STS-3 GNC POST FLIGHT REPORT

Attached is the GNC STS-3 post flight report. The report is broken into four control system areas, one significant FTO, and sixteen individual hardware subsystems. Each report is divided into a system performance which includes an anomoly analysis, lesson learned, and a recommendations section. It is intended that this report become a working document as a reference for future system evaluation.

ASCENT GNC Ruhard M. Fitts ORBIT GNC 2. E. Oslica Je. ENTRY GNC H.J. Clancy

CONTROL SYSTEM	PAGE
Ascent Dap Orbit Dap Trans Dap Entry Flight Control	3.1.1 3.2.1 3.3.1 3.4.1
FTO	
Gravity Gradient	3.5.1
HARDWARE	
Accelerometer Assembly Aero Actuators Air Data Transducer Assembly Ascent TVC Actuators COAS Controllers Dedicated Displays IMU MSBLS OMS TVC Radar Altimeter Rate Gyros-Orbiter Rate Gyros-SRB Star Trackers Switches TACAN	3.6.1 3.7.1 3.8.1 3.9.1 3.10.1 3.11.1 3.12.1 3.13.1 3.14.1 3.15.1 3.16.1 3.16.1 3.17.1 3.18.1 3.19.1 3.20.1 3.21.1

Ascent DAP

A. Performance

The performance of the Ascent DAP was entirely nominal. SSME and SRB thrust vector control performed correctly in response to guidance and GC steer commands. Elevon load relief was nominal. On flight 3 we again had a slight amount of lofting during the first stage. After flight 2 E&D changed some of the I-load guidance parameters in order to reduce the ADI pitch errors during the first stage. The parameters that were changed are NZ REF and SRB trims.

1. Anomalies

There were no problems identified that can be attributed to the Ascent DAP.

2. Comparison of STS-2 and STS-3 Data

On STS-2 the ADI pitch attitude error pegged-out at 5 degrees during the first stage. On STS-3 the pitch error briefly reached three degrees at one point, but was less than two degrees for most of the first stage. The improvement in pitch error on flight 3 is due to the guidance I-load changes. E&D does not plan to make any further adjustments to these parameters for subsequent flights.

- B. Lessons Learned NONE
- C. Recommendations for Subsequent Activities
 - LCC Limit Changes Not applicable because LCC does not address flight software.
 - Flight Rules Changes Not applicable because there are no defined failure modes of flight software.
 - 3. SMS Parameter/Model Changes NONE
 - 4. Console or MCC Procedure Changes NONE
 - 5. Data Retrieval Adequacy NONE

PERFORMANCE

A. Minimum Attitude Deadband Tests

- .033 deg The Orbit DAP had no problems controlling to a .033 deg. deadband. No phase plane overshoots occurred due to the fact that the DISC RATE was .016 deg/sec. Had the RATE been the nominal .2 deg/sec, there probably would have been more jet activity in addition to overshoots. See Figure 1.
- 2. .01 deg As seen in Figure 2 the DAP had more difficulty controlling to a .01 deg deadband. It did, however, control to this small deadband but with significantly more jet activity. Preliminary reports indicate a fuel usage rate of ~ 1.5 lbm/min. This test should be considered successful since it demonstrated the capability of the DAP to control to an extremely narrow deadband. In the future, however, planners must take into account the high fuel usage. This usage rate agreed fairly closely with pre-flight FSSL runs.
- B. L5D/R5D Plume Impingement Test

This test was performed to provide E&D with more accurate vehicle angular accelerations due to L5D/R5D jet firings. ACIP data is not yet in so no numbers are available. The procedure was performed correctly however, so the numbers should be good. These angular accelerations will be used to update MAG CONTROL ACCEL and ANGULAR INCREMENT I-Loads which are used by the Phase Plane and the State Estimator respectively. See Figure 3.

- C. L2U Thermal Soakback It is outside the GNC discipline to evaluate this test. The procedure was, however, performed correctly. F2U was on constantly. L2U was on for ~95 sec. total. See Figure 4.
- D. RMS/PRCS Interaction Test The procedure during part 1 of this test was not performed properly causing deviation from thermal attitude, large torques on the RMS, and extremely high jet activity. The DISC RATE in the procedure was .5 deg/sec. This caused extremely high jet activity. The strip charts were lost post flight, but PROP should be able to verify the increased activity. The rate was used between PRCS pulses to return to the Thermal Test Attitude as fast as possible so that deviation from this attitude would be minimized. The rate however, was excessively high for VRCS with a 1° deadband. The result was several Phase Plane overshoots as the DAP slowly zeroed in on the desired attitude. With each overshoot, the DAP would switch from Track to Maneuver. When in the Maneuver mode the DAP accelerates the vehicle to the given DAP RATE. So, one can see that the overshooting led to a series of maneuvers each at a rate of .5 deg/sec. See Figures 5 and 6 for examples of phase plane overshoot during this test. The procedure called for the crew to load a Rotation Start Time far enough in the future so that the maneuver would be completed and stable before the ROT was to start. In part 1 of this test, however, the crew loaded a ROT start time in the past causing immediate initiation of ROT at the current attitude (usually at a point in the middle of the MNVR).

Compounding this, the crew was unaware that a ROT had begun and consequently did not have the DAP configured properly. The result was initiation of a ROT at .5 deg/sec. (See Table 1). The crew performed the Part 2 and loaded test correctly relative to the ROTs and MNVRs. The FDF, however, still called for a DAP RATE of .5 deg/sec. So even for the nominal procedure there were several Phase Plane overshoots causing excessive jet firings and fuel usage. The future ROT time allowed just barely enough time for the MNVR to completely finish before beginning ROT.

On two of the Roll doublets during Part 1 of the test, Yaw was also commanded, See figures 7 & 8. It is interesting to note that both times this occurred the polarities were the same (+Roll, -Yaw). The springs in the aft RHC are half as strong as in the forward RHC, but it is not known if this was the cause or not. It may simply have been that the crew was using the RHC as a brace while floating around. The Yaw deflections did cause extra jets to fire.

- E. Thermal FTO Attitude Maintenance The thermal attitude was maintained very well throughout the flight. At one point, however, the DAP RATE was changed from .135 deg/sec in order to stay within 10° of the Roll attitude. The need to change this number was due to a couple of factors:
 - The period of the orbit was constantly shortening so that no one number would maintain correct Roll phasing for long.
 - For a long period of time of thermal attitude hold, the definition of the center of the phase plane was not accurate enough (i.e. not enough precision to the crew loaded DAP RATE).

Nothing can be done about the orbital period but a more accurate DAP RATE could be entered via a Read/Write on a software change to allow a higher degree of accuracy to be entered by the crew.

Throughout this test, there were several events that caused QBI to be snapped. Each time this occurred the phase plane was recentered about the new attitude. CONTROL calculated the maximum deviation of the +x body axis from the sun vector with each new QBI snap. A SR-59 program was developed Real Time to calculate this maximum error. There was only one time when the max error exceeded 3.0 deg (3.8 deg).

Should a test such as this ever occur again (i.e. a test where Roll angle vs time is important) GNC has been tasked to track the desired attitude; R,P,&Y. We are writing HP9845B program to provide rapid determination of the desired attitude. Currently, however, there is no planned flight with this requirement.

II. ANALYSIS OF EACH PROBLEM

The most significant problem to occur concerning the Orbit DAP was the phase plane overshoot discussed earlier in PERFORMANCE. This section, therefore, will be devoted to illustrating interesting events that occurred during the flight.

- A. Crew switched to DAP A with a rate of .4 deg/s during auto maneuver from IMU to COAS attitude. MNVR should have been at .2 deg/sec. See figure 9.
- B. During PTC at 06:21:00:00 crew switched from DAP A-DAP B-DAP A (rates =
- .4→.2→.4). See figure 10.
- C. Effects of Payload Bay Door on VRCS DAP with 1 deg. deadband. See figure 11.

III. COMPARISON OF STS-2 and STS-3 DATA

There were no directly comparable tests between STS-2 and STS-3. The nominal DAP operations (i.e. maneuvering, tracking, etc) showed no differences.

IV. LESSONS LEARNED

- A. The primary lesson learned on STS-3 was not to use a DISC RATE that is too high for a given attitude deadband. The use of a .5 deg/sec rate with a 1 deg deadband was obviously a mismatch (using VRCS). There is no formula for the optimum rate/deadband at present. It was mentioned in the STS-2 report, however, that care must be observed when choosing a particular combination. Some general concerns and guidelines can be set forth here:
 - VRCS is the most sensitive to a mismatch since they lack control authority. An incorrect combination here leads to excessive cycling of an already overworked Vernier control system and high fuel usage.
 - The larger the rate the larger the deadband must be in order to prevent unnecessary auto maneuvers. For example, with a rate of .5 deg/sec a deadband of 3-5 deg would have significantly reduced fuel usage as well as jet cycling.

V. RECOMMENDATIONS FOR SUBSEQUENT ACTIVITIES

- A. LCC Limit Changes N/A. Orbit DAP Software is not dependent on LC limits.
- B. Flight Rules Changes None
- C. SMS Parameter/Model Changes The SMS model should be examined relative to high VRCS DISC RATE vs small deadband cases. CH4 stated they never saw overshoots of the magnitude seen during all three parts of the RMS/PRCS tests.
- D. Console or MCC Procedure Changes None
- E. Data Retrieval Accuracy Regular Thrift deliveries came quicker than STS-2. It took ~ 8 hrs. on STS-3.

Table I

RMS/PRCS UNLOADED TEST-PART 1

TIME	DAP MODE	ACTIVITY
82:16:25:00 :25:52 27:32 28:16	A/AUTO/VERN B/MAN /NORM B/A/V B/A/V	ROT TEST PULSES Mnvr back to Thermal Att ROT initiated prior to end
30:16	A/A/V	of Mnvr .ROT at .5°/s ROT-DAP mode switched causing reinit of ROT at .135°/s
31:20	B/M/N	TEST PULSES
33:20	B/A/V	Mnvr back to Thermal Att
33:45	B/A/V	ROT init. prior to Thermal Att (.5°/s)
34:59	A/A/V	ROT-DAP switched to .135°/s
35:51	B/M/N	TEST PULSES
37:26	B/A/V	M vr back to Thermal Att
37:43	B/A/V	ROT init. prior to Thermal Att (.5°/s)
40:13	A/A/V	ROT-DAP switched
41:04	B/M/N	TEST PULSES
42:49	B/A/V	"hvr back to Thermal Att.
43:11	B/A/V	ROT init prior to Thermal Att.

3. 2. 4

= AD 87:22:03:21 GND= 83:00:18:34 335 C =+L V72K8505X P118420 MED SCALE Started @ 22, co: co -Fle 2 cont 0.006 101 1st Part of test C =0L V90H2142C UATU 6 GNC UP 2 SITE HAN NOM= Y DAP ERRS OGMT= 0 0 X 0 to all x x õ Ż X & W XX 2 23 Ć -----× ×00.06 × 50 * ×0 \approx POINT 85 DAP ERRS V 90H2 14 1C × 6 춫 31:23 2 ් -+ 0X XIII × NG WY 3, 102 P č o XXX J×n 440.0 1 0 603 0 R DAP ERRS V90H2143C M40H0107J UDATE 40.02 +0.01 <0.0↓ -0.01 -0.02 3.2.18

Ò

8

(P)

DD= 0 FIG 2 Cont GND= 88:00:12:43 35 -C =+L V72K8505X -0.005 P118420 MED SCALE C XXX 87:21:37:52 =0L V90H2142C U A E U GNC UP 2 SITE HAW NOM= V DAP ERRS =1MDO 0 C 0 Q 0 0-,033 POINT 169 V 90H2 14 1C DAP ERRS 9:14 0 2 F 00 A STOT PL 10.0099 0 600 40 R DAP ERRS 10+12100A L 7010H04M UDRATE +0.03 40.04 40.00 -0.03 -0.06 3.2.21

TIME - sec

FIGURE 5 3.2.30

ROLL ERR

STS 3 ORBIT DAP ERROR

47

4.5

TIME-Sec.

FIGURES 3.2.31

ROLL ERR

	C1010H08H	VIEW	YELA	NBC/	NBOH	XELV	XELA	VIEK	Vank	Netr	といわい	ACT N	VIDING	
		12450	129550	12650	antac	12460	125650	12660	2000C	12970	12870	12670	CONSC	
	ONDOARD GHT	ROLLI	ROLLZ	EULL3	SELR	PIT1	P112	P173	4T38	YAM1	YANE	VAM3		
	82116125155	-0.2	-0.2	-0.P	Rell	e.0,	2.0-	2.0-	-0.2	2.0-	2.0-	n, 0	Yar	
	82:16:25:56.0	-0.2	-0.0	2.0-	2.0-	2.0-	10.0-	-0.5	d.0-	a 0-			1 0	
	B2:16:25:57.0	2.0-	-0.0	-0.2	-0.2	eu. 0-	10.0	-0.2	0	2.0-			0.07	
	82:16:25:59.0	2.0-	0.0-	2.0-	-0.2	-0.2	2.0-	-0.2	10.0-	2.0-	-0.9	0,0-	2.0-	
	02:16:25:50.0	19.07	0.0	-0.9	N.0-	10.2	-0.2	-0-2	2.0-	2.0-	N.0-	-0.2	-0.2	
	62:16:26:00.0	-0.5	-0.0	2.0-	-0.5	2.0-	-0.2	-0.2	-0.2	-0.5	-0.2	2.0-	-0.3	
	82:16:25:01.0	nı P	-0.0	a. 0-	N. D.	0.0	e.9	-0.2	-0.2	-0-5	-0.5	0.0-	e.0-	
	N2:16:26:02.0	a. 0-	-0.0	a. -	e.0-	N, 0-	n, 0-	-0.19	10.0	ů, ů	-0.9	0.0-	-0.5	
	02116126103.0	nı P	0.0-	-0.2	-0.2	e. p	4°-	-0.5	2.0-	11.1	-0.2	10.01	10.2	
	52:16:26:04.0	-0.5	-0.0	-0-13	-0.9	2.0-	e.0-	-0.2	2.0-	2.0-	-0-5	-0.5	-0.2	
	02:15:26:05.0	-0 -0	9.0-	-0-6	₩° I =	2.0	10.13	-0-N	2+0-	-0-9	-0-2	10 -	-0.2	
	82116126:06.0	-15.5	0.08-	-78.8	-78.81	2.0-	е. -	-0-9	10.2	-0.2	-0.4	-0.2	-0-2	
	62118128107.0	1-18	** L ***	1.1開-	111. 南-	N. D.	10-12	ц. -	Q. D.	-0.9	-0.0	2.0-	€2°0-	
	82116128108.0	3.9	-0.0	-0.0	0.0	-0.5	۵. P	2.0-	-0.2	2.0-	-0.2	-0.2	-0,2	
	82116126109,0	ц. Р	-0.0	0.0-	n, 0-	с. р Р	0.0	-0.0	-0.5	1.0-	-0.2	2.0-	2°0-	
	82116128:10.0	2.0-	0.0-	ru 0	2,0-	2.0-	10-12	-0.2	-0.2	-0.2	-0-2	2.0-	-0.2	
	82:16:26:11.0	с. 9	0.N	2°0-	0.0	л, Р	n, P	2.0-	2.0-	2.0-	10.2	2.0-	n.u-	
	02116126112.0	0. -	0.0-	е. -	ę.	n P	n, 0-	e. 9-	2.0-	ы. П	-0.2	2.0-	2.0-	
	BC116166513.0	η (7	n, 1	q i		0.19	1. 1. 1.	ц. 9	e. 0-	N. 0-	-0.9	1.0	a.0-	
	0.91100101120		0-0-			0.0-	-	n. 9	0. 0.	a.o-	-0-9	0. 9	N, 0-	
	0011010101100	2.0			ų i P	2		2.0-		n, -	9 9	1	a, 0-	
	00.18.28.17 0		0.0-			200	n n P				Q. 10	ņ P	2.0-	
	00110-0010-00100			ų n		i c				2	ni o P	ru P	а, 9	
	00118-38110 0					ų r P		ų (-0-9	n P	N, 9	
	82118128120.0		2 4			ų n			i o	* r	n, n P			
	RP:18:28:21.0	1 1									2.0		N. 1	
	SPIRIAGE DD 0								200			-	-D. ²	
	60118,28,27 0								nı i 19		0.1	n in	e.0-	
	B2+18+28+24+0	1 4 9	-		i n								Ņ, I Ģ	
	82:16:26:25.0	20-2	0.0-	-0-9		1 0	1 1	0.0-				2.0	ų a P	
	B2116:26:26.0	-0.5	-0.0	-0.2	-0.2	N.0-	0.0	10	10-				1 9 9	
	02110120127.0	2.0-	-0.0	-0.0	0.0	2.0-	2.0-	0.0-	-0.2	2.0-	0.0-	10		
	82115125128.0	e.0-	-0.0	-0-5	2.0-	2.0-	2.0-	2.0-	-0.2	2.0-	0.01	2.0-	(N, D-	
	G2:16:26:29.0	41 12 12	-0.0	-0-2	₽°0-	-0.2	10.1	2.0-	2.0-	-0.2	2.0-	0,0-	4.0-	
	62:16:25:30.0	ų P	0-0-	-0.5	2.0-	2.0-	-0-9	2.0-	-0.01	-0.9	-0-2	2.0-	a, 0-	
	E2:15:25:31.0		0.0	0. 0	N.9-	-0.5	-0.2	n. 9	-0.0	a. n-	2.0-	-0-5	11, O-	
	0.101000000000000000000000000000000000						ni d	ណ្ដ ក្តា	0.1	η. -	2.0-	-0-5	nı P	
	B118:28:39.0	1									ni i P		0, I	
	02:10:26:35.0	4,9,	0.0-	0-0-		i n	1 0					9 a	ų i	
	B:16:26:38.0	10.0	-0.0	0.0-	2.0-	10,01	1 0	1 1			ų n			
	05116126137.0	-0.9	ť.'0	-0.0	0.0	10.01	0.01	101	1 0		100			
	@:16:35:33.0	-0-10	10	8.5	6.51	-0.2	10.01	10.0	-0.0	2.0-	10-	0.0	1.07	
_	82:16:26:30.0	41.1	19-8	9.8L	79.61	nj P	01 70	5.5	8.0	-1.0	nj Nj	10.19	131.12	
1	62:18:28:40.0	79.5	11 'SS	53.0	18.3	1.6	2.0-	-0.5	-0.0	1.19-	-14.1	-13.1	-11.91	
	141621913	63°B	-0-F	-0.9	а, 0-	сч -	N	-0.2	11.12	11 01	-0.5	a.0,	-0.2	
	BC110120112.0		0-0-	N 1	9	n, P	n, 9	-0-1	0.0 -	-0.9	-0.0	10.2	-0.2	
	0-210100142-0				-0-1	ņ P	n P	nı P	n. 7	nı 9	-0.9	-0.13	-0.8	
	esterantin o				nj d P d	nji P		9	1.0	ц. Р	-0.8	10-12	-0.8	
	ED. I.R. 28. LAL. 1	ų a			មុក				n i P	a i P	2	a.0-	a,0,	
	0.19:28:47.0	10,2	0.0-	10	19		0.01	19.14	10.01	10.0		10.0	nj e	
	C:16:28:48.0	e. 0-	-0.0	10.0	-0.2	101	1 11	10.01				10.01	200	
				1.0				1.2	-1.4		210-	10.01	11.0	

RMS/PRCS Unloyded Test-Part I

FIGURE 7

+ Rall and - Your (RHC)

3.2.32

FORMAT 15N2 PAGE 10	7		6)																		18 1 1-V	They and law	(PHC)	12/11/1				L'UNAL A	IFIGURF &	1		RMS/PPrc 13/20/01	Allowers Children	Icst-Pant 7	7															
	V90H) 3 2 1	1 11	-0.2	-0.S	nj t F	n P P	R P	-0.8	2.0	5°.0-	-0.2	10°2	0. 0	-0.2	2. P	n, n	2.5		n e	1 4	-28.61	-20.51	-0.2	-0.2	-0.2	0.0	-0 -	e		ų n	-0.2	-0.2	-0.2	6 0,0 0,0	100	n. 07	-0.2	-0.0	-0.4	e, o	-0.0 -	2'0-	1 1 1		1 9	19.9	2.0-	-0.2	-0.8
2	NIR	VAM3	5	0.0-	₽°0+	-0.2	a	0.0-	1 11	-0.2	a-0-	4°.0-	-0.3	-0-5	e.0	-0.9	ņ P	а, с 9	ni o P	ų e			19.0	-23.1	1.1	10.2	-0.2	N. 0-	0.0-	ņ Ģ	n yn P q	10.0	-0.8	2.0-	2.0-		0.04	11:0-	-0,0	2.0-	1.1	n. 0-	п. 9	0.0	-0.6		10	-0.0-	-0-S	0-0-	10.2
VEH 0	XSIV	1287C	6 U7	1 N.	10-2	-0.2	ណ្ឌ ខ ក្ ខ	10.01	10.0	n. 1	2.0-	10.01	10.12	e-0-	2.0-	сч. С	n. 9				9 q		-20.6	-23.9	0.0	с, <mark>0</mark> -	-0.5	a. 0-	а, р Р	a. 1			-0.2	-0.2	e.0	aj a	0.0	-0.2	-0.2	-0.2	-0.2	₽.0-	10.0	2.0-			10-1	-0.8	-0.2	-0.8	0.0-
	VIEK	VAMI YAMI	a, 01	-0.8	-0.2	a. 1	N. 4	1.0	-0.0	0.0	-0.2	-0.2	-0.5	3.0-	ei 9	-0-10	n, P	n, c 0, c				100	-11.2	8.65	-9.8	-0.2	-0-2	-0-V	2.6	a, 1 9	2 9 9	9.9-	-0.2	-0.2	2.0-	n, n 9 9	10.01	10.2	-0.2	-0.2	ц. -	10-19	р. 1	2.0	1	2 1	10.0	0.0	5.0-	10.1	2.0-
	HOGN	」 第記	C.0-	n.0-	-0.2	19 P		1	0.0	2.0-	-0.2	12*0-	а. -	n, 1 7	гч 9			n i P				2.0-	0.0	2.0-	-0-5	-0-5	2.0-	0. 0		e e	ų n 7 7	0,0	-0.2	а. 9	0.0		2.0-	-6.2-	-0.2	-0.2	n. 7			20,01	1 1		10-	10- 10	-0.2	-0.5	-019
	VIEK	12080C	8.0-	-0.2	2.0-	n, 1 0-		-0.0	2.0-	-0.2	0.0-	-0-9	1.1	0.0	N.			ų d P		1 1		-0.9	-0.2	-0.2	-0.9	-0-19	N.0-	2.0			10.0	10.0-	0.0	-0.2	e.0-	0.0	-0.0	-0.2	-0.2	а. ?	0.0	ni e F		2.0	0 9 9 9 9	10	10°0-	-0.2	-0.2	8.0-	-0.3
	XIIX	PI T2	2.0-	0.0-	-0-U	a, i 9		10.0	-0.2	-0.2	-0.2	-0.5	1. 7	n, 1 9							1 9	0.01	12°0-	-0-5	2.0-	nı P	2			n n P		10-1	-0-9	-0.2	n, i P	n n n	10.0-	-0.2	5.0-	-0.'n					1 1	10	-0.2	-0.2	-0.2	0, 1 1 1	10.13
Ş	VTRK	PIT1	0.0-	10.2	-0-3	9 0 0 0		-0.0	-0.2	11°0-	10-0-	-0-1	a, b	0, 0 0, 0				n y P P	1 5		10.01	-0.5	-0.2	-0.2	-0.2		ni P	-0-0			20.01	10.0	-0.2	1.12	N,07	0.0	-0.2	-0.2	-0.2	-0.0	nı i P	, i , i		19.4	0.01	0.0-	10.2	-0.2	-0.0	0.1	Nº 0-
H-1-W	HOBA	C	107 107 107	-0.5	ru P	n, e P		0.0	0.0	-0.2	-0.2	4.07	0-0		ų i	nų o P		ų n	1 1		1 4	12.15	18.61	18-11	9.P	ei i	ņi Ģ	ni e P			- Q	-0.2	-0.2	2.0-		10.01	2.0-	a. 0-	-0.1	a. 9				10.0	1 1	1 11	6.9	10-0-	10-19	n r	N P
	VIEK	ROLL3	2.0-	10.0-	-0.5	0, 0 0, 0	9 9	1.0-	-0.2	-0.2	ы. 0-	2.0-	-0.0		2.0-					1 1 1	2.0-	21.12	8.97	12.0	R! 0-			, v			2.0	-0.2	-0.2	-0.2	а, с 9	2.0	-0.2	-0.8	2.0-	а, і 9				0.0		0.0	-0.2	-0.2	-0.5	ei 1	-D.4
	VIEW	ROLLE	0.0-	-0.0	0.0-	0,0	0.01	0.01	0.0-	-0.0	-0.0	-0,0	0.0 0						0.01	0.0-	0.0-	的"前	70.3	75.1	0.0	nj 4 9	0.0	0.0-	ν. 7 ε		-010	-0.0	-0.2	2.0-	-0.0	2.0-	-0-0-	-0*0	0.0-	-0.5	0.0			0.0-	-0.0	-0.0	-0.2	0.0-	-0.0	0.0	-0.1
	VJEN	1 THORE	-0-5	-0-5	-0.0		10,0	-0-2	-0.2	-0-5	a. 6-	-0. 1				1.0	0.0	i u	e.0-	e-0-	2.0-	-0.2	8.55	78.5	1.53		0.0			n i P	10-	-0.2	2.0-	2.0-		10,0	9.9	10.12	eų P		ų r			10.0	2.0-	R. 0-	10.13	0.0-	a, 0-	0,0	2*0-
	CCC10H044	NISDARD ONT	82:16:41:28.0	62116141130.0	82116141131.0	051161411/22 0	0.91191910	GE118141123.0	62116141136.J	62:16:41:37.0	C116141138.0	82116141138.0	0.04114181155	0 014114181128	Contraction of	0.1111111111100	Contractor tage of	SPI16:41:48 0	8211Br41147.0	62116191198.0	02118141149.0	82116141150.0	02116191151.0	82116:41152.0	62:16:41:53.0	82116141164-0	B2115141155.0	0.0011410010	0 121111111100	821181411-00-0	G2:16:42:00.0	821161%2101.D	82:16:42:02.0	82118142103.0	82:18:42:04.0	S2116142108.0	82118142107.0	62110142108.0	02116142109.0		0.11124101120	80-18-62-12 0	62-16-42-16 D	S2116142115.0	05118148116.0	62:10:W217.0	C2116112118.0	62116142118.D	05116142120.0	0.15:59:51.0	0C11014C112C11
		a	۵.	۵	a. (1 0	. 0.	٥.	۵,	۵.	0.	0.	0.0			L 0		0.	۵.	۵.	٩	۵. (۵.	٦	0. 0	a. 0	2. 0			. 0.	۵.	٩	۵.	0. 1	2.0	۵.	۵.	a	۵. ۱	2 0	. a	0	<u>n</u>	<u>D</u>	0	۵.	0.	۵.	0. 1	L 0	L.

3.2.33

X			
	3.2.35		

A. Performance

The Trans Dap for STS-3 was identical in design to the STS-2 system. Manual and auto maneuvers were executed with a nominal system response.

The first maneuver was in the manual accel mode, to the OMS 1 burn attitude. This is a time critical activity and cannot be performed in the auto mode which has a 0.2 °/sec maneuver rate. The CDR reached the burn attitude well before the burn time.

The second maneuver was in the auto mode, to the OMS 2 burn attitude. Everything looked nominal going to the attitude, however, an examination of the recorded dump data indicated that shortly after <u>Madrid LOS</u>, the crew downmoded to manual and completed the maneuver in the manual mode.

It was not obvious from the data if this was an inadvertent downmoding or intentional.

The transition to OPS 3 was executed with no problems. It appeared that the crew held the DAP manual PBI depressed during the transition since the <u>data</u> indicated the maneuver display, Item 27 was never set. No attitude deviations were noted after the transition. The auto maneuver to the De-Orbit burn ATT was nominal as was the De-Orbit burn.

The final auto maneuver to the entry interface attitude was interrupted when the CDR bumped the hot <u>stick shortly after the maneuver began</u>. The RHC was out of <u>detent</u> 0.2° for 1 computation cycle and downmoded the DAP to manual. This situation was apparently undetected for 4 to 5 minutes as both crewmen were monitoring LVLH attitudes on the ADI and with the vehicle in intertial hold, it appeared the spacecraft was pitching. After 4-5 minutes the auto maneuver was re-started with no furthur problems.

The OPS 1 and 3 OMS burns were nominal.

1. Problem Analysis

The Hot Stick capability may cause a severe problem during some future mission. The crews need to be extra cautious on monitoring their DAP configuration when doing critical operations outside of site coverage.

- The STS-2 and STS-3 Data compared in an identical fashion.
- B. Lessons Learned NONE

C. Recommendations

- 1. LCC Limit changes NONE
- 2. Flight Rule changes NONE
- SMS Parameter/Model changes NONE
- 4. Console or MCC procedures changes NONE
- 5. Data Retrival Adequacy improved over STS-2.

3.3.1

ENTRY FLIGHT CONTROL

A. PERFORMANCE

1. Longitudinal Trim

After transition to MM304, the vehicle trimmed about the commanded 40 deg angle of attack with 4 long period oscillations (T~25 sec, $1\alpha_1 = 2 \text{ deg p-p}$) until the first roll command at $\vec{q} = 15 \text{ psf}$. The lowest and highest angle of attack, prior to the first roll, was 39.2 deg and 41.5 deg, respectively, and occurred in the first cycle. $\delta \epsilon$ was +3 deg at MM304 transition and trimmed about the nominal schedule (+3 deg) with 4 long period oscillations (T~ 23 sec) corresponding to the α oscillations. The maximum deflections from trim ware 1.7 deg and 8.0 deg during the first cycle with $\delta \epsilon$ converging toward schedule on each progressive cycle.

Post blackout, $\delta \varepsilon$ trim was +2.5 deg and closely tracked the nominal schedule until M4 where it reached maximum downward deflection (in supersonic region) of +4 deg. Only small body flap position changes (from 51% - 59%) were required to maintain $\delta \varepsilon$ on schedule. Small amplitude, high frequency oscillations (T~1 sec, $1\delta \varepsilon l \sim 0.4 \deg p-p$) were seen while the speedbrake was sweeping to 100% at MIO. There were no noticeable corresponding pitch rate oscillations. At N4, when the speedbrake began sweeping from 100% to 65%, $\delta \varepsilon$ began to trim upward off schedule and body flap began to drive from 62% to 0% (M3.5 - M1.7) to keep $\delta \varepsilon$ on schedule. Trim changes associated with the driving body flap are evident. Beginning at M3, $\delta \varepsilon$ followed schedule toward 0 deg at a small standoff error of approximately -0.5 deg. At M2.1, $\delta \varepsilon$ overshot the 0 deg schedule and reached a maximum upward deflection of -2.5 deg at M1.75. Between M1.5 and M1.0, $\delta \varepsilon$ followed the schedule from 0 deg to +5 deg. All excursions from nominal schedule were within the predicted schedule presented in MPAD STS-3 Cycle 3 Descent Data Pack. Note that the body flap was saturated at 0% between M1.6 and M.95.

The M1 to M.90 region buffet which occurred on STS-1 and STS-2 was again evident on STS-3. The time histories of $\delta \varepsilon$, Θ , Nz and α in this region are characteristic of previous flights with no unexpected vehicle responses. At M.92, the speedbrake was manually commanded to 100% for energy management and the resultant increase in pitching moment caused $\delta \varepsilon$ to trim to +10 deg at the end of the buffet region. In contrast, on STS-2, speedbrake was commanded to 57% at M.9 and $\delta \varepsilon$ trimmed to +7.5 deg at the end of buffet region. After buffet the body flap drove to 92% to force $\delta \varepsilon$ to maintain nominal schedule at +5 deg.

2. Longitudinal Dynamics

After entry interface, prior to the first roll, the largest pitch rates occurred during the α oscillations (-0.4 deg/sec and +0.24 deg/sec) and all were well damped. During the first roll, body pitch rates were between 0 deg/sec and -0.12 deg/sec. At M21.2 and \vec{q} = 37 psf, a 1 cycle, 7 sec period pitch transient occurred with peak positive and negative pitch rates of 0.4 deg/sec and -0.7 deg/sec respectively. There were no residual oscillations associated with this transient. Post blackout to the M2.7 roll reversal, body pitch rates were very steady about 0 deg/sec with maximum rates of \pm 0.2 deg/sec occurring during roll reversals and during the speedbrake sweep from 0% to 100% at M10. The M2.7 reversal was flown in CSS. Control was good and maximum rate was -0.7 deg/sec.

In the transient region, the pitching phenomenon exhibited on STS-1&2 was again evident. A pitch down of -0.5 deg/sec occurred at M1.1 resulting in a decrease in α from 9 deg to 6.5 deg causing the elevator to drive upward. At M.95 an abrupt pitch up of +0.9 deg/sec occurred increasing α to 9 deg and driving $\delta \varepsilon$ down to +8 deg (speedbrake was manually commanded to 100% at this time driving $\delta \varepsilon$ further down to +10°). The body flap began to drive down to 92% to maintain $\delta \varepsilon$ on the +5 deg schedule.

Prior to the HAC, control was good (despite strong gusty winds) with the CDR inputting small pitch down commands less than -5°. Body pitch rates were between 0 deg/sec and -0.9 deg/sec and exhibited oscillations consistent with winds and gusts. Airspeed was 220 KEAS and increased to 290 KEAS at the initial roll into the HAC. A right turn HAC was flown in manual with only the body flap in auto.

In all cases the vehicle dynamic response to automatic and manual longitudinal commands was satisfactory.

3. Lateral Directional Trim

Throughout the entry prior to rudder activation, the aileron trim averaged .5 deg to .6 deg. The constant value of this trim implied a lateral CG displacement in excess of the predicted value of -.07 inches at EI. The suposition that the lateral asymetry was due to a YCG offset rather than aerodynamic phenomena is reinforced by the .75 inch uncertainly in YCG at the preflight weighing at KSC. The trim required indicates a YCG offset between .7 inches and 1 inch.

Following rudder activation at M3.5 the aileron trim became negligeble and the rudder trimmed the asymetry. The maximum average rudder trim was 1.5 deg and occurred subsonic prior to HAC intercept. There were no significant or adverse effects due to the trim solution for STS-3 and the flight control system performed satisfactory in this regard.

4. Lateral Directional Dynamics

The dynamic response of the vehicle to flight control commands was evaluated by observing the transients associated with PTI's and Roll Reversals. In all cases the commanded rates were achieved within two seconds and no residual oscillations were observed. During transition to Constant Drag Phase the transient due to the phase change resulted in a 10 degree bank angle change instead of the 15 degrees predicted. No other moding or phasing transients were observed during the entry in the lateral directional axes.

The .25 Hz oscillation occurred as expected beginning at M1.8 and ending about M1.5. The oscillation lasted about 30 seconds and produced peak lateral accelerations of .01g. Peak roll rates reached 1 deg/sec before a yaw jet fired to arrest the rate. There is little doubt that the RCS jets were the principal effectors in constraining the oscillation.

5. Autoland

Initial conditions prior to selection of auto flight control: the CDR followed guidance speedbrake commands and retracted the speedbrake from 100% to 17% as equivalent airspeed decreased from 290 KEAS to 265 KEAS. Airspeed began to increase, due to increasing h, and the CDR modulated δ_{se} according to guidance commands. The MLS was incorporated into navigation at 14700 feet altitude while the vehicle was in a 3 cycle pitch oscillation, Tr3.5 sec and maximum positive and negative body rates of +2.6 deg/sec and -2.0 deg/sec, respectively. $\delta \epsilon$ responded well to the RHC commands and was driven off the +5° trim schedule to +2.5°. During the oscillations, h increased from -191 fps to -224 fps causing the vehicle to drop below the href vs. range trajectory commanded by TAEM guidance. CDR followed guidance and commanded pitch up to decrease h and capture the trajectory pulling 1.4g at a body pitch rate of 1.9 deg/sec. The RHC was returned to detent prior to engaging auto and pitch rate decreased to 0.6°/s.

Auto P/R/Y was selected at 089:16:03:21 onboard GMT (all subsequent times will specify minutes and seconds only) at h=11600 feet, still below trajectory, and immediately commanded pitch up to 1.5g (Δ Nzc=+0.5g) at 2.2 deg/sec. At :03:23 and h=11200 feet, auto speedbrake was selected and immediately opened to 49% to hold airspeed to the reference velocity of 285 KEAS. After the peak normal acceleration of 1.5g was attained (:03:26) Nzc changed sign and commanded pitch down (Δ Nzc=-0.24g) resulting in a pitch rate of -0.8 deg/sec, Nz=0.8g and the

start of a phugoid oscillation as seen in STS-2 when auto pitch was first selected while in TAEM prefinal subphase. Concurrent with the phugoid, TAEM roll/yaw guidance commanded a roll angle, \emptyset c=27 deg (from \emptyset =25 deg) then \emptyset c=18 deg taking the vehicle through body roll rates of 6.0 deg/sec

and -10 deg/sec, bringing course with respect to runway centerline to +5 deg and reducing crossrange to -203 feet. After .75 cycle of the 12 sec phugoid was completed (:03:30) the altitude error criteria for transition to autoland guidance was satisfied and the transition to trajectory capture subphase of approach/landing occurred at h= 10094 feet (by :03:25 the criteria for flight path angle, crossrange and dynamic pressure had all been satisfied leaving altitude as the only unsatisfied requirement).

On the first pass after transition, the body flap was commanded and drove to trail position and the speedbrake was commanded to its reference of 55 deg and modulated about that reference to maintain 285 KEAS. Autoland longitudinal guidance was satisfied with h vs. range and reduced Nzc to 0.03g at :03:31 which resulted in a pitch up of 1.1 deg/sec. Criteria of 2 cri < 2 deg and [herr] <50 feet for transition to steep glideslope subphase was satisfied at :03:33, h=9516 feet and guidance made that transition. Transition to lateral track mode was at :03:35 when criteria of course with respect to runway centerline < 2 deg and crossrange < 50 feet were satisfied. From transition until CSS was engaged, roll oscillations occurred (max positive and negative rates, 5.0 deg/sec and -3.2 deg/sec respectively) due to strong crosswinds and gusts while trying to track the centerline. Wind velocity increased while on steep glideslope causing the vehicle airspeed to increase to 296 KEAS at :03:54. The speedbrake extended to 98% at :03:55, h=5208 feet causing $\delta \epsilon$ to trim down to +8 deg. Subsequently, vehicle airspeed decreased and guidance commanded the speedbrake to retract to less than 55 deg such that, at :04:02,

3.4.3

- mp |herel<

and - 15 deeper.

the first autoland speedbrake retract criteria had been satisfied and speedbrake was commanded to 0°. $\delta\epsilon$ trimmed upward to +4 deg as the speedbrake retracted and max positive and negative body pitch rates of +1.3 deg/sec and -1.1 deg/sec respectively were reached. Direct airspeed control was lost with the speedbrake closed until touchdown resulting in increased airspeed.

Longitudinal guidance transitioned to flare and shallow glideslope subphase at :04:15 as the vehicle descended below 2000 feet. The open-loop pullup initiation subfunction commanded $\Delta Nzc=0.2g$ and vehicle pitched up at 2.1 deg/sec. At :04:17, vehicle descended below 1700 feet and guidance transitioned to circularization subfunction where it commanded a constant 1.4g circle ($\Delta Nzc=+0.4g$) and pitch rate of +1.4 deg/sec. This pullup arrested the increasing airspeed at 303 KEAS and reduced it to 290 KEAS. At :04:25, h=600 feet, the guidance command decreased to $\Delta Nzc=0.23g$ reducing the constant g circle from 1.4g to 1.2g causing body pitch rate to oscillate to -0.1 deg/sec then 1.0 deg/sec (in effect, "letting out" the constant g circle). This maneuver was analyzed and it was determined that an upward gust or shear caused vehicle h to decrease such that the altitude rate error component of the Nzc commanded a reduced g circle. At :04:31, h=200 feet, the vehicle passed -4723 feet downrange (X_EXP I-load) causing guidance to transition to exponential capture subfunction. Nzc was reduced to $\Delta Nzc=0.11$ g and body pitch rate went to 0 deg/sec. The CDR selected CSS via the PBIs at :04:33.

Autoland performance was good and no anomalies were seen. The vehicle maintained reference altitude versus downrange position from steep glideslide transition until CSS and tracked the runway centerline at 0.4 feet \pm 10 feet from h=2038 feet until CSS.

6. Landing/Rollout

The only flight control system inadequacy observed on STS-3 occurred during rollout when the CDR attempted to arrest a nose down pitch rate of 1 deg/sec. Three seconds following main gear touchdown the CDR initiated a nose down 1 deg/sec pitch rate with a forward RHC input. As the nose started falling through from its touchdown attitude of 6 degrees the CDR input approximately 5 degrees aft stick to arrest the nose down rate. Although the elerons ramped up in response to the stick input they were unable to arrest the rate. Finally as pitch attitude approached 0 degrees the CDR increased the magnitude of the aft stick input to approximately 12 degrees. Response to this input was characterized by considerable lag time (2 to 3 seconds) requiring excessive pilot compensation to control pitch attitude. Once the pitch rate error signal became large enough however the elevons were powerful enough to control pitch. Airspeed during this portion of the rollout decreased from 200 KEAS to 175 KEAS.

The problem with vehicle control during the rollout appeared to be related to the rather delicate balance of two very large pitching moments. Following main gear touchdown the weight of the vehicle causes a large nose down pitching moment about the main gear. Early in the rollout this weight moment is balanced by the positive pitch moment created by the lift force. As the rollout speed diminishes and angle of attack decreases, the weight moment overtakes the aerodynamic moment, and the imbalance must be accommodated by an elevator deflection from trim.

Elevator control power is also decreasing however as a function of rollout speed and a reduced moment arm. Unless control inputs require the elevons to ramp fast enough to get ahead of this dynamically changing moment balance they will be ineffective in controlling the rate.

The response characteristics of the vehicle during landing rollout are not satisfactory to permit active pilot control of pitch rate.

7. Entry Test Maneuvers

The STS-3 entry had six lateral directional PTIs (Programmed Test Input), one pitch ASI (Aerodynamic Stick Input) and one structural PTI planned. Figure 1 is a layout of STS-3 entry maneuvers including bank reversals. It shows the maneuvers, planned and actual flight conditions, and time of occurrence. All bank maneuvers occurred on schedule for the Northup-Rev. 129 entry and all 5 test maneuvers, above Mach 10, were executed on time with predicted responses. The Mach 8.4 maneuver was executed on time, however, the yaw PTI-2 was performed in place of the roll PTI-1. This PTI-2 was performed safely but with resulting motion somewhat larger than would be expected. It was not the optimum maneuver at that point but useful data can be extracted.

The Mach 4.5 to 4.0 PTI-2 was eliminated from the flight plan pre-entry because of the expected conflict with the third bank reversal. This conflict did occur, although the reversal was completed 11 seconds before the close of the window at mach 4.0. The strutural PTI-0 was executed on time and ran the full time period planned. The data from PTI-0, however, was lost because of a failure of the wide-band mission recorder.

8. Entry RCS Usage

The STS-3 entry AFT RCS usage was very close to the predicted usage. Figure 2 shows the usage during several selected time periods and figure 3 shows a graphical comparison of predicted vs actual usage on both STS-2 & 3.

The two solid lines in figure 3 represent the predicted entry usage from EI to Mach 1. The STS-2 prediction was a nominal FSL (STS-1 Aero) entry with maneuvers. The STS-3 prediction was based on actual STS-1 entry data adding in (FSL, SPS, AFFTC) simulator estimated usage for individual test maneuvers. The STS-3 prediction, adjusted for the deleted PTI, matched the actual usage fairly well, especially below Mach 18 with the total usage off by only 6 lbs.

If the predicted maneuver usage of STS-2 & 3 is subtracted from the flight data and compared with STS-1 the total usage for all three entries (with no maneuvers) compares within a hundred pounds. This comparison shows a high degree of repeatability given that the first 3 flights used the same entry alpha profile but with different elevator schedules and significantly different winds & turbulence conditions.

B. LESSONS LEARNED

- 1. In cases where high tailwinds and large left HAC turns are concerned, the right HAC turn procedure used on this flight is a good alternative.
- Moding the speedbrake to manual and 100% at M.9 to control airspeed during short HAC turns with a strong tailwind is a simple and effective way to prevent a transient airspeed surge and facilitate chase intercept.
- 3. Significant uncertainty still exists as to Y CG location.
- The .25Hz oscillation is a recurring phenomenon between M1 and M2.5, and at present appears to be easily constrained by the RCS jets.
- The autoland speedbrake retract logic was designed to accomodate the mean wind profiles of EDW/KSC. The wind shear encountered on the NTP landing tricked the speedbrake into closing early. At present no plans exist to change the logic.
- The flight control system is unable to provide satisfactory closed loop CSS pitch rate response after main year touchdown.
- 7. While the execution of PTI-2 in place of PTI-2 at M8.4 was not harmful; had it occurred at M2 instead of PTI-0, it might have violated the vehicle lateral load limits. More care must be exercised by crew and by the aero flight controllers to insure that the correct maneuver is selected.
- Although the M4.0-4.5 PTI conflicted with the 3rd Roll Reversal, 11 seconds remained after completion of the reversal during which the PTI could have been executed. Perhaps outright elimination of this maneuver preentry was a bit hasty.
- The excellent track record of RCS fuel usage predictions were again reinforced on STS-3. The increased confidence on our ability to predict RCS fuel requirements supports a recommendation for a reduced RCS redline for STS-4.

C. RECOMMENDATIONS

- Right HAC turns should be considered whenever the left HAC turning angle exceeds 270 deg and the tailwind component at intercept exceeds 80 kts.
- A stability analysis of the .25 Hz oscillation should be conducted to evaluate damping techniques or useful downmodes for a no RCS case.
- A study should be conducted to determine the feasibility of improving the vehicle pitch control response after main gear touchdown.
- If it is not feasible to improve post <u>touchdown</u> handling qualities it is recommended that the crew training be assessed to determine if additional time needs to be spent in this area.

3.4.6

- The no yaw jet redline for STS-4 should be reduced from 600 lbs to 400 lbs, and the "terminate maneuver line" should be reduced from 1700 lbs to 1200 lbs at EI.
- The number and <u>scheduling</u> of entry maneuvers should remain as planned for STS-4 with no significant increase in the number until the automated PTI module is available for use.

		S7 ENTRY	-S-3 MANEUVEI	RS -	
MANEUVER	FLIGHT C CUE CARD	ONDITION NOR/REV.129 DELTAS	STS-3 ACTUAL	GMT	REMARKS
FIRST BANK (c\$s,roll at 3%)	css q =10	-	CMD $\overline{q} = 14.2$ CSS ROLL $\overline{q} = 15.2$ COMFLETE $\overline{q} = 17.6$	15:39:58 40:05 40:30	MAX. Ø = 2.96 %ee CSS
PTI-1	9=22	-	EXEC 9=22.9	41:56	
PTI-1	V=21,500 -20,500	-	EXEC V=21370	45:36	
PITCH ASI			START V=21,212	45:48	
PTI-1	V=18,000 -17,000	V=19,000 -16,000	Exec V=18,724	48:25	
FIRST BANK REVERSAL	V = 19,800	V=17,700	CMD V=17,783 COMP. V=16,930	49:07 49:44	AUTO
PTI-1	V = 14,000 -12,000	suge	EXEC V=12,590	52:05	
SEC. BANK REVERSAL	V=10,000	V=9,300	СМО V=9,370 сомр. V=8,550	53:45 54:14	AUTO
PTI-1	V= 8,400		Exec V=8,360	54:21	PLANNED PTI-1 ACTUAL PTI-2
THIRD BANK REVERSAL	V = 5,000	V = 4,500	СМD V=4,710 сомр. V=4,210	56:57 57:22	Аито
PTT-2	M=4.5-4.0	ELIMINATE	-	(all second	CONFLICT WITH 3rd BANK REV.
FOURTH BANK REVERSAL	M= 2.6		СМО M=2.56 CSS Roll M=2.56 Сомя M=2.42	58:54 58:54 59:10	CSS
PTI-0	M = 2.2 - 0.9	_	EXZC. M = 2.10 INHIBIT M = 0.88	59:23 16:01:29	STRUCTURAL PTI
1	Contractor of the second state of the second	and the second second second second	A contract of the second states and the seco	and the second second second	a statut the statut of the statut of the statut

FIGURE 1

3.4.8

...

STS-3 ENTRY RCS USAG	r E		
GMT	LEFT (Lbs)	RIGHT (Lbs)	TOTAL AFT (Lbs)
15:13:28-15:34:43	82	81	163
15:13:28 - 16:01:00	659	671	1330
15:29:43-15:34:43	49	49	98
15:34:43 -16:01:00	577	590	1167
15:34:43 -15:55:15	475	484	959
15:55:15 -16:01:00	102	106	208
	ST5-3 ENTRY RCS USAG GMT 15:13:28-15:34:43 15:13:28-16:01:00 15:29:43-15:34:43 15:34:43-16:01:00 15:34:43-15:55:15 15:55:15-16:01:00	STS-3 ENTRY RCS USAGE GMT LEFT (1bs) 15:13:28-15:34:43 82 15:13:28-15:34:43 82 15:13:28-16:01:00 659 15:29:43-15:34:43 49 15:34:43-16:01:00 577 15:34:43-15:55:15 475 15:55:15-16:01:00 102	STS-3 ENTRY RCS USAGE GMT LEFT (Lbs) RIGHT (Lbs) 15:13:28-15:34:43 82 81 15:13:28-16:01:00 659 671 15:29:43-15:34:43 49 49 15:34:43-16:01:00 577 590 15:34:43-15:55:15 475 484 15:55:15-16:01:00 102 106

STS-3 PREDICTION & EI to MACH 1 = 1234 - 61 (Deleted PTI) (STS-182 FLT. DATA PLUS FSL, SPS & AFFTC DATA) = 1173 Lbs

STS-3 ACTUAL + EI to MACH 1 = 1167 Lbs

FIGURE 2 3.4.9

BEE 20x20 TO INCH

(
GRAVITY GRADIENT

A. Performance

The STS-3 gravity gradient (gg) test was scheduled for a 2 hour - 40 minute period beginning at 7 hours MET. The gg test was initiated at 81:23:29:30 GMT (07:29:30 MET) and completed at 82:01:19:00 GMT providing an actual test period of 1 hour - 50 minutes. The orbiter nose was pointed toward the center of the earth for the gg test; the universal pointing body vector load was P=356.3°, Y=2.6° and OM=235.5°. The tracking maneuver to establish the test gg attitude was accomplished with vernier jets utilizing an attitude deadband of 1.0°, rate deadband of 0.02°/s and DAP rate of 0.4 °/s.

Gravity gradient was initiated by DAP manual selection very close to the desired target conditions as shown in Table I and Figures 1-9. The pitch (P) and yaw (Y) attitude errors from the target values were 0.4° and 0.8° respectively; roll (R) attitude and the R, P, and Y rates were essentially on target. The vehicle gg oscillation slowly diverged during the test period achieving maximum attitude deviations of $\sim 13^{\circ}$ in roll and $\sim 2^{\circ}$ in pitch and yaw. The period of oscillation was 80 minutes, approximately equal to the time for one orbit; consequently only slightly more than one oscillatory cycle was observed. It is not obvious from the data that the oscillation would stop diverging and reach a steady state equilibrium condition though this would be expected to occur. Pitch and yaw rates oscillated about their respective orbit rate component, slowly diverging, driven primarily by the roll excursions. The roll attitude error was diverging as shown by each succeeding peak doubling in amplitude. The roll error oscillatory trend suggests that the equilibrium or mean value was biased 4.5 degrees from the original 237.5° value. The true roll equilibrium attitude is determined by locating the roll attitude error inflection point which occurs at the maximum roll rate condition as shown in Figure 10. This solution indicates the actual equilibrium roll attitude should be 233°, not the initial 237.5° condition. The initial pitch and yaw attitudes appear to be satisfactory. Since roll excursions significantly influence the pitch and yaw results, reduction in the roll oscillation is necessary in order to more effectively evaluate pitch and yaw activity. If the gg test were reinitiated at the revised attitudes and these were in fact the true equilibrium values, attitude deviations of less than 1° in all axes could be expected. The STS-3 gg test period was not of sufficient length to fully evaluate the gg performance since steady state conditions were not achieved nor revised targets utilized. It appears that a minimum of two cycles or orbits are necessary in order to even begin to adequately evaluate gravity gradient.

3.5.1

GROUND EVALUATION PROCEDURES

The following is a discussion of the procedures utilized to acquire and and plot the gg data for analysis. The data required for gg evaluation are the universal pointing total attitude errors (eigen quaternion), ADI rates, and LVLH attitudes (euler angles) for roll, pitch, and yaw together with onboard GMT. This data was put on a universal digitals display (see encl 1) and a hardcopy made in one minute intervals during real time passes and playbacks. Initially, the ten parameters were hand recorded at four minute intervals as a backup to the hardcopy data. It required approximately 45 seconds for one person to copy the ten parameter values. Thrift data was obtained for one region for which playback was not available as noted in Figures 10-12. However, the thrift rate data was printed out to two decimal places which was not sufficient; four decimal places is required for the analysis of pitch, yaw and roll rates. The thrift decimal accuracy for LVLH and error attitude was adequate (See encl 2).

A HP9845 computer and a regression curve plotting program were utilized to obtain the data plots shown in figures 1 through 9 for evaluation of gravity gradient performance. The values for the ten parameters, in four minute intervals, were stored in the plot program following each realtime pass and playback period. The data was then plotted and a curve fit made. The program has no specific intelligence pertaining to gg, it works with any data and performs a best fit solution. Using the HP9845 consumed considerable time, entering and storing data and repeatedly developing the plots each time new points were added. Use of the HP9845 and the associated time expended does not seem warranted, since there are sufficient number of data points and the data scatter is minimal. Hand plots will do the job adequately and quicker. Consequently, the hand plots shown in figures 10 through 12 are recommended for use, successively plotting the data as it is acquired. Total attitude errors and rates are the primary evaluation parameters, while LVLH is secondary. The axes motions should be evaluated, in their order of significance, beginning with the least stable: roll, yaw, and pitch. Roll motion is a major factor impacting pitch and yaw activity. The four minute data sample interval is sufficient for plotting and analysis. Hardcopies each minute is conservative, but provides additional data should some disturbance occur and generate a more dynamic situation.

The above procedure is dependent on getting playbacks and having a working hardcopy. Thrift with an increased rate decimal accuracy or a delog of the universal <u>digital</u> display in one minute intervals are alternatives if either playback or hardcopy are not available. An alternative for a hardcopy failure is to hand copy the data.

B. LESSONS LEARNED

- Use of the HP9845 and the regression curve fit program were not necessary for plotting gg curves. Hand plotted curves are adequate and can be produced more quickly.
- Thrift rate data decimal accuracy was not sufficient for gravity gradient analysis.
- One orbit of gravity gradient operation did not provide a sufficient number of cycles or time period for adequate analysis.

3.5.2

C. RECOMMENDATIONS

- Have crew note and pass to ground gravity gradient start and stop GMT in order to expedite playback data gathering.
- Handplot gravity gradient data as it is acquired on graph axes scaled prior to the mission to reflect expected ocillation amplitudes and limits.
- Increase decimal accuracy of thrift rate data to four places to provide adequate analysis.
- 4. For test and evaluation, conduct gravity gradient operations for a minimum of two cycles or orbit to permit any gg oscillation to approach its equilibrium condition and permit reasonable prediction of any revised alternative initial equilibrium attitudes.
- Document Orbit GNC display during tracking maneuver just prior to initiating gg to determine deviations from target initial conditions.
- 6. Set up three Universal Plots one each for roll, pitch and yaw showing total error and rate vs time together on the same plot. Suggest a plot rate of 60 sec/pt with a time scale of 0-90 minutes; total error and rate scales would be the same as those in #2 above.
- 7. For the STS-4 gravity test establish reasonable P, R and Y oscillation amplitudes which could be expected and conditions which if encountered or limits which if exceeded would require action to be taken. Define alternative actions and the analysis required to support a particular course of action.
- Define the STS-4 real time tasks of GNC, FAO, and E&D in terms of their relative responsibilities for data acquisition and presentation, gravity gradient performance evaluation and conclusions, specification of actions to be taken, and making of calls.
- 9. Identify factors which influence gravity gradient performance such as mass properties, crew activity, venting, sun spot activity (air density), orbit geometry, etc., determine if it is necessary to track them during the mission and establish appropriate procedures and interfaces as required.

_		A. UNIVERS	AL P	UINIING I	NFO	
V	BODY ECTOR	TARGET		TRKG RATE	DAP	CONF
P Y R	356.3° 2.6° 237.5°	Center of Earth	P + Y - R +	0.036°/s 0.057°/s 0.002°/s	ATT Rate DB DAP RATE	DB 1° 0.02°/s 0.4°/s
-		B. CONDITI	ONS	AT GG INI	TIATE	
	TARGET	ADI LVLH ¹	ATT	ITUDE	TOTAL ERROR ²	ADI RATE
A	TTITUDE	ATTITUDE				

TABLE I

NOTES: 1 LVLH based on euler angle 2 Total error from universal pointing based on elgen quaternion.

2.76100 -0.74177 0.31412 0.00220 234.74374 265.07541 357.83799 5132 81:23:46:33 0:07:46:33 23% 77 000 RT2023B T B T B LUB RATE RATE RATE ERR ERR ERR 102 102 1000 101 101 104 104 M ___ GNT c c c DIGITALS ac a > aca> as a > aca > V95H7490C V95H7491C V95H7492C V72R0916C V72R0917C V72R0918C M0160200C M0260208C M0360208C M0% E0200C M05E0200C M06E0200C L1210H04M O A A O + MM+ 64 52 20200 46 47 48 59 UNIVERSAL 0.0000042013 IMU RM ATT TH VACU25950 anner realized for the second 00 3 in SP B B F 門 1 ENCL 3.5.5

6

23

1

9.65.89

0

000

607

昭成

	3 Cm	THRIFT	
5 731.995 85.05 0.496 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.715 0.085 0.181 1 0.715 0.715 0.016 1 0.016 1 0.725 0.725 0.725 0.725 0.025 0.726 <th0.72< th=""> 0.726</th0.72<>	36.06 38.00 7.00 7.00 7.00 41.68 38.74 -5.12 0.44 2.20 141.68 38.26 -5.23 0.44 -2.17 151.59 38.23 -5.06 0.62 -2.13 1 151.59 36.33 -5.06 0.62 -2.13 1 151.59 36.33 -5.06 0.62 -2.13 1 151.51 35.11 -4.07 0.162 -2.13 1 173.51 35.11 -4.07 0.183 -1.16 1 173.51 28.61 -3.38 0.381 -1.60 1 173.51 28.51 -3.331 0.391 -1.60 1 173.52 28.66 0.381 -1.26 1 1 181.44 24.66 0.381 -1.26 1 1 191.47 28.66 0.381 -1.26 1 1 191.48 1 -1.28 0.381 -1.26 1 191.49 1 -1.26 0.381 -1.36 1<	VEH ORE 2 FORMAT 1% PADE 2 VEBH V95H V95H<	1900.70 4.00 0.38 -0.68 0.44 1 1900.72 4.00 0.38 -0.68 0.74 1 1907.72 4.00 0.336 -0.68 0.74 1 1907.72 4.00 0.21 -0.58 0.74 1 1907.70 4.00 0.21 -0.58 0.74 1 248.60 349.10 0.411 0.52 -0.73 0.35 1 248.60 349.10 0.16 -1.00 0.55 1 2 248.60 349.10 0.16 -0.46 0.16 1.07 1 1 248.60 349.10 0.16 -0.68 0.16 1.06 1
84,405 (244,411 84,40 (241,72 299,90 (241,72 299,90 (241,72 299,90 (31,16 289,90 (31,16 299,90 (31,16 299,90 (31,16 299,90 (31,16 299,90 (31,16 299,90 (51,13 299,90 (51,13 290,90 (51,13 290,90 (51,13 290,90 (51,13 290,90 (51,13 20,13 290,90 (51,13 290,90 (51,13 20,1	2001.00 2001.00 2001.00 2001.00 2001.00 2001.00 2011.00 2001.00 2011.0	V93H V93H V93H 683351 746717 683351 746717 UPT DSV UPT R0R 2993.90 61.05 2993.90 61.05 2993.90 61.05 2993.90 61.05 2993.90 75 2993.90 75.65 2993.90 20.99 2993.90 21.55 2993.90 22.55 2993.90 25.55 2993.90 25.55 2993.90 25.55 2993.90 25.55	348.10 28.40 348.10 28.40 348.10 28.40 348.10 100.50 348.10 100.50 348.10 100.50 348.10 100.50 348.10 100.50 348.10 100.50 348.10 100.50 348.10 100.50 348.10 100.50
0.0005 0.0005 0.000 <	.0 356.300 2.500 237.400 799.10 210.10 .1 355.300 2.500 237.400 299.10 210.10 .2 355.300 2.500 237.400 299.10 210.10 .1 356.300 2.500 237.400 299.10 210.10 .2 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10 210.10 .3 356.300 2.600 237.400 299.10	BODY VECTOR/UNV POINTING VB3U VB3U VB3H VB3H VB3H VB3U VB3U VB3H VB3H VB3H VB3U VB3H VB3H VB3H VB3H VB3U VB3H VB3H VB3H VB3H VB1 E6005C E8637C E8330C E8330C E00 VEC HDV VEC HDV VEC E834C E8330C E00 VEC HDV VEC HDV VEC E834C E8330C E00 VEC HDV VEC HDV VEC E834C E8330C E00 E500 271500 25910 210.10 E56.300 2.6600 2377.500 259.10 210.10 E56.300 2.600 2377.500	0 0500-500 0 0500-500 0 <th0< th=""> <th0< th=""> 0 <</th0<></th0<>
 BLL20122141. BL20132144. BL20132145. BL20132145. BL22135145. BL2213145. BL2313145. BL2313146. BL23146. BL2315149. BL2315149. BL2315149. BL2315149. BL2315449. BL2315449. BL2315449. 	P 82100175550. P 82100175650. P 82100179566. P 82100129566. P 82100130566. P 82100130566. P 82100135566. P 82100135556. P 821001355556. P 8210010555556. P 8210010555555555555555555555555555555555	M+0HD187J M+0HD187J ONBOARD GH1 P B2:00142:02.0 P B2:00142:08.0 P B2:00140:08.0 P B2:00140:49.40 P B2:00140:49.40 P B2:00140:49.40 P B2:00153:49.0 P B2:001553:49.0 P B2:001553:40.0 P B2:001553:40.0	Reflection units (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

3.5.6

ENCL 2

								1		5							
3	NULL DEFICE COL	1118008	"四日日日日"	-110012.	- 98885		519667	-086538	-0-115	10.1381	1. NUS	D0%00	01010	10.005	出 市に	151192	50-GN
a. /	81119150109-0	FFFB00	0,280	- Batte	19856	15/1	19854	.0r	2,61	0.57	1,60	0.40	000	0.00	278,6	260.4	B4.45
R.	0	FFFBDD	- 695	ちちらし。	, 9966	- 8510	B265		99.0	1.10	0.53	0,40	-0.00	10.0	319.0.	265,7	B-55
0	81:19:93:27.0	FFB00	- ,2565	. 9663 -	1288.	1107 -	8968 -	.1.	82.0	0.02	84.0	05.0	-0.02	10.0-	345.1	263.6	86.3
<u>a</u> .	B11201.52144.0	FFFBDDE	35090 -	-SBTBB.	. 98735	16715	.99615	-08615	5+0*0	0.775	-0.105	584.0	500.0	-0-015	3.55	261.05	86-15
а,	81:20:33:44:0	FFFBDB	- 5458 ·	- 3185 -	9548-	2233	6468.	-1005	-0-12	84.0	0.82	14.0	0.01	0.01	238.7	257.1	84.12
а.	81:20:35:43.0	FFF800	90'ub	- 822 h.	+128-	+1292	1568 -	1880 -	0.87	84-0	93.0-	14.0	-0.01	-0.01	295.7	F.845	十:古
0.	81:23:28:55.0	FFFBDD	926+*	.8696	985 N.	· 1888 ·	3984	0218.	0.24	0.44	0.69	00.0-	10.04	-0.05	39.65	154.0	338-5
α.	81:23:79:56.0	FFFBDD	B1.15**	.8555	- 3752	- 1968	+82h	- 9033	0-04	B4.0	1.77	00.0-	0.04	-0.06	N. N	158.0	354-6
0,	81:23:30:57.0	FFF BDU	BAND.	+B28+	- 3061	6196	4567	1088.	B1-0-	0150	51.0	00.0	40.0	-0.06	33.0	185.7	8.525
a.	81123131:57.0	FFF800	- 457.3%	18181	2422.	- BILB*-	B18h*-	.8760	-0-39	10.54	0,62	00-0-	40.0	-0,06	口"说	166.4	221.22
4	81:23:33:51.0	FF5800	- 8528	- 88HS -	- 3873	- TITO	224.0	18890	18:0-	0.61	55.0	00.00	0.04	90.0-	236.7	8.695	3-132
a.	81:23:34:83.0	FFF800		- 15881 -	9876	- 1890	12407-	0866	1.011-	0.60	Bh*0	-0.00	1,04	90:0-	836.4	266.0	357.5
п.	81173136149.0	FFF800	- 2628	- 15865 -	1288 -		12401-	0668.	7414-	0.65	19270	-0.00	0.04	-0-05	236.0	285.7	8,7cs
۵.	81:23:37:49+0	FFFB00	- HE28	- 5195 -	1166*-	- 0158	51501-	. 9990	13-07	63.07	714.01	10.18	+0.01	30.01	235,8	265.6	357.6
a.	81:23:38:48.0	FFF800	- 18537 -	- 15866 -	9968	- BLLC	+0+0	.9330	-2105	0.67	0.05	-0.00	40°0	-0.05	235.5	265.4	357.7
d	.BL123:11:47.0	LEF BOD	- 82059 -	- 5715 -	. 9996	- 4180	0394	. 9990	-2.36	0.72	-0.13	0.00	0.04	-0.06	1,885	265.3	357.1
1	82:00:25:55	1976 BDD	- 6669	- '4560 -	EBBB.	- 11375 -	85101-	9996	5.761	-0.22	R. 19	0.00*	0.03	-0-06	8.242	P67.9	357.4 -
. B	82100126159.0	11 F GDD	- 6688 ···	- 1954	· , 9993	- 0120	0443	9966 .	5,26*	-0. 55	11 10	0,00	0.03	-0.06	242.9	81.9	357-5
1	82100:27159.0	1 FF BDD	- 8696	- 14566 -	* 9993	-, UT210 -	+124.0 · -	0855*	6.23	14:0-	2.12	0.00	0.03	-0.06	8.545	B.135	367.8
п.	82100:28159.0	F.F.F.BDD	6988	- LL5h*-	19993	- "DZ7D -	B0%0*-	0888*	5+161	84.0-	2.07	0.00	0.03	-0.08	8.945	B.135	357.7
Ť	86100:29:59.0	116800	. 19882	- HBSH.	2888.	. D 353	0392	- 0688.	13.051	-0.61	nu ny	0.00*	0.03	-0.06	242,6	268.0	- B. Liss
ц.	82:00:50:50:90	008,111	. BB72	- HEEN'-	2868.	- "D353	0380	, 9993	4.811	-0.67	2.06	0.00	0.03	-0.06	242.5	288.0	357.B
D.	82:00:32:58.0	FFF B00	. BEBB	- 11941 -	- 9993	B220*-	-,0353	. 9993	4.42	-D.B1	1.87	-0,00	0.03	-0.06	242.1	8.735	358,0
1	82:00:33:58.D	EFFB00	. BBIE	- MILK'	1, 9993	0370	-1420	19993	4.2B	-0.83	1.87	-0.00.	0,03	-0:08	8.1.9	367.9	358.0 -
n.	8210013415810	0.08333.5	HB(,B*	. 4760 -	0885 · -	5950'-	.0331	EBBB.	3,99	-0.85	1.77	-0.00	0.03	-0.06	241.6	B. 185	358.1
۵.	82:00:35:58.0	1111800	· , B/167	· 6084, -		~ (120 · ~	B120*	2888.	3.66	-0.92	1.78	00.00-	0.03	-0.05	11 M	日,185	358.2
В.	82:00:35:58.0	EPS B00	++8735	,4858	0866	LEED'-	0311	2886.	3.29	-0.02	1.655	-0,00	0.03	90.0-	240.B	261.7	358.2
1	82:00:38:03.0	FFFB00	-,6689	1933	. 9890	HBS D	+020*-	5666.	E. 85	+B. D-	1.57	-0.00.	20.03	90.04	1.045	261.7	358.3
0	62:00:39:03.D	008 111	- 19999		9990	8250"	7850	9888.	2.42	0810-	1,43	-0.01	0.03	-0,06	240.0	267.5	358.3
0.	B2:00:40:03.0	FFF800	8616	- "ELOG"	99998	8540	*B30 *-	5888.	1+83	-D.B4	1.28	-0.01	10.0	-0,06	239.5	PE7.4	35B, 3

														1				
LEFT AD	LEFT ADI	LEFT ADI	LEPT ADI	4D							VEH	ORB	9	-	DRMAT	11562	a 304	
TV HETV HETV HETV UTDIOHOAD	VV HELV HELV HELV	V72H V72H V7	TV HEEV	2	PSH.	VTEH	HELV	VT2H	Harry	HZLA	Harv	VTZR	VTER	VIER	DION	MOZG	MOZG	
WEDARD GMT CNTLUD R 51N R CDS P 9	CNTLIND R SIN R CDS P	R SIN R CDS P	R CDS P	R a	SIN	P COB	V SIN	500 Å	R ATT	P ATT	V ATT	R RATE	P RATE	Y RATE	X ATT	V ATT	Z ATT	
8- 8225. 8164. 008111 0.40.47.00158	111800 .8518 92399	9 9529 - 9198	- 6239 - 9	0	CHBRY	.0509	LR20 .	39995	0.85	-0173	10.1	0.0-	0.04	-0106	238.4	267.1	358.4	
82:00143:02.0 FFF800 ,8462 ,5327 -,1	FFF800 -, 8462 -,5327 -,5	1- USES . 5346.	12 - 15 - 15	i.	3983	1450.	,0287	19995	0.26	-0.83	0.84	-0.0	0.04	-0.05	B37.8	266.9	358.4	
8 1542 8858 000141 0.80144100158	FFF800 - ,8398 - ,5427 - ,9	B338 5427 9	- "5+21 - B	1	2888	9550	LB20*-	SBBB .	-0.43	-0,488	0.75	0.0-	0.04	-0.06	237.1	266.8	358.4	
82:00:45:08.0 FFF800833585248	FFF800833555248	- 8335 5524 8	H528 8	1	088	1850	-,0202	. 9995	-1.08	Bh.0-	0.58	-0.0	0.04	-0.06	236,5	266.6	358.3	
82:00146:08.0 FFF800826856229	FFF800 - 8268 - 5622 - 8	.826856229	56229	.0	808	0636	7850.P	SBBB .	-1.76	1110-	17.1	010-	D. D4	-0.06	335.8	256.4	358,3	
82:00147108.0 FFF800 .8188 .5722 .94	FFF800 .8188 .5722 .94		5722 94	ă,	376	-+0578	0302	+ 9995	-2,46	-0.28	0.33	-010	D. D'+	-0.06	235.1	266.1	358.3	
82:00148:48.0 FFF800 .8071590080	rr800 .8071590085	.8071590095	5900 85	8.1	17	+21.0 · -	0311	CE89.	- 3,68	0.04	0.03	0.0-	D.04	-0.05	233,8	269.8	3/38,2	
36 2009 9882 008334 0.841841001178	FFF8007895600389	7985600398	6003 96	96	89	0765	0316	1888.	日九、九-	0.22	0.12	-0.0	0.04	-0.05	233.1	265.6	398.2	
02:00190149.0 FFF8007010611590	FFF800 7010611580	7910611596		96	89	07775	9:220	19993	5:23	11.22	+0.18	0.0	0.04	-0.05	232.3	285.6	338.1	
8-100101:00:00 FFF800 - 7852 - 5815 - 18	FFF80078326215 - +94	7832 6215 -+ 8	6215 96	8.	9996	1080	0333	19093	-5.85	B+*0 1	-0.37	0.0	NO.0	0.05	91155	265.3	358.1	
82:00:52:49.0 ///80077566311 -,W	///800775663119K	7756631196	6311 -+ 96	海上	198	-,081.5	-10338	18883	8.62	0.68	0.51	0.0-	0.05	-0.05	230.8	266.0	358.1	
82:00:53:48.0 FFF8007680640399	FFF8007680640399	7680640399	640399	66	22	0914	0346	19993	-7.30.	10.85F	-0.73	0.0	0.05	-0.05	230.2	264.8	358.0	
R2:00:55:48.0 FIF8007577658790	FIFB007577658795	7677658295		3	15	0983	0363	19993	19'B-	V 1.17	86.0	2" L-	0.05	50°D-	228.8	1, 1000	B-155	
1 8484. 9864. 000 111 0.12:00:00:00	11- 248. 3884. 008111	11 8468, 5884.	. BRNS 1	1	526	-, 981.0	* 0515	1,9983	85.0-	0.05	-0.83	0.0	10.0 0	10.01	27.8	1-161	3, 5	
5,- 05110157,0 (IT800 .4689 .88305	111800 .4689 .88302		- 8830 - F	n;	1 dp	48LB+ -	+07D.	19873	-0.37	0.87)	24-0-	0.0	10'0	10.0	0.85	181.7	0.4	
R2:02:11:57.0 FFF800 .4684 .8698 .10	FFF800 .4684 .8828 -14	1.4 8588 . 19894.		1.	510	980'1	· 0'1 49	11.88.	-0.37	0.58	-0.03	0.0	10-11- 0	0.01	0.85	181.2	n.j. 3	
11 E188. E574. 008131 0.7255150158	11 E188. E574. 008111	11 E188. E574.	11. 2188.	1.5	1990	8288	164.01	1798.	1210-	0.03	0.33	0.0	10.0- 1	0.01	28.2	180.6	19.1	
BP:02:13(37/0 FF1800 ,4785 ,8778 .1	1 8778, 8974, 008133	1"- BLUB" 984.4"	1 B77B.	1.1	816	1688	.0763	1168.	0.13	-0.53	0,72	D-0	-0.01	10+0	28.6	0.881	4,4	
82:02:52:20.0 () 1800 , 905117139	111 - 111 - 1989, 111 - 198	48'- EILL- 1988'	31- RILL'-	1.9	170	3898	1981	.9802	2510-	0.72	0.84	- 0 - 0	-0.01	10.01	89.65	8"L+2	11.844	
CLINE THAT H LITCOM OULS 1987 - 0	LITCHN OCUN 1967 D	00111 1757 0	11111	0	(LDC	#114 -	FED	0010	-n 20	100.0	中国市市	E E	10.01	10.0	1 001	2000	10 10114	

3.5.7

ENCL 2 cont'd

R

TIME -MIN

FIGURE 1

3.5.8

ROLL ERR

TIME - MIN

3.5.9

ROLL RATE

6....

FIGURE 2

ROLL ATT

TIME - MIN

FIGURE 3

PITCH ERR

TIME - MIN

3.5.11

FIGURE 4

670

PITCH RATE

TIME -MIN

3.5.12

FIGURE 5

PITCH RTT

TIME MIN

3.5.13

FIGURE 6

ç....

YAW ERR

TIME-MW

3.5.14

FIGURE T

6.....

YRW RATE

TIME - MIN

3.5.15

FIGURE 8

YRW RIT

TIME -MIN

FIGURE 9

A. Performance

The AA performance during OPS 102 and OPS-3 was nominal. The AA data from the OPS-8 sensor self test satisfied the bias and limit test requirements in the PDP section 3, and in the SODB, volumn 1, table 3.4.5.1-2. The AA power was left on in OPS-2 to protect the tungsten filament in the incandescent lamp.

STS-3 OPS-8 AA SELF TEST DATA

		AA BI	IAS DATA	
	LATERAL	(Y)	1	NORMAL (ℤ)
	BIAS	LIMITS	BIAS	LIMITS
	-0.128	0.00±0.45	0.000	0.00±1.29
	0.000	0.00±0.45	0.000	0.00±1.29
	-0.064	0.00±0.45	-0.257	0.00±1.29
Ľ.	-0.064	0.00±0.45	0.000	0.00±1.29

LI	ATERAL	(Y) AA 31		NORMAL (₹)
	DATA	LIMITS	DATA	LIMITS
16	.461	16.1±1.7	65.379	64.4±6.7
16	.525	16.1±1.7	67.696	64.4±6.7
16	.525	16.1±1.7	65.894	64.4±6.7
16	.396	16.1±1.7	66.666	64.4±6.7

- 1. Analysis of Problems:
 - a. The accelerometer assemblies (AA) have a 500 HR limited life requirement, which is due to the tungster filament in the lamp <u>becoming</u> brittle after so many operating hours. The STS-2 AA's were approaching 500 hrs and were scheduled for replacement prior to STS-3 checkout and flight. The AA's were replaced as follows, and are expected to last through STS-4 flight.

AA	Changeout:	AAT	AA2	AA3	<u>AA4</u>
	STS-2	S/N-11	S/N-6	S/N-8	S/N-7
	STS-3	S/N-9	S/N-12	S/N-13	S/N-14

The AAs were left on throughout the flight to minimize the probability of the tungstem filament failure in the lamp.

b. During OPS-8, the AA compensated data is downlisted incorrectly in FPS2, rather than G's as in OPS-1 and 3. Since the MOC converts the downlist data from G's to FPS2, the OPS-8 data in FPS2 is multiplied by 32.174 and displayed incorrectly on the ground.

3.6.1

The OPS-8 flight software release 20 (FLT 9) will change the AA downlisted data to G's, per CR 39946.

2. STS-2 & STS-3 data comparison

AA performance for both STS-2 and 3 was nominal, and the data compared favorably.

B. Lessons Learned

System performance was nominal, requiring no change in system operations.

- C. Recommendations for Subsequent Activities.
 - LCC Limit Changes: None recommended
 Flight Rule Changes: None required

 - None recommended 3. SMS Parameter/Model Changes:
 - 4. Console or MCC Procedure Changes:
 - a. Console procedure was implemented to transition from ASCENT to ORBIT MCC operations limit sense at MECO. This was done to support monitoring of OMS engine positions. This requires a MED input during prelaunch and MEDinput after transition to OPS 2 for AA operational ORBIT limit sensing.
 - b. The MCC ASCENT operational limit sensing for AA lateral selected acceleration is changed by MED inputs from ±0.3 to ±5.0 FPS2. This change is necessary to maintain the event light off during nominal operating conditions. The GNC Data Pack requirements will be revised to reflect this change for STS-5.
 - c. Perform SCP 3.2.16 (GN&C SYS. CNSL. H/B) to change AA calibration curve to correctly display the OPS-8 self test data in FPS2 for MCC real time display and post data analysis.

5...Data Retrieval Adequacy:

With MDRF submitts during the mission, data retrieval was excellent.

AERO ACTUATORS

A. PERFORMANCE

All aero actuators performed normally for all phases. There were several questions, as to why the <u>elevon</u> changed positions during OPS-2 while the ASA's and Hyd were off. This is a <u>normal occurrence</u> as described in the following analysis.

1. Analysis of Elevon Position Changes in OPS-2.

Operation of the Hyd circulation pumps with the ASA's off will generally cause the elevon to drive to a hard stop. Once an inbalance is established in the servo values (with no command to position it) there is enough to move the elevon actuator. The inbalance may be in either direction, thus the elevon could move positive or negative.

Hyd circulation pump pressure is approximately 300 psi, which is not high enough to switch the Hyd switching values to the elevon. This being the case, only circulation pump pressures to the standby 2 systems can get thru the switching values and drive the <u>actuators</u>. The standby 2 system to the four elevons are:

Hyd Sys 2 - Right inboard - Left outboard

Hyd Sys 3 - Right outboard - Left inboard

System 1 circulation pump will not drive the actuators.

The Body Flap, Rudder and Speedbrake are not affected by circulation pump operations as they have Hvd actuated brakes, which are not released at the low circulation pump pressure.

2. Comparison of dates STS-3 actuator signatures were very similar to STS-2.

B. LESSONS LEARNED - NONE.

C. Recommendations for Subsequent Activity.

- 1. LCC Limit Changes NONE.
- 2. Flight Rule Changes NONE
- SMS Parameter/Model changes <u>Same</u> comment from STS-2. The SMS outputs the Secondary Delta Pressure with a reverse sign to the actual vehicle. This needs to be fixed.
- 4. Console or MCC changes NONE.
- 5. Data retrieval NONE

3.7.1

Performance Α.

The ADTA performance during major mode 304 and 305 was nominal. The flight data was reviewed with no discrepancies noted. The major operational functions of the ADTA system are listed below:

89:15:58:21 ADTA PROBE DEPLOYED MACH 3.1 HPC 94.5K 58:22 ADTA GOOD FLAG ON MACH 3.1 HPC 94.5K 58:58 DATA ENABLED TO G&C MACH 2.5 HPC 85.9K 59:06 DATA OUTPUT TO G&C MACH 2.4 HPC 83.7K

The ADTA data from the OPS-8 sensor self test satisfied the BITE and limit test requirements in the PDP section 3, and in the SODB, volumn 1, table 3.4.5.1-2. The same ADTA's have been on all three flights. The units for ADTA 1, 2, 3 and 4 were S/N 411, S/N 414, S/N 412, and S/N 410 respectively.

- 1. System Changes to prevent Anomalies
 - a. LCC limit changes for STS-3 & SUBS

Air data probe stow redline: 1 of 2 deploy events equal "0" and 1 of 2 stow events equal "1" for each probe are manditory. Visual backup for proper stow may be utilized.

b. Software change

To prevent false alarms and failures, the STS-3 ADTA RM same-side trip levels were revised by CR 39521 to compensate for the transducer drift rate biases expected thru STS-3, 4, and 5 flights.

2. STS-2 & STS-3 data Comparison

ADTA performance for both STS-2 and STS-3 was nominal and the data compared favorably.

B. Lessons Learned

Systems operation and performance was nominal. There are no recommendations to enhance vehicle or ground system operations.

- C. Recommendations for Subsequent Activities
 - 1. LCC limit changes: NONE
 - Flight Rule changes: NONE
 - 3. SMS Parameter/Model changes: NONE
 - Console or MCC Procedure changes:
 - a. The MCC Orbit & Entry event light operational limit sensing for ADTA 1/3 and 2/3 delta pressures are changed by MED inputs from 0.025 to 0.05 IN HG. The change is necessary to cover the expected ADTA pressure transducer bias drift during STS-3 through 5 missions.

3.8.1

The ADTA RM <u>thresholds were adjusted for the transducer bias</u> drift by CR 39521. The GNC Data Pack will reflect this change for STS-4.

5. Data Retrieval:

With pre-planned MDRF requirements and MDRF submittal during the mission, data retrival was excellent.

STS-3 OPS 8 ADTA SELF TEST DATA

14 14 IN

134

DTA	X	CANSDU	CER B.	SHI
	Sa	PAC	POLU	PAL
1	0.002	-0.024	- 0.021	- 0.030
ч	-0.021	0.000	- 0.034	-0.037
η	-0.035	+10.0-	-0.029	-0.010
4	100.0-	- 0.016	0.010	0.008

47	Sol		Pac		Paul		PXL		7	
1 i	PATA	TIMITS	DATA	5111117	DATA	511417	DATA	LIMITS	DATA	511417
	0.8141	0.8142.001	5.4748	5.4754.003	3.7422	2,7422,003	1.7107	1.710 + .002	173.580	0.487861
~	1418.0	100.2418.001	5.4748	5.4752.003	2.7422	2.7424.003	1.7107	1.710 ± .002	172 500	172 624.0
~	0.8141	100.2418.0	5.4748	5.4754.002	2.7422	2.7434.003.	1.7/07	1200 + VIL-1	122.500	172,644 0
	1418.0	0.8141.001	5.4748	5.4754.002	2.7422	2.742 2.002	1.7107	12102-002	173.580	173.632.0

ATA MA	Sd		Pac		PSH		PXL		r	
15:	DATA	SLIWIT	DATA	211112	DATA	LIMITS	DATA	LIMITS	DATA	TIMIT
-	24.8884	24.8882.001	29.5277	29.5291.002	21.7089	21.7102.0021	14.7138	14.715+ 003	12 520	19527.03
5	24.8884	100.2888.46	39.5277	29.5391.002	21.7089	21.7102.002	14 7139	14.715+ 003	10.530	19 50 + 02
m	24.8884	100.1888.42	29.5277	29.5292.002	21.7089	21.7162.002	14.7138	14.7154.003	18.530	18. 53 + 02
¥	24.8884	24.8884.001	29.5277	29.5292.002	31.7089	1200 + AIC 10	14.7130	CON 4715 MI	10 52 01	10 10+ 00

3.8.3

A. Performance

1. SRB Actuators

The system functioned as advertised throughout the prescribed period of operation. SRB slew occurred at 81:15:59:36 with nominal tilt and rock actuator responses. The maximum secondary delta pressure recorded during this period was 440 PSI. Between SRB and slew and SRB separation channels 1 through 4 of each tilt and rock actuator of the left and right SRB's gradually increased to a maximum value with only minor deviations to this schedule. The highest secondary delta pressure noted was -847 PSI occurring at 15 second prior to SRB separation on the right SRB, channel 2 tilt axis. A history of these pressures is recorder in table 1.

2. SSME Actuators

SSME also performed as expected with no noted anomalies. There were two items, however, which bear mentioning. These items are (1) pitch oscillations as main engines are commanded to the stow position and (2) a slightly high secondary delta pressure after eight minutes of flight. During STS-1 and STS-2 excessive oscillations (.50 peak to peak and .60 peak to peak respectively) were noted while the main engines were being commanded to their dump position. STS-3 oscillations during this time compared very favorable only, 3.70 peak to peak. Also during previous flights there were jet firings associated with the excessive pitch rate oscillations; one firing during STS-1 and six firings during STS-2. However, during STS-3 there were no jet firings during this period since the oscillation never approached the pitch rate limits. CR 39360A, scheduled for version 19, STS-5 implementation will change the actuator movement rate and increment from IHZ and 10/step to 12.5 HZ and .080/step. This action should reduce if not entirely eliminate the oscillations. Notice that the rate of engine movement is the same in both cases, 10/sec. The other item worth describing is a high secondary delta pressure on the center main engine channel 4 pitch axis. Between MECO and ME stow the secondary delta pressure on the channel 4 pitch axis was observed to climb at a faster rate, and achieve a higher value than any other secondary delta pressure. The highest value noted was -1126 psi at 81:16:09:18. Had this value reached -1175PSI, the redundant channel equalization in ATVC 4 would have come into play to hold the pressure at -1175PS1. Since the same situation was encountered on previous flights, no serious anomaly is seen to exist here. See table II for pressure history.

3.9.1

B. Lessons Learned

The SRB actuators have proven themselves through three flights. Although no circumstances have arisen to cause RM to bypass a channel, these actuators are reliable at least under the circumstances noted.

The SSME Actuator Pitch oscillations should be expected on STS-4 while the main engines are being commanded to the dump position. The magnitude of these oscillations should be between 3.70 and 60 peak to peak depending on how many jet firing are required to maintain the pitch rate within <u>its</u> deadband. Expect these oscillations to cease with STS-5. Also expect higher than average secondary delta pressure on channel 4 pitch axis of the center main engine actuator.

C. Recommendations

1. LCC limit changes - none.

- Flight rule changes none.
- 3. SMS parameter/model changes one SMS problem which was identified prior to STS-1 should be fixed as soon as possible. This is the problem that the SRB actuators cannot be bypassed because the channel override remains on. This override is reset normally when the prelaunch actuator slew test is run. This test is not done in the SMS. Better training would be provided if this problem was corrected.

4. Console or MCC procedure changes - none.

5. Data retrieval adequacy - none.

				L SRB				
		ROCK				TILT		
	1	2	3	4	1	2	3	4
SRB SLEW 81:15:59:36	60	242	0	121	135	82	121	130
81:16:01:00	-60	-210	130	-250	242	-119	207	- 293
SRB SEP 81:16:03:15	158	-378	268	-451	407	-365	317	-512

R SRB

		ROCK				TILT		-
	1	2	3	4	η.	2	3	4
SRB SLEW 81:15:59:36	-40	-55	-60	-125	120	0	335	25
81:16:01:00	120	-548	120	-365	390	-646	240	-304
SRB SEP 81:16:03:15	120	-585	292	-512	427	-847	240	-292

All pressures in psi

TABLE 1

				<u> </u>				
		PITCH				YA	1	
1979-1990 - 1989-19	1	2	3	4	1	2	3	4
LIFT OFF 81:16:00:00	335	24	168	-503	144	-48	_216	-479
SRB SEP 81:16:03:15	335	-96	335	- 599	192	-72	216	-527
MECO 81:16:08:34	479	<u>48</u>	240	-743	144	0	263	-503
SLEW 81:16:08:45	647	48	168	-886	48	0	192	-383
ET SEP 81:16:08:51	910	0	311	-1078	48	0	263	-479
81:16:13:37	743	24	359	-1102	96	0	335	-551
81:16:13:41	479	144	383	-886	96	-24	287	-479

L ME

		PITCH				Y/	4W	
	1	2	3	4	1	2	3	4
LIFT OFF 81:16:00:00	240	-216	263	-359	120	-383	407	-216
SRB SEP 81:16:03:15	168	-192	407	-431	168	-359	+335	-240
MEC0 81:16:08:34	168	-144	407	-479	216	-287	359	-359
SLEW 81:16:08:45	240	-263	383	-335	263	-311	335	-335
ET SEP 81:16:08:51	287	-503	527	-335	263	-359	431	-383
81:16:13:41	120	-311	503	-383	120	-407	503	-263

All pressures in psi

TABLE II

	R ME											
	PITCH					YAW						
LAPT APP	1	2	3	4	1	2	3	4				
LIFT OFF 81:16:00:00	144	-168	311	-287	24	-72	0	0				
SRB SEP 81:16:03:15	144	- 96	263	-287	96	0	0	-144				
MECO 81:16:08:34	335	-72	168	-359	192	-96	144	- 240				
81:16:08:47	144	144	335	-503	216	-96	144	-311				
81:16:13:41	407	-48	311	-623	168	-48	72	-168				

All pressures in psi

TABLE II con't

A. Performance

The performance of the COAS, in both the +X and the +Z locations, was good. As far as Accuracy, in the +X, the result was only a .11 degrees delta between the new I=load (changed from that on STS=1 and 2, see enclosed comparison data table), and the STS+3 cal vector. The new I+load was almost exactly the vector recorded on STS=2. Thus, the delta from STS+3 to STS+1 was .20 degrees. Similarly, the COAS accuracy in the -Z location was remarkable. No calibration had been done on the -Z prior to STS-3, but two cals were done on separate days for this flight. Thus, some data for comparison was available. The resulting delta from the I-load to the first cal bias vector was .47 degrees and from the I=load to the second cal bias vector was .58 degrees. However, the delta between the two recorded cal bias vectors was only .15 degrees. This compares with the accuracy available in the +X location. This repeatability indicates that ascent and entry forces do not harm the accuracy of the instrument. Similarly, the repeated action of removal and reinstallation of the unit appears to have a negligable effect.

For the =Z cals, we were in different thermal attitudes (nose=sun first, then top=sun). Thermal effects appear to be small at these attitudes by the resultant vectors.

- Analysis of problems * none.
- 2. Comparison data see enclosed table.

B. Lessons Learned

The system performs better than anticipated and the repeatability is remarkable.

C. Recommendations

- 1. LCC limit changes none.
- 2. Flight rule changes none.
- SMS changes + none.
- 4. Procedure changes

COAS

= 3.10.1

As is obvious from the -Z data in the table, the Iloaded bias vector is not the best available. However, a guess as to which vector is more correct would be just that--a guess. We recommend that an FTO be made for STS-4 to cal the COAS in the -Z. Considering the larger delta (.15 degrees) and the change in thermal conditions, it is advisable to get one more cal test.

5. Console changes - none.

6. Data retrieval adequacy - none.

- 0.17596 - 0.17596
- 0,17405
\$ I-LOAD TO \$ I-LOAD TO \$ 157 CAL TO
BIAS VECT
1\$Z) 0.9829
3) 0.9834
0.9834
0.9834
0.9835
∆I-LOADJ TO ∆I-LOADJ TO ∆I-LOADI To 5I-LOADI To 5I-LOADI To
51-604D3 70 41-604D3 70
5 575-1 to 5 575-1 to 5 575-2 to

COAS PERFORMANCE DATA

3.10.3

A. Performance

The rotational hand controller (RHC), translation hand controller (THC) rudder pedal transducer assembly (RPTA), and speedbrake thrust controller (SBTC) systems performed satisfactory throughout the mission with no anomalies noted. The units on STS-3 were as follows: CDR RHC S/N 9, PLT RHC S/N 2, AFT RHC S/N 8, FWD THC S/N 2, AFT THC S/N 3, CDR SBTC S/N 5, PLT SBTC S/N 4, CDR RPTA S/N 5 and PLT RPTA S/N 4.

1. Anomalies

No anomalies were noted during the STS-3 mission.

- 2. STS-1 vs STS-2 vs STS-3:
 - a. It was noted during STS-1 that there was a possible problem with transients when the controller power switches were cycled. When power was turned off on the RHC, it was possible to inadvertently downmode the DAP. Also, when controller power switches were turned on, the THC could cause transient jet fire commands. Between STS-1 and STS-2 on-orbit DAP deadband values were adjusted. The crew did not report any on-orbit DAP inadvertent firing; however, there were transient firing in trans DAP. No transient firing were reported on STS-3 for either the on-orbit DAP or trans DAP. Rockwell is still working on a hardware design change to insure resolution of transient firing resulting from controller power switch cycles.
 - b. Similar RHC + roll trim B contact failures reported on STS-2 did not occur on STS-3. The Cicoil Wire vs New England Wire issue is still active with its status unchanged from the STS-2 post mission closeout report.
 - c. It was noted during the RMS/PRCS unloaded test-part 1 that when the crew made a + roll input to the AFT RHC, a small -YAW input was also present. A more indepth explanation can be found in the ORBIT DAP portion of this report. No hardware or software deficiencies are anticipated.
- B. Lessons Learned NONE
- C. Recommendations for Subsequent Activities
 - 1. LCC limit changes NONE
 - 2. Flight rule changes NONE
 - SMS parameter/model changes follow the possible hardware design change proposed by Rockwell to overcome transient firings (2.(a)).
 - 4. Console or MCC procedure changes NONE
 - 5. Data retrieval adequacy NONE

3.11.1

A. Performance

The dedicated displays covered in this report include the ADI's, AMI's, AVVI's, HSI's and the SPI. The performance of these displays cannot be evaluated by ground personnel since there is no "feedback" from the displays on TLM. During the OPS-8 FCS check-out, the crew performed the DD check-out as per the procedure on page 3-16 of the STS-3 DEORBIT PREP, SEC 3-12 checklist. The DD check-out was performed during LOS with no report of any anomolies during the flight or during the crew post-mission debriefings. A look at the THRIFT data (1 sample per minute) post mission indicated the following:

GMT	87:14:16:16.0	LOW TEST
	87:14:21:16.0	HIGH TEST
	87:14:22:16.0	FLAG TEST
	87:14:23:16.0	OFF

The TLM data had all the correct test values for all the analog data and the control words for the flag test.

1. ANOMALIES

During the STS-2 de-briefing, the crew reported that the Accel, Mach/Vel, and EAS tapes appeared to drive slower than normal on the AMI display. Subsequent investigation revealed that the flight hardware was operating at the correct rates, but the SMS is being driven at higher rates. The STS-3 crew was briefed on this pre-flight and an SSR (Simulation Support Requirement) #422 dated 2/1/82 was prepared to fix the SMS.

- B. LESSONS LEARNED NONE
- C. RECOMMENDATIONS FOR SUBSEQUENT ACTIVITIES
 - 1. LCC Limit changes: NONE
 - 2. Flight Rule changes: NONE
 - 3. SMS Parameter/Model changes: NONE
 - 4. Console or MCC Procedure changes: NONE
 - 5. Data Retrival Adequacy: NONE

3.12.1

IMU

A. Performance

The units installed in slots 1, 2, and 3, respectively, were S/N 18, S/N 11, and S/N 12 (no change from STS-2). All IMU operations allowed a 24-hour warmup period before commanding operate.

Similar to STS-2 preflight testing, IMU 3 demonstrated higher drift rates than IMUs 1 and 2 during preflight. During CDDT and a special L-10 day hangar calibration run, IMU 3 drifted at a .05 - .06 deg/hr rate about the X-axis. While on the pad, the X axis of IMU 3 points predominantly up (opposite the G vector), which is the axis about which drifts can not be measured with the accelerometers. The community has concluded that IMU 3 has a higher drift about the UP axis which von't be calibrated out during prelaunch cals. The observed drift summed high in comparison with IMUs 1 and 2, but in reality the UP axis drift was only 20 for IMU 3. The launch day drift on IMU 3 was much smaller, which matches its performance during STS-2 launch day ops.

During the flight, the IMUs performed well in both attitude and velocity channels, with a few minor exceptions. The gyros required constant bias updates to zero the drifts, but the updates were small for the most part. The table below lists the times and torquing angles of the 18 alignments performed on STS-3.

			IMU 1			IMU 2			IMU 3		
TIME (MET	·)	X	Y	Z	X	Y	Z	X	Y	Z	
0:06:40:00		.14	08	09	10	.09	.14	04	.09	14	
0:10:34:20		.00	08	10	09	07	.04	06	.09	10	
0:22:01:40		.02	03	29	44	.00	.10	04	.19	33	
1:10:14:00	*	.00	.00	.00	20	04	.08	03	01	07	
1:22:30:00	**	.23	.12	.16	17	.00	10	.01	.17	36	
2:09:30:00	**	.16	.19	.03	09	.05	.19	02	.11	47	
2:21:13:00	**	.11	03	.19	17	.06	.14	.02	.04	.04	
3:07:35:00	**	.08	01	.13	15	.09	.11	.02	.09	.03	
3:23:40:00	**	01	.06	.17	11	.04	01	.01	01	.08	
4:20:36:00	**	.01	.10	.08	13	.00	06	.02	.05	.08	
5:09:03:12		.11	.04	.10	17	02	11	03	.09	.17	
5:21:02:11		.01	.05	.27	21	07	33	13	.05	.49	
6:08:57:00		.03	.06	.07	07	.15	01	05	.08	01	
6:18:48:00		.09	.11	09	.01	.19	.09	.21	.12	28	
7:00:40:00		02	.00	14	04	.00	.11	05	.08	02	
7:05:54:00	x x	01	01	16	07	01	.09	09	.09	01	
7:17:24:00		.05	.09	28	12	05	.19	07	.12	04	
7:21:21:00		03	.05	03	.03	.02	05	01	.07	.03	

ALIGNMENT TORQUING ANGLES (DEG)

* IMU/IMU ALIGNMENT IN LIEU OF STAR ALIGN - IMU 1 USED AS REFERENCE ** STAR OF OPPORTUNITY ALIGNMENT

Using the above torquing angles drifts were computed and are listed below.

3.13.1
IMU DRIFT RATES (DEG/HR)

		IMU	1		IMU 2			IMU 3	
TIME	X	Y	Ζ.	Х	Y	Z	Х	Y	Z
0:10:34:20	.000	020	.026	.023	.018	010	.015	023	.026
0:23:17:34	002	.003	.025	.038	.000	009	.003	017	.029
,1:22:30:00	019	010	013	.014	.000	.008	001	014	.029
2:09:16:30	017	017	005	.008	004	012	001	008	.047
3:07:09:00	009	.000	008	.014	004	016	.001	013	006
⁺ 3:20:07:00	.000	002	012	.006	006	.000	.002	.002	004
4:11:45:00	002	007	005	.003	002	.002	001	003	008
5:09:03:12	009	003	008	.014	.002	.009	.002	007	014
⁵ 5:14:52:41	0	0	0	0	0	0	0	0	06
°5:23:49:00	001	004	023	.018	.006	.028	.011	004	012
6:08:57:00	003	002	001	.002	017	006	003	004	.009
6:20:25:00	009	011	.009	001	019	009	021	012	.028
a7:05:54:00	.002	.002	.031	.013	.002	017	.017	017	.002
7:18:40:00	004	008	.024	.010	.004	017	.006	010	.003

Uplinked to underlined axes based on align data at 0:22:01:40.

Uplinked to underlined axes. Based on star of opportunity data at 2:05:57:00. ³Uplinked to underlined axes. Based on star of opportunity data at 3:06:21:00. Due to previous data, only used -.012 for 2Z, and -.01 for 3Y.

⁴Uplinked to underlined axes. Based of star of opportunity data at 3:15:17:00.

⁵ Uplinked to 3Z only. Used relative data. Update performed during crew sleep.

⁶Uplinked to underlined axes. Originally updated only 1Z and 2X at 5:23:49:00. Performed second uplink at 6:05:06:55 to update the rest of the axes. All updates based on align data at 5:21:02:11.

Uplinked to underlined axes. Based on align data at 6:18:48:00.

⁸Uplinked to underlined axes. Based on align data at 7:17:24:00.

By examining the above drift rates, one can see some changes in platform characteristics, either due to attitude changes, time, or possibly resolver instabilities. After reviewing graphs of the drifts versus the differing thermal attitudes for STS-3, it appears that inertial attitude changes may be contributors but are not totally responsible for the varying drift characteristics. Some axes were fairly stable after the initial compensation was performed, but others varied widely throughout the flight. As reported in the STS-2 post flight report, this phenomenon is still being investigated and is not understood at this point.

Unlike the platform drift performance, the accelerometers were very stable with one exception; the X-Y accelerometer on IMU 3 shifted approximately 350µg 14 1/2 hours into the mission. This anomaly will be discussed further in the problem analysis section of this report.

Listed below are the accelerometer biases measured during the flight.

3.13.2

ACCELEROMETER BIAS (MICRO-G)

		IMU 1			IMU 2		I			
UPLINK TIME	X	- Y -	7.	Х	Y	Z	X	Y	Z	
0:04:37:00	35	-15	21	-16	- <u>16</u>	40	<u>6</u>	-10	17	
0:15:00:00	2	-2	-9	-2	-25	-5	- <u>321</u>	383	5	
2:05:57:00	0	-10	-2	-4	-10	-2	-2	-10	50	
5:09:44:00	-7	-4	-12	-15	-13	5	<u>6</u>	-4	-55	
6:12:29:35	-2	4	-13	2	12	6	-4	5	49	

Only the underlined axes were updated.

Some oscillations in the biases are apparent, but these are fairly small and didn't present any problem to RM or NAV.

1. Problem Analysis

a. Gyro Deift Variations

As stated before, this problem is not fully understood, but certainly causes problems in trying to compensate for gyro drifts. After STS-2, the predominant thinking was that the variations were due to orientation sensitivities; i,e, when inertial attitude changes occur, the gimbal angles change, and the result is that the drift characteristics change. With this flight, though, plots of drifts versus attitude changes don't totally support this theory.

A second possibility for the variations observed is that variations in NAV base temperatures caused deflections in the NAV base, and thereby resulted in variations in the drift rates. Looking at NAV base temps and plotting them against drift characteristics, the plots do not support this theory.

A third possibility, and one that needs further investigation, is that the resolvers are not as linear as we had thought. It is possible that the resolvers do not read the correct angles at certain gibmal angles. Harmonic errors in the resolvers are a well known phenomenon, and maybe the harmonic oscillations are the errors we observed. The resolver angles in a common frame are being plotted versus time to investigate this possibility. It is likely that we are seeing a combination of orientation sensitivity and some resolver errors that are not understood.

b. IMU 3 X-Y Accelerometer Shift

As previously stated, at approximately 0:14:30:00, the X-Y accelerometer on IMU 3 produced a level bias shift of $-321 \ \mu g$ in the X axis and 383 μg in the Y axis. This shift represents a 6-7 sigma change in accelerometer bias. Once the new bias was compensated, however, the instrument remained stable for the remainder of the flight.

Similar failures have occurred during lab testing. One of the failures was isolated to particle contamination in the accelerometer itself while another failure was isolated to a IOV regulator. The IOV regulator failure is a triaxial-type failure, unlike the two axis shift observed on STS-3. The likely cause of the shift, then is thought to be particle contamination in the X-Y accelerometer. The bias shift occurred early in the flight (0:14:30:00) and remained at the new level for the remainder of the flight. The shift is of sufficient concern, however, that S/N 12 has been removed and replaced with a spare IMU, S/N 16.

2. Comparison of STS-3 Data with Previous Flight Data

STS-3 flew the same IMUs as STS-2, but STS-1 had a different IMU 3. Other changes were the method of computing accelerometer biases, and the method of gathering star data for alignments. For STS-1, we had specific call-outs in the CAP for accelerometer calibrations where the vehicle had to be in free drift for approximately six minutes of site coverage. We gathered data and ran an off-line HP9845 program to compute the bias. For STS-2, we deleted the callout in the CAP and gathered data over one rev to negate the effects of jet firings and vents. We then ran the off-line program to compute the bias and compared it with the new null bias comp on our display. After STS-2 and sims for STS-3, we felt comfortable with the null bias comps and used them exclusively for STS-3.

Because of the thermal attitudes on STS-3, we felt that we would be sweeping enough sky with the star trackers to warrant leaving both trackers powered for the entire flight. As a result, several sets of stars of opportunity were gathered and a few of these sets were used to align the IMUs, starting with the alignment at 1:10:14:00. The alignment interval was the same for STS-2 and STS-3 (approximately 12 hrs) vice the 8 hour interval for STS-1.

With the exception of the X-Y accelerometer shift on IMU 3, the performance on STS-3 is nearly identical to the previous two flights. With the longer flight on STS-3, the gyros and accelerometers required more updates, but the updates were the same order of magnitude as the updates on the first two flights. The accelerometers continue to be, for the most part, very stable. The gyros, however, drift due to some unknown error source and the resolvers, it appears, are varying in accuracy as a function of attitude. On the whole, though, the platforms are stable and performed well. The small variations in performance required "tweaks" on the platforms, which were easily accomplished by bias updates.

In an attempt to compare the IMU performance during entry, the misalignments just prior to landing are shown below.

		STS-1		5	
	x	Y	Z	RSS	
IMU 1/2	.06	12	05	.14	
IMU 1/3	.01	01	07	.07	IMU 1
IMU 2/3	05	.12	02	.13	COORDINATES

		STS-2			
	Х	Y	Z	RSS	
IMU 1/	/2 .05	.04	.01	.06	
IMU 1/	/3 .03	.04	.04	.06	IMU 3
IMU 2/	/302	.00	.03	.04	COORDINATES
		STS-3			
	Х	Y	Z	RSS	
IMU 1/	/203	03	.05	.07	
IMU 1/	/301	04	03	.05	IMU 1
IMU 2/	/3 .02	01	08	.08	COORDINATES

The misalignments for STS-1 were somewhat larger than the next two flights, which likely reflects increasing overall skill at compensating the platforms. The entry alignment was performed at TIG -1 hr 50 min for all three flights.

B. Lessons Learned

The STS-2 post flight report stated that IMUs were being updated too frequently and updates should not be performed unless the drifts exceed .02 deg/hr. Experience on this flight, however, has shown that in stable inertial attitudes (i.e., nose-sun, tail-sun), the IMUs can be compensated such that the drift rates are on the order of 10⁻² deg/hr. The .02 deg/hr rule is still a good guideline to follow if the attitudes are constantly changing. But if not, then with good, consistent measurements, the drift can be virtually eliminated by updating the bias compensation terms.

C. Recommendations for Subsequent Flights

- 1. LCC Limit Changes None.
- 2. Flight Rule Changes None.
- 3. SMS Changes None.
- 4. Console Procedure Changes None.
- Data Retrieval Adequency The hardcopy system continues to be a thorn in our side. The copies are at best difficult to read and at worst indistinguishable.

3.13.5

A. Performance

Performance evaluation during the self-test portion of the FCS check-out showed no bias errors as all data fell within the specified self-test values. The following table provides the actual self-test values and the corresponding self-test limits.

M	SBLS (Sn)	1(8/12)	2(20/6)	3(21/19)
10m/dom)	Actual	3.00	3.00	3.00
+AZ(deg)	Limit		+3.00±0.1	
Ruldard)	Actual	-3.00	-3.00	-3.00
-Az(dey)	Limit		-3.00±0.1	
Designed	Actual	15.13	15.13	15.13
(nm)	Limit		15.2±0.2	
Flaustian	Actual	6.00	6.00	6.00
(deg)	Limit		6.0±0.1	

During the entry phase, elevation began locking on at about 15.7nm (based on TACAN data) with an elevation angle of 29.5°. All MLS were locked on in range by 13.7nm and azimuth by 13.3nm. Lock-on occurred approximately 0.5 nm sooner than on STS-1 and STS-2. Once locked on solidly, MLS data was incorporated into NAV at approximately 11 nm in range (89:16:03:07 GMT).

The transient loss of lock occurring on the first two flights was not as apparent on STS-3; There appeared to be a very stable lock-on condition throughout the entry phase.

- B. Lessons Learned: None
- C. Recommendations
 - 1. LCC Limit Changes: NONE
 - 2. Flight Rules Changes: NONE
 - 3. SMS/Model Changes: NONE
 - 4. Console/Mcc procedure changes: NONE
 - 5. Data Retrieval System: Adequate for MLS post mission evaluation.

3.14.1

A. Performance

The first OMS TVC event of importance was the prelaunch gimbal check, for this flight performed at 81:07:42:27 GMT, 8H 18M 33S before launch. The strip chart recorders are the only source of data in OPS 9 for the drive check rates and, unfortunately, it was this time that marked the beginning of endless problems with the recorders for the entire mission. The drive rates were <u>indeterminant</u> from the real time data and had to be calculated from playback.

When the playback data was finally obtained the drive rates were calculated and all, extend and retract, were found to be very close to 5 deg/sec, passing the LCC with no problems. The right pitch actuator was a new one of the modified type installed Jan 28, 1982 when the old actuator failed a drive check performed Jan 25, 1982.

As a result of the decision to launch with TVC powered off and also some funnies generated by changing the RM threshold and fail counter, it was decided a week before launch that the engines could not be more than .4° (deadzone) from the OPS 1 stow positions for launch to protect against engine movement exceeding the .7° threshold and powering up the TVC, possibly in secondary. This was a real time call accomplished via a TPC readout in hexadecimal of the position parameters obtained from DFE following the gimbal check. This information revealed that the left yaw position exceeded the .4° deadzone and the call was made at the Cape to use the ramp function via the LPS to drive back to the stow position. It did not return to the stow position after the gimbal check due to primarysecondary channel interaction. The ramp function was performed at 81:10: 25 driving only the left yaw actuator to its stow position & making OMS TVC go for launch.

Phase I - Ascent

With TVC powered off, the no-back device in the actuators was relied upon to hold the engine bells in position until MM 104, which is what they were designed for. However, since this was the first flight with no TVC power it had not been confirmed whether they could do the job or not. Ultimately Phase I (MM 101-103) was nominal and there is now great faith in the No-back (seeing is believing).

OMS 1

Moding to 104 occurred at 81: 16:09:02 GMT, 96 seconds before OMS1, putting the engines at their I-Loaded trim positions. At ignition, 81:16:10:33 GMT, the left & right pitch are commanded down, left pitch to 1.24° from zero and right pitch 3.25° from zero, to take out a plus roll rate of 30/s. However, the MPS dump also starts at ignition so that 4 seconds after this initial maneuver the left pitch is commanded down to counteract the imposed minus roll and the right yaw is commaded out to counteract the minus yaw followed by the right pitch going down to reverse the whole procedure. This is a familier event after being viewed on STS-1&2 and is caused by the MPS LH2 dump out the port side above the wing starting at 960 lbs and decreasing to a negligable amount in 12 sec. Its signature is characterized by a minus roll from plume impingment on the wing and a minus yaw in the direction of the thrust vector. After this the burn was nominal lasting 94 seconds, achieving a ΔV total of 157.8 ft/sec.

The post OMS 1 gimbal check was performed at 81:16:18:00 GMT and revealed no problems. The recorders were functional and the drive rates were determined to be nominal.

OMS 2

The OMS 2 burn was executed at 81:16:40:50 GMT approximately 30 minutes after OMS 1. It was a nominal burn, duration time 89 seconds and a total ΔV of 150 ft/sec. The post OMS 2 gimbal check was also nominal.

OPS 2 Burn & Gimbal Check

This burn satisfied DTO 344 <u>OMS ENGINE PERFORMANCE</u> the purpose of which was to demonstrate the capability of an OMS engine to restart under zero-g, hard vacuum, worst case engine conditions. The attitude was nose-to-sun and the requirements were a 2.1 second LOMS burn followed by a 240 second coast period and then a LOMS restart and burn for 10 seconds.

The trim positions for the left engine were pitch .1° and yaw 4.67° which is thru the c.g. The right engine remained in its post OMS 2 trim configurations. The first part of the DTO occurred at 86:22:00 GMT and lasted 2 seconds. The second part was at 86:22:04:04 and lasted 14 seconds. Control was good; attitude errors were less than 1° and except for a low sample rate on the data because it was OPS 2 everything was nominal. There was a gimbal check prior to the OPS 2 burn and one immediately following, both of which showed good drive rates.

Deorbit Gimbal Checks

There were two deorbit gimbal checks as a result of the last minute decision to delay entry one day. The first was at 88:17:43:32 GMT approximately ten minutes before the decision to delay and forty minutes before the burn was scheduled. It was done at Bermuda AOS so that it could be seen real time. The second one was done at 89:14:16, an hour before the burn, at Buckhorn AOS. Both gimbal checks showed nominal performance.

Deorbit Burn

The deorbit burn was at 89:15:13:30 at YAR and the crew reported it went well. Duration time was 2M35S with minus residuals. AV total was approximately 253ft/sec.

- Anomalies no anomalies were noted
- 2. Comparison of STS-1,2,&3

The <u>orbiter</u> flew with a new actuator this mission as a result of a test done at KSC Jan 25, 1982 when the right pitch actuator drove at a rate below spec. The new actuator is a modified version with three designs implemented. The actuators were not intended to be replaced until STS-5. The actuator replaced had caused problems on STS-2 on which it had been a replacement for the original on STS-1. On those two flights the problem had been diagnosed to be the clearance between the rotor & stator being too small and causing friction. This problem did not manifest itself on this flight and the hardware changes will be implemented in STS-5 as scheduled.

There were six gimbal checks on this flight (twice as many as STS-1&2) due to the fuel cell problem on STS-2 for which we were very powerconcious and the extra gimbal check as a result of delaying entry one day.

All the gimbal checks were nominal; all the burns achieved their targets.

- B. Lessons Learned none
- C. Recommendations
- LCC LIMIT CHANGES The range for the OMS stow position in the Launch Commit Criteria (min and max of redline Flt Control Sec. 6.9.10) needs to be tightened as a result of changing the RM threshold from 1° to .7^o (CR 39897 OMS RM MM 101-103). This will be done by Jay Vernon in E&D.
- 2. Flight Rule Changes none
- 3. SMS Parameter/Model Changes none
- 4. Console or MCC Procedure Changes none

RADAR ALTIMETER

A. Performance

Performance evaluation of the RAs during the FCS checkout showed no bias errors as all data fell within the specified self-test limits of 1000 ft \pm 100 ft. The actual self-test values seen were 1017 ft for RA 1 (S/N5) and 1009 ft for RA 2 (S/N 11).

During the entry phase, RA 2 locked on above 5000 ft in altitude (5240 ft) similiar to STS-1. RA 1 locked on considerably later at an altitude of 4425 ft. Once acquired, both altimeters remained valid and locked on throughout landing. Contrary to STS-1, they never lost lock when the nosegear came down at 89:16:04:41 GMT. During that period, until touchdown, the data did not indicate any interference with the gear.

B. Lessons Learned

Apparently the modifications made to the RAs flown on this flight alleviated the problem of the interference from the nosegear.

Having site coverage during Blackout, the RAs were seen to be locked on with an average output reading of 4.3 ft (RA 1) and 5.4 ft (RAZ). It is believed that this may have been caused by the RAs locking onto the plasma generated by the heat of the vehicle during re-entry.

C. Recommendations:

- 1. LCC Limit Changes: NONE
- 2. Flight Rules Changes: NONE
- SMS/Model Changes: NONE
- 4. Console/MCC procedure changes: NONE
- 5. Data Retrieval System: Adequate for RA post mission evaluation.

A. Performance

The ORBITER RGA performance was nominal throughout the mission. The data was nominal and no SMRD talkbacks were noted. The RGA data from the OPS 8 sensor self test satisfied the bias, BITE, and limit test requirements in the PDP, section 3, and in the SODB, volumn 1, table 3.4.5.1-2. The same RGA 1, 2, 3, and 4 (S/N-14, 15, 16, 17 respectively) have flown on STS 1, 2 & 3.

RGA	ROLL BIAS	LIMITS	PITCH BIAS	LIMITS	YAW BIAS	LIMITS
12	0.00	0.00±0.35 0.00±0.35	-0.04	0.00±0.19 0.00±0.19	0.00	0.00±0.19 0.00±0.19
3	-0.08	0.00±0.35	0.00	0.00±0.19	0.00	0.00±0.19
4	-0.08	0.00±0.35	-0.04	0.00±0.19	-0.04	0.00±0.19
RGA						
HIGH	ROLL		PITCH		YAW	
TEST	DATA	LIMITS	DATA	LIMITS	DATA	LIMITS
1	20.16	+20.0±1.12	10.08	+10.0±0.56	10.16	+10.0±0.56
2	20.08	+20.0±1.12	10.08	+10.0±0.56	10.12	+10.0±0.56
3	20.00	+20.0±1.12	10.04	+10.0±0.56	9.96	+10.0±0.56
4	19.76	+20.0±1.12	9.96	+10.0±0.56	9.92	+10.0±0.56
RGA LOW TEST				2		_
1	-19.84	-20.0±1.12	-10.20	-10.0±0.56	-10.16	-10.0±0.56
2	-19.92	-20.0±1.12	-10.12	-10.0±0.56	-10.16	-10.0±0.56
3	-20.00	-20.0±1.12	-10.08	-10.0±0.56	-10.04	-10.0±0.56
4	-20.08	-20 0+1 12	-10 04	-10 0+0 56	-10 04	-10 0+0 56

STS-3 OPS 8 RGA SELF TEST DATA

1. Analysis of problems No problems were noted

 STS-2 & STS-3 data comparison The STS-3 ORBITER RGA performance and data were comparable to STS-2

B. Lessons Learned

There are no recommendations to enhance vehicle or ground systems operations.

C. Recommendations for Subsequent Activities

- 1. LCC Limit changes: No limit changes recommended.
- 2. Flight Rules changes: No flight rule changes required.
- 3. SMS Parameter/Model changes: RGA motor failure (NO SPIN) capability to be added to OPS 8, effective STS-7.
- Console or MCC procedure changes: No new console or MCC procedure required.
 Data Retrieval Adequacy: Data retrieval was adequate and timely.
 - 3.17.1

A. Performance

The SRB RGA performance during SRB first stage (102) was nominal. The data was nominal and no SMRD talkbacks were noted.

1. Analysis of Problems:

During STS-3 dry CDDT at KSC on 2/19/82, the LEFT SRB RGA #3 yaw gyro failed to reach sync speed (SMRD flag displayed) during power up at T-02H 00M. The RGA S/N 43 was replaced with S/N-38. The RGA S/N 43 Was returned to Northrup where the failure was isolated to a broken power lead at the Gyro Motor. The RGA S/N 38 is the first SRB RGA to be reused. It was the STS-1 LEFT SRB RGA #3.

2. STS-2 & STS-3 Data Comparison:

STS-3 SRB RGA performance was Comparable to STS-2.

B. Lessons Learned

System performance was nominal, requiring no change in system operations.

- C. Recommendations for Subsequent Activities
 - 1. LCC Limit Changes: NONE
 - 2. Flight Rules Changes: NONE
 - 3. SMS Parameter/Model Changes: NONE
 - Console or MCC Procedure Changes: NONE
 - 5. Data Retrieval: Adequate

3.18.1

STAR TRACKERS

A. PERFORMANCE

The -Y and -Z Star Trackers (ST) performed nominally as expected. For the manual alignment executed at 0/10:34:20, stars 49 acquired by the -Z ST and 60 acquired by the -Y ST were used. Star 60, ENIF is the dimmest star in the nav star catalog and was positioned 30° from the sun. The -Y ST acquired momentarily then loss acquisition for a while only to reacquire again. The ST specification dictates that the ST will track the dimmest star 30° away from the sun. From a performance standpoint then the ST was acquiring under worst case conditions and errors for all alignments did not exceed .02 deg. Table 1 shows ST related data that was used for all IMU alignments and corresponding attitudes.

Figure 1 shows temperature sensor location (view H-H) in the IMU/Star Tracker cavity. The colored in squares represent those measurements that were available on TLM. Figures 2,3,4 show temperatures sensed and are plotted with time (MET). The 24 hour thermal test was successful and did not produce any performance degration. The temperature band startrackers operated in for the entire flight was between 80°F and 100°F (see figure 2). Self test was performed and passed successfully.

Target suppress logic inhibited the acquisition of star of opportunity data approxiamately 67 of the 167 hours of on-orbit time. The 100 hours of nontarget suppress operation time produced good star data to execute 6 star of opportunity alignments of the 17 total star aligns. These star of opportunity alignments greatly helped the timeline and propellant, both of which are critical commodities.

Star of opportunity demonstrated that by using the same star pair produced torquing angles that were consistent and a true measure of drift. Different star pairs generated torqueing angles that were inconsistent due to gimbal position errors. A good example of the same star pair evaluation was the nose sun attitude for 73 hours, which produce consistent torquing angles and accurate drift measurements. The variations of torquing angles between same star pairs and different star pairs has also been observed in long duration sims. See Table 1 for data.

1. ANOMALIES

Both the -Z and -Y ST revealed hardware bites again for STS-3. Ref "STS-2 GNC Post Flight Report", pages 21.2, 21.3 for mechanization of the logic that drives each bite. The following is a summary of the bites that occurred each flight day.

3.19.1

FLIGHT DAY	- Z 3	STA	R TF	ACKE	 Y	STA	RT	RACKER
FLT DAY 1	-	-	6	2	 _	-	-	_
FLT DAY 2	-	-	16	8	 -	-	-	-
FLT DAY 3	-	-	13	4	 -	-	2	-
FLT DAY 4	-	-	6	1	 1	-	2	-
FLT DAY 5	1	-	14	3	 -	-		
FLT DAY 6	-	1	9	5	 1	-	-	-
FLT DAY 7	-	-	9	4	 -	-	3	-
FLT DAY 8	-	-	-	6	 -	-	-	-
ENTRY DAY	-	-	- ,-	-	 	-	-	-
	BIT COUNT ERROR	PARIIY ERROR	MANCHESTER INVALID	TRANSMISSION WD FAIL	BIT COUNT ERROR	PARITY ERROR	MANCHESTER INVALID	TRANSMISSION WD FAIL

These bites were observed when data was available, thus the above data lacks the occurances during Los. The presence of these bites however did not affect system performance. A recommendation was made post STS-2 to suppress the "G22 STRK" message. This message was driven by the presence of these bites. A software change was made thereby inhibiting the DPS fault pages to be filled with ST fault summary messages.

2. COMPARISON OF STS-2 AND STS-3

Star of opportunity was the biggest difference between STS-2 and STS-3. The auto ST Mode (Item 3,4) acquired acceptable star pairs to align the IMU's thereby saving time and consumables. STS-3 demonstrated that star of opportunity proved itself to be a very valuable capability.

B. LESSONS LEARNED

When the crew executes an ops transition or an ops mode recall spec's 021 and 022 cease processing. This means that star table activity is inhibited and torquing angle data is not displayed. Without this data, star of opportunity data cannot be assessed. To relieve this condition all the crew has to do is <u>mode</u> the star trackers to star track (Item 3,4) on spec 022 and call up spec 021 and resume. These procedures have been implemented in the FDF for STS-4.

C. RECOMMENDATIONS

- There are no launch commit criteria violations with the star trackers since they are not required for launch.
- 2. Flight Rule changes The present rule dictate that at least one star tracker

will be powered for the entire flight. A change was made to have <u>both</u> star trackers (-Y, -Z) powered for the entire flight to <u>accommodate</u>star of opportunity and a real time decision would be made to power off either star tracker should the on-orbit attitude prove unfavorable for stars of opportunity.

3.Logic should be added to the star tracker math model in the sms to simulate target suppress. This will give a real world environment during star tracker operations, since the fix is not planned until <u>release</u> 19 software. The model community has been informed of this request. Star tracker door open times in the SMS should be 5 seconds to match the real world.

4.Console or MCC procedures changes - none

5. The data retrieval system was adequate for post flight analysis.

	৪১	ANG EF	10.			10.					<u> </u>		
	. JO	ATTITA	3	1	99		÷	TAIL	TAIL	TAIL	TAIL	TAIL	TAIL
SS38	dans .	гаряат			7				7	7	7	7	7
(*=30)אמ	DL) NI	₩/00S	242*	N00	000	203*	000	000	200	noo	NOD	000	000
	REMARKS		STARS <u>55 & 57</u> ANG DIFF <u>89.9</u> At = 0	STARS ss & $s7$ ANG DIFF 09.9 $\Delta t = 0$	STARS 13 & 45 ANG DIFF 97.6 $\Delta t = 78$ MIN	STARS 49 & 60 ANG DIFF 84.1 At = 0	STARS 49 & 60 ANG DIFF 84.1 At = 0	51AR5 36 & 49 ANG DIFF 114.2 At = 60 MIN	STARS 45 & 11 ANG DIFF 104.4 Dt = 42 MIN	STARS 45 & 39 ANG DIFF 73.2 At = 18410	STARS 45 & 39 ANG DIFF 23.2 $\Delta t = 18 MIN$	STARS 36 & 12 ANG. DIFF 92.9 At = 29 4111	51ARS 45 4 39 ANG DIFF 73.2 At = 19 4111
		Z	-,14	10.1	- 03	1	10	- 05	80'-	-,10	-,14	hl'-	-, 19
	IMU #3	٨	•04	01	So,	60.	. 01	01	.03	20.	so.	. 03	.07
		×	o4	00.	04	06	8	00.	02	-,02	03	10	7.03
		Z	. 14	• 00 •	.03	40.	10.	. 00	20'	.03	.05	-,04	90.
7 378	Zų IMI	γ.	Pa .	lo.	07	201	20.	101.	40,	20.	10.	.05	10.
TAB		X	0]. I	10	06	1.09	07	04	08	12	L1'-	-,20	-, 23
		Z	7.09	.00	03	01.1	10:	001	10'-	03	08	- 05	11'-
	I∉ ∩WI	*	1.08	1.01	10.1	08	20'-	10,	03	to	7,03	10'	7,03
20		×	÷.	00.	01	00'	20.	.03	00	100	00.	7.03	00'
	PET	••	0:06:40:00	0:01:41:00	0:08,22,00	0:10:34:00	0:10:38;00	0:11;36;00	0 :12 :08,00	00; 12; 21; 0	0,11,11,00	0:14.34,00	0 15,25,00
						. (i.,	3.19	. 4			······	!	²

ž

f.

	អរ	ANG EF	1				T						
	DE .	JTITTA	TAIL	TAIL	FAIL	TAL	THIL	rail.	TAIL	NOS	PAIL	TAIL	TAIL
SS389	IdNS .	T 309 A T	7	X	×	7	7		ļ`		X	7	X
סצמסב=	11) N	/W/00S	NOO	000	000	000	000	oan	242%	noo	000	n00	000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RFMARKS		STARS 36 & 12. ANG DIFF 92.9 At = 18 MIP	51AR5 45 & 32 ANG DIFF 73.2 At = 18 41.0	51ARS <u>36</u> & 12 ANG DIFF <u>92.9</u> At = 18 MIN	STARS 45-8 39 ANG DIFF 73.3 At = 18 41.0	STARS 36 12 ANG DIFF 92.9 $\Delta t = 24$ km	51AR5 49 & 39 ANG DIFF 82.6 At = 0	STARS & ANG DIFF At =	STARS 45 & 35 ANG DIFF 116.6 At = 24 MIN	STARS 39 & 45 ANG DIFF 73.2 Dt = /8 MIN	STARS /2 & 35 ANG. DIFF /00.7 At = 60411	STARS $3c$ & 12 ANG DIFF 92.7 $\Delta t = 24 HIU$
		Z	- 18	- 23	- 27	No i	7. 32	-, 35	-, 33	1.06	07	-09	06
	Eg NWI	٢	.05	. 09	al .	. /3	61.	.14	.19	101	oà.	10'-	10:-
7		Х	10	04	- 0J	04	to	- 02	+o:-	00	.00	101	10.
Con		Z	_ o1	.08	10.	10	50.	•10	01.	eo.	,03	04	-,05
1 77	MU #2	Y	50.	10.	, 03.	00.	40.	20-	.00	20.	10.	20'	,03
TAB	I	X	26	29	39	- 42	- 45	-, 50	44	06	01	-,13	12
		Z	20	215	-16	: 23	-120	-36	-,29	50.	00.	60,	.03
	T∰ NW	Y	- 03	04	1.02	05	-, 53	06	-03	2.02	20'-	-02	00.
		×	1.03	00.	-,02	00.	10.	02	ro.	00.	101	-,03	03
Iredi	PET	••	0:16:03:00	0:16:52:00	00:20: 61:0	0:14:53:00	0:20:36:00	0: 21:26:00	1:22:01:40	o: 22: 33: 00	: 22:51:00	0: 23:06:00	0:23:32:00

r 2

. Sat

,

. (L.)

опттта Кам\оог Старяат Копттта	P 0 -Y SUN	NAN X 200	-Y 741L	Y TAIL	TAIL	TAIL	TAIL	PTC	NUS	NUS	NOS
Х иам\оог таряат	1000	7 NOO	7	×		and the second se	and the second se			· ·	and the second sec
X NAM∖002	noo	000			7	7	$\sum_{i=1}^{n}$	t iEU	7		7
KS	dal		000	100	000	400	1000	121	000	4000	v 00
REMAR	STARS <u>36 & 15</u> ANG DIFF 92.9 At = 29411A	STARS 39 & 45 ANG DIFF 73.2 Dt = 18 MIN	STARS 36 & 12 ANG DIFF 92.9 At = 29 MIN	SIAKS 39 & 45 ANG DIFF 73.2 At = 18 MIN	STARS 36 & 12. ANG DIFF 92.9 $\Delta t = 24 M_{IV}$	51AR5 <u>36 & 13</u> ANG DIFF <u>92.9</u> At = <u>24 MUN</u>	SIARS 39 & 45 ANG DIFF 73.2 At = 18 MIN	ALIGN ZMUL 363 ZMU-TO-SMU ALIGN OF STAR ALIGN.	51ARS 45- & 14 ANG DIFF 57. 6 At = 18 410	STARS $J \neq \& J B$ ANG DIFF $\overline{93,3}$ $\Delta t = \overline{54MM}$	SIARS 14 & 36 ANG DIFF 73,2 At = 12 MIN
Z	07	01 -	08	<i>al</i> _	- 09	-,08	<i>Q</i> 1'-	07	-,34	-, 36	05
*	00 .	.02	00.	10'	00'	10,	50.	10:	.19	27,	,04
×	10:	02	00.	7.03	00.	,00	-, 03	-,03	101	10.	. 03
Z	1.02	80.	00.	60.	to,	.03	21.	,08	- 13	-,10	° 03
۶.	20.	-, 01	20:	03	103	10*	03	+0	10'-	00'	-,02
x	- 15	L1 -	-11	- 19	-, 19	7, 19	-,21	7.20	-,14	L/'-	10'-
Z	.03	10:	103	.00	40.	.03	0	00.	,15	,16	1.02
*	00.	03	101	207	10.	50.	00.	00.	.13	El.	. 00
×	1.02	10.	10:-	10.	00'	00'	103	00.	.23	.23	10.
	1:03:57:00	1:04:46:00	1:05:30:00	1:06:17:00	1:06:58:00	1:08:27:00	1:00:14:00	00:11:01:1	00:00:22:1	00:02:20:00	1:23:21:00
		: : X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z 1:03:57:00 -:02 .00 .0315 .02 -:02 .01 .0007 AN	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I: :: : X Y Z X Y Z X Y Z 1:03:57:00 02 .00 .03 15 .02 .01 .00 07 MM 1:03:57:00 01 03 15 .02 .02 .01 .00 .01 .00 .01 .01 .01 .01 .01 .02 .03 .01 .01 .03 .00 .00 .00 .00 .00 .02 .02 .03 .01 .03 .01 .03 .01 .03 .01 .03 .00 .00 .00 .00 .00 .01 .03	:::: X Y Z X Y Z Y Z Y Z SI $1:03: 57:00$ $:02$ $:02$ $:02$ $:02$ $:02$ $:01$ $:07$ MM $1:03: 57:00$ $:02$ $:03$ $:-15$ $:02$ $:01$ $:07$ MM $1:04:46:00$ $:01$ $:03$ $:01$ $:03$ $:01$ $:03$ $:02$ $:02$ $:02$ $:02$ $:02$ $:07$ $:03$ $:07$ $:02$ $:01$ $:10$ $:02$ $:02$ $:01$ $:10$ $:02$ $:01$ $:10$ $:01$ $:10$ $:01$ $:01$ $:01$ $:01$ $:01$ $:01$ $:01$ $:01$ $:02$ $:02$ $:0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1: 0: :::::::::::::::::::::::::::::::::	:::: X Y Z X Y Z <

2

E

por en

See

	яя	ANG E				10,		toi			-		
	300	TITTA	Nose	Nose	NOK	Nose Lus	NOS	NOSE	Nose Su N	ins Dear	NOS SU N	No Se N	Vasé su N
RESS	ans t	зэяат		5	7	7-		M		7	7		1
зоряо	T) NA	W/OOS	000	000	000	100×	000	~100 *	000	100	900	noo	900
	REMARKS		SIARS <u>45 & 24</u> ANG DIFF <u>83.1</u> At = 0	STARS 36 & 12 ANG DIFF 92.9 Dt = 12 MIN	STARS 39 & 45 ANG DIFF $73, 2$ At = 54 HILU	STARS 36 & 12 ANG DIFF 92.9 At = 12 MIN	STARS 45 & 36 ANG DIFF <u>33.1</u> At = 0	STARS 334 13 ANG DIFF 10412	STARS 14 & 36 ANG DIFF 73.2 At = 13 MIN	STARS 23& YS- ANG DIFF 82.1 At = 6041.0	STARS <u>36 & 12</u> ANG DIFF <u>92.9</u> At = 12M1 W	STARS 36 & 14 ANG DIFF 73, 7 At = 1,5 HPS	STARS 33 & 14 ANG DIFF /32.8 At = /12 HPE5
		Z	-, 35	Ch.	- 47	64'-	100	40'	10:	10,	101	og i	:03
	E# NMI	٨	,06	01'	90.	W,	+0'-	40.	, 00	10.	,05	103	40.
ont.		×	10.	10'-	,03	to'-	,03 50,	to'	10'-	.03	-101-	101-	+0°
7 C		Z	60.	,16	, П.,	۰ _ا ۴	201-	+1.	00'-	-,03	-, 05	103	r 00
BLE	24 MM	Y	,03	:05	,05	105	00'	36	+0'-	001	10'-	00.	-03
1		X	-,06	-,07	-,09	-,09	eo-	-, 17	203	.00	101-	200	- 05
		Z	40,	to'	101	, 03	SQ.	P(.,	20'-	101	1.03	103	.08
	I∉ ∩WI	Y	.13	\$ 18	12.	61'	100	503	10'-	10%	i 00	-,03	.03
		x	° [3	<i>i</i> !	.15	9/1:	10,	. (1,	00.	201	601	10	.00
A STATE	PET	•	2:05:07:00	2:08:02:00	2:04:13:00	2:09:30;00	00'84:01:2	00:21:12:00	2:21:34:00	oo;oh:cc:c	00:12:57:00	3,00:25:00	3:01:35:00

-

-

2

f.

Real Provide

1

88	ANG E			1. j. j.	10.							
. JON	TITTA	Nase	Nos	Voset v	NOS	NOSE	NOS	Nase	BIOSE	NOS	NOK	NOS
ans 1	JƏRAT	7		7		7		7	7	5	7	7-
T) NA	W/00S	noo	100	inda	Ed = *	oon	000	00 N	JOON	400	500	000
REMARKS		SIARS 23 & 45- ANG DIFF <u>82.</u> At = <u>30 4110</u>	STARS 14 & 36 ANG DIFF 73,2 At = 13 MIN	STARS 12 & 36 ANG DIFF 929 At = 12 Min	STARS 34 & 41 ANG DIFF 88.6 $\Delta t = 0$	STAR5 23 & 45- ANG DIFF 82.1	STARS 36 & 12 ANG DIFF $92,9$ 0t = 12 Min	STARS $33 k$ 45 ANG DIFF 82.1 $\Delta t = 5-4$ MW	STARS 12 & 39 ANG DIFF 69.1	STARS $36 \& 12$ ANG DIFF 92.9 $\Delta t = 12 MINU$	51AHS 23 & 45 ANG DIFF 82.1 At = 54M1N	STARS 36 & 12 ANG DIFF 92.9 At = 12 M/N
	Z	to.	103	106	,03	.06	.07	107	SQI	80'	60.	60'
E# NMI	۲	,03	90'	, 11	60.	,00	40.	100	to.	40.	. 00	603
	×	,03	100	101-	201	101	03	10.	eo.	10'-	10-	201-
	Z	107	109	, (S	", "	503	, o4	20'-	lo.	104	fo; -	401
24 MU	٨	.03	101	40,	, 09	-,03	-,03	101	£01	00.	00'	101
	X	90	-, 14	-,13	-,15	00,	205	20'-	ta'	+0'-	04	-,05
	Z	90.	، ٥٩	101	,13	Eq.	.00	90.	90,	105	,09	90
l₩ ₩	٨	10,	-,07	00'	(o'~	103	to,	401	so,	60,	, o4	.03
	X	:03	, DS	•08	108	001	10.0	00'	- 01	10'-	00	10'-
PET		3',07. 00',00	3,05%,04%00	3:06:21:00	3:07;35:00	3:08:27:00	3: 11:24:00	3:13:20;00	3;13;38;00	3,13;57:00	3:15:04:00	3,15', 17:00
	PET IMU #2 IMU #2 IMU #3 IMU #	PET IMU #3 IMU #3 NM X Y X Y X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X	PET IMU #1 IMU #2 IMU #3 IMU #3 REMARKS C1 : : : X Y Z X Y Z Z X Y Z <t< td=""><td>PET IMU #1 IMU #2 IMU #3 REMARKS NU 83 REMARKS V <thv< th=""> <thv< th=""> V</thv<></thv<></td><td>PET IMU #1 IMU #1 IMU #2 IMU #3 REMARKS (7) : : : X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z Z X Y Z <</td><td>PET IMU #1 IMU #2 IMU #3 REMARKS (7) SUP : : : : X Y Z X X Z X X Z X X Z X X Z X X Z X Z X X Z X Z X Z X Z X Z X Z Z Z Z Z Z</td><td>PET IMU f_1 IMU f_2 IMU f_3 IMU f_3 REMARKS CT SCONTRACT CT SCONTRACT SCONTRACT</td><td>PET IMU f1 IMU f2 IMU f3 REMARKS CI MU f3 : : : : X Y Z X Y Z X Y Z 3:op::op::oo: io3 io1 io6 io3 io3 io3 io3 io3 io3 io4 Z X V Z V V Z V V Z V Z V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X <td< td=""><td>PET INU f1 INU f2 INU f3 REMARKS NU f3 NU f4 NU f3 NU f3 NU f4 NU f4</td><td>PET IM I</td><td>PET IM T IM P2 IM P3 REMARKS REMARKS</td><td>PET IM f1 IM f2 IM f3 REMARKS IM f3 REMARKS IM f3 REMARKS IM f3 IM f4 IM f4</td></td<></td></t<>	PET IMU #1 IMU #2 IMU #3 REMARKS NU 83 REMARKS V <thv< th=""> <thv< th=""> V</thv<></thv<>	PET IMU #1 IMU #1 IMU #2 IMU #3 REMARKS (7) : : : X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z Z X Y Z <	PET IMU #1 IMU #2 IMU #3 REMARKS (7) SUP : : : : X Y Z X X Z X X Z X X Z X X Z X X Z X Z X X Z X Z X Z X Z X Z X Z Z Z Z Z Z	PET IMU f_1 IMU f_2 IMU f_3 IMU f_3 REMARKS CT SCONTRACT CT SCONTRACT SCONTRACT	PET IMU f1 IMU f2 IMU f3 REMARKS CI MU f3 : : : : X Y Z X Y Z X Y Z 3:op::op::oo: io3 io1 io6 io3 io3 io3 io3 io3 io3 io4 Z X V Z V V Z V V Z V Z V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X V Z X <td< td=""><td>PET INU f1 INU f2 INU f3 REMARKS NU f3 NU f4 NU f3 NU f3 NU f4 NU f4</td><td>PET IM I</td><td>PET IM T IM P2 IM P3 REMARKS REMARKS</td><td>PET IM f1 IM f2 IM f3 REMARKS IM f3 REMARKS IM f3 REMARKS IM f3 IM f4 IM f4</td></td<>	PET INU f1 INU f2 INU f3 REMARKS NU f3 NU f4 NU f3 NU f3 NU f4 NU f4	PET IM I	PET IM T IM P2 IM P3 REMARKS REMARKS	PET IM f1 IM f2 IM f3 REMARKS IM f3 REMARKS IM f3 REMARKS IM f3 IM f4 IM f4

	88	ANG E							-03				
	, adr	TITTA	NOSE	NOSE	LIDSE SULU	KNE	LUSE	luose soul	unse sun	ACSE SUN	NUS	NOT SOON	KINK KINK
SS38	agus 1	JDRAT	7	X	7	×	7						
טצממב= +)	01) NA	W/00S	000	n00	000	000	400	000	vioot	000	000	400	400
	REMARKS		51AR5 14 & 36. ANG DIFF 73.2	STARS 23 & 45 ANG DIFF 83.1 At = 54 4110	51ARS 36 & 12 ANG DIFF 929 At = 12 MIN	51AK5 23 & 45 ANG DIFF 32.1 At = 54 4110	STARS 36 & 12 ANG DIFF 92.9 $\Delta t = 12 MUN$	SIARS <u>35 & 45</u> ANG DIFF <u>116.6</u> At = <u>1.8 H B</u> S	STARS $\frac{45}{83.1}$ ANG DIFF $\frac{33.1}{5}$ $\Delta t = 0$	STARS $36 \& 12$ ANG DIFF 93.0 $\Delta t = 12 mumber 10$	STARS <u>%5 & 2 &</u> ANG DIFF <u>3 3,/</u> At = 0	SIARS 18 & 14 ANG DIFF 93.3 At = 42MIN	STARS 23 & 45 ANG DIFF 82.2 Dt = 6 MIN
		Z	.08	60'	109	109	601	101	80,	La,	101	10'-	, 00
	IMU #3	γ	107	100	+¢,	. 00	50,	to:	10,1	, 05	00,	00.	103
Cont.		x	£0'-	10'	to'-	. 20 j	-,01	101	10.	7.03	00.	. 00	201
7		Z	20.	20'-	, DS ⁻	105	,05	(Q)'_	10'-	106	- 01	Co,	10:0
ABLE	CMU #2	٢	10,	.04	:04	106	, oS	104	ho,	101	,00	(0,	20,
F		X	Q] *~	-,08	-,08	50'-	-,09	-, 13	-, -1	10.	100	-,03	.00
		2	* 13	, IS	. 11	۲۱,	<u>ب</u>	81.	2	-,03	001	eo.	ç o'
	l∉ ∩wi	٨	.03	,06	'os	70.	90'	105	90.	(0)	101	001	,04
se f		×	10.	. 00	001	001	00,	10:	10 -	ta'	10:	, o'	10
	PET		3:18:24:00	3:19:22:00	3:19:43:00	3:20:51:00	3:21:09:00	3:23:15:00	3:23,40:00	4:00:10:00	4:01:10:00	4:03: 35:00	4:03:50:00
2 B							3.1	9.9					

ł

F L

er.

ANG ERR	1										1
30UTITTA	kose su N	Ner	NUS	Nose LUS	NOSE NON	Nose	NUS	NOSE	NOS	Nese	Acid No.2
TARGET SUPPRESS			1	-		12	1	X		\succ_{1}	
-300801) NAM\002	000	400	noo	100	400	1000	000	100	400	100	100
REMARKS	STARS $\mathcal{B} \times \mathcal{H}$. ANG DIFF $\mathcal{Q}\mathcal{Z}, \mathcal{Z}$ $\Delta t = \mathcal{V}\mathcal{Z}\mathcal{M}\mathcal{W}$	SIARS 36 & 7 ANG DIFF 92,9 At = 13 Min	STARS 14 & 33 ANG DIFF 91. 2 Dt = /2/4/1/	STARS <u>262 13</u> ANG DIFF 93 Dt = 6410	STARS 16 & 36 ANG DIFF 70.5 At = 1.6 Hes	STAIS <u>20 à VS</u> ANG DIFF <u>7/.5</u> At = 7.5 #08	STARS 96 & 30 ANG DIFF 43.9 At = 30 M/M	STARS 44 20 ANG DIFF 5/ 6 At = 30 41.4	SIARS 49 & 30 ANG DIFF 557	STARS 450 20 ANG DIFF 71.5 At = 36 4110	SIARS 334 20 ANG DIFF 107.3 At = 5.4 MIN
2	10'-	101	201-	10.	107	10-	.08	.10	60'	60'	, 09
A INI	00	101	.03	105	40'	40.	10.	.05	<i>40.</i>	+0.	.05
Cont. ×	100	12'-	101	10.7	1.03	03	10.	10.	10	10.	, 0) ·
и Г	101	,06	. 03	10.	,0 F	101	03	03	03	03	,04
ABLI NU E	101	la,	ea,	10'	so.	90 '.	ତ୍	,07	101	.07	90'
×	-, 04	10'-	7.04	-,03	-06	·0)	103	No.	ía'-	.00	,00
z	103	10.1	.03	10	Sot.	, of	, of	40'	(o,	00	so.
MU III	10.	.03	401	.05	50.	.68	01.	,08	L0.	,08	101
×	00,	101	(0.	10.	,03	. 03	to.	.03	20,	60,	40.
BET :	4:04:00	4:04:40:00	4:00:00:00	4:07: 35:00	4:00:00:00	00:4C:60:4	4:04:57:00	4:04:54:00	00:20:01:4	4:10:03:00	4:10:20:00

2

É.C

۲ ک

Ker"

	17.000.000.000.000	95	ANG EI						10.					
		JOE	UTITTA	NOSE	NOS	NOSE	Nose	NOSE SU N	Nos	NOSE	NOSE	Nos	TOP	APT NUS
	SS389	ans .	raaaat		1	7			$\left \right\rangle_{1}$					141
(4	=зруяо	L) N	/W/00S	000	000	400	100	400	100m	000	NOD	non	CON	000
		REMARKS		51AKS 36 & 12. ANG DIFF 92.9	STARS 23 & 45 ANG DIFF 82,1 At = 54 MIN	STARS 1# & 36 ANG DIFF 73, 2 At = 12MIN	STARS 33 & 14 ANG DIFF 98.3 At = 7.1 Hes	STARS $\overline{33}$ & $\underline{14}$ ANG DIFF $\overline{98,3}$ $\Delta t = \underline{34}$	STARS 24 & 45 ANG DIFF 83.1 At = 48 MIN	STARS 36 & 14 ANG DIFF 33.2 At = 6 MIN	STARS 33 & 14 ANG DIFF 98.3 At = 1.97 Has	SIARS <u>#5 & 20</u> ANG DIFF <u>83.1</u> At = D	STARS 14 & 36 ANG DIFF 73.2 $\Delta t = 640.01$	STARS <u>39 & 45</u> ANG DIFF <u>73.3</u> Dt = <u>1HR S4M</u>
	2. 2.		Z	• 10	011	.09	108	.08	, 03	100	20'-	10'-	00'	ξOi
		IMU #3	>-	60.	.04	.05	40.	. 05	So.	101	. 01	¢.03	.04	10%
	Cont.		×	- 'ot	10.	-, 03	100	. 00	40.	201	7.0Ì	10:	10.	00'
	А.		14	90'	20	.03	-,01	-104	901	.00	10'-	7.05	-,06	1.08
	ABLE	MU #2	بر	10.	103	10	40.	10'	1 00	04	10'-	1.03	-,07	03
	7		×	1.00	104	101-	-,07	1,13	- 13	-,03	7.04	7,05	-,10	11-
			Z	, 00	90'	, o4	104	LQT	,08	-,01	Co.	00.	10.	40'
		IH MI	>	90'	60'	1 05	.09	. 10	01,	.00	10,	00,	20.	,03
4		-	×	to.	eo.	10.	10.	toi	10.	60.	.03	,03	50'	10,
		PET		4:10:34:00	4:11: 45:00	00:51:Cl:+	419:30:00	4: 19: 43:00	4:20,36:00	4:23: 38:00	5;00;30:00	5:00:26:00	5:04:34:00	5:06:32:00
_					and we will	14		3.19	1.11					

Fre. kier

z

1

ker

93	ANG ER	10.	10,	8	10'				ço.		Q,	
DE	UTITTA	A of Nos	ADP SUN	TOP	PTC -	PTC	PTC	PTE	PTC	TAIL	POP SUN	TOP
ยายาย	TADRAT		Site.		52	P. S				1818		_
90T) N	AM/OO2	2 ≮≥¥	24.54	5<2*	242\$	242*	000	non	nook	242*	2424	ZK 2 Z Venf
PENADVC		STARS <u>48 & 49</u> - ANG DIFF <u>83,9</u> AU = 0	STARS 29 & 25 ANG DIFF 83.8 $\Delta t = 0$	STARS 44 & 60 ANG DIFF $\frac{4}{54.1}$ $\Delta t = 0$	STARS 31 & 12 ANG DIFF 86.0 At = 0	$\frac{\text{STARS} I6 \& 23}{\text{ANC} DIFF} = 0$	STARS 434 35 ANG DIFF 1029 At = 641.14	STARS $\frac{32}{20} \frac{3}{4} \frac{19}{77.9}$ ANG DIFF $\frac{97.9}{24}$	STARS 43 & 35 ANG DIFF 107.9 AU = 36 M/W	STARS 44 & 48 ANG DIFF 53.9 At = 0	51Af5 16 & 23 ANG DIFF 82.9 At = 0	STARS 50^{A} $3/$ ANG DIFF $9/.9$ $0^{\text{A}} = 0$
	Z	5.	. 49	10,1	85'-	60:	8	tor	-,01	704	£0,	20'
E# NMI	٨	60,	.05	108	ę.	.08	90'	toi	60.	¢j.'	ro'	10-
	X	-,03	1.13	-, 05	16'	20:-	Lo'-	-,08	-,09	1.07	10'-	to.
	Z	-, 11	£.	10	60.	. 11 .	90.	,0S	109	. 19	20'-	01
2# NW	х	£0'-	-,07	15	ē.	00.	O D	103	1.01	7.05	to:	20'
	×	17	-,21	L:0'-	10:	04	205	210	7.07	61'-	50'	201-
	Z	011	151	Ļo.	-, 09	また	-10	1.08	- 16	-,38	-,03	. 00
Li UNI	γ	ha'	، مح	,06	. (1.	00-	10'-	to:	10:	60'	SOI	10'-
	×	11:	101	.03	.0.9	to'	10.	201	10.	.05	-,03	-101
PET	 	5:09:03:13	11:20:12:2	6:08:57:00	6:18:48:00	20:00:00:40:00	00;00;60:10	00,76,70;1	1:05:54:00	7:17:24:45	1:31:21:00	00:1E:1E:1

er.

har

z

5

SWITCHES

A. Performance

GNC switch performance during STS-3 was nominal. There were no hardware failures and no reported anomolies.

Lessons Learned - NONE Β.

C. Recommondations

- LCC Limit changes NONE
 Flight Rule changes NONE
 SMS changes recommend SMS provide capability to fail individual switch contacts.
 Console changes NONE
 Data Retrieval NONE

A. <u>Performance</u> - With Entry to Northrup presenting a new trajectory and terrain, in comparison with the Edwards entries on STS-1 and STS-2, it was difficult to predict expected TACAN performance. However, with numerous mountain ranges along the groundtrack we did anticipate a problem with erractic bearing data due to reflected signals as was evident during STS-1. Unlike the two previous missions, blockout exit occurred at Mach=14, some 4.5 minutes prior to initial solid TACAN reception. (TACAN Range data is actually prohibited above Mach=10 via Post Selection filtering).

TACAN	PARAMETER	LOCK-ON ALT.	ANTENNA	REMARKS
#2 #3	Bearing "	149,500' 149,500'	Lower Lower	Approx. Mach=9 1 sec. after Brg #2
#l	н	149,000'	Upper	7 " " "
#2	Range	148,000'	Lower	16 """
#3	n	143,000'	Lower	35 " " "
#1	ii)	134,000'	Upper	70 " " "

On previous missions Range lock-ons occurred within seconds of one another. A possible reason for the late lock-on of Range #3, and especially Range #1, may be the vehicle attitude during this period. A positive vehicle roll existed, which would be unfavorable for TACAN's #3 and #1, upper or lower antennas, due to polarization effects; the only antenna that would benefit from a positive roll is #2 lower, as its polarization angle is 30° CCW at zero vehicle roll. Bearing #1 actually lost lock (after 55 seconds of solid lock-on) when TACAN #1 switched to its lower antennas, due to a short period of no-range lock. At that point the lower antenna #1 was approaching a 90° polarization angle (vehicle roll reached $+50^{\circ}$).

Following 3 minutes of solid bearing data (from 3 units) bearing #2 began to exhibit sporadic 40° glitches. At approximately 102,000 ft. (vehicle roll angle of -47°) Brg #2 output 14 consecutive data points that exceeded the 6° RM limit, with an RM failure correctly declared after the tenth cycle. The vehicle attitude represented a highly unfavorable condition for the lower antenna #2 polarization angle, making TACAN #2 vulnerable to 40° glitches. (As a matter of fact, Range #2 eventually lost lock and TACAN #2 was switched to its upper antenna). However, the first 7 outputs were not of the 40° category but rather random values. This suggests a possible interference received from the ground station via a reflected signal off of local mountain ranges.

TACAN

3.21.1

During STS-1, bearing #2 was failed in exactly the same manner, while on its lower antenna, and at approximately the same vehicle attitude. On the other hand, STS-2 TACAN's were all selected to their upper antennas (due to a late power-on condition). As the upper antennas appear to be somewhat less sensitive to signal reflections off of the terrain, it has been suggested that the crew manually select the upper antennas (at least for LRU's #1 and #2). However, that would sacrifice our auto-antenna switching scheme and thereby compromise the Range parameters in attempting to eliminate a bearing annoyance. Due to the extreme down-weighting of TACAN bearing data in the Nav equations, it is unlikely this solution will be employed.

For the remainder of the Entry phase all TACAN's exhibited good bearing data, with only sporadic groups of 40° glitches (as many as 7 consecutive outputs). An interesting phenomenon <u>occurred</u> at approximately 15K ft. when all 3 TACAN's exhibited the same 40° bearing glitch for 5 overlapping seconds. The Selection Filter output the erroneous value for those 5 seconds; however, the post selection filter inhibited use of the bad data, as it differed from the previously selected data by more than 4.5° (had this difference persisted for 10 seconds, it would have been sent to NAV with a satisfactory Data Good flag, at which time the NAV EDIT function would have to inhibit its use). The vehicle attitude at that point was "35° position roll and a pitch down of "12° (just coming off of the HAC).

A CR has been proposed which should minimize the occurrence of bearing failures due to transient glitchs (multiple of 40^o), by inhibiting FDIR during this recognizable condition. Another proposed CR will inhibit bearing data into RM whenever Range lock-on is lost. These CR's would have avoided the transient bearing failures that occurred on STS-1 and STS-3.

OPS 8 SELF-TEST

TACAN	AZIMUTH	RANGE
(LIMITS)	(177.5 to 182.5)	(0.0 to 0.5)
1 s/n 65	179.7	0.00
$\frac{2}{3} \frac{5}{n} \frac{54}{64}$	179.7	0.05

The OPS 8 TACAN Self-Test was performed with no visible problems.

- B. Lessons Learned DTO #379 "On-Orbit TACAN NAVIGATION" appeared to be highly successful from a hardware standpoint, in as much as numerous TACAN lock-ons occurred around the world. The ability to generate an adequate On-board Nav State is yet to be determined.
- C. Recommendations -

LCC Limit Changes - None
 Flight Rules Changes - None

3.21.2 2

- SMS Parameter/Model Changes Integrated MCC Simulators to Northrup were somewhat unrealistic, mainly due to the actual early exit from blackout and subsequent timing of TACAN lock-ons.
- 4. Console or MCC Procedure Changes A new TACAN timetag was employed during this mission, as recommended by MPAD personnel (prior to incorporation of a new TACAN timetag algorithm). Our Radar/Range plot indicated an initial Range error at acquisition of approximately 0.2 NM (which is a vast improvement over previous missions). However, this error remained between 0.20 and 0.15 NM for the entire Entry phase, for all units; this would suggest an error in the expected location of the TACAN mobile station (069X). A preliminary look at on-orbit range data to Northrup suggests a possible station bias (of similar magnitude and direction). If this is substantiated, then the

TACAN timetag used for STS-3 could be considered more than adequate, possible eliminating any need for a TACAN algorithm.

 Data Retrieval Adequacy - We received excellent MDRF response from the Data Retrieval personnel with regard to Entry data requests (all requested data was received by noon on the day following touchdown).

One minor coordination problem encountered during the mission was that of being notified that our requested playback was in progress (too late), rather than receiving prior warning. In some cases data at the beginning of a playback was missed, requiring a subsequent playback request, which caused some inconveniences. In the same vein, running playbacks during AOS periods essentially wastes the playback effort.

ANOMALY		I DESCRIPTION/IMPACT/RESOLUTION	1	STATUS
ANOPALI	1 1100			
		AND DEPARTED FUNT WER CEADERD WORKING		CLOSED
FAO-02	01/2122	WHILE EEING USEE - MOTOR STOPPED WORKING RUNNING. NOTED THAT CE ON PANEL ML86B		CEOSED
		(WCS CONTROLLER/SLINGER KN A) WAS OPEN. WCS SLINGER WON'T CPERATE IN FECES SPEED SFLECTION (16CC RPM) BUT DOFS OPERATE AT		лг Г
73 89		ABOUT 60 RPM IN THE EMESIS SPEED SELECTION (NORMAL IS 250 RPM). SUSPECT USED EMESIS EAG MAY BE CAUCHT ON THE SLINGER TINES WHICH SWEEPS THE DEBRIS SCREEN. PLAN IS TO OPERATE WCS WITH SLINGER AT EMESIS SEREE FOR DEMANDER OF FLICHT		
	1			
FNO-Ø3	Ø4/C212	INTERIOF DAC FILM MAGAZINE END-OF-FILM INDICATOR LIGHT DID NOT ILLUMINATE WHEN CANNISTER WAS EMPTY. NOW USING ANOTHER FILM MAGAZINE.		CLOSED
FAO-C4	Ø5/0051	LEMONADE EEVERAGE CONTAINER FAILURE. CREW REPORTS THAT THIS IS THE THIRD		CLOSED
11 1	(a	CONTAINER THAT IS PROKEN ON THE TOP LEFT SIDE BELOW THE VALVE. NO FURTHER CREW ACTION.		*
GNC-01	00/1420	IMU 3 X/Y ACCEL OUTPUT HAD A LARGE JUMP		CLOSED
		(APPROX 6 - SIGMA) FROM PREVIOUS VALUE. UPLINK OF ACCELERATION BIAS COMPENSATED FOR THIS JUMP.		
GNC-02	¢7/2357	TACAN 2 LOST BEARING. RANGE WAS GOOD.		CLOSED
INCO-01	86/8515	RECEIVED A BITE ON THE DEL PCM RECORDER. SEVERAL TIMES DURING HI-SAMPLE START, THE BITE BIT WENT TO ZERO. (THIS INFICATION		CLOSED
		HAS BEEN SEEN ON STS-2 AND IS NOT FELIEVED TO BE A PROBLEM).		

5.2.7

FLIGHT TEST PROBLEM REPORT-

STS3 NO. 41-

Statement of problem: Evaluation of high winds aloft on "wave-off" day and landing with a high touchdown velocity, a lateral offset error, and a pitchup during derotation.

Discussion:

CONTRACTOR STOCKNERS STOCKNERS IN THE PARTY OF

And a lot to the second of

£

Winds aloft: Although the "wave-off" on the seventh day was based on excessive surface winds, the winds aloft were also excessive. It was doubtful that the planned approach geometry with the extreme winds above 25,000 feet would have provided a manageable energy situation. Simulations have been conducted to evaluate procedures and system capability for accommodating various extreme wind conditions. The result is a set of placards that relate the wind magnitude and direction to the direction of the heading alignment turn. This will insure that the resulting trajectory is within the vehicle energy management capability.

Touchdown velocity: The velocity at touchdown was about 225 knots estimated air speed rather then the desired 195 knots. At crew takeover from autoland, the airspeed was 6 knots greater than nominal. Simulations indicate that autoland would have flown the vehicle to touchdown at 201 knots. The planned late takeover from autoland did not provide sufficient time for the pilot to feel the vehicle response. Attempts to make some minor trajectory adjustments resulted in a touchdown sooner than intended at a higher than planned airspeed. Future flight procedures will plan the takeover prior to preflare or let the autoland go to touchdown.

Offset error: The landing offset, some 28 feet to the right of the runway centerline, was a known problem with the MSBLS antenna system and is acceptable for lakebed landings. A hardware modification to the ground antennas will be made prior to STS-5 to eliminate the offset.

Derotation pitchup: This problem was aggravated by the high landing velocity. The derotation after main gear touchdown was allowed to start at too high an airspeed and required the pilot to try to stop it at too low a pitch angle. The rapidly changing elevator trim requirements made it difficult to avoid over-controlling in this situation. The way to avoid it is to concentrate immediately after touchdown on keeping the nose up until the vehicle slows to 180 knots. Flight procedures will be more explicit for STS-4 and the SMS simulation of this situation is being improved to provide better crew training.

Conclusions: The actual "wave-off" was based on excessive surface winds, but a "wave-off" due to excessive winds aloft was also required. The planned late takeover from autoland did not allow the pilot time to get the feel of the vehicle, resulting in a premature touchdown at high speed. The landing offset was a known problem with the MSBLS antenna system and is acceptable for lakebed landings. The pitchup during derotation resulted from starting the pitchover above 180 knots where over-controlling is difficult to avoid once the nose drops below about 3 degrees.

Corrective action: The new wind placards will be adopted for STS-4 and subsequent flights. On future missions, manual takeover from autoland will not be planned between start of preflare and touchdown. MSBLS antennas are being modified prior to STS-5 to eliminate the lateral offset error. Procedures will be more explicit, the SMS updated, and more specific crew training provided in the derotation maneuver, especially for high-speed landings.

APPROVED

				The state	13				
ffective	on	subsequ	ent	is signs	: Nor	Fil	5/21/82	a. 2. Va	£ 5/2
ersonnel	ass	signed:	D. W.	Gilber	t/EH4;	R. J.	Ward/WA3		

Resolution: CLOSED 5/21/82

5.3.1