AL 4TS
S
2\

(> FEB1972 B
RECEIVED '

INTERMETRAIr

(NASA-CR-115367$ CONTINUED ADVAN%EMENT OF N72-16145
| THE PROGRAM&ING LANGU@GE HAL TO.A
OPBﬁATIONAL STATUS Final Repo§;71 142 o

(Intermetrics, Inc.) 30 DecC. s c3/08 476

g (NASACRORT INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

CSCL 09B e s v U . Roproduced by
FXOR AD RUMBER) [CATEGORY] J NATIONAL TECHNICAL \ \,\"&

Final Report
CONTINUED ADVANCEMENT OF THE
PROGRAMMING LANGUAGE HAL TO AN
OPERATIONAL STATUS
NAS 9-11944

December 30, 1971

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

NOTI1CE
THIS DOCUMENT HAS BEEN REPRODUCED FROM
THE BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER--
TAIN PORTIONS 'ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

TABLE OF CONTENTS

Page
'FOREWORD

1.0 TASK SUMMARY 1
1.1 Task I: Maintenance and Training 1
1.2 Task iI: Advanced HAL Development » 1
2.0 HAL INSTALLATION AND ON-SITE SUPPORT '3
2.1 1Installation : ‘ 3
2.2 Program Changes and Maintenance Procedures 9
3.0 HAL COURSES ' 11
3.1 General Description 11
3.2 Course Preparation » 11
3.3 Course Outline 12
4.0 NECESSARY MODIFICATIONS AND ADDITIONS : 15
| 4.1 Storage Allocation Problem ‘ ' 15
4.2 Miscellaneous Improvements) 16
5.0 HAL TRANSFERABILITY . 19
5.1 Technical Approach 19
5.2 Translation of XPL Programs Into HAL 23
5.3 Feasibility Demonstration ("HAL—in—HAL“) 35
APPENDIX A. HAL Course Material ' 4]
A.l1 Overview ' 43
A.2 Longer HAL Course 69

APPENDIX B. HAL—%n-HAL Detailed Description aﬁd
Listing ' 89

¢

" INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

FOREWORD

This document represents the final report of a contract
for the continued advancement of the programming language
HAL to an operational status. The effort was sponsored by
the National Aeronautics and Space Administration's

Manned Spacecraft Center in Houston, Texas under Contract
NAS-9-11944 . It was performed by Intermetrics, Inc.,
Cambridge, Mass. under the technical direction of Mr.
paniel J. Lickly. The Technical Monitor for NASA/MSC

was Mr. John Garman, FS/6.

The publication of this report does not constitute approval
by the National Aeronautics and Space Administration of

the findings or the conclusions contained therein. It is
published only for the exchange and stimulation of ideas.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

1.0 TASK SUMMARY

The objectives and time duration of this contract were
limited. Essentially, over the summer months of 1971 HAL was
to be installed on the 360/75 at MSC, on-site support provided,
users trained by class sessions, the compiler updated as
necessary and experience gained with the language. The
work was divided into two broad areas: maintenance and training,
and advanced HAL development.

1.1 Task I: Maintenance and Training

Under this task, Intermetrics established a support systems
programmer (Mr. Ronald Kole) at MSC within the Flight Software
Section. Mr. Kole succeeded in solving some of the formidable
problems associated with running at the RTCC under RTOS and
transferred HAL from Intermetrics' 360/65 to MSC's 360/75. 1In
addition, from time to time, necessary modifications originating
in Cambridge and in Houston were incorporated at both sites
and specifically, a general compiler-version update procedure
was developed and implemented at MSC. The most significant
modification was a redesign of the storage allocation algorithms,
described in detail in Section 4.2 of this report.

Also as part of this task activity, 36 hours of training
classes were conducted at MSC and the MIT Draper Laboratory.
A total of approximately 50 people attended, including both
government and industrial personnel. '

Although no modifications were made which affected the

HAL Specification or Guide documents, a new complete. description
of HALMAT, the intermediate code, was issued.

1.2 Task ITI: Advanced HAL Development

The objective of this development task was to increase
‘the transferability of HAL to another host computer. The
approach taken was to demonstrate that the compiler itself
could be written in HAL. If this were accomplished then the
entire compiler could be compiled on the 360 into FORTRAN and
then the FORTRAN moved to almost any other large computer
with only minor modifications. Toward this end a portion of
the HAL compiler was coded in HAL and demonstrated to work on
the 360/75 at the MIT Draper Laboratory. The portion selected
exercised the bit and character handling features of HAL and
indicates the feasibility of the approach.

1
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

PRECEDING PAGE BLANK NOT FILMED
2.0 HAL INSTALLATION AND ON-SITE SUPPORT

2.1 Installation

The HAL compiler and associated software were developed
at the Harvard Computing Center in Cambridge, Massachusetts using
a 360/65 running under 0S/360 MVT Release 18. Transferability
problems were encountered in establishing a usable HAL system
at MSC. These problems may be broken down into two categories:
(1) logistics and (2) internal software compatibility. Before
the second set could even be recognized,the first had to be
solved. -

2.1.1 Logistics Problems

The logistics problems are the ones associated with the
differences in operating procedures.and at the systems' two
installations. The preparation and submission of jobs at
Harvard were done almost entirely through the Conversational
Remote Batch Entry System (CRBE). The Harvard system was equipped
with four IBM 1403 printers, each having a full PL/l1 character,
set. The entire HAL system was maintained on.a disk pack that
was mounted by the operator when needed.

In contrast, the RTCC at MSC uses IBM 360/75 computers
running a modified 0S MVT which they call RTOS (Real Time
Operating System). The RTOS version available during the
June-September 1971 installation period corresponded roughly
to 0S/360 Release 18. The RTCC does not.support.the. CRBE system,
so all input submission was done via punched cards. This in
itself was something of a problem since some pieces of the
compiler and even some updates to the compiler were quite long.
Also, the handling of cards and the chance of error in mixing
up cards was considered less desirable than an on-line editing/
submitting system like CRBE.

©2.1.1.1 RTCC Limited Disk Space. - The RTCC also has very limited
available disk space. 1n fact, it is impossible to have a
permanently saved disk on the system. Therefore, a reasonable
way had to be found to give users access to the HAL compiler.
The method settled on was to use a dump/restore tape. When a
user wants to run something that is located on the HAL disk
(known as HALOOl at the RTCC) he tells the operator of the
requirement for this special disk. The operator must "restore"
the disk from a tape before the user's actual job can run.
This means that he must run a background utility to transfer
the contents of a special tape to some existing disk on the

3
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

system so that any user programs requesting HALOOl will £ind
the disk mounted. After the user's run finishes, the HALOO1l
disk is scratched to make room for perhaps some other user's
restored disk.

This system works, but it puts all jobs that require HALOO1
in a special class that is usually run only during the early
morning hours. This obviously precludes any same-day turnaround
as can sometimes be obtained with "non-special" device require-
ments. There is, however, an advantage that is gained indirectly
through use of the dump/restore tape. Since it is not any
one physical disk that is mounted to satisfy requests for
HALOOl, it is possible to have serial versions of the disk
available as separate dump/restore tapes. The user need only
specify which dump/restore tape he wants used to create HALOOL.
Since one HALOOl is the same to the system as any other, all
of his Job Control Language will work no matter which dump/
restore tape is used. :

The more troublesome aspect of the dump/restore system
is the creation of an updated HALOOl and getting that new
version put onto a D/R tape. The method of updating is to .
submit the job that makes the desired changes, requesting that
HALOOl be restored in the normal manner, but also requesting
that the disk to which the restore will take place.be completely
erased first. The job is then run as a regular batch job.
After the run is completed the operator is requested to "dump"
HALOOl to some specified tape. This tape then becomes the
updated restore tape.

The problem in this system can occur.in many ways. The
disk to be restored must be erased first. This is to assure
that after the update run, HALOOl contains only the HALOOL
files. The dump program that does the disk to tape transfer
will copy anything that it finds on the disk, no matter where
it originated. So failure to erase the disk, while not really
causing any errors in the resulting D/R tape, makes the tape
file very long. This also means. that subsequent restores from
the tape will take a much longer time. All of this degrades
performance of the overall system. It is also. possible, if
an unerased disk is cluttered enough, to overflow one D/R
tape which causes even more complications.

Another source of error is the possibility that the operator
will forget to dump the disk at all. Since this.is an operator

controlled utility, the user gets no indication on his output
if the disk was actually dumped. The only real way to tell is
to submit another job the next day to see if the updates were
indeed saved. There is no way of telling if the restore tape
file is too big because of a non-erased disk, other than watching the
" restore take place and guessing whether the tape moves a reasonable
distance. Once an oversized tape file has been created it is
very difficult to get rid of the unwanted "garbage". Thus, the

4

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

dump/restore tape method of supplying users with a HAL system
works fairly well from the user's viewpoint (although turnaround
is probably adversely affected) but is error prone from the
system maintenance point of view.

The real solution to the D/R problem is to eventually
catalogue all of the HAL system components on the system library -
as is done with the other language. translators. This could
be done now, but such a method is even more difficult to update
and maintain and should not be used for anything short of a
non-changing, well established version of the system. :

2.1.1.2 RTCC Limited Print Facility. ~ One other source of
frustration at the RICC can be identified. The RTCC is basically
designed to run space missions and not necessarily to support
batch users. The main outputs of mission programs are real-
time displays and telemetry. These require. little hard copy
I/0. The main output of the batch user is printout. Yet the
RTCC has only one printer per machine with.two others shared
between all machines. The 360/65 at Harvard manages to keep
four printers busy by itself. So it would seem that the faster
model 75 would generate a print backlog with even. the maximum
of three printers attached. This did.indeed seem to be the
case at MSC. This print backlog, of course, results.in reduced
turnaround. The HAL compiler proper output requires a full
PL/1 character set. At the RTCC there. is only one printer

that has the UCS: (Universal Character Set) feature that can
support a print set other than the standard limited FORTRAN

48 character one. All of the output that requires this special
character set is spooled on tapes until such time as there is
enough to make the mounting of the special print train worth-
while. That point is reached two or three times a day. So

HAL print delays are generally even longer than those caused

by the regular print backlog. A small point further slowing
down the printing is that the print train that was used for

HAL was a special one, known as the Philco train. Some
characters used by HAL only appear once on this train. This
delay in waiting for the single character to move to the correct
print position makes a large reduction in the speed of the
printers (a visual estimate would be 20 to 40% slower).

The necessity of mounting the special character set
created another potential error situation. If for some reason
the class of output was mis-written on the spool tape, or
misread, the output might (and has on occasion) be printed
on the Fortran print train. It is, of course, then unreadable.
The net result of these operation dependent procedures was a
1 run per day situation at best. Some preliminary users’

_ experienced even longer delays.

5
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.1.2 Software Incompatibility

The second class of problems relating to implementing
HAL at MSC concern the operating system peculiarities that are
present in any system. The most significant difference between
RTOS at MSC and 0S/360 was the handling of core allocation.
One part of the HAL compiler called the Submonitor was signifi-
cantly affected by the RTOS scheme.

The Submonitor is an assembler language program whose
purpose essentially is to provide an I1/0 interface with the
operating system.” It also has the task of obtaining a block
of core storage into which the actual compiler machine code
can be placed for execution. 1In the original version of the
Submonitor at Harvard, the necessary core was requested by
means of a GETMAIN macro instruction. The operating system
then gave the Submonitor the requested core out of the remaining
part of the task's region as specified in the REGION parameter.
Thus, it was possible to use the region parameter to determine
how much core was made available to run the compiler.

2.1.2.1 0S/360 Core Allocation. The standard OS scheduling
algorithms keep jobs 1n a waiting gqueue until such time as
there is available in the machine, enough core in a contiguous
block to satisfy the job's REGION request. Then the job is
started and is free to do whatever it wants with its core. This
block of contiguous core is reserved for the one task, even if
the task uses only a small part of it. Thus, if an adequate
REGION parameter 1s supplied, the Submonitor is guaranteed

the availability of the core it needs to run the compiler. The
Submonitor, in fact, makes maximum use of the entire available
-core by using a form of the GETMAIN Macro instruction that
gives the operating system a minimum and maximum value of
acceptable core regions. The maximum is set very high so that.
the operating system, in trying to come as close as possible to
the maximum requested allocates all of the core remaining in
the Submonitor's region.

2.1.2.2 RTOS Core Allocation. RTOS, however, does not make

a job wait until the requested REGION.is available in a conti-
guous block. It waits only until the sum of all free core in
the system meets or exceeds the requested REGION. 1In fact,

the decision of which jobs to run at any one time is based on
a 125% allocation of core on the assumption that not all jobs
will require their entire region at the same time. So in the
case of the HAL compiler which requires about 4K bytes of core,

6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

the operating system will load and execute the Submonitor as
soon as there is 4K contiguous core available and enough other
free core to satisfy the rest of the specified REGION parameter
(this is usually 300K for HAL). The Submonitor then immediately
issues a GETMAIN for the remaining core. This is where the
operating system differences cause problems.

‘Under RTOS, a GETMAIN of the original form used at Harvard
causes the operating system to put th e Submonitor task into
a wait state until the maximum of the minimum/maximum pair
is available. For a large maximum this never happens and the
job must eventually be cancelled by the operator.

2.1.2.3 Some Solutions. The first attempt to fix this was
made by allowing the user to specify in his JCL the minimum and
maximum values to be used in the GETMAIN request instead of the
Submonitor's default values. This approach will apparently
work for smaller programs, but for larger programs, there seems
to be some system prescribed limit to the_amount of core that
can be obtained in this way. The Submonitor was never able

to obtain more than 262, 144 (or 218y bytes of core. This is
not enough to run the compiler and another method was needed.

The second method was to change the type of GETMAIN to
one that requested a single specific size piece of core.
The user was given the ability to specify this number through
a keyword in his JCL. This system partially solved the problem.
It was possible to obtain the correct amount of core this way,
but another problem persisted. Even though RTOS could guarantee
the existance of 300K bytes of free core, it could not guarantee
how this core was divided up as could the regular O0S. It was
possible for the Submonitor to go into a wait state while the
operating system tried to supply its contiguous core requirement.
Under the right circumstances, this might take an hour or more.
Whenever a task goes into the wait state, RTOS monitors how
long it stays there. After some length of time RTOS begins
sending the operator messages informing him of the lack of
progress of the task. The operator makes the decision on the
- length of time the task is allowed to wait. After he gets
tired of seeing the periodic messages, he usually cancels the
job. The problem with this method is that the operator is
never told why the job is waiting; it may be waiting because of
some programmer error. He really has no chance to evaluate
the situation.

The next step taken toward insuring a successful run
was to take the wait for core out of the running Submonitor

and put it in the pre-execution allocation. This simply meant
doing away with the GETMAIN and giving the Submonitor a built-in

7

|NTERMEfRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

storage area big enough to run HAL. Under this system, the
Submonitor became about 300K bytes long. This forced the
operating system to find the 300K in a contiguous region before
it could even load the Submonitor. As before, it was still
possible for the available core to total more than 300K and yet
not have 300K contiguous, but now the operator got a message
saying "JOBXXX AWAITING A REGION". 1In this way the operator
was informed of the real cause for the delay and was more
willing to let the job wait for the core to become available.

‘Although the probability of getting a job to run has been -
increased, it is still possible for the job to be cancelled
when it was the only user job in the system and was still unable
to get its core. This happens when there are "backround"
utilities running. Although they are termed "backround", they
still compete for core like any other job on the system and it
is possible for them to tie up core in such a way that a HAL
job will not run even though it appears to be all alone on the
system. :

One small drawback to this final state of the Submonitor
is that it is no longer possible to use the REGION parameter,
or ‘any user keywords to limit the size of the available core.
This is not considered much of a handicap since the size of
the HAL compiler is quite stable and is expected to remain so.

There 1s an alternate approach to solving the core lockout
problem. This would involve a redesign of the HAL compiler
structure to give it a scatter loadable attribute. If this
were done, the required core would not need to be contiguous;
several smaller contiguous areas would be requested. The
probability of finding these smaller areas would be greater than
the present system. There would, however, still be a finite
chance that even these smaller regions would not all be avail-
able. The situation is such that the more the core requirement
is split up, the more chance there is that the resulting
smaller pieces will be found. More pieces of code, however,
require much more overhead to maintain. Also, the redesign
of the HAL code to allow such a split would be a difficult job
that would not further the goal of producing a better overall
compiler. The frequency of run failures under the present
system is very low and sporadic. For a large, ground-based,
batch-oriented system like the RTCC, additional time spent on
refinement of HAL running procedures, would be of little value

compared to the same time spent on refinement of the actual
compiler code.

This potential lockout problem is not peculiar to HAL.
. It can happen to any job on the system whose core requirements
are of the same size and nature as HAL's.

8
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.2 Program Changes and Maintenance Procedures

During the June~September 1971 time period many changes
were made to both the HAL Submonitor and the compiler itself.
Most of the changes made to the Submonitor are detailed in 2.1
above. These changes were basic in nature and took a large part
of the summer to research and implement properly at MSC. 1In
addition, new compiler versions were developed at Intermetrics
and were sent to Houston on magnetic tape where copies of all
of the files on the tape were put on MSC-owned tapes. The

- required files were then transferred from tape to the HALOOL
disk and the disk then dumped to a dump/restore tape as described
above. ' ' '

2.2.,1 Updates

A three tape dump/restore system was established to
maintain the integrity of the system. One tape, called the
system tape was the only one available to users. It always
contained the most recent released version of the compiler.
Thus, users only had to have this tape number to run HAL
compilation. The two other tapes were development tapes. They
were used in an alternating manner to build and checkout a new
release. The alternation was necessary to provide a backup in
case of some failure to make a good update. To make an update,
the newest version development tape was used to restore HALOOI.
The update was made to the disk and then HALOOl was dumped to
the alternate development tape. Even if the dump was not done,
or if the update was unsuccessful, the original restore tape
was still intact.

Once a version was considered ready for release, the
development tape on which it resided was simply copied onto
the system tape. Users specifying the system tape number as
the HALOOl dump/restore automatically got the new release.

In addition to updates originating in Cambridge, some
changes were made to the compiler at MSC. Small changes were
communicated to Cambridge directly by long distance through
the CRBE system at Harvard. 1In the case of larger updates,
tapes were exchanged.

2.2.2 Summary of Changes Made At MSC

a) Research and implement the changes to the Submonitor to
allow a more reliable core allocation. ‘

9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

b) Fix numerous small bugs found during checkout both in
‘the HAL code itself and in the HAL run time library.

c) Partially implement and lay the ground work for a more
complete listing generator as detailed in the HAL Guide.
This involved providing additional functions in the
Submonitor to allow the HAL compiler to set a maximum number
of lines per page of listing and to dynamically request the
line number of the current line on the page. These new
functions helped to lay the framework for the ability to control
completely the layout of the HAL listing. The listing was
.changed to the extent that the statement and line numbers
were made available and the format of the format of the
printed source code changed to increase readability.

10 .
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 -~’(61 7) 661-1840

3.0 HAL COURSES

3.1 General Description

Intermetrics personnel prepared and conducted three HAL
langauge courses during the contract period. The material
was designed for two types of audiences: 1) those seeking
a broad "brush" overview of HAL, 2) those intending an indepth
exposure to HAL. Two l15-hour sessions (2 1/2 days each) were
given at the Manned Spacecraft Center in Houston. The first,
primarily for NASA personnel and the second, for industrial
contractors and other government agencies with an interest
in higher order languages. For each session, the first three
hours were devoted to the HAL overview; however, the overview
itself was considered an integral part of the longer course.

A special third session was also conducted at the MIT
Draper Laboratory, for Laboratory personnel and local industrial
contractors. Because of the familiarity of these personnel
with MIT's MAC language and certain similarities between HAL

~and MAC, an effective l-day, 6-hour course was held. The course
consisted of the overview, with elaborations and discussions,
followed by a rapid presentation of the salient features of
HAL.

In general, the participating students at MSC and MIT
were highly motivated to learn HAL and always attempted the
place HAL in perspective with respect to Shuttle applications.
As a result, many provocative questions were asked and in some
circumstances material discussed in class was fed back into
the HAL design. ’

3.2 Course Preparation

The HAL courses were prepared with two objectives in
mind: an overview, and a detailed study. For the overview,
a balanced presentation of most of the important features and
rationale incorporated into the HAL Specification Document
(MSC-#01846) was designed. The purpose here was to illustrate
how HAL satisfied, for the most part, -the requirements imposed
on a programming language for the Shuttle. Toward this end
readability, vector-matrix arithmetic, data management, systems
programming, real-time control and software reliability were
emphasized. :

The material was presented in vu-graph form and included
numerous "Shuttle-like" application examples and commentary
which included Intermetrics' experience with Apollo software

-11
|NTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

development. Particular attention was paid during the overview
to indicate which HAL features would not be included in the
first implementation for the IBM 360/75 at MSC. This was
especially true for the descriptions of real-time control,
controlled data sharing, and the error recovery features.

The longer HAL course was designed as an in-depth study
of HAL and the overview served as an excellent orientation.
This part of the course was based closely on the HAL Guide
(MSC #01848)and the material was a combination of vu-graphs,
references, to the Guide text and blackboard work. Only those
features actually intended for implementation on the first
360/75 version were covered. (This specifically excluded
real-time control, etc.) .

Levels of increasing detail were presented, first with
a set of vu-graphs covering all of the language features of
HAL; i.e., operations, declarations, indexing, control, etc.
followed by a careful tour through selected portions of the

Guide. The Guide work illustrated usage, described many examples
and motivated class discussions {(and, in fact, contributed to
subsequent corrections to the Guide). The technique of repeating

subject material in levels of increasing detail; i.e. from
overview to construct description to Guide with examples,
proved to be an effective method of rapid assimilation and
study.

In addition to text material and lecture, each student
was provided with a HAL problem set as a homeword exercise.
Unfortunately, few found the time to actually address these
problems out of class. -‘However, during the last class session,
prepared problem answers were distributed and each problem was
carefully "talked-through". Actual runs on the 360/75 by the
students were contemplated during the course preparation, but
360 turn-around time within the RTCC facility was not consistent
with the 2 1/2 day course duration.

An outline of the HAL course material is presented in the

next section and the vu-graphs for both the overview and the
longer course are collected in Appendix .

3.3 Course Outline

3.3.1 Overview (vu-graph material)

l. Higher order language motivation and capabilities.

i2
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

2. Salient features of HAL

3. Data types

4. Program organization and structure
5. HAL Statements

6. Specific Examples

7. Real-time control, including data sharing and error
recovery

8. Summary

3;3.2 Longer Course (Vu-graph Material)

1. Data Operations

2. Data Declarétions

3. 1Indexing: partitions and use of subscripts
4. Control and branching mechanisms

5. Name scope rules

3.3.3 Longer Course (Guide Material)
1. Two-dimensional input-output format
2. HALy (HAL Mathematical Subset)

a. Data and declarations

b. Arithmetic expressions

c. Assignment statements

d. User-defined functions (SCALAR, VECTOR, MATRIX)
e. IF Statements ‘

f. TIllustrative problems - I

g. Subscripts

h. DO Statements

i. Illustrative problems - II

j. Subroutines; i.e., HAL PROCEDURES

13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

k. Illustrative problems - III
1. Name scope
m. I/O Facilities

n. Illustrative proklems = IV

3. Integer and Bit String Data

4, Structures

5. Bit and Character String Manipulations
6. Subscript facilities: complete

7. Implicit conversion of mixed data typés
8. User-defined functions: coﬁplete

9. Array processing
10. Shaping functions: complete

11. REPLACE and DEFAULT Statements

12. "Talk-through" of problem set

14

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.0 NECESSARY MODIFICATIONS AND ADDITIONS

Redesign work was undertaken to increase the scope and
capabilities of the HAL compiler and to promote its transfer-
ability to other computers. The first step was to redesign
the variable storage philosophy and mechanization. Extensive
design sessions were conducted to develop a suitable memory
storage allocation system that would support the most general
future goals of HAL, especially transferability (see 4.1 for
more detail). This included the techniques necessary to support
the calling of separately compiled HAL programs and the sharing
of their data through a COMPOOL. This capability, in some form,
is vital to the production of a multipass compiler.

During this time items were also dealt with that were
either incomplete or had been newly defined. Thus, certain
"holes" in HAL's capabilities were filled in. In addition,

a number of shortcomings which had been uncovered were remedied.

4.1 Storage Allocation Problem

Certain storage allocation problems encountered during
the implementation of some of the more advanced features of
HAL in Phase II of the compiler (Fortran code generation) had
necessitated basic conceptual changes in the allocatin algorithms
in the compiler.

In the original version of the algorithms, temporary
storage required for partial numerical results was allocated
when needed during the code generation of a HAL statement, and
freed-up again not later than at the end of the statement.

This caused two major difficulties. Firstly, when temporary
storage was required to hold the value of an argument in a
procedure or user function invocation, special “"vnfreeable"
temporary storage had to be used to prevent it from possibly
being reallocated in the body of the procedure or user function.
Secondly, in HAL statements containing user function invocations,
(possibly nested), temporary storage allocated for partial
results before the invocation code was generated had also to

be masked "unfreeable" for the same reason. Other more subtle
considerations finally made a complete restructuring of the
algorithm essential.

The idea of providing completely dynamic storage allocation
of execution time was rejected as requiring too many basic

changes in the mode of operation of Phase II of the compiler,
Instead a static scheme similar in some respects to the original

15

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

was adopted. In this scheme temporary storage for the program,
and for each procedure or user function are allocated within
mutually non-overlapping segments. A program or subprogram

may have one segment or several non-contiguous segments of vary-
ing sizes dedicated for its use, depending on its requirements.
The sum total of all segments constitutes a single continuous
area of storage (except possibly for word boundary alignments).
At the microscopic level within the bounds of a segment,

storage is allocated and freed exactly as it was in the original
allocation scheme.

Under this scheme, no temporary storage need be marked
"unfreeable" no matter to what use it is put. Furthermore,
the. scheme has resulted in considerable simplification and
unification of other storage allocation mechanisms in operatlons
at code generation time.

4.2 Miscellaneous Improvements

l. Arraynesses:

* reoxganization of the mechanism controlling the
utilization of statement arraynesses, especially with
regard to utilization by arrayed subscripts of arrayed
variables, and by the arguments of user functions.

* implementation of the arrayed subscripted variable as

an input or assign argument in a function or procedure
call.

2. Cosmetics and Statistics:

* generation of Phase II timing information, improvement
of error message format, generation of statistics on
certain critical parameters of Phase II operations

* - introduction of toggle directives to control Phase II
and subsequent Fortran IV operation.

3. Shaping Functions:
* introduction of a limited range of shaping and
conversion functions: INTEGER, SCALAR, MATRIX, and

VECTOR (no arrayed arguments or results).

-4, Program Calling:

* setting-up operating mechanisms for calling independent
(i.e. separately complled) HAL programs to "any" nest

level, non-recursive

16

(617) 661-1840

* creation of mechanisms for saving HAL programs in an
object library.

5. I/0 Routines
* first, implementation of full-scale HAL READ/WRITE
statements fixed ,uni-channel input and output, fixed
record length (printer and punch only).
6. Bit Strings:
* fundamental bit string operators were implemented.
Included were terminal and array subscripting and the
AND, OR, and NOT operations. Bit strings are limited

to not more than 32 bits; they have been implemented
in full-word, half-word, and byte form.

17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

PRECEDING PAGE BLANK NOT FILMED

5.0 HAL TRANSFERABILITY

5.1 Technical Approach

5.1.1 Background

The quest for easy transfer of operational programs
from one computer to another has occupied the minds of many
men since the early days of computer technology. The importance
of this capability has grown considerably as the computer explo-
sion has populated our society with countless kinds and types
of computers with ever decreasing and more attractive price
tags, and yet soaring software costs through higher programmer
salaries has made conversion more difficult due to the huge
investment in operational software for existing computers. The
solutions to the programming transferability problems can be
categorized into one of the following types:

1. Hardware emulators - In order to maintain compatability
many modern computers have included hardware or micro-
program features that permit them to simulate other (usually
older) computers. Thus, existing programs can still be
executed.

2. Software translators - A program is developed that will take
programs that were written for machine X and translate them
into equivalent programs for machine Y. This approach has
been limited since the technique is seldom 100% successful,
even when the two computers are almost identical.

3. Higher level languages - If programming is confined to
high level languages, hopefully machine independent, and
a translator or compiler is used to produce the actual
machine code, then it should theoretically be possible to
feed the same higher level source statements into a trans-
lator to another brand of computer and produce a program
that performs functionally equivalent tasks. The diffi-
culty here is whether the language and the interpretations
given it by compiler writers are truly machine independent.

5.1.2 Level of Transfer
In the design of the HAL compiler system for the 360

implementation, Fortran was adopted as the output language
from the code generator. A principal reason expressed for the

19

INTERMETRICS INCORPORATED # 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

somewhat unusual procedure was to promote machine transferability.
Fortran IV is the most widely used programming language and ANSI
Fortran IV purports to be defined in a machine independent way.
Production of the HAL code generator was initiated with the
avowed intent of producing ANSI standard Fortran IV. If this
could have been rigidly adherred to, transferability would have
been automatically produced at the lowest level. The output of
Pass 2 would be suitable for submission to any Fortran compiler.
As it is, there exists some 360 specific Fortran output and some
assembly language subroutines, but the job required to take the
Fortran output of the HAL compiler and move to another computer
is a minor one. Figure 5.1 depicts the steps in . the HAL compila-
tion process. The Fortran output of Pass 2 may be physically
moved (in card or tape form) to another computer facility.

Contrast this transferability with the proposed system for
construction of a HAL code generator for a flight computer.
(See Figure 5.2) 1In this case, a new Pass 2 is required, the
same output of Pass 1 (HALMAT) is used. This is the traditional
approach. Every time that HAL is desired for a different target
computer, another version of Pass 2 is required. This is a
mid-level transfer.

However, neither of the above approaches will satisfy the
needs of another general purpose computer facility. The reason
is that they are only partial transfers. Although they produce
code for another computer, the compiler itself still must run
on the initial computer, the IBM 360 in this case. This is poor
operationally. It means that a user must submit his HAL source
program to the 360 for compilation and then take the object
program to the other computer for execution. ' (This approach is
perfectly adequate for a flight computer where the usual mode
of operation is via simulation on his general purpose computer.
Besides, the flight computer is usually of such limited size
that compilation on it is not possible even if one were physically
available.)

A total transfer is needed for implementation on another
large commercial computer. It requires that the entire system
be transferred, "lock, stock and barrel". Then the user can
compile and execute on the new facility with no further need of
the 360. This is a more demanding requirement since it necessi-
tates moving the entire compiler to a different computer complex.
The result is a high level transfer or complete conversion.

5.1.3 Method of Attack

There are three avenues of approach that might be followed
to achieve a compiler transfer. They are:

20
INTERME'I;RICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

0p81-199 (L19) « 86120 SLLISNHOVSSYN ‘3DAIHEAYD « 3NN3AY QHOONOD 104 ¢+ d3LVHOJHOONI SOIH._LEJV\H:E]-U\‘l

12

I {
i
HAL ' lerammatical| | : tables of
grammar 1] Rule { lexical &
: Generator ; ’ syntactical rules
| 1 /
r. i abstract
.) machine code
HAL l ’ Syntactic tables
rogram lﬁ> Scanner |——— 0 & Semantic
prog ' : Analyzer (HALMAT)
‘ Pass 1 Fortran IV
- — - — = T - - — -
' [
l {
| Fortran IVj F
MACHINES : , | Code ‘ U
_ Generator]
Compiler 360/75 ! |
Target 360/75 ! :
. Pass 2 .
LANGUAGES: - 0 77 :
yd
SQurce HAL
Compiler XPL : 0S8/360
Target Fortran IV :

Fig. 5.1 ' Construction of the HAL Compiler System

— OP8L-199 (£19) + 88120 SLIISNHOVSSYN 'IDAIMEAYD « INNIAY GHOONOD L0/ » AILVYHOJHOON! SOIHLIWHILNI
' 44

table of
lexical &
syn§§ctical rules

Grammatical
HAL ; &> Rule

t\iﬁiﬁfﬁi’__ : Generator

s
,/
e
abstract
machine code
—-—— = - -1 A tables
HAL ‘ ! (HALMAT)
roqTam b= Scanner }—— ¢ Syntactic ! o
prog l Semantic , L)
| Analyzer I
f
| Pass 1 i
————————————— | I A e S A
! t [
' L e » u
| oy N]
' Fortran IV ' Target Code ,
| Code ! Generator
MACHINES : | Generator | For Flight | |
‘ Computer !
Compiler 360 : | ‘ | |
Target 360, FC : y Pass 2 1 Pass 2 1
LANGUAGES:
Source HAL _ 360 FC
Compiler XPL Operating Operating
Target . Fortran IV for 360 System System
. Assembler for FC :

Fig. 5.2 Proposed Construction of HAL Compiler for Flight Computers

1. Reprogram the HAL compiler for Brand X: This technique
looks at the process as a one-of-a-kind step and selects
whatever seems most appropriate for machine X, be it assembly
language or whatever. Then the job is done. This is the
brute force approach and has no generality whatsoever.

2. Reprogram the XPL compiler for Brand X: HAL is written in
XPL, a simplified subset of PL/l. Thus, it would be rela-
tively easy to transfer to another computer that supports
PL/1; however, there are few that do. But we could transfer
XPL to another computer. Since XPL is itself written ih
XPL, the transfer could be accomplished by a mid-level trans-

fer. (A new code generator on the 360 that produced code
for Brand X would allow a version of XPL to be compiled
that would execute on Brand X.) However, this approach also

lacks generality; each new computer requires another code
generator, itself not an easy task.

3. Reprogram HAL into a language more widely supported: If HAL
could be rewritten in a language that was universally supported,
than transfer problems would be minimized. The most widely
used language is Fortran. And since Fortran is now produced
by HAL, an interesting variation of this technique is imme-
diately suggested. If HAL was rewritten in HAL and compiled
on the current HAL compiler then the result would be Fortran
source cards that would be suitable for compilation on any
computer with a Fortran compiler. Thus, the transfer of HAL
to almost any large scale computer could be achieved by
minor changes to the Fortran output (chiefly in the area of
data types and declarations) and the recoding of machine-
dependent library routines. But the latter must be done
anyway 1if HAL is to execute on Brand X; even the low-level]
transfer needed it. The extra task is the effort needed to .
rewrite HAL in HAL. But having done it once, it would not
need to be done again to affect other transfers. The
generality of this approach resolved the issue in its favor.

5.2 Translation of XPL Programs Into HAL

5.2.1 Introduction

This is a brief discussion of the methods used when
translating a program from XPL into HAL. It is intended to
provide a useful guide to a process which requires a considerable
amount of analysis and judgement on the part of the individuals
performing the work. This end is achieved by presenting the

23

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

essentials of language differences and by discussing examples
of coding economies possible through the use of HAL. Explicit
illustrations demonstrate the translation of several XPL
constructs into HAL. '

Translation of some form was necessary since it was intended
that a copy of the HAL compiler be implemented on the Univac
1108. There were two general strategies available to Intermetrics
as alternate means to affect this implementation. As one possi-
bility, we could have rewritten or modified the XPL system to
implement it on the 1108, then we would have been able to
recompile the original XPL source code of HAL on the 1108. This
approach lacks generality and involves the difficulties of
emitting executable and efficient low level code for a machine
with extant high level software. As a second alternative, we
could rewrite the HAL compiler in a source language which maps
via an existing processor onto a target language recognized by
existing 1108 software.

This latter course was chosen, using HAL itself as the
source language, and using the HAL/360 compiler as the mapping
onto Fortran IV, a target language understood by the 1108 (as
well as other large scale computers). This course procides a
large amount of generality, and also proves to be easiest to
carry out because of HAL's many high level features and the
convenient degree of similarity between HAL and XPL.

The two-dimensional input scanner employed in Pass 1 of
the HAL compiler was chosen as an initial goal. If a program
as complex as this worked satisfactorily once debugged, we could
be fairly certain that no part of the compiler would create a
problem. The translation strategies and methods described in
this document were devised in the process of successfully
rewriting the input scanner. As an added bonus of this choice
of translation strategy, the use of HAL as a source language
proved to be exceptionally helpful in the process of debugging
the current HAL/360 compiler. Quite a number of bugs which
were invisible prior to this large scale application were
exposed and repaired in the process.

5.2.2 Methodology

5.2.2.1 Variables. Variable declarations differ somewhat
between XPL and HAL. Each individual DECLARE statement must
be examined for possible changes. '

BIT variables are declared identically in both XPL and HAL.
The length specification is also identical in the two languages.

24

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Ex. DECLARE X BIT(8);

FIXED variables in XPL are functionally identical to
INTEGER variables in HAL. Therefore, mere substitution of the
word INTEGER for FIXED is all that is necessary to make the
language change. The REPLACE facility in HAL is the simplest
method of substitution. Note here that any XPL variable names
which correspond to HAL reserved words must be changed or
augmented; i.e., the XPL identifier VECTOR could become VECTORI1
in HAL. Note also that the break characters @, #, and $ are
not legal identifier break characters in HAL and XPL identifiers
using them must be replaced by legal HAL identifiers.

CHARACTER variables have somewhat different properties in
XPIL, and HAL. In XPL, character variables are implicitly
varying with a maximum length of 256 characters. However,
VARYING character strings in HAL are currently limited to a
length of 255. Thus, the general substitution rule for character
declares is to change:

DECLARE ALPHA CHARACTER; (XPL)

to
DECLARE ALPHA CHARACTER (255) VARYING; (HAL)

In cases where a string is known to have a maximum length
considerably less than 255 characters, it may be declared as
such. Also, if a string is to be of fixed length (as with an.
initial unchanging value), the VARYING attribute should also
be omitted.

Factored declarations in XPL and HAL are also implemented
differently and involve a complete rewriting of the statements.
For example:

DECLARE (I,J,K) FIXED, L BIT(8); (XPL)
becomes: '

DECLARE INTEGER, I, J, K; (HAL)

DECLARE L BIT(8); ‘

A word of caution is necessary at this point. XPL initializes
all FIXED and BIT variables to "0" and all character strings to
null strings unless otherwise specified by the INITIAL modifier.
Any variable not explicitly initialized in HAL will have
unpredictable contents. When in doubt as to whether the. program
itself initializes variables, include an INITIAL(O) specification

25

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

on the DECLARE statement (INITIAL('') for character strings).

The LITERALLY attribute in XPL is used to perform macro
substitution for identifiers. The REPLACE statement in HAL
performs the same functicn. The statement:

DECLARE FOREVER LITERALLY 'WHILE "1"'; (XPL)
becomes

REPLACE FOREVER BY 'WHILE TRUE'; (HAL)
5.2.2.2 Arrays. When transferring array declarations and

specifications from XPL to HAL there are a number of ground
rules to follow. First, XPL subscripts start at 0 and the
dimension specified is the highest allowable subscript. There-
fore, an XPL array declared with an arrayness of 99 actually
consists of 100 elements and must be declared as such in HAL,

since all HAL subscripts start at 1 for an array. Thus,
DECLARE ABLE (99) FIXED; (XPL)
becomes
DECLARE ABLE ARRAY (100) INTEGER; (HAL)

The word ARRAY must be supplied in HAL in array declarations.

Frequently in XPL the name of an array appears without
a subscript. This means an implied reference to the 0th element
of the array. However, in HAL, an array name without an
explicit subscript implies reference to the entire array, not

the first element. Therefore, for conversion, all such
occurrences of non-subscripted array names must be translated
with the explicit subscript of 1. Thus, the following XPL
segment:

DECLARE ARR (9) FIXED, B CHARACTER;

B = ARR;
becomes in HAL:

DECLARE ARR ARRAY (9) INTEGER,

B CHARACTER (255) VARYING;

B = ARRl;

26

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

In general, unless the Oth element of an XPL array is
known not to be used, indexing expresions must be augmented by
adding one to the original subscript expression, and not by
changing the computation of indices in other statements. This
is especially true when array references are made using Boolean
values of 0 and 1 as switches for referring to one of two array
elements. Thus, the XPL sequence: '

IX = 1Y + IZ;

VALUE = ABLE (IX);
should become in HAL:

IX = IY + 1I72;

VALUE = ABLEIX +.l;
as opposed to the HAL sequence:

IX = IY + IZ + 1;

VALUE = ABLEIX;

as the latter form could possibly change the operational
characteristics of the program.

Finally, XPL allows the specification of a subscript on a
variable which is not declared as an array. This allows certain
machine dependent coding "tricks" to be performed. Consider
the following XPL sequence: ’

DECLARE INDEX FIXED, INDEXTAB (199) BIT (8);
DO I = 1 TO 50;

INDEX (I) = 0;

END;
This program in effect zero's out INDEXTAB with 50 references,
rather than the 200 required to clear the individual INDEXTAB
elements. This sequence is illegal in HAL and may be coded
as follows in HAL:

INDEXTAB = 0;

where the non-subscripted version of the name implies setting
the array to zero.

27

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

. An extra step is involved when translating statements
utilizing arrays of character strings or bit strings. A
colon (:) must follow the array element subscript, to distinguish
it from the individual character or bit subscript which is the
default in HAL for these types of variables. It may be used
following any array subscript, but is required in the above
named instances to prevent ambiguity.

Ex:
DECLARE A CHARACTER(5),
B ARRAY (10) CHARACTER (10):

By po 5 = Ai

By 70 5. = A

In the first statement, characters 1 to 5 of all ten
array elements of B are set to the value of the characters in
A; in the second statement, the first five array elements of
B are set to the value of A (padded with blanks to make the
total length ten).

5.2.2.3 Built-in Functions. The XPL functions ADDR and INLINE
are not available in HAL, and because of the machine independence
of the language no corresponding functions exist. In the HAL
compiler, fortunately, most such functions are used to mani-
pulate data types not existing in XPL but which do exist in HAL.

The SUBSTR and BYTE functions in XPL are replaced with
character string subscript notation in HAL. Examples of
both forms of BYTE and SUBSTR substitution follow:

a. BYTE (CHAR_STRING) ' - (XPL)

becomes)
CHAR: STRING, (HAL)
b. BYTE (CHAR_STRING, N) (XPL)
becomes
CHAR__STRINGN+1 : (HAL)
C. SUBSTR (CHAR_STRING , START) . (XPL)
becomes

CHAR_STRING (HAL)

START+1 TO #

28
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

d. SUBSTR (CHAR_STRING, START, N). A (XPL)
becomes

CHAR_STRING. »m spaRT+1 ‘ (HAL)

The functions SHL and SHR are used for doing word manipu-
lation in XPL. For positive arguments, the SHL function may
be replaced by multlpllcatlon by the appropriate power of two.
The SHR function is more complex as integer division is not
allowed in HAL. Since SHR is normally used to isolate a field -
of a packed word, the BIT shaping functlon can be used to achieve

the same results.
For example, the XPL sequence:
DECLARE (ENTRY, PART) BIT (16),

WORD FIXED;

i

PART = SHR (ENTRY, 4);

SHR (WORD, 16);

PART

becomes in HAL:
DECLARE BIT (16), ENTRY, PART;

DECLARE WORD INTEGER;

PART = ENTRY

1 710 12°

PART = BITl TO 16 (WORD) ;

In XPL, it is legal to assign the result of a relational
expression to a BIT type variable. This is illegal in HAL.
Thus, the statement

TEST = A > B; (XPL)
must become: '

IF A > B THEN TEST = TRUE; ELSE TEST = FALSE; (HAL)

5.2.2.4 Constants. The following constant conversion rules
apply:

29
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

INTERMEfmCSINCORPORATED-701CONCORDAVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

"ABDF" or " (4)ABDF" becomes HEX'ABDF'
"(l)lio01i0" becomes BIN'11010"

"(3)70346" becomes OCT'70346"

The quartal constant " (2)20312" must be converted to either
BIN'1000110110' or HEX'236'.

The use of the BYTE function, notably BYTE('C'), to allow
use of the internal representation of the character as a numeric
guantity is accomplished in HAL by stating BIT('C'), or
INTEGER (BIT('C')) where implicit Bit-to-Integer conversion may
not take place.

5.2.2.5 Procedures. In XPL, all subroutines and functions are
declared as PROCEDURE's. The RETURN statement may or may not
pass back a value. If an XPL PROCEDURE which returns a wvalue
is called by the CALL statement, the returned value is ignored.
In HAL, there are two classes of routines: PROCEDURE's and
FUNCTION's. A PROCEDURE does not allow a value to be returned
in the RETURN statement, whereas a FUNCTION demands that a
value be returned. Thus, XPL PROCEDURE's that return values
must be declared as FUNCTION's in HAL. Any such FUNCTIONS
invoked by the CALL statement in XPL must be changed to the
form

DUMMY_VARIABLE = FUNCTION NAME(X);

where the dummy variable is some unused name in the HAL program
with the mode of the called function.

Also, in XPL, all formal parameters are call-by-value
parameters. This presents a problem in HAL because, 1) PROCEDURE
and FUNCTION parameters may nhot be assigned values within HAL
programs, unlike XPL which freely allows such assignments,

2) the alternative in HAL, the ASSIGN list, is treated as a

list of call-by-reference parameters, where assignments to

such parameters are passed back to the calling program, whereas
in XPL, parameter assignments do not reflect back to the calling
program. Therefore, in all FUNCTIONS and PROCEDURES where
assignments to formal parameters are made, a procedure prologue
must be coded to assign the formal parameter (with an augmented
name) to a local variable with the same declared properties

with the original parameter name. Thus, the following XPL
program segment: ’

30

(617) 661-1840

ALPHA: PROCEDURE (BETA, GAMMA);

DECLARE BETA FIXED, GAMMA CHARACTER;

. BETA = BETA + 1;

END ALPHA;
becomes in HAL:
ALPHA: PROCEDURE (BETA_PRIME, GAMMA) ;
DECLARE INTEGER, BETA, BETA_ PRIME;
DECLARE GAMMA CHARACTER (255) VARYING;

BETA = BETA_PRIME;

BETA = BETA + 1;

CLOSE ALPHA;

when BETA is used as an assigned variable in the procedure,
whereas GAMMA is not. The HAL compiler itself can be used
to detect such occurrences, since assignments to parameters
will be flagged as errors, significantly reduc1ng the amount
of program scanning necessary.

Note: Notice that the word CLOSE was used on the last
line of the sample rather than the standard END.
When closing a function or procedure in HAL, the
word CLOSE is substituted for END. END is only
used to signify the end of the DO loop or a
DO case.

5.2.2.6 DO Statements. The DO case statement in HAL is
similar to that in XPL, the only difference being that the
first group of statements are executed when the DO case argu-
ment is equal to 0 in XPL and the first group of statements
in HAL are executed when this argument is equal to 1. The
following XPL sequence:

31

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

DO CASE I;

DO;/*CASEO*/

END;};CASEO*/

END;};OF DO CASE*/
translates to the following HAL sequeﬁce:

DO CASE I + 1;

DO; /*CASEl*/

END;};OF CASE 1%/

END; /*OF DO CASE*/

When translating a DO case group from XPL to HAL, 1 must
be added to the argument of the DO case statement rather than
to change the value of the variable itself. DO case statements
are translated in this manner to preclude the possibility of

causing errors elsewhere in the compiler. It is not really
possible to be certain that the change of the variable's value
might not cause problems elsewhere. The looping statement:

DO IX = 1 to 10; (XPL)

simply becomes: _
DO FOR IX = 1 to 10; : (HAL)

The word FOR is required to distinguish this type of DO state-
ment from the DO CASE or DO WHILE statements.

5.2.2.7 INPUT/OUTPUT. The primary input/output statements in
XPL are the INPUT and OUTPUT pseudo-variables. To read a card
image, the following statement is used: -

CARD_IMAGE = INPUT;
Similarly, to write a line the following statement is used:
OUTPUT = NEXT_pUTPUT_LINE;

Both pseudo-variables are character string type and imply a new
input/output record on each occurrence.

32

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The corresponding HAL statements to read the same card
image and print the same line are as follows:

READALL (5) CARD IMAGE;

WRITE(6) NEXT OUTPUT_ LINE;

Note that READALL, not READ, is used for input, as this forces

reading an entire card image. READ into a character variable

stops at any legal input delimiter.

5.2.2.8 Format of HAL File. The format of the input file is
for the most part free of conventions. The only exception to

this is that Column 1 may only be used to contain special

letters. The following letters may appear in Column 1: C, D,

E, M, and S.

These letters specify what type of line is contained on

that current image. The letter C is to specify that the follow-
ing text is to be treated as a comment and not actually compiled.

D is used only for special compiler directives such as an

INCLUDE file specified on this line. The letter E constitutes

an exponent line which is part of the multi-line input format
which HAL offers. M specifies that the following is the main

line of the multi-line input, and S specifies a subscript line

again which is part of the multi-line input. When using the

single line format of HAL input, the M may be omitted from the

line as long as text begins in Column 2 or after. The letter
M is assumed on all lines which do not contain a character in
Column 1. The above exception is the only orie which pertains

to the format of a HAL program.

Long and complicated HAL statements may be continued over

as many cards as necessary just as in XPL. Certain equations
which are broken up into several steps in the XPL version may

be condensed into one large equation in HAL, resulting in a

savings of temporary variables. (This is because XPL limits
the number of expression temporaries in a statement to three

registers. HAL has no such restriction.)

5.2.3 Debugging

The debugging procédure can be made quite simple by the
"use of various options which may be specified when compiling a
HAL program. One may specify toggles on comment lines in HAL,

which produce an identifier trace, a listing of the HALMAT

code. produced, and a list of the Fortran produced from Phase 2.

33

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -

(617) 661-1840

When errors occur, it is easy to trace the problem by consult-
ing the three listings as mentioned above. Also, a check of
the cross-reference listing produced greatly speeds debugging
time since it is possible to determine in which statement a
variable is either referenced, declared, or set. When a new
section of code is added, a toggle can be set in a comment
line at the beginning of the HAL program, which disables the
call to Phase 2 of the HAL compiler. This is done to save
computer time, since Phase 1 could perform a syntax check.
When all syntax errors are eliminated, Phase 2 could then be
called and Fortran output could be produced and subseguently
compiled by the Fortran compiler.

It is, of course, much easier to debug a higher level
language program than to debug assembly code, since ideas are
clearly specified by the code being read, whereas in assembly
language the intent is not always quite clear. In fact, when
translating the in-line code it was sometimes necessary to speak
to the person who had originally coded that section before a
clear understanding could be gotten in order that the transla-
tion could be performed.

5.2.4 Conclusions

At the time of this writing, some HAL features are still
unimplemented. Because of this, certain sections of the trans-
lated code have as of now not been tried or debugged. However,
that code which has been debugged and executed seems to prove
that HAL is a language with which a large compiler can be easily
written and debugged. The fact that HAL implements floating
point arithmetic also eliminated a great deal of the complicated
code necessary in the original XPL version. This fact alone
made readability of the final copy much easier than the complicated
in-line code which appears in the corresponding sections of the
original copy.

34 _
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

5.3 Feasibility Demonstration ("HAL-in-HAL")

5.3.1 Objective

The HAL-in-HAL program was written as an experiment to
prove whether or not the HAL language was suitable for writing
translator systems, as well as aerospace applications. The
program consists of a rewrite of the two-dimensional read
routines originally coded in XPL for the HAL/360 compiler,
utilizing the conversion techniques outlined in Section 5.2
above. These routines represent a full test of the character
and bit manipulation facilities normally required for translator
and system coding.

5.3.2 Test Program Description

The test program consists of an elementary scanning
routine which utilizes the STREAM procedure for receiving its
character-by-character input. STREAM converts the two-dimensional
HAL input cards into the corresponding one-line format which is
required by the scanner and subsequently the lexical analyzer.
The test scanner repeatedly calls STREAM building-up identifier
and numeric strings as tokens, as well as treating any special
character as an automatic token. These are printed out as they

are encountered. The test scanner is concurrently building-up
an output line image which is a reflection of the input character
received from STREAM. Whenever a semi-colon (;) is encountered,

the current statement line, along with its corresponding over-
punch markers, is printed, showing what the one-line format of
the HAL statements looks like. A question mark (?) is used to
indicate the end of the input stream for the purposes of this
test. See Figure 5.3 for a flow chart of the test scanner.
(Program listing - Statements 544-582 in Appendix B.)

5.3.3 Results

The HAL-in-HAL experiment has proved conclusively that
HAL can be used successfully as a compiler implementation tool.
Although HAL has no machine dependent features, (which frequently
are designed into implementation languages), this experiment
has proved that such features are not a requirement for compiler
implementation, but rather merely a convenience item to circum-
vent known code generation inadequacies in the compiler. The
HAL implementation is concise, readily followed, and understand-
able (even more so than the XPL version of the same program).

35
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

i
|

Initialize
write
'BEGIN'

7

Blank flag

= false

PN

l

Blank flag
= true
M /f\\ A
e q
72
Concatenate
next_phar
to Built
No \\\\\F>Yes
over punc
?
Add blank Add
to Built over_punchf
up to Built
up —

|

o ()
b S/
L a1

A
~

Figure 5.3 :
INTERMETRICS INCORPORATED « 701 CONCORD AVENU%é CAMBRIDGE, MASSACHUSETTS 02138 - (617)

661-1840

Yes No

char letter
\\Q{\ﬁs)//ﬁ

Concatenate -,
next char . . No
to Built Ullz_ﬁokel
token o -
Yes .
Write
\\ﬁy Built_tokeq
over punc Yes Built o_p; |
G2 /// : , . Set to nul”
\/'/) }
No Built o p ,
= over «
punch
<
Yes
—d b

Write
'Blanks =*
lank_pount

. ™
Write
'Token ="
next cha

Write

Built,

Built up;

Set to Nulll))

O

v

A2

Figure 5.3 (Cont.)
37
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Write
'END OF
TEST'

END

Figure 5.3 (continued)

38

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The checking facilities of the HAL compiler can detect
‘numerous logical errors without having to impose the strict
définition rules of XPL. Unitialized variables are easily
detected, as are parameter mis-matches. The bulk of the debug-
ging time for HAL~in-HAL was in streamlining the program to
make the HAL version more readable, as well as more efficient,
since the rule of adding one to all XPL subscripts as a general
rule turned out to be both awkward and confusing in many
instances. The final version of STREAM is much more efficient
than the original translation performed utilizing the rules
of Section 5.2. Programs originally coded in HAL will obviously
not experience this problem.

39
INTERMETR|CS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

PRECEDING PAGE BLANK N@TFEMEH)

APPENDIX A,

HAL Course Material

41

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

PRECEDING PA™ n7 ANK NOT FILMED

YRECACING PAGE BLANK NOT FILI ™

A.1 OVERVIEW

43

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

A%

SLIDE 1

PREFACE

HAL developed by Intermetrics, Inc.

* language deSign

* Compiler design and |mplementatlon
Significant Objectives

~* Increased readability
* Increased reliability
* Real time control

Capabilities
* Primarily designed for on-board computer
* General enough for:
around support and verification
other real-time applications

fsmﬁm;nfm -s(—.r‘w'-'z-mrgf,w

Sy

SHUTTLE LANGUAGE REQUIREMENTS

= Software Applications

* Navigation, guidance, targeting * Data management
* Vehicle control | - * Communications and displays
* Operatmg systems * Support software

* On-board checkout and monitor

*

Computer Environment

-+ \Wide range of computers (Flight and Ground)
* Fixed- and floating-point »
* Simplex, multi-computer, multi-processor

*

Language Characteristics

* Clarity and readability
« Enforcement of standards and conventions |
= Extensive automatic checking (compile- and run-time)

Facilitate software management

B

134
b
Lo
it
2
c
P
i
E

4
j;,* Promote modularization
|
4

HITERIMETHCS

SLIDE 2

97

CHRONOLOGY OF SOFTWARE DEVELOPMENT

Specs MW———Generation-—i—Production S1é Usage ‘ 4
Requirements Debug Operations
and and ' and
Specifications Modification Maintenance
) X —_—
Writing Compile time
code :

Computer
Preparation (e.g. punch)

Some Observations

1. The writing of code is closely tied to the specifications.

2. The time reguired for computer preparation is small compared to the program life.
3. A lengthy period of debug and modification must be provided.

4. Period of program usage extends many times that of program generation.

5. Many more people will use a program than generated it.

17773 " Conclusion
5

;o
1 b
t

The computer language should promote understandlng of the. software. The
listing should tend toward self~documentation. '

g oy df’ﬂ‘l"ﬁ”‘yl’"’ mru»vi—“""‘-qﬁm":ﬁi

RN

k.

b

SLIDE 3

u.uv..x.-:

Ly

e w1 .

SLIDE 4

it

M1

SALIENT FEATU RES.OF HAL

Capability

. Two-dimensional ln-put-Output

Annotation of variables
~Complete vector-matrix arithmetic
Data array and strucm ré hahdling
Bit and character manipulations
Real-time control statements

Data-Pool (COMPQOL), controlled
sharing and name scope

MTERMNMETRICS

Requirement

Increased readability

‘ Targeting, guidance and control

L)

Data management
Systems, communications and 1/0
Command and control

Increased reliability

87

AARY

ADVANCED FEATURES

¢

* TWO-DIMENS IONAL (MULTI-LINE) INPUT AND GUTPUT.
. 'VECTOR AND MATRIX DATA TYPES AND OPERATORS

TASK SCHEDULING AND SYNCHRO\HZATTON STATEMENTS FOR RtAL TIME
CONTROL S

- .CONT'?OLLED SHARING OF DATA AMONG MULTIPLE USERS THROUGH A
B COMPOOL AND DATA LOCKI\TG STATEMENTS

. STATEMENTS TO MANIPULATE DATA-GROUPS (ARRAYS AND STRUCTURES)
AND POWERFUL ME!PODS TO PARTITTON AND lNDtX THEM

L OUTPUT ORIENTED. LAT\GUAGE IS SLA\I:ED TOWARDS PRODUCTION OF
242+ UNDERSTANDABLE AND UNAMBIGUOUS OUTPUT LISTING RATHER THA'\T! L
- MINIMIZING KEYSTROKES ON INPUT -
(A SIMPLE SCIENTIFIC SUBSET 1S DEFINED AT THE OUTCET THAT WlLL |
T PERMIT EASY USE BY THOSE WITH A SCIENTIFIC BACKGR UND

A

(3

—~

6V

HAL Data Types and Organizations

Types . - © -+ Organizations
Arithmetic | . String , o Array 1. | Structure
Scalar | . Bit | ;) - o
- Individual Array
- ‘Data-Type -~ =~ | T -
Integer| -+ *— Character ' R
Vector T ’ - - Combinations

w - of Data-Types .

Matrix’

Uniique notetion: VECTOR:NANE, BIT STRING:NAME, CHARACTER STRING:NANE,

MATRIXGNAME, ARRAY:INAME], STRU TURE: {NAME)

05

EXAMPLES OF DATA TYPES

SCALAR: ~-126.04
INTEGER: 126 |
VECTOR: 5, -26.4, 3.06l

MATRIX: 5, -26.4, 3.06l,
| | -67.2, 106.1,
0, 73.29, 0.06

E1T STRING: 10110101

CHARACTER STRING: VOLTAGE ON BATTERY B 2 VOLTS
BELOW SPEC |

1s

STRUCTURE ORGANIZATION OF DATA

DECLARE 1 NAV_STATE 2);

2 STATE ()
3 TIME PRECISION (8),
3 R VECTOR PRECISION (10),
3V VECTOR PRECISION (10)

2 STATE_FLAGS,
'3 BODY_FLAG BIT INITIAL (TRUE),
3 PHASE_FLAG BIT,

2 W MATRIX (9, 9) PRECIS [ON (10);

(A

1
i]

(1 P s
: MR

" SLIDLE 6

HAL PROGRAM CRGANIZATION

Data
Cornpeoel
Symbolic
Library
Program Program Program
2 —— N

€5

SCOPE OF NAMES

-« Scope is the region: in Wmch a name is recognized.

) o Scopes are defined.‘from the outermost_ ‘block toward the inner; ie,

—Task N\ -
. o . Procedure
Compool —> Program — Procedure) .
' B TN : Function
Function o

- t_d . .) /

Names defined in an inner block are ncver “recognized in an outer

b!ock. Inner b!ocks 0fxecuvely lso!ate locally defmea variaoles

etc.

S

BLOCKS OF CODE (NAME SCOPE)

ABLE:

PROGRAM;

DECLARE VECTOR (5) A,B,C;

— A,B,C are vectors (5)

E=E+¢c;
]
'l
R | :
BAKER: % SK>\\ \\\ \\§ \\\ \\\
DECLARE\A INTEGER; \\\\
\CH

$ B,C are vectors (5)
A is now an integer

“BROCEDURE Y ’\\
DﬁpﬁAﬁQ/xe
pEcLani A BRI (Do)s

1\/

NI

, END ‘BAKER

—» B,C are vectors (5)
A is now a bit string
X is a scalar

GRAB: PROCEDURE; \ N NN
DEGLARE\ X VECTOR (4) ‘ |
\
1
END_ GRAB;
N N i
END ABLE;

? A,B,C are vectors (5)
X is a vector (4)

h.uﬁ-.

SLIDE 7

e = ~2

B A Yy T L T T T
i e nETRES

QS

HAL Statements

Assignment

LABEL:VARIABLE = EXPRESSION;

Declare

DECLARE -------- o

Control

6O TO ---- |F-statements, DO-statements,
Block | |
Procedures, Functions, Tasks, Updates; :Frograms

Real-time Control

Schedules, ‘WaitS, Signals, Locks

99

EXAMPLES OF ARITHMETIC OPERATIONS

. (From Apollo Navigation Egquations)

HAL

" GSOP Specification

— * —

7z = WT B;
— = AT 2 2,
OMEGA = Z W /(ZMAG™ + ALPHA);

DELX = OMEGA DELQ;

|
1
>

X + DELX;

F = 1 + (ALPHAZ/ (ZMAG?

=ik
]
=

* 0 _ —
- OMEGA Z/F;

SLIDE 9 .

+ apLHA®))1/2;

z=w"p

9_T___ 1 _ ETW,T
7% + 3

§X = w 6Q

w2’
We=w - —

1+ ——s

zZ- + o

where b = geometry vector
W = square root of covariance
% = measurement variance
X =

state vector

LS

CONTROL, LOGIC AND COMPUTATION

(Cross product steering of Apollo vehicle)

Invoives scalars, 3-d vectors, 3x3 matrices, "Booleans"
XKSTEER: IF TGO < 4 THEN DO;
OMEGA CNB = 0;
sW = OFF;
SCHEDULE ENéINﬁ_QFF AT (TIME+TGO)
PRIORITY (20) E OFF_ID;
GO TO START;
END;
DELM = C B DELT - DELV;
OMEGA_C = K(VG*DELM)/(ABVAL (VG) ABVAL (DELM));
OMEGA CNB = SMNB §EFSMMAT OMEGA_C;

GO TO START;

"time—to—gé"

where.TGO =
; VG = "velocity-to-be-gained”
TWT OMEGA_ = rate command
| NTERMETRICS ‘

SLIDE 10

8S"

EXAMPLES OF MATRIX PARTITIONING

Given: 9x9 covariance matrix E of errors in position,

and landmark location. That is,

s

* * *
E E E
p-pP p-v P~
* : * * * . ’
E = B E ‘B
v-p V-V V=%
* * *
B E E

‘9-p L-v 2-1

l. RMS Errors

*
SQRT (TRACE (E

I

RMS_POS

*
SQRT (TRACE (E

H

RMS_VEL

* . .
2. Initialize E for new landmark

=0;

b %

1 TO 6, 7 TO 9

%
!

7709, 1T0 6 %F

¥

Il

E; 70 9, 7 TO 9

0, B

-

e v M T3S TR
"

| WITERMETRICS

SLIDE 1

1 T0 3, 1-TO 3

4 TO 6, 4 TO 6

| —

));

)):

.
MATRIX 3 5 (a“, 0, 0

velocity

69

BIT AND CHARACTER MANIPULATIONS

Suppose the system-status word is made up as follows:

SYSTEM_STATUS [l Ol 1l 1] 1]0

u S J
h] \ 4
Example: system status
4
A = 'SYSTEM STATUS:';
DECODE: DO CASE SYSTEM_STATUS; .4 1,
r r .
MESSAGE = 'ENGINE'|{A; CASE 1
4
MESSAGE = 'POWER'||A; CASE 2
' r
MESSAGE = 'IMU'||A; - CASE 3
14 4
MESSAGE = 'LIFE SUPPORT'||A; CASE 4
* *
* *
* *
END;
DO CASE SYSTEM STATUS, g 4.
r 14 .
MESSAGE = MESSAGE||'0.K.'; . CASE 1
4 r
MESSAGE = MESSAGE| | 'RECONFIGURED';. CASE 2
r 4
MESSAGE = MESSAGE]|'IN SELF-CHECK'; CASE 3
x ' *
* *
* *

Eﬁﬁ END;

' :
END_DECODE: WRITE (DISPLAY)MESSAGE;

SLIDE 1

09

EXAMPLE OF IF-STATEMENTS
(Flag-checking in Apollo Rendezvous Data Processing)

A: WAIT FOR SYNCH_SIGNAL;
IF REFSMMAT FLAG THEN
IF R _60_OP THEN GO TO A;
ELSE IF GPDATE_ELAG THEN - DO;
IF VHE RANGE THEN
IF TIME>60-TIME_VHF THEN GO TO VHFREAD;
GO TO b; |
END;

ELSE IF TRACKFLAG THEN GO TO D;

GO TO EXIT;

Note: ELSE always refers to immediately precéding IF (except when IF
is within a DO group) _ '

19

EXAMPLE OF A PRCCEDURE

(The Apollo Time-Radius Routine
from GSOP)

CALLER:
' CALL TIME_RADIUS (RT2, VT2, (ABVAL (RT2) - 30480), MU_EARTH,
T R_FLAG)) ASSIGN (TIME_32, RT3, VT3);
SUBROUTINE:
TIME RADIUS: PROCEDURE (X,8,C,D,E) ASSIGN (F,G,H);
Statements
] 1
t 1
1 1
RETURN;
END TIME_ RADIUS;
NOTE:

"Call-By~-Name", "Call-By-Value"

29

ABLE:

EXAMPLE OF A FUNCTION

i * *
N = TRACER(A+B);

GO TO BAKER;

*
TRACER: FUNCTION(Q):;

DECLARE Q MATRIX (A,*);

* .
IF TRACE(Q) > 100 THEN

* %1 % * %
RETURN (Q Q + Q + QQ + 00Q)

ELSE RETURN(O) ;

END TRACER;

NOTE :

"CALL BY VALUE", "run-time"

°

khk

dimensions

€9

PROGRAMMING REQUIREMENTS FOR
REAL TIME SPACE APPLICATIONS

Scheduling and Tasking

Software performs time critical functions and responds
to interrupts in a complex environment requiring the
capability to schedule, control and synchronize tasks.

Recovery From Error Conditions

Techniques are required to protect and enable system
to "continue" after detection of unexpected error

condition.

Common Memory Sharing and Control

‘Techniques are reqUired to dynamically control the
use of common data elements among tasks in the

environment.

EXAMPLE OF HAL REAL-TIME CONTROL

¥o

_ | TASK: MANEUVER;
PROGRAM: - CONTROL; AL
| ¥ yd , |
//’
A S1GNAL ENDMANU;
SCHEDULE MANEUVER; ~ CLOSE MANEUVER;

SCHEDULE MEASUREMENT;
~N
WAIT FOR ENDMANU T~

. N
) AND ENDMEAS; N | TASK: MEASUREMENT:

3
i
e

CLOSE CONTROL; S1GNAL ENDMEAS:

CLOSE MEASUREMENT;

e

1 ENDMANU and ENDMEAS are programmer -defined events

L.
f' .
t

3} »"

EAMETRICS

SLIDE 13

S9

REAL TIME STATEMENT EXAMPLES

SCHEDULE TARGETING PRIGRITY(3);

SCHEDULE RADAR ON R_RUPT PRIORITY(PRIO +2) RADAR_PROG;-

|F iRACKFL/—\G_= ON THEN SCHEDULE AUTOMANEUVER IN 5;

ELSE WAIT UNTIL (TIME + 5);
SCHEDULE STEERING AT(IGNITION + 3)PRIORITY(10) INDEPENDENT;
TERMINATE RADAR_PROG; |
WAIT FOR OK;

SIGNAL OK;

99

EXAMPLE 1: READ AND WRITE CONFLICTS

CONTROL OF SHARED DATA

) ?

SLIDE 8

A TasK; | SR . TAsK; | 4R
/

M-N+P; CONTROL——— N = XV,

CLOSE A" T~ oy 0. CLOSE B oy 05

EXAMPLE 2: UPDATE CONFLICTS

A TASK; | UPPATE BTASK; | 2TOAE

Y=Y -X CONTROL——— Y=Y -7,

CLOSE A ™1 o5 CLOSE B 1o,

NOTES:

1. B "INTERRUPTS" A'IN BOTH CASES

2. #1 TASK A RESUMES USING OLD AND NEW VALUES FOR N

43, #2 TASK A RESUMES ”CLOBB‘:RING” THE VALLE FOR Y SET BY TASK B

L9

ERROR CONDITION STATEMENTS EXAMPLES :

ON ERRORlZ- GO TO ABLE;

ON ERROR GO TO BAKER;

1705

ON ERROR, SYSTEM; =

E RUFT ERRORé;

Pz e

. ST
Al gl",/ rLe

89

- SUMMARY

* HAL emphasizes reliability

* Readability
* Data protection

- * HALisa full_—capability language

Includes all data types

Real-time control statements _

Supports on-board computer software

Floating- or fixed-point syniax

Supports ground, checkeut, simulation software

¢ < 3 > ”

- * Schedule of Events

* First version delivery to MSC in June, 1971
Development to continue compatible with Shutile schedu!e

* QObject-code-module requxred for selgcncd on-board-computer

.......

MTERIMEY FT

SLIDE 14

A.2 LONGER HAL COURSE

69

INTERMETRICS INCORPORATED ¢ 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

0L

HAL Data Operations - |

Arithmetic | |
All common operations including:
* Vector dot, cross and oute;' - products
* Matrix multiplication, inverse transpose
* Integer mathematics |
Combined integer-scalar operation
Bit String
Logical AND, OR, ‘NOT, of:
“* Long bit strings, bit-by-bit
* Single b.it "'"sooleans™
Concétenation

Character String

Concatenation of characters and data into messages

- Arrays |
Most valid element-by-element operations apply to arrays

TL

HAL Data Operations - 11

~ Comparisons

A comparison of data always results in a sin_glé TRUE or FALSE answer.'

* Absolute comparison

VECTOR, MATRIX, ARRAY, STRUCTURE
| NOT=

* Absolute and Relaﬁve Comparisons

scalar o
integer - IESF

bit | | - -

' NOT<
character NOT>

ZL

EXAMPLES OF DATA OPERATIONS - I

Arithmetic Operations

3 + K(3+J); -=== all integers

I = (-J)
P = * _ : .
A=P/R+R - V.MV; =---- scalars, vectors, matrices
- — — * _ = 2 = —_, = = * ' '
B=-P* V+5MV + ANV.P)° F + F/(V.V M); =--- scalars, vectors,
: matrices
* *x % k] — : .
C=-MN+M + V V/A - (M+N) 73 ---- scalars, vectors, matrices

A=1I/J+BJ+ J_6'4; ————————— .integers, scalars

[

€L

EXAMPLES OF STRING OPERATIONS

Bit String
D = B AND C;
D = A OR (B AND C);
A = D||NOT B||(B AND C);

.Character String

C = 'PLEASE'||'HELP';

o
1

'THE ANS. IS'||X||'N.M.';

vL

EXAMPLES OF ARRAY OPERATIONS

"Two-array" operations:

_te1/1a1, (81 * (91, [R11®), (AI OR (3]

One-array operations:

_p/(al, T * 91, RIF), [A] OR B

SL

EXAMPLES OF COMPARISON OPERATIONS

9L

HAL Explicit Declarations

* |n general, all data must be declared by declare statements
(with the exception of those permitted by implicit declarations).

* The declare statement specifies the name, organization, type
and attributes of data quantities.

Keywords used in declare statements:

- Organization Type Attributes
ARRAY o INTEGER PRECISION
SCALAR (optional) INITIAL
VECTOR | CONSTANT
MATRIX STATIC
CBIT AUTOMATIC
CHARACTER - LOCKTYPE
DENSE
ALIGNED

VARY ING

LL

~© EXAMPLES OF EXPLICIT DECLARAT!ONS

| DECLARE | INTEGER INITIAL (65);

| is an integer with an initial value = 65.

2. DECLARE X PRECISION (8) AUTOMATIC INITIAL (6. 061);

X is a floating point scalar with at least 8 significant decimal
digits. .

3. DECLARE A ARRAY (5,3,4) VECTOR (6) PRECISION (I0)

Ais a 5x3x4 array. Fach element is a 6 dimensional vector with components
represented to 10 significant decimal digits.

4. DECLARE MATRIX (3,4) INITIAL (0) AUTOMATIC

A, B, C PRECISION (I0);

A, B, and .C are all (3,4) matrices with automatic storage. All components are
set to zero. ' - '

5, DECLARE A PRECISION (IO, I5)

A is a fixed point scalar with [0 integer bits and at least 15 fractional bits
(i.e. maximum value < 2’0, granularity < 2".5).

8L

INDEX OPERATORS

The "TO" operator

Selects a subset of elements from element-i

"7O" element-j.
- For example: :

| A1 1o 10

The "AT" operator

Selects a subset of N-elements starting at

element-i.
For example:

210 AT 1

The number of elements in any "partition"

must be known at compile-time.

6L

: — %
1. Vectors and Matrices (given V, M)

EXAMPLES OF INDEXING - I

-.V2 ———————— scalar element,
Vl To 5 "7 sub-vector,
M, , —==——=- scalar element,
M, ittt vector element,

Sy m=m=—mm-s single bit,
82 7o 10 ~TTT7 sub-string,
’ 3

Cop m g —==——=— _sub—strlng,

*

M3 AT P, 3 AT Q

sub-matrix

- sub-string

08

EXAMPLES OF INDEXING - 11

%

3. Arrays (given [Al, a two-dimensional array

Qf matrices)

[7%]‘I 104 3706 T sub-array -

[A]P, Q T an array of scalar elements

(Al s an g [Al N —--- sub-array of vector elements
4, Array of Bit Strinés |

[;\]3 105 %1706 T sub-array Qf sub-strings

A --------------------------- one p.ar.tic'ul'ar bit

18

DO - STATEMENTS

s DO - statements block out a set of statements which
are to be treated as a single unit.

° There are four types of DO - statemenfs
1. Simple _DQ—END
2. lterative DO-FOR
3. lterative DO-WHILE

4, Selective DO-CASE

40

EXAMPLES OF DO-STATEMENTS - T

Simple DO-END

IF X>5 THEN BAKER: DO;
B-"A = B;
C = D;

GO TO ABLE:

END BAKER;

ELSE CHARLIE: DO;

7 =

=k
<l

% E;

Hj|
11
<l

IF Y = 0 THEN GO TO OUT;

END CHARLIE;

NI

€8

EXAMPLES OF DO-STATEMENTS - II

1. Iterative DO-FOR

ABLE: DO FOR I = P TO (N/S) BY L WHILE N>0; . limits and increment.
- are computed once.
_ 2 .
X = Y° + A
N =N~ .006 X;:

P=1; S = 2; L= 3;

END ABLE;

2. Iterative DO-WHILE
ABLE: DO WHILE (X > Y AND'Gb;rLAG = ON); XY ahd,éO_FLAG
- are recomputed.

X = v2 + DILOG(Z);

GO_FLAG = TRAKFLAG OR NAV_FLAG;

Statements
1]

¥]
1 1

END ABLE;

78

EXAMPLE: SEARCHING AN ARRAY OF DATA

The final phase reference for Apollo reentry:

DECLARE ARRAY (13) VREF CONSTANT (994, 2103, 3922,...);

DECLARE ARRAY (13) RDOTREF CONSTANT (-690.0, =-719,...);

DECLARE ARRAY (13) DREFR CONSTANT (41.15, 60, 81.5,...);

etc.

INTERPOLATE: I=20;

PO WHILE (VREFI NOT<-¥) AND (V NOT< VREF

I =1+ 1;
END;
GRAD =
RDOTREF V. = RDOTREF

GO TO CONTINUE;

(v - VREFI)/(VREF

I+l
+ GRAD (RDOTREFI+

1

1+1) 7

- VREFI);

- RDOTREFI)7

G8

EXAMPLES OF DO-STATEMENTS - IIT

ABLE:

DO CASE N;

X = Y2;.

BAKER: DO CASE P;

F = A + B;
—_— * .
G=MYV;
END;

GO TO CHARLIE;

Z =W + B;

END ABLE;

Selective DO-CASE (Computed DO-Statement)

'CASE

" CASE

CASE

CASE

CASE

CASE

98

EXAMPLES OF IF-STATEMENTS

1. Simple:

IF X 5 AND Y > 6 THEN ABLE: GO TO PLACE;

ELSE GO TO TRY_AGAIN;

2. Complex:

L] - _— * _—
5 THEN IF Y > 6 THEN IF B OR C THEN Z = M V;

- *=]1 =
ELSE CHOICE: Zz = M V;

IF X

il

3. More Complex:
IF § = (A ORB) THEN IF X > 5 AND Y > 6 THEN GO TO OUT;
ELSE IF [A] NOT= ([B] THEN [A] = [C];
ELSE IF ----- THEN —-===; ELSE IF —==—m THEN ————n ;

ELSE GO TO TRY_AGAIN;

note: ELSE always refers to immediately preceding IF.

L8

ABLE;

‘Note:

SELECTIVE INCLUSION OF OUTER—NAMES

PROGRAM;

DECLARE A,B,C,D,E,F;
1
1
]

BAKER: | PROCEDURE; | » Only B,D,F are recognized
' outer names. (A,C,E.are
OUTER B,D,F; "rejected"). :
DECLARE A,E; ' - ¢ A,E,are defined locally.
T

COMPOOL variable~names may be accepted, rejected and/or
locally defined by combinations of DECLARE and OUTER
statements. In order to use implicit declarations within

a block (except for PROGRAM-level) 2an OUTER-statement must be

present.

PRECEDING PAGE BLANK NOT FILMED

APPENDIX B.-

HAL-in-HAL Detailed Description and Listing

B.1 INTRODUCTION

The output from the HAL-in-HAL experiment consists of
the following:

1. The HAL program listing, symbol table, and cross
reference :

2. The output of the HAL program execution
3. A listing of the source data read by HAL-in-HAL
(a sample HAL program)
B.2 HAL-in-HAIL PROGRAM DESCRIPTION
This section will describe the general function of each

of the routines in HAL-in-HAL. Refer to the program listing
for specific details.

B.2.1 STREAM (Statements 100-542)

The overall” functions of the STREAM prbcedure are as
follows: ' '

1. Convert the multi-line format of the input cards
to a one-line format, which is required by the scanning
and syntactic analysis routines.

2. Process Comment and Heading cards to aid readability
of the source program, and also to enable certain
compiler toggles for assisting the person who is
debugging the compiler.

3. Eliminate HAL in-line comments (strings contained
between /* and */). :

4, Perform substitutions for replace type strings (not
demonstrated).

To convert input to one-line format requires the following:

89
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

1. Enclosure of each level of subscripting in parentheses,
preceded by the dollar-sign character (§).

Ex.
M Sl1_ = 52 ;
S I IXI
S
becomes
S1$(I) = 828 (IX$(I));
2. Enclosure of each level of exponentiation in

parentheses, preceded by two asterisks (*¥*).

Ex.
E 2
E 2 I
M S2 = X
becomes
S2%* (2) = X**(I**(2));

STREAM contains ten local subroutines which assist it in perform-
ing its function. They are local because they are of no value
outside of STREAM. The non-local procedures are general interest
routines, which are useful at levels other than within the

STREAM procedure.

B2.2 CARD TYPE (Statements 26-33) .

CARD TYPE is a function which receives as input the first
character from an input card and returns an integer typifying
the card in one of five classes.

B2.3 CHAR_INDEX (Statements 34-44)

_ CHAR_INDEX locates one string within another, returning
“the relative position of the desired substring if found, and
0 otherwise.

B2.4 PAD (Statements 45-53)

The PAD function forces a varying character string to a
minimum specified fixed length by appending trailing blanks.

90

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Its primary function is for WRITE list items.

B2.5 I _FORMAT (Statements 54-61)

The I_FORMAT function first converts .a number to a
character string, and then adds high order blanks to force
a right justified integer string of a specified fixed length.
This routine is also primarily for WRITE list items.

B2.6 ERRORS (Statements 62-82)

ERRORS both prints error messages when reported, and
saves a record of their occurrence for later reporting. It
also will terminate the compilation if either - too many or too
severe errors occur during compilation.

B2.7 PROCESS_COMMENT (Statements 116-133)

This routine processes heading cards, as well as looking
for special debugging directives on comment cards.

B2.8 STACK_RETURN_CHAR (Statements 134-144)

This routine locates an available position in the
return stack and records both a count and the character to be
added to the output stream to formulate. one-line output out
of multi-line input.

B2.9 READ CARD (Statements 145-157)

This routine reads the next input card and prints the
card previously read. (This is because a ‘group is only
defined by the next non-group card.) It also counts the input
cards and checks for an end of input condition.

B2.10 ORDER OK (Statements 158-189)

This routine verifies that cards are in the proper sequence
to formulate a proper HAL group. It also signals when a group
is completed. A

91

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (61 7) 661-1840

B2.11 COMMENT (Statements 190-201)

This routine removes '/* */' type comments from E and
S lines, when they exist. : _

B2.12 SCAN_CARD (Statements 202-220)

This routine scans E and S cards for non-blank characters,
compressing multiple lines into one line, with an indicator
recording which level the character appeared on. If an overlap
occurs, the one closest to the M line is retained, and a diag-
nostic is issued. ‘

B2.13 COMP (Statements 221-244)

This routine is called when either an E line or S line
is first encountered in a group. It keeps reading cards and
calling SCAN until an entire E or S group is compressed into a
single line as described in B2.12

' B2.14 GET_GROUP (Statements 245-297)

This routine is called to assemble a complete group,
which consists of an M line and one or more E and/or S lines,
formulating as output a single E line, M line, and S line, with
corresponding indicators.

B2.15 CHOP (Statements 298-306)

This routine advances the M line character index by 1,
forcing a new group to be read when the M line termination
is reached. The information concerning the last character on
the previous card is retained.

B2.16 STACK (Statements 307-325)

This routine builds on Exponent or -Subscript stack
corresponding to a single blank field on an M line; i.e., those
subscripts and/or exponents related to a specified variable
or function. This is in preparation for outputting from STREAM
within stacked Return characters (see B2.8).

92

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

B2,17 BUILD_XSCRIPTS (Statements 326-362)

This procedure invokes STACK for building both the E and
S stacks for a single blank field, including M line comments
as blank fields. Residue blanks for which no E cr S line charac-
ters exist are treated as blank fields by the scanner (blank
fields by the scanner (blank is a legal delimiter in HAL) .

B.3 . DESCRIPTION OF HAL-IN-HAL OUTPUT

The output of the HAL program is interpreted thusly. The
program reads in a group of data cards. A group can consist of:

1. a single M line
2. one or more E lines followed by a single M line
3. a single M line followed by one or more S lines

4. one or more E lines followed by a single M line
followed by one or more S lines

Each group is then converted into one line of output to the
scanning routine. A group of type 1 is transmitted directly
except for elimination of redundant blanks. A group of the
other three types involves processing of S line and/or E line
stacks and the addition of the appropriate subscript and/or
exponent enclosures (subscripting is performed first if the M
line identifier has both a subscript and an exponent attached).
As the scanning routine continuously calls STREAM, identifier
tokens are formed. All identifier and special character tokens
are printed as they are encountered, including identifier over
punches. When the token is a blank, a count of the blanks
scanned is printed.

The full output consists of the following:

1. a printout of the entire card group just read,
complete with card numbering .

2. a pfintout of the individual tokens encountered within .
the group just read (signalled by TOKEN= or BLANKS=)

3. a printout of the combined one-line format and any
possible over-punch characters whenever a semi-colon
(;) is returned by STREAM. This represents a complete
HAL statement as seen by the scanning routine (signalled
by OVER and MAIN in succession).

93

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

This sequence is repeated until the input is exhausted (signalled
by a "?" for this test). Note in the TOGGLE sequences where the
subscript and exponent enclosures are added to the characters

on the actual input cards. ‘

94
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

S6

H AL ccwrvMPILATICN - P HASE 1 - INTERMETRICS » INC.) PAGE 1

o emree - o . M . g

STHT - - C - . SOQURECEL - - - i~ B L LINE CURRENT SCOPE

VUMD BFALINFAL:D PEOGRAME o v o oo oo oot o o s S DU R Y

| s B C P E E G 1
| THE FOLLOWING GRCUP CF CECLARES ARE CMLY TEMPCRARY s !

W~

2 ¥l GEPLACE P BY PEPLACE'S ; I b 4 HALTNHAL

o e R AL 0 . L e -

R FALSE 8Y *G*'; R TRUF BY '1'; R EIT_1 BY "INTEGER'S | HALINHAL

%)
=
(%21

& Ml F IF_NCT QY '"IF ¢ =': R IFF RY 'IF 1 ='; e - e 1 6 HALTNHAL

~1

2 NM] K CUT BY "WRITE(&)'; . SR HALINHAL

€ M| R FCPEVER BY 'WHILE 1 = 1'; ‘ i e HALINHAL
1C ¥} CEFAULT INTEGER: R T . e - e I HALINHAL
11 M1 PECLARE X700 CHARACTER(TC) INITIAL (' *)3 o ‘ o - 1 10 HALINMHAL

o P e

12 M1 [SCLARE CHARACTER(255) VAPYINC, BUILT, BUILT_UP, BUILT_TOKEN, BUILT_O_P3 11 HALINHAL

v B o

13 ¥l CECLARE SUANK_FLAG BIT_1 INITIAL(FALSE): N e 112 HALINHAL

14 Ml CFCLARE INTFGER INTTIAL(Q),

| 13 HALINHAL

14 M| ERFCR_COUNT, MACRC_FOINT, MACRC_LIMIT, . T : | 14 HALINHAL
14 M| OLD_LEVEL, NEW_LEVEL,.. mry e 1150 HALIMHAL Lo

14 M} WAX_SEVERITY, STATEWENT_SEVERITY, | 16 HALINHAL

14 ¥| SAVF_SEVERITY ARRAY(10C), I 17 HALINHAL

14 M| l SAVE_LINE ARRAY{100), FREVICUS_SRRCR, I3 .- "} 12 HALINHAL o o L e

15 ¥ CRCLARE CCMPILING PIT_1 INITIAL(TPUFIS | 1¢ HALINHAL -

16-%] DECLARE INTECGER, TINE], TIVE2;: ' , | 20 HALINHAL

17 M1 CECLARE MACRC_STREAM CHARACTER(255) VARYINGS. « i o o w0 |.21 . HALINHAL ...

18 | CFCLARE MACRC_FOUNL EIT_1 INITIAL{FALSE)S i - i L i" o .22 HALTNHAL
16 M} CECLARE CARC_CCUNT INTECER INITIAL(-1)3 . | 23 HALTNHAL
2C ¥l COCLARE DISASTER LAEBFLS e o S e | 24 HALINHA

21 M| CECLARE NEXT_CHAR CHARBCTER(1)3 | 25 HALINHAL ' S

AL coMPILATICN @ -- PHASE 1 -- I NTERMFTRICS, -INC. ' PAGE 2

STVT . : L . SCURCE S L S LINE CURRENT SCOPE
22 Ml CECLARE NVER_PUNCH CHACACTER(I): _ . ‘ I 26 HALTNHAL
23 M| CECLARE BLANK_COUNT INTEGER INITIAL(O); - - T I 77 HALINHAL
Z4 M1 CECLARE CONTRCL ABRAY(1C) BIT(32): . . e ‘ \ v w128 HALINHAL ..
25 M| CHCLARE TCGRLES CRARACTER(10) TNITIAL('12745678C0%); ' | 20 HALIMHAL

| 20- HALINHAL

1 3 HALINHAL

THE ARRAY CARC_TYFE IN XPFL IS REPLACEDS BY THIS FUNCTIONM e | 32 HALINHAL
: | 23 HALTNHAL

26 ¥] CARCLTYRE: . A L S e 14 HALINKAL.

Ze Ml FUNCTICN(SELECT) INTEGER: ' 1 35 CARD_TYPE

27 1 DECLAGF SELRCT CRARACTER(1): - ' | e carp_Tyee

22 M| IF SELFCT.= .Mt OF SELECT.= % * THEN BETURN 2 ovee <o o oo oo meeen | 37 CARD_TYPE -
26 M IF SELECT = 'S' THEN RETUPN 33 : | 38 CARD_TYPE

g M IF SELECT = 760 TREN RETUSN 13 ' N i - T | 30 CARD_TYPE
31 M{ . IF SELECT = *C* OR SELECT = 'N® QR SELECT = *H® v o o oo toilow'o | 40 . CARD_TYPE ...
71 M| THFEN RETURN 43 ' | 41 CARD_TYPE

17 | FETURN 0; : ' h T T a2 carp_tvee

3R OME T CLOSE CARD_TYPE D o oo et ot es i e s e e ot e e i e eaiasi i | @3 HALTNHAL « e

| a4 HALINHAL

e v | 45 HALINHAL |
: a6 HALINHAL

!

THE CHAR_INDEX FUNCTICM 1S THE SANE AS THE INDEX BLILT IN FUNCTICN
o 4T HALINHAL

34 M1'”CHAR_INOEX:\FCNCTféN(STéf&C'ﬁk}}ERK;”foééER;"ﬂm.”“”%nA‘ - o 1 o4s CHAR_INDE%MM“V" T
25 M1 CECLARE CHARACTER(*), STRING, PAT#ERN; e e e} 49 CHAR_INDEX ..
26 M| CECLARE INTEGER, I, Jy K3 . ° : - . :h_ 3 | 50 CHAR_INDEX
a1t s e LENeTHisTRINGys T T et i e s CHAP;INDEX._
32 Ml K = LENGTH(PATTERN); . o o S e o "',, w152 CHAR_INDEX
39 M| IF K > J THEN RETURN Gj _ g . o . .1 53 CHAR_INDEX
4G Y] FLSE DC FOR [= 1 TC J-K41; - T e | 54 CHAR;INDEXH
41 M IF STRINGS(K AT ‘1) = PATTERN THEN RETURN I3 . .. S . 1 85 CHAR_INPEX

42 M FND: ' : . = [56 CHAR_INDEX

AL
STHMT

47

44

47

48

- 50

sC

e?

53

50

£C

61

M

¥

laEnNe]

cCoMPILATICN -

CFCLARE INTEGER, L, NUMBER, WICTHS

CLCSE I_FCRMATS

RETURN O3 ‘ _
CLCSE CHAR_INDEX;

FERE OIS PAD A FURNCTICM FROM HALPASS?

PAaC: FUNCTfON (STFINC.WIDTF) CHARACTER(255) VARYINGS

DECLARE CFAPACTFQ(*); STRINGS
[ECLARE CHFARACTER(25E8) VARYING,
CECLARE

INTFCER, Ly WICTFS

L = LEAGTH(STRINA);

TEVMP_STRING =

CLSE TEMP_STRING = STRING:

FETUPN TEMP_STRINGS & cowmne omme vm o sie 5 s el

CLCSE PAD;

REKE 1S THE. FUNCTTON- [_FCRMAT ~FROM. HALPASS Toimmm s ol

S1E L C-WIDTH THEEN ee o e FE N JPSE UIVE SO ST W

STRING |} X705(1 TC WIDTK-L);

INTERMETRICS s

TENP_STRING; = =

I_FCENAT: FUMCTICA{NUMOFR,WINTF) CRARACTECR(#) ..

CECLARE CHAFACTER(?SE) VARYING, STRINGS

'STRING = NUMBER; -

L = LENGTR{STRING}

et mow

PPN

IF L < WICTH THEN
STRING =

PETURN STRING;

SR R R T

B

R

X708(1 TC . WIDTE-L) . 1] .STRINGS. . .nnuues

TUE FOLLAWING 1S THE FRRCRE PROCENURE FROM

PASSI. - o

T ey e -

g am ey

v paempe— o

o P S e Ll

N C

PAGE 3

LINE CURRENT SCCGPE

65

66

&7

7C

72

T2

T

76

17

RERE

75 -

1_FORMAT

I_FORMAT -

HALTINHAL

CHAR_INDEY,
HALINHAL
HALTNHAL -
HALINHAL

HAL TNHAL
HALINHAL

PAD

PAD

PAD

PAD

PAD WMt e e .m. N . » . Yo e
PAD
PAD .

F o T I S

LYY -

HALTNHAL
HALINHAL

HALINHAL

HALTNHAL s B T
HALTINHAL

I_FORMAT e

I_FORMAT
I_FORMAT ...

T_FORNMAT

e R oo < Taeb um e g v Fe s f e st ek e andet o w e

. I_FORMAT. ..

1_FORMAT -

A i o e A3 e s avn s’

HALINHAL .
HALTNHAL
HALINHAL

e ot A o W v e s asin 1 S ey 4

62

P

en
e

TG

74
T4
7%
76

77

7¢ -

75

PC

21

coMPILATICN - PHASE 1 - I NTERMETRTITICS »

SAURCE . . e e o e

ERRGRS: PRCCEDURF (M%SSAGE,SEVER!TY):
PRINTS AND ACCCUNTS FCR ALL CRRCRS : C e e
CYCLARE MSC CHARACTER(ZSS) VARYINGS
DECLARE MESSAGE CHARACTE® (#)3
CECLARE SEVERITY INTEGER; , . e e . P
FRRUR_CCUNT = FRRCOA_COUNT + 13
MSG = tewEat ERRCK 4 ¢ | Epéon_tCUNf i OF SEVERITY * I]

SEVERITY !} *: * 1] MESSAGE;) o o o e
1IF CRREA_COUAT > 1 THFA

MSG = MSG |1 *. LAST ERROR CN LINE '”LJ‘;REVIOUS_ééROR: AAAA
FRITEC(HINSG 11t waswasty _ . A e e e
CAVF_SEVERITYS(TRECA_COLAT) = SFVFRITY:
SAVE_anss(rn:ca_tcuxT) = CAPc_couNTi N
PREVICUS_ERRCR = CAAC_CCUNTS . -
IF FERCR_COUNT >= $Q THEN .00;

100 THEN . .

IF ERRCR_CCUNT
WRITE(6) 'TCC MANY ERRCRS: CCMPILATICN ABCRTED.'5 e - g
IFF CCNMPILING THEN COMPILINC = FALSE:

ELSE GO TO DISASTERs: /% THEN EADR IT THERE */

END; : - L e e e e s

1F SEVERITY > MAX_SEVERITY THEN MAX_SEVERITY = SEVERITY;

JF SEVFRITY > STATEMENT_SEVERITY THEA

" STATEMENT_SEVERITY = SEVERITY; " ,“,“,{w";?AHVMWHWH.VHWN,H“W.N_ U .

18 SEVERITY > 2 THEN IFF COMPILING THEN

S, PO T SR N v

COVMPILING = FALSE;
ELSE GC TO GISASTER G . . o e e e

[~
b

N2 OF PASS1 ERRCR

T S VPO S o e AN pramn <

S T N T N

LINE

go

'90

o1

Q2

10¢
110

111

. 112

CURRENT SCCPE

HALINHAL
ERPDPS
ERRORS
ERRORS
ERKORS
ERRORS
FRRCRS
ERRORS
ERRQRS
FERORS
ERPORSl
ERRORS

ERRORS

ERRORS

ERRORS

ERRORS

EREORS

ERFQRS
ERRQRS

ERRORS

. ERRCRS

ERRCRS
ERRORS
ERRORS

ERRORS

ERRCRS

FRRORS

eps

Y

e s o st e

ERRORS

H

I

ST¥T

S0
<0

S0

S7
c9
GG

1ccC

s M

CaMPILATICN -

PHASE)
B S USOQURCE. - - v e e
CLCSE ERRCRS: /% CLOSING ERRCRS AND RETURNING. */

ThIS NEXT PROCEDURE IS PRINT_SUMMARY S e e

PRINT_SUMMARY: PROCENYRE;

WRITE (£)CARD_COLNT || ' CARDS WERE PRCCESSED!;

1F FRECR_CCUNT = O THEN WRITE(&). NG ERRCRS WERE OETECTED.':
FLSE 1F ERRGR_COULNT. >-1.THEN DC3 - S e

WRITE (&) ERRCR_CCUNT |} ' ERRPRS WERE CETECTED,

WRITE(E) ! %%%sxSUMMAPY CGF NETECTRED FRRORS.EZBEFHE] toere e ae o T

cC FOR I = 1 TC ERRGR_CCUNT;

WRITE(E) 'TERBCK ¢ ' 1L 1 11 * ON LInE 0 ‘
SEVE_LINEST L}t GF SEVERTTY 4. [} - - oo o

SAVE_SEVFRITYSI {1 *.'s
END S
CENDs - . e e e e e v o . .

ELSE WRITE{&) 'CNE ERRCR WAS CETECTED WHICH CCCURRER ON LINE * |

.0

PPEVICUS_FRECE [} ' CF SEVERITY ° 11 SAVE_SEVERITYSI 11 t.73

CTANED = TIME§ane oo e e o e et e e s s s

T =TIME2-TIMF1}

WRITE (&) YCARE-PRCCTSSING RATE: * || 6000 CARD_COUNT/T |

t CARPS PER MINUTE.': o e e e e e s i

WRITE(&) * CLCCK TIME IS * [TIME2S

RETURN:)) e
CLCSE PRINT_SUMMARY: . . .- f. e :”;;b -
STREAM: PROCTCURTS

THIS PROCEEUAT FILLS THEL VARTABLES NEXT_CHAR,
ARRCW, ANC OVER_FUNCH.

— INTERMETRTICS »

TP WIS

[ERLTREE TSRV

© g gt b

B R R T T

I NC o

118
119
120

21
< J

123

124

12%

126

—
~y
~

128

129

143
144

145
146

T CURRENT SCOPF

HALINHAL

HALINHAL

HALINHAL

HALTMHAL .

HALTINHAL

PR INT_SUMMARY
PRINT_SUMMARY
PRINT_SUMMARY
PR INT_SUMMARY
PR INT_SUMMARY
PR INT_SUMMARY
PRINT_SUMMARY
PRINT_SUMMARY
PRINT_SUMMARY
PRINT_SUMMARY
P2 INT_SUMMARY
PRINT_SUMMARY
PRINT_SUMMARY
PRINT_SUMMAPY
PRINT_SUMMARY
PRINT_SUMMARY
PR INT_SUMMARY

PRINT_SUMMARY

PRINT_SUMMARY

PRINT_SUMMARY

PRINT_SUMMARY
HALINHAL - - -
STREAM

STREAM
STREAM

PAGE

H

AL

STMT

OO AN MO

Z 4

4

=

M

M

L

vl

w1

vl

v

vl

Cl

coMPILATICN - PHASTE 1 - .I-N TERMETRICS, I NC.

SOURCE. . o B o g LINE

NEXT_CHAR IS A ONE BYTE VARIARLE THAT CONTATMS THE I 147
NEXT CHARACTFR IN THE INPUT STREAM, Lot | 148
AFRCW IS A HALF WCPD VARIABLE THATY CONTAINS THE | lao
INTEGFR WHICH REPPESENTS THE RELATIVE | 150
DISPLACEMENT CF THE CHARACTER IN NEXT_CHAR o I 181
WITH RESPECT Tn THE LAST CHEARACTER, - | 152

A POSSITIVE VALULD INDICATES A MLVE UF, - | 18?2
CYER_PUNCH IS A ONF EYTF VARTABLFE THAT IS FILLED WITH - - : e e | 154
A NCN ZFRC VALUE WHEN A CHARACTER CTEER | 155
THAN A BLANK APPRARS CINFCTLY CVER AN | 156
M-LIN CHARACTER--THE® VALUF IS THRE BYTH VALUE N R e - | 187

OF THE OVTR_PUNCE. | 1582

[150

DECLARE CHARACTER{255) VARYING, F_LIN%, S_LINE, M_LINE; i 160
CECLARS CHARACTER(CD), SAVE_CARD, CUSRENT_CARC: . | 161
CECLARE RLANKS CHARACTER(1ZR) INITIALC® ") { e2

CECLARE E_LINE_ERR CHARPACTER(50) VARYING

E_ | 163
INTTIALC'F_LINEG CHARAGTER MORE THAN 1 LINE ARCVE . PRECEECING CHARACTER'): ... | 16¢
CECLAPE CRNER_IRK CHFASACTER(27) INITIAL('SGURCE PROGRAM DUT NF CRDERT)S 1 es
[FCLARE‘CHARACTER(l)y PPEV_CARb; SAVE_NFXT;CHAR, SAJE;CV&R_PUNCH; o | 166

CECLARE INTECGER INITIAL(O), LAST_E_INC, LAST_S_INC, E_BLANKS, M_BLANKS s e | 167

S_BLANKS, EP, 5P, TEXT_LINIT, E_CCURT, LAST_E_COUNT, S_CCUNT, . | 1ep
LAST_S_COLNT, INTXs CPy PGINTER, ARRCH, 115 h T tee
PECLARE ARRAY(25¢) [NTECER INITIALLO), €_IND, S_IND, E_INDICATORy . e, | 170
S_INTICATCR; | N I 172
" DECLARE RIT_1 INTTIAL(FALSE), RETURN&N@_E;‘RETURﬁlhéjM, PETURNING_S» | 172
. ENC_GRCUP, M_CCMNMENT, ARRCW_FLAG; e 1173
CECLARE BIT_? INITIAL(TRUF), FIRST_CALL_TC_STREAM; ‘ I 174
| CECLARE ARRAY(2) CHARACTER(1), TYPE_CHAR; A T s
CECLARE APRAY(2) INTEGER IMITIAL(Q), FETURN_CHAR:D_.‘“w;ﬁw&s. 1176
CECLARE CHARACTER(Z5S) VARYING, £_STACK, S_STACK: o .— LT
CECLARE INPUT_FAC CHARACTER(23) INiTjAL [2
(M /2 %/ EGF"ECF EOFt) s v - 1 17¢
| I 180

CURRENT SCOPE

STREAM
STREAM
STREAM
STREAM
STREAM
STRFEAM
STHEAN
STREAM
STRFEAM

STREAM -

STPEAM
STPEAM
STREAM
STREAM
STREAM
STPEAM
STREAM
STRTAM
STREANM
STREAM
STREAM

STREAM

STREAM

STREAM
STREAM
STREAM
STREAM
STREAM
STREAM
STREAM

STREAM

STREAM

STREAM

STRaF AM
STREAM

L enwe e

PAGE

6

AL

STHT

131
127

123

COMPILATION ~--

PHASE 1 -
‘SCURCE

Tw0 DIMENSIGNAL PROCERURES.

GG TO STREAM_START:
CRCCTSS_CONMMENT: EROCEDURE;
CECLARE KfCHAQﬂCTF:(l):~"-'- ‘. . -";}AA“
CECLARE J INTEGER; |
TF CURRENT_CARCS] = 'F' THEN
WRITE(6). LINE(1), CURRENT_CARDS(2 TG #) /% TSSLE-A NFW HEADER#/
ELSE
TE CUBRENT_CABRSL = 16 THEN « oo vm o .
DC FCR T=1 TO TEXT_LIMIT-13
IF CURRENT_CARCSI = ' * THEN DR:
K = CUQRENT_CAPD%(I+!);

J

CHAR_INCEX{TOGGLFES, K}3
IF J == 0 THEN DOG

CIE 1 < TEXT_LIMIT—1 THEN oo

K = CURPEMT_CARCS(T+2);
ELSE GC TC CCKMPLEMENTS

IE K = %4 THEN CONTROL = TRUFS e v 3 s vadlll el it cee

J:
FLSE IF K = '=' TEEN CCNTRCL = FALSES o v e e
Jr ' :
FLSE oivr o e et n et e e s e o e i e
COMPLEMENT: CCONTRCL
oo Js:
ENDS | .

éﬁé; et e et = A p -
tNpy o e e

CLCSE PROCESS_COMMENTY

INTEPMETRICS ,

P

o g

AR IV
wrm
B

R T

190
191
192
193
194
195

19¢

18

196

200

201

202

203
20

CURRENT SCOPE

STREAM
STEEAM

STREAM

PROCE SS_COMMERT
PROCESS_COMMENT
PROCESS_COMMENT
PROCESS_COMMENT
PROCESS_COMMENT
PROCESS_COMMENT
PROCESS_COMMFNT
PROCESS_COMMENT
PROCESS_COMMENT
PEOCESS_COMMENT
PROCESS_COMMENT
PROCFSS_COMMENT
PROCESS_COMMENT
PROCESS_COMMENT
PROCESS_COMMENT
PROCESS_COMMENT

PRPOCESS_COMMENT
PROCESS_COMMENT

PROCESS_COMMENT
PROCESS_COMMENT

PROCESS_COMMENT

PROCE SS_COMMENT
PROCESS_COMMENT

PROCESS_COMMENT

PPOCESS_COMMENT-

PROCESS_COMMENT -

STREAM

PAGE

'7

12¢
129

140
140

141

1472

144

145]
145 V1
146 MY
147 M

148

14%

150

¥

L
cl

i

C

} CURRENT_CARDF; iNPUT_PAC:VP) J T
RETUPNS e e e e e e e Hmy,u.w,,..%‘b
END S | A | . .
READ(S)”Coéégg%;tARE:“hw,m(MwmﬂﬁdM$M~ﬁmmmwﬁ;%hnauhu_h,mmqum- T
END_OF_INPUT = TRUFS. .« oo currns e e e e e Ly e e

CECLARE END_CF_INPUT BIT_1

OMPILATICOCN =— PHA

wn

E 1 =-—- I ANTERMETRTICS .

-SOURCE. . .. e L s

STACK_RETURN_CHAR:
PRCCERURT (NUMAER, CHARD } 3
CFCLARE INTEGERy NUMBERy. 15 -+ o oo e i i
CECLARE CHARR CHARACTER(1):
pC FOR 1 = 1 TC 33 ')
IF RETURN_CHAR = O TKEN D03 S o
I:
RETURN_CHAR = NUMBER: . . e e e
Ts . :
TYFE_CHAR = CHARR; . . e e e

Iz

THE FCLLOWING STATSHINT IS FCR

CUT 'STACKED m1 || CRARR 11 *M(% 1] NUMRER || 1) - INDEX(® I1 1 11 *)v;

RETURN; " o el e

FND

ENES

CLOSE STACK_RETURN_CHORS . wol-. oo . R PP

FLAD_CARC:

FROCEFDURE 3

IFF ENC_QOF_INPUT THEN [C3

CARD_CCUNT = CARD_CCUNT + 13

DEBUGGING PURPCSES CNLY. . - B

INITIALCEALSED S oo oo e e s

INC.
LINE

I 212
| 7213

| 214

1 225
| 22¢&

4 227

'1 2°¢

I 230

LR G S A

CURRENT SCOPE

STREAM
STREAM

STREAM

STACK_RETURN_CHAR
STACK_RETURN_CHAR
STACK_RETURN_CHAR
STACK_RETURN_CHAR

STACK_RETURN_THAR
STACK_RETURN_CHAR

STACK_RETURN_CHAR
STACK_RETURN_CHAXR

STACK_RETURN_CHAR
STACK_RETURN_CHAR

STACK_RETURN_CHAR
STACK_RETURN_CHAPR

STACK_RETURN_CHAR
STACK_RETURN_CHAR
STACK_RETURN_CHAR
STREAM

STREAM
STREAM

STREAM
READ_CARD.““
READ_CARD ...
READ_CARD
REAb_CARDﬁ
READ_CARD ...
READ_CARD |
READ_CAROﬁhmV,;l
READ_CARD ...

READ_CARD

PAGE

157

165

#1
M
¥

Mi

M

CCeMPILATICN =— PHASE 1 --

‘SOURCR . -
17 CARC_CCUNT NOT =0 THEN D3

WRITE (&) I_FCRMAT(CARD_CCUNT, 4)

t1 v v] osaveE_carCsY P11t LD SAVE_CARDSE(2 70 #).01 1 v 1] CARC_COUNT;

END
SAVF_CARD = CUFRENT_CARC;

CLCSE RE2ZC_CARCS

CROER_CK:
FUNCTION(TYPE) AIT_13
CCCLARE TYPE CHAGACTER(LD; e oo om e

£C CASE CARD_TYPE({CURRENT_CARCS1) + 13

DO; /#CASE 1--T1LLEGAL CARD TYPRIx/

ENC_GROUP = FALSF;
RETURN FALSFES

ENC3 /#0F CASE 1%/ 7

/% CASE 2==F CABEH/ - - v oo oo v i i

E_CARD:

Cos

1F CARC_TYPE(TYPE) :.gugRu;‘.“.JMJ”Q.WMUW.;‘MNMu;g

e S s aae e e

CARD_TYFE(TYPE) = 3 THEN END_GRCUF = TRUF;

FLSE END_GROUP = FALSE; ' o
RETURN TRUF 3 - oo o m imri “v“,‘;ai;ﬂhﬂg;,”.;x.wwux
ENC: /#CASE 24/

JSCASE 3--M CARD/ GC TN E_CARD: .

DC; /% CASE 4==5 CARCH/ - -~ - “.ﬂ-,.u ,M'..Lw.”“m';’

ENC_GRCUP = FALSF3

18 CARD_TYPELTYPC) = 2 OR

P

- B

el DAl Besnd s

N C Ld

CLINE CURRENT SCOPE

1 2432
| 244
1 248
] 24L4
| 247
| 248

{251
l »52
{ 253
1 254
| 2s5¢
| 256
| 257
I 258
1 259
1 260
1 281
I 262
I 263
{ 264
| 265
1 266
I o267
| 268
| 269
1 270

REALD_CARD

XEAD_CARD
RE AD_CARD

READ_CARD

RFAD_CARD

STREAM

STREAM
STREAM

STREAM

QRNEF_OK

ORDEP_OK
ORDER_OK
OPDER_OK
ORDER_OK

QORCEF_OK

ORDER_OK

ORDER_OK -+-én-

BRDER_CX

OPDER_DOK

DRDER_OK ol

ORDER_OK

ORNER_OK

. ORDER_CK: ~

ORDER_OK

CROEFR_NK
CRDER_OK
CRDER_CK

ORDER_OK

PAGE

177

174

179

18¢

1¢0

163

Ml
ol

¥

¥
vl

1

M|

M|

-l

Pl

¥l

IF CP < TEXT_LIMIT THEN

1E CURRENT_CARCS{CP 4 1) '= %' THEN CC3~

LOOK FOR END OF COMMENT . oot i o 00 et s S
0C FOR CP = CP+2 TO TRXT_LIMIT=13

IF CURRENT_CARCSCP = "' THEN

CCv¥VPILATTICN - PHASE Al - INTERMETRICS ,

SCURCE - . . . S e -
CCARG_TYPE(IYPE) = 3 THEK RETUSN TRUS:
ELSE RETUSN FALSE; - ' B
END: /% CASE 4%/ . . , e e, . C e
CC3 /#CAST 5=~ CCVMENTS/
IF CARD_TYPE(TYPE) = 2 CR - M o
CARD_TYPE(TYPE) = 3 THEN END_GRCUP = TRUF;

ELSE END_GROUP = FLLSE:
IF CURRENT_CARDS] = tpe Tren £O3 T T
IF TYPE = 'C' THEN RETURN TRUF;
ELSE RETHURN FALSE:
ENC; o) o T
ELSE nC; o S o o -
IE CARD_TYPF(TYPE) = 1 THEN PETURN FALSE:
ELSE RETURN TRUF; - S o
ENC; - , . . e
ENC; /% CASE 5 %/ A '
ENL; /%CF CQ CASES/) ‘ T
CLCSE CRDER_CK: .]
COMMENT:
 EUNCTICM BIT_: S)
If CURRENT_CARCSCP = .t/7 THEN.o e e e aniiil

LINE
271
272
272

274

294

- 295

296
297

278

CURRENT SCOPE

NRDER_CK

ORCER_OK

GROER_CK
R CER_CK
ORNER_OK
ORDER_OK

CrROER_CK

CASE 5

DROEFR_OK

Q7 CER_CK

0P DER_NK

CRODER_OK

0P NER_OK
ORDEP_OK
GRDER_CK
0P DER_OK
OrDER_CK
ORDER_QK
STREAM

STREAM
STREAM

STREAM

COMMENT

CASE 6

COMMENT -..

COMMENT

COMMENT

COMMENT -

COMMENT

CCMMENT

PAGE

10

AL ccyvpPpI LATIC N - PHASE 1 - INTERMETRICS,, INCa - PAGE 11

STHT : U USOURCE e e R LINE CURRENT SCOPE

162 M) 1F CURRENT_CARCS(CP#1) = '/' THERN . - . . { 299 CCMMENT

s b1 seruns_TaUe: e B e e B
152 #1003 - . : . LI - | 201 COMMENT

14 ¥} CP = CF + 1; ' S . | o | 302 COMMENT

s wi eTss TRUS B R e e e —— e Laal ' s0n o
1e8 M1 ENDS .o L . . e | 304 COMMENT

167 Hl LN 4 ' S | 305 COVYMENT

ee nl o0 10 RE{QRN;TRdE;AM' e e e e e ”mmmﬂfm, 206 commens .
179 ¥ EXBs; S o e | 307 COMMINT

200 M| RETUFN FALSE;) 7 v .,._4 . o] 208 COMMENT

261 M| CLCSE CCMMENT: ' | 309 STREAM

| . O ’ ’) I 311
202 M| SCAN_CAORD: e . . S L e e o Cmmem i] 212 STREAM. wo e e .

202 ¥l PRCCEDURE (TYPE,CCUNT) ASSIGN(LIN, INCICATOR); | 313 SCAN_CARD

207 ¥] CECLARE INGICATOR ARRAY(2%¢) INTEGER: | 314 SCAN_CARD
204 M| DECLARE INTEGER, TYPE, COUNT; i] 315 - SCAN_CARD o

205 ¥ CECLARE LIN CFARACTER(*)3 ! 316 SCAN_CARD

206 Ml DO FOR CP = 2 TQ TEXT_LIMIT; : - S I 317 SCAN_CARD

w

207 mi 1F CURRENMT_CARTHCP NCT = THEN COJ o vvme o immin o oni e s s i e S aionns | 313 . SCAN_CARD - owm e e v e v
209 M} . 1FF COMMENT THEN GO T0 CONTINUES] 31¢ SCAN_CARD

s0e 1 IF LINSCO NOT = ' t THEN ’ e ST 320 SCAN_CARD

1206 K] .CO CASE TYPE % 13 /#HAL DC CASES START WITH 187] 321 SCAN_CARD -

210 M1 /% CASE 1%/ CALL ERRGRS('OVERLAPPING E-LINE CHARACTERS',1); : | 322 SCAN_CARD CASE 1

211 #] 003 /% CASE 2%/ '_ ’ . C T 1323 SCAN_CARD CaSE 2

212 1 . CALL.ERRORS(*OVERLAPPING S-LINE CHARACTERS®,133. - -in « - e Y 326 SCANLCARD e e e e
212 ¥ GO0 TO CONTINLE: _ | 325 SCAN_CARD

214 M| NG /#0F CAST 28/ | I S ~ 1326 SCAN_CARD

COMPILATION -- PHASE 1 =-- INTERMETRICS, INC. 3 PAGE 12
CSOURCE ww - . = emees . LINE CURRENT SCOPE

4| ENC: /#CF DD CASE TYPE + 1%/ - ' " | 227 SCAN_CARD CASE 3

. M| INCICATCRSCP = CCUNT; - V ’ B A | 328 SCAN_CARD

¥l LINSCP = CUPRENT_CARCSCP:. ‘ e e e | 3290 SCAN_CARD

v END; L . | 330 SCAN_CARD

¥i CONTINUE: T T o T | 331 SCAN_CAPRD

4 END; | _— L L . . | 332 SCAN_CARD

¥l CLOST SCAN_CARCS ' | - . B 1 327 STREAM

o , | 334 STREAM
cl | 335 STREAM

4] cowpr - . - ' I [236 STREAY

Mi. . PRCCERUKE(TYPE) AserN(LxN,INDXCArcn,céQNT); e S e e | 337 COWP e
M| DECLARE PCINT CHARACTER(1);: | 338 CcoMP

. M| DTCLARS INTOCER, CCUNT, TYPER ' ' ' ' ' C | 235 cowe

M| [CFCLARE CHARACTER({#®), LIN; . . e T | 3640 COMP .
M] CFCLARE ARRAY(256) INTFGFER, INDICATCR; 1 341 COMP

vl IF TYPE = 1 TREN PCINT = 'St3 ' o o) 342 cowe

ad %LSE PCINT =-'E';5 o ”;.~Hnr.,.“.¥m_A . . MMM:;“M I 343 cowp

3 M} COUNT = 13 - | 344 COMP

¥l ©C FOREVER; - ' S - o | 345 covp

M. cALL.SCAN_tARo(TypE,ccUAT) ASSIGN oot ol e e i w 346 COMP. oo wr e T,

> M (LIN,INCICATCR); | 347 COMP

Ml CALL READ_CARD: ‘ ST s ST T 1 348 comp

M] IF CURRENT_CARCS$1 NOT = PCINT.THEN CG3 Jd,-u..,nx$M;Rﬂh.A:;“.ﬁﬂ it -) 349 COMP. o L

(&

Cl NC MCRE OF THIS TYPE CARD. | 350 COMP

w] TF_NOT CPDER_CK(FCINT) THEN - I e T asr cowe

Ml CALL ERRCRS(CRCER_ERR 115 ion oo fiiee

] O FOR CP 2 TO TEXT_LIMIT; .- | 353 ComP

1]

¥io TF LINSCP

]

Vo TREN . L . .,_".) 354 comp

.“_A.;¢;m‘;;.@m.m;“;f-.gﬂ;;L;;w. 1:352 COMP o iien . . et i et

vAL COMPIULATIGN =--— PHASE 1 =-—- INTERMETRICS, INC. ‘ PAGE - 13

STMT Ce e SOURCE »ovvvn o i L e LINE CURRENT SCCPE

225 M INCICATCRSCP = O3 o o - : 1 385 COMP

[}

224 M| FLSE IF TYPE 0 THEN CC3 | 356 COMP

INCICATCRECP

~
]
]
4

[0}

COUNT~INCICATORSCP 413 R g e eve 1 357 cOMp
218 My ENT; o o o | 358 CGMP
et e . .-\ e o e e s cow
240 | 'RETURN;: . . : o AN N e - Ce e | 360 COMpP
241 ¥ END; ‘ = ,: » 3 | 361 COMP
vr vl coont = oot eae e e B e e
243 M) END3 . i _ e e S D e 1 362 camp . -

244 M| CLCSF COMP; _ . - ' . | 366 STREAM

~ . . . [O T D e e Ml e e e e e s P

cl ' | 265 STREAM
" Cl | 366 STREAM

24% Mi GFI_GROUP: A o _ ' S I 767 STREAM
245 | PRCCEQURE; = - - = - o e e .l | 26R GET_GROUP

246 M| E_LINE

"

E_LINCSCINDX TO #) 1] BLANKS; | 369 GET_GROUP
247 ¥1 S_LIME = S_LINESCINDX TC #) |1 EULANKS; ' - ' " o vf ! 370 GFET_CGROUP
240 M LAST_E_COUNT»= E_CCUNT; - L. UL TR PO AU U i | 371 GET_GROUP - Ti--

246 M| LAST_S_COUNT = S_CCUNT;S ' ‘ ’ | 372 GET_GROUP

o

250 ¥l E_CCUNT, S_CCUNT = 03 oo T oo T ags gET_gRoup

251 Ml - G0 TO LAOPG - . : oo - T T SOOI SN S P 374 GET_GROUP i
252 Ml PEAD_IT: | 37% GET_GROUP
252 M1 CALL RESD_CARCS R ST 376 6ET_GROUP
283 M| yp_NOT'CRDE:_CK(ppgv_CARD).THEN.QQ;;MAQ;Q;Q@“gﬁm,ﬁkgif:u;”phw:~-zwA ;m@u%AJQ:.”l 377 . GET_GROUP .1
254 M| CALL ERRCRS({CRCER_ERR,1); : | 378 GET_GROUP

- i e e e s wem e g em RS et L NS e e gr e

255 1] G TO READ_IT: , T T T 1hsts eeT_group

256 ¥] END; i e el [-] 380 GET_GRNUP T

257 M1 LLQP: | 381 GFT_GROUP

557 w| 1FF END_GRCUP THEA GC TC FCUND_GRCUP: [282 GET_GROUP

¥l

My

vl
v

|

¥

Vi

M

v

ccMPILATION -

FNCs /%0F CASE 5%/

PHASE 1 -

SOURCE ..

RN CASE CASD_TYPE(CURAENT_CAPNSLY + 1;

ON3 J*CASE 1, A DUMMY#/ END; o

DC; /#CASE 2 E-LIN%/ , R .

CALL CCMPLO) ASSIGN | ‘
(E_LIhE,F_INDXCATCR,F_CCUNT);‘IH"“‘ o

cC TC LCOP; Co o s

ENG; /#0F CASE 28/ ' ' -

DCs /*CASE 3 "‘LIN*} e
F_LINE = M_LINSSUINDX TG #) || CURRENT_CARDS(2 TO #)3
SAYF_CARDSY = 1vrg

Pagv_CoRD = CURRENT_CARTSI;

G2 T0 READ_IT:

FNCs /%0F CASF 32/
DR /*CASE 4 S~LIN%/
CaLL CCMP({1) ASSIGN »

(S_LINEyS_INDICﬁTCR,S?CCUNT):
o 10 LooPs . R
ENC; /%CF CASE 4%/
D05 /FCASE 5 CONMMENTX/ -

PREV_CARD = CULRRENT_CARCS$1;

‘CALL FRCCESS_CCMMENT;

GO T READ_TIT;S

ENCs /%CF DO CASER/
FOUND_GROUP:
WRITE(6) SKIP(1)3
END_GROUP = FALSF3; e e

F_LINE = E_LINES(] TG LENGTH(M_LINED);

FO T N A B S T LT T

INTERMETRICS »

Fon e e <

[N W

PR PUr S IO

PRV S

ko b A e

399

400
401
402
402
404
405
406
307
408
409

410

GET_GROUP
GET_GROUP
GET_GROUP
GIT_GPOUP
GET_GRNUP
GET_GROUP
GET_CGROUP
GET_GRCUP
GET_GRCUP
GET_GROUP
GET_GRCUP
GET_GROUP

GET_GRCUP

GFT_GRCOUP

GET_GROUP

GET_CROUP

GET_GROUP

GET_GROUP
GET_GROUP
GET_GROUP
GET_GRCUP

GET_CRQUP

GET_GROUP
G?T_GROUP
GET_GROUP
GST_GROUP

GET_GROUP

PAGE 14

> CURRENT SCCPE

CASE 1

CASE 2

CASE 3

GET_GFCUP

CASE &

[7,]

m

1=
1
!

COMPILATICN == PHA INTERMETRICS, INC. PAGE

SOURCE - - [T L e e LINE CURRENT SCOPE
M| IF E_CGUNT NCT > C THEN DC5 - ' o : 'ff 1 411 GET_GROUP
Wi D FOR CP = 2 TO TEXT_UIvIT: T T T a1z ceT_crowe
M| E_INDICATGRSCP = O3 e A e e e . 1413 GET_GRGUP
Wi END: o - S .. 1 416 GET_GROUP
¥l E_CCUNT = LAST_E_CCUNT; B T T 141 ceT_croup
Ml ENCS S P e e aiema.] %16 GET_GROUP
vl SLLINE = S_LINES(L TC LENGTH(M_LINE)I: - _ o | 417 GET_GROYP
Vi 1F S_CCUNT NOT > O THEN DC3 T T a1 ceT_cRoue
M1 DC FOR CP = 2 TO TEXT_LIMIT: . . . o oasmen ooe o o o wee | 416 GET_GROUP
Ml S_INDICATCRECP = O | e . | 420 GET_GROUP
S o VN e e cnoup

M1 S_COUNT = LAST_S_COURTS © . o vc v e e e i mae o h e e o s o o g] 422 GET_GROUP

'{

ENC3 ' .] 423 GET_GROUP

THE FOLLOWINMG STATEMENTS ARE FOR [EBUCGING PURPDOSES ONLY | 424 GET_GROUP
NUT "E_LINE="? || F_LINE || *nt3 | 425 GET_GROUP
CUT *V_LINE="' V| ¥_LINE] | 426 GET_GRCUP
CUT YS_LINE=rr |} S_LINE | | 427 GET_GROUP

AN AO

<

CLCSE CET_GRCUP: . - e e e e e e it s e iieie .} 428 STREAM et

! | 429 STREAM
| o o R LR R { 420 STREAM

K1 o CHCP:] 431 STREAM

v PROCECURE; . ’ | 432 CHOP
ML CINDX = INDX # 15 o o o e e e . e wesen | 433 CHOP
¥i TF TMNCX = TEXT_LIMIT THEM L0 . ’ g o o | 434 ¢HOP

€1 OUT OF NATA, GET MORE. | 435 -CHOP

Ml O E_INDICATORS$Y = E_INCICATCRSTEXT _LIMITS o i o i e e e | 42¢ . CHQP e

it

2 ¥ S_INDICATORS] S_INTICATGRSTEXT_LINMITS "1 437 CHOP

PPN CIE UM DRI SIGUNTIES. S WD MPVVIVIS SN RS JE R

¥l CALL GET_GROUP; . | 438 CHOP
¥l INEX = 13 ; _ _ e T 1 om3e cHOP
%] END; | 440 CHQP

AL CCVMPILATICN =-- PHASE 1 =-- INTERMETRTIC S+ I NC. ' PAGE 16
STNT o ' L : COSCURCE . . e U e LINE CURRENT SCOPE
aCs ¥| CLCSE CHCP; a K 1 441 STREAM

iy D e e e e crmaan e sraes

cl | 443 STREMM

207 Mi STACK . : | 444 STREAM

207 M) : PFGCEDURF(TYPEyINDICATOR,LIN) ASSIGN e e] 445 STACK

07 M (INC,STACK,PP); ' | 446 STACK

A0 M| CECLARE INTECER, TYPE, £P T ST ‘ R | «47 STACK

2oq' ¥| CFCLARF CHARACTER(%), LIN, STACK; e e e A.N b 448 STACK .o .
210 M| CFCLARE ARRAY(256) INTECER, INDICATCR, IND: | 449 STACK

211 ¥l 1f PP < 1 THEN GO TG NCT_MULTIPLES : o ' 'f"' | 450 STACK

212) TE LINSINDX = ¢ v THEN OO - - e e e et e . e i 1 451 STACK. . mues L e e
313 M| IF STACK$PP = ' ' THEN ‘ } 452 STACK

117 vy INDSPE = INDIPP +1: ' " T T 1 as2 sTack

314 M| ELSF GG TC NOT_MULLTIPLF; - - Tt et] 456 STACK - - -
315 ¥| ENC; . | 455 STACK

216 M1 FLSE DO c S A T T T 4se STACK

317 ¥l NCI_MULTIPLE: .o .« - T L T 1 457 STACK.

; ' | 458 STACK

-t

217 ¥) PP = PP +

318 M| IF PP > 256 THEN 0O CASE TYPE#l; T CEUTTTy sse sTACK

31e M| CALL FRRCRS(!'EXPCNENT .STRING CVER FLGW'43)3 T e T 4 460 STACK CASE.1.. C e

22¢ M| CALL ERRORS{'SUBSCRIPT STRING OVER FLCw',3)3 : | 461 STACK CASE 2

w .

21 ¥ END; /#%CF OO0 CASER/ R ‘ | 462 STACK CASE

322 M| STACK .= STACK 1] LINSINDBXS v v w o on oo o b 0 v s e | 463 STACK
323 M| INDSPP = INDICATORSINDXS . | 464 STACK
324 | ENC: ' - ST 1 a5 sTACK
228 M{ CLOSE STACK:- - - e o o e e e e e , ”,,A 1 466 STREAM

¢l ' ' ' | 467 STREAM
cl) _ : . . S e . - 1 4«68 STREAM

326 ¥l PUILD_XSCRIPTS: _ _ Co - | 466 STREAM

AL

STHT .

Ta)

i) w W i v w
W Y] [¥%) (8} [§%; (B3]
n] DS ~N L haad

i
W
n

341

242

343

344

|
Mi
Ml
Ml
¥

M

Ml

= M

GC TC CHECK_Mj3

ENES

ELSE /% & NON ELANK CN S—-LIN¥/

CCs

COMPILATION

IFF M_COMMENT THEN DCS

IF M_LINESINEX = *%' TEEN

IF M_LINESUINCX +1)

V_CUMMENT = FALSE;

M_LINES(INDX +1)

END:
GC TC PROCESS;

END

1F M_LINESINDX =
TF M_LINESCUINCX +1)

N_CUMMENT = TRLF;

/7 THEN DC3

1.
k3

/' THEN

[N}

THEN DO

-~ PHASE 1 --
“SQURCE = o o e
PRCCEUBURE; ~“
E_STACK, S_STACK = '13 o
F_ELANKS, S_BLANKS = -13 -
EP, SP = 03
CHECK_MT) , o
TF M_LINE$INCX = ' ' THEN N
FRICESS: _
e . DR ¢ et e
CALL STACK{O,E_INCICATCR,E_LINE) ASSIGN. - . . cwo
(E_INC,E_STACK.EF); |
CALL STACK(1,S_INDICATCR.S_LINED ASSTGN
(S_IND,S_STACKsSP); -
 CALL CHOP; : .

INTERMETRTICS,

e e s -

I NC .
S LINE

I 470

{ a7

1 &72

I 472

| 474

1 481
| 422

| 483

B N

S S

oy

| 488

| sg9

| 400

| 491

CURRENT SCOPE
BUILD_XSCRIPTS
BUXLD_XSCRist
BUILD_XSCRIPTS
BUILD_XSCRIPTS
BUILD_XSCRIPTS
2UTILD_XSCRIPTS
BUILD_XSCRIPTS
BQILD_XSCRIPTS
BUTLD_XSCRIPTS
8ILD_XSCRIPTS
BUILD_XSCRIPTS
BUTLD_XSCRIPTS
BUILD_XSCRIPTS
BUTLO_XSCRIPTS
BUTLO_XSCRIPTS
BUILD_XSCRIPTS
BUILb_xscaléfs
BUILD_XSCRIPTS

BUTLD_XSCRIPTS

BUTLD_XSCRIPTS

BUTLD_XSCRIPTS

BUILD_XSCRIPTS

BUILD_XSCRIPTS

BUILD_XSCRIPTS

RUILD_XSCRIPTS

BUILD_XSCRIPTS

BUILD_XSCRIPTS -

BUILD_XSCRIPTS

PAGE

17

[Ey)

ta

W

CovMPILATICN =-- PHASE 1 = INTERMETRICS, INC. ‘ PAGE 18
SOURCE . o A LINE CURRENT SCOPE
Ml M_LINER(IADX +1) = * ¢ v - : - | 468 BSUILD_XSCRIPTS
o pmcesss o : o TS S _BurLo;xscéxst
Ml ENDS . e - veeeo.] 500 BUILD_XSCRIPTS
¥l TF S_STACKSSP = ' * THEN CO; ’ - | 501 BUILD_XSCRIPTS
Ml 1F SP > 1 THEN S_STACK = S_STACKS{1 TC sP-11; - T) 502 BUILD_XSCRIPTS
M| ELSE S_STACK = ''; : : s . o erwsmemeo, o] 503 BUILD_XSCRIPTS
il S_PLANKS = S_JINDSSP; Av ; ; | 564 BUTLC_XSCRIPTS
M1 END; ' - - ‘ . - S | s05 BQILD_%SCRIPTS
Ml 7E E_STACKSEP = ¢ ¢ THEN BC3 e . ememee) 506 BUILD_XSCRIPTS
Pl TF EP > 1 THEN E_STACK = E_STACK$(1 TG Ep-1); V : . | 507 BUILD_XSCRIPTS
M1 ELSE E_STACK = ';; S ' ' ST h ‘ o "' 508 BUILD_XSCRIPTS
Ml E_BLANKS = E_INDSEPT . . ., e e o e e 1 502 RUILD_XSCRIPTS
Ml END; ‘ . : | 510 BUILD_XSCRIPTS
¥I IF E_RLANKS >= S_ELANKS'+HEQH~“:‘J Lo T e T 611 BUILDLXSCRIPTS N
M | M_BLANKS = S_ELANKS; . o - - e | 512 BUILD_XSCRIPTS
M ELSF M_BLANKS = E_BLANKS;' ' . -:v-. | 513 BUILD_*SCRIPTS
Ml ENC; R T st BUILDLXSCRIPTS
C| THE FCLLOWING STATEMENTS ARE FOR CEEUGGING, PURPOSES ONLY R 1“3:¢ﬂ¢w> | 515 BUILD_XSCRIPTS

Cl OULT *S_STACK="* || E_STACK [l "3 2 [s)16 BUILD_XSCRIPTS
Cl CUT $S_STACK="" |} S_SYACK ll ey : L R | 517 BUILD_XSCRIPTS

PRSI PR S Uy S L R

Mi CLOSE BUILD_ XSCRIPTS. | 518 STREAM

1 . . , e imereae 1 510 STREAM .
i SRR ‘ R | 520 STREAM

3 M1 STREAM_STARTE . - o o o o o e e o] 521 STREAM o e e

41 IFF FIRST_CALL_TC_STREAM THEN DC; : | 522 STREAM

o riees - ees Rt AP crREAm

Ml FIRST_CALL_TO_STREAM .= FALSE; ~ooon o vooeiomas oo s et e+ it) 524 STREAM o« v ume e e
Ml AGAIN: . v ' | 525 STREAM

Ml CALL READ_CARE: S o . ' © 1 526 STREAM

ti
Ml
"l

Mt

Ml

.',U,

M

CcCCMPILATICN -- PHASE

 I—

INTERMETRICS,

SOURCE .- . - =

TF_NCT CRDEF_CK{'C') THEN CO;
CALL ERRCRS{CRCER_ERR,1)3
€0 TO AGAINS

ENDs

TEXT_LIMIT = LENGTH(CURRENT_CARD) 3

FETURNING_M = TRULFS -
¥_LINE,

E_LINE, S_LINE = ¢ 15

INDX = 13

CALL GET_GROUP;
FM_PLANKS = —1;
INDX - 2:-“ | o
11 = 13 .

ENG S

1FF MACRo_Founé THEN BC;
1F MACRC_POINT < MACRO_LIMIT THEN DO:
NEXT_CHAR =

NACQC_STRE:M@NACRC_PGi&f:
MACRN_PUINT = MACRC_PCINT +13
RETLRNS |
ENC3

IF SAVE_BLANK_COLNT >= 0 THEN OCs.

NEXT_CHAR = 1 '3

PLANK_CCUNT = SAVE_BLANK_COUNT;

SAVE_BLANK_CCUNT = =13 . S
PETURNS | ’
.ENC:'.”
MACPO_FOUND = FALSé;

NEXT_CHAR = SAVE_NEXT_CHAR;

IEVOVINTNTE. JOI 1

B A

o hees e st

C L mpe e .

g et a e g e

St b R 0 elins e salite s Lo

S e e

ORI L S o

23 e e ¢t 4 i

INC.
- LINE

1 s27
1 528

| 529

| 530

| 531

I 532

1 533

i 534
1 535

i 536

! 537

! 538

{ 53¢

i S4d

| 541

| 542

| 543

] 544

| 545

| s4¢

| 547

| 548
1’549
.1 550
1 551
mlhsszi
| 5532
| s54

STREAM

CQRRENT'SCOPE
STREAM
STREA&H
STREAM
STREAM
STREAMnI
STREAM .

STREAM

STREAM

STREANM
STREAM
STREAM
STREAM
STREAM

STREAM

STREAM . ..

STRCAM
STREAM

STREAM oo

STREAM °

STREAM

SSTREAM oo

STREAM
STREAM
STREAM

STREAM

STREAM

STREAM

PAGE 19

AL
STMT

364

[§%)
()
n

4C0
4CC

401

4G?
402

LCa

405

4C¢

407

408

4G5

410

417

I

COMPILATIGON == PHASE

CVER_PUNCH = SAVE_CVER_PUNCH;

MACRC_STREAM = *13
FETURN;

ENDYS

BLANK_CCUNT = =13

STACK_CFECK:

1 -- INTERMETRTICS

. :SOURCE

GCOFOR T1 = T1 TC 33/#CHECK LIMIT#/

IF RETURN_CHAR NOT = 0 THEN DO;s

11:
AROW_FLAG = TRUF;S

RETURN_CHAR = RETURN_CHAR
11 I

NEXT_CHAR = TYPE_CHAR .
171:

CVER_PUNCH =03

RETUPN;

ENC3 :
ENC;

11 = 13

IFF APRCW_FLAG THEN CC3
ARROW_FLAG = FALSF3 -
NEXT_CHAR = SAVE_NEXT_CHAR;

FVEP_PUNCH = SAVE_QVER_PUNCH;S

BLANK_CCUNT. = SAVE_ BLANK_COUNTS - & fomeraii 5 st mini oo s 2

RETURNS

ENT 3
_BEGINING;,”“Hm".m,¢.@wm¥_wg

IFF RETURNING_V THEN CC3

IF M_BLANKS >= 0 THEN £O;

-1 -

SO e henn i e

P a2 e e oAb ttinE e 1 W T S S bt

INC .

. LINE

' ! 558
B 1.556
. { s57

| 58¢

T sse
- | 560

| 562
wmuhgh.”,w s
| 563

| 564

et i 565
| 566

S | 567
| 568

S, 1. 869

1 570

S P
A -1 572

} 573

1 574

- .1.575%
] 576

| 577
«|-578 "

| 579

N | 550
e Sraimine - 2] 581
| 582

o 1 582

CURRENT
STREAM
STREAM
STREAM
STOEAM
STREAM
STREAM

STREAM

STREAM

STREAM
STREAM

STREAM
STREAM

STREAM
STREAM

STREAM

STREAM

STREAM

STREAM
STREAM
STREAM
STREAM
STREAM
STREAM
STREAM

STREAM

STREAMi'YNUN

STREAM
STREAM

STREAM

SCCPE

PAGE 20

H

AL
STHT

H1f

427

423

4?23

42¢

431

434

44C

440

¥}
L3
b

vi

¥l

M

Ml

¥
Ml
Mi
¥i
M
Ml
#1

M

COMPILATICN --

PHASTE 1

SCURCE

NEXT_CHAR

v

ALRCW = = LAST_E_;&d;V.
LAST_E_IND = C:

FLARNK_CCUNT = M_ELANKSS

M_ELANKS = -17 |

GC TO FCUND_CHAR;

NG

IF K_LINESTNDX NOT = ' ' THEN DO
T£ M_LINESINGX = '/¢ THEN

TF M_LINGS(INDX +1) = '#1 THEN DCj
HERE 1S A START GF A COMMENT
M_CCMMERNT = TRUF;

V_LINESINDX = ¢ 15

V_UINESCINDX #1) = * *3

60 TC BLANK;

END:

IF E_CCUNT > O THEN ©n:

IF E_LINESINDX NCT = ' ' THEN 0O:. . . .
IF E_INCICATCREINCX NAT = 1 THEN

CALL ERRORS{'F-LINE CVERLAPS M-LINE',1)3

FLSE CVER_PUNCH E_LINESINGX S

END S
FLSE OVER_PUNCH~=“6}() “
ENC;

=03

ELSE OVER_PUNCH
IF S_CCULNT > O THEN
1F S_LINESINCX NOT = ' * THEN

CALL ERRORS(*S-LINE CVFRLAPS M=LINE',11)3

FR S R N L

INTERMETRTICLCS 5

R A v TR

AR ST

L

Cn o

I NC »
LINE
[584

] s8=

| 588
| 532

{ 590

| srsa
| se6
| 600
.1 601
| 602
1 603"
| 6C4.
| 605
m|(606
.1 607
| 608

| 609

i 611

CURRENT SCCPE

STREAM
sTeEAM
STREAM
STREAM
STREAM
ST2EAM

STREMM

STREAM

STREAM
STREAM
STREAM
STREAM
STREAM
STREAM
STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM
STREAM

STREAM

STREAM
STREAM

STREAM

STREAM

STREAM

PAGE 21

AL
STTY

Lay

447

¥ %)

hg4

445

Hha b

an?

447

447

Iy

452

4572

454

covpIlILATICON ==

APROW = — LAST_E_IND:
LAST_E_IND = cs S
NEXT_CHAR = M_LINESIACXS
CALL CHCPS

GC TO.FCUAD_CHAREI

ENC

FLSr

PLANK:

nos

CALL BUILD_XSCRIPIS:
CVER;PUNéHV= 6; '
RETURNING_M = FALSE;
LAST_S_INC = O3
RETURNING_S = TRUE#
FCINTER = 13
ENC3

END3

1EF PETURNING_S THEN CC;o,
1F LENGTH(S_STACK) > 0 &
© PCINTER <=’L5h6fé(s;éTA¢RivTHE&
"IF S_STACKS$PCINTER = * !

IF S_INDSPOINTER >= O TKEN

MORE LEFT
nes

NEXT_CHAR = ' '3

BLANK_CCUNT = S_INDSFCINTER;

FCINTER = PCINTER # 135 .

AERCW = LAST_S_IND - S_INC$POINTEP£

P HAS

THEN DC3

S

SOURCE .- .- -

(Mo

PO o e

INTERMETRICS,

gL

e R

/%*THIS CNE MAY NOT EE NEECEDH/ veen - aunv

O

[POUDEY 94

e bty it

I NC « '
LINE CURRENT SCOPE
| 612 STREAM
>|v613--STREAM
| 614 STREAM
] 615 STREAM
| 616 STREAM
! 617 STREAM
| 618 STREAM
| 619 STREAM
| £20 STREAM
| 421 STREAHM
| 622 STRéAM
| 622 STREAM
| 624 STREAM
| 625 STREAM
| 626 STREAM
| 627 STREAMM
Inbée STREAM’.“IWQ
] 629 STREAM,
| 630 STRéAM.
I 631 CstREAM
1 632 STREAM ey -
| 633 STREAM
| 634 STREAM.”)
| 535._5TREAM._;.WP
| 636 STREAM
| 637 STREAM
| 6328 STREAM
| 635 STREAM

PAGE

22

1

AL COMPILATICN =-- PHASE 1 =- INTERMETRICS, TNC. PAGE 23
™. . . UUSBURCE . i e i__,A;f e LINE CUPRENT SCOPE

4ce ¥l LAST_S_IND = S_INESPCINTERS N _ : - o | &40 STREAM

e o ees N I s R

46 M1 ENDS : . _ e e -} 642 STREAM

467 w1 FUSE DC3 /#A NON PLANKR/ , , . o o | A3 STREANM

aee ml NExT_CHAQA;‘S_S%ACKﬁpolNTéﬁgﬂ..h‘ ST T T sas sTREAM

455 4] ARROW = LEST_S_IND - S_INCHPCINTER: . e v . - e | 645 STREAM .

470 M1 ULAST_S_IND = S_INMSPLINTERS _ , L T | A46& STREAM
471 M1 PUINTER = PUTNTER + 15 S | 647 STRCAM
472 ¥| ENC: . L L - +e. | k42 STREAM
4732 % G 1O FOURD_CHARS . » . . . | &4¢ STEEAM
e DR e _”MWWVWM‘A*waM,ﬂwwm,hmmwmjwmmnwh‘uwﬂ s e .
475 M| FELSE DC; /% CAN NGT RETURN#/ e e e U | 651 STREAM
476 1| RETUENING_S = FAUSE: | : o . R | 657 STREAM
i o ReTURMINGE = TRUFS e e
478 M| LAST_E_IND = —tAST_S_IND; . P .. ewen. 1 654 STREAM
479 M| FOINTER = 13 L _ ' y : %1 ess STRERNM
. S h,NMWMN_MWLNNLMi?MMW,MNM$Mw,Ldﬂ-.m“ﬂ ;:?fWWWw,W“] e STREAQ.“
483 M1 END; e e e ey | 657 STREAM ...

4R M| [FF PETURNING_E THEN C£C; | 558 STREAM

AR SPTUNPRPUVIPSPFet SRR e FE S SIS o

483 M| IF LENGTH(E_STACK) > C &) ' | 656 STREAM
483 M| "FCINTER <= LENGTH{E_STACK) THEN CC; pegp e | 460 STREAM .

| 661 STREAM

44 M) 1F F_STACKSPTINTER = ' ¢ THEN DO3

e et P o arn € e bt e v a8 ein 2w e e s ele oo, o .~ T e S

4FE #1 IF F_INDSPOINTER >= O TREN o ' | 662 STREAM ”
Cl ®ORE TC GO . e e e w1 663 STREAHM . .
4ps vl 0cs | ‘¢'/ | &64 STREAM
o o1 Nern e ey T s e . e T RN S
407 | BLANK_CRUNT = E_INDSFRINTER; S e 1 666 STREAM
4re ¥] FCINTER = POINTER + 13 SRR g L) ser sTReaM . .

AL CCMPILATION =-- PHASE 1 — INTERMETRICS, -1 NC. . ' PAGE 24
™Y A . . SBURCE e wow oo+ e e o (LINE CURRENT SCCPE

4gc M| AREOK = F_INDEPOINTER - LAST_E_IND: A ‘ _ : .1 66% STREAM

45C M| LAST_E_imD = E_IAEipClnTéé; » T T | 669 STREAM

43 ~|

[gal

N

2

3 . . . e e e e e e s | 670 STREAM

m

€71 STREAM

«

NDS

4oz My ;

493 V] ELSE o _ . B A AR o { 677 STREAM

Cl A MOM BLANK . T : e C e ieiere | 673 STREAM
4e2 M1 PER)) ' ’ | £74 STRFEAM
4694 M1 NEXT_CHAR = F_STACKSPCINTER; . ‘ ' B o - | 675 STREAMV
465 M| ARROW = E_INCSFOINTER - LAST_C€_IND: o R .7; . e | 67¢ STREAM
ace p| LAST_E_IND = E_INCSPCINTER: ‘ ‘ ~ ¢ 1 67T STREAM
457.M1 POINTER = POINTER + 1 T ST '| 678 STREAM
ace ¥| END: L L o D w1 67O STREAM L ..
49 ¥ GG TO FCUNC_CHAR; : v o - | 680 STREAM |
500 M| END; - o T o | 681 STPEAM
501 Ml FLSE A T : e 1 682 STREAM

¢l CAN NCT RETURN . ' o : C 1 633 STREAM
- o e IR .u»,A.zm; S eee sTREAN
€cz Ml RETURNING_E = FALSE; e e e T { 685 STREAM
502 | RFTURNING_M = TRUF: . . o ‘ : L | :“ | £86 STREAM
con wl enos : R S ”w,“MJ».mﬁmﬁuizwm“MHNMMwﬂhl“.Mwi~muwm,.w*,www“u esr stremm A
SC3 M1 OENDS e ‘f,J‘,¢Q a1 688 STREAM.
506 ¥l GO TO REGINING: S o . o 1 68% STREAM
sor vl FoLNDLCHAR: S O ST PRt e e e L M0*|'696’ STREAM"a
507 M1 IF ARRCH NCT = 0 THEN.BC3 .o . 0 e oammngm o L oo 1 691 STREAM
508 M| OLD_LEVEL = NEW_LEVFL: - "_ PR »I o " o | 692 STREAM
5C6 M} NRW_LEVEL = NEW_LEVEL + ARRCW: Comomen e e | 633 STREAMVlh‘\J””
510 ¥| SAVE_CVER_PUNCE = OVER_PUNCH: o I o e | 604 STREAM

511 M1 SAVE_NEXT_CHAR = REXT_CHAR; ' : _— ' ' i 695 STREAM , .

527

52¢.

530

n
(391
—

1
(98]
[

coMP I LAT IO N.. - PHASE 1 —~ INTERMETRTICS I NC.

S e SBURCE e e e qf;;n S e e
SAV\ nLANK COUNT = qLANK CCU“T.
1f OLD_ LEVEL >0 THFA DC»

1F ARRCW < O THEN . e e s e e

CALL STACK_RETURN_CHEP (=ARRCH,*))3
ELSE
EXPONENT: . - U O O PO TSRO

[

1F AFRCW > 1 THEN
CALL ERRORS(E_LINE_ERR411); - e e T —
CALL STACK, FrTURh CH“"(7 '*');

catL STACK PETURN CHAR(ARROHy'(')'

ELSE IF OLD_LEVFL = ¢ THEN DO3
IF ARRCW < O THEN . | L N

SURS:

nu;
TF ARRCH € =1 THEN CALL.ERRORSL so oo it smmi o oo e s

*S~ LINF CHARACTER MORE |HA\ 1 LINE BrL"h PRECECING CHARACT:F' 1):'v:“

PSSO NRUPSYINEUN PHIUE T ISP ILA- S0 SRS U UIRNPI-ST N A MR RV NS SOt St SR S

P T UV PR B B N L

o R skt A N T T L e e Clatend e Srne i 5t A

. LINE

626

697

698

ANQ

700

701

702

703

704

705

70°¢

710

711

712

712

714

aeos [P [P PRSPPSO TR IOPNUIIC RO VIR AL e N FIVE SN SR PP

CALL <TACK kETUR\ CHAP(I.'$’).

caLt STACK_RETURN_CHAR(—ARRCH,'(f);_g¢~ug;«;

ENDS

ELSE GC TC EXPCNENT;

ENDS

ELSE /%0LD < 0%/ CO: C s K

- woa LAt .
Cla s st 3 PRV NPRs W IEE S A%

1F ARRCW < O TFFN GO TU SUBS'

TF NEW_LEVEL €= C THEN . . e mee e rmimis oo ons

CALL STACK_RFETURN_CHAR{ARROW,*)");

R

715

71¢

717
718

T1¢

72C
721

722

S*REAM

STREAM

PAGE 25
CURRENT. SCOPE

STREAM

STREAM

STREAM

STREAM
STREAM
STREAM
STREAM
STREAM
STREAM

STRFAMA

STREAM

STREAM

R T . b e ta e e

STREAM
STREAM ..,

STREAM ‘_ _

B e
STREAM .. o.n
STREAM

[URURNREEY SO VTR UL P D S e -

STREAM

STREAM -

STREAM

STREAM

STREAM . .ow

STREAM

STREAM

STREAM

O S R o L g W

AL CNnMPILATICN -—- PHASE 1 —-—- INTERMETRICS, INC. | PAGE 26
STYT . : N . SOURCE oo eome o . mes . LINE CURRENT SCOPE

537 1| £LSE OCs S ‘ N ' R C) 724 sTRzaM

€23 M1 CALL STACK_RETURN_CHAR(-CLC_LEVEL,")*); R '} 725 STREAM

532 M| IF KEW_LEVEL > 1 THEN CALL ERRNRS(E_LINE_ERR,1)3 ... o e 1 T26 STREAM

S35 #] CALL STAGK_EETURN_CHAR(2,'%¢);3 : g o | 727 STREAH

536 M1 CALL STACK_RETURN_CHAR{NEW_LEVEL,*{"); S LT | 728 STREAM

537 M| END; S : : . T | 729 STREAM

SEN 9' T3 - , o L C .| 7130 sTREAM

53¢ M| AKRGW = 03 . ST T T T gy sTReRw

c40 M| 60 TD STACK_CRECKS) . e e . o N e 1 732 STREAM

Se1 Ml TAD: . : _ o . | 723 STREAN

cor s ..”wm.*,;..w.uwumwmd~i2dmewnﬂ«m,hmﬂwm e e STREAM.,MN

62 Ml OCLCSE STREAMS e s e e st TR I 725 HALlNQAL

S 736 HALINHAL _

737 HALINHAL oo BT

|

1
| 738 HALINHAL
| 736 HALINHAL

cl L e e b e oo bt n w7 A oo RS

S4e v ,‘:A;,\:;;.:R_C(I;RAN: B - LT e Y T) [740 HALINHAL

544 M| WRITE(6) TREGIN. TEST-OF KAL .IM HAL-;M““““anuh."wﬂgxﬁ.‘w,mmmwmvﬂ it e | T4 HALINHAL sxlan e e e
545 M} BUILT, BUILT_UP, BUILT_TCKEN, BUILT_C_P=""*; ' | 742 HALINHAL
546 M| WMAIN_LCCP: DC FLREVER; CoT e T 7a3 wauimeal

547 M| CALL STREAM:; e e e e et ;M;g;;h\h1.744».HAL1NHALW;wW.,“Wm,mwwanmwwmm”u“
548 M| _IF NEXT_CHAR = ' * THEN DC;: T | 745 HALINHAL

545 Ml IFF GLANK_FLAS THEN GG TC MAIN_LOOP: - . o IR i 29 HALINHAL - B

ssg M) ELSE BLANK_FLAG = TRUF S« wei oo oo omonnht o 5 oot sosiominn s e n e e innsiimmmtn cne o | - T4 7 HAL INHAL oo e o oo e ot e e e memr
551 | END 3 | ' : . | 748 HALINHAL

e, P TR P T TRNI N et

55> M| ELSE BLANK_FLAG = FALSE: . - w1 745 HALINHAL

5532 M| . RUILT = BUILT || NEXT_CHAR; e ke e i et s i e it e} TS0 ﬁALINHAL.‘Q.;‘;W vt e ot b e s 6 e e

554 ¥] IF CVER_PUNCH = *0' THEN CO: . | 751 HALINHAL
QUT TSTRFAM RETURNS "1 |] NEXT_CHAR [| 29¢ || t = BLANKS=! COTIY Ty 752 HALINHAL
11l BLANK_CCUNT:S _ - S : : | 753 HALINHAL

o0

578
57¢

68 g

ha|
|

M

el

CCMPILATICN =-- PHASE 1
~SOURCE

SUILT_UP = BUILT UP 1] ' '3

o, o T

FLEE DC3

INTERMETRTICS,

o

QUT 'STREA™ RETURNS "t] NEXT_CHAR || ' — OVER PUNCH
{1 OVER_PUNCH - 1| tor || v~ BLANKS=" |{ BLANK_CCUNT;

BUILT_UP = BUILT_UP || OVER_PUNCH;
ENDS
IF NEXT_CHAR NOT < 'A' THEN DO

BUILT_TOKEN = BLILT_TCKEN || NEXT_CHAR;

IF CVER_PUNCH AOT = '0f TEEN RUILT_3_P'= QVER_PUNCH;

ENC . Lo e . . e e
FLSF DO;

If LENGTH(AUILT_TOKEN) NCT = O THFN 003

IF RUILT_O_P =."' THEN WRITE(6) '##&TCKEN=Y | | -BUILT_TCKEN;

"e

" ELSE WRITE(4) *#%&TCKEN=' |1 BUILT_TOKEN || ",MARKER=' || BUILT_O_P;

BUTLT_TCKEN, 8UILT_C_P = **;

END S e e -

IF NEXT_CHAR NOT = * ' THEN WRITE(6) '#3%TOKEN=' || NEXT_CHAR;

ELSE WRITE(6) '#*BLANKS=' || BLANK_CCUNT + 1;

- END3

IFf NEXT_CHAR = *;*' THEN CC3

et s

WRITE(6) SKIP{(?), Vs sCVEPRERT |] BUILT_UP;

WRITE(6) taskMAIN#®#1 || BUILT, SKIP(2)3
BUILT, BUILT_UP = **3

ENDS

1F MEXT_CHAR = 2' THEN GC TO DISASTER; - o

ENDs /% 00 FOREVER %/

CISASTER:

INC.

| 762
1 763

I 764

1 770
1 771

I 772

- 1773

| 774
i 77%
| 776

| 777

I 778

w179
| 780

TS

CURRENT SCCPE

HALINHAL
HALINHAL
HALINHAL

HALTMHAL
HALINHAL

HALTNHAL
HALTNHAL
HALINHAL
HALINHAL
HALINHAL
HALINHAL
HALINHAL

HALTNHAL

HALINHAL -

HALINHAL

HALINHAL

CHALINMAL -4

HALTMHAL

HALINHAL.

HALINHAL - -

HALINHAL

HAL INHAL
HALTNHAL oo

HALINRHAL

HALTNHAL

HALINHAL -3

HALINHAL

HALTNHAL

PAGE

27

¥

vl

4

“ D

ccryMpPpI1ILATION

CALL PRINT_SUMMARY;

WRITE(E) * THIS TEST IS NCW COMPLETE.';

CLCse

FALINHALS

pPHASE 1

SOURCE

I NTERMETRTICS,

i

wawgen 0

- PRt
A

LINE CURRENT SCOPE

| 782
| 783

[78

bt S s

O N T

HALINHAL

HALINHAL

e Y o

VIV VPN

PAGE

28

e

et

H

Sy M n oL

Lce

N0

-~

WSO DN

pb et s Mt b ek) S
N

A

_ MACRG_FCUND

L co.MP I LATION

NAME

AL INEAL
R
FALSE

TRUR

PIT_1
[F_NCT

1EF

cuT

FOTEYER

X7

PUTLT
RUILT_UP
EUTLT_TCKEN
BUILT_C_P
L ANK FLAG
£2ECR_CCUNT
MACRO_PUINT
MACRO_L [MIT
CLO_LTVEL
MEW_LEVEL

MAX

_SEVERITY

TAR L E

STATEVMERNT_SEVERITY

SAVE_SFEVFRITY

SAVE_LINE

PRFVICULS_ERRCR

1 .
COYPILING
TIME]

TIME2
MACRC_STREAM

CARC_CUUNT
ClSasTrER
NEXT_MHAR
CVIR_PUNCH
PLANK_CCOUNT
CONTROL
TRGOLES N
CARD_TYPE
SFLECT
Cror_TNDEX
STRINSG

PATTERN
1

J

<

PAD
STRING
WICTH

TENO_STRING °
L
I_FCRVMAT

LISTING:

PHASE 1

PROG

CHAR

e CHAR -
CHAR .

CHAR
CHAR

INT
INT
INT-

INT
INT
INT
INT
INT

ceee CINT -

INT
INT
CINT
™
INT
INT
CHAR
INT
INT
STHT
CHAR

CCHAR .

INT
BIT
CHAR
INT
CHAR

INT

CHAR
CHAR
INT
INT
INT

. CHAR
CHAR
INT
CHAR
INT
CHAR

TYPE-

noc0O0Dco

VAR

LABEL
REDL
REPL
REPL

CREPL -

REPL
REPL
REPL .
EFL
VAR

VAR ore

VAR
VAR .

PO

VAR ..

var o

VAR B

VAR

VAR

VAR -
VAR 2.
vaR'

ARRAY ..

ARRAY
VAR
VAR
VaR
VAR
VAR
VAR
VAR

VAR .

LaneL

VAR
VAR. -
VAR
ARRAY
VAR
FUNC
VAR
FUNC
VAR
VAR
VAR
VAR
VA
FUNC "
VAR
VAR
VAR
VAR
FUNC

PR P S

AP IS
2y p v

B .u,.«. e

INTERMETRICS +»

foNoNoNoNeNoRoNo e

70

Landi V]

~
ETIRY

N
n
< oun

Fde -

[oReNoReoNoRe]

O OO VNCOOCO0OO0DC

R
ORNOCOO # HOOON

Copws L

N T e Beim

COOOOOCOOO

FIXED

aniin VALY I NG
VARPYING

+ VARYING

. VARYING

R

PR T TR

DS OCOO0O0

VARYING

b e

-
-t
>
m
s

. Lhe VARYING

FIXED
0

. VARYING
: "9
. FIXED

CCO0ON00OOOC

wloRoNo

YNT\)NNN’—‘N)-‘)-‘H)—‘P‘)—‘P‘HH-‘-—dq-d)"v-‘y—lﬂr—l)—‘f-J;AHH)—‘;-w‘HHr—‘)-‘P—"—‘HHH'—‘HHHO

0N NN

e

NP SIS S

OO N

[P

[P ST AR

N Bt bl o

R AR IR

I NC .

OOOOOO‘O0.00000000000000000000.000000000000000000QQQOOO

ot

40
3000
5000
1230

RODOQ - -5 e n

200¢C

80920

3000
21300
2AQR
R208
az2Qgr
27208
%20B
RAQT
RADG

-8A08

8408
eAoR
qA0PR
2408
AADR

BAQD « ~ -

8A08B
8408
RAQR
3408
|a20e

820B-

8208
SA0B
2A00
20640
£ 207

B 208 - tirmiennne

8AOR
8208

aane .

8040
CHOB
8040
2608
3608

. 2208

R20R
C208
£040
Re0B
8408
220P
C20n
8040

OOOOOOOOOOOOOOOOOOOOOCL‘\IO*‘J\ MNP

“CLASS"">LENGTHWM“PRECISION'F'NEST*“WOUTER_KEVELi“ FLAGS SYT_PTR

[oNoNaNoNoRoleoRa]

3

H
B

»

wn

WO OO PODODOONO

PAGE 29
- ARRAY
- -100
100

10

&3
sS4
55
g6
=7
oR
5%
50
&)
62
63
&4
&5
EA
&7
68
&6Q
7C
At
72
72
T4

76
77
T8
75
80
£1
a2
]3
Ra
A5
6
a7
aa
<0
CAl
S2
9z
Gh

o
2

A

L COMPILATICON

NAME

NVRER

WICTE

STRING

L

FeoCRS
VEQSALT
SEVORITY

MSG .
NISASTER
PRINT_SUMMARY
STREMM
F_LINE
S_LINF
M_LINE
SAVE_CARD
CURRENT_CARC
0L ANKS
F_LINF_FRR
CROER_FuR
PREV_CARE

SAVE_NEXT_CHAR

SAVF_IVER_PUNCH
LEST_E_TAD
LaST_S_TiD
E_RLANKS
N_HLANKS
S_BLANKS

£p

<p

TEXT_LINIT
F_CCUNT.
LAST_F_CCUNT.

. S_CCUNT

LAST_S_CCUNT
INDX

cp

PCINTER
ARRQGH

It

_IND

_IND .
F_INTICATCR
S_INNICATCR
RETURNING_E
RETURNING_M
PETURNING_S
ENT_CROUP
¥_COYYRNT
AREOW_FLAG

Vs M

FIRPST_CALL_TC_STRFAM

TYpr_CHAR
RETURN_CHAR
T_STACK
S_STACK
INPUT_PAT
STuTAY_START

PHASE 1

TYPE

INT
INT
CHAR
INT
praC
AR
INT
CHAR

1-ST.

PRCC
PROC
cHan
CHAR
. CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT

~ - INT

CHAR

INT
CHAR
CHAR
CHAR
STMT

CLASS .

VAR
VAR
VAR
VAR
LAZEL
VAR
vaR
VAR

LASEL

LABSL
LAREL
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

VAR

vaR
VAR
VAR -
VAR
VAR
VAR
VAR
VAR
VAR
VAR
ARRAY

ARRAY
APRAY

ARRAY
VAR
VAR
VAR
VAR
VAR
VAR
VAR

ARRAY

ARRAY
VAR
VAR
VAR
LAREL

- INTERMETRICS,

LENGTH

3%

V)
w1

g N TS

NN DT DY

. . . . -t
O?*‘OOOOCOOOOOOOOOOOOOOOOOOQOCOO?“P‘H\]OLOOO\Jl‘ﬁU‘IOOOJ]C‘ #$OOWVOO

PRECISION

C
- : 0
VARYING
0

0

FIXED

4]

- VARYTRNG -

0

0

.- 0
© VARYIANG
VARYING

- VARYING
FIXED
FIXED
FIXED
VAPYING
FIXED

cwwe - FIXED -

FIXED
FIXED

FIXED

¢
VARYING
VARYING
FIXED

0

leXeRoReRkeRoReoRoRe ke oo ReRoRoNoNoNoNoNRoRoNe RoNoloNoNe)

NEST . .

NNNNNNNTUNNNNN’\)NNNNN!\).\JNNN‘\)NF\JNNNN’\JE'JNNNNNN:‘UN.\)NN:\)HHNN!\)-\)»‘NNN.’\)

H
i

INC

QUTER_LEVEL

¥

OOODOOOOOCOOOOOOOOOOOOOOOOGOOOOOCOOOOOOOOO(}OOOOQCOOOOOOO

FLAGS

3608
2608
a2oe
€208
R040
2408
1408
2208
cn40
3040
9040
2208
2208

3208
2208
SA0B
SANR
SACB
208
/208
320R
Aanoe
°AQL
/RADR
SAQR
8A0B
8ACB
9A03
2798
3408
RADQR
3408
3A08
SAOR
A28
RAQOR
3A0R
8A0B
8A08
SAQR
2708
8A0B
5408
8A0B
3A08
‘8A08B
fAQD
8AQR
8 AQR
’208
3ANS
azoe
2208
3A08
8040

9203 .

SYT_PTR

st

OOOQOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO~>OUJOOO(DOOOO

PAGE 30

ARRAY

256
26

256

[WRV

1Cs
110
111

b (et ek ok D bod S Aot W4
[ESIECIRRS AU I .U I AN IRV SR
W P2 e LD D N AN

Sd L
[CURPS)
g

134
127
122
1@
1aC
laY
142
143
142
145
146
147
14¢

15¢C
15)

152
153
154
154
154
157
158
156
160
1£]

145
144

L co-vMP 1 LATICN

NAME

BEACESS_COMMENT
K .
J
COMPLEMENT
STAGCK_FETURN_CHAR
NUMRE P

CRALR

] . -
BEAD_CARD
END_CF_TRPUT
cpnEa_TK

Tyee

F_CARD

CONNENT
SETURN_TRUE
SCAN_CARC

Typ*®

caunT

BE

INNICATOR
COMTINUF

£a00Rs

covp

TypH

LIA

[HNTCATOR

CCUNT

PLINT

SCAN_GARD

X"'/‘r (‘:\ C
CRPORS
SRET_GRAYUP

LeCP

QTAD_1T
nEAY_CARC
EufCRS
FCURD_GROUP
ccwve .
PACCESS_ CUMMENT
CHOP

CET_GRUUP

STACK

TYSE

INCICATOR.

LIN

IND

STACK

rp

NAT_MyLTIPLE
FR«‘PRQ

BUTLO XSCRIPTS

CHFCK_M
PLACTSS
STACK
CHLP
AGAIN .

P HASE 1 -

TYPE

ARCC
CHAR
INT
STMY
P00
INT
CHAR
INT

PROC

INT
INT
CHAR
STmMT

INT -

STHT
PRAOC
INT
INT
(HAR
- INT
STMT
1-CL
pRCC
INT
(: AR
INT
INT
CHAR
1-CL
1-CL
1-CL
PROC
STMT
STHT
I=-Cct
1-7L
STHT
- 1-CL
I-CL
FRCC
LI-CL
PROC
JINT

- INT -

CHAR
INT
CHAR
INT
STMT

e I-CU

PRQC
STMT
STMT
[-CL
I-CL
STKT

0
1
0
0
Q
¢
1
Y - S ¢
0
0
Q
b
0
-0

VAR

LENGTH

LAJEL

<o VAR

VAR
LABEL
LARECL
VAR
VAR

LABEL

VAR

FUNC

V4R

LagsL

FUNC - e s
LABEL 0
LA3EL 0
VAR 0
VaR 0
VAR . 13
ARRAY - il)
LASEL 0
LABEL 0
LAREL .0
van 0
VAR %%
AR2AY “ 20
VAR 0
VAR 1
LABEL . .0
LABZL o]
LABEL 0
LAREL i wb om0
LABEL 0
LABREL 0
AREL .e..

AD 0
LABEL 0
0

LAREL
LABEL
LASEL
LABEL
LAREL -
LAZSL
vag ‘
ARRAY m oun
VAR

ARRAY

VAR

+

3#*

+*

an'L_
LABEL -
LABEL
LASEL
LASEL
LABEL
LAAEL

0
0
0
-0
0
0
-0
'
0
*
0
0
0
0
0
0
0
Q
LABRL 0

.. PRECISION

A A

FIXED

il

PN SCPN IR O

0
FIXED

SIXE

m
—
x
-

o]

mn

. 4

<

oo 3

-n
—
=
m
D

[eNoNoNoReRe R

ooooojOooooobooooooooo

OO0 0000000 COD

: {
OO0 OO -

NEST

R W) W WN

i.\l’.)JuJb)k))w".l-‘UNUN&N:»‘M;»)W'»N*»‘N&&W'))‘.JU)Nww\MuJquN\)JN'\J:"\;)NWNWL)J‘-)JNUJUJ\.)JN

INTERMETRICS 4.

INC

OUTER_LEVEL

ey gy 0

 aner e e -

ndnsden

RS X

Y

6000006'00000COOOOOOOOOOOOOOOOOCOOOOOOSOOOOOOOOOQOOOOOOOO

FLAGS: SYT_PTR
3040 110
g208 « 0

8208 p
€040 0
8040 114
3608 0
2638 0
c208 . 0
3040 11¢
CAOB o)
8040 120
260p 0
040 G
8040 123
C040 0
8040 125
3608 o
"IGO O
w270 0
3228 - 0
R040 0
€040 57
8040 132
asQR 0
3228 0
2228 - e]
3228 0
820¢ 0
£040 124
5040 117
co40 s7
R040 - - r w1 AT
8040 0
8040 Y]
3040 117
3040 57
2040
RO40 w131
C040 10¢
30490 140
o040 140
2040 181
3608 3 0
BAEOB it 0
R608

8228
8228 v
2220
A040
C040 5
8040 16
R0OA0
8040
2040 150
€040 14¢€
3040 0

cCooONOQOOO

ARRAY

256

256

-256 -

256

165
166
167
162
167
17¢C
171
172
172
174

A

L COMPILATION --

NAME

TREORS
#SAVF_RLANK_CCUNT
STATK_CHECK
BEGINING
FLUND_CHAR

AL ANK

EXFONALT

SL2S N
A IN_PRDGRAM
NAIN_LONP

P HASE 1 - INTERMETRTICTS o I NC

TYPE CLASS LENGTH. .PRECISICN NEST . QUTER_LEVEL .. FLAGS
I-CL LABEL 0 0 2 0 3040
INT VAR -~ 0 - -0 - 2 - - 9 2216
STMT LABEL 0 ¢ 2 0 3040
STMT LABEL 0 0 2 0 8040
STMT LABEL 0 0 2.. 0 8040
STT LADEL 0 0 2 0 2040
STHT LAnBSL 0 . 0 2 0 2040
- - STMT LABEL R - «0 - 2 i 0 C040
STVT. LASEL 0 0 1 63 3040
STMT LABEL 6] 0 1 0 C040

. SYT_PTR

[oNoRoNoNoNoRe No el

PAGE 32

ARPRAY

H AL coMMPI LATICN - PHBASE 1 - INTERMETRICS, . 1NC. ' PAGE 33

Cr i > e N mwy e S P P PN C e - NPT

CresSS REFERENCE LISTINGS:

"ASSTGNMENT, 2°= REFERENCE, 1 =-SURSCRIPT- USE) -

Lce FLAGS & STATEMENT NUMEERR® ~(FLAC KFY? ~ & = o
1 0 cod
> 3 0007 2 0003 2 0CO& .2 0CCE 2 0GOS 2 30007 2 0008 2 0GQ0S S R - o . .
2§ CuYr 2 0013 2 cC13 72 0075 2 s0Uan 2 0Lce 2 G128 2 046 2 0LA2 2 0le63 2 01487 2 0172 2 0174 2 0178 2 0181 2 0184
20200 2 0282 2 0327 2 €365 2 0332 2 04810 2 C4S ? 0h7A 2 0502 2 0552
4 0 €024 2 OOYS -2-0110 -2 Q127- 2 Ol66 -2 0188 2. 0173 2:0177--2 0180 -2 0185--2 0195 2 0345.-2 0372 -2 0401 2 0427 -2 0452
2 0477 2 0%02 2 05f0) . ’
® g Q003 2 0C1? 2 0C1% 2 CO1% 2 016 2 Cl10 2 0146 2 0158 2 C1S0
6 C CO0&4 20233 2 0262 2 cre? . . - I P . e .
7 C GCCT 2 0C?% 2 CCEC 2 Cl4T Z 0208 2 0257 2 037 2 0363 2 03°0 2 0409 -2 0416 2 04656 2 Q482 2 0%54S
£ 0 QJUUR NOT REFEREMCED) ' :
[¢ 00Q0° 2 0228 2 0"ns - e T J P e -
10 0 001l 27 0080 2 CC&S
11 0 0012 4 0S45 6 C5%3 2 C57% 4 0876
12 0 €CO12 & (0543 6 C5°% .6 0558 2 0574 4 0ST76
13 0 €012 & €545 & (561 2 Ches 2 CtAh 2 0567
14 D D012 4 0545 &4 0562 2 0566 2 Q0567 4 (CSeg '
15 ¢ 6012 2 054G -4 Q03%0 --4-05%2 - - - IV DD RV - U ST P S
15- 0 0014 & 00&é - 2 0C6T 2 C0e% 1 0070 1 0071 2 0085 2 0086 2 0027 2 Q089
17 0 0014 2 0381 1 0382 & G783
18 0 €014 2 07El - . e B N
16 0 0014 4 0s5C8 2 €511 2 €721 2 0533 ’
20 0 0014 2 G503 6 0802 2 (€831 2 0824 Z 053¢ e o .)
21 o 0014 ¢ 0C738 - - A el PR e v e e s i FEppRAT “ e -
22 O CO14 € 0C7¢ '
23 0 0014 "4 0870 2 CCSO0 2 COs2
264 0 G0Ol4 4 CC71 2 0090 . .
25 0 (014 2 0BCAZ 4 072 2 COg8Y 2 coaz Co
26 0 CCl4 4 UC23S 3 0060 4 0S5 .2 €C%6 4 0120 1 0121 170122 3 0125
27 0 06018 £ Q075 6 CO0°0 S TP R T PR OISR IR: S e e
28 0 CCl4 2 00S5 & 03¢&4 . . s
25 0 CCle 4 6C<4 2 CCS5 2 COG7 ’
3¢ 0 G017 2 0282 4 C265
31 5 CJI1® 2 0320 4 Q367 . S S
32 0 CC18 2 0071 2 €072 2 COP&s 2 00956 6 0152 2 0153 2
33 0 0020 2 GCTA- 2 0CA1 -2 €578 = 0L OBRQ o e s e e et ek th vn o S T o
34 0 0021 4 0392 4 Q387 4 Q362 4 0403 4 0411 4 0418 4 0443 4 0460 4 0468 & 0486 & 0494 2 0511 2 0548 2 0553 2 0560
2 0E€1 2 0S7C 2 €873 2 (s57@ ’ :
25 0 0022 4 C254 4 C4C4 -4 C4lz 4 C435 . 4 C437~:4.0439 .4 0449. 2 0510 ., 2 0554...2 0558. 2 05625 —vimpms -
36 0 0023 4 D3RR 4 0358 & CL13 4 0421 4 0481 4 0487 2 0512 -2 0S71.. DT VAT
27 0 CC24 4 Q127 4 CiZ8 &6 (€126 ! -
38 0 C0?5 7 0123 . e e e e e IR VU A NS S SO AU TP SR TVATUR TP DS IE
36 0 Q026 2 01460 2 Qles 2 G172 2 0177 2 C184 2 0258
40 0 C026 C ©C27 2 ¢C28 2 CeL25 2 0030 2 0031
41 G C074 z 0122 . C e - s o -
42 € C03 0 €035 2 00327 2 0041 -
4% C CC3% 0 0028 2 G038 2 0041 i
44 O CC2% 4 0C4C 3 (CC&1 . R . ‘ P i .
45 O 0026 4 0037 2 €029 2 Ccac
46 0 CO036 4 0033 2 0039 2 Q04C 1 0041
47 0 CCa% NOT REFLRENCOD . - . N
48 () Gu4S © 0046 2 CCAn 2 COSC 2 €05l
66 c

0045 0 00AR 3 CORQ

50
g1

52 .

53
sS4
58
56
57
5
59
&C
52
63
[
&5
66

&8

8¢
SC

c1
c?
G2
c4L
34
c6
c7
cR
SS
100
1C1

OO0 OOCOOOCONM-OO PO OCODDOOCONO0O0DOMO0COONVNOOCOTLCOOOITIOOO0DNO

-

nge?
CC4ae
Q0S54
QCse
cCS94
coss
Co5A
G082
ceer
Cco6?
0062
cLen
QL0
cron

$1063

0101

01072
0102
02617
ciag?
0104
0105
0106
0104
€104
0107
0107
G107
0107
c107
[eRNeN

¢ro7

0107
0107
o107
0107
c107
0107
0377
0107
0?07
0107
045
€107
0531
6107
0108
crae
e10°
0108
0100
0109
0109
c1cs
0109
C108

&~ OO N DS

o

O

-3

P

DA NS

oo D

(d sas bt DN DO D DD DD DN RO

PN LN RN

DD DN D VT D RN IIN DS e

[BY]

0gs1
cceo

0057
CCR9
cces
GCES
6212
CLa7
cce
cong

G262
c272?
c?2e3
Cl%6
€120
(1262
c2a7

c534 -

C2¢4
0268
C411
€412
G470
G463
c157
C2¢0
c382
€221
ciz2
0128
€250
02f8

o

C2R0.

czrce
Q247
Ca2a
c1¢2

CAET ..

C4€8
0441

C3¢6

0357
c3%2
GC2ea
¢z7¢c

C4r?’

Qalé
C456
Clén
3%

¢ace

PO NNN DN DN

3

NN

HNILNERS IS e 8

P

G232

cCc70

‘CQ6S

cre3
[
c2sC
G267

€121

0778

€368

027¢
¢511
£s1c
Canl
cats
g359
C27¢4

,025¢@

C384
ces

p1c1 .

0262

0272

07 ¢t

Ccazs

c1c2

cace
CcoRrn
Cab

c4cC

0488
ORI
6103

SU302

ch02
CAeC
06TA
Cre
gRen

0410

N

~N NS NN

[aS]

e o)

NN Tt

PHASE
0060
Crse - 2
0c7e . 2
G231 4
0332 4
0330 2
0122 2
0?71
C4u?2 4
OAAQ},A
01560
0417 2
0355 1
350 1
01e? . 2
0284 4
0291 .4
grge 2
0629 1
C164 4
c459 .1
cang 1
C4ts 4
0402 1
0487 2
Casl . 2
0221 2
0232
C&sC3
172 4
0427

1

031¢

cC7e

372
0373
c23g

04678
0470

0421

0357
Q3852

0206 -

gz28¢

03C0
0433
cace

Q4el
0434
csgQ

Q4C3

048¢
0463

3434

c177

LN AN

[AS IS

4

03220 20382
0080

0422 7 042%
0440 - .. .
0340 2 0744
0142 4 C151
0486 4 04¢0
G478 Tealnto
0422

0236 . 2.0785..
0432

0440 o
0304 1:0212
0434 ..) 0435
0267 1 020¢
0452 ...1..0462
GA8S 1 04c6
0455 7 0507
oace

0480 2 0495
4kt .2 0465
0178 2 0257

INTERMETRTICS,

4

N

o

N O

0434

0346

0156

.0292.

0322

0440 .

021¢

04564 .

0487
0sco

0406
0470

N

3%

o s

ny

0440 2

0373 2 0425

0160.. 2 0179

PN LA

103001 0301 -

NSRS sy et ese

0322, 1 0320

0443 . .
0217 4 0234

0468 ...1 0459

0514 . 2 0516

[P e

INC

. ' PAGE. 34
'z 0523 2 0534 ;

2 0426 4 0428 & 0429 2 0443

2 0191 2 0152 2 0207 2 0217 2 0232

1 0338 "1 0340. 1 0244 ‘1 0346 4 0374

1 0235 1 0237 4 0285 1 0286 4 0252
1 0470 .6 G471..4 0479 2 D483 . 1 0484

2 0518 .2 0522, 2 0523 2 0525 2 0530

1¢2
1C?
104
108
1Cé
107

ce

A lal
iCe

110
111
112
113
112
- 115
116
117
110
11¢
12¢C
121
122
123
124
125
175
127
129
12¢
131
132
133
134
138
136
140
141
147
145
149
150
151

52
153
156
158
156
157

g

160
161
144
16¢
167
168
169
170

NSO C MO CC oaNG

(DGOO(‘)(‘)ON(}NOO-’DOOOO"JOOOOOOOOOOOOOODOF‘)OOC\)OOOOOO

€110
Cill
0112
ci113
Cl1®
0lis
G11¢%
011z
0117
c11e
0124
0134
G134
(12
0135
€148
0144
[ARREA
(A]
gics
01=¢C
claer
0zZC?
02C2
0?2¢?
crer
¢2c?
0208
c?221
c22

022

0221

cr21
c222
€245
c281
C2%72
287
c2ee
Cc307
c32C7
c207
307
307
03207
0307
0311
0226
0329
03390
036 A
028¢
gzne
Cals
h272

3430

DOOCNG NSO S DN NG

OPJN‘\JI’\)’\’_T\)T\)NNO(\Oﬁ(:(\N\)O’\)ONJ\OOCOrdNﬂﬁﬂCR)NNMO\)Nt\l

P IL

0263
g14cC
01328
0327
0227
0149
03:3
02737
0122
0122
0126
0514
Qlze
PRI
0137
€231
0147
0237
01¢¢
¢17¢
0208

0198 -

c23C

02¢C4 .

0234
025
02032
0213
0252
0223
0224
G223
0223
022¢
0303
0257
G2°%S
G231
[PREK]
0331
Q3C8
0310
0309
c310
03C¢
C3C8
0214
04nt
0234
1342
0346
03¢cn
0540
0%Ch
0445
Vba?

[AS]

N0 NN

DA NO PNV ON

SIS LS S o

NN DINNINN

N

C3Es
cacs

€129
C22}
€332

01232-

Ccl24

¢s517
C13s
C140
0122
€252

c2°3
01s5

6269
0215
0209
€216
C21¢%
0272
c?226&
G720
c?220
c228
€227
0275
C2¢3

2£9

0444 -

0332
€318
c3z22

0212
c313

G313

0211
0317

~N

[AS B8)

NN DN

N

N

N NN

cace -

0354
0249

0128

c127

C%186

012c

C3&e

02¢7
0172

0220 .

eazs

€235

c220-

cz222

€273
g278

PN N S

SUINFURVE R

S OO0
j]

CéiB

oHces.

P HAS

0355
0350

oo

2 o127
1 o128

2 0177

0237
0237
0233

NN o

W N

&€ €317 2 0318 1 0323

4 0512

¢ 0507

0402 =+

r~

[

€

- INTERMETR:

1
0356 2 0483
0351 2 0457
0128-
0129
¢525- 2 0531
0180 -2 0184
0242 -

[

2 0484

2 0458

2 04%4

2 0468

1 C

BT R

LRI

PAGE

35

H AL cocMPILATICN - PHASE 1 - INTERMETRTICS» - I NC. ’ : PAGE 36

171 ¢ 0515 0527

172 0 0822 $530 . S : :

172 0 0844 NCT REFERENCED - -v oo - VDU UUCSUP o SO VP M P PP S e a4t e
174 ¢ C54¢ 2 0546 :

LAS I N1

MaCRDO TEXT Lt 1T STING
LCC TEXT

REPLACE . - ‘ . e e e e
o .

1 .
INTEGFR . . Ce e A RN . ; RN L N e
1IF C =

1IF 1 =

WRITE(6) .) : . o e e S

WEILE 1 = 1 ’

DN PN

STACKING DECISICNS 13662

CALLS TO SCAN 3G2¢

CALLS TC ICENTIFY cag . —
NUMRER NF RITLCTICNS aT27

MEX STACK S17¢6 25

MAX IAD. STACK SIZF 32 - - T - . " i

ENC IND. STACK SIZE
MLX EXT_ARRAY INDEX
XREF LIST TATRIFS
STLTHVMENT COLNT

HAX CUTTR_LTIST INDEX

T I O T T O T SO T I I}
[
~

MEX NESTING CEPTH 2. R - L N C TS PO i sl -
FREL STRING AREA 55355 :

D e M ehe e s et aa e mem s b T AN ambaden e e e e O ks e e L T T

766 CARTS WEKF PRCCESSEM. oo o - o oo
NC ERRORS WERE CETECTED DURING PHASE 1 .

TCTAL FLAPSELD TIME IN COMPILER C:(:20.52.

FLAPSER STT UP TINME 0:0:0.04. o . . N » E
ACTUAL FLAPSFES CONMPILING TIME .« 020218433 er o0 v v mosimmims w oo Sdi e o Tl = e e e 2 F
ELAPSTL CLEAN-UP TIME AT END 0:0:1.35. :
PRCCESSING RATE: 2465 CARCS FER MINUTE,

- - [
B SN SPRLSTU A AP SEPFIUN RN SOV SRV E- SHDRTE SRS S . o e

T CKEN=P 2y MARKER=%

BFGfN TEST CF . KAL IN HAL
1 Ct 2 5 &
2 M1 TOARMIPROGCRAM:

FETLANKS=]

#HETOKEN=TPARM : - R

XEXTCKENS S
A% TOKFN=PRCGRAM
4 ATOUEN =S

A AOVES Faw

HSHMA TR xR TRPARM: PRCGRAMS - ,..?“Lw“.m FES U PP PS UL PP SR S

1

3 %
v] TECLARE MY '
<] -

2,32

<

PA RN)

N

HHRLANKS =65

#u R TOKEN=DICLARE .

F#EDLANKS=1 J R T .

3R FTAKTIN=MY yMARKFR=% : :
XLXTOKEA=F . .

4(:(-;:‘7[".((_'5\;:(. F e FE S A S N
2HXTCKTN=2

2R TCKEN=,

xhETOKENS o . . . o . » . o

7 ML M2 H
3 s R,8

¥ BLANKS=6E

FXRTOKEN=S

wxsTOKEM={

*%%TCKIN=R

A ETUOKN=,

FHRTCKTN= o
fEeTCKFR=) “ el v . o
#¥%TOKFEN= N S VR FN U PO AR NSNS AL

EEEQYERFFX * *

#AEMAIN®EE DECLARE M1$(3¢3),»N2$(8}8);cmrmNﬁwmff,ﬁwﬁ?waHmmmmmh

¢ ¥| CECLARE 11 ARRAY(5) INTEGER INITIAL(342,5,4y1)30

FHBLANKS=T2
xR TOKEN=CECLARE
HERLANKS=1

w3 TCKEN=T1 o e
2R LANKS =Y U L P TPV A e AP i
*2xTCKFEN=ARRAY

£ ETCUEN=(

x5 u TOKFN=S e

GxETOKEN=) o .

L T

37

*BLANKS=1

¥x&TOKFN=INTEGER -
EFOLANKS =1 ' - - S

RETOREA=TINTT AL
¥ TOKTN=(' . S AR e . _
HERTOKEN=T L e e b e e e e T i i . - R
#xETCKENS,

xR TOKEN=2

2 TOUEAN=, . S R _ e e e e e

HaETOKEN=R) '

kT
EERTLKE
gk TOKEN=,

#ExTOKFN=1

A TCKEN=) oL . e . . — - B

HERTOKE=3

N=4H : [e T s e e i P S e

B o e B

EHTOYED Gtk , : S B : e R
#xxMATNE%% DFCLARE I1 ARRAY(5) INTEGER INITIAL{242,5,44113

16 ~¥| TECLARE ARBAY(3) SCALAR, S1 , S2i " i 10

$APLANKS=
##&TCKEN=
HHRLANKS=]

2% 4TCKEN=ARRAY . e i e e

2AESRTOKEN={ . . : e e

AR TOKEN=S _) ‘
¥ TLOKFN=) . . hn S S . e e it dew ke w el K ek v e e e et we R . e e e e e b e e e e e
#+RLANKS=1

wx e TOKFN=SCALAR

£ AT CKEN=T, . O S
*IRLANKS =] : .
FERTORIN=S1 ‘ _ S o | S
R PLANKS=] . R - U e S N B T L I R it
#xFTCUEN=,

%R ANKS=]

22
CECLARE

BEETOKENTS2 - o oowa e e e e e s -
#E&TCKEN=3 : ' ' R
FxHCVFR® SR e e e i e s e NN . . s b
s#%VATNE%s DECLARE ARRAY(5) SCALAR, S1 , $23
e » e
. o oA o o i s et s o WSk o mn\. Coemr e 5t o St msn . N .

. 0 = - . . SO SR P U P U DTV PR . SRS IPIIPIE RS
e TOKENE, . e T .

FUNCTION DECLARATIONS _)
11 K] FUNCTICN CTCLARATICNS _ -
13 %} PROY: FURCTION (P) OMATFRIX (% ,%)3
14 S o gk

®XELANKS=4T

£x3TCKEA=PRC) .

fru TCKENSS - . . . e e e wge,
f4OL ANK G

xR TOREA=EUNCTION - : .

ZHPLAMKS=2 G e LS e e e e e e e
EEETOKEN=(

#%x#TCREN=P ,MARKER =% _

¥nETOKTN=S o T e
BEETOKTN=(
F¥hFTOK

#44TCKEN=%

£ #TOKINS

FLHTOKY N=) . T oL e e e

LZAPLANSS =]

2R TORON=MATP X

FALANKS=1 :

R TCKEN=(

#xRTORTN=%
“v‘='f¢Tf.‘|K[‘-‘\'=7 . R sespisg n Ty el e N R AR o S DU o AR A i
AT CKFN=%

F2xTOKTN=)

Xk TLKENS B v P T T - B T T T T e

ALROYERSRS *
#3aVAINESE PROL: FUNCTION (PSU,%)) MATRIX (Ra%)35 o o oo

LS T T T I I NS S C ST o S L S SUPREPL B

= | , o
| RETURN P 3 : .

<M

15
16

##BLANKS=45
*2ETOUEN=RETYRN

HHPLANKS =]
FETOKENTP g MARKERSE tew oo nie on
HEITOKEN=*

ELETOKEN=*

IR TORE A= e e
EHFTOVEN==

#2FTOKEARY
XEFTOKEN=) - <

23 TOKEN=3
REROVEREEE. B D e e g s S .
gEEMATMEN RETUPN P2%(-1)}

17 ¥ CLCSE PRCL3S

*3PLANKS =67 . o
®%xTCKFN=CLCSE :

¢ e g eyen 0 n

ST TR

CEABMAINTESE CLUOSE PROLS oo o mmrirs oo mtr o o s o o e e g D B b 4t e

F2xF TCKEN=% e e v e 2 o o R

R ELANKS=]

L EEETCOKEA=PROY . . .

£ 3TOKEN=3 e e e e s e g RS s o

SO
EEE oMo L F2

19 M1 PRO: FUNCTICN (B) MATRIX (%) o it oo n o me o

SEALANKS=ET

FEETOKENZBRO . oo o o n i b e i b i e i

% TOKEN=:
£ BLANKS=] .
258 TOKENSFUNCTION o S e m e N

R Al S=1

L
TrKEN={

F
o ‘
“TOKEM=8 e e e e e

3

H#FRTOKEN=)
®ETLANKS=]
FXxRTOCLON=MATRIX ~
ZHERLANKS =] :

B TORYN={ .
FRETLOKEFA= R RO SOOIV UPRV N SUCIPTNVIIIO: WO USSR NI SRR VRS S SRR i A L
XERXTCKENST,

*E5TCKTN=%

*XETOKTN=) . . . N S . S R e s :
#HeT(KOP =3

FRAQYE L &k J S U S ORI TSR V-3 UC S ORI MUY VRIS pE AR VS PN

EEEMAIN%RE PRO: FUNCTION (B) MATRIX (%,%)3

19 #1 DFCLARE NMATRIX (#,%), B3

HEBLANKS=4LG e s T e i e A S R ko e it e
XA TOKEN=NFCLARFE
*3PLANKS=1

X TCKENSMATPIX 0 0 oo o L e e e e S ey pree o
AXALANKS=] ’ :

ZERTORKEN=|

uxTOKFN=,

2xETCKEN=% .

2R TTKENZ) e e et e e e
F2ETOKEN=, '

R ANKS=] o T . o P
2xFTOKEN=R - JR T USSP S UP U P SI REUPUTC PRSP SPIENEIC JLITSE SR E
#%*xTCKEN=S

fORR(JY TR KRR . . . e
xFAMAINS2% CEFCLARE MATRIX (*x,%), 03

20 M| RETURN PRO1(B)3
21 si 2 10 4,1 TC 3

*ERLANKS=SE

s b N bt £

#a3xTOKEA=RETURN _ .)
#XBLANKS=])
£ TOKFA=PRE]

2P e TOKEN=S | . -
ORI . : . . ' ' el et e e vt 1
xxsTCKEN=S . s W e e e s e e e

FETOKEN=(

s+ TOKEN=2 ' M
mEDLANYS=L .) TS . e

FAw TONT =T

20 , ‘ ~ o

N Aok - P N PR S PR

&%

% % % . B

L . .- . "

%k

; e e et ol e s o e T SR

Ty - .

%k TCK

28 ATOK TN = -
kaHTOKEAN= " It '

EH AL Sk .

H%EMAINESE RETURN PROI(RE(2 -TO 4,1 TO-3}) 35~ ¢ e AT e i b e st e i€ e

~

2 v CLESE PRC C e Cne e RN

SR ANKS=50

2R ETOKEN=CLOSE co e T R OO SN S-SV S SR

H=EBLANKS=]
2 TCKIN=PR] :
£xxTCKEN=S : S

B E(1Y O] A ‘ .) _
SxsPAINEES CLOSE PROS -~ st oni o oo o

- . RO AN
s
-t el i ke ek aidandon o i A b e n s
. N PR “ . - .
o e e eme g v st £y et Te Twe s e o ealr wrengs
P e . . " . e
LA TR SR NN R STVRPREE RSP BN SR S M

. .
- - v Mg AT wrw me B na e e gt
. A, PRIFPIRERF. _-S0y) e - . - T e A

EAIEY e
e . R SN Qe S st
-
et o s

oot
- .
P
- son,
weem E [N R

Y

NAIN PRCGRAY . B ' \
22 K| MAIN PPCGRANM - 12
24 ¥] ©C FCR 1=1 TQ 53 S S e e e b 28

ARG ANK S=£T : 4 ’
2 TOKEN=MD e . e e e . e e
#%PLANKS=T

AR TOKFN=FCR

*HRLANKS=] : . o L S S s
BEETOKE N

FAETOKEN ==

2&RTILIN =1 - .. . L e e . e
=22 LANKS =D

#xxTOKEN=TO

*#HPLANKS =]

ZEHTOKEN=S

EEETOKTA =

FARCYERE K%
wa=MATN&EE DC FOR I=1 TO 53

25 ¥} DC Fra J=1 7C 5;] . _" | 2

#2PLANKS =62

&&= TOKEN=DC

XARLANKS= 1 . . S e e e e
FEATCKIN=C0R

£3RLANK S =] . ‘ ‘ o

22 TOKEN=J - DD SO0 S S O VPR QA U NG

&4 xTCKFN==

=xxTEKEN=T(

FERLANKS=T .)

HRTOKFN=S - . e e e e R D O S R PO 3
FRRTCKEIN=S

HRFOVERETSE L G e N e N e e
e AINSRE OC FOR J=1 TG 53

26 El J
27 £ 1151
| M2 = S1 T o e e e aes
S 1,4 n :
|

N o
w

#XRLANKS=¢5

XEXRTOKFN=NV? i

FEXTCKEN=¢ . e e e e e e s PRI PP e
AEXTONEN=(‘ . : : : 2
x&xTCKEN=T . S L
ERXTNKEN= FE SR S N NP CIENI VI OPURP PR por 1 ECpUIS S MDA S SR M
*FxTNKEA=

X2 TCKFN=) ..
FERTOKIN=S . . .

X RLANKS =]

wxETCKEN=S)

2 2TOKEN=¢

ARxTCKEN=U

ZRFTOKTN=11

R ATOKONTS .

ek TOKEN=(- - . e e e x
#2RRTOKEN=]

FHETOKEN=)

2= TCKON=)

£HRTOK Oz %

ERATIKO N =%
BERTOKON
HETCKTY
AR TCKE
FRETUKEN
THETOKEN

ETTHOA

4

I
noHow Wb
A e R

L)

3 3k

2TOKFEN=(R N s e u DU S U VNP TSN RS
ATCKEN=Y
% TOKEN=)

A 4
#*

FE R -
2t .
SRADYER X% s o 8 i B b ie? RS st

FARMAIN®KF M28(T1,J)= S1S(IIS(I))%+ (T1$1x*(J))3

21 ¥ FND;

ERLANKS=62 - o o et e Lt et s e et et Ao

e s

2xXTOKFEN=END
x&&TCKEN= S

EEROYOC %

exEMAINEEE ENC

32 €] THE NEXT GROUP HAS AN OVERLAPPING E LINE
33 £ I

s¢%s FRPCR # 1 OF SEVERITY 1: CVEPLAFPING E—LINE-CFA&ACTERS-

24 £ 1181

35 M| §2 =51 3 /% COMMENTS. ARE-BLANKS #7- o sinivoionoismmios

26 S| I I

®ERLANKS=TS
XRTOKEN=S2
XHFTOREN=E
HAETIKEN=(IO

ek TOKFN=T

2 2TCKENS)

32X TCKEN== .. e
FERTOKYN=S1 S B
xxTOREN=G
& TOKFN={

H2RTOKEN=T

¥xxTCKEN=)
EERTOKON=#
TRz

P R TATHNE A PRI W

gm0 e .

Vo v L e e

e st s
gt g
RS) L I RN e e 2t pae
Rt (R
SR O RN S

e
B T A T
|
& ek Ao g R
o et s i et o el]

%3

AxETCKIN={

#RRTCKEN=T1 . C

X2 XTCKEAN=S . e T Tt LTI E IRt D R N R s
AR TLKFN=] . N ‘
xxxTOKEN=) R

exTCKEN=] - - e e e [VO S SO PSPPI

SES{IY=S Al I TYEI) S o b o e e e . U . sy et

k4

. - e S PROS ORI . -)27
OF SEVEPITY 1: SCURCE PRNGRAM CUT CF QRDER. LAST EPRCR ON LINE 33, *k&x*

SHOULD DEMCNSTRATE CARDS CUT CF CRCER | 28

’ . R | 3¢

I 40

o

4
*
3+
ki

(VIS B |

<

(R
(]
e T[] —

.

£ e
(93]

#EBLANKS=6T . AP . . o e o e
a%kax ECROR 4 2 OF SEVERITY 1: S-LINE COVERLAPS M~LINF. LAST ERFEGR ON LINE 37. *kwxk

#HETCKENS
EETOKEN=(
$¥ATORTN=] . e e e e e e emm e . .

LR TLUANS)

B TOKF Nz - ‘

2 ATCREN=Z e e e e 8 i+ e kB o e

s TOKON=

HRTOKEN=2
ETOKEN=) . L . Lo . c st Co dpwss g R

xHEXTCLEN=S . B - R o - . . I L

D U S ST SUNCT NPT NIRRT S e s s S Y EIREE PR R SRS SR etk kbl R R O T

FRLCYF AL e e .) -
REVATNERY S2 = S28(1)2%(2)3 . .)

41 €1 &n § LINE CVERLAP ABCVE E
42 ¥} END:

##PLANKS=T]
%% TCKFN=END
FARTOKEN=3 T R I - LR cwme L e s

RV KRR

TEAVATNABR FMD S « on vt Som i s o ot st et v L ot e e e e e st o i ae S S A b et B+ et st s

47 | % # R el e e ma o PRIV I 3 I

44 M| ¥1=PKC(FZ /% IGNORED %/)5 -~ - S - § A
t5 S| 4 AT 3,4 AT &° e R . R Y-

#%B ANKS=TS

#%&TOKEN=V]1 (NARKER= %

wrnTCKTN== y L o .
2xxTOKEN=FRC ' : : '

HEXTOKEN=(e
EXTOKTN=M2 MARKER=#* B -
HERTOLKEN=E 7 .

R TOYE N=(

CEXBLANK
#aTOKE
£ 0L ANKS =]

#xuTCRTNES _ C e e e e S e
BT R ENV=, : ‘ :
waE T K : o _ o
AR AMK €=1) BRI RRIT AP S S SO A SRR NP
#3#TCKEN=AT

#%RLANKS =1

#xu TOKEN
$HETIKE
EEELANKS

HETOKEN=
FEATOKEN=

e e P "

FE O P e

T

L b T e W st i 0D 5, e d s e

T R

HEHCQVE e e
M1=PRO(IM28C4 AT 3,4 AT 5))3

AL TN

B B AL N NP

46 M| CLOSE TPARM; . - | 46

2XPLANKS=E3
=2ERTOKTA=CLLSF
bl ANKS =1 . . _ -
*HXTCKEN=TPAKM . e e e ae e R s S o e et pen e i
*XTOKFN=3

FRACVEO N0k
Ak MATNERE CLOSD TPARM;S

A e SN % seies A s AW R] bt b 8 e § st S Ry A oa

47 v} 2 - : 1

P UANKS=6T

EexTLKEN=?

47 CARDS WEPE PROCESSEKED . . S . . o

3 ERROES WERF (FTECTED, TrHE LAST EpROR_wASAONWLINEW4o.whﬁwgﬁhmm@wmm‘NJWW¢NﬂNWW”~@mMMMwMM
252k SUYMARY CF DETFCTED ERRCRS.kxd%x

ERRCOR # 1 ON LINE 23 OF SEVERITY 1.

ERRCR # 2 ON LINF 37 CF SEVERITY 1.

ERpOn 4 2 ON LINE 40 OF SEVERTTY 1. o
CARC~PRNCFSSING RATE: 4,426G655F+(2 CARDS PSR MINUTES

CLCCK TINE IS 4361643 . o e o B W T

THTS TEST IS NCW CCMPLETE.

HPEE NI S AR g

£s

C &2 &5 ¢6

M TPARI: PROGRAM;

E * o)
M DECLARE tl

S 3,3

E *

b M2 ;

s g,s

- =
-

DECLARE ARRAY(5) SCALAR, S1 , S2;
H RUNCT!ON DECLARATIONS
E *
i PROL: FUMCTION P) MATRIX (=%,%);
S *,* .
E =1 .
] RETURN P 3
1 CLOSE PRO1;
14 PRO: FUNCTION (B) MATRIX (=*,%);
i DECLARE IATRIX (*,%), B;
1 RETURN PROI(SB Y:
(o4

¢

2 T0 4,1 TQ 3
M CLOSE PRO; :

H MAIN PROGRAM

M DO FOR 1=1 TO 5;

M DC FOR J=1 TO 5;

E J

£ 11$1 N
M M2 = S1 ;

S t,J 11

S l - - . [PPRY . - PR,
MoOEND; " ' h o

€ THE HEXT GROUP HAS AN OVERLAPPING E LINE

E ! e . . oo

£ 1151

M 82 =81 ; /* COMMENTS ARE BLANKS */

S | 1 ‘

£ 2

C THIS SHOULD DEMOWSTRATE CARDS OUT OF ORDER
1482 = 82 ; _ A S e
S | |

C AN S LINE OVERLAP ABOVE

M OEND; B

E * * '

{4 i11=PRO(K2 /= IGNORED */):

S BWOAT 3,4 AT 5 L o s e i
11 CLOSE TPARM;

M2

DECLARE (1 ARRAY(5) INTEGER INITIAL(3,2,5,4,3); .

o

IR e

S s s = IR I

o

