

- TECHNICAL REPORT STANDARD TITLE PAGE
1. REPORYT NO. , 2. GOVERNAENT ACCESSION NO, - 3. RECIPIENT*S CATALOG NO.
NASA CR-1867T| -) ' ' :
4, . TITLE AND SUBTITLE 5. REPORT DATE
Spaceborne Computer Executive Routme Functional Design] October 1971
Specification, Volume I. Functional Design of a Flight 6. PERFORMING ORGANIZATION CODE
Computer Executive Program for the Reusable Shuttle B
7. AUTHOR(S) - 8. PERFORMING ORGANIZATION REPORT #
R. T. Curran . :
9. PERFORMING ORGANIZATION NAME AND ADDRESS ’ 10. WORK UNIT NO.
Computer Sciences Corporation N
Field Services Division, Aerospace Systems Center 11. CONTRACT OR GRANT NO.
8300 South Whitesburg Drive] : NAS8-24930
ille ma 35802 . 13. TYPE OF REPORT & PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS Lo .
actor
National Aeronautics and Space Admimstratlon Contrac Final Report
Washington, D. C. 20546 14, SPONSORING. AGENCY CODE

. SUPPLEMENTARY NOTES -

_Techniques utilized in the regulation of process flow to accomplish activation, resource

_integration in the Reusable Shuttle avionics system are proposed. -

ABSTRACT

This report presents a flight computer functional executive design for the Reusable
Shuttle. The design is given in the form of functional flowcharts and prose description.

allocation, suspension, termination, and error masking based on process primitives are

considered. Preliminary estimates of main storage utilization by the Executive are
furnished. Conclusions and recommendations for timely, effective software-hardware

This document is Volume I of a three-volume report entitled ''Spaceborne Computer
Executive Routine Functional Design Specification. " The other volumes are:
Volume II; Executive Désign for Space' Station/Base -

Volume III: Executive Routine Primitives and Process Control

17.
Reusable Shuttle Unclassified - Unlimited
Executive Program ‘ :
Avionics

KEY WORDS 18, OISTRIBUTION.STATEMENT

Real-Time Momtor

Onboard Computer

Data Management Systems
Information Mana,gement Systems

19.

SECURITY CLASSIF. (of this reparty 20, SECURITY CLASSIF. (o! this page) 21, NO. OF PAGES | 22, PRICE

Unclassified Unclassified ’ 177 $3. QO

For sale by the National Technical Inforrnation Service, Spri"ng-"'field, Virginia 22151

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION v v v v vt v v o o c.. 3

SECTION II. DESIGN OVERVIEW/ORGANIZATION ., 5

SECTION I1I. PROCESS FLOW REGULATION , e ... 13

A. Activation e e e e e e e 13

B. Device Allocation e e e e e 19

C. Main Storage Allocation 20

D. Central Processing Unit Allocation 20

E. Process Suspension/Termination 21

SECTION 1V. FAILURE RESPONSE TACTICS 23

SECTION V. CONFIGURATION CONTROL e e e e e s 25

SECTION VI. INTER-SUBSYSTEM INFORMATION FLOW. 31

SECTION VII. EXECUTIVE STRUCTURES 3b
'SECTI'ON VIIIL. PRELIMINARY ESTIMATES OF MAIN STORAGE

UTILIZATION O 12

SECTION IX. CONCLUSIONS AND RECOMMENDATIONS 43

APPENDIX A. FUNCTIONAL PROCEDURE DESCRIPTIONS 49

APPENDIX B. PROCESS ATTRIBUTE DESCRIPTION ., 83

APPENDIX C. FUNCTIONAL FLOWCHARTS 119

iii

|
LIST OF ILLU STRA!TIONS

Figure Title | . Page
‘ |
1 DMS Block Diagram for the Centra?lized System ., 6
2 Gross Process Scheduling Flow ' 7
3 Central Computer Executive Organjizational Diagram 9
4 Process State Diagram e e e e e e 14
5 Executive Logic Flow . ., i’ 15
6 Interrupt Service Overview , . . : R 18
7 CDPU State Diagram As Seen By System Control Unit 28
Cl Process Dispatcher 120
C2 Software Clock Update - EXAM. 122
c3 Insert in Ready List S 123
Cc4 Remove i v, \ 124
C5 Activate 2 PToCesS v v v v v v v v v v v v v oo 125
C6 Terminate a Process L 126
Cc7 Delay ¢..... ‘;" 127
C8 Suspen/Releas, ,"’ 128
C9 Hold/Resume v v v i it o et o et et e e e e u 129
C10 Vote+ ... e e e e e e e e e e e s e 130
C11 Sync00 .. e e e e e e e e e e w e e e e 131
C12 Data Storage Allocator 132
C13 Input Initiator e e e e e e e e e e 133
Cl4 Input Terminator v 0 oo 134
C15 Output Initiator ¢t v v v v v .. 140
C16 Output Terminator e e e e 141
c17 Analog Input Initiator, e e e 142
C18 Analog Input Continuator . . ., (...... 143
Cc19 Analog Output Initiator/Terminator 144
- C20 Digital Output Initl:ator 145

iv

Figure

C21
C22
ca23
C24
C25
C26
c27
C28
C29
C30
C31
C32

LIST OF ILLUSTRATIONS (Continued)

Title | Page
Digital Output Terminator e e e e 146
Mass Store Initiator v it e . 147
Mass Store Terminator 148
Timeline Interpreter/Controller 150
Peripheral Reconfiguration 152
CPU Reconfiguration e e e e e 155
Alarm . . L L L L s e e e e e e e e e e e e 162
Display Initiate/Cancel «.... .. 163
Display Continuator 165
Timeline Display. ¢ v v et o v v v v v v o 166
Panel Scan e e e e 167
Digital Input i v 168

LIST OF TABLES
Table Title

1 Preliminary Main Storage Requirements

Estimate Summary

2 Preliminary Main Storage Requirements

Estimate

vi

Symbol

Active List

CPU
DBM

Execution Delta T

FIFO
1/0

IOCU

KB

LRU

MDAC ‘
PCB

PD

Process Control Block

Process ID

Ready List

DEFINITION OF SYMBOLS

Definition
List of processes that are time-dependent. Each
process will be transferred to the Ready List when
the Execution Delta T is decremented to zero by the
Clock Update routine.
Central Processing Unit

Data Bus Monitor

Part of process data in the Active List, representing
incremental time until execution (countdown).

First In, First Out

Input/Output

Input/Output Control Unit

10010

Keyboard

Line Replacement Unit
McDonnell-Douglas Astronautics Compa.ny
Process Control Block

Powered Down

List of information required by the Executive in

- order to maintain priority performance of processes.

Data includes register storage, process priority
level, beginning location for execution and allied
information,

Identifier part of process data in either Active or
Ready Lists., Data contains priority ass1gnment and

pointer to the Process Control Block.

List of processes that have been waked and are to be

executed by the Process Dispatcher on a priority basis.

vii

~ Symbol
RVC
RVC
SCU

ST
Standby
sve

TLIC

DEFINITION OF SYMBOLS (Continued)

Definition
" Running Voting Controlling
‘Running Voting Not Controlling
System Control Uﬁit '
Self-Test |
Power on but not executing code
Supervisor Cali |

Timeline Interpreter/Controller

viii

FOREWORD

The work reported herein was administered in the Systems Research
Branch, Computer Systems Division, Computation Laboratory, MSFC, with
Bobby C. Hodges assigned as Contracting Officer's Representative. The
writer would like to thank Mr. Hodges for his helpful suggestions on the content
and emphasis of the material covered in this report.

SUMMARY

This report comprises the generic functional design for the Space Shuttle
flight computer system executive. The executive provides the basis for con-
trolling all process flow within the flight computer system.

The executive design concept is based upon an analysis of known program
requirements, similar space projects, and experience in the design of compar-.
able computer software. Assumptions are made and parameters are established
to identify critical decisions and the impact of those decisions on the computer
system and the executive,

The generic functional design is oriented specifically to provide a basis
for subsequent modeling and simulation. The executive, as defined, may be
considered a baseline programming system to complement the Space Shuttle
Phase B Hardware Definition.

The functional design identifies crucial elements of the executive
system as:

° Process Activation
° Device Allocation
° Main Storage Allocation

° Central Processing Unit Allocation

° Process Suspension and Termination

The functional executive design specifies a control structure for
scheduling the Space Shuttle application processes according to a wide range
of execution priorities and timing requirements. Necessity for modification of
system applications processes during two-week turnaround period was a primary
factor in each design criterion,

Verification of hardware and software design requirements as delineated
by this report should proceed in parallel with subsequent simulation and eval-
uation to minimize development costs and reduce implementation cycle.

An extensible version of the FORTRAN language with carry-through
capability is recommended as a baseline implementation language for the flight
Executive and the application programs.

-

Detailed man-machine interface requirements must be further developed
with emphasis on critical mission phases, Further study is essential on all
phases of the Avionics system to:

° Determine the efficacy of the Executive in meeting Space
Shuttle requirements,

° Develop detailed software requirements,

° Verify integrated hardware/software interfaces,
° Identify hardware/software tradeoffs in system configuration, and

° Ascertain actual computer loading parameters.

SECTION I. INTRODUCTION

This report is submitted in compliance with requirements of NASA
Contract Number NAS8-24930 for a final report on the Functional Design of
a Flight Computer Executive Program for the Reusable Shuttle,

The problem of evaluating radically different approaches to the design
of a complex computer executive system has, by no means, ‘a'straightforward
solution, The generic functional design of the Space Shuttle flight computer
executive, outlined in this report, is oriented specifically to provide a basis
for subsequent modeling and evaluation by simulation.” In addition, the flight
computer executive system, as defined herein, can be considered a baseline
programming system to complement the Phase B hardware definition. The
executive also establishes reference for the specification and design of appli-
cations processes, such as Navigation and Guidance, helps in estimating main
storage requirements, and sharpens requirements for hardware/software
trade studies.

The functional design identifies crucial elements of the executive system.
The operation and interaction of these elements are discussed utilizing prose
description and flow diagrams. The discussion is presented from the point of
view of the regulation of the flow of control through the processes within the
system, assumed to be in a steady-state operation. New process activation,
brought about by start signals (possibly interrupts) or based on critical time
dependency, is analyzed. Regulation of the demand on system resources by
an executing process is scrutinized. Completion of the process task implies
that the executive functions associated with rescheduling or termination must
be invoked. In contrast to the successful run to completion of a process,
faults or error conditions interrupt the application process to cause execution
of failure-masking processes. A failure is masked by reconfiguring the sys-
tem. This reconfiguration is effected so that either the failed device is :
replaced by an intact Line Replacement Unit, or a graeeful degradation: strategy
is adopted. In the graceful degradation mode, the device is removed from the
active system, but no replacement is available.

The functional executive design specifies a control structure for
scheduling the Space Shuttle application processes according to a wide range
of execution priorities and timing requirements.

The report comprises the following:

° Design Overview/Organization

° Process Flow Regulation

° Failure Response Tactics

o Configuration Control

) Inter-Subsystem Information Flow
e Executive Structures
° Preliminary Estimates of Main Storage Utilization

Procedure Descriptions, functional attribute descriptions, and
flowcharts are provided in the appendices.

SECTION II. DESIGN OVERVIEW/ORGANIZATION

The computer configuration used as a design basis for the executive
system is the centralized configuration proposed by McDonnell-Douglas
Astronautics Company (MDAC) (1). This configuration consists of four
computers with associated Input/Output Bus Control Units (IOCU), two mass
memories, two maintenance recorders, and a redundant System Control
Unit (SCU). (See figure 1.) Each computer communicates with any of four
data buses through its IOCU. The SCU communicates with the computers via
hardwires rather than the data buses, and is responsible for computer fault
isolation and reconfiguration. Communication with the mass storage devices
and maintenance recorders is via the data buses. 4

In addition to the central computers discussed above there are display
processors and engine computers (two computers/engine).

The central computer executive, however, is chosen for elucidation
as representing the most complex programming system present. In addition
to process flow regulation within the central computer system, the central
executive is responsible for scheduling processes in the display processors
and in the engine computers. (See figure 2.)

‘In éontrast, the display processor execu_tives ai‘e-special;purpbse in
nature and can be a subset of the central computer executive (depending,
however, on hardware/software trade study results).

The SCU parallels the engine computers in that it has responsibility

- for a very particular assignment; i.e., the masking of central computer
faults by reconfiguration. The SCU apparently (depending, however, on
current trade study results) will be highly hardware-implemented and require
merely a skeleton software executive. Procedures to accomplish reconfig-
uration by either hardware or software implemented processes are discussed.

1McDonnell—Douglas Astronautics Company: Space Shuttle Phase B Systems
Study, March 1971

W3LSAS 03ZITVYLNID-HO4 WYYDVIO D019 SNA T 3¥N914

Snd viva

z ayowaw | Nid
SSYW nia
¥3aquod3y | Nid
¥3qyod3y | Nid
FONVNILNIVW | nyq
L AYOWIW lg
SSYNW - a

¥ NOOl ¥ 431NdWOD
€ N0 € ¥31NdWOD
73Nvd NOS
LINN
J0¥1NOD
. | WALSAS
Z Nd01 Z 431NndW0D
L N0} L ¥3LNdWOD

snd viva

MO0 ONITNAIHIS SSII0Ud WILSAS °Z 3¥NIIA

3INAIHIS $S300AUd
ANIONI DIsve

W3 L1SAS
431NndW0D
‘ANION3

:408$320dd AVdSIA

$3ONVEiNLSIa

JONVEANL L6

-sia /Hbo

SIINVHO
ONITNAIHIS $S3D0Ud

$153ndD3Y $$300dd
YILNIWOD TVILNID ANITAN 8 N

N

4

ANIT ANIL :

From the preceding, our approach becomes apparent. The birth and "
death of new processes occurring in the central subsystem, assuming a steady-
state operation, are analyzed. The executive operations required to cause a
process to be executed upon command are cited. This process may conclude
successfully or be disrupted by an error. If disrupted, executive procedures
are-detailed that record suitable concurrent information (for post-flight analysis)
and mask the fault, usually by reconfiguration. The process is reentered at a
later time, competing priorities permitting, until execution is complete, When
execution is complete, terminati_on procedures are invoked to return resources
and perform executive list maintenance. . The central computer executive is
chosen for study since we believe that the engine computer, display processor
and System Control Unit executives will be a subset of the central computer
executive, '

The central computer executive is designed as a set of cooperating
process modules. (See figure 3.) The modular organization is broken down
into six major classifications:

° Kernel,

° Input Output,

° Timeline,

° Error Masking,

° Displays, and

) Status Input.

Within these major categories the constituent process modules are
delineated. Process modules may be removed from cooperation with the

Executive Kernel or other modules added with minimal disruption of the
executive functions.

(€ 40 T L33HS) WYYHOVIQ zo_._.<N_z<c~_o u>_..~=ouxw Y31NdWOD TVHINID °¢ 34N9Id

INAS

JL0A

ELIGEL]

Q0H
aN3adsns
ERNEREL]
AV13a
d0NdNL
NONMNL

¥0ss3O08d
J7vd
¥OSIANIdNS

¥OLY2017V
. 39VHOLS mxpu<oa4¢u:
WyvY viva
— 3sv3nay

(NVIS ™ "(winn aN3dsns

vi19ia) TO¥LINOD - YWOD |

s3DIA3G - _ WILSAS) .$S320ud ANNILNOD
37avisie - —xOh<¢:OE — NOLVYDIddV, INYM UYITANVYH

- NOD3H 1 ¥3Aua ©OLIvA 1dNA¥ILN
L ndd ANITINIL SAAILIWING
SN
NVd
$3D1A30Q yoLvynot A 4517 ¥IAHDLVdSIQ
300> NODId /¥313ud¥3l . JAILOY ¥OSSII0Nd
aviigia € 40 € L33HS IVY3HdINAd ANITIWIL § €40z 133K ANINYX3
. . 0/1)
1NdN} INDISYW (
ine
SALVLS SAVAdsia ETE 3N 1paint TINE
C ' I T T T

1

3AILND3X3 1HOINL

YOLVNNILNOD
3YO0LS
SSYW

dOLVNIWY3IL
indino
aviioia

YOLVILINI
3301S
SSYW

JOLVILINI
1ndLno
aviioia

JAOLS SSYW

0/1 1v1i91a

YOLVYNIWYI L
1ndino

(€ 40 Z 133HS) AV¥OVIC NOILVZINYOYHO JAILNIIXT HILNAWOD TYHINID € JUNIIS

YOLVILING
1Lndino
907TVNY

JOLVNIWNIL
1NdNE
90TVNV

HOLVILINI -
LNdNI
907VNY

YJOLVNIWY3L
1nd1ino

YOLVILINI
lndLno

YOLYNIWNAL
1NdNI

JOLVILINI
L1NdNI

0/1 901VYNY

syivd

1Nnd1no/1ndNI

YOLVNINY3L / YOLVILINI
(0/1) 1nd.1NO/LNdNI

10

(€ 40 £133HS) NY¥IVIQ NOILYZINVIYO JAILNIIXT YILNANOD TVYINID °¢ 34N9Id

Aeydsi1qg

snjels
surewIL I,

J10jBnurjuo)

Lerds1q

[9oue)
/@¥enug
Lerdsiq

AVIdSI1d

11

Page Intentionally Left Blank

SECTION III. PROCESS FLOW REGULATION

Regulation of process flow is the dominant purpose of an exécutive, In
the direction of this.flow, certain conflicts must be resolvec . rior to process
activation. Such resolution is generally made by choosing the highest priority
contender, although more sophisticated algorithms are sometimes warranted,
During process execution, other conflicting demands for resources arise -
usually for main storage or for peripheral devices. Such conflicts are reg-
ulated as mentioned above. Finally, terminating processes must relinquish
Tesources to permit allocation to lower priority processes whose execution
has been held up due to lack of these resources.

A, Activation

To illustrate the principles involved in activation of a process, refer
to figure 4. This figure reflects the states that a process can enter as a
result of a Supervisor Call (SVC) or as a result of preemption by a higher
priority process. State transitions are governed by a collection of programs
-ecalled the Executive Kernel, comprised of the following algorithmic functions:

e . Process Dispatcher,
° Examine the Active List (EXAM),
° Interrupt Handler,

) WAKE, WAIT, SUSPEND, RELEASE, CONTINUE, COMA
’ primitives (possibly hardware implemented),

e Clock Update,
° ' Data Storage Allocator, and

° Supervisor Call processors TURNON, TURNOF, EXIT,
DELAY, RELEAS, SUSPEN, HOLD, RESUME, VOTE, SYNC.

Control of the state transitions is illustrated in figure 5, Executive
Logic Flow. When Executive control is in EXAM, the system is said to be
dormant. In this case, control will loop on a check to determine whether or
not time-dependent processes have become critical. Critical processes are
waked (activated) and control then passes to the Process Dispatcher for sub-
sequent Arithmetic Logic Unit (ALU) allocation and process execution. If
no time-dependent processes require activation, possibly hardware diag-
nostics can be executed. Otherwise, the looping continues until an interrupt
is detected. Interrupt response processes are scheduled using the WAKE
primitive, with the exception of the Clock Interrupt. Here, control passes

13

o WYYOVIO 31V1S $S3004d °v 3dN014

-\

11ed
‘TLOA Homwtoazm
dojs
AANLLNOD
pajdwaaad
Jayoyedsiq
¢ §59001d
NVXd

A °1pl v ssuodsay 1dnatard]

ONHNL

\ONHN.L

103B191U]

)

ANNSTYH
d'TIO0H

'

14

923x3

M014 31907 3AILNJ3IXI °6 ¥NOIA

$1S3Nd3IN

N3N13y

aN
LIND .
T0YLNOD saaSoud
WILSAS e
3
A
$§320ud $5320¥d
LX3IN
LIVM 17v>
anN 1vdsl INNILNO
INAS .
JoNunL . VNIW
2lon % NIW¥3D) (HOLVILINI

N3dsns
asvaiay
awnsay
“a70M
Aviag
NON¥NL
1IvD
HOSIAY¥IdNS

WYX3

dVYL WON 4
N3NL3N

¥3HOLVdSIa
$§320¥d

aivadn
ploleinls]

ax3)
TNNIS

) (o) () (o)

$$300¥d
SNOILVOITddY

Sdvil

15

16

to the Clock Update routine and then can pass back to EXAM to ascertain
whether or not the passage of time has caused a process to become critical.
If this, in fact, proves to be so, the process is waked and possibly becomes
the executing process. Application processes -may communicate with other
processes and hardware via Supervisor Calls only. As the figure shows,
Supervisor Calls to Initiators can return to the executing process. This
facility is provided to enable external communication without relinquishing
control. Control can be given up temporarily by an option in a call to an
Initiator. In this case, the Terminator associated with this Initiator can

‘return control at the completion of the operation. Control is relinquished

through the use of the Supervisor Calls EXIT and TURNOF.

A process may be suspended and released by the Executive when it is
in any of the states shown in figure 4.

Process activation can be considered from the point of view of the
executive system or from that of the process. From the executive system
point of view, the following techniques must be provided to ensure timely
process activation:

° The Executive Kernel maintains two lists of Process Control
‘Words sorted by priority level with the highest priority items
chosen before the lowest. The lists, known as the Ready List
and the Active List, contain process identification and priority
level data used by the Process Dispatcher to resolve priority
conflicts and to allow scheduling of time-dependent processes.
In addition, each entry has a pointer to the Process Control
Block for the associated process.

e Software clocks are maintained for several purposes. Of
chief interest here is the need to decrement the time interval
until next execution of a periodic process. The time interval,
Execution Delta T, is kept in the Active List as part of the
process state and identification data.

. If the clock updating routine is executed, the Active List is
then searched for processes that have become time critical
and are candidates for Ready List insertion. Ready List
candidates are inserted in the Ready List according to
process priority level.

° Data buffer areas are provided when requested. Associated
with this provision is the necessity to maintain an inventory
of available main storage and provide dynamic relocation when
contiguous areas are assembled by the ""garbage collecting"
function. ’

] Process terminations must trigger the executive routine that
searches the Ready List for processes that have been waked.

° If the executive is not otherwise busy, it loops around a test
to detect time critical processes.

° Executive call sequences provide an interface between the
Data Management System and application processes. An
application process must communicate with an external
process or peripheral device via the executive,

° Validity checks are conducted on all executive call sequences.

With the preceding executive structure, processes can be activated as
follows:

° An interrupt arrival will cause the process to be placed in
the Ready List at the selected priority level. From this
point, executive dispatching operation will cause the process
to be entered. '

. An executive call to activate a process, such as TURNON,
will cause the process to be placed in the Ready List at the
selected priority level unless the call sequence contains an
Execution Delta T greater than zero. In this case, the
process will be placed on the Active List. Once on the
Active List, the clock update procedure will decrement the
Execution Delta T until the process becomes critical, and then
place the process entry in the Ready List as previously described.

° A process activate command may be detected during inter-
pretation of uplink data, in keyboard input, in transmitted
data from the central computer, or in the timeline sequence.
The activate command is handled as discussed above after
discovery and interpretation by the Input Terminator.

Of key importance to the preceding discussion is the overview of the
scheduler operation shown in figure 6. This is an information flow diagram
of the logic associated with the start signal, interrupt servicing procedures,
and the Process Dispatcher convocation. The following techniques become

apparent:
. Error conditions must be corrected prior to examination of
other factors. '
e Once error conditions have been corrected, abort requests

can be answered. If the abort request is not confirmed, a
special process is required to reinstate any procedure that
has been preempted.

17

AYVNINIT3Y4d = MIIAYIAD JJIAYIS dVHL 9 J4N9IS

VOuIXd

xopuj -
deaj,
pliEliER b Lig |

IN

1:pao1AIIS
sdex)

£89001d 310QV

3 WIPFUOD
1a0QV

£ 88900ad
DAVM

1:sI03BOTPUT |

901AI9S
dexl

deay, Auy

18

° If the preceding actions are not required, or if response is
complete, other sources of action can be identified. Asso-
ciated with each source is a process which is placed in the
Ready List for execution at its priority level. Within a
priority level, processes are stacked in order of arrival
(FIFO).

° When all active, approved interrupt requests have been
serviced, the Process Dispatcher is invoked at the entry
EXECA. This entry causes the dispatcher to search the
Ready List for a process demand, beginning at the highest
priority level. The dispatcher will proceed to execute the
first demanding process it finds for which there are sufficient
available resources.

B. Device Allocation

Device allocation will be a factor in process execution when the execut-
ing process reaches a point at which it requires a peripheral device. Presently,
allocation is to be effected according to process priority. It appears that
investigation is required to determine if and when a current input/output (I/0)
should be interrupted and the device reallocated to a higher priority demand.
There is some basis for belief that allocation should be based on message
priority. This is another area worth investigation during the simulation study.

Another class of allocation occurs in the event of a device failure. An
alternate device, if available, must be selected and allocated to replace the
failed peripheral. This allocation problem is discussed under CONFIGURATION
CONTROL. '

The allocation of peripheral devices will be the responSibility of the
Initiator process. The exact number of Initiator processes, not now known, is
dependent on specific avionics configuration. However, the need for the
following Initiators has been recognized:

) Input Initiator

° Output Initiator (includes flight recorder and maintenance
recorder)
° Mass Store Initiator

19

20

° Display Initiator ‘
° Analog/Digital Output Initiator
[Timeline Display Initiator.

The main factor obscuring possible requirements for the Initiator
process is that the Initiators are hardware dependent, and in addition, it may
be possible to group basically common Initiators into a single process. This
amalgamation, however, makes modification more difficult. These processes
along with other critical executive processes are described in detail in the
appendices.

C. Main Storage Allocation

Main storage allocation requirements are restricted to possible allo-
cation of data areas. Storage allotted to process instructions is assumed
capable of containing all concurrent processes. Mission phase dependent
processes may be overlaid on preceding phases, giving better storage utiliza-
tion and circumscribing requirements for storage allocation. However, it
may be impractical to provide enough main storage for all concurrent data
area requests. For this reason the Data Storage Allocator process is provided.
Data Storage Allocator procedures are discussed in the appendices.

D. Central Processing Unit (CPU) Allocation

The allotment of CPU resources among many relatively slow and
irregular peripheral device: drivers can have a marked influence on executive
design. To free the CPU for other activities and maximize device thruput, the
conventional tactic has been to provide a device completion signal to the CPU.
The receipt of this signal causes a device driver process’ to actuate the
device to perform any pending operations. This technique allots to the device
only the CPU time required to respond to the signal and actuate the device.
The saving of CPU resources compared with programming the CPU to detect
the completion signal is dramatic, since the devices operate irregularly and
the exact response time for the completion signal cannot be predicted.

The allotment of CPU resources has also led to fragmentation of
applications processes. In the multiprogramming real-time environment,
it is desirable that no process utilize the CPU for "long periods' relative to
the system response time requirements. Also, contributing to fragmentation
has been the systems design principles of:

. Sharply focused planning

. Modular programming

. Functional segmentation

° Ease of checkout

° Ease of modification.

The executive system design outlined herein will allocate C PU ~resourc¢;s
by multiprogramming and provide the structure to permit flexible response to
momentary systemm overloads during critical operations,

E. Process Suspension/Termination

Suspending or terminating a process has several ramifications:

o The process may be suspended by the Executive.

) A process may be placed in a hold condition.
° The process may relinquish control to reenter and

possibly check for completion of an event.

° : The process may surrender control to set a delay to-
cause process execution at some time in the future.

° The process may make an executive call for an I/0
' operation. The process is locked up during the 1/0
operation and reentered upon completion of the 1/0.

° The process may be interrupted and preempted by a
higher priority process such as an error handler process.
Upon completion of higher priority processes, control
is returned to the interrupted process and execution
continues. '

° The process may terminate. In this case, the process
' must be reinitialized in order to run again.

Executive services are provided to accomplish the preceding needs
using the primitives WAIT, WAKE, SUSPEND, COMA, CONTINUE and
RELEASE as components to construct the executive service routines. Although
these primitives are discussed more thoroughly in (2), the salient points are
presented below. A '

v .

2Kennedy, Sr., J. R.: Spaceborne Computer Executive Routine Functional
Design Specification - Volume III: Executive Routine Primitives and Process
Control, NASA Contractor Report, Contract NAS8-24930, Huntsville, Alabama,
March 1971, :

22

Process suspension is accomplished by the executive éall, SﬁSPEN,
setting a suspend marker in the Process ID Description Word of either the
Ready List or the Active List. The Process Dispatcher will not choose a

process for execution if this bit is set. Resources allocated to the process
may be optionally released. 4

Conversely, the process is released by resetting the suspend marker,
via the executive call RELEASE, Thig allows the Process Dispatcher freedom
to choose this process for execution at the appropriate time.

Similarly, a process operating on a relative time base, as described
under TURNON in the appendix, may be placed in a hold condition using the
executive call HOLD. The Process ID Description Word hold bit is set in the
Active List. The Clock Update routine recognizes the hold condition and
does not decrement the Execution Delta T. Processes that are executing
continue to execute. '

In contrast, the hold condition is released using the RESUME call

sequence., The Resume routine resets the hold marker and allows decrement-
ing of the Execution Delta T.

The EGRESS call may be used to relinquish control to the executive while -
remaining on the Ready List. Entry location upon return can be reset as re-
quired. In a similar manner, use of the DELAY call will cause process
execution at a time in the future, The return is to the next sequential process
location, This feature permits cyclic operation at a constant period of execution.

Input/Output operations can involve considerable time delays in terms
of computer.cycles. To utilize these CPU cycles more effectively, the 1/0
process provides optional echoes. That is, a branch back is provided after
initialization of the I/O operation. In addition, the process is locked up until
the operation is completed. - At this time the process i« paroled and can continue
running, While the process is locked up (WAIT), the CPU is utilized in the
execution of lower priority processes.

- Preempting process execution using a trapping action is assumed to be
accomplished using hardware and will not be analyzed further here. Itis
discussed in Volume III of this report.

Termination of a process is consummated by the executive call TURNOF.
The process is removed from the Ready List. Resources are made available to
lower priority processes. To be executed in the future, the executive call
TURNON or DELAY must be effected.

SECTION IV, FAILURE RESPONSE TACTICS

Failure response implies failure detection and the existence of relation-
ships associating failures with the required responses. Several methods of
failure detection in response to expected sources of failures are provided.
Executive call sequences are checked for validity to detect both hardware and
‘software induced errors. Similarly, other active error detection procedures
that are provided are: limit-checking critical variables; watchdog timers;
hardware diagnostic programs (assumed to be executed in microcode); and,
software examination of status registers to detect anomalies. Passive error
detection procedures are triggered by fault conditions.

In contrast to the above method of classification, detection procedures
can also be typed by hardware. Error detection schemes for the computers
depend on fault triggering, stall alarms, diagnostics, and validity checks on
executive call sequences. Error detection schemes for the peripheral devices,
on the other hand, use watchdog timers, fault triggers, and status checking.

In addition, distinction can be made by processes. Initiator processes perform

call sequence validity checks. Terminator processes accomplish status checks.

Additionally, terminator processes are charged with responsibility for separat-
ing transient errors from solid failures. Once a failure has been detected (by
retries and counting), response to the fault becomes the critical item. One
factor associated with the response to any failure is the recording of data con-
current with the failure to expedite postflight analysis. Pertinent failure data
is to be transmitted to the maintenance recorder for future evaluation using an
executive call to the I/O processes. Once the failure has been recorded, the

fault is masked by reconfiguration, discussed more fully under CONFIGURATION

CONTROL.

To the extent possibly, failure recovery programming must be indepen-
dent of hardware configuration. Configuration dependency must be associated
with descriptive tables of hardware status, select codes, redundancy require-
ments and allied information. ‘

23

Page Intentionally Left Blank

SECTION V. CONFIGURATION CONTROL

Configuration control is achieved in different wayé for computers as
contrasted to peripheral devices. Reconfiguration of the computers is accom-
plished in conjunction with the System Control Unit (SCU). Utilization of both
software and hardware procedures is possible.

Software computer reconfiguration assumes the SCU has access to
computer status registers and possesses the means of transmitting signals to
an arbitrary computer. The following computer status information must be
available to the SCU: |

° Computér state indication, such as Running Voting
Controlling, Running Voting Not Controlling, Self-
Test, etc.

e Shared Spare Available
Failed by SCU

Self-Test complete
Sync-request - L
Vote Request
.Disagree
Error Indicator
_Halt
) Switch emte for SCU-CPU data paths (if switched).

In addition, the contents of the program counter for a computer must
be available to the SCU. The advent of a computer fault is assumed to cause
execution of the approprlate SCU response process.

The SCU is, additionally, provided with the ca.pab111ty to cause a
computer to enter a variety of instruction sequences.

A. CPU Software Reconfiguration

Although the software process is detailed in the appendices, a baseline
- for the software approach to reconfiguration is described here,

The software process to effect reconfiguration 1s made up of several
cooperating operations.

25

26

° Sync or Vote entries in which validity checks are performed '
on the requestor identity and status.

° A statistics gathering thread which analyzes the computer
system accumulating data on the distribution of states
among the computers via a push down stack.

[A thread that analyzes the gathered statistics to detect
anomalies.

e Sequences to effect change in state of the computers.

) Watchdog timers to ensure that directives from the SCU
are in fact executed within estimated time period.

° A. routine to display system status via the SCU display
panel.

° A routine to sense the status of switches on the SCU
panel and convert to internal representation.

) Process modules to execute the SCU panel input commands.

As mentioned above, further discussion of computer conflguration using
software techniques is given in the appendices.

B. CPU Hardware Reconfiguration

- ‘The approach-in designing a hardware controller to_acb,om'plish CPU
reconfiguration has similarities and differences to the techniques described
under software reconfiguration, As in the software reconfiguration procedures,
input stimuli are required, accompanied by responding output sequences in the
computer system. Reliability considerations coupled with economics have
constrained the hardware controll” to a configuration limited to few basic
components in contrast to the sc’tv. ..ce controller which can be implemented
with varied basic techniques,

For the purposes of this discussion, the following ground rules

apply:
'3 There will be three computers plus one shared spare
computer,
. - Each computer can be in one of four gross states:. _.

Running Voting Controlling (RVC), Running Voting Not
Controlling (RVC), Self-Test (ST), and Powered Down (PD).

o The spare computer will be either PD or ST, possibly as
a function of mission phase.

o Test and Set capability is implemented in the SCU, par-
ticularly, and is possibly implemented in the computers.

° Special procedures must be developed to separate
transient failures from solid failures.

° Input stimuli and responding output sequences will be
the same as discussed under C PU Software Reconfiguration.

With the preceding basis, consider the case of four computers, each
_capable of existing in one of four valid states. There are, then, 256 combina-
tions of valid states possible. If five states are considered, the number of
combinations of valid states possible is 625. The number of bit combinations

present is a function of the bits required to represent a state. Three bits are -

required to represent 5 states. In addition, parity checking can be provided.
It follows that many of the possible bit combinations are invalid, since a total

of 8 states per computer will result from utilizing 3 bits. For four computers |

4,096 states are possible, of which 625 are legal, assuming the 3-bit state
representation. Possibly a more efficient method of state coding should be

chosen.
Several classes of errors can occur:

0' ‘ Within computérs; that i's', ‘an invalid.-bit combination,

e . Invalid combinations of computers; for example, more
than one controlling computer, and

° Illegal transitions, which are transitions other than allowed
in the state diagram (figure 7).

The controller must detect illegal states, invoke further means of
analyzing the failure to determine the failed element, and convoke error
masking sequences. If illegal states are not represented, the controller must
analyze the voting response of the computers, upon demand, to detect voting
anomalies which will lead to convocation of error masking sequences. In the
analysis of voting, 16 disagree responses are possible for each computer
state. I, for example, there are 128 valid combinations of states, .then there
are 2,048 combinations of computer states and disagrees (16 x 256), some of
which are illegal and must be acted upon by the illegal state detector.

27

LINA T04.1NOD WILSAS JHL A8 NIIS SV WVHOVIQ NOLLOVSNVYL JLVLS ¥ILNdWOD TVYLNID ‘L JUNOI4

juswaog[day se oiqejiBay aaedg
189 L-3I8S LS
Nuf) [oIU0) W)LY nos

3pod v
Sunynoaxy jou ynq pazamod Aqpuelg
Surqroajuo) SurjoA Suruuny oAY
umo(q paaamod ad
PajleH

00S 4q 29818 (184 0} paousenbag :pafIed

polred

pPaileH

From the preceding discussion, several salient ideas arise:

° The design complexity increases rapidly with the number
of states re., .'ved to fully describe the computer status.

) Many of the possible states are illegal and can be treated
- using an illegal state detector, triggering possible pre-
engineered sequences (3).

° The valid states must be analyzed by the designed logic to
detect voting anomalies and invoke appropriate error
masking sequences. :

° Procedures for computer switching sequences must be
defined. For example, if the RVC computer fails, the
first RVC is promoted to RVC. The shared spare, if
available, is set "not available' and sequenced to RVC.
The RVC computer is sequenced to ST. These procedures
are triggered by specific input combinations on the dis-
agree lines and status lines from the computers.

° After the scope of the design problem has been bounded
by calculating the number of possible permutations,
truth tables are formed, and functional equations de-
termined; the logic requirements can be optimized
using digital design techniques.

° Requirements ior resolving voting ''ties' must be
“determined.

C. Peripheral Reconfiguration

In contrast to computer reconfiguration, which is accomplished by special-
ized combinations of software-hardware, peripheral reconfiguration is handled as
an executive subroutine. This subroutine reconfigures peripheral devices by
manipulation of executive tables. Since all peripheral device requests are
channeled through the executive, tables of values of internal address codes of

3Raytheon Company: Preliminary Technical Report Machine Implementation
Study for Phase B Computer System, Sudbury, Mass., 23 October 1970..

30

devices are maintained by the executive., When a device is requested, the
executive searches the table for the device address and uses it to perform

the device selection. For every device, a table is constructed giving alternate
devices. The responsibility of the reconfiguration process, crudely, is to
select a preferred alternate in the event of device failure. The alternate
device address replaces the failed device address in the device selection
tables. Thus, the reconfiguration responsibility is hidden from the request-

'ing process. As far as the requesting process knows, the message is input

or output through the initial device. Reconfiguration, then, is of no concern
to the applications process, unless no alternate is available. If execution of
the peripheral operation is impossible, the executive must so notify the
application process so that an alternate action can be .taken, .

In recapitulation, peripheral reconfiguration is achieved in the executive
by manipulating internal executive tables. Successful reconfiguration can be
hidden from an applications process, unless further study shows that notifica-
tion to the applications process is desirable. As with other executive processes,
a more detailed description of the peripheral reconfiguration process is presented
in the appendices. o

SECTION V1. INTER-SUBSYSTEM INFORMATION FLOW

Through wide changes in configuration and complement of the Data
Management System, the stable consideration of a master subsystem controlling
peripheral subsystems remains. Vital to this control concept is the composition
and treatment of the components of flow (messages). To implement the in-
formation control concepts shown in figure 2, the following message-oriented
approach is recommended as a baseline, although the processes required for
inter-subsystem communication are somewhat haidware dependent and impos-"
sible to completely specify at this time. '

. Communication with a peripheral device consists of
call sequence validity check, buffer allocation, device
manipulation, message transmission error checking,
and program accounting associated with message termina-
tion. A significant part of the preceding is not hardware
dependent at a high level of analysis. A significant portion
of our programming system can then be specified without
complete knowledge of hardware specifications. The hard-
ware and software, however, ideally should be specified
concurrently.

o Communication occurs between a central computer and
 peripheral devices with varying sentient and logical cap-
abilities. Error checking efficacy will vary with the
logical faculty of the peripheral subsystem. Where the
.. peripheral device is another computer, the following
techniques are propitious. Where the device possesses
smaller capability, other hardware dependent procedures
must be devised.

] A data bus controller will execute message transmission
and notify the computer that the transfer is complete.
Other capabilities may be added to the data bus controller
later. Such capability could include line control, code
conversion, buffering and queuing, error handling and
recovery,, and collation and analysis of statistics (4).

4Hebdii:ch, D. L.: Programmable Control Units - A Way Forward in Dai.
Communications Telecommunications; .Dedham, ,Mass. , ,November 19,70;’

° The data bus controller affordsthe chance to view
information flow on a message basis. This follows from
the fact that the actual word-oriented transfer operations
are performed by the data bus controller.

° Every message will have a fixed length and format header.
" In addition, the message may have a body and will have a
terminator.

° The fixed length header message includes message ident-
ification, source/destination information, error check
information, time, message length (if required), action
request class, and terminator code.

° Error checking by hardware (parity) is done on each word
transmitted. ‘

° Hardware and software checks are done on each message
~ sent and received. These checks include status; longitud-
inal record check, format check. Further study may expose
the need for additional message checks.

) Every message is given a number which must be sequential
with the unique transmitting device. . Messages received
must pass the sequential check to prevent the undetected
loss of a complete message due to hardware failure, sys-
tem overload, line contention, or scheduling conflicts (5).

° Every message must be acknowledged within an arbitrary
_.time. Acknowledgement means that the message has been
received correctly. If the acknowledgement is not re-
ceived, an error is assumed. The following method is used
to detect the fault. A lock marker is placed (in memory) on
each message transmitted. This prevents destruction of the
~ message buffer., Acknowledgement causes the lock to be re-
moved. A watchdog timer is set simultaneously with
the lock. When the timer counts down, the lock is
removed. This is an error condition and is treated as
a hardware failure.

5Mills, D. L.: Topics in Computer Communication Systems Lecture Notes, .
University of Michigan, Ann Arbor, Michigan, May 1969.

The preceding techniques for inter-subsystem communication '

can be logically divided into two classes of processes, Ini-
tiators and Terminators. These classes will suffice to
handle broad classes of subsystems,

A typical example of an Initiator is the Output Initiator, which effects
the succeeding procedures:

Call sequence validity check,
Parameter passing,

Selection of the device control word from the Peripheral
Control Tables,

Completion of message formatting,
Interface with the data bus controller to initiate output,
Selection of appropriate return to calling process, and

If there is no immediate return, invoking process sus-
pension,

In contrast to the Initiator process presented above, the Input Term-
inator is an example of a typical Terminator. The following activities must

occur:

Reset of watchdog timer,
Hardware error status check,

Separation of transient from solid failures by re(;uesting
message retransmission. An arbitrary number of succes-
sive failures will qualify the fault as solid. Hardware
diagnostics and reconfiguration processes can then be
invoked. (Transient failures can be recorded although the
possibility that the recording system can become saturated
must be considered),

With the hardware status successfully checked, analysis

of various software message checks, such as longitudinal
record check and message number, is performed. Failure
to pass these checks results in treatment similar to hard-
ware check failures,

33

e If the message passes the preceding error analysis, exam-
ination for action type is made. This analysis is comprised
of the procedures that allow the master computer to transmit
process execution information data to the slave computers.
Action requests are: Acknowledge, Retransmit, No Data,
Start of Message, Cancel, End of Message, Schedule, and
Data, '

® Determination of the action request identity by the Input
- Parser. This may lead to the several different process

paths as shown in the appendix. An important consid-
eration is the delineation of the different paths repre-
senting the actions: acknowledge, retransmit, no data,
start of message, cancel, end of message, schedule,
and data. A more precise presentation is given in the
Appendix. o

From the preceding, it can be seen that substantial parts of the concepts
for subsystem control can be implemented prior to exact hardware definition,
Subsystem communication processes are grouped in two broad classes,
Initiators and Terminators, with hardware independent functions defined,
while precise hardware design data is being determined.

|

SECTION VII. EXECUTIVE STRUCTURES

/

: The executive structure provides the power and ﬂ‘e'mbility to-implement
arbitrary scheduling strategies. The executive can operate in a synchronous
mode, permitting immediate response to faults, however. These error- .
triggered interrupts cause a momentary asynchronous mode of operation, The..
Supervisor Calls, SYNC and VOTE, give methods of reestablishing synchroniza-
tion for a process. The executive can also operate in an asynchronous mode,

If desired, it can operate in a mixture of modes using the SYNC or VOTE -

. procedures to establish synchronization when required. Synchronization is
required merely to ensure that voting procedures are performed on selected
identical variables by all computers. Therefore synchronization can be viewed
as affecting a particular process and furnishing Supervisor Calls to effect the
isochronism of the computers,

In addition to providing synchronization to the degree required, the
executive can be implemented to enhance a major-minor cycle method of
scheduling. A proposed method of implementing the major-minor cycle .

- scheduling divides available time into minor cycle slots, To provide 20 msec
minor cycles, there are 50 slots. In each active slot, the minor cycle pro-
cesses - plus 1 major cycle segment - are executed. ‘Then, every second,
the major cycle is completed with the minor cycle repeated 50 times. Empty
slots, for example the even or odd numbered, are provided for expansion or
for asynchronous event processing, Unfortunately, the presence of a hardware
fault indicates that the information in the computer is suspect, and action must
be taken immediately without waiting for even the next available slot. This is
accomplished in the proposed executive by allowing a priority structure, with
the error processes given a priority immediately below that of the Executive
Kernel. This priority, coupled with fault-triggered trapping, assures timely
error procedures to guarantee fault tolerant operation. '

In addition to the above, the priority structure has other purposes;

namely, to give an order of preferred execution of concurrent processes.

Although this preferred execution can be accomplished by a rigid structural
ordering of the applications processes, for reasons that will become clear, it

is considered more desirable to effect this ordering using a priority level
“structure. Similarly, the priority structure can determine which processes

may be delayed in the event of momentary system overload. Such overload

might occur in rendezvous, docking or landing mission phases similar to that of the
"Apollo 11 landing (6). The system can undergo automatic graceful degradation

6Ha.milton, M, H.: Letters, Datamation, Barrington, Illinois, 1 March 1971.

35

36

‘via the priority assignment, recovering when the overload condition disappears.

Simulation, possibly non-deterministic, can determine the optimum priority
assignment by enacting the overload situation, observing the Executive res- -
ponse, and altering the process priority assignments until a suitable compro-
mise is reached. However, further study is required to know whether or not
this priority level technique is sufficient or whether more sophisticated
process selection algorithms are required for mission phases exhibiting
relatively large computational demands, such as Landing,

In the basic cyclic mode of operation, conflicts must be resolved
between the need to execute the minor (20 msec) operations at a constant
20 msec period and the requirement for computations that may exceed 20 msec.
The solution to this conflict should ideally be dictated by the system require-
ments in the usage of the data gathered during the minor cycle. As such, it is
now premature to impose a resolution to the conflict. However, two divergent
methods arise as a result of the two different executive structures, the pro-
posed Executive and the strictly (non-multiprogramming) Major-Minor cycle
executive. '

The Major-Minor cycle: structure is rigid. As previously discussed,
time slots are provided for each cycle (20 msec). Every 20 msec, the Minor

cycle plus 2 percent of the Major cycle is executed. Therefore, execution

times must be pre-calculated for every process and the system constructed very
much in the way that a watchmaker builds a watch. This is to assure that the
cyclic processes are actually executed during the intended periods. A system
such as this can be awkward to modify. Difficulties in implementing the

changes that are bound to occur over the life of the Shuttle, coupled with the
deficient error handling procedures noted previously, make the Major- Minor
cycle approach the less desirable.

In contrast to the rigid time-slot approach, the proposed Executive
operates in a different way. A scheduling structure and priority level assign-
ment are provided that allow periodic execution of processes based on an
arbitrary unit of time, independent of a minor cycle. This structure is
inherently more versatile. After initialization, periodic processes are
executed by use of the Supervisor Call DELAY. The period of delay can be
set to the desired amount,

The implication of the preteding discussion is that in the normal mode
of operation, the system can be designed to operate in a cyclic mode identical
to the Major-Minor cycle. If maintaining a 20 msec Minor cycle period is
considered essential, then the Minor cycle processes are assigned higher
priority than the Major cycle, random demands, or other cyclic processes.
The lower priority processes will be preempted every 20 msec and the Minor
cycle processes executed. Upon completion of the Minor cycle processes, the
preempted process is reentered and runs to completion,

*

_The occurrence of a random demand is treated using a different tech-
nique than the Major-Minor cycle. Here, the priority structure affords
" latitude in scheduling the response. Critical events (high priority) can bé
treated without intervening minor cycle applications process operations by
waking the response process and executing it immediately through the Process
Dispatcher. Less critical random demands can be deferred to be executed at
the leisure of the Executive. -

Modification of the priority assignments is accomplished by changing
priority assignments in the Process Control Blocks. This is simpler and less -
subject to error than recompiling and rebalancing the system to effect differ-
ences in performance.

The proposed Executive is a system that gives the capability to imple-
ment the optimal Space Shuttle scheduling strategy, whether it prove to be
“Major-Minor cycle or some other tec,hnique“ elucidated by simulation.

- Considering the preceding discussion, the Executive operational aspects
are similar to the following for a particular mission phase: In the cold start
initialization, the Timeline Interpreter/Controller (TLIC) is loaded along with
the Executive programs into the central computers. The engine computers
will require an Executive which can be transmitted by the central computer
from the Mass Store:as required. '

After the executives with accompanying data have been loaded and the
load operation verified, the TLIC can be initiated to begin analyzing timeline
command sequences. Intra-phase events can be sensed, and phase termination
procedures invoked. : '

For example, when the TLIC determines that the Prelaunch Checkout
phase has been successfully completed, the TLIC will call in from the Mass
Store the processes negesaary to accomplish the Ascent phase. Each process
will be accompanied by a Process Control Block (PCB) containing information
required for executive control (2). Ready and Active lists will be initialized
so that the Process Dispatcher can initiate phase execution,

Processes may be phase independent or phase dependent. If phase
dependent processes are to be overlaid, then means to disable/enable
storage protection, under program control, must be provided. This suggests

that phase-dependent processes be segregated from phase-independent processes.

37

38

The TLIC will operate in a similar way for all mission phases, calling
in new processes as required. The priority assignments will possibly be
changed to assure that phase-dependent critical operations are executed within
time constraints during certain mission phases such as landing. Contingency
features to further assure that the time constraints can be met are possible
within the Process Dispatcher for these critical mission phases. When the
phase termination criteria are sensed by the TLIC through examination of the
Current Status Tables, phase termination processes are waked. Upon comple-
tion of these processes, initiation of the next phase begins., This repetition
is followed until all phases are completed and post-flight analysis is commenced.
Current Status Tables contain system global variables which are periodically
updated by data gathering and calculation routines.

SECTION VIO, PRELIMINARY MAIN STORAGE -
REQUIREMENTS ESTIMATE SUMMARY

While the executive functional design is aimed primarily at providing
the basis for a simulation model, the analysis can also be used to generate
preliminary estimates of executive main storage utilization, The flowcharts
furnished in the Appendices are the foundation for these estimates. Program
requirements are estimated at 12, 5-13.5K 32-bit words. A breakdown of the
components of the estimates is given in table 1. Data storage requirements
are even more heavily hardware-dependent and, therefore, a method is pro-
posed for calculating the storage utilization rather than a preliminary estimate.
Such a calculation will be useful in hardware/software trade studies to estimate
the impact on storage requirements of software implementation of functions
such as analog input, and is shown in table 1. More detailed estimates are

furnished 1n table 2.

Symbols appearing in table 1 are defined as follows:

Number of Processes

Number of Peripheral Devices
Number of Active Messages
Number of Current Results
Number of Analog Sensors

Number of Digital Sensors
Number of Active Processes
Number of Data Storage Blocks
Number of Analog Output Devices -
Number of Digital Output Devices
For software driven analog/digital input
= Hardware manipulation only

nmunnon

HeTIQEMEDOW
i

* *
* *
*
LI 1|

39

40

TABLE 1. SUMMARY OF PRELIMINARY MAIN STORAGE
- REQUIREMENTS ESTIMATES _.

Process Modules

Ready List
Aptive List
Data Fixed Buffer Area

Analog Output
' Digital Output

SCU Storage

Executive Kernel 2010
Reconfiguration - Peripheral devices 1000
' SCU 8000
Data Bus Input/Output 2190
~Analog Input/Output** 2650
Digital Input/Output** 370
Timeline 1320
Mass Store Input/Output 1200
Panel Scans 600
Display Control*** 970
Alarm A 500
. TOTAL: 8000 12,810
Data Requirements
Masks, Common Constants 300
Process Control Blocks 32 words/process 32%A
Peripheral Configuration Tables 1 word/device B
Device Failure Tables 1 bit/device B/32
Device Status Tables 1 bit/device B/32
Alarm Tables 300
Main Storage Tally #blocks/32 H/32
Message ID 1 word/message C
System Current Values 1 word/ g‘e‘gﬁm D
Timeline Status . 200
**Analog Scan Tables 3-4 words/sensor 4*E
**Digital Scan Tables 1 word/sensor F
Digital Status Tables 1 bit/sensor F/32

2 words/process 2*G

3 words/process . 3*G

5 words/é"’r}phera1 5*B
e

vice _
"1 word/device I
1 word/device J

Data Storage = 800 + 32*A + 6 1/16*B + C + D + 4*E + 1 1/32*F

+5%G +H/32+1+J

TABLE 2, PRELIMINARY MAIN STORAGE
REQUIREMENTS ESTIMATE

Process Modules

Process Dispatcher

Clock Update ,
Activate Process (TURNON)
Terminate Process (TURNOFF)
Delay

Release Process (RELEAS)
Suspend Process (SUSPEN) -
Hold/Resume

Vote

Sync

Examine Active List

Data Storage ‘Allocator

Input Initiator

Input Terminator

- Qutput Initiator

. Output Terminator

Analog Input Initiator

Analog Input Contimuator
Analog Output Initiator/Terminator
Digital Output Initiator
-Digital Output Terminator
Mass Store Injtiator

Mass Store Contimuator v
Timeline Interpreter/Controller
Peripheral Reconfiguration
CPU Reconfiguration
Alarm S
Display Initiator

Display Continuator

Timeline Display

Panel Scan

Digital Input

SCu - ' Storage

100

140

140
. 140
100
100
100
150
150
80
200
610
380
750
360
700
800
© 1500

350 -
120

100
1100
800 -
: 1000
8000
500
470
- 500
520

|

TOTAL: 8000 | ~ 12,810

41

SECTION IX. CONCLUSIONS AND RECOMMENDATIONS

Analysis of past similar computer projects, combined with study of the
Space Shuttle Phase B Contractor reports, yields certain observations and
conclusions relative to desirable system, computer hardware, and computer
software characteristics:

° Software development costs are. highly dependent on
computer loading. Not recognizing this dependence in
the past has led to notorious underestimation of the
programming effort required for projects similar to the
Reusable Shuttle (7). '

° Hardware redundé.ncy and fault tolerant software add
materially to the complexity of the flight executive.

° In view of the preceding, software development must
" begin early in the design cycle. Analyst/Programmers
must work with engineers in the development of the
avionics system.

° Verification requirements must impact on hardware/
software design from the beginning to the end of the
design cycle, since approximately 45 percent of soft-
ware effort is consumed by verification.

. Detailed man-machine interface requirements must be
developed, based on astronaut-pilot needs and recom-
mendations. Particular emphasis must be placed on

- critical mission phases, such as docking andvla.ndi'ng.

Recognizing that further study is required on all phases of the avionics
system, the following recommendations are presented:

e . The proposed flight executive should be taken as a base-
line, Effiéacy of the. Executive in meeting Space Shuttle
requirements can be studied either by non-deterministic

" simulation or by implementation on a computer system
similar to the ﬂight computer. : :

7B(itehm B. W.: Some Information Processing Implications of Air Force
Space Missions in the 1970s, Astronautics and Aeronautlcs New York,
N. Y., January 1971,

43

44

Software verification requirements must be compiled as
soon as possible., These requirements include test bed
configuration, levels of testing, change control procedures,
documentation standards, programmer/analyst manage-

" ment policies, computer test hardware requirements (for
"instance the role of emulation, digital versus hybrid sim-

ulation, test support software requirements, including data
base formulation and maintenance). Interfaces between
orbiter and booster engine ‘and other avionics subsystems
must be defined, These overall requirements interact with
the avionics hardware and must be developed in conjunction
with the avionics hardware,

Verification can be considered as encompassing the follow-

ing areas: integrated vehicle, orbiter, booster, subsystems,. -

and software-only. Different verification requirements exist -
for software-only versus the various relative amounts of
integrated hardware/software verification. For example,

the software-only verification can be effected using present

-large scale. digital computer systems with the appropriate

additional programming, combined with conventional tac-
tics (for example, desk debugging). Higher levels of
integration, however, require computer facilities similar,

if not identical to, the flight computer. This is the likely
role of an emulation strategy - to provide the flight computer
instruction set within the test bed environment,

Hardware/software tradeoffs must be biased toward hard-

- ware implementation. The following features are useful

for executive functions: hardware primitives, base reg-
ister addressing, index registers, push-down stack imple-
mentation, memory protect, fault triggering, restricted
storage area references, multiport memory access,
priority interrupt, and hardware (possibly microcode)
initialization and restart. Floating point hardware is
recommended for applications programming.

Certain error recovery procedures are presented for
illustrative purposes. Final procedures, however, must
be defined by a team of senior analyst/programmers and
engineers, in certain cases subject to review of the
astronaut-pilot.

The computer loading design point (in terms of computation
requirements compared with available CPU cycles) should .
be taken as 50%. Available CPU cycles is a crude measure
of the parameter of interest, throughput. In terms of
utilization of main storage, the recommended design point
is 70%. '

e - [PN S gac
e = oo FA:...’,.""K,;/.(Q.'AI». D - [ER-E T

45

Page Intentionally Left Blank

APPENDICES

Supporting data for the Reusable Shuttle Flight Executive are provided
in ﬂ_xese appendices, This information is divided into three classes:

e Functional Procedure Descriptions,
° Process Attribute Description, and
° Functional Flowcharts.

Each of these classes is given an Appendix. In Appendix A, Functional:
Procedure Descriptions, information delineating the interaction of the process
with the other processes in the system is provided. Appendix B, Prbcess
Attribute Description, contains infermation specific to-a given process.
Appendix C, Functional.Flowcharts; is made up of process descriptions in the
form of high-level functional logic diagrams.

The intention is that information of this kind will be utilized in the
construction and maintenance of the data base required for the non-deterministic
simtdation and other aspects of the verification of the programming system.

47

APPENDIX A. FUNCTIONAL PROCEDURE DESCRIPTIONS

The following information is required for these Functional Procedure
Descriptions: ' ’

Procedure Identifier: The process name followed by a unique, alpha-
numeric process identifier. This identifier will be used by the utility programs
to access the process from the system libraries.

Purpose: A brief paragraph describing the functions accomplished by
the process. ‘ ‘

Approach: A brief, but complete, account of the methodology used to
accomplish the process functions. Mathematical techniques must be portrayed.
Stability considerations, if any, must be included.

External Procedures Referenced: A simple list of the processes called
by the program. Such external processes can be cross-referenced in a utility
program to determine the possible effect of modifying a process.

External Data Referenced: A simple list of the external data items
utilized by the process. Considerations similar to the above apply.

49

FUNCTIONAL PROCEDURE DESCRIPTION |

Procedure Identifier: PROCESS DISPATCHER (PRDSPR)

Purpose: The Process Dispatcher examines entries on the Ready,list to

select the highest priority level-entry awaiting execution. If the Ready list

is empty, the proéess branches to the EXAM brocess in order to determine
whether or not new processes have become critical, Upon detection of a
process awaiting execution, the Process Dispatgher initializes the process by
loading the contents of the Process Control Block into the active area and jumps

* to the process location to begin execution.

' Approach: Applications processes should use the SVC call EXIT to location
EXECB to avoid possible deadlocks,

External Procedure Referenced: Active Process

External Data Referenced: Global data, Process Control Blocks

50

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: CLOCK‘UI’DATE,_ {(CLCKPD)

mose The purpose of the software clock update routine is to mamtam current
'time in'the software time of day clocks to decrement analog scan dlass timers,

‘:to decrement watch dog timers and to decrement execution delta T values for

entries m the Active list

AEEroach The appropriate software clocks are mcremented or decremented as
required upon receipt of the clock periodic 31gnal

External Procedure Referenced: Examine Active list,

External Data Referenced: Global oata

51

52

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: EXAMINE ACTIVE LIST for Critical Process (EXAM)

Purpose: This process allows time dependent scheduling. The highest pridrity

process with execution delta T equal to zero is inserted into the Ready list for

execution,

Approach: This routine is entered on a periodic clack cycle. Execution delta T's
. are checked starting at the highest priority level and working to the lowest. Time
critical brocesses are waked in order of priority. Necessary program accounting

for the progess and for gathéring performance statistics is accomplished,

External Procedure Referenced: PROCESS DISPATCHER, DATA STORAGE

ALLOCATOR, WAKE, Performance Statistics Processes -

External Data Referenced: Global data

FUNCTIONALlPROCEDURE DESCRIPTION

Procedure Identifier; TURN ON (TURNON)

Purpose: Activate a Process places process control words in the Active list at
the indicated priority level. If the execution delta T is zero, the WAKE primitive
is invoked, placing the proceés ID directly on the Ready list for execution.

Approach: Three time bases can be used: Time of Day, Incremental, Relative
to Time Zero, These bases are converted to mcremental and the Process Control -
Word and Execution Delta T are mserted into the Actlve list at the mdlcated priority

level,

External Procedure Referenced: WAKE, Data Storage Allocator

External Data Referenced: Process Control Blocks, Global data

53

-

© FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DELAY A PROCESS (DLYPRC)

Purposet Delay prov1des an elementary method of causing periodic execution

-of a process,

AEEroach- Optlons are prov1ded to ex1t to EXECA or EXECB EXECB is pre—
ferred The delay requested in the call sequence is placed in- the Active List .
Process Control Word. The-process control word is deleted from the Ready Llsf.

External Procedure Referenced: Activate a Process, Process Dispatcher

‘External Data Referenced: Process Control Word, Blobal Data

FUNCTIONAL PROCEDURE DESCRIFTON

Procedure Identifier: TERMINATE A PROCESS (TURNOF)
Purpose: TURNOF provides the capability to terminate a process so that subse-

quent activati n) will require re-initialization, To be executed at some future time

the process must be waked. Data storage is returned to the available pool.

Approach: Options are given to exit to EXECA or EXECB in the Process Dis-

patcher. The process control word is removed from the Ready list.

External'Procedurp Referenced: process Dispatcher, Data Storage Allocator

External Data Referenced: Global data

55

56

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: SUSPEND A PROCESS (SUSI, O)

Purpose: SUSPEN provides capability to halt a process without executing a halt
instruction in the CPU. The process will rémain in a suspended state until

released by the RLSPRC routine,

Approach: Suspend markers are set in the respective process control words in

the Ready or Active list entry. Optional exit to EXECA or EXECB of the Process

Dispatcher is provided.

External Procedure Referenced: Process Dispatcher

External Data Referenced: Global data

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: RELEASE A PROCESS (RLSPRC)

Purpose: The purpose of RLSPRC is to place a suspended process in the

execution state.

Approach: Suspend markers are removed from the process control words in

the Ready and Active lists, Optional exit to. EXECB or the the process is provided.

External Procedure Referenced: PROCESS DISPATCHER, Applications process

External Data Referenced; Process control words, Global data

57

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: VOTE (VOTE)

Purpose: VQTE causes the Running Voting Controlling (RVC) computer to transmit
a value for voting to the slave computers. Data description (analog, digital) and
dead band may also be transmitted. In addition, the RVC raises a Vote signal. _
line to the System Control Unit (SCU). For the case of the slave cdmputers (RVE)
VOTE causes input of the values from the master computer, Software to coﬁipare
the input values with call sequence values is _actlivate’d. In addition, a vote signal

~ is sent to the SCU with a disagree signal in the évent of coxﬁparison failure.

Approach: The computer status word is input and state determined (RVC or RVE).
For the RVC, after data transmission is initiated, the process is put in a suspended
state, The slave computers are placed in a suspended state after the ’voting results
have been transmitted to the SCU. th_an evaluation of the computer voting results

" and required reconfiguration is complete, the SCU releases the susp'ehded processes,

External Procedure Referenced: SUSPEND, SCU, OUTPUT INITIATOR,

Application process

External Data Referenced: SCU select codes, Global data input buffers

"FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; SYNC (SYNC)

Purpose: The purpose of SYNC is to cause a synchronization request signal to
be transmitted to the SCU with the process-then suspended. The SCU analyzes
input from the computers, I all computers respond properly, the SCU releases
the suspended process. In the event that error conditions are noted, the SCU |

causes error recovery through reconfiguration, when possible.

AEEroach- The SYNC process selects the synchronization signal and causes
transmission to the SCU, The process then enters the suspended state usmg

SSPND. Processes are released by the SCU using RELEASE,

External Procedure Referenceds - SSPND, OU'I,‘PUT‘ INITIATOR

External Data Referenced: Global data, synchronization commands

59

FUNCTIGIAL "PROCEDURE DESCRIPTION

Procedure Identifier: DATA STORAGE ALLOCATOR (DTSTRG)

Purpose: The DATA STORAGE ALLOCATOR (DSA) bro.vides allocation and con-

trol of data storage areas of main memory.

Approach: The call sequence will be analyzed for errors and the error notifiéatioh |

. message and return sent using the OUTPUT INITIATOR if requlred Availabihty
tables of main memory blocks will be maintained. For allocatlon, the avallabihty
tables will be searched for contiguous storage equal to the requested storage. If

1_10t available, the best available return will be taken., If available, the storage

will be dedicated and appropriﬁte accounting performed. To I;eturn storage, the
storage is set available in the availability table and a garbage collecting run per-
formed. This implies dynamic relocation of buffer areas and consequent programming

overhead.

External Procedure Referenced: PROCESS DISPATCHER, OUTPUT INITIATOR,

performance statistics processes, . applications process, executive process

External Data Referenced: Global data, Storage Availability tables, Message

Definition tables

p—g

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: INPUT INITIATOR (NPTNTT)

Purpose;' The Input ix)itiator has responsibility for allocating input buffers
for message receipt. Dedicated buffers are assumed for message originating

at the Keyboard Input Devices or from the Uplink, The message header must
specify additional buffers required.

Approach: The Input hitiator operatés in conjunction with the data bus coni:roller

(DBC). Message control words are appended to the control word list if the DBC

is active. If-the DBC is inactive, it must be activated.

External Procedure Referenced: Data Storage Allocator, Data Bus Control

Processes.

External Data Referenced: ‘Global data

61

62

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: INPUT CONTINUATOR (NPTCNT)

Purpose: The Input Continuator handles programming considerations associated
with the end of message signal from the data bus controller., Hardware faults,

if present, are analyzed. A hard failure will cause execution of hardware diag-
nostics. Reconfiguration will be invoked, if required. Conversely, if the message
is error free, the classification will be derived and the correct processes acti-

vated. In addition, the watch-dog timer must be reset.

Approach: The Input Continuator assumes that the data bus controller will handle
receipt of message only signaling either the end of message or an intermediate
error occurrence, Message input has been started by the Input Initiator acting in

conjunction with the data bus controller,

External Procedure Referenced: Hardware diagnostics, Output Initiator,

Peripheral Reconfiguration, Data Storage Allocator '

External Data Referenced: Global data

FUNCTIORAL"PROCEDURE DESCRIPTION

Procedure Identifier; OUTPUT INITIATOR (TPTNTR)

Purpose: The OUTPUT INITIATOR (OI) performs call 'sequence checking,
parameter passing, message formatting, request initiation and optional return
selection for messages output to peripheral devices. The IO operates in _con-\‘

junction with the data bus controller to accomplish message."output_.

AEEroach After parameter checking, the OI gets the Dev1ce ID fnom the’ ca11
-sequence and searches the penpheral conflguratlon table for the dev1ce mternal
~hardware address. This address and other pertinent parameters are formatted _
into the message to be sent, Executmn control words are constructed and

transferred to the data bus controlher. ig the data bus controller is not active, it

must be initiated. If an immediate return is requested, the OI branches to the
applications process; otherwise, the return is to EXECB of the PROCESS DIS-

PATCHER,

External Procedure Referenced: PROCESS DISPATCHER, applications process

External Data Referenced: Peripheral Configuration table, Execution Control
words, Global data

63 -

64

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: OUTPUT CONTINUATOR (TPTCTR)

Purpose: The OU'i‘PUT CONTINUATOR (OC) handles programming'consid‘er-
ations associated with a _rhessage cbmplete signal from the data bus controller.
Transient hardware failureé are sepafated frqm "solid" failures and recon-
figuration invoked, if required. Notification meséages are initiated and the
Device Failure table updated. When preceding status has been updated, the

OC transfers required data to the performance statistics gathering processes.

- Approach: Upon receipt of the messagé complete_ signal, the OC process resets

the watch-dog timer.’ Subsequently, the output status word is fetched and 'examilied‘

for error coxidiﬁbns; " In the event of erroi"conditiohs‘, transient failures are

~ separated from hard failures by rei)eated attempied transmissions. If a hard

failure is detected, the hardware diagnostics are invoked and the PERIPHERAL |
_RECONFIGURATION called, if required;' thificatiox_x messages are output as .
required and ‘the optional return to the applications process or to EXECB of the
PROCESS DISPATCHER taken, |

External Procedure Referenced: - PROCESS DISPATCHEi?, OUTPUT INITIATOR,

hardware diagnostics, performance statistics gathering processes

" External Data Referenced: Device Failure tables, Global data, output status word

FUNCTIONAL PROCEDURE DESCRIPTION

Proceédure Identifier: ANALOG INPUT INITIATOR (NLGNNR)

Purpose: ANALOG INPUT INITIATOR (AI) provides initialization for input of
the various scan classes of analog devices. AIl is activated periodically to
examine scan classes for criticality, Data referring to active scan clgsses ié
transferred to the ANALOG INPUT CONTINUATOR(AIC) and INPUT /OUT PUT
INITIATORS for action, ‘

Approach: After decrement of Execution Delta T's, the EXAM routine checks
scan class intervals (among others) for criticality. - Detecting an active scan
class causes the AII to be waked. The AII in turn performs programming initial-
ization necessary to cause input of the analog devices using the INPUT/OUT PUT
lNITIATOR/CONTINUATOR_‘s and the ANALOG SCAN CON-T]NUATOR,

External Procedure Referenced: DELAY, PROCESS DISPATCHER, OUTPUT
INITIATOR, ANALOG SCAN CONTINUATOR

External Data Referenced: Global data, Peripheral Device Configuration tables,
SCAN Result tables, Analog ID tables

65

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; ANALOG INPUT CONTINUATOR (NLGNCR)

Purgose: The ANALOG INPUT CONTINUATOR (AIC) handles programming
considerations associated with input of a group of analog sensors from each
area multiplexor. The AIC functions in conjunction with the data bus controller

to input the sensors that have been scanned by the ANALOG INPUT INITIATOR,

Approach: Upon receipt of the scan data ready signal, the AIC gets the active

‘s'can class data, allocates input buffers, if required, and prepares control words

for the INPUT INITIATOR (II)F and initiates the II. When the end of message
:.-sighal is received, the AIC performs limit checking, alarming and units conversion,

'}é.s requiréd, and stores results in the Analog Scan Results tables.

' External Procedure Referenced: PROCESS DISPATCHER, DATA STORAGE
'ALLOCATOR, INPUT INITIATOR, OUTPUT INITIATOR ALARM, ENGINEERING

UNITS CONVERSION

-

External Daté Referenced: Global data, Analog Input data, Analog Scan Results

tables, - input buffers

.66

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: ANALOG OUTPUT INITIATOR (NLGOPI)

Purpose: The Analog Output Initiator (AOI) provides programming intérface
for applications process output of Qoltages or cﬁrrents. The AOI operates
in conjunction with the data bus controller (DBC). Call sequence errors are
logged using the Output Initiator, Return is to EXECB of the Process Dis-

patcher or to the applications process,

Approach: Call sequence parameters are checked and pas_sed. Based on these.

parameters, engineering units to digital counts con,versi.on is accomplished for
the output device. The control word is then constructed, message formatted,
and output accomplished via the data bus controller (Output Initiator). Optional
immediate return to applicat\ion process or.jump to EXECB of Process Dis-

patcher is provided.

External Procedure Referenced: Output Initiator, Process Dispatches, Appli-

cation process

External Data Referenced: Global data, Peripheral Configuration tables,

Data Bus Controller execution list

67

68

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: ANALOG OUTPUT CONTINUATOR (NLGOPT)

Purpose: The Analog Output Continuator (AOC) provides optional delayed return

to the applications process or to EXECB of the Process Dispatcher. In addition,
AOC resets the watch-dog timer and performs error analysis functions on the _
output request. Upon an error preventing completion of the output, logging of the

anomaly is done and return executed through the call sequence error return.

Approach: After resetting the watch-dog timer, the AOC retrieves the output ‘
status word for the analog output. In case of the error situation described above, -
the error message is formatted and output using the Output Initiator. Return is |
selected from the call sequence to either EXECB of the Process Dispatcher or

delayed return address of the applications process.

External Procedure Referenced: Process Dispatcher, Analog Output Initiator,

Applications process

External Data Referenced: Global data, Output status word, Peripheral Configu-

ration table

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DIGITAL OUTPUT INITIATOR (DGTLTP)

ﬁurpose: DIGITAL OUTPUT provides an interface to applications process for
output of digital data to peripheraldevices.. Such data may be in the form of-
timed contact actions, monientary- contact action, pulse information or such
hardware manipulation as may be defined. DIGITAL OUTPUT operates with the
datafbus controller (DBC) using OUTPUT INITIATOR.

Aggroach Using the device]D from the call sequence the dev1ce mterval address
‘_is found in the Peripheral Conﬁg'uration tables. Using the dev1ce address ‘and the

_ output demgnatlon a message is formatted for the OUTPUT INITIATOR It the
'_'DBC 1s active the execution control words are appended to the list for the DBC.

_:- I the DBC is not active it must be 1mtiated Optlon of an immediate return to-

the_,applicatio_ns_ process or a]ul_np to ,EXECB e_f PROCESS DISPATCHER is prov1ded.

Esternal Procedure Referenced: PROCESS DISPATCHER, OUTPUT INITIATOR,

applications’ preeess

" External Data Referenced: Peripheral Configuration table, Digital status table,
Global data -

69

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DIGITAL OUTPUT CONTINUATOR (DGTLCR)

Purpose: The DIGITAL OUTPUT CONTINUATOR provides a check to determine
error status that prevented successful output completion. Upon detection of
such status, the fault is logged using the OUTPUT INITIATOR. Optional delayed
return to the applications process or the EXECB of the PROCESS DISPATCHER

are also provided.

Approach: Upon receipt of the output complete signal, the DIGITAL OUT PUT
CONTINUATOR analyzes the output status word for errors. Detection of these
errors causes action described above. Additionally, the call sequence is

examined for return action required. ‘Action taken is described above,

External Procedure Referenced: PROCESS DISPATCHER, OUTPUT INITIATOR

External Data Referenced: Global data, output status word

70

FUNCTIONAL PROCEDURE DESCRIPTION °

Procedure Identifier: MASS STORE INITIATOR (MSSRNT)

Purpose: The Mass Store Initiator (MSI) interprets the call sequence to deter-
mine operation i'equired,(Read, Write, Write end of file, Sense end of file, -
Rewind,ﬁBackspace). - Acting in conjunction with the data bus controller (DBC),

the MSI programs the initial conditions for the mass store operation,

: Aggroach The MSI formats a message composed of the selected information to

' mampulate the mass storage dev1ce. If the data bus controller is active, the

v‘control message pomter is appended to the execution list for the DBC and appro'—w
- pnate housekeepmg functions associated with mass store mampulatlon and per-
'f formance measurement are executed. If the DBC is not active, it must be

: 1mt1a11zed

External Procedure R eferehced': OUT PUT INITIATOR, | PROCESS DISPAT CHER,

Applications process error return

External Data Referenced: DBC Item counter, Global data

71

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: MASS STORE CONTINUATOR (MSSSTR)

Purpose: The Mass Store Continuator (MSC) handles programming considerations
associated with an end of message signal from the data bus conirollelj (DBC).

Error conditions preventing completion are logged via the OUT PUT INITIATOR.

Approach: The MSC checks the data transfer status word to determine whether
or not an error has occurred that prevented completion of the request, If, in

fact, this has happened, the occurrence is logged and the error return in the call
sequence is taken, If the request has been acted upon, the MSC determines
whether further data transfers are required. New requests are initiated until

the call sequence is fulfilled,

External Procedure Referenced: OUTPUT INITIATOR, PROCESS DISPATCHER

>

External Data Referenced: Global data, data transfer status word, Peripheral

Configuration table

72

FUNCTIONAL PROCEDURE DESCRIPTION »

' _Procedure Identifier: TIMELINE INTERPRETER/CONTROLLER (TMLNNT)

Purpose: The TIMELINE MERPRETER/CONTROLLER (TIC) converts a sequence

of timeline activities into a process schedule for execution;

Approach TIC is entered perxod.lcally, the timeline status analyzed and compared
with scheduled status. D1screpan01es are alarmed tlmelme hlstory updated, A
‘check is then made to determine whether or not all processes for a mission phase
have been scheduled and 1f so, whether or not the phase is complete A mlsslon

" phase complete override may be established here. If all phases are done, then
DELAY is entered, If all-processes are -not scheduled, they are seheduled as
allowable. If a phase is complete, next phase initialization is accomplished, Time-
. line' history is updated, performance statistic processes are entered and the usual . |
optlon of returns taken.

4 External Procedure Referenced: PROCESS DISPATCHER, performance gather
processes DELAY,. TURNON OUTPUT INITIATOR -

Exteirnal Data Referenced: ' Global data, timeline ‘status data

73

74

FUNCTIONAL PROCEDURE DESCRIPT ION

Procedure Identifier: PERIPHERAL RECONFIGURATION (PRLRCF)

Purpose: - The PERIPHERAL RECONFIGURATION (PR) process selects a good
peripheral device, if possible, for input/output (I/O) operations. Operating in
conjunction with fhe hardware diagnostic routines (ST) and the INPUT/OUTPUT
INITIATOR/CONTINUATOR's, the PR examines the Device Failure tables and
the Peripheral Configuration tables to- construct a select word for a valid de'vice

for an arbitrary operation.

Approach: Upon detection of a hard failure in a peripheral devi_ce, the PR pro-
cess is waked, By examining the Device Failure tables and the Peripheral Con-
figuration tables the PR process selects a valid alternate device. The s,eiect
control word for this valid device is substituted for the failing device in the Device
ID Selection té.bles. Therefore,- processes attempting to use 'ghis failed device -

will instead use the substituted device,

External Procedure Referenced: OUTPUT INITIATOR PROCESS DISPATCHER,
HARDWARE DIAGNOSTICS

External Data Referenced: Peripheral Configuration tables, Device ID Selection

tables, Global data

' 'FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier; CPU 'RECONFIGURATION (CPRCNF)

Purpose: The CPRCNF process d1rects the System Control Unit (SCU) in the detection
" of anomalies in the A&B. computer operation, This is done by analy51s of status signals
"~ and interrupts sent from the computers to the SCU and control signals sent from the.
; SCU to the computers. The CPRCNF analyzes VOTE, SYNC and error notifications,

directing the computers in reconflguratlon sequences, if required.

Approach: The CPRCNF has several ent_ries:_ 'periodic," vote, sync, watch-dog timer, _
and error, Statistics concerning __sys‘temf'status are collated using lstackingv pr'ocedures.
‘I‘,‘ogical procedures _detect anomalies and reconfiguration sequences are initiated, | For
SY NC and VOTE requests;' the watch—do‘g timer is set and status lists'are periodically

f exammed to detect vote and/or sync state, In the case of SYNC the computers are '
released when in synchronous 1g'mtion or error analysw procedures 1mt1ated For

. the VOTE case, votmg results are analyzed and reconflguratxon sequences 1mt1ated

N3

‘when requlred

External Procedure Referenced: RLSPRC reconflguratlon sequences, statlstlcs

accumulation process, performance statlstlcs processes, PROCESS DISPATCHER

External Data 'Referenced: Computer sta_tus words, ‘Global data

75

76

FUNCTIONAL PRGCEDUIL 1 LSCRIPTION

Procedure Identifier: ALARM (ALARM)

Purpose: The ALARM process maintains current system alarm -status, pro-
vides alarm notification as required, controls the alarm portion of the main-

tenance recording and provides an interface to the performance statistics

gathering process.

Ag}groach The ALARM process is called upon detection of an anomaly. The

call sequence prov1des Dev1ce ID, anomaly classification, The ALARM process
analyzes alarm h1story tables, formats notification message if requ1red and
initiates the message using the OUT PUT INITIATOR ~Maintenance recording is

also done, if required. Data are transmitted to performance measurement

routines, as required.

External Procedure Referenced: OUTPUT INITIATOR, PERFORMANCE MEA-
SUREMENT, MAINTENANCE RECORDING.

External Data Referenced: Global data, Alarm History tables

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DISPLAY DIITIATOR/CANCEL (DSPYNR)

Purpose: The DISPLAY INITIATOR provides initial conditiéns for the CRT
displays. Each display required will have an ordered list of processes that
operate to change the initial map along with values defining the original map.
The DISPLAY INITIATOR will wake these processes after selecting the .output
CRT and transmitting the initial map. Displays are cancelled by transmitﬁng
a cancel request using the OUTPUT INITIATOR,

Approach: Call sequence parameters yield the display, output device and other
required daté. The initial display is formatted into a message for the OUTPUT
INITIATOR and transmitted to the output device using the data bus coﬁtrollef.\
Processes on the list associated with the display ‘aréw}vaked. Option to return\ v
to the applications process or-to EXECB are exercised: For display cancel-
'lation, the cancel request is formatte(i into a message and transmitted to the

device using the OUTPUT INITIATOR,

External Procedure Referenced: OUTPUT INITIATOR, PROCESS DISPATCHER,
DATA STORAGE ALLOCATOR, applications processor

External Data Referenced: Cancel control word, peripheral configuration

tables, Global data

717

78

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: DISPLAY CONTINUATOR (DSPYCR)

Purpose: The purpose of DISPLAY CONTINUATOR is to provide. display
refreshment via the display refresh signal, Processes on the image manipu-
lation list are waked and the changed image transmitted to the requested

output device using the OUTPUT INITIATOR,.

Approach: Upon receipt of the refresh signal the DISPLAY CONTINUATOR
wakes processes on the image manipulation list. Upon completion, the new
image is transmitted using the data bus controller, The message is formatted

and execution control words. transferred to-the DBC. If the DBC is not active,

1t must be initiated. Exit is taken to EXECB of_ the. PROCESS DISPATCHER,

External Procedure Referenced: PROCESS DISPATCHER, OTITPUT INITIATOR,

applications processes

External Data Referenced: Global data, execution control word, Peripheral

Configuration table

FUNCTIONAL PROCEDURE DESCRIPTION

Procedure Identifier: TIMELINE DISPLAY (TMLNDS)

Purpose: TIMELINE DISPLAY (TLD) will provide a procedure to display on
a CRT selected portions of the mission timeline. The process will operate in

conjunction with the DISPLAY/INITIATOR/CANCEL/CONTINUATOR.

Approach: The call sequence will determine the subset of the timeline éequence B
to display. The TLD will access the pertinent subset of the timeline and format a
call to the DISPLAY INITIATOR. The TIMELINE INITIATOR will treat the display
in the same way that other displays are handled. Timeline status display will be

accomplished similarly to the above.

External Procedure Referenced: DISPLAY INITIATOR, PROCESS DISPATEHER,

applications process

External Data Referenced: Global data

80"

“EURNCTIONAL PROCEDURE DESCRIDTION

Procedure Identifier: PANEL SCAN (PNLSCN)

- Purpose: Panel Scan provides facilities to determine the status of the panel

switches. Panel Scan is activated by a change of state signal or on a periodic
basis. Using the INPUT/OUT PUT INITIATORS and the Peripheral Configuration
tables, the status of the devices are input and stored in the Device Status tables.

Based on values of the input, arbitrary processes may be waked.

Approach: Upon detection of a change of state signal or of the process becoming
time critical, the Panel Scan process is activated. Using values from the
Peripheral Configuration tables, messages are prepared to select and input the
contents of the registers associated with the various switch positions. These

values are converted as required and processes waked as necessary,

External Procedure Referenced: INPUT INITIATOR, OUT PUT INITIATOR,
PROCESS DISPATCHER, DELAY, TURN ON, Applications processes

External Data Referenced: Global data, Peripheral Configuration tables

FUNCTIORAL PROCEDURE DESCRIPTION

Procedure Identificr: DIGITAL INPUT (DGTLNP)

Purpose: The Digital Input Routine (DIR) has responsibility for reading the con-
tents of digital registers and storing the values in preselected buffer:areas.

The DIR operates in conjunction with the data bus controller (DBC) using the ‘
INPUT INITIATOR. Error cohditio_ns are logged using the OUTPUT INITIATOR.

Periodic operation is provided using DELAY.

Approach: Control words are constructed for each area multiplexor'and respec-
tive digital values are input byvforr.nétting a message for the OUTPUT INITIATOR.
Upon ready condition, the data are inpuf. ﬁsing the INPUT INITIATOR. This is
done for all area multiplekors. Execution control words must be transmitted to
the DBC for output and input. If the controller is not active, it must be initiated,
The time increment until next execution is passed to DELAY fbr periodic process

running.

External Procedure Referenced: OUTPUT INITIATOR, INPUT INITIATOR,
DELAY -

_External Data Referenced: Peripheral Configuration tables, Execution control

word, Global data, Data bus controller, .queue length

Je N Toe . .

81

APPENDIX B. PROCESS ATTRIBUTE DESCRIPTIONS

1. Name. Each program is assigned a unique alphanumeric name.
The name will be sufficient to locate and define the module in libraries, in-
ternal storage, or external storage and is formed by the rules for acronym
definition.

2, Size estimates. Estimates are provided here for number of lines
of code and space required for local data. Word lengths are assumed 32 bits.
All sizes are given in decimal, 'and lines of code are qualified as either
assembly code (ASM) or problem-orlented language (POL) code, such as
FORTRAN, BASIC, etc.

3. Relative statement type. The percent of each different instruc-
tion class is estimated (logical or computational).

4, Execution condition. The frequency of execution (number of times
per second) and the number of operations per execution (humber of instructions
executed per call), :

5. Complexity. ' The complexity of a procedure is measured by the
number of loops, number of paths, number of flow diagram blocks, and block
exit density. These factors impact design intimacy, complication of coding,
and thoroughness of checkout. The exit density calculation will be a valuable
measure of complexity since it relates decisions and paths at module level.

a. Number of loops. The emumeration of repetitively executed
sequences of instructions. Loop level is multiplied by the number of loops at
each level (1, 2, ...) to account for nestedness.

b. Number of paths. The number of transitions that can be
made among procedure subdivisions. This is the same as the total number of
exits from all blocks. e

c. Number of blocks. The total number of flow diagram blocks.

d. Block exit density. Value of (b) divided by value of (c).

6. Type. This attribute is specified by the usage. A procedure is
either a simple procedure or a function.

a. Simple. This refers to a procedure that accepts input
parameters and returns output parameters only through use of a formal param-
eter list or through global variables.

83

84

b. Function. A procedure which accepts input through a formal
parameter list and returns a single output through a hardware register is a
function. It may return an output that is in the machine format of an integer,
real, boolean, complex, or special variable.

c. Reentrant. This is a procedure that can be called repeatedly
at any stage of execution and properly complete each call. This implies that
the program module may not be dynamically modified and does not store inter-
mediate results locally.

d. Recursive. A procedure which calls itself (through the use
of push-down lists)-is said to be recursive. The call may be direct or indirect
through another procedure. A recursive procedure is not strictly reentrant
since it cannot be called at any point in its execution, It is, however, reentrant
in the sense that the recursion is accomplished by repeated calls (reenters at
the beginning) to itself.)

7. Priority. An integer from 0 to n (where 0 is the highest priority)
that indicates the estimated relative importance or urgency for execution of
this procedure,

8. Development time. The estimated man-months required for
total programming implementation (requirements analysis through checkout,
including documentation).

9. Residence requirements. Main memory allocation requirements
for procedures, transient areas, overlays, and bulk storage considerations
will be estimated; an indication of storage requirements when the program is
in a dormant state is included.

10. Events causing execution. An indication of what event(s) must
occur in order to cause execution of the procedure is given. This should
expose transition routes among procedures and show the initiating conditions
and mechanisms for procedure connectivity. Examples are direct call by
another procedure, indirect call by queuing, and interrupt activation. A list
of the procedures that reference this procedure is given.

11. Output data description. Definition of the output guaranteed by
the process. This output will be considered as used by external processes.
The output must be demarcated as to range, frequency or other descriptive
parameters depending on the process function. Any modification of these
parameters must be investigated for system interactions.

12, Input requirements. Definition of the input data required by the
process. The process, in effect, guarantees that if these input specifications
are met, then the output will be as described above. Similar considerations

apply.

13. Remarks. Miscellaneous notations,

85

w00 =1
.« e

10.

11.
12,
13.

86

Revision No.
. Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:
b, Logical:
Execution Condition:
a, Frequency:
b. Number of Operations:
Complexity:
a, Number of Loops:
b, Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type:
a. Simple:
b, Function:
(1) Integer:
(2) Real: -

. (3) Boolean:
. {4) Complex:
(5) Special:
¢. Reentrant:
- (1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a, Periodic:

b; Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Process Dispatcher

100
0

20
80

Called on;each activation of new process
Variable :

14
8
1.75

No
No

No
No

-No,

Yes
No

Yes
0
TBD
100

Not directly
Yes

Possibly

Yes

NA

Call Sequence

X

10,

11,
12,
13.

Revision No,
A Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a, Computational:
b. Logical:

" Execution Condition:

a, Frequency:

b, Number of Operations:
Complexity:

a,r Number of Loops:

b. Number of Paths:;

c¢. Number of Blocks:

d. Block Exit Density:

Type:
a, Simple:
b, Function:
(1) Integer:
(2) Real:

(3) Boolean:

(45 Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d, Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:
'~ a, Periodic:
b, Signal or Interrupt:
.¢. Queue Processing:
d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Clock Update

140

30
70

Clock Cycle Dependent

3 Dependent on requirements to
16 maintain software clocks and
14 watch~dog timers.

1.13

No

Yes
No
Yes
No
Yes
No

Yes

TBD
140

Yes
Yes

No

No
NA
NA

87

88

©®

10.

11,
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b, Local Data;

Relative Statement Type Percent:

a. Computational:

b. Logical:
Execution Condition:

a. Frequency:

b, Number of Operations:
Complexity:

a. Number of Loops:

b. Number of Paths:

c. Number of Blocks:

d. Block Exit Density:

Type:
a, Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
¢. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a, Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Examine Active List for Critical Process

200

30

70

Entered after Clock Interrupt
200

2
21

19

1.01
No

No

No

No

No

Yes
Partially

Yes
0 L.
TBD
200

Partially
No

No

Yes

NA

NA

X

10.

11.
12,
13,

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name: :
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a, Computational:

b. ZLogical:
Execution Condition:

a. Frequency: .

b. Number of Operations:
Complexity: '

a, Number of Loops:

b. Number of Paths:

c. Number of Blocks:

d. Block Exit Density:

Type:
a., Simple:
b. Function:
' (1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:

* Priority:

Development Time:
Residence Requirements:
Events Causing Execution:

a., Periodic: . L

b. Signal or Interrupt:
¢. Queue Processing:
d. Direct Call:
Output Data Description; .
Input Requirements: ‘
Remarks:

TURNON

130
10

30 R
70 '

System loading
100 o
16
1.45 o w s
- Yes’
Yes e
. No ~

" Ne-.
- No

* TBD o
- 140 ‘ S

* No R
No o

. ~Yes

-l NA ;-:i‘: . »

1 Call Sequence o

89

ex3

10.

11.
12.
13.

90

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a. Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:

b. Logical:
Execution Condition:

a. Frequency:

b. Number of Operations:
Complexity: ‘

a. Number of Loops:

b. Number of Paths:

c. Number of Blocks:

d. Block Exit Density:

Type: _
a. Simple:
b. Function:.
(1) Integer:
(2) Real:

_(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

" (2) Non-Recursive:

d. Non-Reentrant:
Priority: .
Development Time:
Residence Requirements:
Events Causing Execution:

a, Periodic: :

b. Signal or Interrupt:

c. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:’ ’

Revision No.

Date

TERMINATE A PROCESS

140
0

10
90

System Load
Variable

~ O 00 Y

Yes
Yes
No
No
No

No
No

Yes

TBD

140

.No

No

No

Yes

NA

Call Sequence

O 0 =
. .

10,

11,
12,

13,

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a. Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:
b. Logical:

~ Execution Condition:

a. Frequency:
b. Number of Operations:
Complexity:
- a, Number of Loops:
b, Number of Paths:
¢, Number of Blocks:
d. Block Exit Density:

Type:
a, Simple:
b.” Function:
(1) Integer:
{2) Real:
(3) Boolean:
- (4) Complex:

(5) Special: -
- ¢. Reentrant:
(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d, Direct Call:
Output Data Descripfion:
Input Requirements:
Remarks:

DELAY A PBOC ESS

90
10

20
80

Used for periodic process execution
Variable

= -3 00 B

Yes

Yes
No
No
No
No
No

Y'.;es
0"

TBD
100

No
No

" No

Yes
NA
Call Sequence

91

92

W 00 ~3

10,

11,
12,
13,

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a. Code:

b. Local Data:
Relative Statement Type Percent:
a. Computational:
b. Logical:
Execution Condition:
a. Frequency:
b. Number of Operations:
Complexity:
a, Number of Loops:
b. Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type:
a. Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:
(4) Complex:
(5) Special:
c. Reentrant:
(1) Recursive:
(2) Non-Recursive:
d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:
'~ a. Periodic:
b. Signal or Interrupt:
¢. Queue Processing:
" a. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

o N

. TBD

Revision No.
Date

SUSPEND A PROCESS

90
10

10
90

Low
Variable

Yes

Yes
No
No
No
No

Yes

100

No

" No

No
Yes

CNA

Call Sequence B
Planned usage for diagnostié'_abp}'i¢at§ons

W W0 -3

10,

11.
12,
13.

Revision No.

- Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a. Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:
b, Logical:
Execution Condition:
a, Frequency:
b, Number of Operations:
Complexity:
a, Number of Loops:
b. Number of Paths:
¢. Number of Blocks:-
d. Block Exit Density:

Type:
a, Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority: _
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic: :

b. Signal or Interrupt:

c¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

RELEASE A PROCESS

90
10

10
10

System Load
70

[EPR ST X

Yes

No
No
Yes
No
No
No

Yes

TBD
100

No

No

No -

Yes

NA .
Call Sequence

93

94

© 00 =3
. .

10.

11.
12,
13.

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:
~ b. Local Data:
Relative Statement Type Percent:
a, Computational:
b. Logical:
Execution Condition:
a. Frequency:
b. Number of Operations:
Complexity: _
a. Number of Loops:
b. Number of Paths:
c.. Number of Blocks:
' d. Block Exit Density:
. Type:
a, Simple:
b. Function:
(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
~ (5) Special:-
¢. Reentrant:
(1) Recursive:
(2) Non-Recursive:
d. Non-Reentrant:
Priority:

Development Time:
Residence Requirements:

Events C
a,
b.
c.
d.

ausing Execution:
Periodic:

Signal or Interrupt:
Queue Processing:
Direct Call:

Output Dataf Description:
Input Requirements:
Remarks:

VOTE

140
10

30
70

System Load
70

26
22
1.2

Yes

No
No

" Yes

No

Yes
0.
TBD

150

Not directly
No

No

Yes

NA
Call Sequence

Revision No.
Date

poen

11,
12,
13.

Name:

PROCESS ATTRIBUTE DESCRIPTION

Size Estimates:
a, Code:
b. Local Data:

Relative Statement Type Percent:

a. Computational:

b, Logical:
Execution Condition:

a. Frequency:

b. Number of Operations:

Complexity:

a. ‘Number of Loops:
b. Number of Paths:

c¢. Number of Blocks:
d. Block Exit Density:

Type:
.a. Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:

c. Reentrant:

(1) Recursive:
(2) Non-Recursive:

d. Non-Reentrant:

Priority:

Development Time:

Residence Requiremen’s:

Events Causing Execution:
a, Periodic:

b. Signal or Interrupt:
¢, Queue Processing:

.d. Direct Call:
Output Data Description:
Input Requirements:

Remarks:

SYNC

70
10

5
95

System Load
30

Yes

No
No

" No

No_
Yes
No

Yes

0

TBD
80

Not directly
No

No

Yes

NA

Call Sequence

Revision No.
Date

95

O W 3
P

10.

Sl
12,
13,

96

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a, Computational:
~b. Logical:
Execution Condition:
a, Frequency:
b. Number of Operations:
Complexity:
a. Number of Loops:
b, Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type:
a, " Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

c. Queuc Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Data Storage Allocator

600
10

20
80

System Load
Variable

TBD
TBD
TBD
TBD

“"Yes

No
No
No
No
Yes
No

Yes

TBD
610

No

No

No

Yes

NA

Call Sequence

© 00 3

11.
12,
13.

Revision No.

. Date

PROCESS ATTRIBUTE DESCRIPTION

Name;:
Size Estimates:
a. Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:
b, Logical:
Execution Condition:
a. Frequency:
b. Number of Operations:
Complexity:
a, Number of Loops:
b. Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type:
a. Simple:
b. Function:
. (1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c¢. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a, Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Input Initiator

350
30

10

.90

Function of System Load"
Variable :

4

- 24

20

1.20

Yes

No
No
No
No

"Yes

No

Yes

" TBD

380

No

No

No

Yes

NA :
Call Sequence, intérface

97

98 .

cwoo;q

11.
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:

Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a., Computational:

b. Logical:
Execution Condition:

a. Frequency:

b. Number of Operations:
Complexity:

a, Number of Loops:

b. Number of Paths:

c. Number of Blocks:

d. Block Exit Density:

Type:
a, Simple:
b. Function:.
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Input Terminator

750
0

10
90

Function of System Load
Variable

20
130
60
2.15

" Yes

No
No
No
No
Yes
No

Yes

TBD
750

No
Yes
No
No

Interface Requirements

© ©

10.

11.
12,
13.

_ Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:
b. Logical:
Execution Condition:
a. Frequency:
b. Number of Operations:
Complexity:
a. Number of Loops:
b. Number of Paths:
c. . Number of Blocks:
d. Block Exit Density:
Type:
a. Simple:
b. Function: _
(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special:
c. Reentrant: -
(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. ‘Queue Processing:

".d; Direct Call:

Output Data Description:
Input Requirements:
Remarks:

Output Initiator

300
60

30
70

System Load

13
11
1.2

Yes

No
No
No
No
Yes
No

Yes

© 3

TED
360

No
Possibly indirectly
No ‘

"Yes

Device & Data Bus Controller Output Rqmts,

Call Sequence

99 -

100

© 0 -~
P

10.

11,

12,
13.

Revision No.
. Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:
~b. Logical:

Execution Condition:

a. Frequency:

b. Number of Operations:
Complexity:

a, -Number of Loops:.

b. Number of Paths:

c. Number of Blocks:

d. Block Exit Density:

Type:
a. Simple:
b. Function:
(1) Integer:
- (2) Real:

(3) Boolean:.
(4) Complex:
(5) Special:

- ¢. Reentrant:
(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution: .
a. Periodic:
b. Signal or Interrupt:
¢. Queue Processing:
d. Direct Call:

" Output Data Description:

Input Requirements:-
Remarks:

Cutput Terminator

700
0

20
80

System Load
Variable

4

23
15
1.56

Yes

No
No
No .
No
Yes
No

Yes

TBD

700

No

Yes

No

No - L
Output Device Requirements
NA '

Revigion No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:
a, Code:

b. Local Data:

3. Relative Statement Type Percent:

a. Computational:

b. Logical:
4, Execution Condition:

a, Frequency:

b. Number of Operations:
5. Complexity:

a. Number of Loops:

" b, Number of Paths:
¢, Number of Blocks:
d.. Block Exit Density:

6. Type: .
- . a, Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:

" Priority: ,
Development Time:
Residence Requirements:

10. Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:
¢. Queue Processing:
d; Direct Call:

11. Output Data Description:

12, Input Requirementé; '

13. Remarks:

&DG):‘I

(5) based on- similalj applicationé

Analog Input Initiator

800
0

20

80

Scan Class Execution Rate

15
110
40
2.75

TBD
800 .

Yes

No

No .
Possibly

"Peripheral Device Requirements

NA

Functions may be done by hardware

101

102

Revision No.
Date '

PROCESS ATTRIBUTE DESCRIPTION

1. Name:
2. Size Estimates:
a, Code:

b. Local Data:

3. Relative Statement Type Percent:

a. Computational:

b. Logical:
4, Execution Condition:

a. Frequency:

b. Number of Operations:
5. Complexity:

a. Number of Loops:

b. Number of Paths:

¢. Number of Blocks:

d. Block Exit Density:

6., Type:
a, Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean;
(4) Complex:
(5) Special:

c. Reentrant:
(1) Recursive: .

(2) Non-Recursive:

d. Non~Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution
a, Periodic:
b. Signal or Interrupt:
¢. Queue Processing:
d. Direct Call:
11. Output Data Description:
12. Input Requirements:
13, Remarks:

.

O O W -7

" (5) based on similar applications

Analog Input Continuator

1500
0

20
80

Scan Class Execution Rate

20

150
100
1.50

No

No
No
No
No
Yes
No

Yes
3
TBD
1500

Possibly
Possibly
No
No

‘Peripheral Device Requirements

NA

Functions may be hardware implemented'

©

10.

11,
12,
13.

‘Revision No.
‘Date

PROCESS ATTRIBUTE DESCRIPTION

Name:

_ Size Estimates:

a, Code:
b. Local Data:

Relative Statement Type Percent:

a. Computational:

b. Logical:
Execution Condition:

a. Frequency:

b. Number of Operations:

Complexity:
a. Number of Loops:
b. Number of Paths:
¢. Number of Blocks:
d. Block Exit Density:

Type:
a. Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

" (2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

- Analog Output Initiator/Terminator

- 350

0

15

"85

16
10
1.60

No

No
No
No-
No
Yes
No

Yes

3

350
Possibly

Possibly, indirectly
No

Yes

Peripheral Device Requirements
Call Sequence

103

104

W 00 -3
.« .

11.
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
~a, Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:

b. Logical:
Execution Condition:

a. Frequency:

b. Number of Operations:
Complexity:

a, Number of Loops:

-b. Number of Paths:

¢. Number of Blocks:

d. Block Exit Density:

“Type:
a. Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c¢. Reentrant:

(1) Recursive:

" (2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call: -
Output Data Description:
Input Requirements;
Remarks:

Analog Output Continuator

50

10
90

System Load
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD

TBD:
TBD
TBD
TBD
TBD
TBD
TBD
TBD
0
TBD
50

~-No

Yes

No

No

Peripheral Device Requirements
As Above

Lo

2]

10.

11.

12,

13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Bize Estimates:
a. Code:
b. Local Data:

Relative Statement Typé Percent:

a., Computational:

b. Logical:
Execution Condition:

a. Freguency:

b. Number of Operations:
Complexity:

a, Number of Loops:

b. Number of Paths:

¢. Number of Blocks:

d. Block Exit Density:

Type:
a, Simple:
b. Function:
(1) Integer:
(2) Real:

{3) Boolean:

(4) Complex:

(5) Special:
¢. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time: .
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

c. Queue Processing:

d. ‘Direct Call:
Qutput Data Description:
Input Requirements:
Remarks:

Digital Output Initiator

100
20

20
80

Periodic

14
11
1.27

No

No
No
No
No
Yes
No

Yes
3
TBD
120

Possibly

No

No

Yes ‘
Peripheral Device Bequirements
Call Sequence

108

106

© 00 =3
. .

10,

11,
12,
13.

Revision No.
" Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a., Code:

b. Local Data:
Relative Statement Type Percent:
a. Computational:
b. Logical:
Execution Condition:
a. Frequency:
b. Number of Operations:
Complexity:
a. Number of Loops:
b. Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type:
a., Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:
(4) Complex:
(5) Special:
c. Reentrant:
' (1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Digital Output Continuator

50
0

10
90

System Load
Variable

N WOk

(=1

No
No
No
No
Yes:

No

Yes
3

TBD

50

No

Yes

No

No :

Peripheral Device Requirements
Same as Above

O 0 -

10,

11.
12,
13.

Revision No.

Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b, Local Data:
Relative Statement Type Percent:
a, Computational:
b. Logical:
Execution Condition:
a. Frequency:
b. Number of Operations:
Complexity:
a. Number of Loops:
b. Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type:)
a. Simple:
b, Function:
(1) Integer:
(2) Real:

(3) Boolean:
(4) Complex:
(5) Special:
¢. Reentrant:
' (1) Recursive:
" {2) Non-Recursive:
d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:
a, DPeriodic:
b. Signal or Interrupt:
c. Queue Processing:
d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Mass Store Initiator

100

15

85

Phase data, error recording
Variable

14

‘10

1,40
No

No
No
No
No
Yes
No

Yes

TBD
100

No

No

No possible

Yes

Device Requirements
Call Sequence

107

Revision No.

Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name: Mass Store Continuator
2, Size Estimates: :
a. Code: 1100
~b. Local Data: . 0
3. Relative Statement Type Percent:
a. Computational: 10
b. Logical: 90

4, Execution Condition:

-a. Frequency: Mission phase loading, ‘error recording

b. Number of Operations: ' Variable
5, Complexity:
a, Number of Loops: TBD
b. Number of Paths: TBD
c. Number of Blocks: TBD
d. Block Exit Density: TBD
6. Type: .
a, .Simple: . " No
b. Function: '
(1) Integer: No
(2) Real: No
(3) Boolean: " No
(4) Complex: " No K
(5) Special: Yes
c. Reentrant: " No
(1) Recursive:
(2) Non-Recursive:
d. Non-Reentrant: " Yes
7. Priority: 3
8. Development Time: TBD
9, Residence Requirements: 1100
10, Events Causing Execution:
a, Periodic: . No
b, Signal or Interrupt: Yes
¢. Queue Processing: - No
d. Direct Call: . ‘No
11, Output Data Description: ' Device Requirements
12, Input Requirements: ‘ ' NA

13. Remarks:

108

© o =3

10.

11.
12,
13.

el ~ninn NO.

~dJate _
rROCESS ATTRIBUTE DESCRIPTION
- Name: ‘Timeline Interpreter/Controller
Size Estimates: v , C '
a. Code: 800
b. Local Data: .
Relative Statement Type Pércent:
a, Computational: 30
b. Logical: ' 70
Execution Condition:
a, Frequency: ' Skeleton periodically
b, Numbér of Operations: Variable
Complexity:
a. Number of Loops: 7
b. Number of Paths: .24
c¢. Number of Blocks: 19
d. Block Exit Density: ‘ 1.3
" Type:
a. Simple: ~ No
b. Function:
(1) Integer: No
(2) Real: , No
(3) Boolean: No
(4) Complex: No
(5) Special: Yes
c. Reentrant: No

(1) Recursive: s
(2) Non-Recursive:

d. Non-Reentrant: Yes
Priority:
Development Time:
Residence Requirements: 800
Events Causing Execution:
a. Periodic: Yes
b, Signal or Interrupt: Possibly
¢. Queue Processing: No
d. Direct Call: . No

Output Data Description:
Input Requirements:
Remarks: ’

109

PROCESS ATTRIBUTE DESCRIPTION

1, Name: ' Peripheral Reconfiguration
2., Size Estimates: , o '
a, Code: i » 700
, b. Local Data: 50
3. Relative Statement Type Percent:
a. Computational: 20
b. Logical: V - 80
4, Execution Condition: ’ ' , :
' -a., Frequency: - Response to solid peripheral failure

. b. Number of Operations:
5. Complexity:

a. Number of Loops: 11
b. Number of Paths: 44
c. Number of Blocks: 35
d. Block Exit Density: 1.25
6. Type:
a. Simple: Yes
b, Function:- _
(1) Integer: No
(2) Real: No
(3) Boolean: ~ No
(4) Complex: : No
(5) Special: No
¢. Reentrant: Yes

(1) - Recursive:
(2) Non-Recursive:

d. Non-Reentrant: Yes
7. Priority: 0
8. Development Time: TBD
9. Residence Requirements: _ 750
10. Events Causing Execution: _
a. Periodic: " No _
b. Signal or Interrupt: . Yes, possibly
c. Queue Processing: No
d. Direct Call: - Yes ' . ;
11. Output Data Description: Peripheral Configuration Table Design Rq

‘12, Input Requirements: Call Sequence S
13. Remarks: :

110

O 00~
.

'10.

11,
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a., Code:

b. Local Data:

Relative Statement Type Percent:
a. Computational:
b. Logical:

. Execution Condition:

a. Frequency:

b. Number of Operations:
Complexity:

a. Number of Loops:

b. Number of Paths:

c. Number of Blocks:

d. Block Exit Density:

a. Simple:
b. Function:
(1) Integer:
(2) Real:
(3) Boolean:
(%) Complex:
(5) Special:
c¢. Reentrant:
(1) Recursive:
" (2) Non-Recursive:
d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:
a, Periodic:
b. Signal or Interrupt:
¢. Queue Processing:
d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

CPU Reconfiguration

4K

4K

20
80

Response to CPU failure
Variable

30
119
84
1.41

No

Yes
No.
Yes
No
Yes
No

Yes
0
TBD

- 8CU

Yes
Yes
No

Yes

Reconfiguration Sequencer, Register Loading
Discussed in body of report

About 4500 words are estimated as required
to implement reconfiguration sequences.
Savings could be achieved by consolidating
similar parts of sequences.

111

112

[y
.

© ® 3
DS

10.

11.
12.
13.

Revision No.
- Date

PROCESS ATTRIBUTE DESCRIPTION

Name;
Size Estimates:
a. Code:

b. Local Dataé

Relative Statement Type Percent:

a. Computational:
~ b. Logical:
Execution Condition:
a. Frequency:

b. Number of Operations:

Complexity:

a. Number of Loops: -

b. Number of Paths;
c¢. Number of Blocks:
d. Block Exit Density:

Type:
a. Simple:
b, Function:.
(1) Integer:
(2) Real:

(3) Boolean:
(4) Complex:
(5) Special:

- €. Reentrant:
(1) Recursive:

{2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

c. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

ALARM

500
0

20
80

System Load

60
32
1.85

No

No
No

No
Yes
No

Yes
3 .
TBD
500

.Possibl_y

No

No

Yes

Peripheral Device Requirements
Call Sequernce _
Alarm history tables required

O 0 3

10.

11.
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
a, Code:

b, Local Data:

Relative Statement Type Percent:

a, Computational:

b, Logical:
Execution Condition:

a, Frequency:

b. Number of Operations: -

Complexity:
a, Number of Loops:
b. Number of Paths:
c¢. Number of Blocks:
d. Block Exit Density:
Type:

a, Simple:

b, Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d., Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a, Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

~d: Direct Call:

Output Data Description:
Input Requirements:
Remarks:

Display Initiator
450
20

20
80

-. System Load

Variable

5

17
13
1.25

Yes

No
No
No
No

" Yes

No

Yes

TBD
470 .

No

Possibly indirectly -
Possibly

Yes

" Display device requirements

Call Sequence

Initiation procedure is hardware dependent.

113

114

W 00 -3
L .

10.

11,
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name;
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a., Computational:

b. Logical:
Execution Condition:

a. Frequency:

b. Number of Operations:

Complexity:
a. Number of Loops:
b. Number of Paths:
c. Number of Blocks:
d. Block Exit Density:

Type: _
a. Simple:
b, Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
c. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:

Priority:

Development Time:
Residence Requirements:
Events Causing Execution:
a. Periodic:
b. Signal or Interrupt:
¢. Queue Processing:
d. Direct Call;
Output Data Description:
Input Requirements:
Remarks:

Display Continuator

450
50 (process list)

20
80

Refresh Rate
Variable

5
13
10
1.3

No

No
No
No .

No

Yes
No -
Yes

TBD

Yes
Yes
No -

. No

Display device requirements
NA
Hardware dependent.

3

10.

11.
12,
13,

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name;:
Size Estimates:
a, Code:

b. Local Data:

Relative Statement Type Percent:

a. Computational:

b. Logical:
Execution Condition:

a, Frequency:

b. Number of Operations:
Complexity: :

a. Number of Loops:

b, Number of Paths:

¢.” Number of Blocks:

d. Block Exit Density:

Type:
a. Simple:
b. Function:
(1) Integer:
(2) Real:

(3) Boolean:

(4) Complex:

(5) Special:
¢. Reentrant:

(1) Recursive:

(2) Non-Recursive:

d. Non-Reentrant:
Priority:
Development Time:
Residence Requirements:
Events Causing Execution:

a. Periodic:

b. Signal or Interrupt:

¢. Queue Processing:

d. Direct Call:
Output Data Description:
Input Requirements:
Remarks:

Timeline Display Initiate/Cancel

500
20

20
80

Resp_gnse to Timeline Status Display réquest
Variable

10

28

18
1.55

No

No
No
No
No
Yes
No

Yes

TBD
520

No

Possibly indirectly
No -

Yes

‘Input required by DISPLAY INITIATOR

Call Sequence

Request is hardware oriented

115

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

1. Name: Panel Scan
2. Size Estimates:
a. Code: 550
b. Local Data; 50 (Process response list)
3. Relative Statement Type Percent:
a, Computational: 20
b. Logical: 80
4, Execution Condition: :
a. Frequency: " System Load
b. Number of Operations: Variable - -
5. Complexity:
a. Number of Loops: ‘3
b. Number of Paths: 11
c. Number of Blocks: 9
d. Block Exit Density: 1.22
6. Type: _
a, Simple: No
b. Function:
(1) Integer: - No
(2) Real: No
(3) Boolean: _No '
(4) Complex: No :
(5) Special: Yes
c. Reentrant: " No
(1) Recursive:
(2) Non-Recursive: .
d. Non-Reentrant: Yes
7. Priority: 3
8. Development Time: TBD
9. Residence Requirements: 600
10. Events Causing Execution:
a, Periodic: Possibly
b. Signal or Inteirupt: Possibly
¢. Queue Processing: No
d. Direct Call; No

Process requirements associated with
switches, Peripheral Device Requirements

Peripheral Device

Possibly periodic operation or based on

change of state signal

11. Output Data Description:
12, Input Requirements:
13, Remarks:

116

¢© 00]
.

10,

11.
12,
13.

Revision No.
Date

PROCESS ATTRIBUTE DESCRIPTION

Name:
Size Estimates:
~a. Code:
b. Local Data: _
Relative Statement Type Percent:
a. Computational: '
b, Logical:
Execution Condition:
a., Frequency:
b. Number of Operations:
Complexity:
a, Number of Loops:
b. Number of Paths:
c. Number of Blocks:
d. Block Exit Density:
Type; - '
a, Simple: o
b. Function:
(1) Integer:
(2) Real:
(3) Boolean:
(4) Complex:
(5) Special: o,
c. Reentrant: ’
(1) Recursive:
" (2) Non-Recursive:
d. Non-Reentrant:
Priority:

Development Time:
Residence Requirements:
Events Causing Execution:

a,
b.
c.
d.

Periodic:

Signal or Interrupt:
Queue Processing:
Direct Call:

Output Data Description:
Input Requirements:
Remarks: '

Digital Input

200

0

10
90

Scan Frequency TBD

No

No
No
No
No
Yes
No

Yes

TBD
200

Yes

No

No

Possibly

Digital Status Tables

Peripheral Device Requirements
Possible hardware implementation

117

APPENDIX C. FUNCTIONAL FLOWCHARTS

High-level functional logic diagrams are rendered for critical processes
in the Flight Executive. Typical examples of highly hardware-dependent processes

are presented.

119

(7 40 T 13706} UAUSLYICIA €€I20Ud “TD JUNDL - -

§80001d
o} dea],
wod] 9ABI]

1817 Jo do g, 03
fojuI10d $59001d 39S

1

1811 Apeoy woay

ssaoo0ad yoredsiq

dex) woay
winyey

3811 JO dog,
03 I2JUIO{ .
§8900ad 199

-889001d "mwﬁﬂoﬁn :
" Suruuny nq Apeay ueyy
19ySry Ajaorad
ydweaad
§8900ad

3 “¥s1 Apeay
ur 883001d
T 35€9] 3V,

1

“8utuuna

§5900xd
e §]

dex],

k

(2 40 7 L33HS) SIIYLN3 J4VMLI0S Y3IHILVdSIO $$3204d ‘T 3¥N9I4

ayojedsi(q ss900a
oy dex] ajBInUI

8531ppe win)ax dexj 398
889001 XU
01 I9jU10d §69901d 198

- §8900a1d 9Z1[BIU]

SSAIpPE WINAI
dexj 198 ‘xsjurod

1
sspooad

Apxorad .533
B 919Y3 §

. VOuUXd

121

INIKVX3 ONV 3LVQdN Y2019 JHVMLI0S *20 JUNDI4 -

——

-

r
_ > _
_ vo3xa

S |

*@3NDIHD
$S3J0¥Ud

/ \
S1dNY3ILNI / _ SS3AD0Ud INVM
i LIGIHNI / §S300Nd 3
\ ANNILNOD
Y _

1
:153Nnd3Y
INVM

/ sianuwain \
\ llwdad y

\ /

SLdNYYILNI
1iwyad

|4|

1HOINGIW ¥ 04
($AD071D AVQ 40

INIL 1D3NA0D

1817
JAILDY WON S
¥355300¥d
AVOILIND
JAOWIN

!

— l_ $3$$300¥d AT10H
NON TV ¥04 1

$MX2072
3¥YML40S
©31vadn

v1134 NOILND3X3
| LN3IW3¥O3aaQ

L
a0 NI
3S3003d

dvdl dD01D

122

1817 AQY3IY NI LYISNI "£9 3uN9I4

NIova HONvVYg l—
W3 LI M3IN
NI 33INYVW

1s171 4O
woli04d Lnd

vOo3axs3

13:153n03y
NiaNnL3y

123

S3A
¢ 1517 30
woliLli09

il _ S3D1aNI 1517
43 LNINd ON 31vddn
1517 40 4Ol e —
NI ¥31Niod
nd : | wous ¥31NIod
=L $53508d
_! LX3IN 139
¢ 1517 40 401 ¥OLYDGITV _ I
$3A 39VH0LS
viva 107§ 1511
AGV3IY NI
YNNG LNd

av 1In4d
avi mmImhIw_.ww yg .Wmo_u bnnv_wmw

1517 NO $$3703d ALdW3 L0S
LX3N OL 139 ON 1517 AQv3y
¥3LNIOd 139

AD3IHD
RELERE

ENEy) ALINOINA

NOILYZITVILINI

AINYVW
1817 40 dol
LN3IW3YONI

= |

AYLN3

AYVNINITIYd — JAONIY °+I ELLDIE!

S1qeIeAy
BIIY W[
oy
198

JI9NIBLY
ISTT Jo pug
EES

§88001d IX9N
0
urod

JuNo s WajI
LEIER BTy

1autod
IsTT jo dog,
1989y

peaaylay
‘peaay], yeaag

uoTyeZI[BTI U]

AHINE

124

§$3304d vV m._.<>_._.o< = NON¥NL SO 3¥N9Id4

wimey

I9NIBIN
PRUNUO D-9)BM PUE (I
§S9201J [[BD 3119SU[
19497 awr],
18 ST 2ATIOY

03 puaddy

§59001g
AONILNOD

:poo
aouanbag
11eD

NONYAL

1 J
QULD.doU] Te3uswaI duy
"0y 01
aAT)IBIaY ajnjosqy
JI9AUOD 319AU0D
qormg
9POIN
9pPOIA PWIL], _
199 .
sIo9jaureaed !
SS®
dvial d]
LINVASH

125

$S3004d ¥ JLVNINYIL - JONYNL °99 34NOI4

J103800T[V
a8e1039

Beq

7} :8901N089Y
wInjey

. JONYNL

I0JBOO[IV
-98ex0lg

eyeq

AV13Q L0 34NDI4

d Vil
LIOVASH

JoNIBIN
HANILNOD
~HIVAM 188

‘I sse001d

118D 398Ul
‘19A9T swIL],
¥8 IST] 2AdY
uf jrasuy

dN

3 pood
aouanbag

127

uInjoy

1038001V
23e1038

SISTT

ut
I9NIBI

ccmamsm 1989y

BAACPICE:]

SVII3U- NIdSAS ‘RO IWNOLA -~ T

uwIngey

I0JBO0[IV
a3ra038

BvlRQ

3} ‘uangesyg
3240083y

Sisl]
ut
I IBIN
puadsng jeg

NIdSAS

128

INNSTY/QTOH "6 JuNDI4

uImay : ,

ISTT 2ATOVY ISTT 2AOV
ur ur
I9)IBIN PIOH . IoXBIN
§89001d 399y _ PIOH SS9001d
188

‘poon
aouanbag

e

31 :pood)
aouanbag

ed

AN

129

nnﬂmm
310A °0T2 34NOI4 ‘

$8900a4
mned
LIVM

TNET
‘nos o1
TeusdIs 930A

astey

SOIqBIIBA
mdng

Indno

108 0}
vudis 9aa8es1q - d
© astey

Liii): " olqELIBA

9ouanbag 118D
YITM 9lqerdeA
nduy sxeduro)

peaq pue
SlqelrIeA
nos 0 anduy
[eudrs Io1xyg
astey

L

AN

I10J
spueq pea(pu
biqerieA dn 308

q
AN
9J0A IO}
: X03d1aosaq

J03eTI U] 3[qBIXEA 319D

mdinQo

. sxajouwreaed
o3essa|y ssed
UOTIBOHIIION
yewrro g

} :poo
aouanbog

18D

AN

130

INAS °T1J 34N9I4

uIngey

Nnos

I0J IpMm 308
N0S 03 -Teusis
ONXS ostey

X9)s180Y
9'lS
38D

0°'T NAS

131

R T

-40L1VYJ071TV 39VH0LS VIVA °Z1I 3UNIIJ

winjoy

sorjs1els
QO,G&E.HO.«.HQAH

a3epdn

L

91qe.L I
a8essoly

10N1ISU0D

ArrelL a1
b3BSSOIA ‘A[®

a3ea03g a3epd

uinjay

1
‘[1BAY
§90IN0SY

‘poodH
aouanbag

Axjuy 19D

winjoyl

sonsuels
QOE.NE.HO.HHON_”

ojepdn

. uo11Bd0[9Yy
. NMuweuAq

‘U0109710D
adeqaed) o

LI0VISH [90UED SAI[EL

s, (] 23essaA

ayepd() ‘[reAvy
§90an08aX 398,

#poo
aouanbag
118D

Axjuyg md

YOLVILINI LndNI °€TO 3¥NOI4

. 1NdNI 3SNVD OL
NiNL3N JDVSSIW LYWHOd

Asng

3TGVIIVAY LON 37QVIIVAY

¥OL1VI0711V
39V¥01S V1Va

SY3LINVYYL
ssvd

1 3 XI3IHDO N
®3as 1Iv)

3N

91vYD HOLVILINI

¥317vd ol
N¥NL3Y

T LIED)
3LVIaIWWE

1: A¥LN3
TVYNOIS

aN

IJ9VSSaN
¥O04 Lam 13§

ot

NJ01 ALVILINI

1$3ND3Y NIVHD

1: 3A1LDY

¥3ITI0ULNOD'
sna viva

vIuv
¥344n8 30iA34

3ZiTVILINI

TAYNIIS NNIdN

MM AMYAS LISN

133

L]

(9 40 T L33HS) YOLVNINYIL LNANI "+TD 3¥N9IS

$$3D0ud
YWO0D

NOILYDI411ON
noas

YOLVILINI
1ndino

39VSSINW
NOILVDI4ILON
1YW30d

LNNOD
LNIWIAINI

qQdl

ANNOD =0

W

1NNOD
LINSNVY L3N
LNIWIYONI

SOILSON9VIa
JAVMQYVH

ISIWIL N
LIWSNVYL13¥

1

$DI1LSONOVIQ
ssvd

—l‘_|l. |

NOIL
“VYNOI4ANOD3IY

- IV¥3IHLINAd

SLNNOD 1353¥
‘SOILSONIYIA
q1vd

e

HOYYI ANV

SYILIWVYVd
J9VSSIW L3O
‘1QMm 1353Y

dv¥l 3137dW0D LNdNI

134

(9 40 Z L33HS) HOLVNIKYIL LNdNI "¥10 3¥N9I4

uInjoy
Asng

sso00ad [[8D
ANNILNOD

ANNLLNOD

\ 3 oo si9jpwered
101 r£ol HDI d011 A0I odessol agessop 199
asea[aY
fINO d) oSesson] [o0oue)d INOS) 23BSSaIN JrusueI}ay B1Bd ON oZpomowioy Asng
Jo pug 10 1TES L

135

WOI

JunoH
Jus WA ouf

(9 40 € 133HS) HOLVNINYIL LNANI *¥1D 3unOI4

J0I

UOTIEOTINON
nos
TIONVD

8201pU] 1989y

uopEORTON
1181 j8wIo g

3 sawyg 1

dN

A1,

sopsouseyq
SSBg

t |

WOl

sopsouldelq
axempIBH

J 1T IUSUB.I)O)

sIajouwrered
adessa 190

JTwsuBI)Od

odessaly . sseq
apol
papeadaq WOI
JewIO0 I

Jd0I

uopeIn
-8puoosy
Texsydiaag

gjunoyn
red
1089y

136

A0 N¥AL

Joretyu]
mdino

ogessa
jusuer)
-9y JeWI0 g

mmsm.._,. 1800100

!

(9 40 ¥ 133HS) YOLVNINYIL LNdNI "¥1J 3¥N9IJ

aIqerieAs

jou Baae

9Iqe[IeAs BaIe

J03BOO[[V
?dgvi0)s
Beq

siajouwreIEed

o3eesaIy 39D

137

DI

To3e13Iu]

indyno

OSJ 938869
JO 1.8

HOI

o3esso|

98parmow(oy
TewIo g

SIqEITEAY
BoIY

)

Jawl],
3op-yojem 308

@UH

§§0001d 18D
ANNLINOD

uone[eoUE)
J0J'sseooad

AAVM

J03BOOIV
23vx0I8

B1EQ

ISP) aguie

asearay
‘sasjowreIRd
938SSAIN 19D

[eoue)

o1

138

(9 40 9 133HS) YOLVNIWYIL LNJNI ¢TI 4NII4

wIngey youeag

13[Npayos .
aurewlL a3rva0)g
AV B1ed

10380V

SUOTOV . _“wﬁdm 258889

ourpawIY, sBI[aY ‘Iogm

aInpayog 88900ad 03
Isnp : a3esso| aA0lN |

3 sonbay
wInjey

Iosaed
nduag
AAVM

s89001d

1Ed
IANLLNOD

puewaqg
Jojexadp
}oayD ISNN

| ¢suriowryL, 30N

aurfowryy,
VM

R
3 oupfouIL]
q

Jo3eyyIul
mdyno

a3essaly
a3pajmom oy
rewrIo g

a3essol
Jo
puly

A.AOu v

139

40dxd

AN

yoor] a8essaIN
19§ ‘xowrL],
Sop-yojem 108

o

nooL

a3enIU]

dNoNY)
oL
1sonbay

ureyn

dN

9A1OY
.HQ._” —Wompﬁmﬂo O
BIE

O0BBSOIN
mdino
paaimbay
yewraod

pIom
UOI)0919S
20149
10NI38U0D

P1qeY "813uo) |
taoydiaad urodx
ES9IPPY 90149

[BUIaU] 39D

£8900ad
Burred remM
sI9joweaed
ssed

2ouanbag (18D

140

WOIVNINUIL LNLNO '$12.34M9I4 -

uIngey
J0X1yq

Z03en Ul
mdimp

1055 TUWISUBI}9Y]
0¥ 93essa
3 JeULIO]
£ . .
1 . - . oD sewry)
_ . p rususI)dy poRTwsuBL],
1B jusWaIOU] o3usso
THONVO .
N UOTIBO[ION . .

.] sanireg a3es , : : J03d1X083(q
= -89 JBWLIO . . — g1 98esso|
JI93umo)d : | #sea 310D

T W3 JUY 3 \ _
St gOUXH S103eoTpu]
_II &ﬁnﬁﬁ mqoﬁ . - |smEs 8d1A8(Q
A aN |ﬁ=.uu=com

, o.sﬁ,m
aIeMpIBH ON 9IBMPIBH

L __ J

TSUL
Sopyoyem’

jesoy .
—_—
aja[dwo) IndHNo

141

nos
03
[eudIs jneq

J0yer)Tul
mdingo

adessap

AJewrao g -

“YOLVITINI LAdNI D0TVNV °LT0 3¥n9Id

I07€131TU]

ndino

JI2juI0q
juswWaIou]

‘uopeoON |

Bleq
I0XX1q

1agyen

I10J
sadesso

jeurIo g

UOISSTWISUBLY, |

i

S\ XdIN
11e 103

§,(qI I0Suag

9AT)OV 31e1{0D

7 o9y
SSBID UBOQ
IV

S,L €31eq uon
F109X 398 Sl

XdIN R SS®B[D
[1B0S 9ATIOV 19

=

I9jUtoq
SSB[D UBog
9ZITenIU]

0°'T IIV

142

YOLVANILNOD LNANI 90TTVNY "81J JUNIId

© 143

(Lnd)
JI0}B20(IV
2881038
J10jep3rur
saapmnyg mdino
Bleq mvyd S901puf
CELEIE) OGNUQD.
_ oZessay
J0yenT
5a1qBL w:%&& UOTIEOHIION
an[eA juaxIN) “Jpm 109 yewaog ‘arqe
oum_—uab _ [IIBAY JON Ba1y
Poambey Sy !
Bupaeyrg 10 : LAD
UOISIDAUOYD) SITU) JZ03BO0[IV
:poon ooy : — 1 BJeq MBY 10
. saaymy
paambay , paamboy
. SV ueog : oreOrED
- |wox g seorasg
Mw\mnwwauﬁm afre.J sAOwWaY
sIajujoq 39D A . . SI0SUag 9ANOV]
. : Jo JaqunN
1°T OIV. : :
: i 9j91dwo D
(1oxardTjIna BoaE UIOI} B)BP) , \ . UBIS XJdIW Soreuy .

1eusig 91e1dwo) advesa

d0UXH

121180

J03eT)Iul
 mdinQ

LINVASH
d03Xd o
‘ paarmbay
1 ‘uIngey uLI0jIag 03
Keraq bSessg) aredaq
I03B1TU]
nding
‘ sseg
a8essa 1sjetieled
UOT)EONTION
— IOXI5 JBWIO
Sopyorem } "vo%
aouanbag
19504 N 11ed

eudis sjaerduro) dinp

ndino Soreuy

144

YOLVILINI 1nd1n0 VLI9IA "02] 3¥NII

1 ndnQ esing
- £°'1104

LTNVASH ®

Is[1eD v N :
(0 WINIoH | R 4 A J10BjUOD v

3 :3senbay
adA7,
1senbay Indino
107eR U] , 30998
Indino
10jenyru] _, saajowreIed
judino . UOT)BOLJIION Ssed
J0aIq
18WIO0,I
uotryoaf ‘poon
vm.wwwmwm_mu = aouanbag

1110Ja10d 03 93esSa 118D

Jodoag jewraog

ki

145

HOLYNIRYILINELIN0 TYLIOI0 12O 3unoIT

Xopul
[red
J03eTjIu] 1989y
mdino
rendia

aMNEM

uotjesn
-3rjuooay
Texaydiaad

Xopuj

e
JUaWaIOU]

AN

919]dwo)
nding 13131

1 Ss900ad
anuryuo)

HOLVILINI 340LS SSVWN 220 3¥N9I4

uxnjay Asng

Joj3enTuy
mdino

odessaly
1senbay
1BULIO

wouou 99
W ou o 9su
Pl JO Puj oF

puIsa
aoedsyoe
9Ix :
pea

Ss®BID 118D

To3erug

- ndno A v <l
uxnjeyg Asng

SI9jomeIEed
ssed
‘s901puUy
0 juowaaour

afessop
UOTIBOIION
JBULIO]

3 ‘[reAy
b °bay

3 :poon

dAN

aouanbag
I1eD

-0°'T IS

147

{

(ax)

pIop smejs
91038 SSBIN
39D

(s

sxajowreIed
jsonbsy

19D

90UBUIJUTEIN

o

1 mmmu,omm
HAANILNOD

"€23-34N914—
ped pooD
) aN
uoneIn
-81juooay
Texaydraad
saajourered
i o3esssy
19D

uInjey youerq

UOTYEOII1ION
nos

sonsoulei(q
axempaey

3 :STIB g
9AISS900Ng

2

sI9joureIed
3sonbay
pue paom

snjejs a103s
SSEBIN 39D

0°T LS

148

A

sIajoureded
1senbay
BN 319D

(2 40 2 133HS) YOLVNINYIL JOVHOLS SSYR "€20 34N914-

uinjey youeag
- .

1

dN

3sanbay

LIN}aY youvag

$89001d 104
SI9NIBIN O[IJd
Jo pug 3989y

§89001d 104
SAONIBI oL
Jo puy jeg

IN

3
‘uoneaxsdp J0

UINYoy JIOXIF

ao03en]
Indino

uonedINoON
9pOIN
pepeaSaq

\ UL)

149

TIRHL429-3YND 4 -

A10)1STH
uTeWLL,

ajepdn

i uoryezZIenyuy!
ss9001d Y31 d 3sod

oFad PON a8essay

IzZIBIUL S

1 1BWIO0 I

:9391dwo D
§9859001d N saseydq

9pIIIBAQ
NONYNL

] SWJIB[Y
Auy

}
:ouo(9SBYd

AN

?
:9pPTIIAQ

snjels
uaxIN) IO

BJEQ 9181100

AN

$X0)e01pu]

smeIs aul|
~ouIrL, 39D

0°T TINL

wInjoy JI0IIXq

I0yeT3Tu]
ndino

150

(2 40 7 L33HS) JONVHI TNIL *$2J 3¥NIIA

I'T TNL

SS000xd
Lepdsig 0}
aUI[owWIL], MON
JTwIsuBI],

A103s1H 10/pue
‘S988300ad

‘§ISTT 8ul[
-owr] ajepdn

€T TNL

Axjuy 93uey) SuUrfpUILL

LR L R SRS S W TR

T ST

151

(€ 40 TLIIHS) NOLLVHODIINGITY THU A4 ST T8N 4

TBORLID
Q01A3(J

9°T
qdd
61 aud
131D
Xopul 03 wingoy|
201430
JUS WIS I DU
1
GENEEDR)
N s00lA3q peq
v

-

sng pooy IXaN
asn 0
?dlge] uon
-eIN3Iyuo mpm
aaﬂmh 9

T°

l3ud|

sesnhg poon
as(] 03 oa[qelL
[033U0)) [BID
rydrrad ssueyy

ejeq vooo
Auy
0°¢

Jddd}

4N

}
‘red sng

SIajoweIBed
ssed
aouanbag 18D
1o9YD

Arjug uooayg
Texaydixsdg

‘ 152

(€ 40 Z 133HS) NOILVHNDIANOJIY TV¥IHJINI 62D UNDIA

6°T 34d

L

SI[qeL
[oxjuop) (eIO
-ydrrad jonajs
~U009Y 03 Suon
-guIquio) peq
pue ﬁooU o8]

sonyeA
|

JuauIaxouy

9'T qHud

saojeorpuy-
red
j989Y

SN[EA
>
oz [[enIu]

S°'T Idd

153

6T ddd

m..u_oﬁc%s
aanjreJ sngd
Ble(Q j989y

(€ 40 £ LIIHS) NOLLYHADIINOIIM WUIHAINIS-*SZ0 JUADH -—

ayeuUIaY IST
01 1L.Od 93uey)
wzm [red 3089

8'T Jdd

ON[BA
St
oz1[en U]

T

agdessay
uonBoYIjoN
7euLIO

onfEA A I07BYTU]

uamay
SIOXXH

mdino

JUaWAIOUT

ST m.m.ﬂﬁ.m.m
91BUIdV

AN

6'T 3ud

1 ‘1eonD
4N 901A3(]
9IqeL [oxjuo)d
Texaydixad

o3uey)

1 peq

A 1°¢ J4d v

— S9JBUINY

0°¢ 34d

IN

154

(£ 40 T L3THS) NOILVYNDIINODIY NdD °920 JUNDI4

£°eY | ' (4oyu3)

V3 1353 r
39N3ND3S TIvi .

| 1 ¥31NdWOD 113149

¥3L1NJdWOD
X3aNI ,) LNNOD

LNIWINONI quvd
LNIWIHONI
 sHO¥N3
¥31NdWOD

QNV NOILITdW0D
W03 1S NDIHD
ATIVOIA0IN3d

g3LsaL
SNILNJWOD
1YV

/ |
> .
NOILVdWOD
vivae
£y
1 3137403 L5y
ONILNNODDY N FZITVILINI)
doNya . 3
04 ‘Lam 13

1S .

ONILNNODDY ' NdW
¥Ou¥3l 00 uxum.»_sn_:uw
L1QM 135

UANYYW ANLND
J10014ad 138

1$
' ¥ILNAWOD
AZITVILINI

A¥LN3 J1Q0I¥3Ad

155

I N

(£ 40 Z.133HS) NOILYNNDIANOIZY NdD '9Z0 IYABI4 . —

' _OAH 0} .
axedg paxeys
aouanbag

0'zy

¢'ed

rTenueiy
0}
adouanbag

OAY
0} DAY IST
aouanbag

:9[qeIeAy
'S8

‘IIBAY §,0AY

156

(Ldo¢ ._.umzmv__zc_._kz:w_h_zoomz.:mu "923 3uN9Id

DAY+ 3¥VdS

JIVAY J¥VdS

HINYYW
NVW
13

DAY = 3AVIS

TIVAVY 3¥VdS

1°ed

F10A
3L ¥0d
3ON3IND3S’

JA¥ 0L
2AY LS
3ON3Nbd3S

1S Ol DAY
3ON3ND3S

L 2 LNNOD
33¥9v

1= LNNOD

N 33¥9VSsia

1
" 33¥9vsia
JAY

110=
$3339Vvsia
40 ¥N

157

Juno)d
0'cyd ned
j9s9Yy

:9391dwo)
1S

‘enwu] IS 1T
Tondwro)

Axjua o_voﬁw%
o3 f13u8
XN 198

‘porelyuI

/

pooH
anuuo)

sonsness
ws A Isn(
-pVv ‘aadIeIN
[enuey jos9y

(L 408 LITHS) NOILVEADLINOITY NdD 23 JUADIS— - — - -~

[enue
0
9ouanbag

‘198 TayIEIN

DAY 0}
axedg paxeys
aousanbag

LS 03
9aades1q
souonbag

DAY
‘I = Juno)
posadesiq

qy

158

159

(406 133HS) NOILV¥NDIINGDIIY NdD °923 34914

9°TY »
(AR
¢Sy : . : ' . — 1reg
0} aouanbag
0T Y unoy Jred
1g 03 JUDUI OU]J
ST LIVAM-UON
1S aouanbag
o
aouanbag
2'sy
eyeq
UoWBZIENIU]
apol IS .
10 ¢'1Tyd
| .
UOTJBULIOJU] - Xepul ¢ty
smeis . red
1011y : juswaaouy - ,H_m 0
19D
_ 1 Z9jndwo)
aouanbag
LIVM 03 — -3
Jonduro) ‘TRl IS T
101179 4N Jonduro
aouanbag

*.

L1juq aoxayg

1VHN91INQI3Y NdD "920 J¥N9Id

a
(AR
AN | 3 : dN
N .m m - . : -
doorg
: doo1
nxﬂwﬂw) W24 DAY
) o) 2zZ1183Iu] -
3T W3IOU] - @.
[—a4 LIVM DAY
0T W , . 5.0AH
RQ123YD 8,0A% JoNJIE jsanb I0] S§,3pM 39S
-9y 930A 39S JINIBIA OUAS
i 338

LS 9

1 19mdumo) .
souanbag J3NIBIN
ssed
18

sonsn®s
91848 978pdn

L

Axyjuyg Axnjuyq
sonbay 930/) 3sonbay oufg

AN

160

(£ 40 L 133HS) NOILVYNDIANOIIY NI 920 34NII4

[T

I9NIBIA
1sonbay] dSuAig
1989y

L

A

o
1

. .um%&om 9J0A

IoNIEN

1989y

AN

:3sanbay
L 930

161

"[23 34N9I4

103B131U]
ndino

SUIpa009Yy
90UBUDJUIBIA
I0] o8es

-S89l JBUWLIO]

—

LTINVASH

Jojeryuy
ndinQ

odesso
UOTJBOTIIION
1BWIO

J03B131U]
ndino

Jndino swae(y

xoy ades
-S9O JewIOq

I91Te

uInjay

guipxooay

1 :paainbay

Surjunoooy
waely

1 poo)
20uanbog

el

62

(2 40 T L33HS) 13INVI / JLVILINI AV1dSIA “829 JuN9I4

I03BIjIUl
mdino

98essay
UOTIEOIJ1I0N
1BWIO0]

AN

WIn)oy
Asng

¥

¢ "TIa

—

a1qeireAy
JON Jewaoq

T

10782071V
28ev1078

eleq

311nbay vaay
UM XTI
Lerds1q renul
1o0NIISU0)

guissed

I9jowrered

Anjusg Aerdsiq

163

nozao.

_ a '82J0 ddN9ld

" Z03BIUL
ndino

. ABIASIO -
[9ouB) o,
938583

ndinQ jBULIO]

Lxjuyg

€ '1I1a

ferds1q ﬁwonw_o_ |

B

Aerds1q sYL x04 3811
wox g 89889901 d df) ayem

} ‘paambay sassaooad
UOI}BULIOJSURLY, IO

XTIy
2INO1d JWSUBL],
‘90149 Aerdsia

SZITenIU] pue 09138

, T°'11aa

164

~ HOLVANILNOD AVdSIQ "620 34N9Id

J0jB1jIU]
mdmo

gaanpaooad

1038131U]
mdino

nm,a wox g

89889001d

UoISSTWISUBL],
10} XTaje
aaInjord 309198

UoISSTWSUBI
- 10} 23us889
JNjoLd JBULIO

BIEQ 991A
-9 pus xapuj

Lerdsiq 19D

165

NMOQ H1Vd.
1NdLNO IOVYSSIN

¢

N¥N13y

9233
1
1nd1ino, “J3DNYD
Ol 39VSSIN-
LONALSNOD
F9VESIN
NOILYDI4I110N 3
LYWH0d

dyoyy3

3D1A34 139
NOLVILINI
indino
SNILINVAVI
sSvd
39VSSIW »
NOILVYDIJILON 3
LYwyod
T 11@009

$379VL "4NOD
MIYY3IHd I3 d WO
_Q¥OM TO¥LNOD

HOLVILINI
AvVIdsia

ION3ND3S
) jo)

v
HOSIA¥3dNS ¥O
Q¥VY08A3IN WONd

YOLVILINI
indLno

39Vssan,
NOILYDIJILON
1YWHO0d

3OVSSIAN
AVdSia
12NYLSNOD

s3javl
NOILYYNOI4ANOD
TYUIHAIN I
WOo¥d 10373$
3J1A34Q 139

sualawvyvd
SSvd

110009

IAON3IND3S
1Y

N

A¥LN3 AVIdSIC
ALVILINI

LNdNI SNLV.LS TNV “TED 3MNOI4

)W
I
vayyv
Viva 1noN 1ng xaan v
LNIWIAINL

¥OLVILINI
1ndino

STV

NV2S
WOy d mmu__>wo
ave 3JA0OW3N

e

a3aavyo3a aoo9

NOI
LV3NOI4ANOD3IY
BA2-FLEILFE

YOI ANV

aN

¥0s$$3DO0ud
¥3AINQ 13NV
ANVM

HOLVILINI 1LNdNI

YOLVILINI
1Nd1lno

SN1VLS 139
0L 39VSSIW
indiLno
1LvwWyod

a3y¥INd3ay i
AvI3a

NOILND3X3 D140i¥3d 30
dV¥l 3LV1S 40 3ONVHD

NASA-Langley, 1971 - 08

Coml., Newport News, Va.

167

?;A A T gﬁ ‘:}‘, 2 f} T ’%} "z g pt T w? W e v T

e . + L P
K ';ﬁ' 0,2 . %ﬁw ,ﬁg “& Q!:;,‘ B % - s 2{3 £y ? L v }2 aé;, » . e :
NA‘!‘&Q&AL ﬂER@NA&JTK}S AND SPALE ADM%STE’{AT”QN , /) .
o a 4 /ﬁ 3 WASHINGTON., DiC. 20848 % % e % o B o : e Até’
. s : i i POSTAGE AND FEES PAJ
S X R b Y ORFICIALBUSINEES ' ¢ demes po | HATIONAL AGRONAUTICS AND
o ORFICIALS * Fiﬁs‘!’ CLASS MAlL SPACE ADMINISTRATION
P PENALTY FOR PRIVATE USE $309 . 7
[T TS S “,
I
R
T a F
N ‘/ a7 P 4 ‘n 2
¥ % q 4 . “ ¢ 7
5 P n P w & é 3 7 & ;
A Ty Y P S %f?c%& P I T S P LT cw
* ndbliversble |
., i 2 ”mmi} B

,.m wfmaz&am dex ” n | py m aior Iaagmge emmderec%
%bmykte,anfammgco ibuti mwemtmg v g&mﬁﬁ&mﬁmmﬂ in English,
v b heowledge T s 0 pdiaL PUBLICATIONS: Toformation
#0 YECHNICAL NOTES: Information fessbroad ~ derived from or of value 10 NASA acriviries, -
. . . inscope but nevertheless of imporanceasa - Publications include conference proceedings,
‘ contribution to existing knowledge. monogzapks data compilations, handbooks,
A ehooks, special bﬁﬁw hi
TECHNICAL MEMOR ANDUMS: souzcebooks, and BApsies
Information receiving Hmited distribution TECHNOLOGY UTILIZATION
because of preliminary data, secarity classifica- PUBLICATIONS: Information on technology .
tion, or ather reasons. used by NASA that may be of particular

interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technolngy Surveys,

CONTRACTOR REPORTS: Sciemtific and
technical informarion generated under a NASA
contract of grant and considered an important
coniribution 1 uxisting knowledge.

Details on the avalability of these publications may be ohtained trom:
SCIENTIFIC AND TECHMCAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

@~

