
N A S A C O N T R A C T O R

R E P O R T

N A S A C R - 1 8 6 7

CAS JL
COPY

SPACEBORNE COMPUTER EXECUTIVE ROUTINE

FUNCTIONAL DESIGN SPECIFICATION

Volume I. Functional Design of a Flight Computer

Executive Program for the Reusable Shuttle

by R. T. Curran

Prepared by

COMPUTER SCIENCES CORPORATION

FIELD SERVICES DIVISION, AEROSPACE SYSTEMS CENTER

Huntsville, Ala. 35802

jor George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1971

TECHNICAL REPORT STANDARD TITLE PAGE
1. REPORT NO.

NASA CR-1867!
2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

4. TITLE AND SUBTITLE
Spaceborne Computer Executive Routine Functional Design
Specification, Volume I. Functional Design of a Flight
Computer Executive Program for the Reusable Shuttle

S. REPORT DATE
] October 1971

6. PERFORMING ORGANIZATION CODE

7. AUTHOH(S)

R. T. Curran
8.PERFORMING ORGANIZATION REPORT »

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Computer Sciences Corporation
Field Services Division, Aerospace Systems Center
8300 South Whitesburg Drive
Huntayjlle. Alabama 35802 •

10. WORK UNIT NO.

1 1. CONTRACT OR GRANT NO.

NAS8-24930

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Washington, D. C. 20546

13. TYPE OF REPORT A PERIOD COVERED

Contractor Final Report

14. SPONSORING-AGENCY CODE

15. SUPPLEMENTARY NOTES

16. ABSTRACT

This report presents a flight computer functional executive design for the Reusable
Shuttle. The design is given in the form of functional flowcharts and prose description.
Techniques utilized in the regulation of process flow to accomplish activation, resource
allocation, suspension, termination, and error masking based on process primitives are
considered. Preliminary estimates of main storage utilization by the Executive are
furnished. Conclusions and recommendations for timely, effective software-hardware
integration in the Reusable Shuttle avionics system are proposed.

This document is Volume I of a three-volume report entitled "Spaceborne Computer
Executive Routine Functional Design Specification. " The other volumes are:

Volume II: Executive Design for Space Station/Base

Volume III: Executive Routine Primitives and Process Control

17. KEY WORDS
Reusable Shuttle
Executive Program
Avionics
Real-Time Monitor
Onboard Computer
Data Management Systems
Information Management Systems

IB. DISTRIBUTION STATEMENT

Unclassified - Unlimited

19. SECURITY CLASSIF. (of thU r.portl

Unclassified

20. SECURITY CLASSIF. (of thii (*«•)

Unclassified

21. NO. OF PAGES

177

22. PRICE

$3.00

For sale by the National technical Information Service. Springfield, Virginia 22151

TABLE OF CONTENTS

Page

SECTION I.

SECTION II.

SECTION IE.

SECTION IV.

SECTION V.

SECTION VI.

SECTION VII.

SECTION VHI.

SECTION IX.

APPENDIX A.

APPENDIX B.

APPENDDCC.

INTRODUCTION 3

DESIGN OVERVIEW/ORGANIZATION 5

PROCESS FLOW REGULATION 13
A. Activation 13
B. Device Allocation 19
C. Main Storage Allocation 20
D. Central Processing Unit Allocation 20
E. Process Suspension/Termination 21

FAILURE RESPONSE TACTICS 23

CONFIGURATION CONTROL 25

INTER-SUBSYSTEM INFORMATION FLOW 31

EXECUTIVE STRUCTURES 35

PRELIMINARY ESTIMATES OF MAIN STORAGE
UTILIZATION 39

CONCLUSIONS AND RECOMMENDATIONS 43

FUNCTIONAL PROCEDURE DESCRIPTIONS 49

PROCESS ATTRIBUTE DESCRIPTION 83

FUNCTIONAL FLOWCHARTS 119

111

LIST OF ILLUSTRATIONS

Figure Title

1 DMS Block Diagram for the Centralized System 6

2 Gross Process Scheduling Flow

Page

7

3 Central Computer Executive Organizational Diagram 9

4 Process State Diagram ' 14
i

5 Executive Logic Flow j 15
i

6 Interrupt Service Overview . . . J 18

7 CPU State Diagram As Seen By System Control Unit 28

Cl Process Dispatcher i 120

C2 Software Clock Update - EXAM . j 122

C3 Insert in Ready List 123

C4 Remove

C5 Activate a Process

124

125

126C6 Terminate a Process

C7 Delay / 127
i

C8 Suspen/Releas 128

C9 Hold/Resume 129

CIO Vote 130

Cll Sync 131

C12 Data Storage Allocator 132

C13 Input Initiator 133

C14 Input Terminator 134

CIS Output Initiator 140

C16 Output Terminator 141

C17 Analog Input Initiator 142

C18 Analog Input Continuator 143

C19 Analog Output Initiator/Terminator 144

C20 Digital Output Initiator 145

iv

LIST OF ILLUSTRATIONS (Continued)

Figure Title Page

C21 Digital Output Terminator 146

C22 Mass Store Initiator . 147

C23 Mass Store Terminator 148

C24 Timeline Interpreter/Controller 150

C25 Peripheral Reconfiguration 152

C26 CPU Reconfiguration 155

C27 Alarm 162

C28 Display Initiate/Cane el . 163

C29 Display Continuator 165

C30 Timeline Display 166

C31 Panel Scan 167

C32 Digital Input , 168

LIST OF TABLES

Table Title Page

1 Preliminary Main Storage Requirements
Estimate Summary 40

2 Preliminary Main Storage Requirements
Estimate 41

VI

DEFINITION OF SYMBOLS

Symbol

Active List

CPU

DBM

Execution Delta T

FIFO

I/O

IOCU

K

KB

LRU

MDAC

PCB

PD

Process Control Block

Process ID

Ready List

Definition

List of processes that are time-dependent. Each
process will be transferred to the Ready List when
the Execution Delta T is decremented to zero by the
Clock Update routine.

Central Processing Unit

Data Bus Monitor

Part of process data in the Active List, representing
incremental time until execution (countdown).

First In, First Out

Input/Output

Input/Output Control Unit

1000

Keyboard

Line Replacement Unit

McDonnell-Douglas Astronautics Company

Process Control Block

Powered Down

List of information required by the Executive in
order to maintain priority performance of processes.
Data includes register storage, process priority
level, beginning location for execution and allied
information.

Identifier part of process data in either Active or
Ready Lists. Data contains priority assignment and
pointer to the Process Control Block.

List of processes that have been waked and are to be
executed by the Process Dispatcher on a priority basis.

vii

Symbol

RVC

RVC

SCU

ST

Standby

SVC

TLIC

DEFINITION OF SYMBOLS (Continued)

Definition

Running Voting Controlling

Running Voting Not Controlling

System Control Unit

Self-Test

Power on but not executing code

Supervisor Call

Timeline Interpreter/Controller

viii

, FOREWORD
r

The work reported herein was administered in the Systems Research
Branch, Computer Systems Division, Computation Laboratory, MSFC, with
Bobby C. Hodges assigned as Contracting Officer's Representative. The
writer would like to thank Mr. Hodges for his helpful suggestions on the content
and emphasis of the material covered in this report.

ix

SUMMARY

This report comprises the generic functional design for the Space Shuttle
flight computer system executive. The executive provides the basis for con-
trolling all process flow within the flight computer system.

The executive design concept is based upon an analysis of known program
requirements, similar space projects, and experience in the design of compar-
able computer software. Assumptions are made and parameters are established
to identify critical decisions and the impact of those decisions on the computer
system and the executive.

The generic functional design is oriented specifically to provide a basis
for subsequent modeling and simulation. The executive, as defined, may be
considered a baseline programming system to complement the Space Shuttle
Phase B Hardware Definition.

The functional design identifies crucial elements of the executive
system as:

• Process Activation

• Device Allocation

• Main Storage Allocation

• Central Processing Unit Allocation

• Process Suspension and Termination

The functional executive design specifies a control structure for
scheduling the Space Shuttle application processes according to a wide range
of execution priorities and timing requirements. Necessity for modification of
system applications processes during two—week turnaround period was a primary
factor in each design criterion.

Verification of hardware and software design requirements as delineated
by this report should proceed in parallel with subsequent simulation and eval-
uation to minimize development costs and reduce implementation cycle.

An extensible version of the FORTRAN language with carry-through
capability is recommended as a baseline implementation language for the flight
Executive and the application programs.

Detailed man-machine interface requirements must be further developed
with emphasis on critical mission phases. Further study is essential on all
phases of the Avionics system to:

• Determine the efficacy of the Executive in meeting Space
Shuttle requirements,

• Develop detailed software requirements,

• Verify integrated hardware/software interfaces,

• Identify hardware/software tradeoffs in system configuration, and

• Ascertain actual computer loading parameters.

SECTION I. INTRODUCTION

This report is submitted in compliance with requirements of NASA
Contract Number NAS8-24930 for a final report on the Functional Design of
a Flight Computer Executive Program for the Reusable Shuttle.

The problem of evaluating radically different approaches to the design
of a complex computer executive system has, by no means, a straightforward
solution. The generic functional design of the Space Shuttle flight computer
executive, outlined in this report, is oriented specifically to provide a basis
for subsequent modeling and evaluation by simulation. In addition, the flight
computer executive system, as defined herein, can be considered a baseline
programming system to complement the Phase B hardware definition. The
executive also establishes reference for the specification and design of appli-
cations processes, such as Navigation and Guidance, helps in estimating main
storage requirements, and sharpens requirements for hardware/software
trade studies.

The functional design identifies crucial elements of the executive system.
The operation and interaction of these elements are discussed utilizing prose
description and flow diagrams. The discussion is presented from the point of
view of the regulation of the flow of control through the processes within the
system, assumed to be in a steady-state operation. New process activation,
brought about by start signals (possibly interrupts) or based on critical time
dependency, is analyzed. Regulation of the demand on system resources by
an executing process is scrutinized. Completion of the process task implies
that the executive functions associated with rescheduling or termination must
be invoked. In contrast to the successful run to completion of a process,
faults or error conditions interrupt the application process to cause execution
of failure-masking processes. A failure is masked by reconfiguring the sys-
tem. This reconfiguration is effected so that either the failed device is
replaced by an intact Line Replacement Unit, or a graceful degradation strategy
is adopted. In the graceful degradation mode, the device is removed from the
active system, but no replacement is available.

The functional executive design specifies a control structure for
scheduling the Space Shuttle application processes according to a wide range
of execution priorities and timing requirements.

The report comprises the following:

• Design Overview/Organization

• Process Flow Regulation

• Failure Response Tactics

• Configuration Control

• Inter-Subsystem Information Flow

• Executive Structures

• Preliminary Estimates of Main Storage Utilization

Procedure Descriptions, functional attribute descriptions, and
flowcharts are provided in the appendices.

SECTION H. DESIGN OVERVIEW/ORGANIZATION

The computer configuration used as a design basis for the executive
system is the centralized configuration proposed by McDonnell-Douglas
Astronautics Company (MDAC) (1). This configuration consists of four
computers with associated Input/Output Bus Control Units (IOCU), two mass
memories, two maintenance recorders, and a redundant System Control
Unit (SCU). (See figure 1.) Each computer communicates with any of four
data buses through its IOCU. The SCU communicates with the computers via
hardwires rather than the data buses, and is responsible for computer fault
isolation and reconfiguration. Communication with the mass storage devices
and maintenance recorders is via the data buses.

In addition to the central computers discussed above there are display
processors and engine computers (two computers/engine).

The central computer executive, however, is chosen for elucidation
as representing the most complex programming system present. In addition
to process flow regulation within the central computer system, the central
executive is responsible for scheduling processes in the display processors
and in the engine computers. (See figure 2.)

In contrast, the display processor executives are special-purpose in
nature and can be a subset of the central computer executive (depending,
however, on hardware/software trade study results).

The SCU parallels the engine computers in that it has responsibility
for a very particular assignment; i.e., the masking of central computer
faults by reconfiguration. The SCU apparently (depending, however, on
current trade study results) will be highly hardware-implemented and require
merely a skeleton software executive. Procedures to accomplish reconfig-
uration by either hardware or software implemented processes are discussed.

McDonnell-Douglas Astronautics Company: Space Shuttle Phase B Systems
Study, March 1971

GO

1-

-

vn

•s.

3
5

M
E

M
O

R
Y

 1
^

c

-

2

^

jj
H

X.

i
U

)
i

Ulc

2
Ul

' H
2
<
3

5

i
' K

Ul
O

.8
• ui
, tt

c

«N

9

C
O

M
P

U
TE

R
 2

,

y
s

s
IU

S
S

J ul

5s s

1
M

A
IN

T
E

N
A

N
C

E
R

E
C

O
R

D
E

R

a 2

CO

U
O

C
O

M
P

U
TE

R
 3

,

3

1

I

1

M
AS

S
M

E
M

O
R

Y
 2

3 3
s 5

3 •

*
C

O
M

P
U

TE
R

 4

v>
CO

o

dO

M
_J

oe
I-
UJ
o
Q£
O
u_

O£

a
&£
O
O
_l
flQ

C9

at
8«/>
IU

Of.
a.
>-
<
_i
a.
5

OC
UJ UJ
Z

3
2 I

u

UJ

o
UJ

o

O
O

CO

•CM

From the preceding, our approach becomes apparent. The birth and
death of new processes occurring in the central subsystem, assuming a steady-
state operation, are analyzed. The executive operations required to cause a
process to be executed upon command are cited. This process may conclude
successfully or be disrupted by an error. If disrupted, executive procedures
are detailed that record suitable concurrent information (for post-flight analysis)
and mask the fault, usually by reconfiguration. The process is reentered at a
later time, competing priorities permitting, until execution is complete. When
execution is complete, termination procedures are invoked to return resources
and perform executive list maintenance.. The central computer executive is
chosen for study since we believe that the engine computer, display processor
and System Control Unit executives will be a subset of the central computer
executive.

The central computer executive is designed as a set of cooperating
process modules. (See figure 3.) The modular organization is broken down
into six major classifications:

• Kernel,

• Input Output,

• Timeline,

• Error Masking,

• Displays, and

• Status Input.

Within these major categories the constituent process modules are
delineated. Process modules may be removed from cooperation with the
Executive Kernel or other modules added with minimal disruption of the
executive functions.

o
3 »-
»- 3< a.
»- z

?ilisoo*1 <u
a —

•

*" i/> j
jjui<5-
3y±3
I->OU

508

•

S
P

LA
Y

S

a:

ai

UJ
X
UJ

E
R

R
O

R
M

A
S

K
IN

G

Ul
Z

ri
1-

-I „
< , *2 ' o£ZH
x° <i<j«
-IU3
KOCo
8! E
I

V.OS

Ulffi^
5fc j
J K O

^s"pfg
£ U

1

i" « -1
i_ So 1

I !L_|

• z
Ul Oi/l

— ui-<u*
_J^.(J(J

jaljg

P0^0-
"̂

1

:zij3ij
< •

1
N

cr
o

o
LU
X
Ul
O£
LU

O
O

Ul

Of
Ul

'(--I
•<

oc
ta

P
R

O
C

E
S

S
O

R
D

IS
P

A
T

C
H

E
R

«
Si

5>-*2

. o
o i-

o ^
H^ O

o

2

Of

M
A

S
S

S
T

O
R

E
IN

IT
IA

T
O

Of
O
H

M
A

S
S

S
T

O
R

E
O

N
T

IN
U

A

(J o
CM

O
o

a:
-JI-0

ooz

^
o
o
_l

z

Of.

OH?

z z*~
< Z

Q

O ̂ " ̂

ZZ2
<~«

UJ
• 1-

o:
0 HO
03V-
_IO.<

z=t

H

0.

o
o

1-
3
a.
i-

§

a.
z

0!

IN
P

U
T

IN
IT

IA
T

O

Of
o

IN
P

U
T

E
R

M
IN

A
T

i-

o;

O
U

T
P

U
7

IN
IT

IA
T

O

Of
O

O
U

T
P

U
1

P
E

R
M

IN
A

T

Od
C3

O

o

C3tr
o
UJ

o
UJ
X
UJ

o
o

O

CO

10

S « «» -2 -a,
11 -2
H

<C
OS
CD
<

Q

O

H-

- -a,to

a)
3c
2
1
o

o
O£
O

o
LU
X

O
o

3, 2 °
.2 S §
Q ^ O o

a

CO

LU
CC:

C9

i

11

Page Intentionally Left Blank

SECTION HI. PROCESS FLOW REGULATION

Regulation of process flow is the dominant purpose of an executive. In
the direction of this flow, certain conflicts must be resolvec . rior to process
activation. Such resolution is generally made by choosing the highest priority
contender, although more sophisticated algorithms are sometimes warranted.
During process execution, other conflicting demands for resources arise -
usually for main storage or for peripheral devices. Such conflicts are reg-
ulated as mentioned above. Finally, terminating processes must relinquish
resources to permit allocation to lower priority processes whose execution
has been held up due to lack of these resources.

A. Activation

To illustrate the principles involved in activation of a process, refer
to figure 4. This figure reflects the states that a process can enter as a
result of a Supervisor Call (SVC) or as a result of preemption by a higher
priority process. State transitions are governed by a collection of programs
called the Executive Kernel, comprised of the following algorithmic functions:

• Process Dispatcher,

• Examine the Active List (EXAM),

• Interrupt Handler,

• WAKE, WAIT, SUSPEND, RELEASE, CONTINUE, COMA
primitives (possibly hardware implemented),

• Clock Update,

• Data Storage Allocator, and

• Supervisor Call processors TURNON, TURNOF, EXIT,
DELAY, RE LEAS, SUSPEN, HOLD, RESUME, VOTE, SYNC.

Control of the state transitions is illustrated in figure 5, Executive
Logic Flow. When Executive control is in EXAM, the system is said to be
dormant. In this case, control will loop on a check to determine whether or
not time-dependent processes have become critical. Critical processes are
waked (activated) and control then passes to the Process Dispatcher for sub-
sequent Arithmetic Logic Unit (ALU) allocation and process execution. If
no time-dependent processes require activation, possibly hardware diag-
nostics can be executed. Otherwise, the looping continues until an interrupt
is detected. Interrupt response processes are scheduled using the WAKE
primitive, with the exception of the Clock Interrupt. Here, control passes

13

DC
C9

UJ
O
O
0=
Q_

OC

14

\
._ ">

sis'
Q.

^^CD
U

X

Q-
O

o
C9

X
LU

UJ
0=

CD

15

to the Clock Update routine and then can pass back to EXAM to ascertain
whether or not the passage of time has caused a process to become critical.
If this, in fact, proves to be so, the process is waked and possibly becomes
the executing process. Application processes may communicate with other
processes and hardware via Supervisor Calls only. As the figure shows,
Supervisor Calls to Initiators can return to the executing process. This
facility is provided to enable external communication without relinquishing
control. Control can be given up temporarily by an option in a call to an
Initiator. In this case, the Terminator associated with this Initiator can
return control at the completion of the operation. Control is relinquished
through the use of the Supervisor Calls EXIT and TURNOF.

A process may be suspended and released by the Executive when it is
in any of the states shown in figure 4.

Process activation can be considered from the point of view of the
executive system or from that of the process. From the executive system
point of view, the following techniques must be provided to ensure timely
process activation:

• The Executive Kernel maintains two lists of Process Control
. Words sorted by priority level with the highest priority items

chosen before the lowest. The lists, known as the Ready List
and the Active List, contain process identification and priority
level data used by the Process Dispatcher to resolve priority
conflicts and to allow scheduling of time-dependent processes.
In addition, each entry has a pointer to the Process Control
Block for the associated process.

• Software clocks are maintained for several purposes. Of
chief interest here is the need to decrement the time interval
until next execution of a periodic process. The time interval,
Execution Delta T, is kept in the Active List as part of the
process state and identification data.

• If the clock updating routine is executed, the Active List is
then searched for processes that have become time critical
and are candidates for Ready List insertion. Ready List
candidates are inserted in the Ready List according to
process priority level.

• Data buffer areas are provided when requested. Associated
with this provision is the necessity to maintain an inventory
of available main storage and provide dynamic relocation when
contiguous areas are assembled by the "garbage collecting"
function.

16

• Process terminations must trigger the executive routine that
searches the Ready List for processes that have been waked.

• If the executive is not otherwise busy, it loops around a test
to detect time critical processes.

• Executive call sequences provide an interface between the
Data Management System and application processes. An
application process must communicate with an external
process or peripheral device via the executive.

• Validity checks are conducted on all executive call sequences.

With the preceding executive structure, processes can be activated as
follows:

• An interrupt arrival will cause the process to be placed in
the Ready List at the selected priority level. From this
point, executive dispatching operation will cause the process
to be entered.

• An executive call to activate a process, such as TURN ON,
will cause the process to be placed in the Ready List at the
selected priority level unless the call sequence contains an
Execution Delta T greater than zero. In this case, the
process will be placed on the Active List. Once on the
Active List, the clock update procedure will decrement the
Execution Delta T until the process becomes critical, and then
place the process entry in the Ready List as previously described.

• A process activate command may be detected during inter-
pretation of uplink data, in keyboard input, in transmitted
data from the central computer, or in the timeline sequence.
The activate command is handled as discussed above after
discovery and interpretation by the Input Terminator.

Of key importance to the preceding discussion is the overview of the
scheduler operation shown in figure 6. This is an information flow diagram
of the logic associated with the start signal, interrupt servicing procedures,
and the Process Dispatcher convocation. The following techniques become
apparent:

• Error conditions must be corrected prior to examination of
other factors.

• Once error conditions have been corrected, abort requests
can be answered. If the abort request is not confirmed, a
special process is required to reinstate any procedure that
has been preempted.

17

Q,

8

>-
Q£
<

OS
0.

I

UJ
>
O
UJ
O

ce
UJ
C/)

CL

to
UJ
0=

18

• If the preceding actions are not required, or if response is
complete, other sources of action can be identified. Asso-
ciated with each source is a process which is placed in the
Ready List for execution at its priority level. Within a
priority level, processes are stacked in order of arrival
(FIFO).

• When all active, approved interrupt requests have been
serviced, the Process Dispatcher is invoked at the entry
EXECA. This entry causes the dispatcher to search the
Ready List for a process demand, beginning at the highest
priority level. The dispatcher will proceed to execute the
first demanding process it finds for which there are sufficient
available resources.

B. Device Allocation

Device allocation will be a factor in process execution when the execut-
ing process reaches a point at which it requires a peripheral device. Presently,
allocation is to be effected according to process priority. It appears that
investigation is required to determine if and when a current input/output (I/O)
should be interrupted and the device reallocated to a higher priority demand.
There is some basis for belief that allocation should be based on message
priority. This is another area worth investigation during the simulation study.

Another class of allocation occurs in the event of a device failure. An
alternate device, if available, must be selected and allocated to replace the
failed peripheral. This allocation problem is discussed under CONFIGURATION
CONTROL.

The allocation of peripheral devices will be the responsibility of the
Initiator process. The exact number of Initiator processes,, not now known, is
dependent on specific avionics configuration. However, the need for the
following Initiators has been recognized:

• Input Initiator

• Output Initiator (includes flight recorder and maintenance
recorder)

• Mass Store Initiator

19

• Display Initiator

• Analog/Digital Output Initiator

• Timeline Display Initiator.

The main factor obscuring possible requirements for the Initiator
process is that the Initiators are hardware dependent, and in addition, it may
be possible to group basically common Initiators into a single process. This
amalgamation, however, makes modification more difficult. These processes
along with other critical executive processes are described in detail in the
appendices.

C. Main Storage Allocation

Main storage allocation requirements are restricted to possible allo-
cation of data areas. Storage allotted to process instructions is assumed
capable of containing all concurrent processes. Mission phase dependent
processes may be overlaid on preceding phases, giving better storage utiliza-
tion and circumscribing requirements for storage allocation. However, it
may be impractical to provide enough main storage for all concurrent data
area requests. For this reason the Data Storage Allocator process is provided.
Data Storage Allocator procedures are discussed in the appendices.

D. Central Processing Unit (CPU) Allocation

The allotment of CPU resources among many relatively slow and
irregular peripheral device drivers can have a marked influence on executive
design. To free the CPU for other activities and maximize device thruput, the
conventional tactic has been to provide a device completion signal to the CPU.
The receipt of this signal causes a device driver process'to actuate the
device to perform any pending operations. This technique allots to the device
only the C PU time required to respond to the signal and actuate the device.
The saving of CPU resources compared with programming the CPU to detect
the completion signal is dramatic, since the devices operate irregularly and
the exact response time for the completion signal cannot be predicted.

The allotment of CPU resources has also led to fragmentation of
applications processes. In the multiprogramming real-time environment,
it is desirable that no process utilize the CPU for "long periods" relative to
the system response time requirements. Also, contributing to fragmentation
has been the systems design principles of:

• Sharply focused planning

• Modular programming

20

• Functional segmentation

• Ease of checkout

• Ease of modification.

The executive system design outlined herein will allocate CPU resources
by multiprogramming and provide the structure to permit flexible response to
momentary system overloads during critical operations.

E. Process Suspension/Termination

Suspending or terminating a process has several ramifications:

• The process may be suspended by the Executive.

• A process may be placed in a hold condition.

• The process may relinquish control to reenter and
possibly check for completion of an event.

• The process may surrender control to set a delay to-
cause process execution at some time in the future.

• The process may make an executive call for an I/O
operation. The process is locked up during the I/O
operation and reentered upon completion of the I/O.

• The process may be interrupted and preempted by a
higher priority process such as an error handler process.
Upon completion of higher priority processes, control
is returned to the interrupted process and execution
continues.

• The process may terminate. In this case, the process
must be reinitialized in order to run again.

Executive services are provided to accomplish the preceding needs
using the primitives WAIT, WAKE, SUSPEND, COMA, CONTINUE and
RELEASE as components to construct the executive service routines. Although
these primitives are discussed more thoroughly in (2), the salient points are
presented below.

2Kennedy, Sr., J. R.: Spaceborne Computer Executive Routine Functional
Design Specification - Volume El: Executive Routine Primitives and Process
Control, NASA Contractor Report, Contract NAS8-24930, Huntsville, Alabama,
March 1971.

21

Process suspension is accomplished by the executive call, SUSPEN,
setting a suspend marker in the Process ID Description Word of either the
Ready List or the Active List. The Process Dispatcher will not choose a
process for execution if this bit is set. Resources allocated to the process
may be optionally released.

Conversely, the process is released by resetting the suspend marker,
via the executive call RELEASE. This allows the Process Dispatcher freedom
to choose this process for execution at the appropriate time.

Similarly, a process operating on a relative time base, as described
under TURNON in the appendix, may be placed in a hold condition using the
executive call HOLD. The Process ID Description Word hold bit is set in the
Active List. The'Clock Update routine recognizes the hold condition and
does not decrement the Execution Delta T. Processes that are executing
continue to execute.

In contrast, the hold condition is released using the RESUME call
sequence. The Resume routine resets the hold marker and allows decrement-
ing of the Execution Delta T.

The EGRESS call may be used to relinquish control to the executive while
remaining on the Ready List. Entry location upon return can be reset as re-
quired. In a similar manner, use of the DELAY call will cause process
execution at a time in the future. The return is to the next sequential process
location. This feature permits cyclic.operation at a constant period of execution.

Input/Output operations can involve considerable time delays in terms
of computer cycles. To utilize these CPU cycles more effectively, the I/O
process provides optional echoes. That is, a branch back is provided after
initialization of the I/O operation. In addition, the process is locked up until
the operation is completed. At this time the process if paroled and can continue
running. While the process is locked up (WAIT), the CPU is utilized in the
execution of lower priority processes.

Preempting process execution using a trapping action is assumed to be
accomplished using hardware and will not be analyzed further here. It is
discussed in Volume in of this report.

Termination of a process is consummated by the executive call TURNOF.
The process is removed from the Ready List. Resources are made available to
lower priority processes. To be executed in the future, the executive call
TURNON or DELAY must be effected.

22

SECTION IV. FAILURE RESPONSE TACTICS

Failure response implies failure detection and the existence of relation-
ships associating failures with the required responses. Several methods of
failure detection in response to expected sources of failures are provided.
Executive call sequences are checked for validity to detect both hardware and
software induced errors. Similarly, other active error detection procedures
that are provided are: limit-checking critical variables; watchdog timers;
hardware diagnostic programs (assumed to be executed in microcode); and,
software examination of status registers to detect anomalies. Passive error
detection procedures are triggered by fault conditions.

In contrast to the above method of classification, detection procedures
can also be typed by hardware. Error detection schemes for the computers
depend on fault triggering, stall alarms, diagnostics, and validity checks on
executive call sequences. Error detection schemes for the peripheral devices,
on the other hand, use watchdog timers, fault triggers, and status checking.
In addition, distinction can be made by processes. Initiator processes perform
call sequence validity checks. Terminator processes accomplish status checks.
Additionally, terminator processes are charged with responsibility for separat-
ing transient errors from solid failures. Once a failure has been detected (by
retries and counting), response to the fault becomes the critical item. One
factor associated with the response to any failure is the recording of data con-
current with the failure to expedite postflight analysis. Pertinent failure data
is to be transmitted to the maintenance recorder for future evaluation using an
executive call to the I/O processes. Once the failure has been recorded, the
fault is masked by reconfiguration, discussed more fully under CONFIGURATION
CONTROL.

To the extent possibly, failure recovery programming must be indepen-
dent of hardware configuration. Configuration dependency must be associated
with descriptive tables of hardware status, select codes, redundancy require-
ments and allied information.

23

Page Intentionally Left Blank

SECTION V. CONFIGURATION CONTROL

Configuration control is achieved in different ways for computers as
contrasted to peripheral devices. Reconfiguration of the computers is accom-
plished in conjunction with the System Control Unit (SCU). Utilization of both
software and hardware procedures is possible.

Software computer reconfiguration assumes the SCU has access to
computer status registers and possesses the means of transmitting signals to
an arbitrary computer. The following computer status information must be
available to the SCU:

• Computer state indication, such as Running Voting
Controlling, Running Voting Not Controlling, Self-
Test, etc.

• Shared Spare Available

• Failed by SCU

• Self-Test complete

• Sync request .

• Vote Request

• Disagree

• Error Indicator

• Halt

• Switch state for SCU-CPU data paths (if switched).

In addition, the contents of the program counter for a computer must
be available to the SCU. The advent of a computer fault is assumed to cause
execution of the appropriate SCU response process.

The SCU is, additionally, provided with the capability to cause a
computer to enter a variety of instruction sequences.

A. CPU Software Reconfiguration

Although the software process is detailed in the appendices, a baseline
for the software approach to reconfiguration is described here.

The software process to effect reconfiguration is made up of several
cooperating operations.

25

• Sync or Vote entries in which validity checks are performed
on the requestor identity and status.

• A statistics gathering thread which analyzes the computer
system accumulating data on the distribution of states
among the computers via a push down stack.

• A thread that analyzes the gathered statistics to detect
anomalies.

• Sequences to effect change in state of the computers.

• Watchdog timers to ensure that directives from the SCU
are in fact executed within estimated time period.

• A routine to display system status via the SCU display
panel.

• A routine to sense the status of switches on the SCU
panel and convert to internal representation.

• Process modules to execute the SCU panel input commands.

As mentioned above, further discussion of computer configuration using
software techniques is given in the appendices.

B. CPU Hardware Reconfiguration

The approach in designing a hardware controller to accomplish CPU
reconfiguration has similarities and differences to the techniques described
under software reconfiguration. As in the software reconfiguration procedures,
input stimuli are required, accompanied by responding output sequences in the
computer system. Reliability considerations coupled with economics have
constrained the hardware controll to a configuration limited to few basic
components in contrast to the soctv ..re controller which can be implemented
with varied basic techniques.

For the purposes of this discussion, the following ground rules
apply:

• There will be three computers plus one shared spare
computer.

• Each computer can be in one of four gross states: .
Running Voting Controlling (RVC), Running Voting Not
Controlling (RVC), Self-Test (ST), and Powered Down (PD).

26

• The spare computer will be either PD or ST, possibly as
a function of mission phase.

• Test and Set capability is implemented in the SCU, par-
ticularly, and is possibly implemented in the computers.

• Special procedures must be developed to separate
transient failures from solid failures.

• Input stimuli and responding output sequences will be
the same as discussed under CPU Software Reconfiguration.

With the preceding basis, consider the case of four computers, each
capable of existing in one of four valid states. There are, then, 256 combina-
tions of valid states possible. If five states are considered, the number of
combinations of valid states possible is 625. The number of bit combinations
present is a function of the bits required to represent a state. Three bits are
required to represent 5 states. In addition, parity checking can be provided.
It follows that many of the possible bit combinations are invalid, since a total
of 8 states per computer will result from utilizing 3 bits. For four computers
4,096 states are possible, of which 625 are legal, assuming the 3-bit state
representation. Possibly a more efficient method of state coding should be
chosen.

Several classes of errors can occur:

• Within computers; that is, an invalid bit combination,

• Invalid combinations of computers; for example, more
than one controlling computer, and

• Illegal transitions, which are transitions other than allowed
in the state diagram (figure 7).

The controller must detect illegal states, invoke further means of
analyzing the failure to determine the failed element, and convoke error
masking sequences. If illegal states are not represented, the controller must
analyze the voting response of the computers, upon demand, to detect voting
anomalies which will lead to convocation of error masking sequences. In the
analysis of voting, 16 disagree responses are possible for each computer
state. If, for example, there are 128 valid combinations of states, .then there
are 2,048 combinations of computer states and disagrees (16 x 256), some of
which are illegal and must be acted upon by the illegal state detector.

27

o

1U

rt
H O,

co co CQ

OS
o

o

ff</»
a:

o
o

From the preceding discussion, several salient ideas arise:

• The design complexity increases rapidly with the number
of states rb^ .'red to fully describe the computer status.

• Many of the possible states are illegal and can be treated
using an illegal state detector, triggering possible pre^
engineered sequences (3).

• The valid states must be analyzed by the designed logic to
detect voting anomalies and invoke appropriate error
masking sequences.

• Procedures for computer switching sequences must be
defined. _For example, if the RVC computer fails, the
first RVC is promoted to RVC. The shared spare, if
available, is set "not available" and sequenced to RVC.
The RVC computer is sequenced to ST. These procedures
are triggered by specific input combinations on the dis-
agree lines and status lines from the computers.

• After the scope of the design problem has been bounded
by calculating the number of possible permutations,
truth tables are formed, and functional equations de-
termined; the logic requirements can be optimized
using digital design techniques.

• Requirements for resolving voting "ties" must be
determined.

C. Peripheral Reconfiguration

In contrast to computer reconfiguration, which is accomplished by special-
ized combinations of software-hardware, peripheral reconfiguration is handled as
an executive subroutine. This subroutine reconfigures peripheral devices by
manipulation of executive tables. Since all peripheral device requests are
channeled through the executive, tables of values of internal address codes of

3 •Raytheon Company: Preliminary Technical Report Machine Implementation
Study for Phase B Computer System, Sudbury, Mass. , 23 October 1970.

29

devices are maintained by the executive. When a device is requested, the
executive searches the table for the device address and uses it to perform
the device selection. For every device, a table is constructed giving alternate
devices. The responsibility of the reconfiguration process, crudely, is to
select a preferred alternate in the event of device failure. The alternate
device address replaces the failed device address in the device selection
tables. Thus, the reconfiguration responsibility is hidden from the request-
ing process. As far as the requesting process knows, the message is input
or output through the initial device. Reconfiguration, then, is of no concern
to the applications process, unless no alternate is available. If execution of
the peripheral operation is impossible, the executive must so notify the
application process so that an alternate action can be taken.

In recapitulation, peripheral reconfiguration is achieved in the executive
by manipulating internal executive tables. Successful reconfiguration can be
hidden from an applications process, unless further study shows that notifica-
tion to the applications process is desirable. As with other executive processes,
a more detailed description of the peripheral reconfiguration process is presented
in the appendices.

30

SECTION VI. INTER-SUBSYSTEM INFORMATION FLOW

Through wide changes in configuration and complement of the Data
Management System, the stable consideration of a master subsystem controlling
peripheral subsystems remains. Vital to this control concept is the composition
and treatment of the components of flow (messages). To implement the in-
formation control concepts shown in figure 2, the following message-oriented
approach is recommended as a baseline, although the processes required for
inter-subsystem communication are somewhat hardware dependent and imposr
sible to completely specify at this time.

• Communication with a peripheral device consists of
call sequence validity check, buffer allocation, device
manipulation, message transmission error checking,
and program accounting associated with message termina-
tion. A significant part of the preceding is not hardware
dependent at a high level of analysis. A significant portion
of our programming system can then be specified without
complete knowledge of hardware specifications. The hard-
ware and software, however, ideally should be specified
concurrently.

• Communication occurs between a central computer and
peripheral devices with varying sentient and logical cap-
abilities. Error checking efficacy will vary with the
logical faculty of the peripheral subsystem. Where the

, peripheral device is another computer, the following
techniques are propitious. Where the device possesses
smaller capability, other hardware dependent procedures
must be devised.

• A data bus controller will execute message transmission
and notify the computer that the transfer is complete.
Other capabilities may be added to the data bus controller
later. Such capability could include line control, code
conversion, buffering and queuing, error handling and
recovery,-.and collation and analysis of statistics (4).

4
Hebditch, D. L.: Programmable Control Units - A Way Forward in Datu
Communications Telecommunications;: .Dedham^ ,Mass^.t jNovember 1970;.

31

• The data bus controller affords the chance to view
information flow on a message basis. This follows from
the fact that the actual word-oriented transfer operations
are performed by the data bus controller.

• Every message will have a fixed length and format header.
In addition, the message may have a body and will have a
terminator.

• The fixed length header message includes message ident-
ification, source/destination information, error check
information, time, message length (if required), action
request class, and terminator code.

• Error checking by hardware (parity) is done on each word
transmitted.

• Hardware and software checks are done on each message
sent and received. These checks include status j longitud-
inal record check, format check. Further study may expose
the need for additional message checks.

• Every message is given a number which must be sequential
with the unique transmitting device. .Messages received
must pass the sequential check to prevent the undetected
loss of a complete message due to hardware failure, sys-
tem overload, line contention, or scheduling conflicts (5).

• Every message must be acknowledged within an arbitrary
time. Acknowledgement means that the message has been
received correctly. If the acknowledgement is not re-
ceived, an error is assumed. The following method is used
to detect the fault. A lock marker is placed (in memory) on
each message transmitted. This prevents destruction of the
message buffer. Acknowledgement causes the lock to be re-
moved. A watchdog timer is set simultaneously with
the lock. When the timer counts down, the lock is
removed. This is an error condition and is treated as
a hardware failure.

Mills, D. L.: Topics in Computer Communication Systems Lecture Notes,
University of Michigan, Ann Arbor, Michigan, May 1969.

32

• The preceding techniques for inter-subsystem communication
can be logically divided into two classes of processes, Ini-
tiators and Terminators. These classes will suffice to
handle broad classes of subsystems.

A typical example of an Initiator is the Output Initiator, which effects
the succeeding procedures:

• Call sequence validity check,

• Parameter passing,

• Selection of the device control word from the Peripheral
Control Tables,

• Completion of message formatting,

• Interface with the data bus controller to initiate output,

• Selection of appropriate return to calling process, and

• If there is no immediate return, invoking process sus-
pension.

In contrast to the Initiator process presented above, the Input Term-
inator is an example of a typical Terminator. The following activities must
occur:

• Reset of watchdog timer,

• Hardware error status check,

• Separation of transient from solid failures by requesting
message retransmission. An arbitrary number of succes-
sive failures will qualify the fault as solid. Hardware
diagnostics and reconfiguration processes can then be
invoked. (Transient failures can be recorded although the
possibility that the. recording system can become saturated
must be considered),

• With the hardware status successfully checked, analysis
of various software message checks, such as longitudinal
record check and message number, is performed. Failure
to pass these checks results in treatment similar to hard-
ware check failures,

33

• If the message passes the preceding error analysis, exam-
ination for action type is made. This analysis is comprised
of the procedures that allow the master computer to transmit
process execution information data to the slave computers.
Action requests are: Acknowledge, Retransmit, No Data,
Start of Message, Cancel, End of Message, Schedule, and
Data,

• Determination of the action request identity by the Input
Parser. This may lead to the several different process
paths as shown in the appendix. An important consid-
eration is the delineation of the different paths repre-
senting the actions: acknowledge, retransmit, no data,
start of message, cancel, end of message, schedule,
and data. A more precise presentation is given in the
Appendix.

From the preceding, it can be seen that substantial parts of the concepts
for subsystem control can be implemented prior to exact hardware definition.
Subsystem communication processes are grouped in two broad classes,
Initiators and Terminators, with hardware independent functions defined,
while precise hardware design data is being determined.

34

SECTION VH. EXECUTIVE STRUCTURES

The executive structure provides the power and flexibility to Implement
arbitrary scheduling strategies. The executive can operate in a synchronous
mode, permitting immediate response to faults, however. ;These error-
triggered interrupts cause a momentary asynchronous mode of operation. The..
Supervisor Calls, SYNC and VOTE, give methods of reestablishing synchroniza-
tion for a process. The executive can also operate in an asynchronous mode.
If desired, it can operate in a mixture of modes using the SYNC or VOTE
procedures to establish synchronization when required. Synchronization is
required merely to ensure that voting procedures are performed on selected
identical variables by all computers. Therefore synchronization can be viewed
as affecting a particular process and furnishing Supervisor Calls to effect the
isochronism of the computers.

In addition to providing synchronization to the degree required, the
executive can be implemented to enhance a major-minor cycle method of
scheduling. A proposed method of implementing the major-minor cycle
scheduling divides available time into minor cycle slots. To provide 20 msec
minor cycles, there are 50 slots. In each active slot, the minor cycle pro-
cesses - plus 1 major cycle segment - are executed. Then, every second,
the major cycle is completed with the minor cycle repeated 50 times. Empty
slots, for example the even or odd numbered, are provided for expansion or
for asynchronous event processing. Unfortunately, the presence of a hardware
fault indicates that the information in the computer is suspect, and action must
be taken immediately without waiting for even the next available slot. This is
acbomplished in the proposed executive by allowing a priority structure, with
the error processes given a priority immediately below that of the Executive
Kernel. This priority, coupled with fault-triggered trapping, assures timely
error procedures to guarantee fault tolerant operation.

In addition to the above, the priority structure has other purposes;
namely, to give an order of preferred execution of concurrent processes.
Although this preferred execution can be accomplished by a rigid structural
ordering of the applications processes, for reasons that will become clear, it
is considered more desirable to effect this ordering using a priority level
structure. Similarly, the priority structure can determine which processes
may be delayed in the event of momentary system overload. Such overload
might occur in rendezvous,' docking or landing mission phases similar to that of the
Apollo 11 landing (6). The system can undergo automatic graceful degradation

c
Hamilton, M. H.: Letters, Datamation, Harrington, Illinois, 1 March 1971.

35

via the priority assignment, recovering when the overload condition disappears.
Simulation, possibly non-deterministic, can determine the optimum priority
assignment by enacting the overload situation, observing the Executive res-
ponse, and altering the process priority assignments until a suitable compro-
mise is reached. However, further study is required to know whether or not
this priority level technique is sufficient or whether more sophisticated
process selection algorithms are required for mission phases exhibiting
relatively large computational demands, such as Landing.

In the basic cyclic mode of operation, conflicts must be resolved
between the need to execute the minor (20 msec) operations at a constant
20 msec period and the requirement for computations that may exceed 20 msec.
The solution to this conflict should ideally be dictated by the system require-
ments in the usage of the data gathered during the minor cycle. As such, it is
now premature to impose a resolution to the conflict. However, two divergent
methods arise as a result of the two different executive structures, the pro-
posed Executive and the strictly (non-multiprogramming) Major-Minor cycle
executive.

The Major-Minor cycle structure is rigid. As previously discussed,
time slots are provided for each cycle (20 msec). Every 20 msec, the Minor
cycle plus 2 percent of the Major cycle is executed. Therefore, execution
times must be pre-calculated for every process and the system constructed very
much in the way that a watchmaker builds a watch. This is to assure that the
cyclic processes are actually executed during the intended periods. A system
such as this can be awkward to modify. Difficulties in implementing the
changes that are bound to occur over the life of the Shuttle, coupled with the
deficient error handling procedures noted previously, make the Major-Minor
cycle approach the less desirable.

In contrast to the rigid time-slot approach, the proposed Executive
operates in a different way. A scheduling structure and priority level assign-
ment are provided that allow periodic execution of processes based on an
arbitrary unit of time, independent of a minor cycle. This structure is
inherently more versatile. After initialization, periodic processes are
executed by use of the Supervisor Call DELAY. The period of delay can be
set to the desired amount.

The implication of the preceding discussion is that in the normal mode
of operation, the system can be designed to operate in a cyclic mode identical
to the Major-Minor cycle. If maintaining a 20 msec Minor cycle period is
considered essential, then the Minor cycle processes are assigned higher
priority than the Major cycle, random demands, or other cyclic processes.
The lower priority processes will be preempted every 20 msec and the Minor
cycle processes executed. Upon completion of the Minor cycle processes, the
preempted process is reentered and runs to completion.

36

The occurrence of a random demand is treated using a different tech-
nique than the Major-Minor cycle. Here, the priority structure affords
latitude in scheduling the response. Critical events (high priority) can be
treated without intervening minor cycle applications process operations by
waking the response process and executing it immediately through the Process
Dispatcher. Less critical random demands can be deferred to be executed at
the leisure of the Executive.

Modification of the priority assignments is accomplished by changing
priority assignments in the Process Control Blocks. This is simpler and less
subject to error than recompiling and rebalancing the system to effect differ-
ences in performance.

The proposed Executive is a system that gives the capability to imple-
ment the optimal Space Shuttle scheduling strategy, whether it prove to be
Major-Minor cycle or some other technique elucidated by simulation.

Considering the preceding discussion, the Executive operational aspects
are similar to the following for a particular mission phase: In the cold start
initialization, the Timeline Interpreter/Controller (TLIC) is loaded along with
the Executive programs into the central computers. The engine computers
will require an Executive which can be transmitted by the central computer
from the Mass Store as required.

After the executives with accompanying data have been loaded and the
load operation verified, the TLIC can be initiated to begin analyzing timeline
command sequences. Intra-phase events can be sensed, and phase termination
procedures invoked.

For example, when the TLIC determines that the Prelaunch Checkout
phase has been successfully completed, the TLIC will call in from the Mass
Store the processes neeesjaary to accomplish the Ascent phase. Each process
will be accompanied by a Process Control Block (PCB) containing information
required for executive control (2). Ready and Active lists will be initialized
so that the Process Dispatcher can initiate phase execution.

Processes may be phase independent or phase dependent. If phase
dependent processes are to be overlaid, then means to disable/enable
storage protection, under program control, must be provided. This suggests
that phase-dependent processes be segregated from phase-independent processes.

37

The TLJC will operate in a similar way for all mission phases, calling
in new processes as required. The priority assignments will possibly be
changed to assure that phase-dependent critical operations are executed within
time constraints during certain mission phases such as landing. Contingency
features to further assure that the time constraints can be met are possible
within the Process Dispatcher for these critical mission phases. When the
phase termination criteria are sensed by the TLIC through examination of the
Current Status Tables, phase termination processes are waked. Upon comple-
tion of these processes, initiation of the next phase begins. This repetition
is followed until all phases are completed and post-flight analysis is commenced.
Current Status Tables contain system global variables which are periodically
updated by data gathering and calculation routines.

38

SECTION VEI. PRELIMINARY MAIN STORAGE
REQUIREMENTS ESTIMATE SUMMARY

While the executive functional design is aimed primarily at providing
the basis for a simulation model, the analysis can also be used to generate
preliminary estimates of executive main storage utilization. The flowcharts
furnished in the Appendices are the foundation for these estimates. Program
requirements are estimated at 12.5-13.5K 32-bit words. A breakdown of the
components of the estimates is given in table 1. Data storage requirements
are even more heavily hardware-dependent and, therefore, a method is pro-
posed for calculating the storage utilization rather than a preliminary estimate.
Such a calculation will be useful in hardware/software trade studies to estimate
the impact on storage requirements of software implementation of functions
such as analog input, and is shown in table 1. More detailed estimates are
furnished in table 2.

Symbols appearing in table 1 are defined as follows:

A = Number of Processes
B = Number of Peripheral Devices
C = Number of Active Messages
D = Number of Current Results
E = Number of Analog Sensors
F = Number of Digital Sensors
G = Number of Active Processes
H = Number of Data Storage Blocks
I = Number of Analog Output Devices

<J» = Number of Digital Output Devices
** = For software driven analog/digital input
*** = Hardware manipulation only

39

TABLE 1. SUMMARY OF PRELIMINARY MAIN STORAGE
. REQUIREMENTS ESTIMATE*....

Process Modules

Executive Kernel
Reconfiguration - Peripheral devices

SCU
Data Bus Input/Output
Analog Input/Output**
Digital Input/Output**
Timeline
Mass Store Input/Output
Panel Scans
Display Control***
Alarm

TOTAL:

SCU Storage

2010
1000

8000
2190
2650

370
1320
1200

600
970
500

8000 12.810

Data Requirements
Masks, Common Constants
Process Control Blocks
Peripheral Configuration Tables
Device Failure Tables
Device Status Tables
Alarm Tables
Main Storage Tally

Message ID

System Current Values

Timeline Status
**Analog Scan Tables
**Digital Scan Tables

Digital Status Tables
Ready List
Active List
Data Fixed Buffer Area

Analog Output
Digital Output

300
32 words/process 32*A
1 word/device
1 bit/device
1 bit/device

#blocks/32

1 word/message

B
B/32
B/32

300
H/32

C

D

200
3-4 words/sensor 4*E
1 word/sensor F
1 bit/sensor F/32
2 words/process 2*G
3 words/process 3*G
5 words/PeriPheral 5*Bdevice
1 word/device I
1 word/device J

Data Storage = 800 + 32*A + 6 1/16*B + C + D + 4*E + 1 1/32*F

+ 5*G + H/32 + I + J

40

TABLE 2. PRELIMINARY MAIN STORAGE
REQUIREMENTS ESTIMATE

Process Modules SCU Storage

Process Dispatcher 100
Clock Update . 140
Activate Process (TURNON) • 140
Terminate Process (TURNOFF) 140
Delay 100
Release Process (RELEAS) 100
Suspend Process (SUSPEN) 100
Hold/Resume 150
Vote 150
Sync 80
Examine Active List 200
Data Storage Allocator 610
Input Initiator 380
Input Terminator 750
Output Initiator 360
Output Terminator ; ' 700
Analog Input Initiator 800
Analog Input Continuator 1500
Analog Output Initiator /Terminator 350
Digital Output Initiator 120
Digital Output Terminator 50
Mass Store Initiator 100
Mass Store Continuator 1100
Timeline Interpreter/Controller 800
Peripheral Reconfiguration 1000
CPU Reconfiguration 8000
Alarm 500
Display Initiator 470
Display Continuator 500
Timeline Display 520
Panel Scan 600
Digital Input 2QO

TOTAL: 8000 12,810

41

SECTION IX. CONCLUSIONS AND RECOMMENDATIONS

Analysis of past similar computer projects, combined with study of the
Space Shuttle Phase B Contractor reports, yields certain observations and
conclusions relative to desirable system, computer hardware., and computer
software characteristics:

• Software development costs are. highly dependent on
computer loading. Not recognizing this dependence in
the past has led to notorious underestimation of the
programming effort required for projects similar to the
Reusable Shuttle (7).

• Hardware redundancy and fault tolerant software add
materially to the complexity of the flight executive.

• In view of the preceding, software development must
begin early in the design cycle. Analyse/Programmers
must work with engineers in the development of the
avionics system.

• Verification requirements must impact on hardware/
software design from the beginning to the end of the
design cycle, since approximately 45 percent of soft-
ware effort is consumed by verification.

• Detailed man-machine interface requirements must be
developed, based on astronaut-pilot needs and recom-
mendations. Particular emphasis must be placed on
critical mission phases, such as docking and landing.

Recognizing that further study is required on all phases of the avionics
system, the following recommendations are presented:

• The proposed flight executive should be taken as a base-
line. Efficacy of the Escecutive in meeting Space Shuttle
requirements can be studied either by non-deterministic
simulation or by implementation on a computer system
similar to the flight computer.

7 .
Boehm, B. W.: Some Information Processing Implications of Air Force
Space Missions in the 1970s, Astronautics and Aeronautics, New York,
N. Y., January 1971.

Software verification requirements must be compiled as
soon as possible. These requirements include test bed
configuration, levels of testing, change control procedures,
documentation standards, programmer/analyst manage-
ment policies, computer test hardware requirements (for
instance the role of emulation, digital versus hybrid sim-
ulation, test support software requirements, including data
base formulation and maintenance). Interfaces between
orbiter and booster engine and other avionics subsystems
must be defined. These overall requirements interact with
the avionics hardware and must be developed in conjunction
with the avionics hardware.

Verification can be considered as encompassing the follow-
ing areas: integrated vehicle, orbiter, booster, subsystems,
and software-only. Different verification requirements exist
for software-only versus the various relative amounts of
integrated hardware/software verification. For example,
the software-only verification can be effected using present
large scale digital computer systems with the appropriate
additional programming, combined with conventional tac-
tics (for example, desk debugging). Higher levels of
integration, however, require computer facilities similar,
if not identical to, the flight computer. This is the likely
role of an emulation strategy * to provide the flight computer
Instruction set within the test bed environment.

Hardware/software tradeoffs must be biased toward hard-
ware implementation. The following features are useful
for executive functions: hardware primitives, base reg-
ister addressing, index registers, push-down stack imple-
mentation, memory protect, fault triggering, restricted
storage area references, multiport memory access,
priority interrupt, and hardware (possibly microcode)
initialization and restart. Floating point hardware is
recommended for applications programming.

Certain error recovery procedures are presented for
illustrative purposes. Final procedures, however, must
be defined by a team of senior analyst/programmers and
engineers, in certain cases subject to review of me
astronaut-pilot.

44

The computer loading design point (in terms of computation
requirements compared with available CPU cycles) should
be taken as 50%. Available CPU cycles is a crude measure
of the parameter of interest, throughput. In terms of
utilization of main storage, the recommended design point
is 70%.

45

Page Intentionally Left Blank

APPENDICES

Supporting data for the Reusable Shuttle Flight Executive are provided
in these appendices. This information is divided into three classes:

• Functional Procedure Descriptions,

• Process Attribute Description, and

• Functional Flowcharts.

Each of these classes is given an Appendix. In Appendix A, Functional
Procedure Descriptions, information delineating the interaction of the process
with the other processes in the system is provided. Appendix B, Process
Attribute Description* contains information specific to a given .process.
Appendix C, Functional: Flowcharts v is made up of process descriptions in the
form of high-level functional logic diagrams.

The intention is that information of this kind will be utilized in the
construction and maintenance of the data base required for the non-deterministic
simulation and other aspects of the verification of the programming system.

47

APPENDIX A. FUNCTIONAL PROCEDURE DESCRIPTIONS

The following information is required for these Functional Procedure
Descriptions:

Procedure Identifier: The process name followed by a unique, alpha-
numeric process identifier. This identifier will be used by the utility programs
to access the process from the system libraries.

Purpose: A brief paragraph describing the functions accomplished by
the process.

Approach: A brief, but complete, account of the methodology used to
accomplish the process functions. Mathematical techniques must be portrayed.
Stability considerations, if any, must be included.

External Procedures Referenced: A simple list of the processes called
by the program. Such external processes can be cross-referenced in a utility
program to determine the possible effect of modifying a process.

External Data Referenced: A simple list of the external data items
utilized by the process. Considerations similar to the above apply.

49

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; PROCESS DISPATCHER (PRDSPR)

Purpose; The Process Dispatcher examines entries on the Ready list to

select the highest priority level entry awaiting execution. If the Ready list

is empty, the process branches to the EXAM process in order to determine

whether or not new processes have become critical. Upon detection of a

process awaiting execution, the Process Dispatcher initializes the process by

loading the contents of the Process Control Block into the active area and jumps

to the process location to begin execution.

Approach; Applications processes should use the SVC call EXIT to location

EXECB to avoid possible deadlocks.

External Procedure Referenced; Active Process

External Data Referenced; Global data, Process Control Blocks

50

FUNCTIONAL PROCEDURE DESCRIPTION

.Procedure Identifier; CLOCK UPDATE (CLCKPD)

Purpose; The purpose of the software clock update routine is to maintain current

time in the software time of day clocks, to decrement analog scan class timers,

to decrement watch-dog timers and to decrement execution delta T values for

entries in the Active list.

Approach; The appropriate software clocks are incremented or decremented as

required upon receipt of the clock periodic signal.

External Procedure Referenced; Examine Active list,

External Data Referenced;: Global data

51

FUNCTIONAL PROCEDUBE DESCRIPTION

Procedure Identifier; EXAMINE ACTIVE LIST for Critical Process (EXAM)

Purpose: This process allows time dependent scheduling. The highest priority

process with execution delta T equal to zero is inserted into the Ready list for

execution.

Approach; This routine is entered on a periodic clock, cycle. Execution delta T's

are checked starting at the highest priority level and working to the lowest. Time

critical processes are waked in order of priority. Necessary program accounting

for the prosess and for gathering performance statistics is accomplished.

External Procedure Referenced; PROCESS DISPATCHER, DATA STORAGE

ALLOCATOR, WAKE, Performance Statistics Processes

External Data Referencedr Global data

52

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; TURN ON (TURNON).

Purpose; Activate a Process places process control words in the Active list at

the indicated priority level. If the execution delta T is zero, the WAKE primitive

is invoked, placing the process ID directly on the Ready list for execution.

Approach; Three time bases can be used; Time of Day, Incremental, Relative

to Time Zero, These bases are converted to incremental and the Process Control

Word and Execution Delta T are inserted into the Active list at the indicated priority

level. '

External Procedure Referenced; WAKE, Data Storage Allocator

External Data Referenced: Process Control Blocks, Global data

53

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DELAY A PROCESS (DLYPRC)

Purpose; Delay provides an elementary method of causing periodic execution

of a process.

Approach; Options are provided to exit to EXECA or EXECB. EXECB is pre-

ferred. The delay requested in the call sequence is placed in the Active List

Process Control Word. The process control word is deleted from the Ready List.

External Procedure Referenced; Activate a Process, Process Dispatcher

External Data Referenced; Process Control Word, Blobal Data

54

FUNCTIONAL'PROCEDURE DESCRIPTION

Procedure Identifier: TERMINATE A PROCESS (TURNOF)

Purpose: TURNOF provides the capability to terminate a process so that subse-

quent activations will require re-initialization. To be executed at some future time

the process must be waked. Data storage is returned to the available pool.

Approach: Options are given to exit to EXECA or EXECB in the Process Dis-

patcher. The process control word is removed from the Ready list.

External Procedure Referenced; Process Dispatcher, Data Storage Allocator

External Data Referenced; Global data

55

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; SUSPEND A PROCESS (SUSI.O)

Purpose: SUSPEN provides capability to halt a process without executing a halt

instruction in the CPU. The process will remain in a suspended state until

released by the RLSPRC routine.

Approach; Suspend markers are set in the respective process control words in

the Ready or Active list entry. Optional exit to EXECA or EXECB of the Process

Dispatcher is provided.

External Procedure Referenced; Process Dispatcher

External Data Referenced; Global data

56

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: RELEASE A PROCESS (RLSPRC)

Purpose: The purpose of RLSPRC is to place a suspended process in the

execution state.

Approach; Suspend markers are removed from the process control words in

the Ready and Active lists. Optional exit to EXECB or the the process is provided.

External Procedure Referenced: PROCESS DISPATCHER, Applications process

External Data Referenced; Process control words, Global data

57

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; VOTE (VOTE)

Purpose: VOTE causes the Running Voting Controlling (RVC) computer to transmit

a value for voting to the slave computers. Data description (analog, digital) and

dead band may also be transmitted. In addition, the RVC raises a Vote signaL

line to the System Control Unit (SCU). For the case of the slave computers (RVC)

VOTE causes input of the values from the master computer. Software to compare

the input values with call sequence values is activated. In addition, a vote signal

is sent to the SCU with a disagree signal in the event of comparison failure.

Approach; The computer status word is input and state determined (RVC or RVC).

For the RVC, after data transmission is initiated, the process is put in a suspended

state. The slave computers are placed in a suspended state after the voting results

have been transmitted to the SCU. When evaluation of the computer voting results

and required reconfiguration is complete, the SCU releases the suspended processes.

External Procedure Referenced; SUSPEND, SCU, OUTPUT INITIATOR,

Application process

External Data Referenced; SCU select codes, Global data input buffers

58

'FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; SYNC (SYNC)

Purpose; The purpose of SYNC is to cause a synchronization request signal to

be transmitted to the SCU with the process-then suspended. The SCU analyzes

input from the computers. If all computers respond properly, the SCU releases

the suspended process. In the event that error conditions are noted, the SCU

causes error recovery through reconfiguration, when possible.

Approach: The SYNC process selects the synchronization signal and causes

transmission to the SCU. The process then enters the suspended state using

SSPND. Processes are released by the SCU using RELEASE.

External procedure Referenced; SSPND, OUTPUT INITIATOR

External Data Referenced; Global data, synchronization commands

59

TUNCTIONAL;"PROCEDURE DESCRIPTION

Procedure Identifier; DATA STORAGE ALLOCATOR (DTSTRG)

Purpose; The DATA STORAGE ALLOCATOR (DSA) provides allocation and con-

trol of data storage areas of main memory.

Approach; The call sequence will be analyzed for errors and the error notification

message and return sent using the OUTPUT INITIATOR, if required. Availability

tables of main memory blocks will be maintained. For allocation, the availability

tables will be searched for contiguous storage equal to the requested storage. If

not available, the best available return will be taken. If available, the storage

will be dedicated and appropriate accounting performed. To return storage, the

storage is set available in the availability table and a garbage collecting run per-

formed. This implies dynamic relocation of buffer areas and consequent programming

overhead.

External Procedure Referenced; PROCESS DISPATCHER, OUTPUT INITIATOR,

performance statistics processes, applications process, executive process

External Data Referenced; Global data, Storage Availability tables, Message

Definition tables

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: INPUT INITIATOR (NPTNTT)

Purpose; The Input initiator has responsibility for allocating input buffers

for message receipt. Dedicated buffers are assumed for message originating

at the Keyboard Input Devices or from the Uplink. The message header must

specify additional buffers required.

Approach: The Input Initiator operates in conjunction with the data bus controller

(DBC). Message control words are appended to the control word list if the DEC

is active. If the DBC is inactive, it must be activated.

External Procedure Referenced; Data Storage Allocator, Data Bus Control

Processes

External Data Referenced: Global data

61

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; INPUT CONTINUATOR (NPTCNT)

Purpose; The Input Contimiator handles programming considerations associated

with the end of message signal from the data bus controller. Hardware faults,

if present, are analyzed. A hard failure will cause execution of hardware diag-

nostics. Reconfiguration will be invoked, if required. Conversely, if the message

is error free, the classification will be derived and the correct processes acti-

vated. In addition, the watch-dog timer must be reset.

Approach: The Input Contimiator assumes that the data bus controller will handle

receipt of message only signaling either the end of message or an intermediate

error occurrence. Message input has been started by the Input Initiator acting in

conjunction with the data bus controller.

External Procedure Referenced; Hardware diagnostics, Output Initiator,

Peripheral Reconfiguration, Data Storage Allocator

External Data Referenced: Global data

62

FUNCTIONAX/TPROCEDURE DESCRIPTION

Procedure Identifier; OUTPUT INITIATOR (TPTNTR)

Purpose; The OUTPUT INITIATOR (OI) performs call sequence checking,

parameter passing, message formatting, request initiation and optional return

selection for messages output to peripheral devices. The TO operates in con-

junction with the data bus controller to accomplish message output.

Approach: After parameter checking, the OI gets the Device ID from the call

sequence and searches the peripheral configuration table for the device internal

hardware address. This address and other pertinent parameters are formatted

into the message to be sent. Execution control words are constructed and

transferred to the data bus controller. If the data bus controller is not active, it

must be initiated. If an immediate return is requested, the OI branches to the

applications process; otherwise, the return is to EXECB of the PROCESS DIS-

PATCHER.

External Procedure Referenced; PROCESS DISPATCHER, applications process

External Data Referenced: Peripheral Configuration table, Execution Control

words, Global data

63

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; OUTPUT CONTINUATOR (TPTCTR)

Purpose; The OUTPUT CONTINUATOH (OC) handles programming consider-

ations associated with a message complete signal from the data bus controller.

Transient hardware failures are separated from "solid" failures and recon-

figuration invoked, if required. Notification messages are initiated and the

Device Failure table updated. When preceding status has been updated, the

OC transfers required data to the performance statistics gathering processes.

Approach; Upon receipt of the message complete signal, the OC process resets

the watch-dog timer. Subsequently, the output status word is fetched and examined

for error conditions. In the event of error conditions, transient failures are

separated from hard failures by repeated attempted transmissions. If a hard

failure is detected, the hardware diagnostics are invoked and the PERIPHERAL

RECONFIGURATION called, if required. Notification messages are output as

required and the optional return to the applications process or to EXECB of the

PROCESS DISPATCHER taken.

External Procedure Referenced; PROCESS DISPATCHER, OUTPUT INITIATOR,

hardware diagnostics, performance statistics gathering processes

External Data Referenced: Device Failure tables, Global data, output status word

64

FUNCTIONAL PROCEDURE DESCRIPTION
i

Procedure Identifier; ANALOG INPUT INITIATOR (NLGNNR)

Purpose: ANALOG INPUT INITIATOR (AH) provides initialization for input of

the various scan classes of analog devices. An is activated periodically to
r

examine scan classes for criticality. Data referring to active scan classes is

transferred to the ANALOG INPUT CONTINUATOR^AIC) and INPUT/OUT PUT

INITIATORS for action.

Approach; After decrement of Execution Delta T's, the EXAM routine checks

scan class intervals (among others) for criticality. Detecting an active scan

class causes the AH to be waked. The An in turn performs programming initial-

ization necessary to cause input of the analog devices using the INPUT/OUTPUT

INITIATOR/CONTINUATOR's and the ANALOG SCAN CONTINUATOR,

External Procedure Referenced; DELAY, PROCESS DISPATCHER, OUTPUT

INITIATOR, ANALOG SCAN CONTINUATOR

External Data Referenced: Global data, Peripheral Device Configuration tables,

SCAN Result tables, Analog ID tables

65

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; ANALOG INPUT CONTINUATOE (NLGNCR)

Purpose: The ANALOG INPUT CONTINUATOR (AIC) handles programming

considerations associated with input of a group of analog sensors from each

area multiplexor. The AIC functions in conjunction with the data bus controller

to input the sensors that have been scanned by the ANALOG INPUT INITIATOR.

Approach; Upon receipt of the scan data ready signal, the AIC gets the active

scan class data, allocates input buffers, if required, and prepares control words

for the INPUT INITIATOR (H) and initiates the II. When the end of message

signal is received, the AIC performs limit checking, alarming and units conversion,

as required, and stores results in the Analog Scan Results tables.

External Procedure Referenced; PROCESS DISPATCHER, DATA STORAGE

ALLOCATOR, INPUT INITIATOR, OUTPUT INITIATOR ALARM, ENGINEERING

UNITS CONVERSION

External Data Referenced: Global data, Analog Input data, Analog Scan Results

tables, input buffers

66

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; ANALOG OUTPUT INITIATOR (NLGOPI)

Purpose; The Analog Output Initiator (AOI) provides programming interface

for applications process output of voltages or currents. The AOI operates

in conjunction with the data bus controller (DBQ. Call sequence errors are

logged using the Output Initiator. Return is to EXECB of the Process Dis-

patcher or to the applications process.

Approach: Call sequence parameters are checked and passed. Based on these

parameters, engineering units to digital counts conversion is accomplished for

the output device. The control word is then constructed, message formatted,

and output accomplished via the data bus controller (Output Initiator). Optional
\

immediate return to application process or jump to EXECB of Process Dis-

patcher is provided.

External Procedure Referenced; Output Initiator, Process Dispatches, Appli-

cation process

External Data Referenced: Global data, Peripheral Configuration tables,

Data Bus Controller execution list

67

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; ANALOG OUTPUT CONTINUATOR (NLGOPT)

Purpose; The Analog Output Continuator (AOC) provides optional delayed return

to the applications process or to EXECB of the Process Dispatcher. In addition,

AOC resets the watch-dog timer and performs error analysis functions on the

output request. Upon an error preventing completion of the output, logging of the

anomaly is done and return executed through the call sequence error return.

Approach; After resetting the watch-dog timer, the AOC retrieves the output

status word for the analog output. In case of the error situation described above,

the error message is formatted and output using the Output Initiator. Return is

selected from the call sequence to either EXECB of the Process Dispatcher or

delayed return address of the applications process.

External Procedure Referenced; Process Dispatcher, Analog Output Initiator,

Applications process

External Data Referenced; Global data, Output status word, Peripheral Configu-

ration table

68

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; DIGITAL OUTPUT INITIATOR (DGTLTP)

Purpose; DIGITAL OUTPUT provides an interface to applications process for

output of digital data to peripheral devices. Such data may be in the form of

timed contact actions, momentary contact action, pulse information or such

hardware manipulation as may be defined. DIGITAL OUTPUT operates with the

data bus controller (DEC) using OUTPUT INITIATOR.

Approach; Using the device ID from the call sequence, the device interval address

is found in the Peripheral Configuration tables. Using the device address and the

output designationj a message is formatted for the OUTPUT INITIATOR. If the

DEC is active, the execution control words are appended to the list for the DEC.

If the DEC is not active, it must be initiated. Option of an immediate return to

the applications process or a jump to EXECB of PROCESS DISPATCHER is provided.

External Procedure Referenced; PROCESS DISPATCHER, OUTPUT INITIATOR,

applications process

External Data Referenced; Peripheral Configuration table. Digital status table,

Global data

69

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; DIGITAL OUTPUT CONTINUATOR (DGTLCR)

Purpose; The DIGITAL OUTPUT CONTINUATOR provides a check to determine

error status that prevented successful output completion. Upon detection of

such status, the fault is logged using the OUTPUT INITIATOR. Optional delayed

return to the applications process or the EXECB of the PROCESS DISPATCHER

are also provided.

Approach; Upon receipt of the output complete signal, the DIGITAL OUTPUT

CONTINUATOR analyzes the output status word for errors. Detection of these

errors causes action described above. Additionally, the call sequence is

examined for return action required. Action taken is described above.

External Procedure Referenced; PROCESS DISPATCHER, OUTPUT INITIATOR

External Data Referenced; Global data, output status word

70

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; MASS STORE INITIATOR (MSSRNT)

Purpose; The Mass Store Initiator (MSI) interprets the call sequence to deter-

mine operation required (Read, Write, Write end of file, Sense end of file,

Rewind, Backspace). Acting in conjunction with the data bus controller (DBC),

the MSI programs "the initial conditions for the mass store operation.

Approach; The MSI formats a message composed of the selected information to

manipulate the mass storage device. If the data bus controller is active, the

control message pointer is appended to the execution list for the DBC and appro-

priate housekeeping functions associated with mass store manipulation and per-

formance measurement are executed. If the DBC is not active, it. must be

initialized.

External Procedure Referenced; OUTPUT INITIATOR, PROCESS DISPATCHER,

Applications process error return

External Data Referenced: DBC Item counter, Global data

71

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; MASS STORE CONTINUATOR (MSSSTR)

Purpose; The Mass Store Continuator (MSC) handles programming considerations

associated with an end of message signal from the data bus controller (DEC).

Error conditions preventing completion are logged via the OUTPUT INITIATOR.

Approach; The MSC checks the data transfer status word to determine whether

or not an error has occurred that prevented completion of the request. If, in

fact, this has happened, the occurrence is logged and the error return in the call

sequence is taken. If the request has been acted upon, the MSC determines

whether further data transfers are required. New requests are initiated until

the call sequence is fulfilled.

External procedure Referenced; OUTPUT INITIATOR, PROCESS DISPATCHER

External Data Referenced; Global data, data transfer status word, Peripheral

Configuration table

72

FUNCTIONAL PROCEDURE DESCEIPTION

Procedure Identifier; TIMELINE INTERPRETER/CONTROLLER (TMLNNT)

Purpose; The TIMELINE INTERPRETER/CONTROLLER (TIC) converts a sequence

of timeline activities into a process schedule for execution;

Approach; TIC is entered periodically, the timeline status analyzed and compared

with scheduled status. Discrepancies are alarmed, timeline history updated. A

check is then made to determine whether or not all processes for a mission phase

have been scheduled and if so, whether or not the phase is complete. A mission

phase complete override may be established here. If all phases are done, then

DELAY is entered. If all processes are not scheduled, they are scheduled as

allowable. If a phase is complete, next phase initialization is accomplished. Time-

line history is updated, performance statistic processes are entered and the usual

option of returns taken.

External Procedure Referenced; PROCESS DISPATCHER, performance gather

processes, DELAY, TURNQN, OUTPUT INITIATOR

External Data Referenced; Global data, timeline status data

73

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; PERIPHERAL RECONFIGURATION (PRLRCF)

Purpose: The PERIPHERAL RECONFIGURATION (PR) process selects a good

peripheral device, if possible, for input/output (I/O) operations. Operating in

conjunction with the hardware diagnostic routines (ST) and the INPUT/OUTPUT

INITIATOR/CONTINUATOR's, the PR examines the Device Failure tables and

the Peripheral Configuration tables to construct a select word for a valid device

for an arbitrary operation.

Approach; Upon detection of a hard failure in a peripheral device, the PR pro-

cess is waked. By examining the Device Failure tables and the Peripheral Con-

figuration tables the PR process selects a valid alternate device. The select

control word for this valid device is substituted for the failing device in the Device

ID Selection tables. Therefore, processes attempting to use this failed device
will instead use the substituted device.

External Procedure Referenced; OUTPUT INITIATOR, PROCESS DISPATCHER,

HARDWARE DIAGNOSTICS

External Data Referenced: Peripheral Configuration tables, Device ID Selection

tables, Global data

74

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; CPU RECONFIGURATION (CPRCNF)

Purpose; The CPRCNF process directs the System Control Unit (SCU) in the detection

of anomalies in the A&B computer operation. This is done by analysis of status signals

and interrupts sent from the computers to the SCU and control signals sent from the

SCU to the computers. The CPRCNF analyzes VOTE, SYNC and error notifications,

directing the computers in reconfiguration sequences, if required.

Approach; The CPRCNF has several entries: periodic, vote, sync, watch-dog timer,

and error. Statistics concerning system status are collated using stacking procedures.

Logical procedures detect anomalies and reconfiguration sequences are initiated. For

SYNC and VOTE requests, the watch-dog timer is set and status lists are periodically

examined to detect vote and/or sync state, In the case of SYNC, the computers are

released when in synchronous ignition or error analysis procedures initiated. For

the VOTE case, voting results are analyzed and reconfiguration sequences initiated

when required.

External Procedure Referenced; RLSPRG. reconfiguration sequences, statistics

accumulation process, performance statistics processes,PROCESS DISPATCHER

External Data Referenced; Computer status words, Global data

75

FUNCTIONAL PRGCKr.Ua',1; INSCRIPTION

Procedure Identifier: ALARM (ALARM)

Purpose: The ALARM process maintains current system alarm status, pro-

vides alarm notification as required, controls the alarm portion of the main-

tenance recording and provides an interface to the performance statistics

gathering process.

Approach: The ALARM process is called upon detection of an anomaly. The

call sequence provides Device ID, anomaly classification. The ALARM process

analyzes alarm history tables, formats notification message if required, and

initiates the message using the OUTPUT INITIATOR. Maintenance recording is

also done, if required. Data are transmitted to performance measurement

routines, as required.

External Procedure Referenced; OUTPUT INITIATOR, PERFORMANCE MEA-

SUREMENT, MAINTENANCE RECORDING

External Data Referenced: Global data, Alarm History tables

76

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DISPLAY INITIATOR/CANCEL (DSPYNR)

Purpose; The DISPLAY INITIATOR provides initial conditions for the CRT

displays. Each display required will have an ordered list of processes that

operate to change the initial map along with values defining the original map.

The DISPLAY INITIATOR will wake these processes after selecting the output

CRT and transmitting the initial map. Displays are cancelled by transmitting

a cancel request using the OUTPUT INITIATOR.

Approach; Call sequence parameters yield the display, output device and other

required data. The initial display is formatted into a message for the OUTPUT

INITIATOR and transmitted to the output device using the data bus controller.

Processes on the list associated with the display are waked. Option to return

to the applications process or to EXECB are exercised. For display cancel-

lation, the cancel request is formatted into a message and transmitted to the

device using the OUTPUT INITIATOR.

External Procedure Referenced; OUTPUT INITIATOR, PROCESS DISPATCHER,

DATA STORAGE ALLOCATOR, applications processor

External Data Referenced: Cancel control word, peripheral configuration

tables, Global data

77

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; DISPLAY CONTINUATOR (DSPYCR)

Purpose; The purpose of DISPLAY CONTINUATOR is to provide display

refreshment via the display refresh signal. Processes on the image manipu-

lation list are waked and the changed image transmitted to the requested

output device using the OUTPUT INITIATOR.

Approach; Upon receipt of the refresh signal the DISPLAY CONTINUATOR

wakes processes on the image manipulation list. Upon completion, the new

image is transmitted using the data bus controller. The message is formatted

and execution control words transferred to the DEC. If the DEC is not active,

it must be initiated. Exit is taken to EXECB of the PROCESS DISPATCHER.

External procedure Referenced; PROCESS DISPATCHER, OUTPUT INITIATOR,

applications processes

External Data Referenced: Global data, execution control word, Peripheral

Configuration table

78

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: TIMELINE DISPLAY (TMLNDS)

Purpose; TIMELINE DISPLAY (TLD) will provide a procedure to display on

a CRT selected portions of the mission timeline. The process will operate in

conjunction with the DISPLAY/miTIATOR/CANCEL/CONTINUATOR.

Approach; The call sequence will determine the subset of the timeline sequence

to display. The TLD will access the pertinent subset of the timeline and format a

call to the DISPLAY INITIATOR. The TIMELINE INITIATOR will treat the display

in the same way that other displays are handled. Timeline status display will be

accomplished similarly to the above.

External Procedure Referenced; DISPLAY INITIATOR, PROCESS DISPATCHER,

applications process

External Data Referenced: Global data

79

PROCEDURE DESCRIPTION

Procedure Identifier; PANEL SCAN (PNLSCN)

Purpose: Panel Scan provides facilities to determine the status of the panel

switches. Panel Scan is activated by a change of state signal or on a periodic

basis. Using the INPUT /OUTPUT INITIATORS and the Peripheral Configuration

tables, the status of the devices are input and stored in the Device Status tables.

Based on values of the input, arbitrary processes may be waked.

Approach: Upon detection of a change of state signal or of the process becoming

time critical, the Panel Scan process is activated. Using values from the

Peripheral Configuration tables, messages are prepared to select and input the

contents of the registers associated with the various switch positions. These

values are converted as required and processes waked as necessary. .

External Procedure Referenced; INPUT INITIATOR, OUTPUT INITIATOR,

PROCESS DISPATCHER, DELAY, TURN ON, Applications processes

External Data Referenced: Global data, Peripheral Configuration tables

80

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; DIGITAL INPUT (DGTLNP)

Purpose; The Digital Input Routine (DIR) has responsibility for reading the con-

tents of digital registers and storing the values in preselected buffer areas.

The DIR operates in conjunction with the data bus controller (DEC) using the

INPUT INITIATOR. Error conditions are logged using the OUTPUT INITIATOR.

Periodic operation is provided using DELAY.

Approach; Control words are constructed for each area multiplexor and respec-

tive digital values are input by formatting a message for the OUTPUT INITIATOR.

Upon ready condition, the data are input using the INPUT INITIATOR. This is

done for all area multiplexors. Execution control words must be transmitted to

the DEC for output and input. If the controller is not active, it must be initiated.

The time increment until next execution is passed to DELAY for periodic process

running.

External Procedure Referenced; OUTPUT INITIATOR, INPUT INITIATOR,

DELAY • - . - . . •

External Data Referenced: Peripheral Configuration tables, Execution control

word, Global data, Data bus controller, queue length

81

APPENDIX B. PROCESS ATTRIBUTE DESCRIPTIONS

1. Name. Each program is assigned a unique alphanumeric name.
The name will be sufficient to locate and define the module in libraries, in-
ternal storage, or external storage and is formed by the rules for acronym
definition.

2. Size estimates. Estimates are provided here for number of lines
of code and space required for local data. Word lengths are assumed 32 bits.
All sizes are given in decimal, and lines of code are qualified as either
assembly code (ASM) or problem-oriented language (POL) code, such as
FORTRAN, BASIC, etc.

3. Relative statement type. The percent of each different instruc-
tion class is estimated (logical or computational).

4. Execution condition. The frequency of execution (number of times
per second) and the number of operations per execution (number of instructions
executed per call).

5. Complexity. The complexity of a procedure is measured by the
number of loops, number of paths, number of flow diagram blocks, and block
exit density. These factors impact design intimacy, complication of coding,
and thoroughness of checkout. The exit density calculation will be a valuable
measure of complexity since it relates decisions and paths at module level.

a. Number of loops. The enumeration of repetitively executed
sequences of instructions. Loop level is multiplied by the number of loops at
each level (1, 2, . . .) to account for nestedness.

b. Number of paths. The number of transitions that can be
made among procedure subdivisions. This is the same as the total number of
exits from all blocks.

c. Number of blocks. The total number of flow diagram blocks.

d. Block exit density. Value of (b) divided by value of (c).

6. Type. This attribute is specified by the usage. A procedure is
either a simple procedure or a function.

a. Simple. This refers to a procedure that accepts input
parameters arid returns output parameters only through use of a formal param-
eter list or through global variables.

83

b. Function. A procedure which accepts input through a formal
parameter list and returns a single output through a hardware register is a
function. It may return an output that is in the machine format of an integer,
real, boolean, complex, or special variable.

c. Reentrant. This is a procedure that can be called repeatedly
at any stage of execution and properly complete each call. This implies that
the program module may not be dynamically modified and does not store inter-
mediate results locally.

d. Recursive. A procedure which calls itself (through the use
of push-down lists)-is said to be recursive. The call may be direct or indirect
through another procedure. A recursive procedure is not strictly reentrant
since it cannot be called at any point in its execution. It is, however, reentrant
in the sense that the recursion is accomplished by repeated calls (reenters at
the beginning) to itself.

7. Priority. An integer from 0 to n (where 0 is the highest priority)
that indicates the estimated relative importance or urgency for execution of
this procedure.

8. Development time. The estimated man-months required for
total programming implementation (requirements analysis through checkout,
including documentation).

9. Residence requirements. Main memory allocation requirements
for procedures, transient areas, overlays, and bulk storage considerations
will be estimated; an indication of storage requirements when the program is
in a dormant state is included.

10. Events causing execution. An indication of what event(s) must
occur in order to cause execution of the procedure is given. This should
expose transition routes among procedures and show the initiating conditions
and mechanisms for procedure connectivity. Examples are direct call by
another procedure, indirect call by queuing, and interrupt activation. A list
of the procedures that reference this procedure is given.

11. Output data description. Definition of the output guaranteed by
the process. This output will be considered as used by external processes.
The output must be demarcated as to range, frequency or other descriptive
parameters depending on the process function. Any modification of these
parameters must be investigated for system interactions.

84

12. Input requirements. Definition of the input data required by the
process. The process, in effect, guarantees that if these input specifications
are met, then the output will be as described above. Similar considerations
apply.

13. Remarks. Miscellaneous notations.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:

. (3) Boolean:
, <4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b: Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Process Dispatcher

100
0

B'O

.Called onieach activation of new process
Variable

2
14
8
1.75

No

No
No
No
No
Yes
No

Yes
0
TBD
100

Not directly
Yes
Possibly
Yes
NA
Call Sequence

86

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

7.
8.
9.

10.

11.
12.
13.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

c.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

Reentrant:
(1) Recursive:
(2) Non-Recursive:

Non-Reentrant:d.
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

Output Data Description-.
Input Requirements:
Remarks:

Clock Update

140

30
70

Clock Cycle Dependent

3
16
14
1.13

No

Yes
No
Yes
No
Yes
No

Yes
0
TBD
140

Yes
Yes
No
No
NA
NA

Dependent on requirements to
maintain software clocks and
watch-dog timers.

87

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d; Direct Call;

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Examine Active List for Critical Process

200

30
70

Entered after Clock Interrupt
200

2
21
19
l.O'l

No

No
No
No
No
Yes
Partially

Yes
0
TBD
200

Partially
No
No
Yes
NA
NA

88

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic: .'...
b. Signal or Interrupt:
c. Queue Processing:
d; Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

TURNON

130
10

30
70

System loading
100

2
W
11
1..4&

Yes

Yes
No

.. N»-
No
No
No

0
: TBD

1 140

t No
'• No
: No

Yes
;•: NA

•! Call Sequence

89

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

6.

b.
c.
d.

Type:
a.
b.

Simple:
Function:

7.
8.
9.

10.

11.
12.
13.

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

Output Data Description:
Input Requirements:
Remarks:

TERMINATE A PROCESS

140
0

10
90

System Load
Variable

2
8
6
1.33

Yes

Yes
No
No
No
No
No
No

Yes
0
TBD
140

No
No
No
Yes
NA
Call Sequence

90

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c,
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:

*b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks: •

DELAY A PROCESS

90
10

20
80

Used for periodic process execution
Variable

2
8
7
1.05

Yes

Yes
No
No
No
No
No

Yes
0
TBD
100

No
No
.No
Yes
NA
Call Sequence

91

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a.' Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations;

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Beal:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution;
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description-.
12. Input Requirements:
13. Remarks:

SUSPEND A PROCESS

90
10

10
90

Low
Variable

2
6
6
1.0

Yes

Yes
No
No
No
No
No

Yes
0
TBD
100 , ...

No
No
No
Yes ' " ' " "_
NA , " . """
Call Sequence ' . ' ' • ' _
Planned usage for diagnostic'applications

92

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

RELEASE A PROCESS

90
10

10
10

System Load
70

2
4
4
1.0

Yes

No
No
Yes
No
No
No

Yes
0
TBD
100

No
No
No '
Yes
.NA
Call Sequence

93

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

VOTE

140
10

30
70

System Load
70

3
26
22
1.2

Yes
No
No
No
Yes
No

Yes
0
TBD
150

Not directly
No
No
Yes
NA
Call Sequence

94

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a.' Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths;
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
, a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

SYNC

70
10

5
95

System Load
30

3
11
9
1.22

Yes

No
No
No
No
Yes
No

Yes
0
TBD
80

Not directly
No
No
Yes
NA
Call Sequence

95

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

7.
8.
9.

10.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

11.
12.
13.

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

Output Data Description:
Input Requirements:
Remarks:

Data Storage Allocator

600
10

20
80

System Load
Variable

TBD
TBD
TBD
TBD

Yes

No
No
No
No
Yes
No

Yes
0
TBD
610

No
No
No
Yes
NA
Call Sequence

96

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:
b. Number of Paths:

Number of Blocks:
Block Exit Density:

c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks;

Input Initiator

350
30

10
90

Function of System Load
Variable

4
24
20 . .
1.20

Yes

N o . . .
No
No
No
Yes
No

Yes
3
TBD
380

No
No
No
Yes
NA " '
Call Sequence, interface

97

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Input Terminator

750
0

10
90

Function of System Load
Variable

20
130
60
2.15

Yes

No
No
No
No
Yes
No

Yes
3
TBD
750

No
Yes
No
No
Interface Requirements

98 .

Date

PBOCESS ATTBIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a.' Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d; Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Output Initiator

300
60

30
70

System Load

4
13
11
1.2

Yes

No
No
No
No
Yes
No

Yes
3
TBD
360

No
Possibly indirectly
No
Yes
Device & Data Bus Controller Output Rqmts.
Call Sequence

99

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local' Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements: . .
13. Remarks-

Output Terminator

700
0

20
80

System Load
Variable

4
23
15
1.56

Yes

No
No . .
No
No
Yes
No

Yes
3
TBD
700

No
Yes .
No
No - .
Output Device Requirements
NA

100

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name;
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d; Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Analog Input Initiator

800
0

20
80

Scab Class Execution Rate

15
110
40
2.75

2
TBD
800

Yes
No
No
Possibly
Peripheral Device Requirements
NA
Functions may be done by hardware

(5) based on similar applications

101

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a.' Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive: •
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority.
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Analog Input Continuator

1500
0

20
80

Scan Class Execution Rate

20
150
100
1.50

No

No
No
No
No
Yes
No

Yes
3
TBD
1500

Possibly
Possibly
No
No
Peripheral Device Requirements
NA
Functions may be hardware implemented

(5) based on similar applications

102

Revision No.
•Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3> Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Analog Output Initiator/Terminator

350
0

15
85

5
16
10
1.60

No

No
No
No
No
Yes
No

Yes
3

350

Possibly
Possibly, indirectly
No
Yes
Peripheral Device Requirements
Call Sequence

103

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call: -

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Analog Output Continuator

50

10
90

System Load
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD

TBD-
TBD
TBD
TBD
TBD
TBD
TBD
TBD
0
TBD
50

No
Yes
No
No
Peripheral Device Requirements
As Above

104

Revision No,
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

7.
8.
9.

10.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type percent:
a.' Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)

11.
12.
13.

Real:
Boolean:

(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time: .
Residence Requirements:
Events Causing Execution:

a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. 'Direct Call:

Output Data Description-
Input Requirements:
Remarks:

Digital Output Initiator

100
20

20
80

Periodic

4
14
11
1.27

No

No
No
No
No
Yes
No

Yes
3
TBD
120

Possibly
No
No
Yes
Peripheral Device Requirements
Call Sequence

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

7.
8.
9.

10.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

11.
12.
13.

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call;

Output Data Description:
Input Requirements:
Remarks;

Digital Output Continuator

50
0

10
90

System Load
Variable

4
6
3
2.0

No

No
No
No
No
Yes
No

Yes
3
TBD
50

No
Yes
No
No
Peripheral Device Requirements
Same as Above

106

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Mass Store Initiator

100

15
85

Phase data, error recording
Variable

5
14
10
1.40

No

No
No
No
No
Yes
No

Yes
3
TBD
100

No
No
No> possible
Yes
Device Requirements
Call Sequence

107

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

: Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution;
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Mass Store Continuator

1100
0

10
90

Mission phase loading, error recording
Variable

TBD
TBD
TBD
TBD

No

No
No
No
No
Yes
No

Yes
a
TBD
1100

No
Yes
No
No
Device Requirements
NA

108

jJate

FWOCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursiye:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks: •

Timeline Interpreter/Controller

800

30
70

Skeleton periodically
Variable

7
24
19
1.3

No

No
No
No
No
Yes
No

Yes

800

Yes
Possibly
No
No

109

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data:

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution: _
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Peripheral Reconfiguration

700
50

20
80

Response to solid peripheral failure

11
44
35
1.25

Yes

No
No
No
No
No
Yes

Yes
0
TBD
750

No
Yes, possibly
No
Yes
Peripheral Configuration Table Design Rqna
Call Sequence

110

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

7.
8.
9.

10.

11.
12.
13.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

Output Data Description:
Input Requirements:
Remarks:

CPU Reconfiguration

4K
4K

20
80

Response to CPU failure
Variable

30
119
84
1.41

No

Yes
No
Yes
No
Yes
No

Yes
0
TBD
SCU

Yes
Yes
No
Yes
Reconfiguration Sequencer, Register Loading
Discussed in body of report
About 4500 words are estimated as required
to implement reconfiguration sequences.
Savings could be achieved by consolidating
similar parts of sequences.

Ill

Revision No.
Date

PEOCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

ALARM

500
0

20
80

System Load

6
60
32
1.85

No

No
No
No
No
Yes
No

Yes
3
TBD
500

Possibly
No
.No
Yes
Peripheral Device Requirements
Call Sequence
Alarm history tables required

112

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time-
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Display Initiator

450
20

20
80

System Load
Variable

5
17
13
1.25

Yes

No
No
No
No
Yes
No

Yes
3
TBD
470

No
Possibly indirectly
Possibly
Yes
Display device requirements
Call Sequence
Initiation procedure is hardware dependent.

113

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Display Continuator

450
50 (process list)

20
80

Refresh Rate
Variable

5
13
10
1.3

No

No
No
No
No
Yes
No

Yes
3
TBD

Yes
Yes
No
No
Display device requirements
NA
Hardware dependent

114

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

3.

4.

5.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a.' Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2)
(3)
(4)

Real:
Boolean:
Complex:

(5) Special:
c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Timeline Display Initiate/Cancel

500
20

20
80

Response to Timeline Status Display request
Variable

10
28
18
1.55

No

No
No
No
No
Yes
No

Yes
3
TBD
520

No
Possibly indirectly
No
Yes
Input required by DISPLAY INITIATOR
Call Sequence
Request is hardware oriented

115

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:

a. Code:
b. Local Data;

3. Relative Statement Type Percent:
a. Computational:
b. Logical:

4. Execution Condition:
a. Frequency:
b. Number of Operations:

5. Complexity:
a. Number of Loops:
b. Number of Paths:

Number of Blocks:
Block Exit Density:

c.
d.

Type:
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call;

11. Output Data Description:
12. Input Requirements:
13. Remarks;

Panel Scan

550
50 (Process response list)

20
80

System Load
Variable

•5
11
9
1.22

No

No
No
No
No
Yes
No

Yes
3
TBD
600

Possibly
Possibly
No
No
Process requirements associated with

switches. Peripheral Device Requirements
Peripheral Device
Possibly periodic operation or based on
change of state signal

116

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1.
2.

6.

Name:
Size Estimates:

a. Code:
b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

Execution Condition:
a. Frequency:
b. Number of Operations:

Complexity:
a. Number of Loops:

Number of Paths:
Number of Blocks:
Block Exit Density:

b.
c.
d.

Type;
a.
b.

Simple:
Function:

(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:
7. Priority:
8. Development Time:
9. Residence Requirements:

10. Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:

11. Output Data Description:
12. Input Requirements:
13. Remarks:

Digital Input

200
0

10
90

Scan Frequency TBD

5
13
8
1.62

No

No
No
No
No
Yes
No

Yes
3
TBD
200

Yes
No
No
Possibly
Digital Status Tables
Peripheral Device Requirements
Possible hardware implementation

117

APPENDIX C. FUNCTIONAL FLOWCHARTS

High-level functional logic diagrams are rendered for critical processes
in the Flight Executive. Typical examples of highly hardware-dependent processes
are presented.

119

to ._,
M M

o '*-*
g >>

-fi •§
S. s

.2 |
Q

•g
o !s

CU F-H

co 'Q
to
0) O.
o o
2 H
Q, O
" 4->

•8
O)

•5. bO ro
fl S m

° d *
<a g o

U
U
c
o,
cu
.c
o
h
I.
o

r>n
U
U
O
(C
L.

Ui
ce
3
O

S
et

 P
ro

ce
ss

P
oi

nt
er

 t
o 4->

ra
-IH
i—4

0

&
H

/
R

et
ur

n
\\

o.ca

a
0

V

I*

L

^L

- \-I 00 \
3 00 \ M
-. -0) ̂ \ W
^ «•. X

* -o "/
- fc /yoO, X
s- /
2 "'/

7

f~\
<
R <
S
M

^ J

••

.̂-̂

0 00
*^ 00
fi 0)

t
P

ro
ce

ss
 P

oi
nt

e
ne

xt
 P

ro
ce

ss
tr

ap
 r

et
u

rn
 a

dd
r

<U -wen a)
1/3

CQ a
CO & OQ
0) P W
O •«-> (U

S 4-> ^1
o> -o

p* ""rt
S fe"g'3 .2 g
rt C 42

•1-" -1-1 flj :

tJ o S
es ft

t— *

O .G

II_ *"

t H S
' « Q

•s m

•3 2
1 §

^^

CM

U_
o
CM

CO
UJ
a:

o
o

o
LU
OC

CD

121

<
Q_

O
O

o
UJ
cc
<

CM
o
Ula:
C9

X"V
CL

«
H

U
O
J
u

V->

Ul
ui ae wi
i- -<it

O HO
a. u. -i
3 0«->

VI
III ^ H
S O T
H O W

o ^_ S
U ^ ^f

£ a a
o u. o
o o "•

^ a.
o

122

O

CO
O

123

Q_

I
LU
>
O

o
LU
OC.

ts

124

bO
UJ
O
O

>
H-
O
«e
I

o
DC

irt
O

CD

125

c-o
LU
O
O

OC
LU

I
U.
O

CO
O

H

PH
CO

'\

^ W
f

2
H

^

fl « 1 ̂

« a ^ S
II | s

^ H * (P
ro

ce
ss

 I
D

,
S

et
 W

A
K

E
-

C
O

N
T

IN
U

E
M

ar
k

er

oc.
CD

127

UJ

°

o

CJ

28

1R
es

et
 P

ro
ce

ss
!

H
ol

d
M

ar
k

er CO

a <o
"* 33ts tf

CO
LLl
QC

TJ
-3
B

O

V
B
0>

129

130

o
>-

o
UJ
BZ

<S

131

O
o

o

o

<

CM
f-H
O
LU
oz

O
I—

.CO.
VH
O

133

134

k

1
•gS

m
•a So
c w
J-l CO

CO

1

"3oa
a
O

1
Cfl

**H S"""

0 „
^^ b£
^ rt0] CO
^ «C/3 aj

§

m

,
1

'

o
CSI

DC.
O

LU
oe

135

a
V -M

°

00
o

ii

U

4->

1

1 G
et

 M
es

sa
ge

P
ar

am
et

er
s

O
UJ
O£

CD

136

K
O

£
o

o ^
& to
ra «

g

d) 00

erf Q^

i 1
-u A

S ^

1

c3
2
rt

137

~N

*-3
O
1-1

-X

0)

c
re
O

0)
bfi g
m 5

8| g «
^ ™ S <s
a> w o p
O ft K PC

X

rt
•sp

X"^

<u
be
ClJ

^3
w

\ s
3̂
eao
J3

<

W
<

x^

Q

0)

O
o'rt
r\

C*S
o

o
0

f -\ ^

138

139

I ».2 o
JS O

W
H
tJ
P

CO
K

111!• " • * ->

140

Q.

O

S3
o
LU
ee.
CD

141

SP
CQ
0}

I

t-la
d

•S w

3 Q CO

co
y <u

a SP
S • WJ§

f-l
H

B-.S
53

ae
o

O
H
CQ

CD
O

O
LU
ac

142

143

LJ

S2
LU

144

cco

o
_l
<c

c5

csl
O

145

w55

>H
o
fl

-! - *

CM

2
ca

t! -H Xa -ad

146

DC
O

a:
o

CM
CSI
O

OH

(3

147

B S
o 5

"S SP So S a
II

<D

148

m ^° *»

o

•cr»
OH

W

en <Do> :-•
tf 5

0)
tf
^3

PQ

Pvl

u.
o
CM

C9

QC
O

tsy

CM
O

on
C9

•o §
D .S•o & ft
ri TJ °*
J^ Q O

£>S|
Q o

fc

^ ̂ N.^s»

^ 0l-ts
s «a s
^

(0 \p
5
0)
«
M
op
^. W j

149

H-i

I J

CJ

IE

= :
4]
UJ

UJ

o
uT

to CQ

v a g
OS* 5

S? Q)
P ^ 2
& *§

3 S" 1F
or

m
at

A
la

rm

1
M

es
sa

ge

I

0•a•o
Q,
P

1T
im

el
in

e
1

H
is

to
ry

\ -

150

w
O)

a1
rt
X
O
0>

•iH
I— 1
01

/^^V
CO

^H

j
§̂
H

LJ

i .

•§lH .2
0) l-l
1 •*

IS5--
•

H

- i1
S -g
W -rH

3 ?o *•*o o

&?rt

esiU_
O
csi

UJ

O

CM
O

cz

151

I

O
ixJ
QC

152

CO
U_

O
esi

Q)
N
s S
^ * -3
i. >

toh

R
es

et
F

ai
l

In
di

ca
to

/~
CD

i-H

W

g
_

fl
0) CO
5 2
§ W 5
tH rt
a > « CQ 3 rt

a 5 h
o 43 a>^ co

O

<:a:

o
O

<ca:

IT)
CSI
O

153

eg

W

8

JJ

154

155

o:

O
o
UJ
oz

0.
o

CJ
o

156

oc
(S

o
o

a.
o

CM
o
UJoc
CD

157

u
Li

UJ
CK

158

d
W
V(

2f->
w

cu
3

<B H1<
o

*• o
® s
0-S

W

c
0

Se
t

ST
 M

od
e

In
it

ia
li

za
ti

D
at

a

0)

8
01

I
o H
*> OT

OS

o
U-

o
o
LU
OS

s
oc
ta

159

u
c
u
Hu

160

W

CO

§ n
o- »I-a
g

W

CO
v.

8

C3

O
O

CL
O

to
CM
O

161

1
tn
V
§

3â
0
fe

0)
o
C bl

. nS Cf-t 2 .i-c

•8 IE
a) c o

s?llto g P5

CM
CJ
LU

•0

C
LL.

62

w
F

o
rm

at
N

ot
if

ic
at

io
n

1
M

es
sa

ge

/

O
ut

pu
t

\
V

In
it

ia
to

r
/ CNI

Lu
O

O

<
o

c
H

%
D,
CO

2^

>> *a
«?.c£

C
o

n
st

ru
ct

In
it

ia
l

D
is

p]
M

at
ri

x
W

it
A

re
a

R
eq

u
ii

^

^
a•s
Q

^x

^^^̂Nk

/
S

to
ra

g
e

\
A

ll
o
ca

to
r

O <U Qj

Z 3 &

!|r
S ^ ^

163

eo

I
o

u
c
e«

u
ua

u
c

u
h

Q.
c/

a

C.
UJoc
ts

164

2 aa «

o
>-

o.
O

•

O
UJ

C9

S
el

ec
t

P
ic

tu
re

M
at

ri
x

fo
r

T
ra

ns
m

is
si

on

165

O
IU
O

DC
O
111
o

Q |

C& U_

> UJ oo-o b!

H
°

O z

NASA-Langley, 1971 - 08
Coml., Newport News, Va.

167

PCJR ysc FIRST CLASS MAIL

ANO FEES P*fD

: Woimtooa
dblvld to« «r rf'Wue to If ASA aoivijits.

as a
con trib utiou to existing knowledge,

11CHNICA1. MEMC»AMDUMS:
JtefornaatifflEi receiving limited dteibEtt ion
because <rf prenmwary data, i^carity classlf ca»
tion, or oeher reasons.

CONTRACTOR REPORTS: Scientific and
tediakal Jttformation generatecl under a NASA
contract or grant and considered act i

to cxivtuig

jaonographs, data compilations, handbooks,
source ties.

TECHNOLOGY
PUWJCATKSNS: laforination on i
«sed by NASA that may be of particular
jaterest in coaauerefel aftrf ortier i
appiicatioas. Pablicatioos inclade Tech Briefs,
Technology Utilization Reports and

Surveys,

Detslls oft the availability of these publications may be obtained tram:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATfON
Wtthirt$ten, D.C. 20546

