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FORrWORD

This report was prepared by Intermetrics, Inc. in partial fulfill-
ment of contract # N. AS- 9 -10542 from the Manned Spacecraft „enter
of the National Aeronautics and Spac-L Administration. The Tech-
nical Monitor of this contract is Mr. Jack Williams/FS5

The publication of this report does not constitute approval by
the National Aeronautics and Space Administration of the findings
or the conclusions contained therein. it is published only for
the exchange and stimulation of ideas.
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1 . 0 INTRODUCTIO14

This report contains the preliminary results of the Language
Requirements Analysis task as part of contract NAS 9-10542. It
contains a description of the functional, general, and specific
requirements for a manned spaceflight programming language and compiler.
It is not a specification of the language or compiler, but it
does contain a description of the principal needs of and important
considerations for manned spaceflight software development and
application.	 Subject to review, these requirements will be used
as the framework for the design and specification of the language
and compiler to be developed during this contract.

1.1 Orqanization of the Report

The report is organized into five sections. Secti-,n 2,
Functional Requirements, describes the scope and orientation
of the language, lists the manned spaceflight software func-
tional areas and associates each with implied language charac-
teristics.

Section 3, General Requirements, discusses some of the key
problems in developing software for manned spaceflight projects.
These problems include Software Reliability, Communication and
Documentation, Fixed Point Arithmetic and Code Optimization,
Software Management and Control, and Application Language. There
follows a list of general goals and guidelines for the language
and compiler design.

Section 4, Specific Requirements, contains a discussion
of the specific features required in the language such as form,
data and description, operations and executable statements.
The list is not exhaustive, but covers some of the basic features
of the language design.

Section 5, Preliminary Compiler Requirements, contains a
description of the important technical features and capab.;lities
required in the compiler, such as diagnostics, documentation
and output, environmental considerations, debugging aids, macros,
and optimization.

1.2 Summary of Requirements

The following is a summary list of language and compiler
requirements developed as a result of an analysis of manned
spaceflight programming requirements.

1
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1.2.1 GENERAI, REQUIR::MENTS

1.2.1.1 The principal application of the language is for the
development of manned spaceflight computer software for the
1972-1980 period and this includes shuttle and space station
applications. (Initial orientation will be towards the
shuttle system.)
1.2.1.2 Software applications should include:

a. Navigation, guidance, targeting and general mission
programming.

b. Vehicle control and stabilization.

c. Operating Systems.

d. Data Management.

e. Communications and displays.

f. Compiler and support software.

I.ii

1.2.1.3 The language and compiler should be designed for a wide
range of flight computer systems and should be capable of support-
ing simplo x configurations as we' 1 as advanced multi-computer and
multi-processor computer systems.

1.2.1.4 The language should be machine-independent with a minimurn
of exceptions restricted to clearly iden^ified areas.

1.2.1.5 The language and compiler must contain specific features
to aid in achieving high sc.ftware reliability. The design shall:

a. Strive toward clarity and readability in the language.

b. Enforce programminU standards and conventions.

	

' r - 	c. Perform extensive automatic checking.

1.2.1.6 As general goals,, the language should, in descending
order of importance-

a. Enable the programming of software for a wide variety
of manned spaceflight applications.

b. Be easy to reed and understand.

C. Be easy to debug.

	

11	 d. Be easy to modify.

I.

H
2
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e. Be easy to use.

f. Be easy to learn.

g. Be easy to transfer to another computer.

h. Enable the enforcement of standards and coiLventi ons .

1.2.1.7 The output format oZ the language should strive toward
presenting data types, attributes and operations in an unambiguous
way. An equation will look like an equation. A character string
(or text) will be easily differentiated from a vector, or array.
The compiler will annotate output listing.

1.1.1.8 Language should be oriented toward a general class of
technical personnel involved in manned spaceflight projects,-
not solely highly trained programmers.

1.2.2 Specific Requirements-Language.

1.2.2.1 To enhance readability, the language should possess
distinct name:; and labels.

1.2.2.2 The language should possess the following data types:
integers, fixed/floating point scalars, vectors, matrices, booleans,
bit and character strings, status variables, and labels.

1.2.2.3 The languag;_­ should possess the following data organi-
zations: arrays of similar data types, "collections" of different
data types (e.g., structures).

1.2.2.4 The language should possess at least the following data
attributes: precision, dimension, initialization, global
variable lock and unlock, and static and automatic storage.

1.2.2.5 The language should possess a complete set of scalar
and matrix-vector arithmetic operations.

1.2.2.6 Boolean operations in the language should be the logical
AND, OR a:id NOT operators and should include a convenient method of
setting, resetting and inverting booleans. The language should
possess, as a minimurr, the following set of relational operators:

;I. equal

b. not equal

C. less than,and less than-or equal

d. greater than,and greater than-or equal

3
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1.2.2.7 The language will possess a flexible set of conditional
and unconditional program transfer instructions, and data calls.

1.2.2.8 The language syntax must be accomplishable with a defined
common character get. This common set. is:

A - Z

0 - 9

"	 1 ?

plus blank or space.The compiler will not reject an expanded
character set; e.g.	 'L, ( 1, etc., where the expanded set
provides convenient alternate forms when available.

&.2.2.9 The language will possess the capability of dealing
with 1/0 operations, conditional error procedures, and real-time
tasking. There may not be an integral part of the language
syntax.

1.2.2.10 The language will include iteration statements nested
to any level.

1.2.2.11 Basic: machine language coding will not be permitted
everywhere but ..ill be restricted to clearly identified areas
such as special subroutines.

1.2.2.12 Simple replacement type macros will be provided by
the compiler.

1.2.2.13 The language mould allow definition of global and
local data which can be applied to independent program sub-
sections.

1.2.2.14 The langua ge should provide for data sharing indicators
and control of global information for real-time use among program
sub-sections.

{
1.2.2.15 The language will be designed for a 2-D input stream.
(An optional 1-dimension input will also be provided.)

1.2 2.16 For character strings, the language will possess the
I	 string operator CONCATENATE and a form of deconcatenation.

For bit strings the language will possess the logical AND, OR,

1s	 4
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•	 NOT, and a method of shifting in addition to the string operator
CONCATENATE and a form of deconcatenation.

1.2.2.17 The language will not provide for. complex number arith-P	 P
metic or data declarations.

1.2.2.18 Language wil_1 not include any specific code optimization
directives.

L. 1.2.3 Specific Requirements-Compiler.ler.

1.2.3.1 The compiler should allow independent compilation of
sub-sections of the total program.

1.2.3.2 The compiler will possess a full literary of mathemati-
cal functions.

1.2.3.3 A system to handle a collection of shared data in an
orderly fashion is required.

1.2.3.4 The language will not provide for extensive or ambiguous
mixed data-type operations.

1.2.3.5 The compiler should provide execution checking with
reference to indexed data organizations; e.g. arrays.

1.2.3.6 The compiler will annotate the output listing to increase
readability.

1.2.3.7 The output listing of the language will be in 2-D format.

1.2.3.8 The compiler will produce reentrant code when needed,
but recursive code is not required.

1.2.3.9 The output character set will not be restricted. In
order to achieve a maximum of self-expression the compiler will
be capable of utilizing the full character set of the output
device.

5
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2 . 0 FUNCTIONAL 1Z(4; I REMENTS

i.	 2.1 Scope of the Le nguage

Past experience has shown that developing software for
manned space projects such as Apollo is a mask of major propor-
tions. Heavy penalties in cost and time have been paid for under-
estimating the manpower and time necessary to produce effective,
qualified, and documented software. The prob1cros o1: design,
control, and management of software have not been e,isy to determine;
techniques and procedures to cope with thern have bo .:!n sloes to
evolve. The application of a higher order programming language
is an essential step toward achieving a more orderly and controlled
software production effort. It is the task of this section to
define the functional requiremen t. s and aims for t:hc: programming
language. These must reflect the characteristics of manne ,3 space
flight roftware development and the major programs for whichwhich the
language will be used.

The current effort in% •olves dev(.loping a language and compiler
with a code generator for the IB4 360/75 1)y mid-1971. Presently
planned mai,ned spaceflight projects for which the Language will
be designed are the Space Shuttle Program and the Farth Orbital
Space Base. AlthourTh these are the two major programs which
will dictate the requirements of the language, the capabilities
of the language and compiler are expected to satisfy other manned
and unmanned aerospa::e progra ►nminq needs w:iica may occur dur- Zg this
period.

A large manned spacecraft proje,:t is comprised of many soft-
ware activities, including: a) software for the onboard computer
system, b) the analysis, simulation and test programs necessary
to de l,elop this onboard software, c) aof tware for ground-based
systems for in-flight mission control and support, d) mission
planning and analysis software, e) simulation and flight train-
ing software, f) post-flight mission data reduction and analysis
software. The langua ge requirements for all of these cover a
broad spectrum. The em1hasis in this c,intract will be to formu-
late a language principally oriented at the developmen' and
maintenance of reliable software for onboard applications, and ground-
based real time control and support. Although designed for space
application, the language should also be well suited for general
aerospace engineering problems, and directl y_ applicable to mission
planning and analysis.

It should he noted that chi.: size and complexity of potential
flight computer systems wl-ich are targets for the language could
vary considerably from a simplified candidate for the space
shuttle to more sophisticated and complex systems for the space

6
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base. The language should be designed with sufficient features
to enable it to be "scaled" up or down according to the complexity

'	 of the system without having a.o develop a completely new language
for each level of complexity. Therefore, the initial
language design should encom£,ass a broad spectrum of objectives,

I	 yet be applicable to the pos:;ibly limited requirements of the
near future.

2.2 Flight Computer Software

Manned spaceflight computers, thus far, have been special
purpose machines performin,4 tasks prin:ipally in guidance, navi-
gation, control and pilot displays. The computer has been
provided with a restricted instruction set, small working memories
with no secondary storage capability, and established interfaces
to a limited number of output devices or special-purpose displays.
For the most part, programming has been accomplished in basic
machine language. Although a number of higher-order programming
languages has been developed, none has been applied to manned
spaceflight computer software development.

^•

	

	 Future programs such as the shuttle and space station, will
require more complex software within the flight computer. The
functional processing requirements for the onboard system will
increase in scope. In addition to performing guidance, navigation,

I^	 and control, the computer will handle centralized data manage-
ment functions while responding to requests from a number of
general-purpose display and control units. Other functions will
include in-flight monitoring, flight planning and management,
the control and collection of data from a number of experiment
sensors, and in the case of the space base, provision for a modest
amount of onboard software development. The advanced spaceborne
computer will perform functions common to a large ground-based
data processing facility, providing many diverse computational
services, and will involve extensive man-machine inter-
facing.

Evolving flight computer system hardware will also impact
software design. Distributed multicomputers as well as large
centralized multiprocessing systems are being proposed as candi-
date flight computer systems. These systems attempt to provide
high reliability and flexibility as well as increased computa-
tional power. They portend a more complex environment for the
software involving problems of resource conflicts, data protec-
tion, error detection and recovery, and parallel prccu-ssing.

7
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2.3 Functional Requirements

A detailed list follows of the software functions to be
performed in a flight computer for future manned space missions.
It is representative of the functional areao for software appli
cat.on.

a. Executive and operating systems (e.g. resource allocator,
scheduler, dispatcher, etc.)

• System Monitor:

• System Service Routines (e.g. I/0)

• Error Detection and Recovery

b. Display processing and pilot interface.

C. Communications (up/down telemetry).

d. Stabilization and control (autopilots)

C. Guidance and steering.

f. Navigation and position determination.

g. Subsystem control and monitoring (radars, power, target
tracking, etc.) .

h. Onboard checkout.

i. Data management.

j. Scientific experiment maintenance, control and data
collection.

k. Configuration and sequencing control.

1. Utility and support software (compilers, simulators, test
and diagnostic aids).

m. Mission programs such as targeting , docking, rendezvous,
mission planning, etc.

Seven comprehensive functional categories have been selected
as requirements and these appear in the table below (with comments) .
The intention here is to present the language/compiler implic p

-tions associated with each function.

8
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3 . 0 GENERAL REQU I RE14ENTS

Experience has shown that approximately 5 or more years
are required to design, develop, and verify software for a project
of the magnitude of the Space Shuttle or Space Base systems. It
is evident that the management of such an effort will require
considerable insight, visibility and control to assure timely
production of reliable software. System planners must be careful
to employ the preventive measures necessary to avoid the pitfalls
of poor design and implementation.

Accordingly, the prograruni Y language and compiler will
serve as tools to assist in the program preparation. The follow-
ing sections present a description of some of the key problems
in developing manned spaceflight software, which have influence
on general requirements of the programming language and compiler.

3.1 Software Reliabili y and Verification.

3.1.1 Discussion of Problem. A unique characteristic in the
development of flight computer software is the required degree of
reliability and the amount of validation necessary to achieve
that reliability. The language and compiler should contain
specific fea t ures to aid in this development.

Apollo software demanded the highest pre-flight confidence,
and because neither the computer, the language, nor the program-
ming techniques were designed with checkout in mind, verification
was accomplished only through the philosophy of laboriously
defining and carrying out tests for every logical path, every
logical state. For any complicated program this task is essen-
tially impossible and the approach reduces to "the more tests,
the more confidence". All too often, success criteria are sub-
jective and inconclusive. What is needed is the development
of a technique that ensures more deterministic behavior of the
software in its operational environment within the flight computer.
The technique should attack specifically the problem of mini-
mizinq the test effort involved in the integration of individual
program modules. Checkout of individual modules is not as
significant a problem as groups of modules in a system or mission
sequence. The objective should be to specify a finite number of
tests for each function, and to achieve a definable level of
confidence once all tests are successful. The technique should
be aimed at limiting the possible number of "states" of each
software element !Dy ensuring that its interaction with the environ-
ment is predetermined, well defined and bounded in some sense.
To a large extent -chis can be met by the incorporation of features
into the compiler or language which ensures "reliability" of the
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software and lessens the amount of testing.

I
3.1.2 Methods of Achievinc Software Reliability.The primary
language and compiler contributionsns toward achieving software
reliability are three:

3.1.2.1 Tl'e language can make it easier for the programmer to
express whAt he wants done, thereby reducing the likelihood of
errors at the local level. (Local level refers to the operation
of a pro-jram section without consideration of the environment

I in whicl. it actually functions. A programmer should not be required
to com,.rehend fully the environment in which his code will oFerate.
This _nvironment can be extraordinarily complex.)

3.1.2.2 The language and its implementation can enforce program-
ming standards. An important example of such a convention rela'.:s
to the orderly sharing of common data between processes.

I

3.1.2.3 The compiler implementation can isolate the effects of
program errors to the set of programs logically involved, and
can detect certain instances where program behavior deviates
from the apparent intention of the author.

'	 3.1.3 Reliability in Data Transfers. In the following subsecAons,
requirements imposed by the necessities  of global-data sharing
and dynamic error detection will be discussed.

3.1.3.1 Data Sharing. There is a clear trend in information
processing systems to pool resources and data to achieve both
economy and accuracy in operation. 	 This centralization creates
the need for an infallible technique to control processes desiring
simultaneous access to the same data. Further, it is also
necessary to establish control over which processes have access
at all.

Consider the problem of data security. It seems highly
desirable to define sets oz groupings of data and a mechanism to
authorize access. The author of a program requiring access to
data in a given group (designated "glodap" for global data pool)
would specify the glodap name to the compiler, which would, by
reference to the glodap definition during program compilation;
verify that the "key" of the program fits the "permission-lock"
of the data element. If not, an error message would be generated,
and access would not be granted. Identity co3es would be required
of each program or application in order to retrieve global data.

In some cases, it might be necessary to allow modification of
access-permission attributes of glodap contents at execution time.
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To do this, an attribute would be affixed to the data elements
involved, which would cause the compiler to generate code at
run-time in order to obtain access permission. Refusal of per-
mission would be treated like other program faults. The glodap
thus appears to take the form of a data set whose function is to
describe other data sets.

Another potential glodap data attribute is one which provides
the means of controlling data-interlock conventions between
processes. 'types of sharing which would be regulated include:
uncontrolled data, uncontrolled data-reading with exclusive
access writing; access for only one user at, i time, etc. Again,
this information would be utilized by the compiler to generate
appropriate code to e-• qure that interlock requirements are
observed.

It must not be overlooked that this technique offers a
potentially serious hazard to the operation of the system. This
hazard is the "deadlock problem". Deadlock can arise when program
1 has locked variable A and wants now to g ain access to variable B.
This variable, however, is presently locked b y program 2, which
now wants access to A. Neither program can progress; the only
way to break the jam is to terminate one of the programs.

This prospect, of course, is not only unsatisfactory, but
requires solution of the problem, which can be very difficult
when the deadlock involves a larger group of dependent programs.
The avoidance of this hazard requires a systematic resource-
requesting scheme. One suitable technique is for the total
required resources to be re quested at once. If all resources
are available, the program is guaranteed to be able to finish.
If not all are available, none are granted; this prevents a stalled
program from owning a resource, the lack of which may stall some
other program.

It is not at all clear that the implementation of such a
technique can be direct and uncomplicated, nor is it clear that a
non-hazardous alternative exists.

3.1.3.2 Execution Checking. Although the language will contain
features which facilitate program checkout, some program bugs
will still survive. Tha discussion in this section is oriented
primarily towards a single kind of program error - invalid
indexing. Use of out-of-bounds subscripts on -arrays car. cause
addressing of other variables than the program listing indicates,
because of their adjacent storage locations in memory, unlike the
attempt to take the square root of a negative number, which
compels an alternate path to be followed. When a group of programs
or processes are operating in the same system, whether coopera-
tively or independently, it seems crucial to insure that a program
error does not affect the entire system. The spurious subscript
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is a most serious problem, but is one which lends itself to
automatic detection.

The concept proposed is the obvious one; namely, the enforce-
ment by the compiler of the declared intention of the programmer.
Specifically, it is simple to cause the compiler to generate code
which will check whether a subscript would or would not cause
the value referenced to be a member of the *gamed array. If it does not, a
program fault condition can be raised, and the reference suppressed.
The implementation of this requires a limit check every time the
address of a variable-subscripted array member is computed. It is
clear the re will be an overhead cost of additional memory for
the code to perform these checks. However, it may be necessary.
Several weaker alternatives are possible which have lower over-
heau; for example, read-accesses could be unchecked, write-accesses
could be limited to the program's own data area rather than to the
named array, or subscript checking could be specified by the
programmer -n a statement, block, or program level. Whether to
introduce subscript checking at all is a ri.atter which must be
resolved.

Another point of view may be taken where language features
are either very difficult or impossible to check. An attempt
may be made to limit the number of users, by forcing use of a
code (a number for privileged users), where the risk of undetected
errors is unusually high. (For example, the list-processing
elements of PL/I: based data and pointers.)

3.2 Communications and Softwa:-e Documentation

3.2.1 Discussion of the Problem. In a large programming effort
many individuals, some representing quite different activities,
are required to communicate with each other, and each does so in
a way that has meaning to himself. The manager attempts to specify
his requirement; the engineer attempts to describe his design,
qualitatively to the manager and quantitatively to the programmer.;
the programmer is plagued with documenting the code to a level
that will be useful for descriptive material, debugging activities,
and a quick reference, as the authority for 'what is really going
on in the machine'. Clearly, all contributors want and have a
need to know at least some of the intricacies of the implementation.
The problem here is language. Each group has only a limited
comprehension of the others' mode of expression. The engineer
designs and expresses his algorithms using conventional rrathe-
matics, or perhaps FORTRAN-like statements. The programmer must
take this specification and translate it into siis language:
traditionally a basic assembly language appropriate to the parti-
cular computer. The programmer must then explain his efforts
to the user in the field, by using other media. fie might have
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charts drawn to describe detailed functional flow. fie
might use word statements or user-guides, or other apparently
helpful devices.

In many projects the coding language isolates the programmers
from everyone else associated with the effort. The programmer
becomes too busy to learn the physics and objectives of the mission
and is too busy to explain to others hcw the code works. He,
therefore, is forced to assume an increasing share of the total
responsibility. Small indispensable groups of experts direct
and shape the code and become the overworked "authorities".

3.2.2 Language Orientation. A properly designed progranuning
language will prove to be a useful analytical tool for the
designer, a convenient and useful program tool for the program-
mers and will provide a medium for communication and docurr.enta-
tion for technical management. It will assist in bridging the
communications gap. The language will be oriented toward a
general class of technical personnel in the manned space-
flight project concerned with software. Users are presumed
to have technical backgrounds and some familiarity with aerospace
problems. The language will not be oriented solely at the highly
experienced flight computer programmer, solely at the novice or
non-scientific programmer, nor solely at management personnel.

It will be a specific objective of the language to promote
the ability of the user quickly ani easily to learn to read,
write, understand, and "think in" this language, and to document.
his results in a clear and unambiguous manner.

3.3 Aerospace Higher Order Languages.

Recently designed higher order programming languages have
overemphasized the need for fixed point arithmetic and code opti-
mization. These languages are oriented at current and past aero-
space computing problems. The language to be applied to future
manned space applications should be influenced by the now develop-
ing hardware technology and should not be constrained by previous
environment. A discussion of these past problems and trends for the
future is presented below.

3.3.1 Fixed Point Arithmetic. Most aerospace computers have had
no floating point.hhardware. Consequently, the coding of guidance,navigation and other mathematical formulae was accomplished
using fixed point arithmetic. This involved, the scaling of the
computations and performing the necessary shifting and other opera-
tions within the execution of an equation in order to maintain
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accuracy. The qu:stion to address is, to what extent should the
language provide fixed point arithmetic capabilities? Although
fixed point computers will exist for some time to come, it is
Intermetrics' opinion that floating point hardware will be manda-
tory for computers used in the next generation of manned space
systems, if only from a cost-effectiveness point of view. Float-
ing point is available (or optional) in many flight designed
computer systems t,-, day such as the UNIVAC 1832 or IBM 4 Pi EP.
Therefore, assuming that the onboard computer system will have
floating hardware, what are the requirements for fixed point?
That is, why would fixed point be used if floating point were
available?

Integer variables, constants, and integer-arithmetic are
useful for memory address computations, indexing, counting ind
simple equations. The requirement for scaled fixed point arith-
metic when floating point hardware is available, however, is not
apparent. Generally, all navigation, guidance and other mathe-
matical equations will be implemented using floating point. Some
reasons often given for not employing floating point: are:

a. Fixed point will achieve shorter running times. Several.
routines in the flight computer such as control autopilots
or other closed loop control functions are time-critical.
Although it is true that processor execution times for
floating point instructions are slower than fixed point,
they are generally not much slower. They are app:-cxi-
mately twice as slow for adds and subtracts, and less
for multiplies and divides. The actual execution time
for the floating point instructions is fast and in most
cases faster than the memory cycle times of older computers
such as the Apollo Guidance Computer (AGC). As an
example, typical execution times are given below for
the UNIVAC AN/UYK-7(V) (similar to the 1832) and CDC
ALPHA multiprocessor systems.

Table 3-1. Execution Timed in Microseconds

AN /LJYK- 7 (V )	 CDC ALPHA

Fixed Add	 3.0	 2

Fixed Multiplv	 7.5	 -

F'ixed Divide	 1.3.5	 -

Floating Add	 7	 3

Floating Multiply	 10	 9.7

Floating Divide	 16	 17
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As can be seen from the comparisons, the times required
to perform floating point arithmetic will not be a burden
to the system. This seems particularly valid in view of
the infrequency of occurrence of floating point instructions.

b. Data received from other equipment subsystems will be
received in a fixed point format; also, certain stored
data may contain elements retained in fixed form. If only
floating point were used in computation then conversions
would be required. however, the amount of additional
code may be less overall than the code required to mask
and shift corresponding fixed point versions of the
problem. Again, in general, this does not appear to be
a valid reason for including fixed point arithmetic.

In summary, the need for fixed point arithmetic in general
purpose aerospace computers with floating point hardware will
decrease. Since the requirement for fixed point depends on the

'	 characteristics of the target computer, fixed point capability
will remain a language requirement but will not be fully imple-
mented in the initial version of the compiler. The language will
be designed to include the -necessary data declaration and precision
statements, but the initial implementation of the compiler on the
IBM 3G0/75 will only, implement fixed point to the extent that it
can be modified to include code generation for fixed point state-
ments when a particular fixed point target: computer has been
identified and a code generator development planned. Integer
arithmetic will be included in the initial design.

3.3.2 Code Optimization. Code optimization has received consi-
derable attention in higher order languages. It is felt that the
need for code optimization will lessen in the future. While it
is true that in the past, flight programs have grown larger than
the avail^:ble space and unusual effort has been necessary
to accommodate all programs, current opinion is that the main-memory
and secondary storage structure of computers of the future will introduce
a whole new set of problems such as paging, segmentation, and
file handling. Thus, the problem of code reduction will be
relegated to less than prime importance, and will be of real concern
only for the mission phase with the greatest demand for memory capa-
city. Flight computer memory sizes are getting larger and secondary mass
memory devices are being considered for bulk program storage.
From a cost effective point of view, one wonders about the trad.-
off between more memory and faster processors versus the cost of
testing and vQr.ification of software containing tricky coding
shortcuts for a smaller, less expensive machine. The conclusion
seem, -lear that it is cheaper in the long run to
provide extensive and sophisticated hardware in the
development of a manned space system. Reliability, the handling
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of great quantities of program and data, and the structure of
storage hierarchies will become the foremost problem areas.

Of course, the language design should not ignore
Implementation difficulties, nor should the compiler produce in-

'	 efficient code. But this consideration is fundamentally different from
the inclusion in the language of optimization controls. The structure
of the language itself should not be modified or compromised in order
to make efficient code easier to generate.

3.4 Software Mana^emont and Control

The technical management of software for the space shuttle or
station faces problems of visibility and control. Continual
design changes, short production times, and pressing operational
schedules require flexibility in software design and organization.
Clearly, an overall management and control plan for manned space-
flight software is required which will define the procedures for
developing software design requirements, interface specifica-
tions, documentation requir.emonts, testing requirements, change
procedures and organizational re= sponsibility. The directed
use of a higher order language and the control over the language
should be part of this plan.

Accordingly, the language should provide features
which support the software production environment in general.
It should be self-documenting to a maximum extent, provide ease
in program modification, and provide a mechanism for enforcement
of managemcnt rules and programmer conventions.

3.5 Flight Computer Application Languages

A manned spaceflight computt system must provide a tech-
nique for cornmunicat-ion between crew and computer. The crew must
be able to initiate and control jobs, request information,
reconfigure equipment, diagnose problems, and,in general, be
able to communicate with the computer for a ,ariety of purposes.
Correspondingly, the computer must be able to corr ►municate with
the crew to request a decision, ask for data, alert when problems
occur, etc. This is an example of a "uses-language" as opposed
to a programming lan-ruage. The higher order_ language being
developed in the scope of this work is a programming language
used by analysts, engineers, and programmes to code f light
computer programs. This programming language 4:ill be used to
develop the translators for user languages and the programs
which will perform requested functions. It may be that some
of these user language: are merely extensions to the Lasic
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programming language. Even so, modifications by the compiler
writing staff will still be necessary since it is not felt that
the language should be programmer-extendable at the instruction
level. The compiler will make it easy to extend or modify the
language capabilities.

3.E G:neral Goals and Objectives

The preceding sections have discussed some of the major
problems in manned aerospace programming. The language and compiler
will provide assistance in the solution of these problems. The
following general goals and objectives are defined for the language
and compiler.

3.6.1 Easy to Read. A programming language must be lucid. It
should be easy to read and to understand the writer's intent. A
programmed equation should look like an equation, and it should
possess self-defining characteristics; for example, whether a
variable is a scalar, vector, or a matrix should be evident.

3.6.2 Easy to Use. Programming can be accomplished in less time
with fewer programmers if the language is easy to use. The language
should offer the programmer power_, flexibility, and a closeness
to his natural style that most augments his approach to the
problem. Errors are easily induced if the programmer is forced
to circumvent awkwardness of the language in expressing his problem.

3.6.3 Easy to Learn. It is not obvious that ease of learning
differs from ease of use. The complex tool may be quite easy to
use, once it is thoroughly learned. But if the language is easy
to learn, it will accelerate the training of programmers and
attract a broader field of users. At least, we feel. that a compli-
cated tool should have a simplified mode of operation that can be
learned rapidly.

3.6.1 Easy to Modify. Recompilation by procedure or blocks must
be possible, so that modifications are localized and their effects
contained in the immediate area.

3.6.5 Eases to Debug. The combination of language and compiler
must be designed so that most types of program errors are evident
to the programmer and therefore less likely to be committed.
However, for those errors which are made, the compiler should
produce comprehensive diagnostic information and explicit indica-
tion of the error in tercns of the source language. When no compile-
time errors are found but the program does not function properly,
both the language and the run time system should provide the
programmer with convenient and powerful means quickly to diagnose
the fault.
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3.6.6 Program Transferability. The language should be general
enough to use for ground systems as well as on-board systems.
Further, it should not include machine-dependent features.
Programs checked-out on one computer should be transferable to
another computer and be expected to perform in an equivalent
manner.

3.6.7 Software Reliability. The compiler could assist in producing
reliable code as discussed in Section 3.1.2.

3.6.8 Conventions. The compiler should promote enforcement of
programminq conventions and rules established by management.
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4.0 SPECIFIC REQUIREMENTS

The previous functional and general requirements must b(.
implemented by a set of specific language features including
language form, data and description, operations, basic commands,
executable statements and program structure. 	 The intention of
this section is to present a partial list of specific language
requirements. At this writing the list is not exhaustive, nor
does it constitute a design specification.

4.1 Appearance of the Language

4.1.1 Format. The format of a space programming language; i.e.
its source input and printed appearance, should be designed to
achieve maximum readability, ease in transfer of knowledge and
understanding, and it should provide a basis for program docu-
mentation. Most existing higher order programming languages
strive toward these goals as secondary objectives,with program
composition as the first priority. Certainly any new programming
language must be easy to use but composition is only the "front-
end" of a long process to develop reliable s pace software. In
perspective, stronger emphasis must be placed on software control
techniques and accompanying documentation.

Figure 4-1 illustrates the development and operation cycle
of software. The important point is that software, once generated,
exists for a far more significant period of time during its opera-
tional life. Consequently, the language should emphasize read-
ability and clarity for maintaining the software rather than
emphasizing ease in program preparation.

The printed appearance of a language greatly influences
its usefulness as a communications medium. Most of today's
higher order languages, beij,y iundamentally compatible with card
punches or data terminals, are written in single line format.
The wide appeal of FORTRAN is testimony that the single line
format can be popular, perhaps universal, and that programmers
or other persons with a need to know, find great utility in its
applications to scientific programming. But the single line
is a constraint and re;uir_es specia symL .s and conventions
in order to provide the spectrum of natural mathematical func-
tions. For example, in FORTRAN, exponentiation requires a double
asterisk and a matrix or vector must be represented by its
subscripted components, the subscripts being containeO within
parenthesis - all on the single line. While any language can
become familiar, a preponderence of special rules and symbols
reduces the effecti •:•eness of the language for control, specifi-
cation and documentation.
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A multi-line, or two-dimensional, format can bring a progr-m-
ming language closer to being natural in expression and in mathe-
matical form. The 14AC language of MIT's Draper Laboratory is
an excellent example. Equations, whether scalar or vector-matrix,
look like equations and promote understanding among programmers
and technical managers. Subscript and superscript lines, in which
exponents and subscripts appear in standard mathematical notation,
provide an opportunity to make data forms self-evident. For example

2dv/d t- - g+ K 3 M c

is oc viously_a differential equation * involving the vector data
types v, 9, c; the matrix data type M; and the square c.f the
subscripted scalar K3.

The appeal of the two-dimensional format is not simply
esthetic; the conventional mathematical notation for input and
output will be decisive factors in promoting software reliab?.lity•
Coded operations will become visible to the managers and super-
visors who have ultimate project responsibility. The language
can provide the basis of communication for a broad spectrum of
contributing engineers, scientists and technicians. For these
reasons a requirement for a two-dimensional language format will
be placed on the advanced manned spa-.e pro,,--amming language. The
following items aru also considered to be part u.L, this requirement:

^^. The language must not require the design and production 	 I
of a special terminal device.

b. The language must provide for an optional single-line
input stream for present day data terminal usage.

C. The language format must consist of at least three lines
(More lines may find applicability in the future.)

It should be noted that future technology may bring optical
recognition devices which could simplify the task of generating
computer input.

4.1.2 Character Sets. In conjunction with the determination of
language format, the necessary character set must be evaluated,
since together they provide the full notation of the language.
The character set influences punctuation, naming-rules and choice
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of operators. Character sets are obviously constrained by
available hardware. There are two basic coding schemes in use on
computer equipment today: EBCDIC and ASCII. EBCDIC (Extended
Binary Coded Decimal Interchange Code) is used primarily in IB11
equipment; ASCII (American Standard Code for Information Inter-
change) is being used in most other computer and communications
systoms, and on most available terminal devices. Figure 4-2
presents the characters in both sets and relates them to some
of the common input and output devices. Note that the first
six lines of characters form a common set. In order to make
maximum use of existing equipment this set will form the lower
bound on the totality of acceptable characters for an advanced
space programming language. This will mean that all language
syntax, input stream and printed output must be accomplished
with this common set. This statement may be modified with
respect to printed output to the extent that printers usually
provide more standard characters than do input devices. It must
be emphasized that the language may utilize characters outside
the common set for any purpose, e.g. syntax, but that alternate
forms must be available within the set.

The compiler may specifically use characters outside the
set for improving readability of the output (e.g. lower case
letters, brackets). The mappin g among the defined input set,
the set for compiler usage and the available output set will be
the subject of design.

4.2 Data and Its Description

4.2.1 Data Types. The scope of allowable data types is an
important aspect of language design. Data types are the repre-
sentative forms of information which are processed by computer
programs. They include for example: numerical. quantities
(scalars, vectors, etc.), strings of characters, boolean
variables, and collections or combinations of data. The required
data types depend to a large extent on the intended language
applicability, whether scientific, text, business, etc. Further-
more, data definitions have a direct implication on the necessary
operational features of a language.

Figure 4-3 presents the results of an analysis to determine
the relative importance of a number of data types with respect to
the functional requirements for manned spaceflight software.
The requirements were first assigned figures of merit in the
following way: for each requirement the percentages of code
were estimated for a complex manned space raission. The document-
ing aspect of the language is more important than code composition.
The number of users reflects the extent of problems in control,
communication and organization and suggests the need for compre-
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hensive documentation. Accordingly, the percentages of numbers

'	 of users were weighed ut 2:1 over volume of code. The figures
of merit were then normalized to equal a sum of one.

For each functional requirement the utility of various data
'	 types was estimated quantitatively (Weight: 0 to 3) . Several

sc--res were then comput-2d and are shown in the figure. The "total
score" represents the average over all seven categories of the
individual weights multiplied by the figures of merit. The "order"
is based on these averages and conveys the general utility of
each type of space application. An interesting _)bservation is that
arrays of data are as necessary as the mathematical data types.

Two other scores are listed. The "exclusive weight" is a
simple arithmetic average of only the "necessary" (i.e. code = 3)
entries. It. is a measure of how important a data type is, if
it is important at all. Note that scalars, vectors, matrices
and characters appear to be mandatory. The "range" is simply
the arithmetic average of the weights over all the categories and
reflects the scope or range of the data throughout its possible
usage.

The following paragraphs contain descriptions of the listed
data types:

a. Arithmetic - These are real numeric, scalar, data variables.

b. Vectors - A quantity describe "' by magnitude and direction
corresponding to the mathematical definition of a vector.

C. Matrix - An array (or collection) of vectors obeying standard
vector--matrix arithmetic.

I .

d. Boolean - This is a data variable that takes only two values,
true or false, 1 or 0, or ON or OFF.

C. Bit Strings - May be considered as a collection of one or
more binary bits.

f. Arrays - A collection of identical data types.

g. Structures -- A structure is a hierarchical organization of
data types (or arrays). A structure may contain different
data types.

h. Charc-icters - A non- nw,ieric (in the sense of value) data type
consisting of letters, numerals, or other symbols.

i. Pointers - This is a data type which contains information
about the location of another data type.

Tt	
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j. Labels - This data type defines the variable as a pointer to
a statement.

4.2.2 Data Type Notation. Annotated data types are an advantage
to the reader and can aid the programmer in debugging his program.
A vector variable indicated by an over-bar or a matrix by an over-
asterisk enhances the readability, clarity and self-expression
of the language. Unfortunately, not all data types possess
readily acceptable annotation; however, an attempt should be made
to provide unambiguous marks for booleans, arrays, character:,
etc. or to provide notation where (infusion may exist.

The need to supply identifying marks in the input stream
can be tedious for the programmer; therefore the compiler will be
required to supply these marks on the printed output whenever
the programmer explicitly declares the data type. The reverse
may also be true. That is, if the programmer chooses to supply
all identifying marks then the explicit declarations may be
superfluous. The extent to which the compiler will implement
this last statement is the su:)ject of detailed design.

4.2.3 Data Attributes. The data type alone is insufficient to
totally define usage within a program. Additional attributes
must be assigned at the point of declaration or automatic assumptions will
be made by the compiler. These attributes include: dimensions
for the data type or organization; e.g. size cf matrix or bit strinj;
fixed point, floating point or integer; qualification
for arithmeLA c scalar variables, precision of variables, type
of storage required, and initialization values for a variable.
The language will be required to contain these,and possibly
other attributes to further describe data types.

L

4.2.4 Identifiers. Data names and statement labels are defined
as identifiers. As a general rule, identifiers will be descrip-
tive of the purpose or use of the data types or statement label
to enhance readability and understanding. This may revire lengthy
identifiers, for. which the compiler will allow up to 3characters
(similar_ to PL/1). An identifier should be unique over the scope
of program organization to which it applies. The subject of the
scope of an identifi - will be a part of language design. However,
it is required that :,-^tifiers for global variables be applicable
for all program limit -.,nd that a technique be provided for handling
similar names in separate subprogram modules.
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4.3 Executable Statements

4.3.1 Data Type O perators. Operators fall into three groups:
computational,   relational  and logical.

Based on the defined data types the allowable operators
have been arranged in the matrix shown in Figure 4-4. The guide-
line for allowing an operation is whether the action makes standard
mathematical sense or in some other way conveys standard practice.
Allowable operations are indicated by a check ( 3), the word "no"
means that the compiler will be required to reject, by error
message, the implied usage. Certain entries are circled, and
require the following explanations:

a) The cross product is defined only in the context of three-
dimensional_ vectors.

b) A matrix can only be raised to a positive integer expo-
nent or to -1. The positive integer causes repeated
multiplication of the matrix itself; -1 is the shorthand
notation for the matrix inverse.

c) For structures and arrays all operations ate valid on an
element by element basis. That is two arrays of boolean
variables will respond to the logical AND operation but
cannot be mathemat.cally added. A structure of scalars
and vectors may be subtracted from another structure of
identically defined data types. (Notc, for example, that
no operations can be performed on entire structures
containing both scalars and boolean variables.)

A summary of operators fol:iows:

i

i

OPERATIONS

I. Computational_ General
Mathematical Operations

Addition

Subtraction

Multiplication

Division

Exponentiation

II. LOGICAL Boolean
Albebraic Operations

and

or

no,

NOTATION (Preliminary Definition)

blank

in exponent field (e.g. A2)

AND

OR

NOT

Dote: The use of & and I for AND and OR are alternate forms
as are —1 and ^ for NOT.
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i

III. Relational Operations

Equal to	 =

Not equal to	 or

IGreater than	 >

Less than	 <

Greater than or equal to 	 >

Less than or equal to	 <

IV. Special Operations cii Particular Data Types

I
Dot Product for Vectors Only 	 •

Cross Product for Vectors Only

Matrix -Transpose	 Matrix Opera-	 *T
I	 Matrix Inverse	 tions	 M 1

Concatenate for Character Strings	 or CAT or

4.3.2 Other. Statements. A comprehensive set of executable
statements similar to those, avrUilable in other languages is
required in the manned space programming language. The design of
these statements must provide features for

lassignments

• control transfer

• conditional statements

• loop control

• error response

' 1/0 See Sec. 4.4

As of this writing, there are no known special requirements
for unique. executable statements.

'	 4.4 Operating System Interfaces

The language and compiler must ultimately be machine depen-
dent at least in effecting input/output operations a,.d real
time control functions. These are now described.
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i
4.4.1	 Input/Ot1t ut.

4.4.1.1	 Specialized I/O.	 The software for a manned spaceflight
computer	 involves an extensive set of input and output
operations;	 e.g.:

I a.	 Display of information to the crew: 	 e.g., dynamic data,P	 Y
control options, and attitude information. 	 (Typically,	 these
functions have involved special purpose display devices; 	 in the
future they will be more general, most likely 2-dimensional
CRT-type displays.)

b.	 Response to crew requests from a number of consoles.

C.	 Generation of input and output commands to various onboard
subsystems	 (e.g.	 the reaction control system, main engine,
inertial platform, 	 etc.).

C
d.	 Receipt and transmission of telemetry data	 (uplink and downlink).

Input and output operations can be quite specific to th,
(on-board) operating system. 	 Tailored system subroutines are

^. nor.mall^ written for control, operation and support.	 A key ques-
tion in designing the language is whether special-
ized input and output operations be included in the syntax
of the language.	 If special I/O functions are not included, the
programmer can call or use system subroutines to accomplish them
(e.g. CALL DISPLAYR - - ). 	 In this way, the language is not
cluttered with a set of commands which may not satisfy specific
I/O requirements for all applications. 	 On the other hand, having
I/O cornunands as part of the language enables the compiler to
enforce rules concerning I/O operations which may be particcilarly
useful in a flight computer application. 	 It also can provide
more readability in the program listing and facilitate code
modification.

Another approach is to employ macros. 	 Macros can be definedP^	 P	 Y
for a specific flight computer implementation of the compiler.
The programmer can use the macro to define his input or output 
requests.	 The compiler will recognize the keyword (s) , interpret
the request, validate it, and then substitute the proper code to
execute system subroutines.	 Essentially a "substitutional" macro
format should be as close to naturi.l language as possible to
enhance readability.

In summary, it will be assumed that specialized flight
computer I/O operations are not required as an integral part
of the general language;	 they will be specifically designed for
the particular flight system and made available for the p..ogram--

1

I

mer by control transfers or macros.
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I
4.4.1.2 General 1/0. Since the language will be used as a
general programming language, both independent of and as a
complement to flight software development, a set of general 1/0
operations must be available.

I/O routines represent an interface between two languages -
the language in which the program is written and that in
which the data is written. 1/0 is not really an inherent part
of a language, but a means of communication between values in
the computer and their external counterparts, e.g., certain graphic
symbols and their specific layout on a printed page. What passes
across the interface is "graphic" and "control" information. To
achieve their interface function, I/O routines make certain
minimal demands on the Language. What must be designed are gener-
alized input and output commands that are easy to use, flexible,
and machine independent.

It should be recognized that there are two fundamen-
tally different kinds of I/O; (1) file directed, and (2) stream

i	 directed. File directed data is oriented towards secondary
storage devices such as tapes or discs. File data has the dis-
tinguishing characteristic that it is recorded in such a manner

1
that it may be retrieved later and still maintain its logical

1	 structure and integrity. It may be updated and/or new information
may be inserted, and the result refiled. To facilitate the retrieval
process, a directory is usually maintained. General routines
for file handling (1,1 1"AU, WRITE.. OPEN, CLOSE, etc.) must be provided.

The other form of I/O is stream directed. In general, there
may be several different input or output streams. The desired
I/O statements must be generalized routines to either input (READ)
or output (I •vRITE). There are two main options. One is to output

I	 (or input) numbers with the proper conversion to (from) their
equivalent graphic format. The other handles textual or alpha-
numeric data with no conversion. Thus, numbers on a card can be
input either in a numerical form or as a string of symbols.

i	 4.4.2 Real Time Control_. Flight software involves real time
control, programming. In the process of coding, a programmer must
be able to interface with the computers' operating system in
order to perform control, synchronization, and tasking. More
specifically, he must:

a. Initiate jobs conditionally upon event occurrence or elapsed
time or unconditionally.

b. Terminate jobs conditionally or unconditionally.

C. Temporarily suspend tasks for a time period, or await the
occurrence of an event.
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d. Synchronize parallel and multiple tasks.

'	 e. Request the allocation of system resources on either an
exclusive or shared basis ►such as LOCK and UNLOCK for global
data or external devices.

'	 f. Define control actions to be taken on particular events such
as error conditions or Lion-nominal conditions.

lClearly, many of these functions will be an integral part
of flight programs. The question of whether these functions
should be included in the language syntax is similar to that
addressed in the consideration of I/O control. Real time control
can be machine and operating system dependent and built--in
statements will detract from the general applicability of the
language. Again the use of substitutional macros may be the best
solution.

A careful analysis should be made to define and select the
best method for providing real time control_ functions.
A dominating factor in this selection will be the desire to insure
that the features be generalized and incorporated as part of
the syntax of the language. A preliminary re-iiew of the Real Time
Operating System (RTOS) fc- the 360/75 in Houston, indicates that
orienting a language syntax towards its features could impose
undesirable requirements on future flight computer operating
systems. For the initial version of the compiler, however, only
a limited set of real time control functions will be implemented;
only those functions that can easily co-exist with RTVS without
modifications to RTOS .

4.5  Program Or_c anization

The development of software for a flight computer system
requires that programs be modular, i.e., they can be broken down
into logical subsections which can be developed and tested
individually. The following is a 'List of general requirements
with regard to program organization:

a. Interfaces and interactions between procedures must be
carefully defined and checked by the compiler.

b. Reentrant and relocatable procedures are required. Recursive
procedures and subroutines are not.

C. A set of built-in common mathematical functions will be
provided. The capability to return values other than single
scalar items; e.g., vectors, matrices, is a requirement.

d. The compiler rau,t provide for interfacing with basic machine
language subroutines.
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5.0 PRELIMINARY COMPILER MQUIRI.M..NTS

5.1 Compiler Technical Features

5.1.1 Characteristics of the Code Generator. All developmental
versions of the code generator should produce relocatable code.
In addition, when generatinU code that is to be link-edited,
the compiler shall possess the capability for the production of
reentrant coding when needed (or alternatively it should always
produce reentrant code). It is expected that these attributes
will be required for the flight computer as well as the 360/75.

It is not expected that recursive code will be generated;
the need for recursion does not seem to justify the cost of
increased execution time. This appears to be especially true for
an airborne computer system where time may be "of the essence".
It seems virtually impossible to construct an example of a numeri-
cal problem (excluding symbol manipulation) where recursion could
not be replaced by iteration with an attendant gain in efficiency.
Moreover, if at a later date the need for recursion becomes clearly
demonstrated, it would still. be possible to add this capability.
Of course, for a computer that has special hardware designed into
its architecture to facilitate recursion, such as stacks and
descriptors, then recursive procedures would be implemented.

5.1.2 Compiler Diagnostics. The compiler will issue extensive
diagnostics both at compile and run time. At compile time, the
compiler will:

a. Detect programming errors and classify ahem according to
severity.

b. Flag suspected errors or strange usages to catch the
programmer's attention.

C. Continue compiling if at all feasible in order to point out
as many errors as possible during one compilation and also
allow incomplete programs to be compiled for error checking.

d. Inhibit execution of the compiled program if the severity
of tl.e errors exceeds some threshold level. It will be
possible for the programmer to readjust the threshold level,
within reason.

At-run time the diagnostics will refer back to the source
code statements whenever possible. Thus, the messages can be
associated with statements that have some meaning to the programmer.
If the programmer supplies action statements to be executed upon
the detection of error statements, for example, "On Overflow",
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then the programmer directed actions will be taker. flowever, for
other error conditions specific arid to-the-pcint diagnostic
messages will be issued.

5.1.3 Compiler Documentation. The output of the compiler will
'	 include a reformated and annotated listing of the source state-

ments in an easily readable form for documental-ion  purposes. This
standard output format will be the standard medium for discussion,
exchange of information, and the answer to questions concerning
the characteristics and behavior of the program under various
conditions. This suggests that the compiler will use any and all

1 of the information at its disposal gathered throughout the compi-
lation process to produce a form of output that is self-document-
ing. Much work needs to be done to determine the extent to which
this should be carried and the form that the output should take.
Specific examples of items that the compiler could do include the
following.

5.1.3.1 Automatically indent the source code so that it is
virtually easy to group logical sections of code (e.g. DO-END
blocks).

5.1.3.2 Supply special symbols before, above, next to, or with
variables to make the characteristics clear at each usage; for
example, to distinguish between matrices, vectors, hooleans,
and structures.

5.1.3.3 Annotate constants to indicate where uncertainties are
introduced due to the truncation caused by computer word length.
This is especially important for fixed point constants when the
accuracy of the numerical representation is only known tn plus
or minus a certain value which the compiler could determine and
display. Although not as obvious, some forin of this mechanism
is also important for floating point numbers.

5.1.3.4 Supply information about characteristics of the output
code, assumptions made by the compiler, default conditions and
attributes, and other similar items. The purpose of this
material is to clear-up doubts, answer questions, and
resolve ambiguities about the compiler interpretation of input
and subsequent actions.

5.2 Environmental Considerations

5.2.1 Compilation by Parts. It should be possible to compile
pieces of the program separately by section or procedure, or
other logical subunit. These compiler pieces are bound together
or linked to form an executable package. This permits the modu-
lar construction of flight programs; the modules can be separately
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1	 written and tested and then combined with other modules to form
larger units. However, this does require a relocatable loader
or link editor. The modular assembly system also permits the
collection of different programs as needed for system test,
vehicle checkout, etc. This compilation by parts facility is
necessary for the development of flightwor.thy software where a
large body of programmers and engineers are working cooperatively
on a large scale programming task. Initially, the compiler will
be directed toward the checkout of the language characteristics

I	 and this limited scope may eliminate the need for partial compi-
lation, in the first compiler version.

5.2.2 Sharing of Common Data. A fundamental concept that must
be incorporated into the language and the compiler is the orderly
use of global data, especially since the language is to be used
in a real time control environment. It includes the
separate definition, description, and maintenance of Fools of
common data and the introdur.tion of these global data tables in
each individual user's procedures in a systematic fashion; it also
includes the mechanism for interlocking and sharing of the dai-a
in a dynamic multiprogrammed environment. To do so implies that
the compiler and the language must provide the interlocking and
sharing mechanism and automatically insist on its usage. Thus,
a system for defining and maintaining the state of locked variables
must be established.

Because of the similarity in nomenclature (read protect,
write protect, etc.) the concept of interlocked data is often
confused with memory protection mechanisms. Memory protection
is a hardware feature designed into many computers that permits
areas of memory to be protected from the inadvertent accesses by
unauthorized users, e . U . , undebugged programs.	 This is under
control of the executive and isolates programs and bounds their
effects so that they cannot interfere with other users. Inter-
locked data, on the other hand, provides the means for many autho-
rized users to share the same data in an orderly fashion.

If this capability is added to the facilities for tasking
(the creation of jobs) and the synchronization of these tasks,
then the necessary facilities for multiprocessor operations will
have been designed into the language and co 1pi-ler .

5.2.3 Input Interface. The compiler must interface with a
symbolic file maintenance system. The source language file
handler will. provide a great deal of flexibility in the selection
of input files to be presented to the compiler. It will have the
ability to produce new versions for testing purposes and to
backtrack to previous revisions of the source program when the
current one proves inadequate.
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It is felt that this file handler will not be an integral
part of the compiler but will serve as an input interface mech-
anism for the compiler. A text editor, which operates in concert
with the symbolic file handler, although logically a
separate program, is assumed to be a highly desirable and useful
mechanism for the updating and insertion of text into the input
stream. It is also assumed that terminal3 as well as key punches
will be routinely used as input devices.

5.3.4 Out ut Interfac es . The output interface desi gI n is expected
to go t rouge several stages of increasing complexity a.id capa-
bility.

5.2.4.1 The first is the mcst- elementary where actual. machine
language is the output and it is ran under a simple monitor that
serves as the interface with the operating system.

5.2.4.2 Thu second step provides for the more complicated output

1	
needed for partial compilation and will produce output that can
be fed into.a relocatable loader or link editor. Thus, separate
compiled pieces can be link-edited into one run-tirne package.
At this step in the process, it will be possible to introduce
other routines or procedures that were written in assembly language
or another language; e.g. Fortran. If Fortran compatibility were
desired, it would place additional requircinen'-s upon the language
and compiler to recognize statements and formats necessary to
inter_facc with Fortran subroutines. It is also at this point
that library routines are co l l3cted and linked together to make a
run-time package.

5.2.4.3 The final stage is to output a format- necessary to inter-
face with a simul-ator for a flight computer. This will require
modifications to the compiler output as defined by a negotiated
simulator interface procedure. For instance, the simulator
would undoubtedly .require the symbol table to be passed on to it.

At all stages of the output scheme it is expected that
data necessary for extensive run-time diagnostics and debugging
techniques will be generated and provided. These diagnostics
will relate to the source or documentation language as clearly
as possible.

5.2.5 The Code Generator. The code generator will be modular
so that a new one could be written with relative ease for a
different computer, e.g., a flight computer. This muans that
the portion of the compiler. that generates machine dependent
code will be isolated and capable of replacement without redoing

Ithe rest of the compiler. Although every attempt will be made to
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make the language machine independ(!nt, it is recognized that
several factors do make compilers machine dependent, e.g., word
length dependent calculations,and floating point format and
precia.Lon.

I5.2.6 Issue of an Interactive Feature. It is not expected that
the compiler will. be interactive or ncremental. This capability
only seerns useful in a dedicated time-sharing environment. The
demands of aerospace usage indicate a more traditional compiler
design.

'	 5.3 Specific Compiler Capabilities

5- 3.1 Debugging Aids. The . programmer will need debugging aids,
which a^ the veryminimum will include a timinq facility and
a trace option. Timing refers to the real time (with respect to
the computer clock) taken to execute a specific or identifiable
set of instructions. Tracing can reveal the instruction by
instruction operation of the computer including printout of all
the special and working register. contents. Timing and tracing
request-.s can be designed into the compiler system as compiler
directives which generate object code and are executed at run time.
Most proYiab_y these will not be a requirement for an advanced
space: progratoming language. While debugging aids will still be
of the utmost significance, they will be part of the monitor-
siinu7.ator systems, the simulator being an indispensable tool in
the checkout of flight software. )uring simulation, timing and
tra r:ing will be clone by the simulator. No extra object code is
generated and the programmer evaluates the identical code that
will be used in an actual program run. Note that unlike the
compii..^ Y dir active, the programmer need not delete his "request"
or recompile t.,hen he is finishod with checkout.

^-	 5. 3 2aL nguagc Extension.

5.3.2.1 Reversion to Machine Language. There have been many
reasons for inserting machine language code into the stLeam of
a higher order language. These reasons usually relate to
deficiencies in the higher language or reflect the necessity of

^.	 "shaping" the higher language to the specific machine. While they
may be valid, the accompanying effects are sufficiently
undesirable to discourage the use of machine language, and in fact,
the ability to "drop into machine language" will not be a require-
ment for an advanced space language.

41

INT ERMETHICS INCORPORAI E = D - 380 GREEN STREE I - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 86£3-1810



I	 5.3.2.2 Macros. The design of an advanced space programming
language must allow for extensibility. That is, all applications
cannot be anticipated at design time and provision mist be made
to cope with developing hardware and mission definition. The
"macro" facility can fill. this need and will be a ,requirement
for a space language. The macro is simply a programmer-defined

'	 expression which the. compiler recognizes and implements either
by subroutine call. or by direct substitution of previously defined
language elements or code. However, language extensibility has

I	 its pitfalls and a space programming language where reliability
and clarity are paramount must be careful to place constraints
on macro-defining to the extent that language dialects cannot be
generated in the guise of macros. The intent of providing a macro
facility will be to allow the progranuner to introduce statements
like

"Fire Mein Engine For 10 Seconds"

"Display on Scope R.sults of Experiment 12"

or perhaps

"Downlint. Engine Data List"

Each of these macros clearly states the desired program action,
is addressed to specific mission situations and/or hardware, and
may imply an I/O capability. The compiler can be directed to
insert the macro definition in the listing following the subject
statement_ to increase read<<bility. In any event, macros will be
collected and properly indexed for easy reference.

5.3.3	 Spac e and Time Optimization.	 For the most part, aerospace
,•	 computers have been relatively slow machines with limited memory

capacity.	 The challenge has been to accomplish all the mission
requirements in the space available. 	 As a result, fixed point

^-	 machine language code has been predominant and most higher order
language/compiler systems have been rejected as being too ineffi-
cient.	 But advanced space computer hardware will. be very fast
and mass memory techniques promise to alleviate practical space
restrictions.	 In a large space shuttle or station effort, the
need for higher order language pro gramming to enhance reliability
and communications far outweighs any attendant loss in efficiency.

I	 The new spacebor-ne hardware and the fast compile times
achieved by ground computers like the IBM 360/7- obviate the
requirement for compiler space and time optimization. 	 Of course,
good practice will be followed and unnecessary code eliminated,

•	 but primary effort will not he spent in slaking the object code
more concise and faster running.

It
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5.3.4 Compiler output Options. Program writing and debugging
must be aided by an extensive set of compile_- printed outputs,
the scope of which is influenced somewhat by the necessary complications
introduced into the compiler design. Although at this wr,:ing
a final set. has not been developed, the following elements are
identified as requirements.

a. Input Listing:

A straightforward listing of the programmer's input code.
References to macros and/or subroutines may cause substitu-
tion of definition code, on option.	 i

b. Compiled Listinq:

Source code has been compiled, refor_mated for readability
and annotated where applicable. Annct^^tion v.ili. identify
data types, macros, subroutines and provide other indicators
that are self-documenting.

C. List. of Wiriables :

An alphabetical list of variables which indicates the
data type, the number of references, locations (arid page)
where each variable was read, and the locations (and page)
where the contents of each variG')le was changed.

d. List of Global Variables:

Programmers may avail. themselves of global (or common)
data not defined 1.ocally within their programs. These
variables are listed and cross-referenced to statement, to
make visible software interfacing.

C. Lists of Macros, Subroutines:

Use of macros and subroutines will be listed and proper-` y
cross-referenced.

a
f. Hardware Interface List:

The interactions between software and hardware need to
be specifically identified to maintain reliability especially
in a space application. It. is most important to keep track
of all comou'cer operations which cause direct hardware
response (e.g. engine shut-down) as well as reading of sensr.r
data. This 11st will include all I/U references, grouped
and cross-referenced to statement.

43

INTHMIF-E1"RIGS INCORPORATED - 380 GRFFN SMEE F - CAMBPIDGE, MASSACHUSETTS 02139 - (G 117) R68-1840

r



I
g. Defaults Exercised:

All aspec_s of language operation will not have to be
defined by the programmer. Under certain circumstances, the
compiler will assuMc (default) what the programmer intended.
To ease in debugging, all defaults will be collected and
listed.

h. Storage Summary Map:

A storage map of the coding as it appears in the object
machine will be provided. It will be possible to cross-
reference from source code statements to relative storage
location. In addition, unused locations will be indicated

r	
and summari zcd .

1	 i .. Source Debugging:

I	 Provision will be made to relate: operating system diagnostic
statements to the source code. It should not be necessary,
for example, to interpret a numerical dump in order to
locate a matrix-vector product or sual ar divide ounY " i ow.

j. Input Media Preparation:

It is expected that the program may be compiled and debugged
on one machine and then run on another. A requirement. will
exist for the preparation of system inforination on tape,
cards, disk, etc. for compatible operation.
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