corp. (MDAC) 193

Phase B Baseline Avionics Systems

1. Introduction 193
2. General System Architecture 193
3. Data Management Computer System 194
4, Software in MDAC Baseline 197
5 Size and Speed Estimates 199
6. Avionics Subsystems and Computer Traffic 202
Appendix C Inflight Checkout of Avionics Equipment (Orbiter) 205
1. Introduction 205
2. Subsystem Inflight Checkout Requirements (Orbiter) 206
Appendix D Fixed Point Versus Floating Point Arithmetic 219
1. Introduction 219
2. Fixed Point Arithmetic 219
3. Fixed Point Problems 220
4. BAnalysis of the Apollo Guidance Computer 223
5. Advantages of Floating Point 228
Appendix E Floating Point Wordlength for Shuttle 229
1. Introduction 229
2. Numerical Range 229
3. Roundoff Errors 230
4, Growth of Roundoff Errors 231
5. In-Orbit Navigation Computations 235
6. Approach and Landing Navigation 247
7. Summary 248

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

Appendix F General Description of Burroughs D-Machine _ 251

1. Architectural Highlights : 251

2. State of Development : 252

3. Software ‘ 259
vi

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

_Chapter 1

Objectives and Summary

1.1 Introduction '

.Past experience has shown that software is a significant
factor in the costs associated with development of manned space-
craft systems. Since software is an integral and important part
of the total system it is essential that it be given consideration
during the system definition.

A Design concepts for the reusable Space Shuttle vehicle
recommended during Phase B include a centralized integrated
avionics system approach. The baseline avionics system designs
incorporate a quad redundant central computer system which
performs all primary processing functions for the entire Shuttle
mission. Various levels of redundant avionics equipment,
required to achieve multiple failure tolerance reguirements,

are interfaced to the computer system via a high speed, time
multiplexed data bus system.

1.2 Study Objectives and Scope

This study is concerned with the evaluation of several key
- software aspects of the Space Shuttle Phase B avionics system
design. Five primary software areas were addressed;

a) Flight software executive system. The primary objective
of this study was to perform a top level functional design
of the flight software executive system. Executive
functions of task management, scheduling and control,
I/0 management and configuration management were emphasized
in the design. Several key aspects of the overall executive

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

structure were analyzed,such as: synchronous versus asyn-
chronous control structure, memory allocation and sharing
schemes, central I/O control, interrupt handling and high
speed data bus I/0. The design is based on the application
software requirements of the Phase B avionics system. This
task was given major emphasis during the study.

b) Software verification. Since the major cost of developing
aerospace software be attributed to verification, a secondary
study objective was to devise a comprehensive approach to |
software verification, including a definition of verification
levels and the roles of facilities to support them. The
emphasis was directed at defining an overall approach toward
more reliable Shuttle software development in order to lower
the high costs of testing and validating flight software.
This task was given secondary importance during the study.

P

c) Phase B baseline avionics system review. The objective
of this task was to review the Phase B baseline avionics .
systems design and identify the major software implications.
The scope was limited to a general review of the designs
with emphasis on the architecture of the computer configuration,
redundancy management, onboard checkout functions. The purpose
was to evaluate their impact on the organization of flight
software and its verification. In addition, a summary of
the major characteristics of the application software was
obtained for use during the course of the study in terms of
size, speed and general processing functions.

d) Higher order languages and compilers. The objective of
this task was to investigate the role that a higher order
language compiler should have in the development of
flight software for the Space Shuttle. This task was
limited in scope and was primarily directed at:

1) evaluating software areas for which a higher order
language approach is difficult, and

2) evaluating the role of other languages such as
crew language and checkout languages.

In addition, methods of improving compiler efficiency were
examined.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e) Computer hardware features. Since the architecture and
hardware design of the computer system have a direct
impact on the software, the objective of this task was
to identify those computer features which are desirable
from a software point of view.

1.3 Background and Approach to the Study

1.3.1 Background

Heavy penalties in cost and time have been paid for under-
estimating the manpower and time necessary to produce effective
qualified and documented flight software. ' The production of
Shuttle flight software will be a complicated and lengthy process
and will involve at least the following activities:

a) generation of mission requirements;
b) generation of functional software requirements;

¢c) generation of software design specifications for: executive
and operating system, pilot display processing, telemetry,
autopilots, guidance, navigation, subsystem monitoring and
control (radar, power, etc.), onboard checkout, data manage-
ment, configuration and sequencing control, utility and
support programs (compilers, simulators, diagnostics) -and
operational mission programs such as targeting, rendezvous,
entry and landing;

d) preparation of code;
e) debugging and testing'of code;
f) modification of design;
g) verification and demonstration of software;
h) maintenance of software.
Superimposed on the software development cycle above are the
. requirements for adequate documentation, and management visibility
and control. These procedures are necessary to measure program
progress, cope with design changes and change controls, insure

high quality output, and respond to the pressures of developmental
and operational schedules.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

In the development of flight software for Apollo, the
magnitude of this task caused many problems and delays, primarily
in software debugging, verification, and change control. The
difficulties experienced can be related directly to the fact
that the software design exhibited little overall structure
and the programmers themselves had few f£light computer hardware
aids and little programming language help. Software verification
became the single most time consuming and laborious activity
because neither the avionics configuration, the computer, nor
the programming techniques were designed with checkout in mind.

The MIT Draper Laboratory has reported that fully 80%
of the total Apollo software effort was expended on verifying and
qualifying flight software. A recent Rand Report [l] corroborates the
significant cost of verification by estimating that approximately
50% of the software dollars for SAGE and GEMINI went toward
verification. In addition, these factors contributed to the
set of "traditional" software difficulties, namely: unpredictable
schedules, poor visibility of program status, undefinable
software quality, residual unreliability, and spiraling cost.

1.3.2 Approach

Accordingly the approach to this study has emphasized the
selection of features, tools, and techniques which aid in
software verification. The philosophy proposed is one of
improving software quality through careful design and structured
software rather than through an iterative search for errors
during verification (i.e., "an ounce of design is worth a pound
of testing").

In this final report, the Shuttle software development
process, the necessary programmlng language (s) , computer
hardware features, avionics configuration and executive de51gn
are examined in great detail. All are considered with a view
toward creating reliable Shuttle software at reasonable cost.
Techniques such as top down structured programming, use of a
higher order programming language, comprehensive computer hardware
and diagnostic facilities are analyzed. Furthermore, an effort
has been made to eliminate software problems which in the past
imposed difficulties during verification by designihg them out.
The proposals concerning the structure of the executive system,
the handling of interrupts, and the allocation of memory are
aimed toward this goal.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Finally, the inclusion of software from the start as an
integral part of the total system design will be of immeasurable
help. The interrelationships.of hardware and software and '
their effects on overall reliability, demand an integrated
design effort. N S

1.4 Task Summary and Review .

1,4.1 Executive System Design Task

The executive system design is presented in Volume II
of this report. The design was based on the application
software requirements derived for the Space Shuttle Phase B
avionics system and is specified for implementation on the
IBM 4 Pi EP computer system within the NASA breadboard data
management system. Althoudh a detailed summary is provided
in Volume II,an overview of its main features is provided here.

a) Structure. The executive system structure is based on
a high priority synchronous "foreground" for execution
of cyclic tasks and an asynchronous priority controlled
background for other applications software. The synchronous
foreground is initiated by a timer interrupt at a fixed
frequency, with the scheduling and sequencing of each
computation in a cycle predetermined and specified via
control sequencing tables. After completing execution
of the computations each minor cycle, the executive
dispatches the processor to one of the "ready" tasks in
the executive ready queue on the basis of priority. A
total of three priority levels has been established for
application programs.

b) Interrupt and task dispatching. Interrupts are immediately
serviced by the executive and entries are made in appro-
priate queues. The interrupted task then resumes and
continues until it either ends or until it reaches a
segment dispatch point. Only then is a higher priority
background task activated by the executive dispatcher.
Long duration tasks can be organized into reasonable exe-
cution segments with task swapping or interruption points
being more predictable. The dispatching of the cyclic
task controller each minor cycle is, however, an exception
and is executed immediately at the occurrence of the
minor cycle clock interrupt. This exception is made as
a reasonable tradeoff to provide the timing and response
characteristics needed for cyclic computations.

5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE < CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

”

c) Task and event scheduling. Any executing task may request
the executive to schedule another task on the occurrence
of an event or a specified time. Events are system defined
in scope and may be posted or deposted by applications
tasks via the executive.

d) Memory organizationand allocation. Programs are defined
as either total mission resident or mission phase resident.
Phase resident programs are loaded from the secondary
storage device into their assigned portion of the operating
memory by the phase initiation function of the executive.
Dynamic memory is allocated to each task by the executive,
when it is made ready for execution, out of. a subpool of
working memory established for each priority level.

A portion of the memory is dedicated to shared data. It
is organized into mission dependent resident data and an
overlaid area for phase dependent data. All access to the
common data is controlled through and by the executive.

e) I/0 control. Control and execution of all input and
output operations are performed by the executive system.
Input/output services are performed in two modes: on
demand via request by an executing task, or table driven
as in the case of cyclic computations in the synchronous
mode. Secondary memory management is under the control
of the executive.

f) Configuration management error recovery. The executive
responds to all system hardware and software detected
error conditions and supervises reconfiguration of the
system. A standard system error recovety action is defined
for each error class. During execution, application tasks
may invoke local recovery for a class via specification
of a task reentry point.

1.4.2 Software Verification Task

An approach to the development of more reliable software
is presented in detail in Chapter 2 of Volume I. The thesis
-put forward is that definitive statements of software quality
can only be made by careful examination of the basic program
structure. This structure must be carefully and explicitly
created during a thorough initial software design phase.

The traditional role of software testing is shown to be
one of demonstrating that the software can meet a finite set
of requirements rather than verification of an error-free pro-
gram. Verification, on the other hand, must be performed
from the beginning as an integral part of the implementation,

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

and consists of a combination of visual examination ("eye-balling")
and selected testing based on program structure and subroutine
interfaces.

It is suggested that the verification procedure is enhanced
through the discipline of structured programming. The technique
proposed is best described as "top down" programming. The over-
all control structure of a program is implemented first, and run,
calling upon dummy subroutines. After its operation is verified
the subroutines are "filled-in, as you go" with actual code, |
always keeping the total program in operating order. Programming
proceeds in this top-down fashion until all model subroutines
("dummies") are replaced by intended code. The objectives of
this technique are to provide "at a glance" understanding of
the functions of the program and an ability to achieve an
operating status at a very early stage of development. A "top
down" assembly of structured programs can be continuously
exercised throughout development,providing continuous integration
and thereby confidence and visibility of status. The use of
a higher order programming language is promoted as an important
tool in facilitating this structured approach to Shuttle software.

The facilities required to support the phases of software
development are presented in Chapter 3. Four phases of
software development are identified: Phase 1, software require-
ments, Phase 2, implementation code and test, Phase 3, verifica-
tion through software, and Phase 4, verification through
hardware. An all-digital software development facility is
recommended to support Phases 1, 2, and 3. A hybrid test bed
avionics integration facility is used for Phase 4.

The software development facility (SDF) consists of
a large scale commercially available computer system augmented
with disk type storage drives, printers and other data pro-
cessing peripheral equipment. A higher order programming '
language and compiler for both the host and flight computer
are presumed in support of Phases 1 and 2. The use of an
interpretive instruction level digital simulator is recommended
during Phases 2 and 3. Methods are suggested for improving
simulation speed including an efficiently tailored simulator,
simulation advance through periods of idle computer activity,
and maximum use of HOL programs by direct testing on the SDF
host computer. : '

An all digital avionics environment simulation is recommended

for use during the requirements phase (Phase 1). During Phase 3,
it will be augmented and interfaced to the interpretive computer

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

simulator providing "feedback" to the software requirements.
The SDF will provide both interactive and batch operation,with
limited user interaction during simulations. The avionics
integration facility will consist of actual flight hardware
supported and controlled by an environment computer.

1.4.3 Space Shuttle Phase B Review Task

The Phase B avionics system designs defined by North
American Rockwell and McDonnell-Douglas Aircraft Corporation
were reviewed. The software implications and features are
summarized in Chapter 4 and Appendices A and B. Both Phase
B designs have many similarities. Both employ centralized
integrated avionics systems with multiple levels of redundant
avionics equipment. The central software of both systems is
organized around a synchronous structured executive system
which includes functions of guidance, navigation, £flight
control, displays, checkout and configuration management. It
is estimated in size to be approximately 50K of 32 bit words
with maximum processing speed of up to 275K adds per second.
The synchronous versus asynchronous method of control is analyzed
in Volume II with a recommendation for a combined synchronous
and asynchronous structure.

The multiple failure tolerance requirement of "fail opera-
tional" after failure of two critical components and "fail
safe" after the third failure is identified as introducing the
greatest complexity in the Phase B designs. The control and
management of the various levels of redundancy in the system
have significant impact on the software, particularly in the
executive system. Several general implications of the centralized
Phase B designs are discussed: central computer software manage-
ment problems and I/0 timing difficulties with a shared multi-
plex data bus.)

Those differences in the baseline avionics configuration
features, which effect software, are identified as:

a) computer organization and redundant operation,

b} operating memory and reconfiguration,

¢) secondary storage and utilization,

d) subéystems rédundancy management and interfacing,

e) operation of diSplay systems.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

A discussion of these features in each configuration and its-
influence on software is provided in Chapter 4.

A review of onboard checkout software was conducted during
this task to determine its requirements and interfaces with the
executive system. It was determined that checkout software
has similar requirements to other flight software and can be
implemented within the framework of the executive system described
in Volume 2. That is, funetions such as subsystem status monitor-
ing, displays and other cyclic processing can be accommodated
by the synchronous foreground structure and event driven
processing such as diagnostics, recovery and crew requests,
can be controlled by the asynchronous background.

1.4.4 Higher Order Programming Language Task

The role and types of languages for the Space Shuttle
onboard software are presented in Chapter 5. A general purpose
higher order programming language (HOL).is recommended for
use in developing flight software. It is proposed as a sig-
nificant step towards a more orderly and controlled '
production effort. It is also recommended as an :
essential ingredient of the structured programming approach.
Supporting justification and rationale for the HOL recommendation
are reviewed in Chapter 5.

A crew language is identified for use by pilots and other
crew members to communicate with and command the computer. The crew
language must be designed to enable insertion of data, control over
program module and processing flow, and general support of
crew interaction. This language is not used for software
development or on-line compiling.

The features and characteristics of eight programming
languages have been tabulated and are presented in Volume III
including PL/1, HAL, SPL, CLASP, FORTRAN, ALGOL, MAC and JOVIAL.
SPL Mark IV and HAL contain many general purpose features
applicable to a wide variety of aerospace software applications,
including the Shuttle.

Although it appears reasonable that most flight programming
can be done with a general purpose HOL, the difficult areas of
machine dependent coding such as system programming are dis-
cussed. The use of direct machine language intermixed with
HOL statements is not recommended. It is recommended that
if special machine dependent features are required, then they
should be provided through a special subset of the general
purpose development language and be restricted in use.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

It is also recommended that if higher level, problem oriented
type languages (such as checkout) are required, that they be linked
to the general purpose HOL compiler. As discussed in Chapter 5,

' statements in all languages are ultimately directed into a 51ngle
compiler system to facilitate standardization and automatic
checking performed during compilation. It is recognized that a
"single compiler" approach for both lower level system programming
and problem oriented languages is not the most flexible. However,
it is motivated by a goal of producing quality flight software
of high integrity and reliability which may only be achieved
through conformance to a highly structured and controlled environ-
ment.

In a subsequent section, the advantages provided by a pro-
cedure oriented higher order language and compiler for structure
and modularity are discussed: independent compilation, compool
control of shared data, block structure, access rights to shared
data, and automatic checking features.

The final section of Chapter 5 discusses compiler imple-
mentation. The chief complaint regarding use of HOL compilers
has been inefficient generation of machine code. The use of
a "software interpreter" executing and intermediate language is
discussed as an approach to conservation of memory. Microprogram
implementation of the interpreter is suggested as a possible
approach.

1.4.5 Computer Features Task

Several computer features and architectural characteristics
are identified as desirable from a software viewpoint in Chapter 6.
While it is recognized that these features have tradeoffs asso-
ciated with hardware complexity, cost, and availability within
off-the-shelf hardware, they are presented as valuable to the soft-
ware production effort as well as a trend for future flight hard-
ware. A summary of the major computer features discussed in the
chapter is provided below.

a) It is recommended that the flight computer selected for
the Shuttle should possess features to enable efficient
execution in a higher order language environment. Ideally,
it would be designed as a higher order language machine.
The design of a machine which matches the language will
not only improve processing efficiencies but will improve
performance and reduce memory reguirements.

10

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -CAMBWDGE,MASSACHUSETTSOZKB-‘®1D(%14840

b)

d)

e)

£)

g)

h)

i)

. Hardware stacks are identified as desirable for the manage-

ment of nested procedures and efficient execution of arith-
metic-statements.

Microprogramming 1is desirable to optimize instruction sets,

word length and particular processing aspects of Shuttle software.
It provides significant flexibility which is desirable over

the long life of the Shuttle through its ability to modify

and change microprograms. Specialized spacecraft functions
such as data bus servicing can be absorbed into the

high speed microprogram and improve performance significantly.

Descriptors are desirable features to provide hardware
checks of proper use of data.

Hardware implemented run time diagnostics features are

desirable for direct execution and debugging of software, thereby
reducing digital simulation requirements. These features

can be provided as options in a ground based version of

the flight hardware. :

The addressing scheme is identified as one of the most
important characteristics of the computer. General addressing
schemes are reviewed. The "zero address" or stack machine

is shown to be most efficient. Most current aerospace

computers gshown to be "two address" machines containing
general registers.

The need for both static and dynamic addressing 1s recognized
for the Shuttle. Indirect addressing, indexing, and base
registers are all recommended as desirable for this
environment.

Three methods of subroutine linkage'are reviewed: return
address in a memory, redgister or stack. The stack is
identified most desirable to software.

Floating point data representation is strongly recommended

for use on the Shuttle. Appendix D provides a detailed -
discussion of this recommendation.. Appendix E provides -
an analysis of 32 bit single precision floating point word

size as to its adequacy in navigation computations.

In lieu of microprogramming, unimplementéd op-codes are

identified as a technique of obtaining spec1ally tailored
system instructions or routines.

11

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

A summary of major flight computer features identified for.
Phase B is presented in Chapter 6 including: physical character-
istics, processor, memory, and production availability.

Finally, higher order language benchmark programs tailored ‘
to the Shuttle application software are suggested as an additional

measure of the relative performance of candidate Shuttle computers.

12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Reference for Chapter 1

1. Boehm, B.W., "Some Information Processing Implications
of Air Force Space Missions: 1970-1980", Memorandum
RM-6213~-PR, Rand Corporation, Santa Monica, California,
January 1970. : '

13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

PRTCEDNING PAGE RT.ANK NOT FILMED

Chapter 2

Software Verification

2.1 Introduction

The question of how to develop reliable flight software
in a cost effective manner is of overriding concern to the
Shuttle Program. Although methods employed during the Apollo
development were successful in that Command Module and Lunar
Module computer software did the job and suffered few significant
anomalies, the effort expended in manpower and program testing
time, and the residual uncertainty in product reliability leads
one to search for surer, more efficient ways to achieve program
quality. '

The production of man-rated real-time operating software
for the Shuttle will be a complex process of interrelated
activities: generation of reguirements and specifications,
design of algorithms and methods of implementation, coding
and testing, verification, management, change control, opera-
tions, and field support. Each activity can bear a direct
responsibility for contributing to software reliability. 1In
an effort to better organize, expedite, track and smooth the

~process, a number of improvements might be suggested; thus

a) more detailed specifications
b) initial design documents
c) detailed design documents
d) detailed test plans
15

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

e) automatic decoding aids
f) automatic flow charts

g) multiple levels of testing

h) automatic diagnostic aids

i) automatic test aids

3) automatic-evaluation aids

k) management review of milestones at all significant p01nts

of development

1) strict configuration control of coding and testing

m) strict procedures for change control:

n) control and timely production of all necessary documenta-
tion

No one can doubt that many of the items listed above
will enhance the production of Shuttle software, but still
one might ask "will they insure bug-free programming?". It
certainly will be more convenient and less error prone to
set up test runs and conduct them using automatic aids for
initialization, edits, evaluation, etc., but will these
features find, or help to locate, software errors? And,
further, how can it be determined that no more errors exist
and the testing phase is completed?

For any large, non-trivial programming effort these
guestions have remained largely unanswerable. The approaches
taken, for the most part, include establishing the closest
control over the coding and changes to the coding, demanding
comprehensive documentation and conducting elaborate and
usually exhaustive test programs. While recognizing the wvalue
of these approaches, this report contends, nevertheless, that
the reliability of software is best improved by proper design,
structure, methods of implementation, and through the use of
software and hardware techniques which can prevent errors in
the first place. For example, Apollo flight software
anomalies were caused mostly by errors due to erasable
conflicts, scaling difficulties and imperfect restart logic [1].

16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Prodigious amounts of engineering and computer time were spent
in diagnosis and testing for this kind of error. If the
Shuttle software utilizes floating point, automatic data
sharing through hardware and/or software locks, and a single
instruction restart machine, then the most prevalent Apollo-
type errors would be eliminated, not by controls, test plans,
test facilities, etc., but by design.

In the sections that follow, it is design responsibility,
design methods -and careful implementation procedures that are
stressed. The hope, and objective, is that both quality and
cost efficiency will be gained by entering the verification
phase with an inherently more reliable software product.
Verification can then proceed, quickly and smoothly, to
demonstrate compliance with requirements instead of having to
bear a major responsibility for debugging an imperfect program.

Three principal ideas are espoused:

1) Coding must be preceded by a thorough software design
effort in which the methods and procedures of implementa-
tion are carefully formulated and specified.

2) The application programmer's machine interface is built
upon layers of virtual machines where each layer only
uses the facilities provided by the "machine" (layer)
directly below it. Access to internal layers from above
is disallowed.

3) The programs are implemented in a "top-down" manner
beginning with the overall control and concepts, and are
gradually refined by £illing in the detailed code.
Programs are kept in operating condition while still
under development (using models) so that problems of
integration are faced and solved along the way, rather
than being postponed until all coding is submitted.

In summary, more emphasis is placed on building in soft-
ware quality by design, and less on the relentless search
for errors after the fact. ’ '

17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2.2 Reguirements and Specifications

The production of Shuttle software is a process which
begins when the broad objectives of the Mission Requirements
are formulated. Its primary objective is to produce a concrete
set of correctly functioning programs for the on-board
computer(s). It is an activity spanning a wide spectrum of
‘management and engineering disciplines, during which the
statement of the overall requirements undergoes successive
refinement and redefinition on the way to the final product.’
The ultimate form of this statement is the computer program
itself. ' '

The need for commonly accepted definitions of the software
reguirements, at levels in between the statement of mission
objectives and the computer program, has been recognized in
the past by the establishment of software functional specifica-
tions, software engineering specifications, program design
specifications, etc. It is Intermetrics' view that the
formulation of these specifications is an.important part of
the software production process itself, and must be integrated
with it. ‘

A specification must describe accurately and fully the
functions it defines. No questions which require recourse to
an authority outside of the specification for answers must be
raised in the minds of those interpreting that specification.
On the other hand, the specification writer must not impose
constraints on the subsequent design activity by specifying
details of implementation more properly deferred to that
activity. Perhaps the most insidious software error is that
due to the misinterpretation of a specification requirement by
the implementer. It is impossible to devise rigorous verifi-
cation procedures to detect failures of human understanding.
Ambiguities and omissions in the specification must be
eliminated in order to achieve “correct" prograns.

The assurance of this kind of guality in a software
specification implies that the development of such a
specification is a design task in its own right, and must
be considered a part of the overall software production
effort. The objective of this section.is to define the
number, purpose, and the characteristics of a minimal set
of specifications considered to be necessary for the imple-
mentation of Shuttle software, and to indicate how the
design of such a set is to be approached.

18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2.2.1 The Formulation of Software Specifications

A four level hierarchy of Shuttle software specifica-
tions is envisaged. Four specification documents need to be
identified, to define and describe the following:

a) Mission Requirements
'b) Functional Requirements
c) Software Requirements

- 4d) Program Design

The term "specification', where used in the remainder
of this section, will refer to one of these documents.

Each level constitutes a refinement of the require-
ments of the previous one; each specification in the segquence
yields a definition of the software in increasingly concrete
terms, DLach set of requirements is assumed to be organized
in the form of a document, which is treated as the specifi-
cation and reference manual for the next activity. Each of
the above specifications will now be described in greater
detail. ' -

2.2.1.1 Mission Requirements. At the highest level are

the Mission Requirements. These set forth the activities

and objectives of the Shuttle concept. All intended mission
phases are indicated from launch to landing, with definitions
of all nominal, off-nominal, contingency, backup and abort
situations. The Mission Requirements indicate broadly the
operational functions of the Shuttle, the range of capabilities,
the expected levels of performance, and the accuracies that
must be achieved. The Mission Requirements are the specifica-
tion for a detailed functional design of an operational system
to accomplish the mission objectives. The result of this
stage of design is a set of Functional Requirements which
specify the manner in which the Shuttle will accomplish the
objectives.

2.2.1.2 Functional Requirements. This specification will
define the various operational phases, identify the functions
to be performed, determine the sequence of operations,
establish the interrelationships of the functions, and
provide mission time~lines. The Functional Requirements
Specification will identify and determine the scope and
capabilities of the various on-board subsystems, and will

19

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

indicate the nature and degree of cooperation with ground
based operations. It is during the design of the Functional
Requirements that definitions about the number and types of
the various subsystems, their functions, and the configura-
tion of the system begin to be made.

The next stage of software design takes the form of a
detailed analysis of the Functional Requirements, with the
objective of establishing techniques for their realization.
The end result of this very important phase is a set of
Software Requirements.

2.2.1.3 Software Requirements. This Specification contains
definitions of all the appropriate equations and algorithms
to be implemented, details of critical timing and sequencing
as demanded by the Functional Requiremeénts, operational
.procedures, and definitions of operational interfaces
between the computer/software and the rest of the Shuttle
system (i.e., crew,subsystems, ground). The Software
Regquirements Specification contains all information that is
required to embark upon a detailed structural design for the
Shuttle computer programs. This includes, particularly, all
appropriate data that is to be used, both fixed and variable.
Dynamic ranges of all specified mission variables will be
established and defined. The Software Requirements will
constitute a specification for the design of the actual
program.

An essential part of the Software Reguirements
Specification is a definition of the set of tests to which
the completed program must be subjected in order to demon-
strate its correct operation. The task of defining these
tests requires knowledge of the design concepts for the
whole system, and is not one to be left to the programmer.
The test requirements will include prescribed test cases with
initial conditions, mission parameters such as state vectors,
weights, inertias, etc., and the specified levels of perfor-
mance to be achieved, together with evaluation criteria to
enable a judgement: to be made.

2.2.1.4 Program Design. This final stage of software
specification is perhaps one that has not, in the past
received the attention it demands. Too often a basic
structural software design has not been possible, perhaps
because there is no time for it, because the job was not
completely specified at the time programming began, or
because already existing segments of software had to be

20

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

pressed into use. It is our contention that the establish-
ment of a Program Design Specification is necessary to
ensure that an overall program structure and operating
philosophy be established at the outset. There must be a
conscious effort to design this Specification. It must be
based on a comprehensive set of Software Requirements, and
it must precede the start of operational program coding.
Because it is followed by implementation, the final stage
of refinement, the Program Design Specification must address
the set of problems associated with programming, checkout
and integration. Section 2.3 will review in greater detail
the approach to.be taken in establishing this Specification.

2.2.2 Necessary Detail Within Software Specifications

The generation of definitive software specifications
is a process of successive refinement, during which the
scope of Shuttle functions being considered narrows to only
those associated with the details of software operation, as
those details become increasingly more apparent. The primary
purpose of the specification documents 1is to provide tangible
interfaces and control mechanisms between the groups of
people, of varying disciplines and working styles, who will
be involved in the process. The hierarchy of specifications
(i.e. the several Requirements) can also be seen as stepping
stones on the route to a program design, forcing an evaluation
of the design at intermediate points. One purpose of this
hierarchy is to prevent selected aspects of the total system
design from being taken prematurely from conception through
implementation, or, conversely, from falling behind. An
uneven rate of development creates inflexibility and dis-
courages the across-the-board compromises which are always
necessary as a design solidifies. This principle will be
invoked again in the discussion of program implementation
(Section 2.,4).

In order to maintain the desirable flexibility it must
be emphasized that each specification is only the starting
point for the next stage of design. A set of requirements
should avoid dictating, or even implying, the use of specific
techniques of organization oxr design that might appear to be
necessary to achieve these requirements. It is important to
preserve the choice of design policies, so that overall
compromises can be made. The tendency to become too specific
is a common fault in specification design. It is difficult
to resist as the system becomes progressively more clearly
defined and seemingly obvious techniques of implementation
begin to present themselves. For example, although the
Software Requirements Specification should present all the

21

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

information required by a program designer to create and
deliver the software, it often specifies, as well, how it

is to be structured. Functions are presented as software
modules with the interfaces among modules already defined.

A specification that goes to these lengths not only absorbs
unnecessary effort during its design, but creates further
waste because it may have to be unravelled before a real
program design can begin. If such over-specification is not
recognized, but is promulgated in the design of the program,
basic options of organization and design may no longer be
available. Furthermore, the application of the principles of
structured programs (to be discussed in Section 2.3) is
impeded, lessening the possibility that reliable software

can be produced and making modification and change procedures
more difficult to apply.

2.2.3 The Phases of Software Development

Shuttle software production must be considered as a
continuous process, which is initiated by the formulation
of the mission requirements, and does not end until after
the delivery of a validated set of flight-ready programs.
The nature of the activities involved in this process
naturally undergoes significant transformation as the
software evolves through specification, design, implementa-
tion, testing, integration and, eventually, to operation.
These activities can be grouped into three phases,
characterized broadly as specification, implementation
and verification activities. The disciplines of the
personnel, and the techniques and facilities that are
involved in these phases differ sufficiently to suggest
these categories. The remainder of this section will be
devoted to a brief description of each phase and its
product.

2.2.3.1 Phase I: Specification. The basic characteristics
and content of the Mission,Functional and Software Require-
ments documents generated during this phase have already -
been discussed in Section 2.2.2. Although shown as separate
activities in Figure 2-1, the work leading to the publication
of these three specifications cannot be conducted independently.
Each specification must acknowledge fully the capabilities
and limitations of the activities it seeks to direct. The
Functional Requirements designer must be aware of equipment
limitations. In generating the Software Requirements, the
basic problems associated with program design and checkout
must be appreciated. This may seem obvious, but in practice

22

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) &ﬁ—ﬂMO‘

uonedisuowsq wesbold

| | w . . | . asey
| Jsofubiseg \\ | S B v e e
| Commmem eIl G . .. o N . | .
wesboid— % AAMPNI o . o
28ds ubissq wedbold— 4 7
m Esmm%_mg uBIsa
QE:)@xm\\ T 3 . weibold
ads uBISag sA1pN2eX ii%,ma,i i o | —
S —
. | Sicm_mma S ¢ 858la
.mz.aaz*,ququ‘ : \“
syusliadinbay 158l
sjuawellnbay aJemyos
K ubiseq
SyusWedInbsy jeuoioung . Wcozmumsmam
J T 852Ud
S)uslialinbay UOISSIA -

-
=X
(78]
(<))
(o)
N w5

§S90014 ®IeM3IOS OYL T-g ©Inbra

23

these principles have often been violated. As a consequence
a subsequent activity experiences problems that should have
been anticipated earlier (e.g. inadequately defined hardware
interfaces, or failures to specify the dynamic ranges of
intermediate results). To minimize these occurrences,
specifications must be formulated, reviewed and iterated
with participation from all phases of software design.

As the definition of the software progresses towards
its embecdiment in the actual program, the specification
becomes successively more quantitative and requires an
increasing degree of analysis and computation. This is
especially true in the case of the Software Requirements.
Specification which contains the necessary equations,
algorithms, loop gains, coefficients, sampling frequencies,
etc., so that no aspect of the performance of the system
need be established during the program implementation phase.
This implies that a thorough analytical investigation is
-necessary to devise the techniques by which the performance
specified in the Functional Requirements may be attained.
The development of this specification is therefore a major
undertaking. It is our contention that specification design
should rank in importance and emphasis with the design and
development of the computer program itself. Too often it
is left to the flight program personnel, already hampered
by an unproven program and by a simulation environment
ill-suited to the purpose, to fill the gaps of an inadequate
specification. :

An analytical specification design effort requires the
support of adequate tools and facilities. The evaluation
of the closed loop performance of the Shuttle thrust and
attitude control systems, for example, requires an accurately
modeled simulation of the vehicle's dynamics, its stabiliza-
tion and thrusting subsystem, and other appropriate guidance
and control functions. If such a simulation is a requirement
for this stage of software design, then it is natural to ask
whether it can also be used in the later stages of verifica-
tion. It will be suggested in Section 2.5 that a modular
simulation organized with this objective is feasible. Its
modular elements can be utilized, either individually or
in smaller subsets, to support the needs of Phase 1 analysis
tasks. In its integrated configuration it can provide the
comprehensive all-digital simulation environment postulated
for the demonstration testing of Phase 3. A modular _
environment simulation offers two significant advantages:

a) only one simulation design effort need be undertaken
to satisfy the needs of two distinct activities.

24

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE -+ CAM.BRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

b) the simulation models that are used in Phase 1 to
formulate software concepts, are themselves verified
at a later stage, by comparing their performance
against that of the more real equipment in the system
integration facility. This concept will be developed
more fully in Section 2.5,

An important aspect of software production is testing.
Although it will be shown in Sections 2.3 and 2.4 that there
are good reasons to change the customary view that testing
is the basis of verification, software testing will always
be necessary. As a consequence the task of specifying and
defining all the test. cases, and the problem of establishing
the test criteria will have to be faced. The responsibility
for test case design belongs properly to those charged with
developing the Software Requirements. During this stage the
basic concepts of system and software design are formulated,
and the software performance characteristics are established.
The design of tests that demonstrate the correct implementa-
tion of these concepts requires considerable effort from
personnel who have knowledge of the overall system operation.

Special care must be taken to eliminate uncertainty in
the mind of the tester when he is asked the question "was the
test successful?". The performance of closed loop control
system always falls short of that established by the ideal,
weightless, inertia-less systems upon which concepts are
based. The degree of acceptable mismatch must be established
in the Software Requirements Specification so that the
software tester will have to exercise an absolute minimum
of judgement in evaluating program performance. This is
especially true for tests conducted by the Phase 2 personnel,
the programmers. Thelr primary objective is to deliver
correct code, not to evaluate say, the performance of a
minimum fuel thrusting maneuver. Test case design cannot
be performed by those already overburdened with the demanding
task of designing and verifying the details of program
implementation. The test requirements, therefore, will form
an essential ingredient of the software requirements document,
to be delivered at the conclusion of Phase 1.

2.2.3.2 Phase 2: Program Design. This phase accomplishes
the design, implementation and testing of the actual flight
program to the Software Requirements established in the
previous phase. The details of how this is to be done will
be described in Sections 2.3 and 2.4. At this point only a
brief summary will be given. Figure 2~1 illustrates the two
major activities of this phase; the -executive design, and

25

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

the design of the operational programs. Both consist of a
pure design phase followed by an implementation phase. At’
the end of the executive design phase, which will apply the
principles of "layered" structure to be described in Section
2.3, an Executive Interface Specification document will be
published. To the applications programmer this becomes the
definition of his interface with a "virtual" machine. It
will specify how he will schedule tasks, handle I/0,control
timing, etc. It will obviate any necessity for him to
become familiar with the real details of machine hardware
structure, and will prevent him from interfering with such
basic operations as scheduling, memory allocation I/0,
interrupts, etc. The publication of the Executive Interface
Specification signals the start of executive program coding
and test, and the start of the design phase for the applica-
tions programs.

Applications program design is perhaps the most
important activity in the whole software development process.
Its purpose is to establish an overall structure for the
computer program before the coding and testing begins. The
main objective is to create a framework that logically and
sequentially interrelates the various program modules
which are also identified during this phase. This represents
the first opportunity to apply in an initial layout of the
actual program itself some of the principles of structured
programming and top-down implementation. This subject is
explored fully in Section 2.3. The applications program
design phase is complete when the Program Design Specifica-
tion document is published. This is the last in the series
of specifications that together define the software design
process. From this point on program coding, integration
and testing can proceed, with the confidence that no major
design hurdles have still to be overcome. Effort can be
concentrated on the creation of a well defined, visible,
program whose dynamic characteristics can be more easily
assessed from its static structure, than has been the
experience of the past. This subject is analysed further
in Section 2.4.

2.2.3.3 Phase 3 and 4: Verification. At the end of Phase 2
the flight program is complete and "internally" verified.

It now enters the final phase of testing before being

exposed to the actual flight environment. The principle
objectives of this phase, which will be described fully in
Section 2.5 are: '

a) to demonstrate correct software operation according to
the Software Requirements Specification;

26

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

b) to confirm that the concepts formulated during Phase 1
are still effective in an environment which more closely
resembles that of the real world;

c) to confirm the adequacy and validity of the modeled
environment used during Phase 1 and 2 to provide
guantitative test and performance data.

The rationale for dividing the verification activity into

two distinct phases will be presented later, together with
a description of the techniques and facilities to be used.

2.3 Program Design

It is proposed to build reliability into the Shuttle
software, by design, through the technique of "structuring"
the flight programs. The essence of this approach is
"modularity with structure". This section will explore
its application under the principal headings of

a) Program structure,

b) Program modularity,

c) Influence of language,
d) Program design process.

2.3.1 Program Structure

A large, complex program must be visualized as an
hierarchical organization of functions, rather than as a
collection of somewhat arbitrarily defined program modules.
The overall objective 0f a computer program is to execute
a translation from the highly sophisticated requirements
of the mission and environment into the relatively simple
logical statements required to control the computer hardware.
This translation can be conceived in a series of steps, in
which each step performs a translation between intermediately
defined procedural and logical interfaces. 1In this way the
interaction between functions in the software can be limited,
defined, and more easily controlled. Such a structured
approach has been successfully applied to the design of
operating systems for large general purpose facilities [2,3,4].
It is proposed to apply the principle to the whole of the
program in the Shuttle computer, including the applications
program. Because of the strong influence of the real-time

27

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

requirements, structure becomes even more desirable, in order
to achieve effective separation and modularization of functions.-

The hierarchical, or layered, organization can be
represented as in Figure 2-2. The machine itself is depicted
as the lowest or zero level. The actual hardware/software
interface is therefore between Level 0 and Level 1. The
"tiered cake" appearance of the figure is due to the choice

" of coordinates. The horizontal scale represents interface
complexity, defined as the number of system variables .
controlled by that interface. The vertical scale indicates
the level of sophistication or abstraction of the function
from the interface. The higher the level the more
sophisticated the "virtual machine" becomes. The highest
level is ultimately the crew member, who uses the computer
to accomplish the appropriate mission phases. He may have
only a few options of control; for example, he may be able
to select major mission modes such as "ascent", “"insertion",
"rendezvous", with perhaps a few variations, as specified
by the Mission Requirements. Although limited in number,
these are very sophisticated functions indeed.

The layers are so organized that each level interfaces
only with those levels immediately above and below it. A
given level is unaware of any detailed str¥ucture within the
"level” below it. The functions performed by the software
within that level may, in fact, regard the lower interface
as a "virtual machine" [2], whose properties are defined by
the requirements of that interface.

The decomposition of the Shuttle software functions
into a succession of layers can be illustrated as in
Figure 2-2. The function of each of these levels is as
follows:

Level 0: The machine

Level 1: The control of processes. The allocation of
the processor(s) to active jobs, i.e.,
scheduling and dispatching. Also the control
of response to interrupts, and the resolution
of priorities.

Level 2: The responsibility for allocating space in
operating memory, and if it is provided,
the control of secondary storage.

Level 3: The management of I/0 operations. This might

include the interfaces to the displays, manual
inputs, and the Shuttle data bus.

28

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

A WRELER g aulIy IR
N . g
AN
kY | | N |
\ I 19A8] o Buynpauos
: 7 1997 uoneso|jy Alowsyy
WV i . Iy - E
¢ [9A5] 0/l
, Sailiin
3
,ﬁ,,m nnnnn o | o
SR ACLCI Y - suoj1edtjddy
M.,W r.a |
m G [RRIT - -dojedadg

2IN3ONIIS TRUOTIDUNT vmummmq‘ Z-2 2Inbtg W

Level 4: The application program functions. A sublevel
"of Level 4 might be a collection of program
utilities which provides standard higher '
mathematical functions, coordinate transforma-
tions, integration algorithms, etc., not
already available within the programming
language. :

Level 5: The crew member.

. These are only broad suggestions, offered in illustration of
the principle. Other categorizations have been made [2,3].
Levels 1 through 3 fall into a category normally referred to
as the operating system. From a structured viewpoint, an
operating system has, in the past, been somewhat arbitrarily
defined. It is normally considered as an entity, rather
than a subset of hierarchical levels, because the collection
of executive functions is usually considered to be invariant,
a part of the machine. The applications programs, and their
regquirements, are often quite unknown until late in the
development of the system. In the Shuttle environment, the
totality of functions is known and well-defined, and the
layers of program functions may be optimally organized.

The first stage of program design is to identify the
various levels, and to define their functions. The inter-
faces of the levels with each other are then determined,
and will form the basis for the implementational techniques
to be described in Section 2.4. The constraints to be
observed in organizing the software into a hierarchy of
functions will obviously be, at the highest level, the
requirements defined in the Software Requirements
Specification, and at the lowest, the characteristics of
the computer.

2.3.2 Program Mbdularity

To be containable and manageable, program code must
be capable of being organized into sizable modules,
containing groups of logically related statements, or
instructions. It is advantageous if the number of different
types of such modules is kept to a minimum, so that simple
rules can be devised to enforce their control. Past
experience with software for real-time aerospace control
applications indicates that perhaps only two types of
module need be defined, and that their desirable charac-
teristics should be as follows:

30

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840)

a) Data Modules

Prescribed inputs are processed in a logical or computa-
tional fashion and outputs are delivered back to the
caller. Access to common data is allowed only through
the rigid supervision of a common data pool (COMPOOL)
control mechanism.

b) Control Meodules

This module is scheduled by the executive and may call
Data Modules as necessary to perform the basic processing
tasks. A Control Module may schedule,via the executive,
other Control Modules. An objective in defining this
type of module is to bound the program control functions
so that the number of executive interfaces is minimized.
A well defined control module is thus independently
operable, without being unmanageably complicated or
large. The purpose behind this concept is to create
software entities that are visible, comprehensible and
testable; i.e., easy to conceive, construct and verify,
to set up and run, with well-defined, limited modes of
operation. Their functions are obvious by examination,
and their performance under test can be readily observed
and evaluated.

The software modules created by application of these
definitions do not necessarily bear relationship to the
functional elements of former, typical software requirements
specifications. It is on this point that a departure from
previously established procedure is suggested. -Formerly, ..
the software specification was organized into convénient .
functional portions, each of which played a visible role in -
the operation of the avionics system. These elements were
formerly implemented with little reorganization for optimal
implementation, verification, and execution, so that they
became intimately and often randomly entwined with each
other and with the system programs. The result was a complex
structure that became very difficult to debug, verify, or
modify.

During Phase 2, the program will be broken down into
an assembly of Data and Control Modules. The performance
and interface specifications for these Modules will be
established as part of the Program Design Specification. The
Module specifications will include

a) definition of all input and output parameters and their
characteristics (e.g., dynamic range, scaling, precision,
formats, etc.):;

31

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

b) all timing details, both internal and external;
c) all priority and other scheduling information;

a) definition of interfaces that the module shares with
other modules;

e) definition of all logical and computational operations
to be performed within the module.

A higher order compiler language can be instrumental
in achieving the first objective. A language which provides
for the definition and manipulation of program blocks will
allow Data Modules to be more easily defined, maintained,
and their intended use to be enforced. A real-time control
capability can assist the definition of the Control Modules
and enforce their proper use. A specific language, HAL,
~will be discussed in the next section, and the relevance of
its structure to the attainment of program modularity will
be indicated.

2.3.3 The Role of the Programming Language

The advantages and disadvantages of the use of a
higher order language for the programming of the Shuttle
computer. is discussed in a broad context in Chapter 5. In
this section only those aspects which have relevance to the
structuring of programs will be considered.

The concept of structure in software depends, initially,
on the ability to perceive modularity of function and
behavior. This must be followed by techniques which can
exploit the modularity. Such techniques must be supported
by mechanisms which can be invoked to enforce them. Higher
order languages are attractive in this regard, especially
those which exhibit structural characteristics such as PL/1,
ALGOL and HAL. However, the principles of structured soft-
ware can also be enforced by convention, or by an assembly
language tailored for structure [5]. The aspects of a
language which have greatest bearing on structural program
design are rules defining program modularity, name scope
and data usage, and those that limit and control the inter-
face with the executive, especially in the area of scheduling.
The HAL programming language will be used to illustrate the
application of these rules.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2.3.3.1 Modularity. HAL imposes program modularity by
recognizing only certain organizations of code. A HAL
Program consists of one or more, independently compilable
and schedulable, "Programs", and a common data pool [6].
A Program consists of in-line coding, except for CALL and
SCHEDULE statements. For example, Program #1 might be
rendezvous navigation, Program #2 autopilots, and '
Program #3 the onboard checkout system. A Program may
call one or more Procedures, and schedule, via the
executive, one or more Tasks. Tasks and Procedures Mmay,
in turn, call one or more Procedures. A Procedure may
not schedule a Task. Tasks and Procedures can not be
compiled independently of Programs. All these organiza-
tional blocks are self-contained. They may be entered
only at a single location, and exited at a single location.
With few exceptions, all HAL coding must be arranged into
Programs, Tasks or Procedures. These basic elements, and
the rules that govern their interaction, are illustrated
in Figure 2-3.

2.3.3.2 Name Scope. The structure of HAL also provides
for control and protection of variables and routines,
through name scope. Name scope restricts the accessibility
of program names. Variables that are required to be
recognized and available globally, throughout the Shuttle
computer program, are assigned to a centrally organized

and controlled common data pool, or compool. The vehicle's
inertial state vector is an example of a compool variable.
Any other variable is known only within the scope of its
name. The scope of a name is defined as the Program,
Procedure or Task in which it is declared. Name scope
includes all Programs, Tasks or Procedures called by the
block in which it is declared. But it is not known outside
of the block, and therefore a name cannot be accessed in
any way from outside the region of its scope. In addition,
there is no confusion between variables or routines which
have identical names, but are of different scope. The
application of name scope means that many separate program
functions can "live" together in the same computer, and
yet remain isolated and unaware of each other. They are
incapable of writing over, or otherwise interfering with
variables or locations that are not mutually defined.

2.3.3.3 Scheduling. 1In addition to constraining the choice
of code organizations, and restricting the freedom of program
variables, HAL also enforces rules that determine the dynamic
relationships of Programs and Tasks, to each other and to

33

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -CANE%NDGE,MASSACHUSETTS(2138’(617)66L4840

the executive. Figure 2-3 depicts all the blocks that are
definable in HAL. The following rules, which are additional
to those cited in Figure 2-3, illustrate how these blocks
may relate to_each other:

a) Pl may schedule P2, and vice versa.

b) P, may not schedule T3, because the name of T3 is not
known outside of P, (by name scope rule).

" c) T, may schedule T,.

d) Ty may schedule P?, because names known to Pl are also
known to Ty. ’

e) Tl may call RZ'

£) T, may not call R3, because the name of R3 is not known
outside of R2°

Despite these restrictions it is obvious that extended
hierarchical scheduling relationships are still possible.
Figure 2-4 illustrates an example. Each numbered entity

is a Program or Task that is scheduled by, and in turn
schedules others. The above HAL scheduling rules are.
complemented by rules governing the termination of dynamic
activities, which are important for the following reasons.
Scheduling means that the executive is requested to cause
the indicated block to be executed when conditions permit.
This may not happen for considerable periods of time. The
activity that schedules a Task for future execution must
not in the mean time die without trace, leaving the
scheduled Task an orphan to be taken care of by some other
activity, which is probably not prepared for the eventuality.
On the other hand, a Task created somewhere near the bottom
of the tree, for example Task #15 in Figure 2-4, must not
be empowered to topple the whole structure by performing

a summary "terminate". To prevent such phenomena and the
possibility of unpredictable and uncontrollable program
operation, HAL provides the following functions:

a) A CLOSE at the end of a program, defined as a wait for
all the dependently scheduled activities to finish,
and only then a return to the executive.

b) A WAIT in the middle of a program, defined as a wait

at that juncture until all dependent, previously . .
scheduled activities have finished, and then continue.

34

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

pa|npayos 8q ‘e npayas few | ‘4 Ajug | :

3]qejidwos %_._(_%:m%u:_ s d Ajup

PR SEDTIRER Tx?

Eﬁ IETEATITT

EnT's sl

T e DAV

9IN3oNIIS weIboid Ty £-7 2anb1g

15304 T

=5

Sa|ny = 3
. : o w J)]
: : .. ! : U ;
0o . 4o
- |
- W c . _, M ” mgﬁm
| il 1z, : |
e = ¥ m n_ : g
R S
SQ%SM
- -

ISR

I

= 72

ot AL, e I ¢

3l

LR eca- 0 Ay i e et ot T

Jaic.ml vie ot vict R T R Y AR T R

35

AyoxexsTH HBUITNpPSYDS

p-z 2aInbtga

36

c) A TERMINATE is an unconditional termination of self,
and of all dependently scheduled activities.

d) A TERMINATE EXCLUSIVE is an.unconditional termination
of all dependently scheduled activities, but not of
self,

A TERMINATE mav not refer to tasks scheduled at a higher
level than the current task. It is possible for several
unrelated tasks to schedule the same task. This must be
done by attaching an identifying number to the name in each
SCHEDULE statement. A given numbered TERMINATE can then

be identified with the specific scheduled activity in the’
executive which is to be ended.

2.3.3.4 Conclusions. It has been shown that a suitable
higher order language provides a very significant step
towards an orderly structuring of the program code. In
addition, it allows tight control to be exercised over the
accessing of variables and subroutines, causing the dynamic
behavior of the computational processes to be more apparent
from their static structure.

HAL is a higher order language that enables a direct
identification of the program modules proposed in
Section 2.3.2 to be made. The Data Module as defined
finds a correlation with the Procedure block in HAL. A
Procedure, like the provosed Data Module, has well defined
single entry and exit points, and may not schedule other
activities via the executive. It may call other Procedures,
although only through a similarly well controlled mechanism.
The Control Module is realized by the Program and Task
blocks of HAL, which match its requirements exactly.

2.3.4 The Program Design Process

The preceding sections have presented a number of
technigues for achieving a more deterministic, manageable,
and less error prone Shuttle computer program. This
section will briefly indicate how some of these techniques
can be integrated into an overall design and implementation
process. A development of the subject matter in greater
depth and detail will be presented in Sections 2.4 and 2.5.

A computer program of more than trivial complexity
requires the combined efforts of many programmers, who
may number into the hundreds for the larger Programs. It

37

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

is usual to break the total volume of software into a number
of somewhat arbitrarily defined modules, and to assign these
modules to many programmers, who then independently proceed
to generate code. Eventually the many pieces of program are
melded together during a scheduled integration period. This
process is usually difficult and painful because of faulty
interaction between the modules due to misunderstandings of
their mutual interfaces and the data they share [7]. Often
the only answer to the subtle errors such misunderstandings
create is exhaustive testing for as many cases and logical
possibilities as time and money permit.

2.3.4.1 Program Structure. A number of researchers have .
been investigating the possibility of a more definitive
evaluation of the quality of software, by exploring tech=
nigques for actually proving program correctness [8]. The
most encouraging avenue has been the development of program
structures which enhance the possibility of demonstrating,

in a minimal fashion, correct operation. A major premise °
of most investigations has been that the commonly used GO TO
statement to be found in all high level languages must be
considered deleterious [9]. A GO TO causes a sequence of
logical operations to be transferred to another area of the
program, with no guaranteed return. From the conceptual
point of view of the programmer or verifier this causes a
break in the train of thought, a thumbing through the
program listing, a struggle to remember where the sequence
came from and what it was doing. One GO TO leads to another,
and soon continuity is lost.

Proposals have been made for a disciplined approach to
coding in which GO TO statements are replaced by two or
three branching statements which force a return. For
example Mills [10] advocates a structure using only the
IF THEN ELSE and DO WHILE statements to be found in PL/1,
with perhaps the DO CASE from PL/360. These alternate
branch mechanisms are acceptable because they return in a
very visible manner to the current sequence, and restore the
continuity. Any program can be proved to be implementable
using only these control structures, although with existing
programs the procedure can become rather tedious [11]
Dijkstra has coined the term "structured programming" for
conscious efforts to avoid GO TO statements and limit control
mechanisms to only two or three types of statements [8].

The state of the art in program correctness proofing
has not proceeded to the point where techniques can be
applied to an operational problem [7]. The principles of

38

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

structured programming have, however, been applied to the
design of a real-time system by Mills, and are reported to
have contributed greatly to a reduced difficulty and lessened
time for the testing phase.

The Shuttle program presents new difficulties for the
structured approach because of its real-time control require-
ments. It is, however, proposed that a preliminary structural
design can take into account both the logical and sequential
characteristics of the task without relinguishing the
advantages of structured programming, as follows.

2.3.4.2 Time—line Design. The initial structuring of the

program must start with some estimate of the size and

execution time required to achieve the computational and

control functions specified by the Software Requirements.

This first step can only be achieved by educated guess work
~on the part of experienced programmers$, assisted perhaps by

trial programming. The initial objective will be to plan

out the scheduling work load of the executive during all the

major programs. The importance of an initial design of the

executive functions of the program functional hierarchy

defined in Section 2.3.1 is obvious. Of significance here

is the executive philosophy. The executive design presented

in Chapter 2 proposed a synchronous foreground capability for

a limited number of high priority functions, and an asynchronous

background for other functions. A time~line design must ensure

that the distribution of the available processor time adequately

provides for the timely execution of the foreground tasks. .

The background tasks must of necessity be interruptable. This

can be provided for by allowing interruptions by the executive

only at well defined points (for example between HOL state-

ments), to avoid hazards to the variables specifying the state

of the calculations and the status of the interrupted task.

The cooperation of language and executive can ensure that

the integrity inherent in a structured program is not

endangered.

Once the program has been defined in terms of schedulable
functions, these may then be identified as Data or Control
Modules. :

2.3.4.3 Structural Design. The technique proposed here has
been defined by Mills as "top-down" program implementation.
The objectives of the technigque are

39

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

‘a) to provide "at a glance" underétanding of the function
of a program;

b) to achieve an operating status with the actual program
at a very early stage of development,

Each. basic major program is initially written in series of
statements that do not exceed one page of printout. The
" statements are limited to data declarations, sequential,
logical and arithmetic operations, calls to Data Modules
(HAL procedures), statements scheduling Control Modules
(HAL programs and tasks), and simple control statements such
as IF THEN ELSE, DO WHILE and DO CASE. Data and Control
. Modules that do not exist initially are represented by names
~and code simulating their time and storage requirements.
(This method is further explored in Section 2.4 and 2.5.)
Each of the functional program levels defined in Section 2.3.1
is begun this way, by writing its top-level functions in the
form of a single page program,

As soon as a compilable entity (e.g., a HAL program
block) is produced, it may be compiled and executed, without
waiting for the last piece of code to be delivered. In fact,
it may be run before every procedure and task has even been
identified. The main advantages of this programming technique
are:

a) it is easier to create programs in a structural manner,
because they are easier to visualize;

b) a "top-down" assembly of structured programs can be
continuously exercised throughout its development.
This provides confidence and visibility of its status
to management. It establishes the understanding of
interfaces and program operation in a continuous manner
from the start of implementation.

c) A structured one-page program can be more easily verified.
It may be proved to correspond to its specification, if
not by rigorous automatic techniques, then by examination.
It will be shown in Section 2.4 that examination is
perhaps the most powerful tool for verification available
today. ‘ '

40

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.4 Implementation: Code and Test

The "layered" design process described in Section 2.3
results in the definition of distinct machine levels, the
characteristics of the level boundaries, and an overall design
of the structure within each level. The design is described
in a "top~down" fashion, and will be so implemented. This
design hierarchy was described in Section 2.3.1, and depicted
in Figure 2-2.

2.4.1 Implementation of System Programs

The design and implementation of the Shuttle computer
executive and systems programs is performed during the
Phase 2 described in Section 2.2.3.2. This includes scheduling,
memory allocation, basic subroutines, self-~test, general I/0
routines, display interface, initialization and load and other
services. At the end of this phase all systems programs will
have been coded and tested to meet the software requirements.
This is accomplished in the steps defined by the levels. Thus,
the scheduling, dispatching and interrupt handling functions
(Level 1) are completely coded and tested prior to the
implementation of the memory allocation scheme (Level 2).
Level 2 then presumes that Level 1 represents a virtual
machine; i.e., is coded using only the ‘facilities provided by
Level 1 and, more importantly, coding within Level 2 never
accesses or directs the machine itself. In this manner the
user interface (to the applications programs) is established
building only upon the layer that preceeded it. Thus, any
layer, L, can be understood and debugged independently of
the level higher than L and independently of the levels lower
than L-1. Note that this approach clearly distinguishes
between the user and the system and is specifically intended
to enhance reliability by allowing the user (applications
programmer) only those facilities designed for him, and not
permitting alteration, by him, of the system itself.

The step-by-step development of code within each layer,
and the accompanying tests, are conducted "top-down" as
briefly described in Section 2.3.4.3. This process and its
benefits are discussed more fully in the next section.

2.4.2 Implementation of Applications Programs
The design and implementation of the Shuttle applica-~
tions program (Level 4) follows the design of the executive

(Levels 1 through 3). These programs will include guidance,
navigation, flight control, onboard checkout, display

41

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

processing, systems monitoring, subsystem servicing,
reconfiguration logic, telemetry interfaces, and other
special purpose routines. At the end of this phase, all
‘applications programs will have been coded and tested to
meet the Software Reguirements.

2.4.2.1 Top-down Implementation. As a result of the
Software Requirements and the subseguent Program Design
process, the applications programs have been structured
into Data Modules and Control Modules. The Data Modules
encompass subroutines and functions which may be called
in-line entities. They are distinguished in that they
represent only logical and/or computational processes and
initiate no real-time control statements (e.g. SCHEDULE,
WAIT, etc.). Accesses of common data are made through the
rigid control mechanism of the shared data pool. The Data
Module is significant to the construction of reliable soft-
ware in that it represents a static portion of the program
code and can be verified locally without direct dependence
on the dynamic run-time behavior of the program. Since
the bulk of computational and logical operations are
performed by Data Modules, a sizeable portion of the total
applications software can be verified by this relatively
straightforward process.

The rest of the software is comprised of Control
Modules. These are schedulable by the executive, and may
perform calculations and/or logic, call subroutines and
functions, and in turn, schedule other Control Modules.

An objective in concentrating real-time control statements
within Control Modules is to bound the program control
functions so that the number of executive interfaces is
minimized. When reviewing a written program it is expected
that reliability will be improved by the convention (perhaps
compiler enforced) of keeping real-time control within
Control Modules and totally out of Data Modules.

Implementation of code based on these modules can now
begin, top-down, as directed by the Program Design
Specification. Figure 2-5 1illustrates how the first
coded version of the Control Module for a Shuttle major
burn maneuver might appear. (Actual coding shown is based
on the HAL language.) This initial design is considered
"top-down" because the entity MAJOR BURN describes the
overall workings of the program, indicating what subroutine
functions are required, their order, and their real-time
scheduling.

42

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - {617) 661-1840

MAJOR_BURN; PROGRAM;

-CALL IMU_INITIAL;

IF ERROR_CASE THEN TERMINATE;

CALL VELOCITY TO_GO ASSIGN (VG);
IF ABVAL (VG) < 10 THEN TERMINATE;

CALL THRUST_ORIENTATION;
WALIT FOR KEYBOARD;

CALL MANEUVER;

WALIT FOR END MANEUVER;

SCHEDULE ENGINE_ ON

AT T IGNITION;

SCHEDULE STEERING

AT T_TIGNITION + 2 SEC;

CLOSE MAJOR_BURN;

Figure 2-5 MAJOR BURN Program

43

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

An interesting aspect of this approach is that this
first Control Module, coded as shown, can be actually run
on a bit-by-bit simulator. In order to do this with some
realism, all the subroutines indicated would have to be
modeled. Each model would indicate the amount of local
storage it requires, and would implement a loop corre-
sponding to a "time~to-run-through" budget. Several
possible models for the routines in MAJOR _BURN are shown
in Figure 2-6,

It now becomes apparent that the first step in
implementing the Shuttle applications programs is to code
the "upper most" module, and to model the subroutines it
calls. The program can then be run in a simulation mode
that exercises all dynamic executive functions. That is,
the overall timing and use of storage are being exercised.
The programmer also verifies that the module itself is
correctly coded by concentrating his attention on the
logic and computations already appearing as actual code
within the module. He need not be concerned with the
correctness of the called subroutine in order to verify
the module, only that they are correctly called. Once
this Control Module is verified, more of the actual code

is written to replace the temporary models. Consider
STEERING as an example. This task might be coded as
in Figure 2-7. The routines ENGINE OFF and VECOMP

would be modeled. The programmer would verify the logic
and computations actually coded in STEERING, and would
then insert this task into the established program
MAJOR BURN, .

The conception here is that the manner in which the
applications programs are constructed and, for the most
part, their chronological or dependency order, will have
been determined during the Program Design phase. The
result of the design will be a thorough, but not complete
structuring of the software, and the identification of
many, but not all, of the Control and Data Modules.
Coding in the top-down process can begin immediately
following release of the Program Design Specification.
However, the design process does not stop here, but
continues to precede the coding by identifying and
structuring the remaining software, until all code and
models are indicated. The state of the coded program as
it might appear at any point in time is illustrated
schematically in Figure 2-8. Blocks are indicated by
A or M according to whether they are actual code or models.
The captioned numbers indicate chronological order. Thus
(1) might represent the direct coding of a part of the

44

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

.l)

2)

3)

IMU_iNITIAL: PROCEDURE;
DECLARE LOCAL-ARRAY(30);
LOOP: DO FOR X=1 WHILE X<100;
END LOOP;

CLOSE IMU_INITIAL;

VELOCITY TO_GO: PROCEDURE ASSIGN (VG)
DECLARE LOCAL ARRAY (100);
LOOP: DO FOR X=1 WHILE x<1oob;
X=X+1;
END LOOCP;

VE = VECTOR (10,10,10);

- CLOSE VELOCITY_ TO_GO;

STEERTNG: TASK*;
DECLARE LOCAL ARRAY(SO);
LOOP: DO FOR X=1 WHILE X<500;
X=X+1;
END LOOP;

CLOSE STEERING;

*TASK(in HAL) is a schedulable entity.

Figure 2-6 Model Routines for MAJOR BURN

45

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138

- (817) 661-1840

STEERING: TASK;
IF TGO < 4 THEN
SCHEDULE ENGINE_OFF AT (TIME+TGO); .
CALL VECOMP ASSIGN (VG,VGDOT) ;
STEER_RATE = K UNIT(VG) * UNIT(VGDOT) ;
AUTO_PILOT RATE = ECORD_TRANS §TEER_RATE;.

CLOSE STEERING;

Figure 2-7 Steering Task

46

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

5p02 Pajopow =

opoo jEMIR =

H T o) T T
g § =y £ o M m mn.ﬁlﬂ..w £ n
i Lyl LINR
| magaé@g] h e 7
* . w &I X =
v v] v vi v
g :,m».& e, nmm!w.! e M,bw..
: w R :
oy] , ., i
17 7 B T wl o vl v
_ m_ = gm ! @ | ﬁ@ n
v v
el zef]
(¢) () |
TR I .
AL B LT B S I O T I T
‘ ™ T 4 l e ot ,
L I m A : m
- m u |
| LV} ,,.. | v .W
I b e w

wexboxd 3o jusudorsasg

8-2 2aInbta

47

Program Design output (e.g. MAJOR BURN). The A would
represent the actual code shown in Figure 2-5, while
the M's has been filled with actual code, and another
" coded module and a model have been added. By (3) this
process has continued, and more modules have been filled
with verified actual code, and more detailed modules
have been identified. By (4) the process is complete;
all models have been replaced by actual code, and for
this particular program, Phase 2 is finished.

It is important, and must be emphasized, that the
program described above was being executed throughout
its development period. In other words, a multitude of
modules were not being coded and tested independently,
awaiting the judgement day of integration. Instead, the
program was being integrated as it was developed.
Interface inconsistencies, timing difficulties and
storage deficiencies were addressed and corrected at
their source and were not experienced during the more
traditional, protracted integration period. Herein lies
the major contribution of the top~down approach. Careful
and progressive construction of the program will prcduce
more reliable and consistent software than the module
stage ~ interface stage approach, by catching interface
errors as they appear. Chronologically, coding time
(i.e. Phase 2 in this context) might take longer than
traditional methods, but at the end the overall program
will work because it always has worked.

2.4.2.2 The Program Building Environment. Although the
coding process above was illustrated for only one program,
the Shuttle software development implies the concurrent
implementation of many programs. It is anticipated that

a number of relatively independent top-down processes

will be identified during the Program Design phase. These
might include the functional mission phases, checkout and
service routines, as well as universally required sub-
routines (e.g. state vector integration). Some. examples

might be:
Preflight Approach
Boost Landing
Orbit Insertion Autopilots and control
Orbital Flight Onboard checkout and monitoring
Rendezvous Reconfiguration logic
Docking Telemetry
Entry

48

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Note that many of the mission phases involve similar functions:
guidance, targeting, navigation control, state véctor manipu-
lation, etc.*. The Program Design Specification must specify
the manner in which the program is to be implemented. That
is, by mission phase, by modular functional "blocks", by sub-
routines, by a combination of all these. This design activity
cannot be minimized, it is essential to the overall success

of the program. For the purpose of illustration, suppose

that N programming activities can proceed in parallel. In the
context of the HAL language, this means N independently
compilable Programs. Communication among these Programs is
strictly controlled through a central Compool. The structure
was illustrated in Figure 2-3. The Compool and common Data
Mcdules (Comsubs) appearing in the pool are centrally managed,
and individual "Program-reguests" must be evaluated at the
highest management level before incorporation. The process

of implementing any of the P's shown in Figure 2-9 was
described before. The significant problem in a parallel
development is to provide an environment for local develop-
ment and test while maintaining control and consistency of

the overall effort. The maintenance of only a single official
source code for the entire effort will greatly assist in
achieving this objective.

The following procedure is suggested to achieve parallel
development. Each P-program is officially compiled with
COMPOOL + COMSUBS. The collection of compilations then
constitutes the official source code. A programmer working
on code to replace a current model (M), (see Figure 2-8),
compiles an off~line representation of the specific Program
in which his code resides. (This would apply equally as well
to a Comsub.) He then locally tests his new code by running
the off~line compilation. If he requires the COMPOOL,
COMSUBS or any other of the P's in order to run, he can only
obtain the officially compiled code for these entities. This
ground rule would be true for all applications programmers
coding within any of the P's. When a programmer has locally
tested his code and has, in addition, shown proper adherence
to the functional criteria and data specified in the Software
Requirements Specification, his new code can be accepted into
the official version of the Program. This step must be
controlled by a source control group which admits the code and
recompiles the Program. ' '

* . :
See Space Shuttle Orbiter Guidancé, Navigation, and Control
MSC-03690 12/15/71.

49

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

COMPOOL |COMSUBS

Figure 2-9 Program Organization

50

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

This procedure achieves two objectives:

1) a programmer can experiment with his own code, modify
it, test it, etc. without holding others up with his
own mistakes.

2) a programmer will, however, always experience the up-
to~-date; official versions of programs that interface
with his own. The result is that then entire imple-
mentation effort progresses in parallel across a broad
front. "Private" or off-shoot versions of the program
which are created for local testing and soon get out of
step, are thereby discouraged.

2.4.3 Program Confidence: Test Philosophy

The objective of software verification is the assurance
that the program is correct, that no bugs remain, and that it
will work in the manner intended. While the objective may
be simply stated, its attainment implies basic difficulties.
These difficulties revolve about the fact that any non-triv-
ial program especially one expects to operate in real-time,
will be exceedingly complex. The Shuttle major burn maneu-
ver program used for illustration in Section 2.4.2.1
eventually draws into play many detailed Data Modules involving
a myriad of logical branches and computational steps. The
fundamental problem to be faced in verifying this program may
be illustrated by the following analogy.

2.4.3.1 254 Possibilities. Consider the design, construction,

and testing of a binary counter* which overflows at 254 pulses.
The requirement 1is simplg that the logic of the counter must
count accurately up to 2 4 -1, The designer determines which
electronic components are necessary, specifies the design and
methods of construction, and the counter is built. Now the
question comes: will the counter perform correctly for all
cases? One approach might be for the originator of the re-
guirements, who understands the need for a counter in the first
place, and knows how it will be used, to specify a series of
performance test cases for the equipment. For example, he
will not accept the counter unless it can count 1; 10; 121;
3,654; 28-1; 1,000,000. However, these -are only random tests,
and their success does not imply correctness. What is the
alternative? 2° pulses would take many thousands of years to

* Example adapted from Ref. 12.

51

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -« (617) 661-1840

accumulate, even at microsecond speeds. The conclusion
must be drawn that it is impossible to verify that the design
of the counter is correct as long as one regards the mechanism
as a black box. Verification has to be based upon an ex-
amination of the internal structure of the mechanism to be

. tested [12]. For example, the designer, knowing in detail
the manner in which the counter was constructed, might con-
duct 54 tests. He could verify the operation of each of the
54 stages of the counter, and their propagation mechanism.
Having verified the internal workings of the counter, he would
pronounce it ready for service.

But what of the test cases specified with the original
requirement? These are actually requested demonstrations
that the counter can perform the necessary computations.
The "requirements specifier" is entitled to these demonstrations,
but it is the counter designer who is ultimately responsible
for the proof that his counter operates correctly, for all cases.
Note that it is impossible for the "requirements specifier"
to devise sufficient test cases to prove the correctness of the
counter. In fact, for a complicated internal mechanism the
relevant cases could not even be postulated externally.

2,4.3.2 Implications for Program Testing. The reasoning above
must influence the methods of building and testing Shuttle
software. The Software Requirements can specify the algorithms,
logic and timing of the programs, but the sets of test cases
and test criteria evaluating program performance can only be
regarded as required demonstrations. It is impossible at the
Requirements level to specify the relevant test cases required
to validate all the branches and computations within the implied
structure. Test cases to prove correct program design must
be based upon the programmers' implementation of the Require-
ments. In the discussions within Sec. 2.4.2.1 and 2.4.2.2 the
implication is that when real code replaces modeled code in
Control and Data Modules, the code is first locally tested for
correct implementation structure. Of course, demonstrations of
its operation can be conducted when called for by the Software
Requirements. Thus, the correctness of the code is the re-
gponsibility of the programmer, not of the "reqguirements-
- specifier," who is unable to indicate the necessary set of
relevant test cases.

How is this correctness established? Presumably the
programmer understands how he has implemented a requirement,
and knows what it takes to verify that he has done so correctly.
His approach will be two~fold: (1) inspection, by "eye-ball",
(2) relevant test case results, by benchtesting. Eye-balling
the code should be emphasized as a bona-fide verification

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

activity. It is a mental activity in which one sees what

one has done. Of course, for the greatest effect, one employs
an independent eye-baller who is inserted into the programming
process at a number. of points. For example, independence can
be achieved by an external contractor evaluating the develop-
ing code, or by the source-code controllers who scrutinize the
‘'new code prior to allowing it into the official source. Both
of these methods were employed during the production of the
Apollo flight computer programs, with resounding success.
Experience indicated that many more bugs were caught by visual
examination than as a result of simulated or actual running

of the computer programs in accordance with an established
test plan.

Proving correctness of code by eye-balling is not unlike
checking the derivation of a mathematical formula., If the
desired result turns out to be the integral of a complex
expression, e.d. '

&y
Yy = [f(a,b,c)d a
i)

one does not "prove" this eguation by programming it and
running it for selected test cases. Instead it is proved
by induction. Demonstrations for selected cases then give
credence to the derivation, but not proof.

When a Control or Data Module contains many logical
branches and is quite complex, the eye-ball process is deficient
and the relevant test cases must be designed by the programmer
and exercised.

After the individual modules have been verified locally,
by eye=ball and test, and their validity demonstrated to the
source controllers, the new code is officially compiled into
the program. At this point all the interfacing calls and
schedule statements within the official source which had pre-
viously regarded the new code section as a temporary model,
must be now exercised to demonstrate that the new additions
can, in fact, be connected. Once assured, the overall program
should run as before only now, one more step toward completion
has been taken.

2.4.3.3 Built—-in Program Reliability. Aside from the structured
program organization, top-down implementation and test

53

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

procedures referred to in the previous paragraphs, program
reliability can be achieved to a very large measure by built-in
features. These features should include a higher order, block-
oriented languade and compiler, automatic prevention of con=-
flicts over shared data, restriction of access to data and
routines by designated access rights, and extensive compile-
time and run-time checking. These and other automatic aids
will be identified and discussed in Chapter 5 of this

report. It might be useful at this point to illustrate how
some of these benefits might prevent or catch programming
errors. Consider the following example:

DECLARE AUTO_PILOT.RATE VECTOR (3);
DECLARE STEER RATE VECTOR (3);
DECLARE COORD_TRANS MATRIX (3,3);

e s e

*
AUTO PILOT RATE = COORD_TRANS STEER_RATE;

The significant point to observe here is that through the use
of an expressive higher order language the intent of the pro-
grammer, in some sense, 1is recognized by the compiler. Thus,

1) The listing appearance itself gives ample evidence
of the intended operations.

2) The compiler will check the syntax of the code; in this
case, it will test the validity of a matrix-vector product
and whether or not the result of that product may be
assigned to a vector. '

3) Since the dimensions of the vectors and matrix are known
at compile-time, the compiler will check that all guan-
tities are consistent. That is, if STEER RATE were of
dimension VECTOR (4), compilation would be prevented and
an appropriate error message generated.

4) The compiler will check to see if all names of gquan-
tities are recognizable at this particular point in the
program. In block-oriented languages, variables declared
locally within subroutines cannot be referenced from out-
side of these routines.

5) At run-time an-important reliability factor is the assur-
ance that only intended data accesses are made; i.e. un-

anticipated "clobbering" of data cells is pre-
vented. Where vector, matrix and array lengths (or sizes)

54

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

are not specified at compile-time, a set of run-time checks
can be inserted to evaluate indexing code to prevent the
stray "write" or "read" and to maintain the consistency

of dimensions. When data is intentionally shared, real-
time processing demands a controlled environment for this
data, as 1s suggested in Chapter 5,

Consider the following example:

b) CALL TIME RADIUS (RT2, VT2, (RT3 MAG-30480) ,MU)

ASSIGN (TIME 32)RT3, VT3);

TIME RADIUS: PROCEDURE (A,B,C,D)ASSIGN(E,F,G);

DECLARE VECTOR (3), A,B,F,G;
DECLARE SCALAR, C,D,E; ’

°
.
©

CLOSE TIME RADIUS;

In this example, the intention is to call -the TIME RADIUS
subroutine which will accept the current position and velocity
and the desired radius; then to compute and assign the time to
reach the radius and to establish the resultant position and
velocity (a conic transfer trajectory about the earth is pre-
sumed). The example is meant to illustrate that the data types
"expected" by TIME RADIUS are prescribed by its compilation
and are therefore known at compile-time. The compiler will
check to see that all calls to TIME RADIUS match these antic-
ipated data. It will prevent compilation, and issue appropriate
error messages, 1f a programmer attempts to call the routine
incorrectly. Of course, provision can be made for lengths and
dimensions which can be specified only at run-time, in which
case run~time checking is necessary.

The importance of automatic devices as described above
" to the generation of reliable software cannot be minimized.
While local testing and overall verification must be conducted,
bug-free programs are more directly approached through methods
of construction and the use of aids designed to prevent pro-
gramming errors. "Program testing can [only] be used to show
the presence of bugs, but never to show their absence" [12].

55

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2.5 Verification

The term verification, in the context of this report,-
is meant to convey the overall exercising of the Shuttle soft-
ware and its performance evaluation. Before initiating the
verification phases (Phases 3 & 4) two prior phases will have
been completed:

Phase l: generation of the Software Requirements. These
requirements reflect a detailed design satisfying the Functional
Requirements. The Software Requirements encompass analytical
formulations, timing, interface design and expected performance
results. The analytical concepts have been demonstrated and
results obtained through the use of a modular environment
simulator. This simulator represents, in modular form, the
subsystem functions and equipments, vehicle characteristics,
universe, atmosphere, etc. to the extent necessary in order to
prescribe, with validity, the Software Requirements. (See
Sec. 2.6 for further discussion of environment simulators.)

Phase 2: design, implementation and test of systems and
application programs. In response to the Software Requirements,
first the necessary systems programs are designed, structured
and implemented. These programs are locally tested (see
Sec. 2.4.1) using features of the environment simulator as
needed. Completion of the executive design provides the proper
"user interface" for applications programmers. The necessary
applications programs are then designed, structured and im-~

"plemented. During Phase 2 these programs are locally tested
(See Sec. 2.4.2.1, 2.4.3.2) using features (modules) of the en-
vironment simulator as needed. Performance demonstrations may
also be conducted as indicated by the Software Requirements.
Completion of Phase 2 means that all the code for the Shuttle
software has been generated and tested; the programmers know
of no program bugs.

Following Phase 2, it is well to consider in what ways
the software still might not work:

1) it might not work within the real computer operating
in a real environment;

2) it might not achieve the overall performance (i.e.,
defined success per mission phase) expeéected by the
Software Requirements.

These two possibilities are now explored during Phases 3 & 4 -
program verification.

56

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.5.1 "Feedback" and "Feed-forward"

.Program verification is the final phase in the pro-
duction . .and delivery of software. Two activities are pos-
tulated, to be conducted on two different facilities, with
two different objectives:

1) the software must be shown to meet the performance
criteria dictated by the Software Requirements (Phase 3);

2) the software must work within the real computer, op-
erating in an environment as close to the flight envi-
ronment as practicable (Phase 4) .

The roles of Phases 3 and 4 are complementary in that
the latter is, in a sense; a "feed-forward" activity toward
the flight environment while the former is a "feedback" pro-
cess, back to the Functional and Software Requirements. This
concept is illustrated in Figure 2-10. Both paths are necessary,
and fulfill different objectives. Phase 3 establishes the
performance of the software with respect to the environment
presumed by the Software Requirements. For this purpose, the
environment models used in determining the Software Require-
ments Phase 1, then for the implementation/code/test Phase 2,
and”nOW~for Phase 3 should be the same, or at least control-
led.and based upon the same model environment specifications.
-Phase 4 moves the software out of the realm of simulation and -
into the real world of equipment, and human and electrical
interfaces. Design flaws can no longer be masked by model
presumptions, approximations or inaccuracies. Satisfactory
operation here is the prerequisite for flight.

As a logical progression of testing, the results of the
two phases may be interpreted as follows:

1) Satisfactory performance within Phase 3 means that
the Software Requirements are met. The original
design concepts appear to be valid and confidence
is established in the software implementation. Un-
satisfactory performance -can be due to three factors:

a) the original design concept is faulty, even
though it was correctly interpreted and cox-
rectly implemented; ‘

b) the Software Requiréments have been misin-
terpreted;

c) the code implementation contains errors.

These factors imply that the facilities needed for
Phase 3 must permit rapid diagnosis of the fault to

57

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

soseyg uswdoTsAd 9IeM3IOS (QT-Z 2aInbTg

S13aow
INIWNOUIANG

|
¢ ISVHd =i
T

Vﬁ NOILVII41H3A

f=—— ISV Hd sl Z ASVHd .\L_l\ | 3SVHd .
i J , _ e o N e
B 1531/3009 I NoIs3g SIN3WIYINDIY [I siN3w3dino3yd | . SINIWIHINDIY
1H9Id o=y NOLLYOIIEIA (=== y g 1y INFINT Tdt [34vML40S IECRZNELD < TYNOILONNS | NOISSII
e S
S1300W _ﬂ ST300W

34YMaYvH - INTWNOYIANT INIWNOHIANT

58

to determine which of these contributing factors is the
culprit,

2) Satisfactory performance within Phase 4 means that the
Mission Requirements can be met independently, to a large
extent, of the models presumed in establishing the Soft-
ware Requirements. That is, either the models were, in
fact, wvalid or their inaccuracies were of no conseqguence.
Successful completion of Phase 4 increases confidence
in the design concept and the software implementation.

In addition to demonstrating the software, Phase 4

sexrves to éstablish the hardware-software integrity of
the entire avionics system and its ability to perform the
real mission. Unsatisfactory performance can be due to
four factors: :

a) the hardware~software interface design is faulty;
b) the code implementation is incorrect;

c) the models presumed in the Software Requirements
were inadequate;

d) the integration of the hardware subsystems is
causing problems.

The important point to recognize is that by conducting
both Phase 3 and Phase 4 with different objectives, classes
of errors, created by failures of specification, interpre-
tation, code, modeling, and hardware can be separated and
identified. :

2.5.2 Phase 3: Verification through Software

During this phase a series of performance tests will be
conducted on an all-digital simulation of the avionics systems.
The simulation will include a bit-by-bit simulation of the
airborne computer as well as models of the environment and
subsystem equipment. The test plan should be designed to
produce the results necessary to satisfy the Software Require-

. ments. This will encompass all phases of the Shuttle mission
and will include nominal, off-nominal and contingency cases.
At the end of Phase 3, the performance of the software, based
on the environmental models used to derive the Software Re-
quirements, will have been established and documented.

Phase 3 can take advantage of the flexibility, reli-
ability, and repeatability of the general-purpose digital computer

facility. Thus, a large number of multiple users with multiple
objectives can be accommodated through rapid reconfiguration

59

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

of models, initialization of test data, and standard batch

or time-shared utilization. With a single facility providing
all computation machine "down time" can be kept to a minimum,
and convenient user procedures, and adequate computing ca-
pacity can assure adequate turn-around times.

The evaluation of digital runs presents a problem
because of the mass of data that potentially becomes avail-
able. Therefore, it is important to understand the objectives
of these tests and to display only .that information necessary
for evaluation. More elaborate recordings of data mey ac-
company any run, for troubleshooting or reestablishment
("roll-back") of test conditions, but the generation of printed
(or otherwise displayed) data must be disciplined. A library
of data-compressing edit programs is an essential tool.

The all-digital simulator enables two views of the
operating software:

1) macroscopic, i.e. demonstration of overall adherence
to the Software Requirements; '

2) microscopic, i.e. isolation of detected anomalies to the
software module and even to the detail code itself. When
regquired, and at the test-engineer's discretion, the
ability to stop, start, trace, edit and dump computer
memory, based on a wide range of conditions is easily in-
voked. And, in addition, runs may be repeated, or "rolled-
‘back," in an exactly repeatable manner in order to re-
establish conditions which might have caused an anomaly.

Thus, even though the debugging of coding exrors is an explicit

activity of Phase 2, Phase 3 also permits fine grained analyses
of the working software.

2.5.3 Phase 4: Verification through Hardware

The Avionics Integration Facility (see Section 2.6)
provides the test bed for this phase of activity. The primary
purposes here are to iron out hardware interface problemns,

-and to demonstrate the performance of the entire avionics

system (hardware and software) in the face of the real (not
simulated) computer and subsystem equipment hardware, and

the real (not simulated) electrical interfaces. A set of
performance test cases must be defined which exercises all of

the subsystems, and is representative of the mission phases. The
tests should encompass boost, rendezvous, entry, landing, etc.

60

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

With respect to the software, special attention during
Phase 4 should be paid to those program areas where presump-
tions have been made concerning the operation, procedures,
and timing of external (to the computer) equipment. It is in
these areas that one might expect to find a higher incidence
of anomalous behavior. Coding errors might, in fact, still
exist but it is more likely that the misunderstandings of
subsystem operation, timing and moding have resulted in
inappropriate designs (perhaps even at the Software Require-
ments level) which will now cause faulty system operation.
"Playing" the software in a close-to-real* environment is an
indispensible step before committing the system to flight.
Prior to flight, it is only here that the analyst's theories
and the programmer's implementation are truly demonstrated.
The software is transformed from an abstract paper listing in-
to a component of the avionics computer.

2.5.3.1 Detailed Evaluation of the Software During Phase 4.
Even though Phase 4 serves to establish system~wide compat-
ibility, and utilizes standard-procedure techniques for the
diagnosis and troubleshooting of hardware and hardware inter-
face anomalies, the detection of software errors and the
evaluation of performance over a large set of mission situations
(including non-nominal) is more properly the domain of Phase 3.
The principal reasons for this are:

1) inability to repeat, exactly, results from run to run;
2) multiple users ére not easily supported;
3) "up time" for a hybrid computational facility is

characteristically low.

The avionics integration facility, comprised of actual
subsystems, interface equipment, digital and analog computing
elements and man-in-the-loop displays and controls will suffer
from random uncertainties. These uncertainties will be due to
electrical noise, inaccurate initialization, temperature and
power supply sensitivities and other vagaries. System mal-
functions and degradations in performance may be due to errors
.anywhere in the system. In the case of software errors, or
improperly operated software, run repeatability is a necessity.
The speed of the real computer (2 microsecond add approximate-
ly) precludes real time troubleshooting which requires the
ability to stop the machine at any instruction, or at least trace

* Some models will still be required, e.g. the atmosphere,
experienced specific forces, vehicle characteristics, etc.

61

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

w

machine operations instruction-by-instruction, at the discretion
of the test engineer. The difficulties are compounded, in the
avionics laboratory, because there is the additional require-
ment for stopping or tracing the avionics environment and equip-
ment as well as the computer. It becomes evident that de-
bugging of this sort and the features it implies, are best
conducted on an all-digital simulator (see Section 2.5.2).

The guestion of multiple users becomes important when
the avionics integration facility is proposed for primary
performance evaluation. The combination of equipment set-up
time (i.e. checkout and initialization) and the low percentage
of up-time for hybrid facilities (typically 25%), is a dis-
couraging fact. Once set-up and running, the best use a hybrid
facility can be put to is evaluation of a particular mission
phase and demonstration of the system integrity for that phase
(or variations). Rapid reconfiguration of equipment, environ-
mental models, initial conditions, etc. are not so easily
accomplished, even when aided by a general-purpose digital
computer within the loop. '

In view of the foregoing discussian, Phase 4 of software
verification is recommended as a hardware-software compatibil-
ity check which will demonstrate whether the presumptions built
into the software concerning I/0 and subsystem operations are
valid. Although simulations of mission phases will be used
for this purpose, and their performance must match that expected
by the Mission Requirements, Phase 4 is not designated as the
medium for extensive evaluation of software performance.

2.5.4 Independent Verification

An additional measure of software reliability may be
gained by subjecting the software process to critical review
and independent evaluation. Independent activity, i.e., by
another contractor or "outside" group, can include evaluation
of the Software Requirements and Program Design, eye-balling
and testing of the code, and verification through separate
all-digital and hybrid facilities. New points of view,
additional tests, and independently developed models will all

- contribute to increased confidence in the software product.

In spite of these benefits, legitimate questions remain.
Is a full independent "verification" program justified? Will
the considerable cost reduce the number of residual software
errors? These questions are most difficult to answer quan-
titatively. However, it is suggested here that independent
effort may be applied cost effectively at two specific points
in the software process:

62

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

1) during development of the Software Requirements;
2) during implementation of the code.

The Software Requirements constitute the algorithms and methods
by which the Shuttle software will achieve the functional objectives.
As such the Requirements are the primary software specification
and, if faulty, guarantee an imperfect end product. Independent
verification of the concepts upon which the Software Requirements
are based will help to eliminate errors at the ultimate source,
i.e., before the coding process even begins. The independent
contractor must fully understand the Functional Requirements
and then proceed to review all the fundamental assumptions and
derivations leading to the design of algorithms and/or procedures.
For example, for each mission phase (boost, rendezvous, etc.) the
pertinent mathematical formulae will be rederived and then
exercised to substantiate performance based on presumed subsystem
and vehicle control error models. In this manner, all the data
and engineering design postulated by the Software Requirements
will come under scrutiny, establishing their validity where
necessary appropriate redesign can be indicated.

The implementation phase is characterized by the coding and
testing of the program as described in Section 2.3. The testing
consists of internal verification based on program structure.

It is at this point that an independent effort would be of most
use. Starting with a full understanding of the Software Require-
ments, the independent contractor would review the Software
Design, eyeball the coded and conduct test as required. The
contention here is that the process of "overlooking" the

code at the detailed level (i.e., examination of its internal
structure) is a powerful device for catching bugs. In fact,
Apollo experience indicates that many more software errors

were detected by an independent "reading" of the code than were
discovered through formal planned test activities.

The independent verification activity could be extended
to encompass the performance evaluation detailed in Phase 3
above. Its validity would dictate independent model development
and independently derived test plans. While this activity might
increase confidence in the software, its effectiveness is to
be questioned. Satisfactory performance would indicate that
the programs work only with respect to the new models; unsatis-
factory performance might be caused by software or environment
modelling errors. In view of the fact that Phase 3 i1s already
based on an environment simulator, and is complemented by the
actual hardware interfaces of Phase 4, an additional independent
Phase 3 will not provide a well defined test bed for error
detection and therefore is not to be recommended.

63

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.5.5 Spécial Testing

Two important categories of software testing not previously
mentioned are stress testing, and "user" (or random testing).
These activities can uncover errors that might be missed because
they exercise the programs in non-standard and, in fact, non-
approved ways. :

2.5.5,1 Stress Testing. Stress testing involves procedures
which stress the capabilities of the computer and/or software
in an effort to expose the margins inherent in the design. -The
most effective stresses are those which have blanket properties.
For example, Apollo flight software was subjected to "time-loss"
testing, in which the computation speed of the computer was
slowed (via the simulator) while environment timing was held
constant. The effect was to increase the computer duty cycle
and potentially cause difficulties for marginal timing and
priority designs. The following types of stress testing are
suggested for Shuttle flight software:

1) time-loss,.
2) reduction of available dynamic memory,

3) increase in segment time between points at which
executive job swaps are permitted.

2.5.5.2 "“User" Testing. Additional testing of the Shuttle
software will come about as a by-product of program usage out-
side the software development process itself. Crew training,
ground controller exercises, launch facility activities, etc.
will all need and utilize the flight software. These personnel
. will interface with the computer strictly as users, and as a
result, many non-standard and even inappropriate sequences
will be attempted. In most cases a software performance will
be predictable, producing either normal operation or pre-
programmed indications of error. On occasion, anomalous
behavior will be experienced which must be recorded and reported.
Very often software designers and programmers, being close to
the code and understanding how it should be operated, fail to
anticipate the multitude of possible keyboard (or other input)
activities and thereby neglect important sources of errors.
Normal computer and program usage will help to uncover some
of these errors.

64

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

REFERENCES

1. STS Software Development (Study Task 5),C.S. Draper Laboratory
Report E-2519, MIT, Cambridge, Mass., July 1970.

2. Dijkstra, E., "The Structure of THE-Multiprogramming System",
CACM, May 1968, pp. 341-346.

Rossiensky, J.P., "A Kernel Approach to System Programming
SAM", Software Engineering, Jon, J.T., editor, Academic
Press, New York, 1970, pp. 205-224.

(€8}

4. Organick, E., Guide to MULTICS foxr Subsystem Writers,
MIT Press (in preparation).

5. Wirth, N., "PL360, A Programming Language for the 360
Computers", Journal of ACM, 15, 1968, pp. 37-74.

6. HAL, the Programming Language - A Specification, NASA/MSC
Document #MSC~-01846, Intermetrics/NASA Contract #NAS-9-10542,
June 1971.

7. Liskov, B.H. and Towster, E., "The Proof of Correctness
Approach to Reliable Systems", AF/Mitre Corp..Contract
#F19(628)~-71-C~-0002, . July 1971. '

8. Dijkstra, E.W., "A Constructive Approach to the Problem
of Program Correctness", BIT 8, #3, 1968, pp. 174-186.

9. Dijkstra, E.W., "GO TO Statement Considered Harmful",
Letter in CACM, March 1968, pp. 147-148.

10, Mills, H., "Top-down Programming in Large Systems",
Debugging Techniques in Large Systems, Rustin, R., editor,
Prentice-Hall, New Jersey, 1970, pp. 41-55. '

11. Knuth, D.E., and Floyd, R.W., "Notes on Avoiding 'GO TO'
Statements", Inf. Proc. Letters 7 (1971) North Holland
Publishing Company.

12. Dijkstra, E.W., "Notes on Structured Programming", Private
set of notes (EWD-249), June 1971.

65

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

PRECEDING PAGE BLANK NOT FILMED

Chapter 3

Software Verification Facilities

3.1 Introduction

In the previous chapter, four phases of software development
were identified: software requirements, implementation code and
test, verification through software, and verification through
hardware. . The objective of this chapter is to identify the
verification facilities for each phase of software development
and summarize significant aspects of capabilities.

There are two primary facilities suggested for flight
software development and verification. For purposes of this
report they are termed the Software Development Facility (SDF) and
the Avionics Integration Facility (AIF). ‘

The software development facility is an "all digital" facility
consisting of a large scale commercially available computer system.
It will be equipped with a large operating memory, adeguate
random access secondary storage files, I/0 peripherals (printers,
tapes, cardreader/punch, and other equipment regquired in a
data processing center}). Its operating system will support
both batch and interactive operations. The SDF will be used
to support Phase 1, 2, and 3 of software development. Other sup-
port software required in the facility for these phases is
discussed in subseguent sections.

The avionics integration facility is a "hybrid" type of
test bed facility consisting of actual flight hardware including the
flight computer configuration, data bus system and redundant
avionics equipment. The AIF will support a simulation of vehicle
dynamics and environment. The position and velocity information
as well as operator control will be provided by an AIF control
computer. '

67

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The avionics integration facility is used for integration
of flight equipment, testing the total avionics system, and
demonstrating its ability to meet mission requirements.

The detailed specifications of these facilities are not
within the scope of this report. However, subsequent sections
discuss the support software required in the SDF and its
capabilities during phases of development.

3.2 Facilities Versus Levels of Development

Figure2-10 illustrates the software development process.
A brief discussion of the facilities used during each phase
is provided below.

3.2.1 Phase 1 Requirements

During this phase the software requirements will be defined,
and the analytical concepts formulated and demonstrated
on the SDF. The facility will be utilized by the analysts at
least on a functional basis to exercise and validate the
specified software requirements. The SDF will require a digital
avionics environment simulator during this phase to enable
performance evaluation of software requirements. The environ-
ment simulator will be structured as a "modular" environment
to enable evaluation of localized algorithm concepts as well
as full mission segment analysis. The environment must contain
models of the vehicle and avionics equipment to a functional
level sufficient to validate software requirements. Subsystems
models should be structured to simulate functional dynamics
of sensors sufficient to verify the computer interface and
for closed loop performance verification.

Other utility software required in the SDF during Phase 1
include a higher order programming language(s) and a compiler (s)
such as PL/l, Fortran or HAL. The use of the HOL selected for
the flight computer during this phase could facilitate the
transferring of some code applicable for the flight computer.
In addition, a standard debugging software package for the HOL
should be available to the analyst. '

The SDF should support interactive operations during this
phase of development as discussed in Section 3.5.

68

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.2.2 Phase 2: Implementation Code and Test

The SDF is used during this phase for development of the
flight computer code. The SDF must provide support software to enable
flight computer programs to be coded, assembled and debugged.
A compiler for the flight computer HOL will exist for the SDF
computer. The compiler must provide significant automatic
features for compile time checking as described in Chapter 2
as well as provide detailed information on the static structure
of flight code, e.g., cross reference listings and compool
reference information (i.e., maximum statis verification features).

The flight computer compiler will be interfaced to an o

interpretive instruction level digital simulator for the)
flight computer to enable execution of the code. The character- '
istics of the flight computer simulator are discussed in

Section 3.3.1. A simplified version of the environmental
simulator may be necessary for supporting bench test type
debugging. -

The SDF should be capable of supporting both interactive
and batch operations during this phase.. A small number of o
users located at terminals should be able to compile and execute
flight software interactively, particularly during early debugging
stages. During this phase, comprehensive debugging aids are
indispensable, e.g., conditional instructions, statement
traces, variable traps, watch dog timers, a "coroner function”
for post run analysis, stress testing options and the collection
of dynamic statistics of flight code during execution. Finally,
a source language maintenance system is required for the manage-
ment of flight code including text editors, compool control
and system library.

3.2.3 Phase 3: Verification through Software

During this phase performance of the software will be
demonstrated as specified by the software reguirements. The
complete flight code will be available and exercised in both
open and closed loop using the flight computer and environment
simulator within the host computer. The test plan includes
nominal mission segments (or perhaps "mission-like" segments),
as well as a variety of off-normal and contingency runs. The
SDF will require the same utility software as in Phase 2 with
the addition that the avionic environment simulator will be
integrated with the flight computer simulator. A full digital
simulation capability will be available for closed loop
operation of the software as pointed out in preceding sections.
These provide a feedback to the requirements, through the use
of this environment simulator. Figure 3-1 shows an overview
of the all-digital simulation.

69

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3001 FUIHAS LY
M3H) . ALIIDT3A F13IH3A
| R NOILISOd
704.1N0O oou | oe o0 |noaaL 13000 .JMDofw:s_
T . +
: | | e# 4] |
: ! ‘ (q . . m_w
_ fad SWILSASENS
[P
i
3gvayaing| :
TYNINY3L IALNDIXAYL . 4OLYINWIS
vaunin S Nowyinwis[~ o] INI0H093Y TVYNOILINAA
43S | sng v1va |
ANIWNOHIANT SOINOIAY

— —_ —_ H\! — - — - _ %r NOILVINWIS 43LNdNOD LHDITH

T04LINOI HOLYINWIS =1 NOILVINNIS
HOLVINWISF<—2= S31LSONIVIC 431NdIN0J AHOWINW
, 1H9IT4d &1 AHVONOI3S

5 . _ i

we3sAs uoTIRTNWIS TeITHTA TIY € @seyd TI-¢ 2InbIJ

70

The simulations of Phase 3 require flexible editing and
environment module control. Run initialization may become
complex and should be automated by libraries of stored data.

The debugging tools. alluded to above for the previous
phase should be augmented by a "rollback".capability. The
run is rolled back to a predefined breakpoint prior to the
occurrence of an error, and simulation can proceed from the break-
point. There should also be a selection of environment models,
structured in a modular fashion, for use with the flight computer
simulator. These models should be both fast and slow, where ‘
the speed is determined by the type of environment and the
level of detail that is included.

Provision must also be made for automatic recording.

3.2.4 Phase 4: Verification Through Hardware

Phase 4 constitutes evaluation of the total avionics
system, both hardware and software. As much of the real sub-
system equipment as is practical, including redundancy, should
be interfaced to the computer system configuration. Modeling
of vehicle characteristics, atmosphere, g-field, and specific
forces will be required and accomplished by a general purpose
digital control computer. :

Although the details of the facility are beyond the scope
of this report, a suggested organization is illustrated in
Figure 3-2. A digital computer will provide overall control
and monitoring of the integration facility. It will contain
utility software and debugging features as necessary support
to the operators of the facility. '

An operators' console is suggested to control the facility.
A limited amount of interactive capability should be provided,
such as the ability to stop, monitor, and restart. All sub-
systems including the flight controls will be interfaced to the
computer over the data bus, as in the flight configuration. The
control computer may be interfaced to the bus enabling it to
be used in simulating subsystems not implemented in the
facility.

A significant amount of design effort should be expended
in defining the capabilities of this facility. Of primary
importance to software, however, are capabilities for recording
data and status sufficient to permit detailed debugging on the
SDF in the event of error(s). '

71

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

o

yorvoaddy sTIISSOd 2In3oNnI3S
A3TTTOo®RI UOT3BIHDJIUI SOTUOTIAY ¥ 9seyd g-¢ 2anbrtg

= Lid%303 a3LvINIS

W3 LSASANS
VALY

i

STVUNIANHIL
/3T0SNOJ

(LH9174)
AHOWIW
: : _ AHVYONOJ3S .
nis nis | ;
SIWILSASENS
giLvinwis o () o i
3= 5 #
ONIGHO23IY B >
SJILSONDVYIG © 59 w - 43 1NdW0I
o
IYIH4SOW LY £ ¢ % # _
2 7 m
43 LNdW0I TOYLNOD = b# |
mw . 8 YILNIWOI LHOITH

S3NIT T0HLINOD

STvH3HdIH3d
39VHOLS

72

3.3 Software Development Facility

Software debugging and verification for computers have been
characterized by two extremes: one, by running sections of
machine-language coded programs on actual hardware, usually with
the agsistance ¢f special monitoring equipment; and the other
by a complete software simulation of the machine and its environ-
ment. Because of the extensive scope of the Shuttle computer's
software, the first technique is probably not adequate itself due
to the lack of adequate debugging aids. Furthermore, the full
simulation of the second technique can be time-consuming since
the performance of today's aerospace computers already approaches
the capabilities of the typical third generation commercial
computer. In determining the proper approach to facilities,
one must consider:

a) the specific test requirements of the individual phase
of development verification procedure;

b) the characteristics of the actual flight computer (or computers),
especially the existence of special features to aid the
verification of software;

c) the configuration of the total avionics system, especially
the levels of redundancy and the philosophy of failure
detection and reconfiguration.

Naturally, other practical factors such as cost, ease and
visibility of operation, and the ability to define and control
the simulation itself, are also driving forces in determining
the optimum test facility.

3.3.1 Flight Computer Simulation

Historically aerxospace software has been debugged and
verified using digital simulation. The flight computer and its
environment are simulated on a ground based commercial host computer.-
The object code of the flight software is interpreted,and a simu~

lated execution at the instruction level is performed by a software

73

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661—1;840-,_7

simulator on the host machine. This approach was used due to a
number of reasons among which were the unavailability of the
computer, the lack of an operating system, and the lack of.
debugging software for execution on the flight computer. Most
importantly, however, was the inability to perform "closed loop"
testing of the unaltered flight software interacting with its
environment in a "real time" mode, An interpretive "bit by bit"
computer simulation provided a means of controlling a simulated
clock to enable this real time operation in addition to providing
a mechanism for detailed debugging features.

"3.3.2 Advantages of Interpretive Simulation

Interpretive simulation provides a powerful debugging
tool for software. It offers the following advantages.

a) It provides a means for microscopic evaluation and
debugging of software. Since the simulator controls the
simulated clock and instruction sequencing, the programmer
may request diagnostics to be performed by the simulator
during execution of the code. Comprehensive code traces, monitors
dumps,and traps can be requested by the programmer with
conditional options for enabling and disenabling them. A
"coroner" capability can easily be implemented in which
the sequence of execution of instructions and the state
of the simulated computer,that existed prior to an error.
can be recorded and printed for analysis subsequent to an
error aborting the .run. This can save time in resubmitting
aborted runs with appropriate diagnostics to localize an
error. °

b) Actual timing and performance measures of the computer can
be obtained during a simulation run. The activity and
duty cycle of the computer can be measured as a function
of time and be recorded for load analysis. In a real time
computer system such as the Shuttle, the analysis of the
load on the CPU, backlogs, the state of jobs in the executive
gueues, and executive overhead are important to system design
verification (i.e., the dynamic flow of the software). This
type of information can be obtained through the simulator
and presented for analysis.

¢) It provides the facility for implementing stress testing
- features for software evaluation. Features, such as reducing
the speed of the computer or the amount of memory available
to examine the behavior of the software under this reduced
capability, can be incorporated into the computer simulator.

74

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

This will be useful in determining the critical design para=-
meters of the software structure and their limits. Similar
features can be provided through the simulator, e.g.; intro-
ducing random,yet controlled error conditions that the soft-
ware is designed to withstand. When the software is subjected
to these conditions, the results can be recorded and presented
to the programmer for analysis.

d) It can be built to support multiple users operating in
an interactive fashion. Since the simulator is essentially
software, i1t can be developed to allow multiple simulations
to occur concurrently, improving facility throughput. - This
cannot be accomplished as easily using the actual flight
computer or a hardware emulator.

e) It provides a deterministic tool enabling a run to be repeated
with exactly the same conditions occurring. Since debugging
an error is usually an iterative process this is an
important aspect of a diagnostic facility,

f) A simulator eliminates the need for altering the flight code
with debugging software. In addition to stress testing, the
simulator can provide a means of performing "run time" checks
on software. It can provide automatic checking for execution
dependent errors such as indexing out of an array, watch dog
type timing checks on maximum execution time, improper
addressing, and control transfers, These are provided
without modification to the flight code.

Compiler diagnostics generally insert trap code into the

actual code as a method of implementing traces and other
diagnostics. This has the disadvantage that actual size

and executive timing statistics include this debugging code.

In addition, there is the possible introduction of flight
software errors caused by this code., However, this possibility
is eventually removed as the code reaches flight ready state.

'3.3.3 Interpretive Computer Simulation Speed

The primary concern in using interpretive simulation for
the Shuttle flight computer is its slow running time and the
effective speed of the simulation. The speed of an interpretive

instruction level simulation for a Shuttle type flight computer
on a host machine is effected by the following factors.

75

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

a) The number of instructions executed on the host computer
for each flight computer instruction. Depending on the
architectural differences between the two computers (in terms
of instruction set, work length, etc.) this figure ranges
from 10-25 instructions on the average. There will always be
some overhead even if the order codes were nearly identical.
This limit would basically represent an overhead for simulation
control functions, such as incrementing the location counter,
checking for diagnostics, and updating the environment.
"The upper limit,which can exceed 25 is effected by several
features, such as the complexity of the instruction set and
the size and complexity of the memory of the flight computer,

b) Speed of the host computer and flight computer. The speed .
of the flight computer for the Shuttle (having a 2-3 micro-
seconds add time) approaches that of some large ground based
computers (having 1 microsecond times or less). If this
ratio of computer speeds were 1, and if the average number
of instructions in the host per flight computer instruction
were 10, then the average simulation speed would be 10:1
(discounting other factors such as diagnostics, overhead
and environment). However, an important point often over-
looked is that this assumes a 100% duty cycle for the flight
computer. That is, although the simulator is executing
flight computer instructions at a rate 10 times slower
than they would be executed on the actual machine, the flight
computer should not execute application software instructions
100% of the time. There should be periods of "idle activity"
in . the flight computer (particularly if 50% speed margins
are enforced)., The simulation could be advanced through these
idle periods and improve overall speed. It is recommended
that the capability for advancing the simulation be incorporated
into the simulator.

c) Diagnostic options. Simulation speed is affected by the
number of diagnostics. A full instruction trace, in which
the host computer records the contents of registers for
every instruction, can cause an order of magnitude increase in
simulation time. Speed is of course dependent on the number
of diagnostics and options requested by the programmer for
. each run.

d) Simulator overhead. The overhead in the simulation associated
with instruction execution has been previously mentioned.
However, several simulators built by manufacturers for flight
computers have been coded in Fortran to enable transferability
of the simulation tool to a number of customer host machines.
Fortran coding usually introduces an overhead.

76

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Clearly a simulator for a particular flight computer can be
optimized for a host machine. This optimization can be achieved
in areas, such as set up and initialization, memory fetching,
and instruction sequencing.

e) Environment. One of the important factors influencing
overall simulator speed is the external environment of the
computer. Typically the computer simulator is interfaced
to a model of its external environment for the purpose
of simulating computer I/O. For the Shuttle configuration
this includes: secondary storage, display and controls,
data bus and avionics eqguipment. Although this environment
simulatoxr is discussed in a subsequent section, it must be

-pointed out here that the host computer time consumed in updating
and maintaining the environment can be a significant per-

centage of the overall time. In fact, depending on the-
complexity of the models and the I/O occurring in a particular
code sequence, it can dominate the simulation by consuming

the major part of the host computer's time. The run times

for lunar landing simulations on the Apollo digital simulator
were influenced considerably by the time consumed in updating

the environment. It is roughly estimated at requiring 75-9)%

of the overall run time.

3.3.4 Experience

Interpretive instruction level simulators are available
for most off-the-shelf aerospace computers and are implemented
on at least one host computer. A limited amount of information
is available, however, concerning the run time simulation
speed. The Apollo Guidance Computer with a 12 us cycle time
is simulated on the IBM 360 model 75. In a mode with no environ-
ment this operated at a ratio of better than 1:1 (i.e., .1
sec of 360 time for 1 sec of AGC time). With a full environment
the most time consuming digital simulations were lunar descent and
landing for the lunar vehicle and rendezvous operations in the command
module. However, other simulation speeds for new aerospace computers
have been estimated and operated at significantly slower speeds?*,
in fact, by orders of magnitude such as 100:1 or greater.

* The CDC Alpha simulated on the CDC 3300 (slower machlne)
operates at 500:1 with no traces or dumps.

77

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

3.3.5 Avionics Environment Simulator

The environment simulator for the SDF will be implemented
entirely in software. It will be modularly structured to
include the "environment" external to the computer. The avionics
subsystems will be represented by mathematical models to a degree
sufficient to represent their interaction with the computer and
to verify the software. More than one module for each subsystem
may be provided. Since the environment consumes a significant
portion of the overall simulation time, the capability of pro-
viding variable fidelity in subsystem models can be a significant
factor in improving simulation time requirements.

During Phase 3 the avionics environment simulator will be
coupled with the interpretive computer simulator through a
functional simulation of the data bus. The centralized integrated
avionics system utilizing a data bus system is described in
Chapter 4. The data bus system will receive input/output
commands from the computer and can be used to control computation
by the environment simulator. When enabled, the simulator
updates the environment to the current time in the
flight computer and passes the required sensor input data to
the ICS. This process continues for the duration of the closed
loop system simulation. The interface module should prevent
excessive updating of the environment. The amount of computer
time and memory space required for such "all up" simulations
can be large. From Apollo data, this fact should limit the
number of closed loop system simulation type jObS that are
simultaneously supported by the SDF. '

Data recording mechanisms are easy to provide as a part of
the simulator system. The recorded data then can be automatically
processed by data reduction programs which provide publishable
records of flight software performance. Programmers can
develop and tailor the data reduction programs to system
specifications. '

A representative list of the type of functions required
in the avionics environment simulator based on the Phase B
Space Shuttle design are:
A. Physical environment

l) gravitational field

2) atmospheric model
3) star, earth, moon, sun ephermerides

78

(617) 661-1840

B. . Vehicle
1) thrust-rocket and jet engines

a) propulsion
b) fuel slosh, flow

2) airframe

a) geometry

b) bending modes

c) aerodynamics and coefficients
d) thermodynamics and coefficients
e) mass properties

3) mission phases

a) prelaunch

b) ascent

¢) on orbit

d) rendezvous

e) entry

f) aerodynamic flight and landing

C. Vehicle subsystems

1) guidance, navigation and control
a) ilnertial measurement unit
b) flight control system
c) star trackers
2) communications and navaids
a) distance measuring equipment
b) radar
¢) microwave landing system
d) S-band links
3) data management
a) computers
b) Dbus structure
¢) interface units
d) control units
4) mechanical airframe
5) displays and controls
6) <crew or pilot simulation

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

79

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

3.3.6 Redundancy Simulation

3.3.6.1 Computer System Redundancy. The Phase B computer
configuration employs contralized quad redundant computers,

each executing "identical" software. The nece951ty of providing
interpretive simulation for up to four computers in the software
development facility is questionable, since the control of the
computer system error detection and switching is external to the
software (as described in Chapter 4). The added complexity of
redundant interpretive computer simulation in the SDF does

not appear cost effective. The function of verifying Phase B
redundant computer operation can be more easily accomplished

in the avionics integration facility since it contains the actual
hardware with redundancy. If a significant portion of the
software were dedicated to inter-computer communication and
control,then multiple computer dlgltal simulation should be
con31dered

3.3.6.2 Subsystem Redundancy. The executive software system
will control switching of redundant avionics equipment as
described in Volume 2 of this report. Digital simulation of
redundant avionics equipment may not be required in the environ-
ment simulator for all subsystems. It is, however, desirable
to include this capability in the environment simulator for
those subsystems which utilize software control over the
redundancy. At a minimum the environment could contain

request options for equipment malfunctions (e.g., out of limits,
status error, etc.) to enable testing of flight software or
redundancy switching. -

The initial configuration status should be a control option;

for example, specifying active and standby units and their

states at the beginning of runs and a time line specification
for change of status. 'In addition, subsystems which employ
software voting on multiple inputs may require an environment
simulation with multiple redundant units operating. The same
fundamental model of the subsystem can be used by the environ-
ment simulator to accomplish this function,

Although these features add some complexity to the environ-
ment simulator,as well as increase overall simulation time, they
are considered necessary to support the testing of software
redundancy management functions and onhboard checkout software.

80

(617) 661-1840

3.3.7 Space Shuttle Simulation Speed Improvements

Several recommendations are now made for the interpretive
simulator used for Shuttle software developnent,

a) It should be efficiently tailored to the host computer and
flight computer for maximum performance. An average of
10 instructions per flight computer instruction should be
a design goal with minimum overhead. ’

b) The simulator should include features to advance through
"idle" CPU periods of the flight computer and thus reduce
overall simulation time. The simulator should also advance
to the next predicted environment event when the CPU is
idle. This could improve overall simulation speed by a
significant percentage (30-50%) particularly in longer
mission simulations.

¢) An interpretive "statement level" simulation technique for
© direct execution of higher order language statements on

the host computer instead of on the instruction level should
be investigated. The key to this approach is to devise
methods of working around the maintenance of real time
requirements and occurrences. If the software were structured
to be less dependent on interrupt occurrence, it could be
executed directly on the host computer.

d) Modularize and improve the avionics environment to improve
speed.

e) Partial development of flight software on the host computer.

3.4 Direct Use of Higher Order Language on the Host Machine

The use of a higher order programming language and compiler
in previous flight software enables some code to execute directly
on the host machine, minimizing simulation requirements. The
availability of a compiler with multiple code generators for
both the flight computer and host machine .allows the same source
code of a flight program to be compiled and executed on the flight
and host machine. Since the syntax analysis phase of the compiler
is machine independent, source code may be prepared by the programmer,
compiled, and executed directly on the host machine. Subsequent
to some debugging, the same source code can then be compiled using
the code generator for the flight machine. This approach may
be extremely useful in providing rapid debugging of certain modules
of flight software and minimizing the time consumed in executing
the code in the flight computer simulator. Although the code
generated for each computer may be significantly different as a
result of differences in the host and flight computers, a reasonable
amount of testing of the program algorithm logic at the statement
level may be accomplished directly on the host machine, particularly
for data modules. For example, syntactical coding errors, para-
meter passing, computational errors other than precision and logic
flow can all be executed and checked on the host machine which
should eliminate the need for using the flight computer simulator
for these purposes.

81

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

This approach is limited in that it cannot be used for
evaluating timing and memory aspects of the code. Its use, there-
fore, should be restricted to evaluation of code at the statement
level and not as a substitute for implementation on the actual
flight computer. If the word length and number representation
of the two computers were similar, this would aid in verifying
numerical computations on the host machine. Although a reasonable
amount of testing may be accomplished particularly in Phase 2,
the code must ultimately be compiled and verified within the
flight computer. If applied properly, a HOL can, however, be
instrumental in improving production, reducing turnaround, and
lowering simulation requirements on the host machine.

" 3.5 Comparison of Interactive and Batch Computer'Facilities
for Shuttle Software Development

The purpose of this section is to discuss the advantages

and limitations of a user interactive environment for the production
of Shuttle software and to compare this with the traditional
batch environment. The term "batch" takes its name for historical
reasons from the fact that input cards were combined together
into a group or batch which was then submitted to the computer.
It was typical to sort these cards into similar job types and
then to submit them (e.g., a Fortran batch, a Cobol batch,

etc.). The name still persists, denoting the form of operation
in which the: jobs to be run are fed into a single job stream and
queued for subsequent execution. A further distinction can be
made as to whether the batch facility is multiprogrammed or

not. A multiprogrammed system permits the computer to operate

on more than one job at a time (interleaved execution) in order
to increase the computer utilization efficiency, or in the jargon
to increase the "throughput". Examples of mulitiprogrammed
operating systems are 0S/360 MVT and Univac 1108, EXEC 8. Con-
ceptually it is immaterial to this discussion as to whether
. the batch facility is multiprogrammed or not. It is of direct
concern only to the computer operations staff in their quest to
provide better service. ’

The fundamental issue that is germaine here is the
turnaround time. . Turnaround time is the elapsed time from job
submission until results are available. Turnaround times of
one hour or less from a batch facility are remarkable and rare.

A four hour time is considered good service, and one day is a
typical turnaround time in a busy batch environment. A turnaround
time of longer than 24 hours is considered excessive and poor
service. ' The advantages of a batch computer facility are:

82

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

1) it is easier to run a batch facility, to control the jobs
. that are being submitted, and to exert some influence over
the mix and priority of the jobs to be executed via the
scheduling algorithm.

2) A well run batch facility can be extremely efficient.
A high level of output per unit of time can be maintained
within the available system resources.

An interactive facility provides hands-on programming for
the user. It consists of direct communications between a
central computer doing job execution and a user via remote
terminals. The user submits commands to the central computer
and then examines the results at his terminal., He is then at
liberty to stop the execution, fix up errors, look for bugs,
redirect the computer's activities, or permit it to run to
completion. In this situation turnaround is not meaningful.
The user is not delivered the entire output from a run or sets
of runs but is able to read the results as they are generated,
or to interact with the computer. Thus, the name interactive
facility. The figure of merit in this case is the response
time. Response time is a measure of the period between the
initiation of a stimulus at a user terminal and the indication of
scme event, perhaps observed by the user. Response time is
a function not only of the amount of CPU time that a particular
job step requires, but also of how busy the central computer
is kept servicing other users, the efficiency of the computer
to support the time sharing mode of operation and a number of
other factors. In general, however, the response time of an
interactive computing facility can be measured in seconds.

The precise details of the computer systems necessary
to support the time shared environment are not particularly
relevant. Suffice it to say that there is an overhead associated
with swapping the users' programs in and out of the central
computer's memory. The size of this overhead is far from
negligible; it can become overwhelming if too many users are
present. In fact, nearly all time sharing services are forced
to limit the number of users so that the quality of the
service does not deteriorate beyond acceptable limits.

_ The Shuttle software development facility should be
implemented to support multi-user operations during Phases 1 and

2 but to operate "full up" simulations of Phase 3 in a batch
mode.

83

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The advantages of an interactive facility are generally obvious.

1) Foremost is the ability to make rapid corrections and changes
to program and job decks. This is especially beneficial
during initial program development while still weeding out
control card errors and trivial coding errors. Fast detection
of out-right blunders which might take a week on a batch
system can be debugged in a single terminal session on a
time sharing facility.

2) The hands-on appeal tends to promote individual source file
preparation by each programmer rather than submission to
a central key punching and verifying operation. Fewer errors
are made by programmers typing their own inputs. They are more
familiar with the meaning of the material than a mechanically
functioning key punch operator.

3) Debugging capability is enhancedAin two ways:.

a) The interactive techniques employed in the trial and
error nature of hunting for solutions.

b) The immediacy of the results. It is much easier to
search for the trouble when the objective and the purpose
of the test are still fresh in one's mind.

4) A more orderly test process can be followed in an interactive
environment. Good results from a single test precede and
give confidence to the quality of the results before a
whole spectrum of tests are conducted. In a batch environ-
ment, it is not at all uncommon to see individuals submitting
multitudes of tests that all fail for the same reason. Poor
turnaround forces users to gamble and submit a plethora
of test cases when these yield no useful product, and only
waste more machine time and worsen the turnaround time problem.

5) The user's natural trains of thought flow more consistently
in such an environment. Notes need not be scribbled on
scraps of paper for incorporation into tomorrow's run. The
user can interact with job execution in one continuous
session of updating, compiling, testing, and debugging.

Both interactive and batch capabilities are seen as desirable
for the Shuttle software development facility, as previously
discussed.

84

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Chapter 4

Space Shuttle Phase B Design Review

4.1 Introduction and Scope

An initial task in this overall study involved viewing
several Phase B avionics configuration designs with emphasis
on determining their impact on the software development effort.
The objective of the task was to review the general architec-
ture of each configuration and to assess the impact on the
software development of features within each of the avionics
configurations. The. scope of the study d4id not include defin-
ing a configuration or analyzing functional subsystem require-
ments associated with the avionics system. In addition, no
attempt was made to perform a detailed hardware/software trade-
off analysis or to critique the design itself. 1Instead, the
primary purpose was to gather and organize information on
software design parameters which were derived during Phase B
and to use these as a basis for the rest of the tasks in the
study. Key parameters included functional requirements, memory
size, and operating speed. Orbiter vehicle requirements were
emphasized over the booster vehicle in the belief that the
requirements of the former are the more difficult to satisfy.

In Section.4.2 below, the Phase B avionics designs of
North American Rockwell (NAR) and McDonnell-Douglas Aircraft
Corporation (MDAC) are summarized. In Section 4.3, there
is a discussion of software implications that follow
from features of the avionics designs common to both the NAR
and the MDAC designs. In Section 4.4, on the other hand, the
software implications of the differences between the two
technical approaches are set forth. Finally, in Section 4.5
the overall problem of checkout software is discussed.

85

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE < CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.2 Summary of Phase B Designs

Although a number of avionics system designs were identi-
fied during the course of Shuttle Orbiter Phase B, this study
was focused on a review of configurations derived by two prime

" contractors: North American Rockwell (NAR) and McDonnell-
Douglas Aircraft Corporation (MDAC). A more detailed exposition
of these two candidate avionics system designs is presented in
Appendices A and B. : :

Both Phase B configuration designs have many similarities
with respect to the impact on flight software. The concept
of integrated avionics and a centralized computer imposes
certain general requirements on software functions from the
beginning. A summary of the major features of each baseline
system is depicted in Table 4-1,and the configurations of the
primary computer system for the NAR approach and the MDAC
approach are depicted in Figures 4-1 and 4-2 respectively. Both
avionics configurations consist of centralized data management
computer systems. Both systems contain-a high speed time multi-
plex serial data bus system which provides a communication path
between the avionics equipment and the prime computer complex.
The bus system provides a capability of interfacing with redun-
dant electronic subsystems via a remote interface unit. Each
computer system is also interfaced to a redundant secondary
storage unit. Each bus line is assumed to be physically sepa-
rated onboard the vehicle for reasons of reliability and
carries serial digital data at a rate of 1 MBPS.

The central computer is the sole authority on the bus,
and all communications with equipment are initiated and directed
by it. The central computer computation functions encompass
almost all aspects of operation of the total Shuttle Orbiter
mission, including flight control, guidance and navigation,
displays and controls, on-board checkout, and configuration
management. The significant exception is the dedicated process-
ing associated with the main engine systems.

The Phase B design ground rules for system failure
tolerance was the primary factor in influencing the design of
the configuration; that is, "fail operational" after

- the failure of the two most critical components and
"fail safe" after the third failure. 1In a practical systen,
failure tolerance requires that each major element of the
system possess internal functional redundancy and a
highly effective technique for failure detection to allow
quick reconfiguration in the event of a failure. It is this
- requirement that has introduced the greatest complexity into

86

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

AIOWS SSBR O3 {U
SNgvIvYd o3 3uQ

isToUURYD 7 JFO WNWTIUTK

1-4dY Idy WgI xod sy TT TeRuIS3jUI
. ¥ Teuxslxdg

Axourau
03 ss900® YWd YaTM JTuUun
Tox3uod andanQ/andur 03 auQ
nos 03 [P0
(sToUURYD g JO WNWTUTIR

JOOTD TRUISIXH
30939p 3Tned
pPo3eTOTA
3o0930xd Axoway
0/1 TebetTI
T1TRI I°2M04g TrRUIS3UT
v Teuxeolxd

eaep woxl o3exedsas swegboxd @
*039°500 ‘aUTS ‘suoTiouny yjeu
I0J SUOTIONIJISUT OIDRW YITM

o/I ©

sa3dnixsjuy ©

(T-d¥ Idp WgGI) SUOT3ONIISUT [/ © SITO3TdSX UOT3ONIISUT 2HbIeT © .
_ sI93sTbax OoTISWYRTIC §
s191s1bax TeisusbH g @ s1931sTbax Terasusb 9T-8 ©
‘e3RP pUE BlEp pPUR SUOTY
SUOT3IONIISUT JIOM [TNJ pue JTeH © ~ONIISUT pIom TInJ pue JTeH © P
ATuo autod pPOXTJI © . juTod burleoTd @
. 2wty ppe s gz © 2wt} ppe sn g © SOT3STIDZIORIRYD
T1-d¥. Idy WdI STqeITRAY FT°Us 22Uy FIO0 STqeTTear 3JON IO0SSa00Ig TeIjUS) ©
s3Tun butsseooxd axeds g
soTnpow Axowaw Mg 3xeds g
yoea
SpIoM 3TQ ZE€ MOp °2ary ,xa3ndwod SpIOoM
I9309yd, pue ,x93ndwod SATIOY, @ 3ITY ZE€ ‘NG9 sey xoandwod yosed @ Kxowspy butjexadp ©
s3tun Aqpue3s Y3Im
sIossoo0xd 7z pur SaTnpour AIowsw
G 10 sxsjndwod Z se aInbiJuod
. soTnpou AIxowaw
2T JO 303UUODIDIUT 2IeMpIRY putaeys Axowsw ON
pue Ixo0ssao00xd TeIjuaD p JO uoTt3iezIurbIro xoandwed :
UOT3PZTURDIO JIRINPOW PIZTITRIJUID © INOJ PpozZITeIIU3) @ wo3sAs xoandwo)d T
SUT[o58d dYN SuT[osed OVAW aaInjesj ws3sig
SHINLYEL e AR

WILSAS OINOIAY ANITISYE € HSYHA

fUTpURT IOF XBW SAVY V8%

XeR
aseyd
3TQIO UT JIO0J SpIom 3T € M9¢€

3se93 IT9S TrRUIS3UI O

saseyd
UOTSSTW JO0J peolsx weiboxg o
-buTTpury JUSDAT O
9T0AD IOoUTW O9SW Q¥
2INIONILS SNOUOIYDUAG

UHcs.momwnmpcﬂ
SUO 03 9D'IIDJIUT SSBUTT Sng § TIIV

sures ®

swes ©

AdUurpunpaIl SUTIT SNg 9SATI ©
. elep puUR PURWUWOD
Jo uoTjeaedss I0J SSUTT Sng OM] ©

Sdgii Z°¢€ IO so3eX IX93ISsuril 3y
Iz93ndwo) 03 3IoaxTg (3T 2¢)
spaosM Q00‘00% swnag
jquepunpsi oTdTIIL

pbuTtssaippe
30SITPUT pue I09ITP pue burxspul

butpueT butanp o124&0 A3ng
pos/sw z9oy

Xen
spIom 3Tq ZE M0S

21040 zolew o®s T
9T0AD IOUTW DO38SW (F
3IN3ONIYIS SNOUOIYDUAG

3TUN SO0vIIS]UT
Je Axowsw x03 uoTldo @
JTUN 90BIJISJIUT BUO
03 S90'JIXSIUT SUTIT Sng SuQ ©

Ssuodsax purUWOD BTIA
butsssxppe 3TUn 230wWoY

Ssdd 90T uoTieTnpow aseydrq
burtxeTdIaTnw UOISTATIP SWIL ©
juepuUnpSI pend ©

elep pue

puewWod IO SUTT Snq o2THUTS &

sng e3eq eTA
S3Tq 0T X Z°T @odel
L satun ¢

burtxsput
1IN pur HBUTISSSIPPR IO02ITPUIL

poadsg axemiJos

S93PWT3ISH 9ZTS 2IeMQIOG

2In3onI3ls
SATINDOXT
2IeM31JOS ‘Al

88

20vIISo3UT wWo3lskg gNg ©

ToI3uoD sng @

sng e3ieq "ITT

mﬁoﬁmz Axepuocosg *TT

I9Y20 ©

[QUTTased YUN

sSulrTessed OVARW

2IN1e9, WolSAS

co..,numnsm..ﬁwﬁoo zo3ndwo) sutrTesed I¥VN TI-¥ 2anbTa

LINN ONINIL
EER

SH1Vvd T¥YNOILINN4 OL

AHOWIW
.,%. SSYIN
J

viva SANVINNOI
L] R
15314138
3LVAILY
NOISYIANGD oy gpiuqiims
av aNv aNYINNOD
HIXIILINW
A
TVIIAL LINA | viva
19V 1S31 aNY :
T041NOD
NOILISINDDY |
ylwx® | ¥3goo3as
43009 TEVNERER)
EXEX]
19V 1VIIdAL
~
Bt
¥ / sng
L& Viva

NOILVYNINHIL
NI

A |
" | |
0HINOD
N 19V ﬁﬁ,mho< ﬁﬁ | 19V wmosms
- - - SSYIN |
£ O © _
B ~> "
[T o
008 [noe S Anog A noe
0/l 0/l 0/i o/l
ndJ ndJ Nd9 nda
| I T |
4
FOOOCO-
8
LI 3409
J T NIV

A¥D A3V ITIY

uoTleaNLETIUOD IAS3ndwo) durrased DYIN Z-F mw.&wﬂm

———Awmuvame U T 7 LR
i ! ' '
| 21 n1o t Y ~ |
AL i O oo
“ LEELT AWH “ : I o IR - PV §
. Sm—| 1 . ” ¥ [
— . m A o~ A —
| u.L X] | _]
) no € nio < § e |
| vIuy w3y | { A By
_ u >) ~ ﬂ* vIuv v2uY }
| et . 3 1
b e 3 _ % . i
— e e e e e e e e - RS |
e — — - NSNSy e - _——— -
[_ 111 r 1
| e b ¢ T
Al ;
“ ml JH&Z.T/u _ h, — : J.w\w_m,_-*/uxﬂl_“
i 1 i
_ T .
o
{ _ , _
] 4 2o {7 m ¢ e o
L @inio
| v CE { S M CHM™ .
| i . { i AvVa
IRTID : 1 | #13vd
“ i A ! 4257
|
T m 1 ¢ _ .
| A o m 5 _ o enio
— i ” YIHY
_ T | =
L}
| } <
! - o P 3 ; “ Y oo
[Ausaz i 1 v TN Dl ATONTT
- | g 3 ﬂ 3350
| . ; “
! i
BILNINCO 3 ,
{ IVULNED wwwﬁ,ﬂwwo ! _ bt EEov
_ N— ~C | | IVEINDD g] IVHINZD
noot SN0t | . .
“. TLICITIT %C:CC ..“ | :rmmof_m A «..&,mmomwu ,
I o o o T U S O s o i - ol -
PSRN (50 SR S0 N AU NN (NN S S S G D
e e = e o o e e e o e b o}) - ——— - ———
_— | r —— g _
i i e
B A
! b
) &
! H— |
_ | ¢ -1 |
i} }
| () N1 t
{ MOLLVLS 31D zo_mbwmrww«c zohv«wm_mmﬁ |
| ASNVd ARTIE IINVE YUILNED TaNYS 1337 !
— NOILVLS MWD —
! . . !
L = Linn o i
l 1 - 0wt B 1
L. H o -
n A ViiSAS ot “
e e e e e e e e

90

the integrated Shuttle avionics system. The high level of
redundancy that is required to achieve a multiple failure
criteria encourages application of voting and comparison tech-
niques especially to systems which generate output data;

for example, the computer. One of the penalties that must be
"paid for the voting approach to failure protection is that all
redundant copies of a given piece of equipment must be powered
up and operating identically. Accordingly, the designs devised
during the course of the Phase B study encompassed significant
and costly levels of redundancy. Furthermorerthe requirement
for largely autonomous operation of the Shuttle vehicle and

the two week turn-around time between missions results in
designs which incorporated: 1) onboard checkout and fault isola-
tion, and 2) computer controlled switching of redundant equip-
ment.

4.3 General Software Implications of Phase B Designs

4.3.1 Centralized Computer Software Management Problem

The software in the central computer services all A
sensors connected to the bus and performs all of the functional
requirements of the system. The boundaries of a functional
subsystem tend to disappear, and exist only as shared software
in the computer. For example, the stabilization and flight
control system will consist of redundant sensors connected
to the bus operated by programs which are allocated a portion
of the central computer resource. The total flight control
subsystem (including software) is therefore not a visible
separate entity but becomes, in fact, part of an integrated
avionics system. :

It is important to observe that the size of the central
system has direct bearing on the ability to manage it from a
project point of view. It would be obvious to most that the
central concept is clearly controllable if the size of the
software were small enough. If it were small,then partitioning
the system functionally via distributed hardware would not be
desirable since it would probably create more management problems
" than it would solve. The converse would also appear to be true.
That is, a large software effort brings with it numerous manage-
ment problems (e.g. storage and time budgets, priority alloca-
tions, complexities in configuration and change control, defini-
tions of shared variables, software interfaces). If the software
were large enough, for example 200,0000 to 300,3000 words, then
. partitioning the job into several functional computers might
alleviate these problems.

91

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The Shuttle software has been estimated at approximately
40-50K words with a processing requirement of 200K OPS.. Many
centralized ground-based systems with much larger software
have been successfully developed, particularly the Air Force
systems: 425L NORAD, 496L Spacetrack, BMEWS, and others. These
systems, however, have not had the difficult FO-FO-FS relia-
bility requirement nor have they been totally free of manage-
ment problems. They have, however, been successfully developed.
Other flight systems have been built or are being developed
which are as large if not larger, than the Shuttle, such as

~ the Navy's A7 and AADC. It is, therefore, reasonable to assume
that the software effort for a Shuttle central computer
is of the size which can be successfully managed and developed.

4.3.1.1 Advantages. The following are some potential manage-
ment advantages of the centralized computer system approach.
Admittedly, these advantages express a subjective point of view.

é) The centralized system promotes standardization of approach

to system design problems. Centralized software and a
central bus provide the means to impose this standardiza-
tion.

b) The systems integration task becomes intimately involved
in the development of the central computer system and
software. This minimizes the number of organizations
during the design, integration, and testing of the system.

c) The system can consist of computers; software, the

bus system and line replaceable units (LRU). ILRUs will
be accepted from suppliers based on their performance to
functional specifications and their interface to the bus;
for example, an RCS quad. On the other hand, the stabi-
lization and control functional system (which is not an
LRU) cannot be accepted until performance tests are run
using the flight control software, central computer, and
all required sensors.

4.3.1.2 Disadvantages.

a) The key problem with the centralized system is that
there appears to be no straightforward way to partition
functional subsystems around which project organizations
may be formed. It is an inherent characteristic of the
centralized approach that, in most cases, functional
organizations will overlap and cause conflicts in defined
responsibilities. For example, the G&C subsystem supplier

92

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

in a centralized concept could perform analysis, design
logic, specify sensor requirements, and provide software
specifications (equations). However, integrating these
to perform the GNC functions requires developing

the software for the central computer and interfacing

the systems to the central bus system. One suggested
approach might be for a functional subsystem supplier

to develop the software, constrained by certain standards
and budgets, using a higher order language and deliver

to the integrator the completed software as well as the

sensors. This, however, is probably not a workable nor
attractive arrangement for either the subcontractors or
the integrator. The division of responsibilities is

unclear. Does the subsystem supplier remain responsible
for the system during the test and acceptance phases or

is this responsibility transferred to the integrator?

Can the integrator specify subsystems (including software)
sufficiently so as to be in a position to accept "indepen-
dently" designed subsystems and make it work? These are
difficult questions and they are unanswerable at this
time.

It is more reasonable to assume that the organization
for a centralized system must consist of an avionics
integration contractor, perhaps a software support
contractor, a computer system and data bus contractor,
and a number of suppliers of sensor equipment. The inte-
grator. would be forced to organize the software and the
analysis effort functionally, seeking outside support
for analysis and design where required.

b) The centralized approach places responsibility on the
integrator for specifying the sensor requirements for

all functional subsystems. Needed expert support on
particular functional subsystems may redquire numerous
subcontracts.

c) A centralized system does not provide isolation or
localization of changes. Changes made to a particular
system such as electrical power distribution, may not
be easily or absolutely isolated from the rest of the
systemn.

d) It does not provide a hardware independence of functions.
That is, security of subsystems is only achieved through
the bus system design.

e) Incremental delivery of the avionics system must be
achieved through software. For example, in order to

93

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

support early horizontal flight tests of the vehicle,

a preliminary software package must be prepared contain-
ing those functions required. Even though an "all-up"
avionics system is not required, a central computer and a
bus system to operate the sensors are necessary. . : .

In summary, a central computer configuration does provide
some significant advantages in design and configuration control,
standardization, and minimum organizational interfaces. Yet
its drawbacks are also apparent. It is the most difficult to
partition functionally and requires sophisticated, but
achievable, software and bus control designs to ensure sub-
system isolation. : :

4.3.2 1/0 Timing Difficulties

A class of system problems exists in the operation of
a time~shared bus which is associated with the correlation
of data and commands with "time". .For example:

a) Correlation of data and absolute time. Several system
computations demand the acquisition of data from separate
subsystems at the same time. For example, a navigation
measurement combines sensor data with attitude information,
correlates both with the same absolute time, and updates the
navigation data. With a synchronously controlled data bus,
in which sampling is performed only at fixed minor cycle
intervals, time may only be established with a granularity
of the sampling period. That is, all samples taken during
one minor cycle are associated with the same time tag.

If a finer time reference is required it must be provided
by a local clock. 1In an asynchronously driven bus system
a finer reference time gquantization may be obtained
because a specific I/0 command may be serviced within
approximately 100 us (depending on the I/0 queue backlog).

b) Local precision timing. Another problem that may arise
concerns the precision timing of events at geographically
separate and remote subsystems, for example, the timing
and coordination of firing commands to the RCS jet
thrusters. From a system point of view, it is desirable
to design such subsystems to receive a message which contains
not only the command but also the firing interval. The '
impact on I/O complexity, bus traffic, and response due to
separate transmissions to command the thruster on and then
off could be considerable if this type of bus activity
predominates. The capability for local precision timing
may be incorporated into the subsystem or terminal.

94

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.3.3 TFailure Identification, Isolation, and Reconfiguration

Probing deeper into the problem of failure identifica-
tion, isolation, and reconfiguration, it is clear that this is
one of the most difficult technical problems to be overcome
in the Phase B designs submitted by either NAR or MDAC.

Control of multiply-redundant inertial subsystems
(ISS) epitomizes the extreme aspects of this problem. The
I/0 timing problem discussed above has a particular bearing
on the ISS failure identification and isolation problem. A
sick inertial measurement unit (IMU) among a set of IMUs will
exhibit a gradual drift of its state vector relative to two
others. 1In a dynamic situation, precise timing of the compar-
ison is required. This drift can be detected only by having
two other systems as a standard with which to compare. (If
one failure has deleted one out of three IMUs, then there
is no present method for clearly distinguishing gradual degra-
dation of one of the remaining pair.) Finally, reconfiguration
in a dynamic situation requires another timing achievement
so that the bit stream from one IMU is shut off and that from
the substitute IMU is turned on, using the best possible
estimate of the true state vector.

4.4 Software Implications of Differences Between Two Phase B
Contractor System Baselines

4,4,1 General

Although there are many differing aspects of the North
American Rockwell (NAR) and McDonnell-Douglas (MDAC) config-
urations, this section reviews only those features pertinent
to impact on software, since it was the intention of the study
to concentrate on the differences in each baseline system and
how those differences effected software. Five principal
differences are addressed:
a) computer organization in redundant operation,
b) operatiﬁg memory ,
c) secondary storage and utilization,

d) redundancy management and subsystem interfacing, and

e) operation of display systems.

95

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

In evaluating these configurations, features which directly
‘impact the complexity of the software system have been identi-
fied. In summary, the Phase B configurations were compared

in an overall sense and those features identified which affect
software design. Software costs were not traded-off against
the associated hardware costs.

Several difficulties were encountered during the course
of the review of Phase B, principally due to the scale of
information presented in the reports made available during
the course of the study. In attempting to evaluate subsystems
and their modes of operation, either the information was too
detailed or too gross for adequate software load analysis.
Selected redundancy operational modes were discussed at top
‘level only. Total impact on software requires lower level
design to evaluate the "iceberg effects". In addition, infor-
mation pertaining to software requirements was not easily
found within the reports, because it was distributed primarily
among the functional subsystems areas. A definition of various
application software packages in terms. of. the functional inputs
and outputs and frequency of operation was either incomplete or
too vague or undefined in some cases. As a result the informa-
tion presented in this chapter is based solely on Intermetrics’
evaluation of the impact on software as interpreted by the
description of the configuration in this document.

4.4.2 Computer Organization in Redundant Operation

A key difference in the baseline systems is the method
used for computer error detection and reconfiguration. Both
baseline systems appear to be designed to incorporate the
comparison of data transmitted by the computer over the bus
system as a means of error detection of the central computer.
The NAR design incorporates a synchronized two-computer
environment where both computers are performing functions
simultaneously and cross-checking calculations prior
to transmitting data onto the bus. One computer
is considered the master and the other the slave. All data
transmissions on the bus are made via the master computer. Both
computers input identical data via the data bus utilizing the
‘'same serial channels. The MDAC system, on the other hand,
can have up to four computers performing the same computations.
One computer is désignated as active by the crew and is the
only computer transmitting on the data bus system as in the
NAR design. Each of the operating standby computers, through
its IOCU, performs a comparison of data being transmitted
by the active computer. After performing this bit-by-bit

96

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

comparison it transmits a binary signal to the system control

unit. The system control unit based on the results of the.

comparison sent by each standby operating computer determines

if all computers agree or if an error has been detected.
system control unit is designed so that it can select the

controlling computer during the time critical phases of the
mission,and/or the crew can manually override the selection

The

at any time as well as select the active computer directly.

The problems of recovery, via software, after the detection
of a computer failure can be severe. Error detection by voting

on and/or comparing the outputs of two or more redundant

operating computers is utilized in the Phase B avionics designs.

Some techniques can be made less difficult to implement if

the elements being compared are complete computer units, each
consisting of the full complement of memory processor and I/O

controls. A detected failure results in the removal of a
complete computer and its replacement by a standby unit.

However, if redundancy error detection and recovery are taken
to the level of the memory unit (which iIs then considered as

an element of the system independent of the processor), the

complexity of the reconfiguration problem increases. The
recovery from a memory module failure requires either the

replacement of the failed module by an identically loaded copy
or the regeneration of its state prior to the hardware failure.

This involves a continuous updating of spares or an initial

load with consequent delay in system operation.

Failure detection by computer comparison poses a problem

of determining, in the event of a comparlson failure, which

of the processes is defective.

In the NAR approach it is necessary, subsequent to

detecting the error,to run diagnostic routines in each computer
and then to reconfigure once the safe computer is identified.

However, reconfiguration in thlS style poses the following

guestions:

1) What happens to the time critical'processes that may
have been active at the time?

' 2) If the active computer is the one that failed, how does.

it hand-off control to its back-up?

3) What is the next step if both computers indicate failure?

These guestions do not imply that the problems are insolvable
- but they do underline the impact of placing the recovery and

error detection responsibilities in the software.

97

INTERMETWCSINCORPORATED?701CONCCWK)AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

The MDAC approach, on the other hand, has the error detection
and the reconfiguration completely independent of software. A
voting mechanism decides on the basis of a majority of comparative
results whether the active computer is operating correctly. It
may also determine which of the inactive computers has developed
failure. In the event of a failure, the active computer is
replaced by one of the standby computers. There is, however,
a possibility that a split vote situation will arise with these
binary compariscn outputs and a greater likelihood of identical
multiple failures. :

A characteristic of both approaches is, of course, that
neither one can detect errors in the software. For the purposes
" of comparison and voting, the software in each of the redundantly
operating computers must be virtually identical. It is, there-
fore, inherently non-redundant. A software fault would produce
data, which being identically erroneous, will appear to compare
correctly. This condition must be classed as a design error,

which along with a similar logical hardware fault, must be
prevented by careful design and adequate verification rather
than by complicating the system in an effort to make it immune
to conceptual errors.

4,4.3 Operating Memory

The NAR baseline system incorporates twelve memory modules
of 8192 words each, which can be accessed by any of the four
processing units. Although this memory organization may offer
a lower power and weight requirements from a hardware viewpoint
and a degree of expandability, it has a direct impact on the
software executive system. The executive system must provide
the necessary logic to configure and assign the physical memory

.modules to the "active" and "checker" computers. The operating
memory for each computer must be established via configuration
management and assigned from the available set of twelve memory

modules. Furthermore, the executive must be capable of recon-
figuring modules in the event of a failure by using the two
backup spare modules. Replacement of a failed memory module

requires that the spare contain a copy of the information that
the failed module contains. Then it can be switched into either
the active or checker computer configuration to replace the
failed module.

_ As a consequence, the executive system must be designed
to insure that spare memory modules are updated at appropriate

98

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

intervals and with the proper information. Software associated
with the management of this type of memory system is clearly
more complex than if each process were connected to a dedicated
operating memory. »

The MDAC baseline incorporates such a design, i.e.,

four computers cach with their own operating memory. Since
the memories are not shared among the processors, there is
no need for software to manage their switching. The apparent -

cost savings in hardware gained through the use of a modularized
interconnected memory system must be traded-off against the
increased complexity and cost of the software necessary to
manage this type of system.

4,4.4 Secondary Storage and Utilization

Incorporating a secondary storage device into the
architecture of the onboard computer configuration offers
several advantages from a software viewpoint. Traditionally,
memory in aerospace computers has been at a premium. As a
consequence, very careful planning and utilization of the
operating memory has been a major part of the software effort
in aerospace programming. Typical software approaches to this
type of programming involve such things as tricky coding to
conserve space and overlaying techniques for sharing memory
among operating tasks of the computer system.

Both Phase B designs have incorporated a form of
secondary storage. The NAR baseline design utilizes a
redundant drum system. The drum system is used during system
operation to reload the operating memory with programs for
each major mission phase. The MDAC design incorporates a
tape system primarily intended for backup copies of the program.
It does not appear to be used for dynamic loading of programs
during the mission.

Although there is an additional increase in the complex-
ity of the executive software for incorporating dynamic load-
ing of the program storage during flight, utilization of

. secondary storage in this method appears to have several
advantages. First, it lessens the impact of incorrectly
sizing the operating memory. No matter how carefully soft-
ware functions are initially sized, including budgeting allowances,
the requirements will change somewhat for the project
and eventually fill the operating memory. Second, because
programs are loaded for each phase of the mission and exist
in the computer only when required, there is some inherent

99

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

separation in preventing sharing problems. It maximizes
the independence of these functions and prov1des a certain
visible separation of software.

4.4.5 Management of Redundant Subsystems by the Central
Computer

One of the most complex functions of the software
system associated with the Phase B designs is that associated
with configuring and reconfiguring sets of redundant avionics
subsystem equipment. A high degree of redundancy for avionics
subsystem equipment demands complex software for its main-
tenance and operation. The cross-strapping of avionics equip-
ment through the redundant bus system establishes a multlpll—
‘city of paths for the computer system to control.

The two Phase B designs have different approaches
to the redundant interfacing between the bus system and the
terminal. The MDAC system has in effect no cross-strapping
between the bus and the terminal. -‘Each DIU, in effect, is
connected to one and only one bus. A separate address in
the bus control word format must be provided f£or each DIU
located within the configuration. Software must be used to
address a new terminal in the event of a failure somewhere
along the functional paths. The NAR system on the other hand
has its remote terminals (ACT) cross-strapped to all five
buses. Five bus lines are interfaced to each ACT with a single
address associated with each ACT. This feature to some extent
limits the necessity of the software of re-establishing a new
address in the event of failure along the functional path.

4.4.6 Display Subsystem Interface to Computer

Both baseline designs incorporate some form of
display subsystem in order to provide integrated mission
information to the crew. The display system provides the crew
with, among other things, continuous visibility of trajectory
performance and progress during critical mission phases.
The display and control systems are interfaced to the central
computer via the data bus system. The characteristics of
‘both display systems vary. However, they both incorporate
some form of CRT display with alphanumeric capability. Flight
control graphic displays are also available on CRTs. The crew
requires access to the computer memory for parameter call-up,
monitoring of parameter updates, and requesting computer
-processing functions.

100

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

The MDAC system incorporates a display system which
includes a composite of microfilm-stored, fixed format data
and a TV raster presentation. Information generated by the
computer may be sent to the display system superimposed on
a stroke-written presentation. The keyboard or computer-inserted
data is written against a background raster format. The fixed
background format data includes operator instructions, para-
meter names and units or other descriptive data to enhance crew
interpretation and increase crew confidence in command of inputs.
Local TV raster presentations include microfilm, stored proce-
dures, text, flow charts, schematics, etc. This has the '
distinct advantage from the software organization point of view
that only updated data for variable displays need be sent over
the data bus to the display system.

In the NAR basecline design, fixed data for the display
called frame formats is stored on the mass memory unit.
Read/write memory functions are included in the display
electronic unit (DEU) which permits complete format flexibil-
ity. New formats are sent to the local electronics unit via
computer from the mass memory unit. All formatting, including
vectoring, pattern rotation, and scaling, is accomplished
within the DEU. There is, however, software associated with the
selecting and reading of these frame formats from the secondary
storage into the computer and then retransmitting them over
the data bus to the display electronics units. Once the local
memory has been initiated with the frame format the display
system is updated and refreshed from the local memory. Only
variable data recomputed by the computer in real time is then
transmitted into the display units for updating purposes.

This added software feature of transmitting the frame formats
from the mass memory through the central computer over the data
bus not only increases the traffic on the data bus but also
adds to the computation load of the central computer. It

would seem more desirable to have the fixed formats stored
locally in the display unit via some type of mass memory tape
system (as in the MDAC system). Formats would then be selected
by command from the central computer.

101

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.5' Onboard Checkout Software

4,5,1 Overview

One of the objectives of this Phase B design task was
to review the requirements for onboard checkout software. The
emphasis of this part of the review task was not to define
checkout software requirements since they are subsystem-
dependent but to evaluate such requirements only to the level of
determining structure and impact on the executive system design.

The Phase B requirements for autonomous operation and
minimal "airplane type" ground test operations have resulted
in both ground and inflight checkout. The ground checkout
is applicable to the development phase and acceptance testing
as well as pre- and post—-flight checkout during the operational
life of the Shuttle. Because of the need to determine checkout
software executive requirements from Phase B study documents,
the work in this area was focused on the review of inflight
checkout software. Inflight checkout software, for purposes
of this report, will be defined as checkout functions operated
during the mission under the control of the flight executive.
It includes functions such as subsystem monitoring, erroxr
detection and reconfiguration, status displays, and recording.

The inflight checkout concept and philosophy is defined
as follows:

1) Inflight status and monitoring will provide system/subsystem
status by utilizing redundancy voting, built-in test
status monitoring, and critical measurement limit checks.

2) Upon detecting a failure of a functional path, time critical
functions will be automatically switched to an alternate
path. The capability for automatically or manually
calling up a diagnostic/reasonableness test will be provided.
(Redundancy voting, built-in test parameters, and measurement
limit checks may indicate a sensor failure rather than a
subsystem functional failure.)

3) Malfunctions detected by the status and monitoring tests
Will be displayed to the crew along with an indication of
the results of switching and/or diagnostic evaluation
performed by the computer. For non-critical functions,
the display may only indicate the nature of the malfunction.
and the crew options available. All malfunctions, switching,
and results of diagnostic routines will be recorded to
aid ground maintenance operations.

102

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A review of the MDAC baseline system approach to inflight
checkout for the major avionics subsystems was made and a
summary of the review presented in Appendix C. It was used
primarily as a reference guide in determining the scope and
structure of the inflight checkout software.

It is clear, based on this review and other information,
that checkout approaches are not completely defined for the
Phase B baseline system. The concepts employed for control
and operation of redundant equipment are not fully defined.
The methods of comparison and voting of redundant subsystem
inputs as a means of error detection may be difficult to
implement particularly for subsystems with a high repetltlon
rate input such as the inertial subsystem.

Ideally, each subsystem would have an array of bit discretes
which would, in combination, determine unequivocally the ability
of that subsystem to support upcoming mission phases. However,
the inertial subsystem (ISS) consisting of three or four
inertial measurement units (IMU) is an example of a failure
detection and isolation problem for which no easy technique
exists. Accelerometer digital outputs are required to have
uncertainties less than 50 to 100 micro-g's. Gyro drift
stability is required to one or two thousandths of an earth
rate. Given three candidate IMUs for voting, detection of
differences to this level is marginal. If only two IMUs are
left, crucial data on degradation of one IMU cannot be obtained
during the critical mission phases where such degradation must
be detected and isolated.

Subsequent to this review, it was determined that inflight
checkout software functions will be directly dependent on the
equipment characteristics and the inter-connection of said
equipment to form the flight configuration. However, the general
functions of inflight checkout, such as subsystems monitoring,
status displays, functional path reconfiguration, and diagnostics,
do not impose any significant requirements on the executive con-
trol system. The requirements on the flight executive for
scheduling and dispatching of the CPU and other computer system
resources are similar to the other operational requirements
software for the executive in the computer.- The subsystem
monitoring functions are cyclic tasks executed at high
priority as flight control but at a slower frequency.

Diagnostics and fault isolation routines may be executed
asynchronously as background computations. Caution and warning
displays are maintained by procedures similar to other pilot
displays and controls. Some of the general problems in these
areas are discussed below.

103

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.5.2 Subsystem Monitoring

Subsystems are defined as the operational hardware and are
catalogued functionally, i.e., flight control, inertial measure-
ment unit, etc. They are built up from line replaceable units
(LRU) . Communication is via the data management system (DMS).
The DMS inflight checkout software performs continuous or
periodic evaluation of subsystem performance (all LRUs) and
reconfiguration in event of detection and isolation of a
failure. :

Continuous evaluation is based on the basic system clock.
For example, a subsystem may require evaluation every 20 ms.
Periodic =valuation 1s based on subsystem and mission phase
requirements. For example, a subsystem may be evaluated prior
to a specific event: to assure operational readiness. Some
subsystems will be monitored continuously; others periodically.

4,5.,2.1 Data Acquisition (Input). Subsystems must be sampled
at some given rate over a given interval. These figures are
determined by the individual subsystems,and these in turn

by the mission phase. The input process is started by trans-
mitting commands to the bus control unit (BCU). These commands
are in the form of large tables which the BCU processes,
independent of the central computer. These tables inform the
BCU of the specific subsystem, type of data, address, and
location in which to store the data. The bus requests data from
the identified subsystems. The subsystems respond by trans-
mitting data to the BCU and then to memory.

Since the bus commands are issued in a serial format, the
time associated with the sampling of data from redundant sub-
systems must vary. Therefore,some form of time tagging must
be available at the subsystem level. Otherwise, it is difficult
to correlate readings from redundant subsystems and impossible
to detect small differences between large numbers.

The bus 1is byte oriented (8 bits plus parity) so the BCU
can transfer subsystem data to memory in several ways. Each byte
can be justified, left or right, in the whole word (32 bits plus
parity). Bytes can be packed four to a word from left to right
or from right to left. Within the bytes the most significant bit
can be ordered left to right or right to left. The parity
bits should be removed by the hardware or the software. Status
discretes may be "ored" into the data words so the software must
mask them out. The data formatting affects the programming for
each subsystem. One user may require unpacked data right justified
and another require packed data left justified. Another may have

104

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -« (617) 661-1840

left-justified significance in one word and right-justified in
another. Parts of one byte may have to be extracted and "ored"
with another byte.

Certain subsystems transmit coded data. An example woulad
be the keyboard associated with the CRT display. Some character
strings must be converted from ASCII code to binary and then
selectively processed for display in alpha 1lnputs. Another
example might be that system timing data exists as a four_
bit BCD code. The time codes must then be converted to binary
and then processed. Each type of conversion requires separate
software that consists of logical operations, shifting, merging,

and masking.

- If subsystems can operate in closed loop test modes, .
stimuli would have to be transmitted to test points, processed,
and returned for comparison. Subsystems may also require
calibration type tests which can be quite complicated.

Each type of conversion and test requires separate software
and logical operations to format the data for each subsystem.
4.5.3 Fault Detection

Before the redundant units are enabled on-line, the
onboard software must be aware of failures in the present

on-line units. There are several techniques that can be used
to detect errors. The following describes some of these
techniques. ‘

4,5.3.1 Status Discrete Checking. Subsystem hardware contains

built in test equipment (BITE) which provides a signal

describing the condition of the subsystem. The signal is the

result of much internal test logic and is either high or low.

The high condition could signify either good or bad. The low

condition also could signify either good or bad. The selection

is usually subsystem dependent. The program must know the good/bad

states for all the status test points for all the LRUs. Naturally,
“uniform signals from all the LRUs are easier.to process. The

program logic could then establish the rule that all status

test points in the zero or low state signify a good condition

and in the one or high state signify a bad condition.

The alternative is to construct status discrete tables which

are initialized with the proper status values and’ then exclusively

"ored" thereafter to check for changes. A change then means

the LRU is in a bad condition. :

Subsystem status discretes could be "ored" with or attached
to the operational data and save I/0 traffic on the bus. The
alternative is to request the subsystem status via separate
bus commands. If the status discrete is in the data it must
be accessed, checked and masked off. If the discrete arrives
via a separate command, the bit is simply checked. Current data
bits could be associated with subsystems, set by the
subsystem,and reset by the read command. If the bit is not
set, the data is not current or not being generated.

105
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4,5.3,2 Limit Checking. Subsystem test can be divided into two
categories, critical and non-critical. Critical test limits

can be further divided into warning and danger categories. Pre-~
determined low and high values are established for both warning
and danger limits. Non-critical test points have predetermined
low and high values. The limits types may be fixed, scheduled
or historical. The fixed limit remains unchanged unless

changed by the crew via a keyboard request. A method related

to the fixed limit is to check a test point for change from a
previous value. Test points that are staircase voltages
changing with specific events are good to evaluate with this
technique. ‘

The scheduled limit is varied as a function -of mission
conditions and phase. For example, the primary bus voltage
might be 28 + 1 volts at no load, but 26 + 1 volts at full
load. The historical limit is based on.the previous behavior
of a parameter and is used where a large variation is common
among LRUs, but where any one LRU is expected to remain stable.
Combinations of checks can be used on various test points
(scheduled and historical). An example might be fuel flow
rate, which could vary between engines at a given thrust but
also varies with thrust for a given engine. The limit checking
algorithm must keep track of all the various limits, the
type of limit check,and all the limit checked test points. It
also has problems as test points approach limits, exceed limits
and return back within limits. For example, assume a test point
gives a value of 6. The limits are set to a low limit of 1
and a high limit of 7. In this case the software does nothing.
If the next value is 7 it has reached the high limit, but still
nothing happens. The next value is 8 and the high limit is
exceeded which causes an executive request for a CRT display
of a limit excession. The LRU might be switched off-line and
a redundant LRU enabled. If the test point was critical and
the warning limits had been exceeded,it might continue to be
limit checked. As long as the value remains at 8 nothing
further happens. If the value drops to 7, a notification may
or may not be required. In fact, it may not be desirable because small
random changes in data at the limit value may cause repeated
requests to the executive for CRT display.of limit excessions,
When the value drops below the high limit (7) an executive
request should be made to display the fact that the value is
proper.

106

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.5.3.3 Comparison with Redundant Units. Data acquired from -
redundant units can be compared or processed by software-
implemented state adaptive voting. This algorithm compares bit
for bit the outputs of up to four subsystems. If the values
compare, there is no problem. If they do not compare, the soft-
‘ware must resolve the discrepancy. If three compare and one
does not, then an executive request is made to switch the

failed unit off-line. The crew is always informed via CRT
display of reconfiguration. If two compare and two do not
compare, a simultaneous double failure occurred. More information
must be acquired before the algorithm knows what to do. The
crew may be informed via an executive request for a CRT display
message. The crew then may decide what to do. Reasonableness
calculations may be performed on the data to estimate which is
the best pair. Other alternatives may be used, but . .the fact
remains the problem is difficult to solve: If after one unit
has been switched off-line and two new subsystem values compare
and the third does not, then another executive request is made
to switch the failed unit off-line. Later on, if the two
‘remaining subsystem values do not compare then the algorithm
must have more information before it knows which unit to switch
off-line. The use of software voting for error detection and
recovery in the Shuttle is a complex subject requiring further
analysis of each subsystem to determine the validity of its applica-
tion. This is beyond the scope of this study.

4.5.3.4 Reasonableness Calculations. Subsystem measurements
can be used in conjunction with a predetermined algorithm

to establish whether or not the subsystem is failing. Actually,
the equipment may not be failed, but simply out of specification,
and the reasonableness calculation may keep track of this
problem. Another program could then be scheduled to further -
analyze the eqguipment at a later time. A very detailed sub-
system analysis is required to generate the proper algorithm.
Associated with these algorithms are common calculations such

as formatting the measurements, converting them to engineering
units, and checking on the accuracy and resolution of the
measurements. Allowances must be made for data input timing
differences unless time tags are provided. Since the algorithms
are usually complicated and time consuming, the subsystem should
be able to tolerate the time laps. Subsystem software that uses
this technique would be low priority and executed at extended
time intervals. Many subsystems cannot use reasonableness
calculations for fault detection.

107

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.5.4 Reconfiguration Management

"The fault detection software triggers the reconfiguration
software. The reconfiguration software depends largely on the
design of the DMS. In the MDAC Phase B baseline system the
software modifies the I/0 tables. The modification consists
of changing all references to the failed subsystem and replaces .
them with references to the alternate subsystem.

4.5.5 Display and Controls

The onboard checkout software must keep the crew current
as to the status and configuration of the Space Shuttle. A display
of vehicle status would probably occur periodically or when the
status changed. The crew could manually make vehicle status
requests through the keyboard. Error displays for detected
faults and reconfigurations must be provided. Exrror summaries
may be provided to give the crew information about errors and
error rates. Displays may occur that require crew action
concerning critical subsystem reconfigurations. The logic
may transmit, via telemetry, to mission control or tracking
stations, all of the above mentioned display data. The software
for this task must keep vehicle process tables, generate
complicated CRT displays, process keyboard requests, and format
data for downlink transmission. This processing involves
conversions, character handing, bit manipulation and executive
requests,

4.5.6 Flight Recording. (Electromechanical Mass Storage [EMS])

Bus traffic during critical mission phases should be recorded
for historical and maintenance purposes. If failures occur, data
concerning the failure should be saved. Subsystem data can be
recorded for postflight analysis. The volume of this data can
be reduced with data compression techniques. Basically two
methods are used: one where the criterion is a limit and the
other where the criterion is a tolerance. The limit method
compares the value with -an upper and lower limit. ' If the sample
is between the limits, it is discarded. If the sample exceeds
the upper 1limit or falls below the lower limit, it is passed to
the EMS. 1In the tolerance method, the rule states that if a new
value varies by more than a predetermined amount or tolerance,
the value is discarded. The tolerance band is shifted each time
an important sample occurs. Each technique is useful for various
types of subsystems. The data may be written on the EMS until
it is full at which time it is written over by new data. This
continues throughout the mission. An alternative is to store
data at a given duty cycle.

108

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

" Chapter 5

Higher Order Programming Languages

5.1 Introduction

The use of a higher order programming language (HOL) is
currently under consideration for the development of flight
software for the Space Shuttle. Several contractors are recommend-
ing a HOL over the more typical machine language approach because
of the expected benefits of lowered software production costs, and
improved management control during long term maintenance, which
are traditional problems associated with any large aerospace
software effort. The principal criticisms of the HOL approach
that still remain based upon the inefficiencies in code generation
with its increased memory requirements, the increased execution
time introduced by the HOL compiler, and the lack of experience
in utilizing this approach in similar aerospace applications.
Although considerable interest has been demonstrated by the
Air Force and other governmental agencies in supporting the
design and development of higher order languages for programming
aerospace computers, there has been, to date, no wide spread
application of them in actual practice.

In the opinion of Intermetrics, a general purpose procedure
oriented higher order programming language should be used in the
development of flight software for the Space Shuttle. It will
be a significant step toward a more orderly and controlled
software production effort, toward a useful analytical tool for
the designer, and toward a convenient straightforward technique
for the programmer. Furthermore, it will be an essential
ingredient in the effective production of highly reliable flight
software, used extensively as part of the top down structuring
process described in Chapter 2.

109

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The areospace software industry as well as other governmental
agencies are devoting a great deal of attention to the development
of common higher order programming languages for use in such
applications. In the 1973 to 1980 time frame of the Spaceé Shuttle,
programming languages will most likely become commonplace for
use for aerospace computers of that generation just as they are
with the large third generation ground based computer systems
of today. Consequently, they should be included in the planning’
of a major space project of the 70's such as the Shuttle.

Intermetrics recognizes that a HOL approach may not be
applicable or cost effectively applied to all aerospace computer
systems, particularly small dedicated systems. However,
the size and complexity of the Space Shuttle software posed
in Phase B design appears to be of sufficient magnitude to
effectively apply the use of a HOL

The objective of this task, as part of the overall study,
was to determine the role that higher level compiler languages
should have in programming the flight computer on the Space
Shuttle. This chapter discusses those features of the language
compiler which will aid in structuring and verifying software.
Those areas traditionally difficult to code in a HOL, such as
system programming,are discussed, as well as the role and inter-
action of other special languages, e.g., the crew language and
checkout language.

5.2 "Languages" on the Space Shuttle

A distinction must be made between the classes of "languages"
used on the Shuttle. For purposes of this report, only those
languages utilized within the onboard data management computer
system are considered. There are, of course, others which will
be used in conjunction with other facilities involved with the
Space Shuttle; e.g., those for test and ground checkout operations,
simulation facilities, and other computer operations. An aim
of this study was to distinguish between those languages used
to control and operate the computer system onboard the vehicle,
and those used to develop the software for the onboard computer
system. Both are referred to as "languages" but will be dis-
tinguished as the crew languages and the software development
language.

5.2.1 Role of the Crew Language
Pilots or other crew members will require a language
to communicate with the computer system. They must be able

to insert information, control the flow of processing, and
receive information from the computer. -This language will be

110

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

referred to as the crew language (CL). The CL will depend to

a great extent on the capabilities of the display and control-
software system. A CRT type display system with an alphanumeric
keyboard input is most likely for the Shuttle avionics system.
The syntactic structure of the CL can range from simple numeric
function control, as was used in Apollo, to English language
statement. commands entered through the alpha keyboard. Alpha-
numeric and graphical outputs will be used for communication
from the computer to the crew. : ’

The Apollo Guidance Computer display and control system
transmitted commands and requests with a limited vocabulary
of 99 nouns and 99 verbs. To command the computer the astro-
naut depressed the verb (operator) key followed by two decimal
digits, and then the noun (operand) key also followed by two
decimal digits. Then when the function key was depressed, the
computer began to take action on the request. For example,
verb 16 noun 20 meant display and monitor spacecraft attitude.
Verb 16 meant "display and monitor" (continuously update), and
noun 20 identified what to display:; in this case, spacecraft
attitude. Moreover, major mission programs were selected
by Verb 37 with a program number identified by the noun.

This type of crew language has a disadvantage in that the
operator must learn the coded list of nouns and verbs and the
operational procedures associated with using them. However,
once learned, it is very efficient. A crew language similar to
the Apollo type, has been recommended within the MDAC Phase B
baseline system.

The use of English language commands for a CL entered
through a keyboard could be employed within the Shuttle. This
type of language would consist of a finite set of keywords
and elements defined with syntactic properties which would be
entered by the crew. They would be decoded and translated
by display and control software in the flight computer. For
example, an on-line control language is defined as part of the
breadboard fault tolerant data management system at NASA,
Houston., It is used in conjunction with a checkout and data
management language and allows the systems operator to exercise
manual control over the system while it is operating. It
includes English language text entered through a keyboard
which enables it to initiate, control and display information
while the software is executing. Typical commands are
DISPLAY, LOAD and CALL.

Other general purpose languages of this type have been
designed for the control and operation of software: a) executive
job control languages such as the 0S 360 operator language
and CRBE; b) information retrieval languages such as ADAM and

111

AESOP; and c¢) test editing languages such as DATATEXT. Aithough

these languages have been tailored for specific needs they

contain some basic features needed in a CL such as the ability
to retrieve and manipulate data and displays. These languages

are of course more flexible, but they are slower to use, and

rapid crew interaction with the computer during critical flight .

phases is needed.

5.2.2 Crew Language Requirements

A summary .of requirements for a command language for

the Space Shuttle is presented below. It is not meant to be

exhaustive. The ultimate structure capabilities in the on-line

command language will be a significant factor in the design
of the total system and is only presented here to indicate
the type of capabilities that are expected.

For purposes of the Space Shuttle avionics system, pilot
commands should be entered from a display and control device,

and then decoded and executed on-line. The language should

not be compiled by the computer system but rather interpreted

as on-line commands before the appropriate action is taken.

When the English language statements or numeric coded functions
are used, the language should provide the following functional

capabilities. It must provide the crew with capability to:

a) select and control software functions for all phases
of the m155lon,

b) control and configure avionics equipment;

c) request display of pertinent mission andotrajectory
information;

d) enter data pertinent to the mission programs;
e) control system priorities and options;

f) initiate and control checkout of subsystems.

5.2.3 Role of the Software Development Language

As previously stated, it is recommended that a general
purpose, procedure oriented,higher order programming language
be used in developing the flight computer software. The role

of this language will be primarily for the preparation of
code for all software in the flight computer. It is also
expected that the language can be used for developing other
related non-flight software, particularly in the areas of

112

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

{617) 661-1840

mission planning and design analysis. This fact will facilitate
standardization and communication among organizations working
on the project.

Associated with the HOL will be a compiler with a machine
independent syntax analyzer and machine dependent code generators
for several computers, including the flight computer, development
computer and others as applicable. The requirements from such a
programming language have been derived and are documented in
Reference 1. The language should be capable of supporting the
programming of all Shuttle software applications: navigation,
guidance, control, data management, onboard checkout and systems
monitoring, communications, displays and controls.

5.3 Justification for Using a'Higher Order Programming Language

In the past, manned space flight computers have been
special purpose machines performing tasks, principally for
guidance and control. The computer was provided with a
restricted instruction set, small working memories, no secondary
storage capability, and established interfaces to a limited
number of output devices. For the most part, programming
was accomplished in basic machine language.

°

The architecture of aerospace computers is now maturing
to a close functional similarity to ground based computers.
General registers, modular word lengths, and larger memories
are already in evidence. Years of initial programming and

- making programming changes are becoming more important as
these computers assume multipurpose use. The use of higher
order programming languages which had practically no utilization
in the aerospace community in the past, can now be reasonably
considered. The lowering of costs associated with
memory and hardware in the aerospace computers has changed
tradeoff factors. In addition, the increased computational
tasks required in the manned space environment have required
use of larger, more general purpose computer systems and
corresponding software to support them.

Flight computer software developments will certainly
continue to suffer schedule pressures. In spite of careful
planning, the software effort will often be disrupted by
additional requirements to perform functions that were inade-
quately specified at the outset.

Programming languages have been effectively used in large

scale ground based military systems., There are a number of
standard arguments in favor of using a higher order language
approach.

113

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

a) Ease of communication with the proqfam

1) The program becomes self-documenting, and therefore
reduces the cost of and need for separate documentation
at different levels of management (e.g., mission
definition, analysis, program specification).

2) In any large project, the problems of maintainability
are aggravated by the inevitable turnover of personnel.
Not only must different people be able to maintain
the program, but they must also be able to easily
modify, add, and redesign sections of the software.

b) The HOL is chosen because it is oriented to the problem
being solved and uses languages more natural to the '
programmer. The concise formulation of the problem is
therefore enabled. This leads to:

1) fewer errors due to conceptﬁal difficulties and
different ways of stating a problem;

2) shortened program design and development time.

¢c) The programmers need be less concerned with the following
traditional machine features and problems:

l) scaling and precision problems,
2) Dbase register allocations,

3) general register considerations, -

4) initialization problems, particularly in loops,
5) data protection.

d) The HOL allows program transferability from one machine to
another. It eases debugging and reduces checkout problems
“due to problem oriented modularity and separation from
hardware.

e) Carey -and Sturm [2] present some interesting facts concerning
the costs of existing space software and the projected cost
savings of a compiler for aerospace programming. In particular
they are concerned with the compiler. The following '
information is extracted from the above reference to
indicate the software cost for aerospace missions.

1) The cost of software for manned space missions is two
to four times the hardware cost.

114

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2) The Apollo Saturn V's Instrument Unit software was
produced at a rate of 2.5 instructions per man-day.

3) As much as 1-2 months was needed to make a 500-1000
instruction change in the Titan III computer.

4) Software checkout is very expensive and not perfect.
A single error in a 2000 instruction space program
might require 50-100 validation runs on a simulated
ground-based machine. Extrapolation to a 25,000
instruction program indicates 1000 to 1200 runs.

5) Typically 100 instructions in new unvalidated machine
code written by a senior programmer may contain 3-8
errors. Carey and Sturm estimate up to 70% of these
errors can be avoided by the use of a compiler.

6) By hand, machine code typically is produced at a rate
of 270-350 instructions per man-month. With a compiler,
500-540 instructions pexr man-month are possible.

7) Writing a JOVIAL compiler for an IBM 4 Pi computer o
would cost between $300,000 and $500,000.

5.3.1 Higher Order Programming Language Experience

In the past several years there has been an effort to
develop higher order procedure oriented programming languages
for use in spaceborne software development efforts. Among those
specifically aimed at spaceborne programming are SPL (Space
Programming Language) developed by the Air Force under the
sponsorship of the Space and Missile Systems Organization
(SAMSO) ; CLASP (Computer Language for Aeronautics and Space
Programming) developed under contract to NASA Electronics
Research Center, Cambridge, and the HAL language developed
under contract to NASA MSC, Houston.

Other military agencies have similar efforts to develop
such programming languages. The Army has funded a survey to
determine the most appropriate procedure oriented language
for its TAC-FIRE system and selected a subset of PL/1 designated
as TACPOL for the job. The Navy utilizes a programming
language termed CMS/2 for the development of software for
shipboard and airborne applications. In addition, the Navy
is pursuing development of an advanced programming language
based on CMS/2 for the advanced avionics digital computer
system. This language, designated CMS/3, will be a problem
oriented languade which will express avionic missions and
requirements in terms which are pertinent to a commanding officer.

115

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

CLASP and SPL MK2 are primarily'directed at small fixed
point aerospace computers. Heavy emphasis is placed on .code
optimization, scaling operations, and limited data manlpulatlon.
SPL, MK4 and HAL encompass more general purpose features
applicable to the wide variety of aerospace programmlng tasks.
The characteristic features of eight programming languages
have been tabulated and presented in Volume III of this final
report. These languages include PL/1l, HAL, SPL, CLASP,

JOVIAL, FORTRAN, ALGOL, and MAC.

5.4 Single Compiler Approach

It is the thesis of this section that a single compiler
be used for generating code for the flight computer. The
basic concept is that to assist in the approach to verification
described in Chapter 2, all code generated for the flight
computer -should be subjected to standardized automatic checking
within the compiler. The system specification, design,
documentation, and verification are all built around the
unified idea: the HOL. Furthermore, the Phase B centralized
approach with a single computer having integrated software does
not readily lend itself to multiple compilers generating code
without requiring linking of code.

It is reasonable to assume that the statements provided
within applicable programming languages do provide most of
the capabilities necessary for the Shuttle application. If
however, a separate special purpose language is necessary,
the proposed solution is to express source language statements
in the general purpose higher order language. For example,
a checkout language becomes a special application which
is "grafted" onto the general language at.a higher level.
It appears as a collection of procedures and subroutines to
the compiler.

This approach however, does not necessarily bar the use
of other languages. Rather, it forces others to link at either
a high level, by producing outputs which are the source languages
for general purpose programming languages, or at a low level,
by accepting the standardized operating procedures and con-
ventions established for the general purpose programming
language. Moreover, it recognizes that there may be a need
for programs to be prepared using statements tailored to a
specific application. At a high level such applications are
subsystem checkout or hardware interfacing; -at a low level,
systems programming. However, each set of statements is
directed into the single compiler system to facilitate standardiza-
tion and commonality of checks which are performed on the

116

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

software during compilation. This standardization, not unlike
that experienced by other industries, will help to produce
a higher quality, more reliable software product.

Other options are also available to extend the general
purpose programming language to meet these needs. For example,
through macros the language can be extended to incorporate
special features for certain problem applications.

5.4.1 Systems Programming

Generally there is a small section of the coding which
is difficult to accomplish in the higher order language. This
involves machine dependent coding, such as I/0, address
constants, machine registers. Usually, the basic machine-
language is used for these functions, but more recently
system implementation languages have come into usage. The
justification for the special treatment is

a) the néed for efficiency,

b) the need to get at special registers, I/0 channels,
and absolute memory .locations.

While the efficiency question is often nothing but a hollow
fear, there is no doubt that at some point the coding must

come to grips with the actual machine that it will run on.
However, the number of places in the Shuttle program where

an I/0 channel needs to be directly addressed is certainly mini-
mal. I/O requests should generally be funnelled through well-
defined localized areas in controlled subroutines. In any

case, the need to do system programming and machine dependent
operations 1s recognized.

On the other hand, the need for a system language could
be minimized or totally eliminated if the computer were designed
to go with the language and to execute its constructs directly
and efficiently. It is then unnecessary to operate in a "lower
level" language since there are no machine dependent features
outside the scope of the language. Additionally, all application
programs written in the higher language are executed far more
efficiently both in terms of the speed and especially the
core.size they require. Burroughs has been structuring its
computers to higher order languages for many years. When
a machine is constructed in this fashion, it is easy to efficiently
accomplish system programming tasks. Burroughs writes its
operating system (ESP), its scheduler, and all its compilers

117

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

in extended ALGOL, the language its computer is designed around.
In fact, the computer does not have an assembly language. Since
the computer is designed around a higher order language, there
are no addressable special registers to be dealt with by the
programmers. There are -special registers, of course, but they
are automatically updated by the hardware using higher order
'language instructions. In addition, the computer is stack
oriented, which makes it easier for a higher order language
compiler to generate efficiently executed code for it.

5.4.1.1 Approach to Systems Programming. If a currently
off-the-shelf computer is selected for the initial Shuttle
application, then some degree of machine dependent coding

will be required. There are two ways that this might be
accomplished. The first approach is to extend the sccpe of

the higher order language to include more low level features: :
even though they might be machine specific. . However, the ultimate
in direct, hands-on, programmer control is the capability to

switch from compiler code into direct or in-line machine

language. There are several drawbacks te this approach.

1) This kind of capability jeopardizes program integrity.
Once address constants, pointers, and register manipulations
are available to the programmer, the possibilities for
creating errors is significant. The entire structure
that was so carefully contrived within the compiler to
ensure program standardization and reliability can easily
be circumvented.. The introduction of such hazardous
programming practices can ‘hardly enhance program rellablllty.

2) Readability and understandability goals can be jeopardized
when obscure machine dependent code appears with the listing.
In-line basic assembly languadge code is particularly un-
fathomable and obfuscates the meaning of entire sections.
These are fundamental reasons for using higher order
languages.

3) Neither of the above two drawbacks would be of so much
concern if their use could be confined to areas where it
was essential. However, even if sensible groundrules .
for their use and control were established, it is a virtual
certainty that nearly every programmer will advance per-
suasive arguments as to why his task is special and needs
to use machine language coding to produce highly tuned
efficient code.

Another approach is to keep all low level language
capability, such as options for direct machine code, out of

the general purpose language. When the need arises for a task
or procedure to be programmed that cannot be accomplished in

118

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

the regular language, it is assigned to a special implementation
group that programs it in another language, usually the assembly
language for the specific flight comptuer. These experts tailor
the code so that it is compatible with the higher order language
environment that exists in the running computer, and conforms

to the accepted standards and conventions, while meeting its
functional specifications. Thus, the usage of this powerful

but hazardous capability is isolated and controlled. Applications
programmers must either accomplish coding in the higher order
language, or else it is developed by a special group after
interfaces and specifications have been negotiated and defined. -
This seems superficially to be attractive but has two drawbacks,
besides the obvious one of dependence on "experts".

1) It isolates the low level activity to machine language
subroutines which are not readily visible or easily
understood even when located.

2) It is still quite possible for the programmer to engage
in a great deal of "trickery". He can, for example, call
an assembly language subroutine that returns a variable
purported to be an integer but which is actually a memory
address value computed in the subroutine. It is then
arithmetically manipulated and used as an index in fetching
other data. The achieved effect is a program that super-
ficially accomplishes one thing, but when examined closely,
is doing something entirely different. This sort of
"trickery" is commonplace in Fortran usage of assembly
language coding.

The proposed solution is basically to define a selected
subset of the programming language with added features to
improve its deficiencies. The proposal is that there be established
a special language to accomplish low level and machine dependent
tasks. But rather than use the completely separate assembly
language, it is proposed that this low level language be
incorporated and integrated into the main language compiler
as a restricted subset of the language. That is, those given
access rights to the "lower level" language can use the special
statements and data types, and also freely intermix these with
the higher level language statements. All are compiled together
so that standard interfacing and data type checking is performed
by the compiler. This effectively prohibits the "trickery" of
(2) above. In addition, it is possible to intermingle both
types of language statement when it is natural to do so. This
removes the restriction of the forced and sometimes artificial
dichotomy objected to in (1l).

This approach should yield a program listing that is more
readable and understandable even when computer specific. Appli-

‘cations programmers are in general, prohibited by the compiler
from using these low level,relatively unsafe statements. Their

119

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS !NCORPORATED + 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 -

use is granted to a select few who have the authority of the
project manager. For the purpose of ease in use, it is
recommended that these lower level language routines be available
not only as callable procedures and subroutines but also as
in-line parameterized macros, or the equivalent. This provides

a convenient method for using commonly required low level
functions in a carefully controlled manner.

The. intent of this somewhat cumbersome and laborious
process should be "made perfectly clear" It is not the intent
to put obstacles in the paths of appllcatlons programmers or
to thwart their efforts to get the job done. It is proposed
only as an additional technique to assist in the production
and maintenance of quality flight software of high integrity
and high reliability. This goal is accomplished by insisting
on conformance to a highly structured and controlled environment.
These constraints are not meant to hamper the programming
effort but to place sensible limitations and bounds so that
- the overall result is of uniform high quallty.

5.5 Advantages of the HOL and Compiler to Software Modularity

A factor in recommending a HOL and compiler for Shuttle
software development is its direct application to the "top down"
. structuring processes discussed in Chapter 2. The benefits
derived from modularizing the static software structure and
the automatic checking features offered by the compiler will
be a significant contribution to high quality software. This
section discusses some of the advantages which result from
using the HOL and compiler.

5.5.1 Apollo Experience

In a sense, the primary Apollo computational facility
was concentrated in a "centralized data management system" -
the Apollo Guidance Computer (AGC). This single computer
was responsible for guidance (i.e., steering), automatic
control, navigation, I/0O processing (e.g., radar, IMU, optics,
engines, keyboard, etc.), hardware compensation (e.g., for
gyro and accelerometer inaccuracies), and a set of miscellaneous
tasks including self~check, system test (onboard and pre-flight),
crew communications, status monitoring, and up- and down-link
telemetry. The Shuttle data management system will have to
include all these functions while expanding the self-check,
test, and system monitoring capabilities. It must also have
the logic necessary to monitor and control the onboard environ-
mental system and to reconfigure any or all of the subsystems
based on the FO-FO-FS criterion.

120

(617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 »

5.5.2 Software Modularity

The Shuttle data management tasks promise to be. more
extensive and complex than that of Apollo. In addition, the
reconfiguration logic associated with FO-FO-FS reliability
presents software challenges not prev10usly encountered. In
order to accommodate all programs in a single conputer, or
substantial portions in distributed computers, it is imperative
that systems be introduced which effectively isolate programs
from one another except at controlled and visible interfaces.
This isolation should prevent the unrestricted access of
common data and the arbitrary transfer of control to any locatlon
in the instruction logic. :

Software techniques now exist which allow many programs,
designed to do various related and unrelated functions, to be
written and incorporated in a single computer without conflict.
The apprehension that the Shuttle DMS might be a bigger and
more complicated Apollo-type effort with even more erasable
conflicts and control interferences is relieved by the intro-
duction of effective software modularity through language
and compiler. The following features have been incorporated
in the HAL compiler and provide significant capabilities
toward handling a large, complex, cooperative programming
effort. ‘

5.5.2.1 Independent Compilation and the Compool. Figure 5-1
1llustrates a suggested program organization. The individual
numbered programs represent independently compilable units.
Thus, for example, Program #1 might be rendezvous navigation,
Program #2 - autopilots, Program #3 - environmental system
monitoring. Independent .compilation permits divergent groups
to contribute to the whole and yet progress at varied paces
with measures of local management control.

The communication between programs is provided through
a common data pool (compool). The compool is a centrally
defined and centrally maintained group of definitions.
Variable names and location labels in the compoool are
potentially known to all programs and, in fact, provide the
only means of communication between programs.

The Shuttle's many tasks can be apportioned into programs
which are managerially or functionally convenient. Information
interfaces among programs then become visible at the compool
level and can be monitored with respect to definition and
usage by a central authority.

121

(617) 661-1840

uoTaezTURHIO weiboxd T-§ 9INBTI

\ .. | 73 14
wesbold | - . weabold | we.ib0.1d
Aielgi
91{0qUIAS
|ood o)

pi2Q

122

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

Note that, except for the necessity of communication among
programs, the complete separation (or isolation) of programs
within a single computer is commonplace today in a time-sharing
environment. That is, to each programmer the machine appears
to be a dedicated fac111ty,and the probability of his confllctlng
with another user is remote.

5.5.2.2 Blocks Structure (Name Scope). Figure 5-2 defines the
nested structure of name scope. For the purposes here, tasks,
procedures, and functions may be considered as subroutines '
(or blocks). Thus, names defined in the compool are potentially
known in every program. Names defined at the program-level are
potentially known within all included (or nested) subroutines,
and so on. The region in which a name is known because any
particular name can be declared again in an inner block and
then its scope would become all the nested blocks within this
block. An example may help to illustrate these principles

(see Figure 5-3).

Two desirable effects of the scope rules are:

1) common data must be delcared at the highest level and only
once. This contributes to more direct management control
and better visibility.

2) Local variables may be defined within inner blocks and
remain unaffected by outside definitions. For example,
a programmer declaring X in procedureé CHARLIE (Figure 5-3)
need not fear that any other program will overwrite his
guantity. That is, this particular X is not addressable
from outside this block. In fact, the X in GRAB (Figure 5~3)
must refer to different memory cells.

For the Shuttle application, a name scope or block-oriented
language means that many programs and subsections of programs
(i.e., subroutines) can "live" in the same computer, isolated,
and unaware of each other. They are incapable of writing-over
or otherwise interfering with variables or locations that are
not mutually defined.

5.5.2.3 Control of Shared Data. The erasable memory conflict,
along with restart and scaling problems, provided most of the
Apollo software anomalies. To illustrate the problems, in a
general way, that can arise because of sharing data, consider
the examples shown in Figure 5-4.

123

(617) 661-1840

ssweN Jo =2doos

z-G 2anbtda

"S3{CEIIBA pIUlED 3 mwm_o& AloAllo8He SU20[g Jaulll "3301g

'//M_ e ‘-\
@
% o
3 .
)
a
(9
(@]
Nan
el

L.
s..
"
f:
w
.
g

et
[

=2

)
—
@

uuy e U] DsUjaDn saur

[ehY

LAY

(~}

124

() x0303A ® ST X

(§) sSa030®a BIR DGV ¢

IeIeds ® ST X
buTtilis 3Tq e MOU ST Y
(g) saozodea 2xe D'g

569 uqﬂ uge mou ST V¥
2I» DO‘g

(G) sxo1d9a 8Xe Dg'VY —

{gI9Y aNd

// A /// . u /m/wa ,Qﬁﬁm
// A AN N N /,// //r
/// //./ AN 1 /,
N : ,,, A,, . .
/ y . —. \
A2, moaom>,x FIVIDEA-
// N .umaaquomm 1 gy
N N S aENvd ., NI
~ \,,\m ,w.tommﬁl\ N N
) N : ,.(,-. L ; TAVH «r.w. // .
AN a
K //. \x &/., . —“ \\
A S N .
,./ \ B 1 .‘\/ . N
JoT) Hm ¥ EIVIDEQL
- SN P et giel: (el IRN B
\ YA ¥mEnaEoo¥d | SHITIVHD
T § .. //g
h ,.// AN .
. h ot) t f/.
¢ — "\ PIESEINI Y VIO
AN " iysv 1 amIVe
’ t
{
]
2+ d=¥
— D'a’Y (g) YOLDTA TYVIDIEA

THYID0dd

adoosg

aweN 3o o1duexd

£~G 2anbtyg

1}

125

PRORLEM IS THE CONFLICT OVER UTILIZATION
OF COMMON DATA ELEMENTS BY EXECUTING TASKS.

EriPie oo RESD AND WRITE CONFLICTS

A TASK:) " B: TASK
= fe By RO i xy

= + o 4 = A ;
CLOSE A; CLOSE B

o

EXAMPLE 2. UPDBATE CONFLICTS

A: TASK; - B: TASK;
CONTROL | - |

Y=Y-X A Y=Y -7
CLOSE A; CLOSE B;

NOTES .
L B "INTERRUFTS" A IN BOTH CASES -

2. #1 TASK,A RESUMES USING OLD AND-NEW VALUES
FOR N

3. 42 TASK A RESUMES "CLOBBERING'" THE VALUE FOR
Y SET BY TASK B.

Figure 5-4 Background'in Problems of Controlled .
Shared Data

126

- In both examples TASK B interrupts TASK A during the
execution of a statement. The interruption may be caused
by a hardware or software interrupt or by a "job swap" based
on priority. In either case, the interruption of TASK A
causes a conflict in common data usage.

The approach taken, in HAL, towards solving these problems
is to confine the read and write accesses of shared variables
to identified update blocks. The compiler assigns a locking
control variable to each shared variable. The value of "lock"
is examined at run-time and only consistent (i.e., safe)
accesses are permitted (see Figure 5-~5). Volume II of this-
report presents a more detailed explanation of update blocks.

The use of an update block is not a simple solution to
the data sharing problem and presumes a sophisticated compiler;
and yet the goal is worth the effort. The problem of sharing
common data in a real-time flight environment always exists.
The Apollo "solution" was to attempt to arrange memory so that
conflicts did not occur. This proved to be a time-consuming
process, at best, requiring extensive verification with
inconclusive results.

For the Shuttle, data sharing will be a necessity regardless
of which avionics configuration is selected. A unified approach
through a compiler, as outlined above, will permit safe
operation in multiprogram and even multiprocessor environments.

5.5.2.4 Access Rights. The sharing of compool variables

among several programs may be restricted and controlled by the
issuance of access rights. These rights are attached to the

data declarations within the compool. Each program is identified
by number and permitted to access only those variables which
have been declared with corresponding identification numbers.

An illegal reference to a compool variable will prevent success-
ful compilation of the program. For example, on the Shuttle
access rights might be employed to allow only those programs
comprising guidance and control to address compool variables
associated with main and reaction control jet engine performance.

5.5.2.5 Automatic Checking. Besides being expressive and
enforcing programmer conventions, additional major advantages

of a compiler language are the ability to perform extensive
checking at compile time and the opportunity to structure and
modularize programs. Compile time checking can verify that
subroutines are called with proper data; that dimensions (i.e.,
the units) of variables and constants are consistent; and

that array variables (vectors, matrices, etc.) are not referenced
out of range. 1In addition, the compiler can perform other

static cross-checks on the intent of the programmer.

127

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

S30TTJUOD ©B3IRJ PTIOAY O3 ooTd o3epdn FO osn

(11VLS 111 @ NS

G3iqiOAV
«.:

c~¢ =2anbtd

ST LJ31T4NOD TVILNGLCd
G3XMo07-4V3d

T1111S S|

N’

F1aVIdYA 41 N 40 41v ddn S,_.m.q Hoz T1IM € NI 35010 ¢

S3714YIY¥YA .0IM001- w MM TTY 40 30V W
AdOO ¥V ONY ,Q3M0DT-3L18 M, 38 0l N $350¥D g NI lvadn ¢
:03%007-0¥34, 28 OL N SISAVO V NI ILYedn I
'NIHL 3T9VINVA QIIVHS ¥ 2 YN31SIQ SI N 41
‘% 350710 Y 35070
35070 350710
A X =N P @.m.znz
3190dnN = Ci31vadn
INSYL g NSVl Y

128

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

5.5.3 Additional Advantages of the HOL Approach

5.5.3.1 Management. The technical management of the software
for the Space Shuttle faces problems . of visibility and control.
Design changes, short production times, and pressing operational
schedules would demand flexibility in software design and
organization. Clearly, an overall management and control plan
is required which will define the procedures for developing
software design reguirements, interface specifications, documenta-
tion requirements, testing requirements, change procedures

and organizational responsibility. Presumably, a higher order
language should provide features which support the software
production environment in general. It would be self- -documenting
to a maximum extent, provide ease in program modification, and
provide mechanisms for enforcement of management rules and
programmer conventions.

5.5.3.2 An Improvement in Communications. In this context
communications are meant to include requirements, specifications,
descriptions, all forms of documentation, methods of configuration
and change control, management visibility and technical exchanges
(written and oral) that must occur among engineers, analysts

and programmers., Traditionally, the engineer designs and expresses
his algorithms using conventional mathematics, or perhaps
Fortran—~like statements, and the programmer translates these

into his language, usually a basic assembly language appropriate
to the particular computer. The programmer must then explain

his efforts by using other media, e.g., detailed functional
charts, user-guides, or other apparently helpful devices.
Unfortunately, in many projects the coding language has isolated
the programmers from everyone else associated with the effort.

The programmer becomes too busy to learn the physics and
objectives of the mission and is too busy to explain to others

how the code works. He, therefore, is forced to assume an in-
creasing share of the total responsibility. Small indispensable
groups of experts direct and shape the code and become the
overworked authorltles

‘ A properly designed higher order language could be a useful
analytical tool for the designer and a convenient, straight-
forward technique for the programmer. The specific format of
the language should promote the ability to read, write, and
understand the language quickly and easily, and to document
results in a clear and unambiguous manner.

129

(617) 661-1840

5.5.3.3 Prevention of Errors by Readability of Code. A higher
order language can be instrumental in preventing errors. The
truth of this assertion can be seen simply by comparing the
probability of error when using assembler versus compiler coding
techniques. A programmer using a higher order compiler language
can express his problem in a problem-oriented manner. For
example:

indicates that the product of the matrix M and the vector V be.
assigned to the vector W. The programmer does not have to
express how he wants the machine to handle his statement; e.g.,
where the variables are in memory, what base or index registers
to use, what basic machine instructions to employ, or how to .
set up, and call an assembly language subroutine. The single
statement above will generate many assembly language instructions
automatically. If these had to be hand-coded, the probability
of programmer error would greatly increase. It also is an aid
to visual inspection or "eyeballing" of the code for correctness
as pointed out in Chapter 2. The HOL enforces standard code

and discourages a "handcrafting" that invariably leads to

subtle errors.

5.5.4 Summary

In considering methods of implementing Shuttle software,
hardware and software techniques are available to insure
program modularity. For a centralized avionics configuration,
this means that effective isolation can be insured among programs
performing different functions, and that the interferences
and potential memory conflicts of Apollo need not occur. For
a decentralized system, the enforced hardware separation of the
several functional computers adds a measure of safety in that,
assuredly, a program operating in one cannot cause a memory
conflict with a program operating in another. However, even
in this case, the computational load in a single computer,

e.g., guidance and control, can be sizable (perhaps 40% of the
total) and modular programming techniques and aids should

be utilized. Once these techniques and aids have been provided,
it makes little difference from a programming point of view,
whether the total software is centralized or decentralized.

130

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

5.6 Checkout Languages

Several higher level languages have recently been developed
for purposes of system checkout. Examples of these are GOAL
and ATLAS. These languages have, however, been primarily
directed at integrated ground checkout and subsystem test
operations.

It is reasonable to assume that checkout software for
the flight computer can be developed using the general purpose
HOL. It can be operated and controlled interactively by the
crew using the crew language as any other flight software.

The crew language may require a special subset to accommodate
all memory options and control functions required to perform
checkout and maintenance. The capability to select diagnostic
and subsystem checkout programs and to control their options
must be provided.

The software environment of the Shuttle is one in which
software will be assembled and loaded prior to the flight.
No on-line compiling of software and program generation is
assumed. Accordingly checkout software must be constructed
to allow modes or crew options for accommodating the variety
of fault isolation and diagnostic requests.

: In the event that the general purpose HOL cannot be
extended to satisfy the needs of this type of software,

it is recommended that the single compiler approach be used
as discussed in Section 5.4. _

5.7 HOL Compiler Implementation

5.7.1 Compiler Problem

The chief complaint about higher order languages has
been that HOL compilers are inefficient generators of machine
language code, in terms of both quantity of code and in
execution time. Secondary factors are 1) that compiler
design 1s a very significant effort if it has to bé considered
-in line with the operational software task, and 2) that the
indirect and unclear relationship between a program written
in the HOL and the resulting machine code impedes the correction
of program errors discovered at the machine language level.
The reason for the compiled code's stigma of inefficiency is
that compiler systems have not evolved with the conservation

131

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

of machine resources as a primary design criterion, but have

.~ concentrated on isolating the programmer from having to worry
about the machine characteristics. Since it is difficult,
perhaps even impossible, to serve both the programmer and the
machine interfaces equally well within the mechanism of a
single translation, the tendency has always been to incur
object code inefficiencies rather than decrease the programming
effectiveness.

It should be noted however, that with the continual
decrease in hardware costs, and corresponding increases in
cost for software, the conservation of memory may no longer
be the prime objection to a HOL and compiler. Certainly,
if the software is sized with higher order language considerations
initially and a secondary memory system is used for loading
mission phase programs to lessen the impact of operating
memory size as recommended in Chapter 4, the software cost
savings of the HOL approach may well exceed the.increased
hardware costs.

' The penalty of an increased memory capacity, however,
will always be considered when the use of a HOL is contemplated.
A competently written compiler can be almost as efficient as
an average programmer. The MIT experience with PL/1 on
MULTICS has demonstrated this. But compared to the highly
efficient machine code customarily produced (at considerable
cost) for military aerospace computers, a compiler may be
less economical.

Since compiler efficiency is still an important considera-
tion, the purpose of this section is to describe some possible
approaches to improve compiler efficiency. Higher order
language machines, interpreters, use of microprogramming,
and high speed memories are all approaches that aid in achieving
more efficient code generation if it is required.

5.7.2 Approaches to Efficient Code Generation

An approach that circumvents the drawbacks of compilers,
is the construction of special higher order language machines
that decode and execute the HOL operations directly within
the logic of the hardware. Although a number of these has
been reported in the literature [3,4,5,6] it is not a widely
applied principle. ‘

There is another approach that appears to solve a number
of the previously identified problems and whose drawbacks show
promise of being eventually diminished by current trends in
computer hardware design. It involves the establishment of
the program in a coded form intermediate between the HOL and

132

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

machine language. The translation from the HOL to the inter-
mediate form is accomplished off-line in an operation that can
be made much simpler, faster, and cheaper than the traditional
compilation of machine code from the HOL. The translation of
the intermediate form into machine operations is done at
.execution time in an "interpretive fashion". This concept
appears to offer the following benefits.

l) For a given application the computer memory requirements
can be made less by up to a factor of two compared with
the direct translation compiler approach.

‘2) It allows the choice of HOL to be uncoupled to a great
extent from the problem of satisfying the machine
characteristics, and it is unaffected by consideration
of machine to machine transferability.

3) The intermediate form of code provides a very convenient,
' visible "stepping stone" between the machine and the
HOL, which would greatly assist the problems of debugging.

4) Current trends of computer design offer the possibilities
of (a) higher performance using this approach than can be
obtained by hand-crafted assembly language programming,
and (b) a reduction in the amount of machine-dependent
coding that is required whenever a new computer is being
considered.

5.7.2.1 The Concept of an Intermediate Language. It is
feasible to formulate a medium which lies intermediate between
the problem and the machine, which enables a concise enough
description of the problem's characteristics, and yet
accommodates sufficiently to the limited word format and
instruction repertoire of the computer. Such a medium would
possess a high information content and would be storable in
the computer's memory. The basic concept, however, is the
translation of the operational program (expressed in a
language highly appropriate to the problem it seeks to solve),
into a compact intermediate form (or language) which, when
stored in the computer memory, maximizes the density of the
-information.

For the condensed information of the intermediate language
to perform any operation, its basic instructions must be decoded
and executed by some mechanism within the computer. This process
involves a number of logical operations which will consume
a certain amount of time. For an individual instruction, it
need not be changed (unless, of course, the instruction is
modified).

133

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

5.7.2.2 Characteristics of Compact Form. The structure and
notation of the compact form of the program must be defined
in a formal code or language. A basic set of more elementary
instructions can always be derived to mechanize all the basic
HOL statements [3]. The proposed intermediate language (IML)
will be based on this set of elementary instructions. The
processing of the HOL into the IML becomes a more direct,
less complicated, faster operation than compilation into
machine code. This is attributable in part to the fact that
a good deal of the decoding task is done at execution time,
relieving the translator of some of the burden. Furthermore,
since the translation is less difficult, it becomes natural
to contemplate fairly sophisticated and universal HOLs like
HAL, SPL, or PL/1 for the application programming.

5.7.3 Implementation Factors

An important constraint on the design of the IML is
the method of decoding and execution by the machine. The
more concise and compacted the language, the higher becomes
the potential economy in memory. However, the full impact
of its advantages will be realized when the current trends
in microprogramming achieve operational status. The IML
design must remain cognizant of this trend. Experience with
and acceptance of the language today will then constitute
a firm foundation which will provide continuity into future
programming.

5.7.3.1 Software Interpreter. The majority of today's
aerospace computers possess a fixed internal logic which
defines their basic operating modes. The IML program would
exist in memory in encoded form produced by the machine

section of the HOL-to-IML translator. The decoding and
execution of the individual instructions of the IML program
must be performed by the standard instruction set of the
computer under the direction of an interpreting routine written
in the assembly language of the machine. Instruction by
instruction software interpreters have been used in aerospace
applications for the purpose of storage efficiency [7 1,

but they are more usually employed in commercial applications
where their ability to decode and execute individual statements
can be used to advantage in on-line programming and debugging.

The usual complaint against a software interpreter,
which is well earned, is that because it repetitively performs
the redundant operations of decoding and dispatching for each
statement,it is considerably slower than the object code of
a compiler, which is analyzed and translated prior to execution.

134

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

However, the example of interpretive programming in the case
of the Apollo Guidance Computer demonstrates that the penalty
is quite acceptable. An equivalent instruction, for example
a double precision add, was 20-30 times slower in the inter-
pretive mode than in the machine language. Although the
computer with its 12 ps cycle time was ten times slower than
a typical small machine of today, interpretive routines were
used to implement guidance and control loops with periods of
less than 1 second. The use of the interpreter enabled 50% -
more interpretive programs to be accommodated in the memory
than if a pure assembly language approach had been taken.

With the higher performance computers available today,
it should be possible to do at least as well; and with a
more sophisticated interpretive language than was used for
Apollo, a much higher ratio of IML to assembly language
programming should be achievable. With this level of
performance less than half as much memory is needed. to contain
a HOL program translated into the interpretively executed
IML than one in machine code generated by a regular 25%
inefficient compiler. The cost savings come with all the
advantages of comprehensive HOL programming.

5.7.3.2 Hardware Implementation and Use of Microprogramming.
The use of special logic circuitry within a computer to assist
the interpretation of a higher order problem-oriented language

has been reported in the literature, Some of these
attempts have mechanized subsets of Fortran directly with
specially designed logical hardware [3,5]. Other more

promising approaches have applied the concepts of microprogramming.
A very relevant example is reported by Webster [4], in which '

a machine independent interpretive language is decoded by
microprogramming on a modified IBM 360/30. The original
programming 1is done in a higher order language, and a relatively
short compiler generates an "intermediate text" or middle

language for storage in the machine. The string language
interpreter reduces storage, and the microprogramming feature
allows special instructions which actually improve the run

time over standard assembly language techniques.

It is true that microprogramming brings with it its own
problems of language and design. However, a microprogram
instruction is generally more powerful than a basic machine
instruction. The microprogrammer 1s given greater scope to
optimize the sequence of operations required to decode and
execute an IML statement. Once it is set up, the microprogram
storage resides in a read-only memory, which is generally
capable of higher speeds than main read-write memory. We do

135

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

not suggest that the technique of microprogramming is without
characteristic problems of its own, but for the short fixed
logical sequences associated with decoding a set of IML -
instructions, it offers a higher efficiency than the software
approach and is far more flexible than advanced logic. The
application of microprogramming is discussed in Chapter 6.

5.7.3.3 An Interesting Example. Although the following
description of an aerospace programming application is not an
example of HOL usage, 1its significance lies in its conscious
attempt to economize on memory requirements. Since this is

the central objective of the concept described in this section,
and because of the relationship of the techniques, the appli-
cation will be briefly considered here.

The example in question is the software interpreter [7]
used in the Apollo command and lunar module computers: the CMC
and LGC. The computer is a 36,000 word 1lé6-bit machine with a
12 microsecond memory cycle time. The requirements placed upon
the onboard computer grew with the develdpment of the total
program., For the lunar landing mission, Apollo 11, each computer
had less than a hundred or so unused memory registers. The
coded interpreter implemented 127 double precision arithmetic,
vector and matrix algebraic operations, and many trigonometric
functions. Yet it took less than 1600 16-bit registers of
computer memory. The command module program used approximately
16,000 interpretive instruction registers.

If this effort had been done in basic assembly language
it may be presumed that instead of all in-line coding, a
number of subroutines would have been written to conserve
storage. Some 75% of the interpreter would have to remain

as basic language subroutines, i.e., 1200 words. This repre-
sents a saving of 400 words. Of the 16,000 words about one-
half are instructions and one-half are addresses. The assembly

language approach would retain the addresses and would require,
on the average, about two instructions for every one inter-
pretive instruction. The net result is that without an inter-
preter the Apollo computer would have required approximately
8,000 additional words of memory to accomplish the job. This
represents a saving of 33% over efficient assembly code.

S 136 ¢

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

References for Chapter 5

1. Requirements Analysis for a Manned Spacecraft Programming
Language and Compiller, MSC 01845, April 1970, prepared
by Intermetrics, Inc. ‘

2. Carey, L. and Sturn, A.A., "Space Software: At the
Crossroads", Space/Aeronautics, December 1968.

3. Kerner, H., and Gellman, L., "Memory Reduction Through
Higher Level Language Hardware", AIAA Paper No. 69-693,
Aerospace Computer Systems Conference, Los Angeles,
California, September 8-10, 1969.

4. Weber, H., "A Microprogrammed Implementation of EULER
~on the IBM System 360 Model 30", Comm, ACM, Vol. 10,
No. 9, September 1967, pp. 549-58.

5. Baskow, T.XK., Sasson, A., and Kronfeld, A., “System
Design of a FORTRAN Machine", IEEE Trans. Elec. Comp.,
Vol. EC-16, No. 4, August 1967, pp. 485-99.

6. Melbourne, A.H., and Pugmire, J.M., "A Small Computer
for the Direct Processing of FORTRAN Statements",
Computer Journal, Vol. 8, No. 1, April 1965, pp. 24-27.

7. Muntz, C., "Users Guide to the Block II AGC/LGC Inter-
preter", R-489, MIT Draper Laboratory, Cambridge, Mass.,
April 1965. :

8. Bostrom, F.D}, Higher Order Language Study for Avionics
Programming, TR AFAL-TR-71-154, June 1971, IBM, Owego,
New York.

9. Graham, R.M., "Use of High Level Languages for Systems
Programming", MIT Project MAC Tech. Memo 13, September
1970.

10. Corbator, F.J., "Sensitive Issue. in the Design of
Multi-Use Systems", MIT Project MAC Memo M383, December
1968.

11. Corbato, F.J., "PL/1l As a Tool for System Programming",
MIT Project MAC Memo M378, July 1968.

12. Hess and Martin, "TACPOL - A Tactical @ C&C Subset of
PL/1", Datamation, Vol. 16, No. 4, April 1970, pp. 151-157.

137

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

13. Hopkins, Martin, "SABRE PL/1", Datamation, Vol. 14,
No. 12, December 1968, pp. 35-48.

14. Preliminary Functional Design of the SPLM as Developed
and Procured by the Air Force, Attachment 2, RFQ F04
701-71-Q-0145.

138

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Chapter 6

Flight Computer Features

6.1 Introduction

‘The architectural features of the flight computer selected
for the Shuttle will be of signficant influence on the software.
Historically, inadequate computer hardware has increased the
scope and cost of software; it inevitably must be implemented
to accomplish mission requirements. Computer systems for air-
borne applications have been tailored for the requirements of
a particular mission application. Typically, mission require-
ments are underestimated and result in inadequate computer
speed, memory size, and instruction set capability.

More recently, there has been an increase in the role
and functions performed by spaceborne computers, particularly in
manned space applications as the Shuttle. As a result of and
due to advances in hardware technology, manufacturers have
introduced more general purpose aerospace computers which
include features contained within most third generation con-
ventional ground based computers, such as: general registers,
more comprehensive instruction sets,and indirect addressing.
However, several features desirable to software are not
readily available, e.g., floating point, microprogramming,
and hardware stacks. Although aerospace software
emphasizes high reliability and is characterized by the signifi-
cant costs for software verification "(perhaps an order of
magnitude greater than commercial software), few if any computer
hardware features have been provided to assist in software
production.

139

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

DX

INTERMETRICS INCORPCGRATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -

6.2 Scope and Objective

The primary objective of this task was to identify those
computer hardware features which are desirable from a "software
viewpoint". While it is recognized that these features have
tradeoffs associated with hardware complexity and costs, as
well as general availability within the aerospace computer market,
this chapter identifies those architectural features considered
desirable and effective in produCLng high quality software for
the Space Shuttle.

Furthermore, it is not meant to imply that these features
are "hard requirements", mandatory for the Shuttle flight
computer. It is agreed the Space Shuttle software may be accom-
plished within the capabilities of an "off the shelf" aerospace-
computer. However, the impact of the costs on software over
the life of the Shuttle can be significant. Accordingly, features
are identified which, based on past experience, can help lower
software costs. In addition, the presumed use of a higher
order programming language and compiler in developing software
has been an important aspect of identifying "desirable features".

The chapter first presents a review of the flight computer
current generation, followed by a section discussing advanced
features such as higher order language processing, stacks,
microprogramming and run time diagnostics. An additional section
on general computer features discusses addressing, subroutine
linkage, floating point and short form instructions.

A method of using "benchmark" programs is discussed in

a subsequent section as-a criteria for measuxing performance
of candidate systems.

6.3 Background to Computer Features

6.3.1 Flight Computer Generation

Denning [1], has reported computlng "generations with
approx1mate dates of:

a) Pirst - 1940—1950,
b) Second - 1950-1964,
¢) Third - 1964-present, and

d) Late Third - 1968-present.

140

(617) 661-1840

The principal properties of the generations are listed in
Figure 6-1 which apply not only to hardware technology but

to the total hardware/software system. By examination of
Figure 6~1 it appears that the technology of current aerospace
computers is predominantly third generation with the exception
of floating point hardware, and that too, is beginning to make
an appearance. In quest for absolute minimal cost, floating
point hardware was always classified as a luxury and not a
necessity. It shares that characteristic with the mini-
computer market where floating point is just beginning to
appear on the scene, ,

As discussed in Chapter 5, lack of higher order language
capability for aerospace computers has always been a question
of efficiency. However, current language developments seem
to indicate that this too is about to change. The flight
software environment however, has been reasonably sophisticated
because of the real time aspects of the application. Multi-
programming, data sharing and locking, task synchronization
and error recovery have been commonplace. Support software
for aerospace computers has also been extensive. High-fidelity,
bit-by-bit computers and environmental simulators and high
guality debugging and verification tools, such as traces,
dumps, diagnostics, edits, rollbacks, and performance measure-
ment programs have been used in the development of the aerospace
software.

In summary, at the current state of the art of computer
design, flight computers and minicomputers ‘resemble each other
markedly. Both tend to be short word length, limited instruction
repert01re and restricted memory size machines. The reason
for this in the case of the minicomputer is apparent. The
manufacturers are attempting to produce extremely low cost
items. However, on a cost scale, flight computers reside at
the opposite end of the spectrum. They tend to be extremely
expensive. The reason for the stinginess of the flight
computer design -and features has been based upon size, weight,
power limitations, and stringent reliability requirements.

At least, these have been the traditional reasons given. With
the advent of LSI technology and the so-called computer-on-a-chip,
it is anticipated that the capabilities of flight computers

will expand enormously. Planned flight computer developments,
e.g., the Navy AADC work, will produce airborne computers that
rival the largest commercial computers in their computational
power.

141

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

uoT3o930xd pue HuTaeys ‘swolsis butuwexb
—oxd ‘sxo03Tp® 3IXS3UO0D ‘Hurbed pue uoTIRIUDU
-pos ‘Xrowsw TenlITA pPue 2I03S TIAST-3UO
‘BUTHUTIT PUB UOTJIEDOTSI ‘UOCTILDOITR 90IN0OSaIx
oTj3rwolne ‘sud3SAS STTJ T[eI3jusd ‘ssadoe
930wWex pue burieys-swil ‘bHutuwerboadTriITnu
pue Hurssa0orTIITNU :snfd ‘puUocOSS Se swes

SST3TTTOR]

0/1I esodiand
~Tetoads !‘sxojTuou
yoleq ‘sSSTARIAATIT
auTI3lnoaqns

2UoU

S90TAZDS I9Y3l0
pue 21IemM3IO0g

jusudtnbs Q/I

*10x13uod adikjeaep ‘burturiodrd pue peIYRHOOT . osodand-TeToads

uoT3ionxzsutr ‘wstrolTeard JO sSsn poseaIOUT ‘butuweaboadoxotu
‘swelsAs 3dnIasjul pazTlerasuab ‘siempary ‘s913TTTOo®RI 3dnx saAaT3TWTId
uoTjlesoT9x pue Huibed ‘oberols ATuo-pesa -I923Uul ‘OTIswWylTIR pue S90TAIDS
pue butuweaboxdoroTw :snTd ‘puocoes se sues 3uTOod-dUT3eOT] S3Tun OT32wWylTae. saempiey
wexboad

(swexboad

TRUOT3IBSIDAUOD purR

STY butuuna pue
butbbngsp ut
o3edroTyaed O3

PITY] SB SWes 2AT3IORI®IUT) s84k ou (uo-spuey) so&k Iosn jo AJTTIAY
. butumeib
~01d 3UuS2IINDUO0D UOTS

pue sobenbuet -INno9x ‘ssuT3inox soT3TTTIgqRded
o2TgTsua3xa snyd s2aIN1oNI1sS B'lRD -gns ‘sabenburT BpoO OTTOqUAS pue sobenbuet
‘pITY3 ST Swes snTd’puocoes se sues 12497 Ubty pue 8poo Aarulg butuexboxg
9I0D Ssew pue spaed xaded ,
2100 popuailxe sutd ‘sumip ‘S3STp sSouTIl AeISp Axousu
PITY] S® SwWes ‘puooes Se Swes ‘o5dey oT3oubeur spaeo ‘odex xaded AaeTTT¥ny

oosrt T°0 o9sn 0°*I-1°0 oosn QT-T oosu T sSs900®/oUT

(oyoeD) saoixsThbsax eTpaw OT3subew 9100 OT3dUbePW pue SDuUTT ARIop pue
I030NPpUOOTUSS JI9U30 puer 2100 dDIjsubeuw unip oT3oubewl sSagnly OTIRJISOAJOSTS sjusuodwuo)

tAZowsw UTeR

PITY3} se ouwes oes™ 0°1-1°0 oost o1-T1 ossw Q°"I-T°0 uoT3eI=ado/SWIL
PITY3 se swes S3TNOITO pojeabajurt SIO3STIsuRI} sagny wnnoea s3usucduo)
_ :SOTUOILDDTH
pITyy °3®eI PITUL puooss 3SIT4
SUOTI3RIDUDD PTISTISIORIBYD

sxo3ndwo) IC SUOIIRIDUSDD ©Y3 JO SOTI3ISTIdYORIRYD JO AJeuwmsS ¥V T-9 oInbtd

142
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

6.3.2 Aerospace Software Characteristics

The programming of the manned spacecraft computer generally
parallels development of a commercial program. However, it
differs in two important aspects.

a) It can never be checked out "in situ". For example, it
was impossible to fly Apollo missions for the purpose
of checking out Apollo software. When a mission came, the
software had to be checked out and ready to go. This
demanded that all programs be tested in a simulated
environment; the success of the flight software depended,
in no small measure, upon the fidelity of the simulation
facility and models. The utter dependence upon simulation-
is the first distinguishing characteristic of space software.

b) The extreme emphasis on high reliability software, the
astronomical cost, not to mention the national prestige
that is on the line when a manned space mission is under-
taken, demands the flight programs be as close to 100%
perfect as possible. Traditionally this has entailed
a lengthy, costly, and highly controlled verification
process. This requirement for highest quality is the
second distiguishing feature.

Accordingly, subsequent sections discuss those computer features
which' should aid in the production of this type of software.

6.4 Advanced Computer Features

First, it must be re-emphasized that this feature summary
is seen from a software point of view. It is recognized that
there are other viewpoints and considerations, but the tradeoffs
are not included here. The features that are recorded here
are motivated by experience in the process of development
and qualification of flight software.

In order to establish the motives for this section it
is necessary to make assumptions about the operational environ-
ment of the Shuttle. First, the use of the Space Shuttle will
‘'stretch out over a long period ©f time,and it will most likely
encounter a number of changes of dlrectlon and emphasis.
Second, the flight qualification process for software is and
will continue to be an expensive process and may exceed its
associated hardware in total cost over the operational lifespan
of the Shuttle. Third, most, if not all, of the programming
of the flight computers will most hopefully be accomplished with
a higher order programming language primarily because of the
necessity of higher reliability, easier maintainability and

143

(617) 661-1840

‘and . lower cost software. Finally, newer advanced software
techniques must be employed to enhance.reliability and.cut
costs. :

Accordingly, this section has been included to identify
more advanced features of the computer which are not generally
available in "off the shelf" aerospace computers that are
considered desirable for Shuttle software. They include higher
order language machines, stacks, microprogramming and hardware
diagnostics. The material presented in this section has been

partially derived from an Intermetrics report [2].

6.4.1 Higher Order Language Processing

The flight computer selected for the Shuttle should
possess the capability to execute efficiently in a higher order
language environment. It must easily accommodate particular
characteristics of the higher order language. Ideally, it
could be designed for the assumed higher order language (i.e.,
a higher order language machine).

Computational inefficiencies occur whenever a compiler
is requireéd to translate the statement of the problem into
machine instructions due to the mismatch between the computer
architecture and the HOL architecture. The design of a machine
which matches the language will not only eliminate the processing
inefficiencies and improve performance over a conventionally
structured computer, but it will also reduce memory requirements
because a HOL statement is more semantically concise and
economic of space. A number of designs have been proposed
and implemented. Examples of this include the guidance computer
for SAMSO by Cirad, the Burroughs D machine, several APL
machines, and the Burroughs 6500, an ALGOL machine. The D machine*
is appropriate to the Shuttle type application. This is bound
to be extremely important on the Shuttle because of memory
restrictions.

6.4.1.1 Advantages of Higher Order Language Processing. The
following is a summary of major advantages of using direct
execution of a HOL.

a) Cirad has reported [3] that their SPL machine has yielded
an overall reduction of 60% in the memory requirements -
over a traditional single-address architecture for
implementing the same set of guidance equations and

* Appendix F provides a description of the Burroughs D Machine.

144

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

functions. The memory efficiency is reported to be "due
to the use of a polish stack with implied addressing,

the use of floating point, the number representation used,
. direct fetch of literals from instructions, built-in array
operations and use of one of two byte instructions without
word boundary restrictions".

b) Kerner and Gellman [4] have designed a machine which directly
executes Fortran statements. Programs written in this
language and executed on their machine occupied 75% less
memory. This conclusion was reached by comparing the
machine code generated by the Fortran compiler for the
IBM 7094 with the numbers of words required to represent
the instructions for the HOLM. The 4:1 compression of
memory space for program storage was the result.

c) ~Sugimoto [5] has studied the direct execution of the PL/1
language. He has actually implemented the PL/1 reducer
and has some experimental results. For typical scientific
programs, the length of the object code has been reduced
by 25% compared to the object code generated by presently
available PL/1 compilers. He also found a speed gain of
28% for arithmetic string operations.

d) Higher order languade examples have demonstrated that a
traditional machine architecture, viz. the IBM 360, uses
at least twice as much memory as a specially designed
computer, the Burroughs 6500.

There should be a master plan for computer architecture
that recognizes the almost total use of a higher order language
and blends the ingredients to produce a harmonious design that
executes efficiently. Undoubtedly, the key component. would
be a stack oriented machine with short instructions. Hardware
can be efflclently designed to lnterpret the HOL operators
and execute "sequential execution form" directly through
utilization of a push down list (PDL) or stack mechanism. The
parsing would be an off-line operation Whlch is performed
only once.

. It is interesting to observe that although the issue

has been raised many times concerning the extra memory used by

a hlgher order language on a conventional machine architecture,

it is generally unappreciated that a sizable memory reduction

can be accrued through the use of the higher order language computer.

145

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

6.4.2 Stacks

In computer terminology a stack is a list of items

whose contents may be changed only by a "last-in-first-out"
(LIFO) algorithm. A "push down" list is employed in which only
the top entry is visible, and the only operations defined are
"push" and "pop", which enter and remove entries from the list.
The stack has been exploited as a structural element in the
"design of actual machines, notably by Burroughs [6], and in
theoretical studies [5,6,71. The dynamic behavior of stacks
is well suited to the mechanization of recursive procedures
involved in several processing activities, such as:

a) the management of "nested" subroutines, or procedures.
This commonly occuring program phenomenon involves the
tracking of calling and return addresses, the declaration,
allocation and protection of variables, and the allocation
of physical memory space. :

b) The efficient execution of arithmetic statements.

Processing system designs that have made extensive use of
stacks have demonstrated additional advantages in the dynamic
allocation of memory space, the protection of program and data,
the handling of interrupts, and the provision of a dynamic history
of the process.

The result of each expression remains on top of the stack.
The intermediate results are automatically allocated and
deallocated at execution time, rather than statically at
compilation or assembly time. The requirément for separate
load and store instructions is much diminished, since these
operations are implicit in the mechanism of the stack. The
contents of the stack are an indication of the history of the
process.

The value of a stack mechanism in computer design has been
recognized by hardware implementations in a number of computer
designs. ‘

6.4.3 Microprogramming

Because it is neither hardware nor software, micropro-
gramming has been termed "firmware". It offers a systematic
method to combine the basic elements of a computer at a level
lower than the instruction set in order to tailor its functions
to the intended usage. The original intent of microprogramming
was to introduce a systematic alternative to the usual and somewhat

146

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

"ad ‘hoc" procedure of designing digital computers.

The computer is .composed of a memory for\program and data,
a memory address register (MAR), memory buffer register (MBR),
operating registers such as index registers, accumulators,
program counter, an arithmetic and logical unit, an
I/0 unit, and an instruction register which drives the control
unit. Computer instructions are executed by a series of
register transfers, arithmetic or logical operations, and
conditional decisions. The details of these sequential operations
are implemented by the control unit.

The potential of microprogramming -for the future, especially
when the control store in which the microprogramming resides is
writable as well as readable, lies in its flexibility. Rather
than selecting an available hard logic computer, the opportunity
exists to select a microprogrammed computer or a soft machine.

6.4.3.1 Advantages of Microprogramming. " The advantages of such
"softness" are listed below. ‘

a) An instruction set can be optimized to accompany a particular
higher order language. It can execute the language directly
or perhaps a compiled intermediate language, extracting an
even greater savings of required memory. The execution of
the language statements will be faster and the amount of
operating memory will be less. Kerner and Gellman [4]
designed a machine which directly executes Fortran statements.
As previously stated, programs executed on this
machine occupied 75% less memory than the equivalent
compiled program on an IBM 7090 computer. Since micro-
programming can be used effectively in executing higher
order language sequences, a significant cost saving can be-
achieved.

b) Both language specifications and implementation techniques
may be modified throughout the developmental and operational
cycle. The instruction set may be altered and augmented
during the life of the Shuttle program to improve the capability
of the language or to add wholly new features not originally
known to be needed. Only modification to the microprogram and
compiler would be required, not hardware redesign or re-
qualification. This would be of immense importance on
a program that is expected to have such a long operational
period as envisioned for the Shuttle.

147

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

c) Specialized spacecraft functions can be absorbed into the
microprogram. The tremendous speed advantage of micro-
programmed operations because of inherent parallelism and
the lack of dependency on slow speed memory make it an
ideal candidate to implement highly repetitive spacecraft
functions such as data bus servicing. Various Shuttle
estimates show this one function taking up to 35% of the
expected computer usage; withmicroprogramming this time could
be cut significantly. ’

d) By microprogram changes,the same physical computer can be
modified to efficiently accomplish different spacecraft
tasks. Thus, if a functionally distributed computer system
were planned for the Shuttle, it could be implemented using
identical computers with different instruction repertoire.
The potential of this approach is intriguing - in the event
of failure it would only be necessary to load the micro-
program control store on an available computér with the
microprogrammed instruction set of the one to be replaced.

e) The argument that microprogramming creates a slower system
can be challenged. It is true that the sequencing of micro-
memory requires time that is not consumed in a conventional
control unit. However, microinstruction look ahead can
somewhat alleviate this problem. Even if simple instructions,
like load and store, require a few hundred nanoseconds more,
the overall execution of functional programs can be much
faster. Patzer [8] compares the execution of an often used
subroutine in micromemory with conventional programming.

His example involved extracting the square root. The
improvement was a factor of 9.8 for a 16 bit result and
4.75 for a 32 bit result.

6.4.3.2 Summary. In summary microprogramming could be
valuable to the Shuttle software effort. In the last five
years it has gained general acceptance and some manufacturers
of commercial computers have employed it in both the CPU and
I/0 controller. Included among aerospace computers which have
utilized a form of microprogramming are the Raytheon 251, Burroughs
D Machine, Poseidon computer, SIRU computer, and RCA 215.

The gain in flexibility is the strongest attribute of micro-
programming. The possible performance gain by utilizing micro-
routines with the subsequent savings in main memory is also a
major consideration. The drastic reduction in the cost of
logic, especially high speed integrated memory elements, makes
the approach very feasible.

148

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.4.4 Descriptors

A descriptor is a method of describing the characteristics
of an item of data.. The data can be a variable, a procedure,
a control word, etc. The descriptor contains information as
. to type, attributes, size, location, etc. Its actual size and
format depend on the particular mechanization. In practical
terms the use of descriptors enables the computer to aid in
achieving more reliable software by a551stlng in error detection
through the following:

a) an automatic identification by the machine, at execution time
of the type and cheracteristics of the data (i.e., dynamic
data declaration). It includes a direct check on the match
between operator and operand (e.g., whether the object of
a double precision multiply has indeed been declared as
such). Another example is that of array manipulation
by indexing, where it is important to. ensure that the
index does not exceed the array length.

b) A descriptor offers a compact substitute for all operations
other than evaluation. 1In effect it becomes a "pointer"
to the actual data.

c) A descriptor can keep track of miscellaneous information,
such as:

1) whether the referenced data is in main memory or
out on secondary storage, :

2) whether the data is to be treated as "read-only" by
a particular process, '

3) whether the current descriptor is the "main" descriptor,
or whether it is a modification or copy, etc.

Practical applications of descriptors have taken advantage
of one or more of these properties. The SPL machine of reference
[6] keeps the descriptor with the data and places a pointer
to the descriptor in the control stack. The descriptor specifies
rank and dimensions, and in addition contains initialization
.data. It is naturally treated as a special declaration instruction
to establish a specific value for the data item.

149

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.4.5 Run Time Diagnostic Aids

Because it is possible that a certain amount of execution
and debugging will be accomplished on the actual computer rather
than in a 100% simulator environment, it is submitted that a
number of run time diagnostic features are appropriate. They
could be implemented in hardware as part of a special "test
mode" of the computer to be used during ground testing. This
would enhance the probable use of the flight computer during
software testing phases; it can also be useful for actual
hardware in the avionics integration facility.

These diagnostics should be included within the hardware -
above and beyond the normal maskable run time error conditions,
such as: fixed point overflow, floating point overflow and
underflow, and addressing exceptions. These error interrupts
are usually available for possible programmer recovery.

The additional run time diagnostic aids provide capability
not necessary in the normal course of execution. They are
normally included in the diagnostics package of a simulator.
A hardware implementation could include:

a) Trace trapping. It should be possible to designate a few
bits in the program status word that will generate interrupts
for trace purposes. These bits can specify what instructions
or group of instructions should be traced. Possible states
of the bits might cause the following:

1) a trace of all instructions;
2) a trace of all instructions not in the interrupt mode;

3) only subroutine call and return and branch instructions
‘ to be traced;

4) no instructions traced.

This or a similar mechanism offer a great deal of debugging
power at low cost.

b) "Coroner capability". A circular buffer or limited length
stack i1s maintained with the address of the last n instructions
that have been executed. Another approach just as useful
and not requiring as big a buffer, is a list of the last

- n locations branched either to or from. The detail imple-
‘mentation of the diagnostics is subject to future refinement.
A history of the past activity should be maintained for
a possible postmortem analysis by the programmer in
case of an occurrence of an error in operations. The
name "coroner" pertains to the ability to search for the
trouble after a run dies.

150

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

c) A "derail" or breakpoint location. . The concept is to enable
the hardware to trap the use of a specific location in memory
as either instruction or data. A suggested method is to
have several pairs of dedicated locations that may be used
to store the address of memory at which it is desired to trap.
One would catch instructions by comparing the value in ‘
that location with the instruction fetch location. The other
performs similarly by a comparison with the addresses used
in data fetches. Furthermore, the latter should be able
to distinguish between data fetches and data stores, and
select one or both to signal the interrupt. A possible
refinement would compare the value after the address matched
and only intérrupt on value disagreement. This selective
trapping or "derailment" technique is quite useful in pin-
pointing the error source when searching out the cause
of anomalous behavior. ‘ :

d) Stack overflow and underflow. In a stack oriented machine
1t becomes important to catch erroneous manipulations of
the stack. A common cause of stack disorganization is the
omission of operand fetches so that operators eventually
run out of data or the omission of operators causing an
excess accumulation of data in the stack. This could be
a diagnostic trap or a hardware error condition.

These features can all too easily be dismissed out of
hand on the grounds that they are too costly in terms of machine
logic and/or time. However, if the manufacturers of the PDP-11
can include some of these, e€e.d.,the trace-trap and stack
overflow interrupts, into a computer aimed at an extremely
cost conscious and competitive market place, then at least these
deserve a fair trial. 1If the impact of some of these items
were given a thorough evaluation, it is felt that their merits
may warrant their inclusion.

151

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

6.5 General Computer Features

This section 4ncludes a description of hardware features:
generally available within most aerospace computers. Since.
addressing capabilities and subroutine linkage are of prime
importance to software,these features are discussed in detail
with a summary of the types which are best from a software view-
point for the shuttle. Other features discussed are floating
point, unimplemented operators, memory speed hierarchy, and short
form instructions. .

6.5.1 Addressing

6.5.1.1 Background to Addressing Schemes. The most important
characteristic of the architecture of the computer from a soft-
ware point of view is the addressing schemes. If binary op-
erators (plus, minus, and, or, etc.) are postulated then four
additional pieces of 1nformatlon are necessary besides the op-
erator itself. They are:

1) the address of the left hand operand,

2) the address of the right hand operand,
3) the destination address - where to put the results, and
4) the address of the next instruction to be executed.

Although all this information must be available, it is
unusual to have it stated expressly. Consequently, it is a
waste of space to carry bits in the instruction stream to
specify a quantity whose value can be inferred. For example,

the address of the next instruction can be left out. Several
addressing schemes will now be defined.

a) Three-Address Machine. If the remaining three are
specified, the result is what is referred to as a
“three-address machine." A number of these have

been built; a notable example is the Honeywell
800/1800 series. The three-address machine also
tends to be wasteful of space since seldom in
practice does a sequence of instructions occur com-
bining two independent quantities and placing the
result in a third. Thus, it is advantageous to im-
ply one or more of the remaining addresses.

152

. (617) 661-1840

b) Two-Address Machine. For business computers, "two-
address machines" are typical; the IBM 1401 series is
a prime example. In this case, the result location ‘
coincided with one of the operand locations. Thus, it
is possible to add two numbers together, say A and B,
and put the result back in A. This is extremely use-
ful for data movement and editing, especially for
whole blocks of data characteristic of business data
processing.

c) Single Address and "One and A Half" Addressing.
Scientific computers initially were "single address
machines",particularly in the second generation in-
cluding the IBM 7090 series and the Control Data 3000
series. A single address machine architecture utilizes
an accumulator which is implied as the source of one of
the operands as well as the destination location. It
is useful in scientific type calculations (e.g.,
A+B+C+D+E....), and is very efficient when a new gquan-

_tity is chained to the result of the previous calcu-
lations. However, single addressing is less advantageous
when the form of the calculations are of a more general
tree structure form, (e.g., A*B+C*D+E/F)}. In these
cases, storage of intermediate results into temporaries -
is necessitated. Thus, multiple accumulators were
designed for third generation computers. For purposes of
this report these are termed "1.5 address machines."
Actually they are two address machines where one of the
addresses is specified' in small numbers of bits (i.e.

3 or 4). It selects one of.8 or 16 accumulators or
special registers as' the source of one of the operands
as well as the result destination. -In theory this
offers far greater flexibility in the allowable se-
guence of calculations at a small cost. Examples of
computers using this type of addressing include the
IBM 360, the Univac 1108, and the PDP-10.

d) Zero Address Machine. A different approach to addressing
has been utilized by several manufactures and termed
"zero address" or stack machine. ' In this concept, op-
erators (i.e., instructions) appear by themselves with
no operands specified. The operands associated with
the operator are always assumed to be on the top of the
stack. Additional instructions are available for loading
the stack from memory and restoring from the stack to -
memory.

A stack is a dynamic realization of special registers of
a general register machine, whereas general registers
in the "2 address" are static in nature (i.e. their

153

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

nunber is fixed). Unless a global strategy can be de-
fined for general register usage, then program branches
are laden with register saves and restores, since no
knowledge of their current usage is available. On the
other hand, intermediate results in the stack are merely
pushed down when a branch to new computations is taken.
'They are automatically re-available ("pushed up") when the
return is made, provided the stack order has been pre-
served. ‘

The zero address machine provides the most efficient
access method for specifying algorithms since very little
space is used. Only the operators and the fetch-store
addresses need to be given. Computational flexibility is
achieved by the logical sequence of the operators and the
fetch-stores. It also has the additional advantage that
arithmetic expression evaluation and compiler parsing
have been developed using a stack effectively. The dis-
advantage of a stack machine is based on limitations of
current memory technology. Hardware stack registers are
small in number and as the stack overflows, stack memories
have to be simulated by random access primary memory.

From an addressing point of view, all the Shuttle candi-
date computers are quite similar. Most are general register,
1.5 address machines (exceptions include the Autonetics D216,
and the SKC-2000 which are single address machines). They
tend to have many useful short forms of instructions, generally
the register-to~register format in which both addresses are
abbreviated.

6.5.1.2 Direct Addressing. In a direct addressing method, the
address field must contain enough bits to define the required
address, (i.e. 15 bits for 32K addresses). A common defect
found in second generation commercial computers was a limited
addressing capability. A common size of the address portion

of instructions was 15 bits. This limits direct addressing to
32K words. 1Index registers, since they were viewed as true
index registers and not base registers, seldom allowed more
than 15 bits of information and sometimes less. This effective-
ly limited the memory size of the machine. As hardware became.
available, attempts were made to modify the machine addressing
architecture to accommodate large memory sizes, but the mech-
anisms were invariably complex and tricky. One approach was the
bank register. Machine designers were confronted with "grafting-
on" an extended addressing capability without sacrificing com-

patibility with existing computers and programs. The following
are examples. '

154

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

a) = Apollo Guidance Computer Addressing. Airborne computer
addressing was approached similarly. The Apollo Guidance
Computer (AGC) was conceived initially as a 4,000 word
computer. Its design initially contained 12 bits for
direct addressing, allowing direct access to all of the
memory. Through redesign, the memory size grew to 38,000
words and yet the fundamental addressing structure did not
change from 12 bits. Even through indexing it was not
possible to enlarge the addressing space to greater than
12 bits. The result was that the AGC remained virtually
a 4,000 word computer that had 38,000 words of memory
physically attached. This feat was only accomplished
through a skillful display of juggling and balancing. It
required the setting and maintenance of an F~bank register,
fixed-bank, an E-bank register, erasable bank, and a B-bank
register, a both bank. The process did not culminate
until it reached a level picturesquely titled, "Super Bank".
The addressability difficulty the AGC had was a serious
problem and a keen rival of erasable. shortage in nuisance
‘value. . :

b) IBM 360 Addressing. The IBM 360 recognized the limitations
imposed by absolute addressing restrictions and permitted
addresses to go up to 24 bits or 16 million bytes of
storage. This has proven to be ample, however, the 360
introduced a whole new set of addressability problems. The
fundamental reason was a short displacement address field
12 bits out of 32, which limits direct addresses to 4,000
bytes. With no alternate longer form and no absolute or
indirect addressing capability the 360 programmer faces
addressing difficulties. In many cases, the only solution
is with frequent loading and reloading of data addresses
into registers. One recent study concluded that the
average data address on the 360 took over 5 bytes of
instruction length when the otherwise useless register loads
of addresses were also counted. This compares to 20 bits
(2 1/2 bytes) of raw address in the unaugmented instruction.
It is not uncommon for 360 programmers to relate their
vexing experiences to addressing problems.

'6.5.1.3 Indirect Addressing. Indirect addressing has proved
itself invaluable on many varieties of computers, both
large and small. It is virtually indispensible in the mini-
computer business where memory size is at a premium, and
there seems little doubt that it would produce memory savings
on flight computers. Moreover, it 1s a technique with wide-
spread applicability. Whenever data is dynamically allocated

155

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

and manipulated, it is necessary to access it through pointers,
descriptors, or indirect addresses. In addition, when the ad-
dress field of an instruction is short, indirect addressing
performs another function - it broadens the address scope. _
Almost every modern computer offers some form of indirect ad-
dressing. The IBM 360 family is a notable exception to the
rule. Much of the thrashing around the 360 does in loading
registers could be avoided if it had an indirect addressing
capability.

6.5.1.4 Indexing and Base Registers. Indexing involves the
selection from an ordered set. It is a keystone to the théory
of computing as well as a practical necessity present in one
form or another in every computer. Unfortunately, it is difficult
to distinguish from base registers in the manner in which they are .
implemented on a number of computers. This difficulty poses some
problems since they are fundamentally quite different concepts
and occasionally must be accorded different treatment. A

case in point: when indexing, it is advantageous to have the
computer automatically multiply the index value by the number of
memory quanta (bytes or words) that comprise the type of element
that is being indexed, e.g., double precision quantities often
take two words. For a word-oriented machine the index should be
multiplied by two before adding to the base address. Since the
360 uses byte addressing, the index should be multiplied by

four before adding to the base for accessing full words.

On the other hand, this automatic index alignment is never
appropriate for base registers. The base registers are marked
in memory where data begins and as such are absolute addresses.
If a clear distinction between these two attributes is made

and followed through in the machine architecture, much con-
fusion can be avoided. '

6.5.2 Static Versus Dynamic Addressing

The choice of static or dynamic addressing depends on
the operating environment and requirements of the software
system. Statically addressed computers are usually distinguished
by relatively long fields in their instructions to enable
direct addressing most of memory. Dynamic addressing computers
are characterized by a shorter address field which is used for
relative addressing or a displacement off of a base register.
The base register serves as a marker in memory of the bench
mark point or starting location of currently active variables.
The variables may themselves be an array which is indexed to
select a particular element. Generalized dynamic addressing
requires a multiplicity of base or display registers.

156

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

6.5.2.1 Static Addressing Problems. Static addressing machines
were the earliest in practice; almost all the second generation
computers were statically addressed. Early programming languages
i.e., Fortran, were explicitly designed to operate on a static
addressing computer. Thus, the memory retention technique for Fortran
is static in nature. When the size of a Fortran program and '
its collected subroutine exceeded the available memory size

the programmer was forced to resort to manual overlay tech-
nigques. Even Fortran requires dynamic addressing techniques; it
occurs in parameter passing or actually in parameter receiving. '
In order to bind dummy arguments of subroutines and functions to
the actual arguments with which they were called, it is nec-
essary to perform address replacemant which is equivalent to a
form of dynamic addressing. This is not a simple process on

some static machines. In a number of cases the compiler
implemente