
10(

EoT
IflTERmFTnlrl

(NASA-CRB-115367) CONTINUED ADVANCEMENT OF N72-1,6145
THE PROGRAMMING LANGUAGE HAL TO AN
OPERATIONAL STATUS Final Report
(Intermetrics, Inc.) 30 Dec. 1971 142 p
CSCL 09B G3/08 14476

it (NASACPORTAi-X"O-); ;NR) CTR/ Roproduced by
. (NASA CR OR TI~XORADNUMBE~R)(CATEGORY) I NATIONAL

INFORMAT) U S DeportmeoparlngTle
L TECHNICAL
rION SERVICEent of CommerceeId VA 22151

Final Report

CONTINUED ADVANCEMENT OF THE

PROGRAMMING LANGUAGE HAL TO AN

OPERATIONAL STATUS

NAS 9-11944.

December 30, 1971

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

TABLE OF CONTENTS

Page

FOREWORD

1.0 TASK SUMMARY 1

1.1 Task I: Maintenance and Training 1

1.2 Task II: Advanced HAL Development 1

2.0 HAL INSTALLATION AND ON-SITE SUPPORT 3

2.1 Installation 3

2.2 Program Changes and Maintenance Procedures 9

3.0 HAL COURSES 11

3.1 General Description 11

3.2 Course Preparation 11

3.3 Course Outline 12

4.0 NECESSARY MODIFICATIONS AND ADDITIONS 15

4.1 Storage Allocation Problem 15

4.2 Miscellaneous Improvements 16

5.0 HAL TRANSFERABILITY 19

5.1 Technical Approach 19

5.2 Translation of XPL Programs Into HAL 23

5.3 Feasibility Demonstration ("HAL-in-HAL") 35

APPENDIX A. HAL Course Material 41

A.1 Overview 43

A.2 Longer HAL Course 69

APPENDIX B. HAL-in-HAL Detailed Description and
Listing 89

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

i.

FOREWORD

This document represents the final report of a contract
for the continued advancement of the programming language
HAL to an operational status. The effort was sponsored by
the National Aeronautics and Space Administration's
Manned Spacecraft Center in Houston, Texas under Contract
NAS-9-11944 . It was performed by Intermetrics, Inc.,
Cambridge, Mass. under the technical direction of Mr.
Daniel J. Lickly. The Technical Monitor for NASA/MSC
was Mr. John Garman, FS/6.

The publication of this report does not constitute approval
by the National Aeronautics and Space Administration of
the findings or the conclusions contained therein. It is
published only for the exchange and stimulation of ideas.

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

1.0 TASK SUMMARY

The objectives and time duration of this contract were
limited. Essentially, over the summer months of 1971 HAL was
to be installed on the 360/75 at MSC, on-site support provided,
users trained by class sessions, the compiler updated as
necessary and experience gained with the language. The
work was divided into two broad areas: maintenance and training,
and advanced HAL development.

1.1 Task I: Maintenance and Training

Under this task, Intermetrics established a support systems
programmer (Mr. Ronald Kole) at MSC within the Flight Software
Section. Mr. Kole succeeded in solving some of the formidable
problems associated with running at the RTCC under RTOS and
transferred HAL from Intermetrics' 360/65 to MSC's 360/75. In
addition, from time to time, necessary modifications originating
in Cambridge and in Houston were incorporated at both sites
and specifically, a general compiler-version update procedure
was developed and implemented at MSC. The most significant
modification was a redesign of the storage allocation algorithms,
described in detail in Section 4.2 of this report.

Also as part of this task activity, 36 hours of training
classes were conducted at MSC and the MIT Draper Laboratory.
A total of approximately 50 people attended, including both
government and industrial personnel.

Although no modifications were made which affected the
HAL Specification or Guide documents, a new complete description
of HALMAT, the intermediate code, was issued.

1.2 Task II: Advanced HAL Development

The objective of this development task was to increase
the transferability of HAL to another host computer. The
approach taken was to demonstrate that the compiler itself
could be written in HAL. If this were accomplished then the
entire compiler could be compiled on the 360 into FORTRAN and
then the FORTRAN moved to almost any other large computer
with only minor modifications. Toward this end a portion of
the HAL compiler was coded in HAL and demonstrated to work on
the 360/75 at the MIT Draper Laboratory. The portion selected
exercised the bit and character handling features of HAL and
indicates the feasibility of the approach.

1

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

PRECEDik2- PAGSTE BLANK NOT FILMED

2.0 HAL INSTALLATION AND ON-SITE SUPPORT

2.1 Installation

The HAL compiler and associated software were developed
at the Harvard Computing Center in Cambridge, Massachusetts using
a 360/65 running under OS/360 MVT Release 18. Transferability
problems were encountered in establishing a usable HAL system
at MSC. These problems may be broken down into two categories:
(1) logistics and (2) internal software compatibility. Before
the second set could even be recognized,the first had to be
solved.

2.1.1 Logistics Problems

The logistics problems are the ones associated with the
differences in operating procedures and at the systems' two
installations. The preparation and submission of jobs at
Harvard were done almost entirely through the Conversational
Remote Batch Entry System (CRBE). The Harvard system was equipped
with four IBM 1403 printers, each having a full PL/1 character
set. The entire HAL system was maintained on.a disk pack that
was mounted by the operator when needed.

In contrast, the RTCC at MSC uses IBM 360/75 computers
running a modified OS MVT which they call RTOS (Real Time
Operating System). The RTOS version available during the
June-September 1971 installation period corresponded roughly
to OS/360 Release 18. The RTCC does not.support.the CRBE system,
so all input submission was done via punched cards. This in
itself was something of a problem since some pieces of the
compiler and even some updates to the compiler were quite long.
Also, the handling of cards and the chance of error in mixing
up cards was considered less desirable than an on-line editing/
submitting system like CRBE.

2.1.1.1 RTCC Limited Disk Space. The RTCC also has very limited
available disk space. In fact, it is impossible to have a
permanently saved disk on the system. Therefore, a reasonable
way had to be found to give users access to the HAL compiler.
The method settled on was to use a dump/restore tape. When a
user wants to run something that is located on the HAL disk
(known as HAL001 at the RTCC) he tells the operator of the
requirement for this special disk. The operator must "restore"
the disk from a tape before the user's actual job can run.
This means that he must run a background utility to transfer
the contents of a special tape to some existing disk on the

3

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

system so that any user programs requesting HAL001 will find
the disk mounted. After the user's run finishes, the HAL001
disk is scratched to make room for perhaps some other user's
restored disk.

This system works, but it puts all jobs that require HAL001
in a special class that is usually run only during the early
morning hours. This obviously precludes any same-day turnaround
as can sometimes be obtained with "non-special" device require-
ments. There is, however, an advantage that is gained indirectly
through use of the dump/restore tape. Since it is not any
one physical disk that is mounted to satisfy requests for
HAL001, it is possible to have serial versions of the disk

available as separate dump/restore tapes. The user need only
specify which dump/restore tape he wants used to create HAL001.
Since one HAL001 is the same to the system as any other, all
of his Job Control Language will work no matter which dump/
restore tape is used.

The more troublesome aspect of the dump/restore system
is the creation of an updated HAL001 and getting that new
version put onto a D/R tape. The method of updating is to
submit the job that makes the desired changes, requesting that
HAL001 be restored in the normal manner, but also requesting
that the disk to which the restore will take place be completely
erased first. The job is then run as a regular batch job.
After the run is completed the operator is requested to "dump"
HAL001 to some specified tape. This tape then becomes the
updated restore tape.

The problem in this system can occur in many ways. The

disk to be restored must be erased first. This is to assure
that after the update run, HAL001 contains only the HAL001
files. The dump program that does the disk to tape transfer
will copy anything that it finds on the disk, no matter where
it originated. So failure to erase the disk, while not really
causing any errors in the resulting D/R tape, makes the tape
file very long. This also means that subsequent restores from
the tape will take a much longer time. All of this degrades
performance of the overall system. It is also possible, if
an unerased disk is cluttered enough, to overflow one D/R
tape which causes even more complications.

Another source of error is the possibility that the operator
will forget to dump the disk at all. Since this is an operator
controlled utility, the user gets no indication on his output
if the disk was actually dumped. The only real way to tell is
to submit another job the next day to see if the updates were
indeed saved. There is no way of telling if the restore tape
file is too big because of a non-erased disk, other than watching the
restore take place and guessing whether the tape moves a reasonable
distance. Once an oversized tape file has been created it is
very difficult to get rid of the unwanted "garbage". Thus, the

4

INTERMETRICS INCORPORATED 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

dump/restore tape method of supplying users with a HAL system
works fairly well from the user's viewpoint (although turnaround
is probably adversely affected) but is error prone from the
system maintenance point of view.

The real solution to the D/R problem is to eventually
catalogue all of the HAL system components on the system library
as is done with the other language translators. This could
be done now, but such a method is even more difficult to update
and maintain and should not be used for anything short of a
non-changing, well established version of the system.

2.1.1.2 RTCC Limited Print Facility. One other source of
frustration at the RTCC can be identified. The RTCC is basically
designed to run space missions and not necessarily to support
batch users. The main outputs of mission programs are real-
time displays and telemetry. These require.little hard copy
I/O. The main output of the batch user is printout. Yet the
RTCC has only one printer per machine with.. two others shared
between all machines. The 360/65 at Harvard manages to keep
four printers busy by itself. So it would seem that the faster
model 75 would generate a print backlog with even the maximum
of three printers attached. This did.indeed seem to be the
case at MSC. This print backlog, of.course, results..in reduced
turnaround. The HAL compiler proper output requires a full
PL/1 character set. At the RTCC there. is only one printer
that has the UCS (Universal Character Set) feature that can
support a print set other than the standard limited FORTRAN
48 character one. All of the output that requires this special
character set is spooled on tapes until such time as there is
enough to make the mounting of the special print train worth-
while. That point is reached two or three times a day. So
HAL print delays are generally even longer than those caused
by the regular print backlog. A small point further slowing
down the printing is that the print train that was used for
HAL was a special one, known as the Philco train. Some
characters used by HAL only appear once on this train. This
delay in waiting for the single character to move to the correct
print position makes a large reduction in the speed of the
printers (a visual estimate would be 20 to 40% slower).

The necessity of mounting the special character set
created another potential error situation. If for some reason
the class of output was mis-written on the spool tape, or
misread, the output might (and has on occasion) be printed
on the Fortran print train. It is, of course, then unreadable.
The net result of these operation dependent procedures was a
1 run per day situation at best. Some preliminary users
experienced even longer delays.

5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

2.1.2 Software Incompatibility

The second class of problems relating to implementing
HAL at MSC concern the operating system peculiarities that are
present in any system. The most significant difference between
RTOS at MSC and OS/360 was the handling of core allocation.
One part of the HAL compiler called the Submonitor was signifi-
cantly affected by the RTOS scheme.

The Submonitor is an assembler language program whose
purpose essentially is to provide an I/O interface with the
operating system. It also has the task of obtaining a block
of core storage into which the actual compiler machine code
can be placed for execution. In the original version of the
Submonitor at Harvard, the necessary core was requested by
means of a GETMAIN macro instruction. The operating system
then gave the Submonitor the requested core out of the remaining
part of the task's region as specified in the REGION parameter.
Thus, it was possible to use the region parameter to determine
how much core was made available to run the compiler.

2.1.2.1 OS/360 Core Allocation. The standard OS scheduling
algorithms keep jobs in a waiting queue until such time as
there is available in the machine, enough core in a contiguous
block to satisfy the job's REGION request. Then the job is
started and is free to do whatever it wants with its core. This
block of contiguous core is reserved for the one task, even if
the task uses only a small part of it. Thus, if an adequate
REGION parameter is supplied, the Submonitor is guaranteed
the availability of the core it needs to run the compiler. The
Submonitor, in fact, makes maximum use of the entire available
core by using a form of the GETMAIN Macro instruction that
gives the operating system a minimum and maximum value of
acceptable core regions. The maximum is set very high so that
the operating system, in trying to come as close as possible to
the maximum requested allocates all of the core remaining in
the Submonitor's region.

2.1.2.2 RTOS Core Allocation. RTOS, however, does not make
a job wait until the requested REGION is available in a conti-
guous block. It waits only until the sum of all free core in
the system meets or exceeds the requested REGION. In fact,
the decision of which jobs to run at any one time is based on
a 125% allocation of core on the assumption that not all jobs
will require their entire region at the same time. So in the
case of the HAL compiler which requires about 4K bytes of core,

6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

the operating system will load and execute the Submonitor as
soon as there is 4K contiguous core available and enough other
free core to satisfy the rest of the specified REGION parameter
(this is usually 300K for HAL). The Submonitor then immediately
issues a GETMAIN for the remaining core. This is where the
operating system differences cause problems.

Under RTOS, a GETMAIN of the original form used at Harvard
causes the operating system to put the Submonitor task into
a wait state until the maximum of the minimum/maximum pair
is available. For a large maximum this never happens and the
job must eventually be cancelled by the operator.

2.1.2.3 Some Solutions. The first attempt to fix this was
made by allowing the user to specify in his JCL the minimum and
maximum values to be used in the GETMAIN request instead of the
Submonitor's default values. This approach will apparently
work for smaller programs, but for larger programs, there seems
to be some system prescribed limit to the amount of core that
can be obtained in this way. The Submonitor was never able
to obtain more than 262, 144 (or 218) bytes of core. This is
not enough to run the compiler and another method was needed.

The second method was to change the type of GETMAIN to
one that requested a single specific size piece of core.
The user was given the ability to specify this number through
a keyword in his JCL. This system partially solved the problem.
It was possible to obtain the correct amount of core this way,
but another problem persisted. Even though RTOS could guarantee
the existance of 300K bytes of free core, it could not guarantee
how this core was divided up as could the regular OS. It was
possible for the Submonitor to go into a wait state while the
operating system tried to supply its contiguous core requirement.
Under the right circumstances, this might take an hour or more.
Whenever a task goes into the wait state, RTOS monitors how
long it stays there. After some length of time RTOS begins
sending the operator messages informing him of the lack of
progress of the task. The operator makes the decision on the
length of time the 'task is allowed to wait. After he gets
tired of seeing the periodic messages, he usually cancels the
job. The problem with this method is that the operator is
never told why the job is waiting; it may be waiting because of
some programmer error. He really has no chance to evaluate
the situation.

The next step taken toward insuring a successful run
was to take the wait for core out of the running Submonitor
and put it in the pre-execution allocation. This simply meant
doing away with the GETMAIN and giving the Submonitor a built-in

7

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

storage area big enough to run HAL. Under this system, the
Submonitor became about 300K bytes long. This forced the
operating system to find the 300K in a contiguous region before
it could even load the Submonitor. As before, it was still
possible for the available core to total more than 300K and yet
not have 300K contiguous, but now the operator got a message
saying "JOBXXX AWAITING A REGION". In this way the operator
was informed of the real cause for the delay and was more
willing to let the job wait for the core to become available.

Although the probability of getting a job to run has been
increased, it is still possible for the job to be cancelled
when it was the only user job in the system and was still unable
to get its core. This happens when there are "backround"
utilities running. Although they are termed "backround", they
still compete for core like any other job on the system and it
is possible for them to tie up core in such a way that a HAL
job will not run even though it appears to be all alone on the
system.

One small drawback to this final state of the Submonitor
is that it is no longer possible to use the REGION parameter,
or any user keywords to limit the size of the available core.
This is not considered much of a handicap since the size of
the HAL compiler is quite stable and is expected to remain so.

There is an alternate approach to solving the core lockout
problem. This would involve a redesign of the HAL compiler
structure to give it a scatter loadable attribute. If this
were done, the required core would not need to be contiguous;
several smaller contiguous areas would be requested. The
probability of finding these smaller areas would be greater than
the present system. There would, however, still be a finite
chance that even these smaller regions would not all be avail-
able. The situation is such that the more the core requirement
is split up, the more chance there is that the resulting
smaller pieces will be found. More pieces of code, however,
require much more overhead to maintain. Also, the redesign
of the HAL code to allow such a split would be a difficult job
that would not further the goal of producing a better overall
compiler. The frequency of run failures under the present
system is very low and sporadic. For a large, ground-based,
batch-oriented system like the RTCC, additional time spent on
refinement of HAL running procedures, would be of little value
compared to the same time spent on refinement of the actual
compiler code.

This potential lockout problem is not peculiar to HAL.
It can happen to any job on the system whose core requirements
are of the same size and nature as HAL's.

8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

2.2 Program Changes and Maintenance Procedures

During the June-September 1971 time period many changes
were made to both the HAL Submonitor and the compiler itself.
Most of the changes made to the Submonitor are detailed in 2.1
above. These changes were basic in nature and took a large part
of the summer to research and implement properly at MSC. In
addition, new compiler versions were developed at Intermetrics
and were sent to Houston on magnetic tape where copies of all
of the files on the tape were put on MSC-owned tapes. The
required files were then transferred from tape to the HAL001
disk and the disk then dumped to a dump/restore tape as described
above.

2.2.1 Updates

A three tape dump/restore system was established to
maintain the integrity of the system. One tape, called the
system tape was the only one available to users. It always
contained the most recent released version of the compiler.
Thus, users only had to have this tape number to run HAL
compilation. The two other tapes were development tapes. They
were used in an alternating manner to build and checkout a new
release. The alternation was necessary to provide a backup in
case of some failure to make a good update. To make an update,
the newest version development tape was used to restore HAL001.
The update was made to the disk and then HAL001 was dumped to
the alternate development tape. Even if the dump was not done,
or if the update was unsuccessful, the original restore tape
was still intact.

Once a version was considered ready for release, the
development tape on which it resided was simply copied onto
the system tape. Users specifying the system tape number as
the HAL001 dump/restore automatically got the new release.

In addition to updates originating in Cambridge, some
changes were made to the compiler at MSC. Small changes were
communicated to Cambridge directly by long distance through
the CRBE system at Harvard. In the case of larger updates,
tapes were exchanged.

2.2.2 Summary of Changes Made At MSC

a) Research and implement the changes to the Submonitor to
allow a more reliable core allocation.

9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

b) Fix numerous small bugs found during checkout both in
the HAL code itself and in the HAL run time library.

c) Partially implement and lay the ground work for a more
complete listing generator as detailed in the HAL Guide.
This involved providing additional functions in the
Submonitor to allow the HAL compiler to set a maximum number
of lines per page of listing and to dynamically request the
line number of the current line on the page. These new
functions helped to lay the framework for the ability to control
completely the layout of the HAL listing. The listing was
changed to the extent that the statement and line numbers
were made available and the format of the format of the
printed source code changed to increase readability.

10

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

3.0 HAL COURSES

.3.1 General Description

Intermetrics personnel prepared and conducted three HAL
langauge courses during the contract period. The material
was designed for two types of audiences: 1) those seeking
a broad "brush" overview of HAL, 2) those intending an indepth
exposure to HAL. Two 15-hour sessions (2 1/2 days each) were
given at the Manned Spacecraft Center in Houston. The first,
primarily for NASA personnel and the second, for industrial
contractors and other government agencies with an interest
in higher order languages. For each session, the first three
hours were devoted to the HAL overview; however, the overview
itself was considered an integral part of the longer course.

A special third session was also conducted at the MIT
Draper Laboratory, for Laboratory personnel and local industrial
contractors. Because of the familiarity of these personnel
with MIT's MAC language and certain similarities between HAL
and MAC, an effective 1-day, 6-hour course was held. The course
consisted of the overview, with elaborations and discussions,
followed by a rapid presentation of the salient features of
HAL.

In general, the participating students at MSC and MIT
were highly motivated to learn HAL and always attempted the
place HAL in perspective with respect to Shuttle applications.
As a result, many provocative questions were asked and in some
circumstances material discussed in class was fed back into
the HAL design.

3.2 Course Preparation

The HAL courses were prepared with two objectives in
mind: an overview, and a detailed study. For the overview,
a balanced presentation of most of the important features and
rationale incorporated into the HAL Specification Document
(MSC-#01846) was designed. The purpose here was to illustrate
how HAL satisfied, for the most part,-the requirements imposed
on a programming language for the Shuttle. Toward this end
readability, vector-matrix arithmetic, data management, systems
programming, real-time control and software reliability were
emphasized.

The material was presented in vu-graph form and included
numerous "Shuttle-like" application examples and commentary
which included Intermetrics' experience with Apollo software

,11

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

development. Particular attention was paid during the overview
to indicate which HAL features would not be included in the
first implementation for the IBM 360/75 at MSC. This was
especially true for the descriptions of real-time control,
controlled data sharing, and the error recovery features.

The longer HAL course was designed as an in-depth study
of HAL and the overview served as an excellent orientation.
This part of the course was based closely on the HAL Guide
(MSC #01848)and the material was a combination of vu-graphs,
references, to the Guide text and blackboard work. Only those
features actually intended for implementation on the first
360/75 version were covered. (This specifically excluded
real-time control, etc.)

Levels of increasing detail were presented, first with
a set of vu-graphs covering all of the language features of
HAL; i.e., operations, declarations, indexing, control, etc.
followed by a careful tour through selected portions of the
Guide. The Guide work illustrated usage, described many examples
and motivated class discussions (and, in fact, contributed to
subsequent corrections to the Guide). The technique of repeating
subject material in levels of increasing detail; i.e. from
overview to construct description to Guide with examples,
proved to be an effective method of rapid assimilation and
study.

In addition to text material and lecture, each student
was provided with a HAL problem set as a homeword exercise.
Unfortunately, few found the time to actually address these
problems out of class. However, during the ,ast class session,
prepared problem answers were distributed and each problem was
carefully "talked-through". Actual runs on the 360/75 by the
students were contemplated during the course preparation, but
360 turn-around time within the RTCC facility was not consistent
with the 2 1/2 day course duration.

An outline of the HAL course material is presented in the
next section and the vu-graphs for both the overview and the
longer course are collected in Appendix

3.3 Course Outline

3.3.1 Overview (vu-graph material)

1. Higher order language motivation and capabilities.

12

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

2. Salient features of HAL

3. Data types

4. Program organization and structure

5. HAL Statements

6. Specific Examples

7. Real-time control, including data sharing and error

recovery

8. Summary

3.3.2 Longer Course (Vu-graph Material)

1. Data Operations

2. Data Declarations

3. Indexing: partitions and use of subscripts

4. Control and branching mechanisms

5. Name scope rules

3.3.3 Longer Course (Guide Material)

1. Two-dimensional input-output format

2. HALM (HAL Mathematical Subset)

a. Data and declarations

b. Arithmetic expressions

c. Assignment statements

d. User-defined functions (SCALAR, VECTOR, MATRIX)

e. IF Statements

f. Illustrative problems - I

g. Subscripts

h. DO Statements

i. Illustrative problems - II

j. Subroutines; i.e., HAL PROCEDURES

13

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

k. Illustrative problems - III

1. Name scope

m. I/O Facilities

n. Illustrative problems - IV

3. Integer and Bit String Data

4. Structures

5. Bit and Character String Manipulations

6. Subscript facilities: complete

7. Implicit conversion of mixed data types

8. User-defined functions: complete

9. Array processing

10. Shaping functions: complete

11. REPLACE and DEFAULT Statements

12. "Talk-through" of problem set

14

INTERMETRICS INCORPORATED .701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.0 NECESSARY MODIFICATIONS AND ADDITIONS

Redesign work was undertaken to increase the scope and
capabilities of the HAL compiler and to promote its transfer-
ability to other computers. The first step was to redesign
the variable storage philosophy and mechanization. Extensive
design sessions were conducted to develop a suitable memory
storage allocation system that would support the most general
future goals of HAL, especially transferability (see 4.1 for
more detail). This included the techniques necessary to support
the calling of separately compiled HAL programs and the sharing
of their data through a COMPOOL. This capability, in some form,
is vital to the production of a multipass compiler.

During this time items were also dealt with that were
either incomplete or had been newly defined. Thus, certain
"holes" in HAL's capabilities were filled in. In addition,
a number of shortcomings which had been uncovered were remedied.

4.1 Storage Allocation Problem

Certain storage allocation problems encountered during
the implementation of some of the more advanced features of
HAL in Phase II of the compiler (Fortran code generation) had
necessitated basic conceptual changes in the allocatin algorithms
in the compiler.

In the original version of the algorithms, temporary
storage required for partial numerical results was allocated
when needed during the code generation of a HAL statement, and
freed-up again not later than at the end of the statement.
This caused two major difficulties. Firstly, when temporary
storage was required to hold the value of an argument in a
procedure or user function invocation, special "unfreeable"
temporary storage had to be used to prevent it from possibly
being reallocated in the body of the procedure or user function.
Secondly, in HAL statements containing user function invocations,
(possibly nested), temporary storage allocated for partial
results before the invocation code was generated had also to
be masked "unfreeable" for the same reason. Other more subtle
considerations finally made a complete restructuring of the
algorithm essential.

The idea of providing completely dynamic storage allocation
of execution time was rejected as requiring too many basic
changes in the mode of operation of Phase II of the compiler.
Instead a static scheme similar in some respects to the original

15

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

was adopted. In this scheme temporary storage for the program,
and for each procedure or user function are allocated within
mutually non-overlapping segments. A program or subprogram
may have one segment or several non-contiguous segments of vary-
ing sizes dedicated for its use, depending on its requirements.
The sum total of all segments constitutes a single continuous
area of storage (except possibly for word boundary alignments).
At the microscopic level within the bounds of a segment,
storage is allocated and freed exactly as it was in the original
allocation scheme.

Under this scheme, no temporary storage need be marked
"unfreeable" no matter to what use it is put. Furthermore,
the scheme has resulted in considerable simplification and
unification of other storage allocation mechanisms in operations
at code generation time.

4.2 Miscellaneous Improvements

1. Arraynesses:

* reorganization of the mechanism controlling the
utilization of statement arraynesses, especially with
regard to utilization by arrayed subscripts of arrayed
variables, and by the arguments of user functions.

* implementation of the arrayed subscripted variable as
an input or assign argument in a function or procedure
call.

2. Cosmetics and Statistics:

* generation of Phase II timing information, improvement
of error message format, generation of statistics on
certain critical parameters of Phase II operations

* introduction of toggle directives to control Phase II
and subsequent Fortran IV operation.

3. Shaping Functions:

* introduction of a limited range of shaping and
conversion functions: INTEGER, SCALAR, MATRIX, and
VECTOR (no arrayed arguments or results).

4. Program Calling:

* setting-up operating mechanisms for calling independent
(i.e. separately compiled) HAL programs to "any" nest
level, non-recursive

16

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

* creation of mechanisms for saving HAL programs in an
object library.

5. I/O Routines

* first, implementation of full-scale HAL READ/WRITE
statements fixed,uni-channel input and output, fixed
record length (printer and punch only).

6. Bit Strings:

* fundamental bit string operators were implemented.
Included were terminal and array subscripting and the
AND, OR, and NOT operations. Bit strings are limited
to not more than 32 bits; they have been implemented
in full-word, half-word, and byte form.

17

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

PRECEDING PAGE BLANK NOT FILMED

5.0 HAL TRANSFERABILITY

5.1 Technical Approach

5.1.1 Background

The quest for easy transfer of operational programs
from one computer to another has occupied the minds of many
men since the early days of computer technology. The importance
of this capability has grown considerably as the computer explo-
sion has populated our society with countless kinds and types
of computers with ever decreasing and more attractive price
tags, and yet soaring software costs through higher programmer
salaries has made conversion more difficult due to the huge
investment in operational software for existing computers. The
solutions to the programming transferability problems can be
categorized into one of the following types:

1. Hardware emulators - In order to maintain compatability
many modern computers have included hardware or micro-
program features that permit them to simulate other (usually
older) computers. Thus, existing programs can still be
executed.

2. Software translators - A program is developed that will take
programs that were written for machine X and translate them
into equivalent programs for machine Y. This approach has
been limited since the technique is seldom 100% successful,
even when the two computers are almost identical.

3. Higher level languages - If programming is confined to
high level languages, hopefully machine independent, and
a translator or compiler is used to produce the actual
machine code, then it should theoretically be possible to
feed the same higher level source statements into a trans-
lator to another brand of computer and produce a program
that performs functionally equivalent tasks. The diffi-
culty here is whether the language and the interpretations
given it by compiler writers are truly machine independent.

5.1.2 Level of Transfer

In the design of the HAL compiler system for the 360
implementation, Fortran was adopted as the output language
from the code generator. A principal reason expressed for the

19

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

somewhat unusual procedure was to promote machine transferability.
Fortran IV is the most widely used programming language and ANSI
Fortran IV purports to be defined in a machine independent way.
Production of the HAL code generator was initiated with the
avowed intent of producing ANSI standard Fortran IV. If this
could have been rigidly adherred to, transferability would have
been automatically produced at the lowest level. The output of
Pass 2 would be suitable for submission to any Fortran compiler.
As it is, there exists some 360 specific Fortran output and some
assembly language subroutines, but the job required to take the
Fortran output of the HAL compiler and move to another computer
is a minor one. Figure 5.1 depicts the steps in the HAL compila-
tion process. The Fortran output of Pass 2 may be physically
moved (in card or tape form) to another computer facility.

Contrast this transferability with the proposed system for
construction of a HAL code generator for a flight computer.
(See Figure 5.2) In this case, a new Pass 2 is required, the
same output of Pass 1 (HALMAT) is used. This is the traditional
approach. Every time that HAL is desired for a different target
computer, another version of Pass 2 is required. This is a
mid-level transfer.

However, neither of the above approaches will satisfy the
needs of another general purpose computer facility. The reason
is that they are only partial transfers. Although they produce
code for another computer, the compiler itself still must run
on the initial computer, the IBM 360 in this case. This is poor
operationally. It means that a user must submit his HAL source
program to the 360 for compilation and then take the object
program to the other computer for execution.' (This approach is
perfectly adequate for a flight computer where the usual mode
of operation is via simulation on his general purpose computer.
Besides, the flight computer is usually of such limited size
that compilation on it is not possible even if one were physically
available.)

A total transfer is needed for implementation on another
large commercial computer. It requires that the entire system
be transferred, "lock, stock and barrel". Then the user can
compile and execute on the new facility with no further need of
the 360. This is a more demanding requirement since it necessi-
tates moving the entire compiler to a different computer complex.
The result is a high level transfer or complete conversion.

5.1.3 Method of Attack

There are three avenues of approach that might be followed
to achieve a compiler transfer. They are:

20

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

-4m

m 11

z HAL l I Grammatical I tables of
O grammarJam Rule lexical &

O Generator syntactical rules

m

* 4
o abstract
o machine code
0 HAL tables
Z Scanner - & Semantic
o program Analyzer (HALMAT)

o Compiler 360/75

><J Pass 1 tran IV

o Fortran IVG
> Code

MC Generator
0 Compiler 360/75

Target 360/75
Pass 2

> LANGUAGES:

Source
Compiler
Target

HAL
XPL
Fortran IV

Fig. 5.1 Construction of the HAL Compiler System

table of

I i~~~~~~~'
l -_ - - _

;K4

Pass 1
t

N)

MACHINES:

Compiler
Target

lexical &
syntactical rules

/

abstract
machine code
tables

(HALMAT)

o

IV

;orI

I
I

360
360, FC

ode
or
ht '

__II
LANGUAGES:

Source
Compiler
Target

HAL
XPL
Fortran IV for 360
Assembler for FC

Fig. 5.2 Proposed Construction of HAL Compiler for Flight Computers

Z

m

m

0O

C-
z

0

0
Dn

m

oC)
0o

z

To

Ca

m

I

tI

1. Reprogram the HAL compiler for Brand X: This technique
looks at the process as a one-of-a-kind step and selects
whatever seems most appropriate for machine X, be it assembly
language or whatever. Then the job is done. This is the
brute force approach and has no generality whatsoever.

2. Reprogram the XPL compiler for Brand X: HAL is written in
XPL, a simplified subset of PL/1. Thus, it would be rela-
tively easy to transfer to another computer that supports

PL/1; however, there are few that do. But we could transfer
XPL to another computer. Since XPL is itself written in
XPL, the transfer could be accomplished by a mid-level trans-
fer. (A new code generator on the 360 that produced code
for Brand X would allow a version of XPL to be compiled
that would execute on Brand X.) However, this approach also
lacks generality; each new computer requires another code
generator, itself not an easy task.

3. Reprogram HAL into a language more widely supported: If HAL
could be rewritten in a language that was universally supported,
than transfer problems would be minimized. The most widely
used language is Fortran. And since Fortran is now produced
by HAL, an interesting variation of this technique is imme-
diately suggested. If HAL was rewritten in HAL and compiled
on the current HAL compiler then the result would be Fortran
source cards that would be suitable for compilation on any
computer with a Fortran compiler. Thus, the transfer of HAL
to almost any large scale computer could be achieved by
minor changes to the Fortran output (chiefly in the area of
data types and declarations) and the recoding of machine-
dependent library routines. But the latter must be done
anyway if HAL is to execute on Brand X; even the low-level
transfer needed it. The extra task is the effort needed to
rewrite HAL in HAL. But having done it once, it would not
need to be done again to affect other transfers. The
generality of this approach resolved the issue in its favor.

5.2 Translation of XPL Programs Into HAL

5.2.1 Introduction

This is a brief discussion of the methods used when
translating a program from XPL into HAL. It is intended to
provide a useful guide to a process which requires a considerable
amount of analysis and judgement on the part of the individuals
performing the work. This end is achieved by presenting the

23

INTERMETRICS INCORPORATED 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

essentials of language differences and by discussing examples
of coding economies possible through the use of HAL. Explicit
illustrations demonstrate the translation of several XPL
constructs into HAL.

Translation of some form was necessary since it was intended
that a copy of the HAL compiler be implemented on the Univac
1108. There were two general strategies available to Intermetrics
as alternate means to affect this implementation. As one possi-
bility, we could have rewritten or modified the XPL system to
implement it on the 1108, then we would have been able to
recompile the original XPL source code of HAL on the 1108. This
approach lacks generality and involves the difficulties of
emitting executable and efficient low level code for a machine
with extant high level software. As a second alternative, we
could rewrite the HAL compiler in a source language which maps
via an existing processor onto a target language recognized by
existing 1108 software.

This latter course was chosen, using HAL itself as the
source language, and using the HAL/360 compiler as the mapping
onto Fortran IV, a target language understood by the 1108 (as
well as other large scale computers). This course procides a
large amount of generality, and also proves to be easiest to
carry out because of HAL's many high level features and the
convenient degree of similarity between HAL and XPL.

The two-dimensional input scanner employed in Pass 1 of
the HAL compiler was chosen as an initial goal. If a program
as complex as this worked satisfactorily once debugged, we could
be fairly certain that no part of the compiler would create a
problem. The translation strategies and methods described in
this document were devised in the process of successfully
rewriting the input scanner. As an added bonus of this choice
of translation strategy, the use of HAL as a source language
proved to be exceptionally helpful in the process of debugging
the current HAL/360 compiler. Quite a number of bugs which
were invisible prior to this large scale application were
exposed and repaired in the process.

5.2.2 Methodology

5.2.2.1 Variables. Variable declarations differ somewhat
between XPL and HAL. Each individual DECLARE statement must
be examined for possible changes.

BIT variables are declared identically in both XPL and HAL.
The length specification is also identical in the two languages.

24

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Ex. DECLARE X BIT(8);

FIXED variables in XPL are functionally identical to
INTEGER variables in HAL. Therefore, mere substitution of the
word INTEGER for FIXED is all that is necessary to make the
language change. The REPLACE facility in HAL is the simplest
method of substitution. Note here that any XPL variable names
which correspond to HAL reserved words must be changed or
augmented; i.e., the XPL identifier VECTOR could become VECTOR1
in HAL. Note also that the break characters @, #, and $ are
hot legal identifier break characters in HAL and XPL identifiers
using them must be replaced by legal HAL identifiers.

CHARACTER variables have somewhatdifferent properties in
XPL and HAL. In XPL, character variables are implicitly
varying with a maximum length of 256 characters. However,
VARYING character strings in HAL are currently limited to a
length of 255. Thus, the general substitution rule for character

declares is to change:

DECLARE ALPHA CHARACTER; (XPL)

to

DECLARE ALPHA CHARACTER (255) VARYING; (HAL)

In cases where a string is known to have a maximum length
considerably less than 255 characters, it may be declared as
such. Also, if a string is to be of fixed length (as with an
initial unchanging value), the VARYING attribute should also
be omitted.

Factored declarations in XPL and HAL are also implemented
differently and involve a complete rewriting of the statements.
For example:

DECLARE (I,J,K) FIXED, L BIT(8); (XPL)

becomes:

DECLARE INTEGER, I, J, K; (HAL)

DECLARE L BIT(8);

A word of caution is necessary at this point. XPL initializes
all FIXED and BIT variables to "0" and all character strings to
null strings unless otherwise specified by the INITIAL modifier.
Any variable not explicitly initialized in HAL will have

unpredictable contents. When in doubt as to whether the program

itself initializes variables, include an INITIAL(O) specification

25

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

on the DECLARE statement (INITIAL('') for character strings).

The LITERALLY attribute in XPL is used to perform macro
substitution for identifiers. The REPLACE statement in HAL
performs the same function. The statement:

DECLARE FOREVER LITERALLY 'WHILE "1"'; (XPL)

becomes

REPLACE FOREVER BY 'WHILE TRUE'; (HAL)

5.2.2.2 Arrays. When transferring array declarations and
specifications from XPL to HAL there are a number of ground
rules to follow. First, XPL subscripts start at 0 and the
dimension specified is the highest allowable subscript. There-
fore, an XPL array declared with an arrayness of 99 actually
consists of 100 elements and must be declared as such in HAL,
since all HAL subscripts start at 1 for an array. Thus,

DECLARE ABLE(99) FIXED; (XPL)

becomes

DECLARE ABLE ARRAY(100) INTEGER; (HAL)

The word ARRAY must be supplied in HAL in array declarations.

Frequently in XPL the name of an array appears without
a subscript. This means an implied reference to the 0th element
of the array. However, in HAL, an array name without an
explicit subscript implies reference to the entire array, not

the first element. Therefore, for conversion, all such
occurrences of non-subscripted array names must be translated
with the explicit subscript of 1. Thus, the following XPL
segment:

DECLARE ARR (9) FIXED, B CHARACTER;

B = ARR;

becomes in HAL:

DECLARE ARR ARRAY (9) INTEGER,

B CHARACTER (255) VARYING;

B = ARR
1
;

26

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

In general, unless the 0th element of an XPL array is
known not to be used, indexing expresions must be augmented by
adding one to the original subscript expression, and not by
changing the computation of indices in other statements. This
is especially true when array references are made using Boolean
values of 0 and 1 as switches for referring to one of two array
elements. Thus, the XPL sequence:

IX = IY + IZ;

VALUE = ABLE (IX);

should become in HAL:

IX = IY + IZ;

VALUE = ABLEix + 1;

as opposed to the HAL sequence:

IX = IY + IZ + 1;

VALUE = ABLEIX;

as the latter form could possibly change the operational
characteristics of the program.

Finally, XPL allows the specification of a subscript on a
variable which is not declared as an array. This allows certain
machine dependent coding "tricks" to be performed. Consider
the following XPL sequence:

DECLARE INDEX FIXED, INDEXTAB (199) BIT (8);

DO I = 1 TO 50;

INDEX (I) = 0;

END;

This program in effect zero's out INDEXTAB with 50 references,
rather than the 200 required to clear the individual INDEXTAB
elements. This sequence is illegal in HAL and may be coded
as follows in HAL:

INDEXTAB = 0;

where the non-subscripted version of the name implies setting
the array to zero.

27

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

An extra step is involved when translating statements
utilizing arrays of character strings or bit strings. A
colon (:) must follow the array element subscript, to distinguish
it from the individual character or bit subscript which is the
default in HAL for these types of variables. It may be used
following any array subscript, but is required in the above
named instances to prevent ambiguity.

Ex:

DECLARE A CHARACTER(5),

B ARRAY(10) CHARACTER(10);

B1 TO 5 A;

B A;
1 TO 5:

In the first statement, characters l'to 5 of all ten
array elements of B are set to the value of the characters in
A; in the second statement, the first five array elements of
B are set to the value of A (padded with blanks to make the
total length ten).

5.2.2.3 Built-in Functions. The XPL functions ADDR and INLINE
are not available in HAL, and because of the machine independence
of the language no corresponding functions exist. In the HAL
compiler, fortunately, most such functions are used to mani-
pulate data types not existing in XPL but which do exist in HAL.

The SUBSTR and BYTE functions in XPL are replaced with
character string subscript notation in HAL. Examples of
both forms of BYTE and SUBSTR substitution follow:

a. BYTE (CHAR STRING) (XPL)

becomes

CHARSTRING (HAL)
1

b. BYTE (CHAR STRING, N) (XPL)

becomes

CHAR_STRINGN+ (HAL)

c. SUBSTR (CHARSTRING, START) (XPL)

becomes

CHAR-STRINGsTART+l (HAL)

28

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

d. SUBSTR (CHAR STRING, START, N)

becomes

CHAR-STRINGN (HAL)

The functions SHL and SHR are used for doing word manipu-
lation in XPL. For positive arguments, the SHL function may
be replaced by multiplication by the appropriate power of two.
The SHR function is more complex as integer division is not
allowed in HAL. Since SHR is normally used to isolate a field
of a packed word, the BIT shaping function can be used to achieve
the same results.

For example, the XPL sequence:

DECLARE (ENTRY, PART) BIT (16),

WORD FIXED;

PART = SHR (ENTRY, 4);

PART = SHR (WORD, 16);

becomes in HAL:

DECLARE BIT (16), ENTRY, PART;

DECLARE WORD INTEGER;

PART = ENTRY1 TO 12;

PART = BIT1 TO 16 (WORD);

In XPL, it is legal to assign the result of a relational
expression to a BIT type variable. This is illegal in HAL.
Thus, the statement

TEST = A > B; (XPL)

must become:

IF A > B THEN TEST = TRUE; ELSE TEST = FALSE; (HAL)

5.2.2.4 Constants. The following constant conversion rules
apply:

29

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

(XPL)

"ABDF" or "(4)ABDF"

"(1)11010" becomes BIN'11010'

"(3)70346" becomes OCT'70346'

The quartal constant "(2)20312" must be converted to either
BIN'1000110110' or HEX'236'.

The use of the BYTE function, notably BYTE('C'), to allow
use of the internal representation of the character as a numeric
quantity is accomplished in HAL by stating BIT('C'), or
INTEGER (BIT('C')) where implicit Bit-to-Integer conversion may
not take place.

5.2.2.5 Procedures. In XPL, all subroutines and functions are
declared as PROCEDURE's. The RETURN statement may or may not
pass back a value. If an XPL PROCEDURE which returns a value
is called by the CALL statement, the returned value is ignored.
In HAL, there are two classes of routines: PROCEDURE's and
FUNCTION's. A PROCEDURE does not allow a value to be returned
in the RETURN statement, whereas a FUNCTION demands that a
value be returned. Thus, XPL PROCEDURE's that return values
must be declared as FUNCTION's in HAL. Any such FUNCTIONS
invoked by the CALL statement in XPL must be changed to the
form:

DUMMY VARIABLE = FUNCTIONNAME(X);

where the dummy variable is some unused name in the HAL program
with the mode of the called function.

Also, in XPL, all formal parameters are call-by-value
parameters. This presents a problem in HAL because, 1) PROCEDURE
and FUNCTION parameters may not be assigned values within HAL
programs, unlike XPL which freely allows such assignments,
2) the alternative in HAL, the ASSIGN list, is treated as a
list of call-by-reference parameters, where assignments to
such parameters are passed back to the calling program, whereas
in XPL, parameter assignments do not reflect back to the calling
program. Therefore, in all FUNCTIONS and PROCEDURES where
assignments to formal parameters are made, a procedure prologue
must be coded to assign the formal parameter (with an augmented
name) to a local variable with the same declared properties
with the original parameter name. Thus, the following XPL
program segment:

30

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

becomes HEX'ABDF'

ALPHA: PROCEDURE (BETA, GAMMA);

DECLARE BETA FIXED, GAMMA CHARACTER;

· BETA = BETA + 1;

END ALPHA;

becomes in HAL:

ALPHA: PROCEDURE (BETA PRIME, GAMMA);

DECLARE INTEGER, BETA, BETAPRIME;

DECLARE GAMMA CHARACTER (255) VARYING;

BETA = BETA PRIME;

BETA = BETA + 1;

CLOSE ALPHA;

when BETA is used as an assigned variable in the procedure,
whereas GAMMA is not. The HAL compiler itself can be used
to detect such occurrences, since assignments to parameters
will be flagged as errors, significantly reducing the amount
of program scanning necessary.

Note: Notice that the word CLOSE was used on the last
line of the sample rather than the standard END.
When closing a function or procedure in HAL, the
word CLOSE is substituted for END. END is only
used to signify the end of the DO loop or a
DO case.

5.2.2.6 DO Statements. The DO case statement in HAL is
similar to that in XPL, the only difference being that the
first group of statements are executed when the DO case argu-
ment is equal to 0 in XPL and the first group of statements
in HAL are executed when this argument is equal to 1. The
following XPL sequence:

31

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

DO CASE I;

DO;/*CASEO*/

END;./CASEO*/

END;/*OF DO CASE*/

translates to the following HAL sequence:.

DO CASE I + 1;

DO;/*CASE1*/

END;/*OF CASE 1*.

END;/*OF DO CASE*/

When translating a DO case group from XPL to HAL, 1 must
be added to the argument of the DO case statement rather than
to change the value of the variable itself. DO case statements
are translated in this manner to preclude the possibility of
causing errors elsewhere in the compiler. It is not really
possible to be certain that the change of the variable's value
might not cause problems elsewhere. The looping statement:

DO IX = 1 to 10; (XPL)

simply becomes:

DO FOR IX = 1 to 10; (HAL)

The word FOR is required to distinguish this type of DO state-
ment from the DO CASE or DO WHILE statements.

5.2.2.7 INPUT/OUTPUT. The primary input/output statements in
XPL are the INPUT and OUTPUT pseudo-variables. To read a card
image, the following statement is used:

CARD IMAGE = INPUT;

Similarly, to write a line the following statement is used:

OUTPUT = NEXTOUTPUT LINE;

Both pseudo-variables are character string type and imply a new
input/output record on each occurrence.

32

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

The corresponding HAL statements to read the same card
image and print the same line are as follows:

READALL(5) CARDIMAGE;

WRITE(6) NEXT OUTPUT LINE;

Note that READALL, not READ, is used for input, as this forces
reading an entire card image. READ into a character variable
stops at any legal input delimiter.

5.2.2.8 Format of HAL File. The format of the input file is
for the most part free of conventions. The only exception to
this is that Column 1 may only be used to contain special
letters. The following letters may appear in Column 1: C, D,
E, M, and S.

These letters specify what type of line is contained on
that current image. The letter C is to specify that the follow-
ing text is to be treated as a comment and not actually compiled.
D is used only for special compiler directives such as an
INCLUDE file specified on this line. The letter E constitutes
an exponent line which is part of the multi-line input format
which HAL offers. M specifies that the following is the main
line of the multi-line input, and S specifies a subscript line
again which is part of the multi-line input. When using the
single line format of HAL input, the M may be omitted from the
line as long as text begins in Column 2 or after. The letter
M is assumed on all lines which do not contain a character in
Column 1. The above exception is the only one which pertains
to the format of a HAL program.

Long and complicated HAL statements may be continued over
as many cards as necessary just as in XPL. Certain equations
which are broken up into several steps in the XPL version may
be condensed into one large equation in HAL, resulting in a
savings of temporary variables. (This is because XPL limits
the number of expression temporaries in a statement to three
registers. HAL has no such restriction.)

5.2.3 Debugging

The debugging procedure can be made quite simple by the
use of various options which may be specified when compiling a
HAL program. One may specify toggles on comment lines in HAL,
which produce an identifier trace, a listing of the HALMAT
code produced, and a list of the Fortran produced from Phase 2.

33

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

When errors occur, it is easy to trace the problem by consult-
ing the three listings as mentioned above. Also, a check of.

the cross-reference listing produced greatly speeds debugging
time since it is possible to determine in which statement a

variable is either referenced, declared, or set. When a new
section of code is added, a toggle can be set in a comment
line at the beginning of the HAL program, which disables the
call to Phase 2 of the HAL compiler. This is done to save
computer time, since Phase 1 could perform a syntax check.
When all syntax errors are eliminated, Phase 2 could then be
called and Fortran output could be produced and subsequently
compiled by the Fortran compiler.

It is, of course, much easier to debug a higher level
language program than to debug assembly code, since ideas are
clearly specified by the code being read, whereas in assembly
language the intent is not always quite clear. In fact, when
translating the in-line code it was sometimes necessary to speak
to the person who had originally coded that section before a
clear understanding could be gotten in order that the transla-
tion could be performed.

5.2.4 Conclusions

At the time of this writing, some HAL features are still
unimplemented. Because of this, certain sections of the trans-
lated code have as of now not been tried or debugged. However,
that code which has been debugged and executed seems to prove
that HAL is a language with which a large compiler can be easily
written and debugged. The fact that HAL implements floating
point arithmetic also eliminated a great deal of the complicated
code necessary in the original XPL version. This fact alone
made readability of the final copy much easier than the complicated
in-line code which appears in the corresponding sections of the
original copy.

34

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.3 Feasibility Demonstration ("HAL-in-HAL")

5.3.1 Objective

The HAL-in-HAL program was written as an experiment to
prove whether or not the HAL language was suitable for writing
translator systems, as well as aerospace applications. The
program consists of a rewrite of the two-dimensional read
routines originally coded in XPL for the HAL/360 compiler,
utilizing the conversion techniques outlined in Section 5.2
above. These routines represent a full test of the character
and bit manipulation facilities normally required for translator
and system coding.

5.3.2 Test Program Description

The test program consists of an elementary scanning
routine which utilizes the STREAM procedure for receiving its
character-by-character input. STREAM converts the two-dimensional
HAL input cards into the corresponding one-line format which is
required by the scanner and subsequently the lexical analyzer.
The test scanner repeatedly calls STREAM building-up identifier
and numeric strings as tokens, as well as treating any special
character as an automatic token. These are printed out as they
are encountered. The test scanner is concurrently building-up
an output line image which is a reflection of the input character
received from STREAM. Whenever a semi-colon (;) is encountered,
the current statement line, along with its corresponding over-
punch markers, is printed, showing what the one-line format of
the HAL statements looks like. A question mark (?) is used to
indicate the end of the input stream for the purposes of this
test. See Figure 5.3 for a flow chart of the test scanner.
(Program listing - Statements 544-582 in Appendix B.)

5.3.3 Results

The HAL-in-HAL experiment has proved conclusively that
HAL can be used successfully as a compiler implementation tool.
Although HAL has no machine dependent-features, (which frequently
are designed into implementation languages), this experiment
has proved that such features are not a requirement for compiler
implementation, but rather merely a convenience item to circum-
vent known code generation inadequacies in the compiler. The
HAL implementation is concise, readily followed, and understand-
able (even more so than the XPL version of the same program).

35

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

- A1 -LY p

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE6 CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Yes

No

Yes
Write I
Built token,
Built o p;
Set to null

. . I

Write
'Blanks ='
3lank count

Figure 5.3 (Cont.)

37

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

A2

No

next char AO

Yes

Call
Print
Summary /

Write
'END OF
TEST'

('END

Figure 5.3 (continued)

38

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

The checking facilities of the HAL compiler can detect
numerous logical errors without having to impose the'strict
def:iition rules of XPL. Unitialized variables are easily
detected, as are parameter mis-matches. The bulk of the debug-
ging time for HAL-in-HAL was in streamlining the program to
make the HAL version more readable, as well as more efficient,
since the rule of adding one to all XPL subscripts as a general
rule turned out to be both awkward and confusing in many
instances. The final version of STREAM is much more efficient
than the original translation performed utilizing the rules
of Section 5.2. Programs originally coded in HAL will. obviously
not experience this problem.

39

INTERMETRICS INCORPORATED 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

NOTIPHYm

APPENDIX A.

HAL Course Material

41

INTiRMETRICS INCORPORATED - 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

PRaECEDING PAGE

. . . ;- .i .

. ' `

;. ,. I ' .

~,k ~d ";.

PRE TN'rG PAr - -TANK NOT FiLM)

')"RlXav'aiGiA¢E BIBK ANOT FPLMYJ'

A.1 OVERVIEW

43

INTERMETRICS INCORPORATED 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

PREFACE

HAL developed by Intermetrics, Inc.

* Language design
: Compiler design and implementation

.* Significant Objectives

* ncreased readability
I ncreased reliability

* Real time control

Capabilities

: Primarily designed for on-board computer
General enough for:

Am--i-3 · ground support and verification
DD]] other real-time applications

SLIDE 1

SHUTTLE LANGUAGE REQUIREMENTS

* Software Applications

* Navigation, guidance, targeting * Data management
* Vehicle control * Communications and displays
* Operating systems * Support software

* On-board checkout and monitor

*Computer Environment

* Wide riange of computers (Flight and Ground)
" Fixed- and floating-point
* Simplex, multi-computer, multi-processor

* Language Characteristics

* Clarity and readability
* Eniforcement of standards and conventions
* Extensive automatic checking (compile- and run-time)
* Facilitate software management

L[L... -i~:n Promote modularization

SLIDE 2

nl

CHRONOLOGY OF SOFTWARE DEVELOPMENT

Specs- - (Generation -)I -Production I<- -
I~~~~~~~~[

-Usage

Comouter
Preparation (e.g. punch)

Some Observations

1. The writing of code is closely tied to the specifications.

2. The time required for computer preparation is small compared to the program life.

3. A lengthy period of debug and modification must be provided.

4. Period of program usage extends many times that of program generation.

5. Many more people will use a program than generated it.

W717 -
SLIDE 3
SLIDE

Conclusion

The computer language should promote understanding of the software. The
listing should tend toward self-documentation.

hi a a iXU22 b Ac i -

a0

SALIENT FEATURES OF HAL

-1

*D Di
SLIDE 4

Capability

1. Two-dimensional Input-Output
Annotation of variables

2. Complete vector-matrix arithmetic

3. Data array and structure handling

4. Bit and character manipulations

5. Real-time control statements

6. Data-Pool (COMPOOL), controlled
sharing and name scope

al}EEF'~ i-~ ETEa C5

Requirement

Increased readability

r Targeting, guidance and control

Data management

Systems, communications and 110

Command and control

* Increased reliability

ADVANCED FEATURES

TW O-DIMENSIONAL (MULTI-LINE) INPUT AND OUTPUT·

VECTOR AND MATRIX DATA TYPES AND OPERATORS

TASK SCHEDULING AND SYNCHRONIZATION STATEMENTS FOR REAL-TIME
CONTROL

CONTROLLED SHARING OF DATA AMONG MULTIPLE USERS THROUGH A
COMPOOL AND DATA LOCKING STATEMENTS

STATEMENTS TO MANIPULATE DATA-GROUPS (ARRAYS AND STRUCTURES)
AND POW'ERFUL METHODS TO PARTITION AND INDEX THEM

OUTPUT ORIENTED. LANGUAGE IS SLANTED TOWARDS PRODUCTION OF
UNDERSTANDABLE AND UNAMBIGUOUS OUTPUT LISTING RATHER THAN;
MINIMIZING KEYSTROKES ON INPUT

* .A SIMPLE SCIENTIFIC SUBSET IS DEFINED AT THE OUTSET THAT WILL
> 1 PFRMIT EASY USE BY THOSE WITH A SCIENTIFIC BACIKGROUND

HAL Data Types and Organizations

Organizations

L Structure
I

i

Individual
Data-Type

- Charactr

---. Vetor .B

Uniique no"taion: VECTOR:NAME, BIT STRING:NAME,

Array

Combinations
of Data-Tlypes

CHARACTER ST R I NG: N,'viE,

MA R I'" X:N.',E, " R.Y: 1N., S, rl IC i .:A l N ,aE }

Types

I Arithmetic lI~~~~~~~~
String

V
t

--- Scaa]
I'll

EXAMPLES O F DATP TYPES

SCALAR: -126. 04

INTEGER: 126

VECTOR: 5,

MATRIX:

,o

5,

i,

0,

-26. 4, 3. 061

-26. 4,

-67. 2,

73. 29,

3. 061,

106. 1,

0. 06

BIT STRING: I 0 1 I 0 1 0 1

CHARACTER STRING: VOLTAGE ON BATTERY B 2 VOLTS

BELOkWA S PEC

DD!' '- X a.mXDD~ B~] _ _ -RIC

STRUCTURE ORGANIZATION OF D.ATA

DECLARE I NAV STATE (2);

2 STATE (2),

3 TIME PRECISION (8),

3 R VECTOR PREC lS ION (10),

3 V VECTOR PRECISION (10),

2 STATE_FLAGS,

3 BODY FLAG BIT INITIAL (TRUE),

3 PHASE FLAG BIT,

2 W MATRIX (9, 9) PRECISION (10);

Ul

HAL PROGRAM ORGANIZATION

Data 1
Cornpool t

J

F3mI

SLIDE 6

Ul

Symbolic
Library

Program
#1

Program
#2

iProgram
#N

I I

SCOPE OF NAMES

, Scope is the region in which 'a name is recognized.

Scopes are defined from the outermost block toward the inner; i.e.,

Compool - Progran
'cn

,- Task

n -P rocedu re

--Fu nction
!

}

Procedu re

Function

Names defined in an inner block are never recognized in an outer

block. Irnner blocks effectively isolate locally defined variables.

7etc.

1

. 'I

BLOCKS OF CODE (NAME SCOPE)

ABLE: PROGRAEI;

DECLARE VECTOR (5) A,B,

A = B + C;

BAKER: SK;

DE AREA ITEG

\CH LIE: RO

DE

.END BAKEi \

GRAB: PROCEDURE;\ \
.DECLARE X VECTO

END GB; \

1Zi. END ABLE;

FE i Ei %J;3X

A,B,C are vectors (5)

B,C are vectors (5)
A is now an integer

B,C are vectors (5)
A is now a bit string
X is a scalar

A,B,C are vectors (5)
X is a vector (4)

SLIDE 7

HAL Statements

I. Assignment

LABEL:VARIABLE = EXPRESSION;

2. Declare

DECLARE ---

3. Control

GO TO ----, IF-statements, DO-statements,

4. Block

Procedures, Functions, Tasks, Updates ;.Programs

5. Real-time Control

Schedules, 'Waits, Signals, Locks

EXAMPLES OF ARITHMETIC OPERATIONS

(From Apollo Navigation Equations)

HAL'

Z = W B;OMEG 2

OMEGA = Z W /(ZMAG + ALPHA);

DELX = OMEGA DELQ;

X = X + DELX;

GSOP Specification

Z = wT b

T = 1 ZT wT
z2 + -2 -

5x = W 6Q

X = X' + 6X

F = 1 + (ALPHA /(ZMAG2 + APLHA2))
1 / 2 ;

W = W - OMEGA Z/F;

W = W' -

T1 Z

1+l 1 2+ -2

where b E geometry vector'

W E square root of covariance

.2 E measurement variance

X E state vector

SLIDE 9

III TE-'-'FflETRI I C

CONTROL, LOGIC AND COMPUTATION

(Cross product steering of Apollo vehicle)

Involves scalars, 3-d vectors, 3x3 matrices, "Booleans"

XSTEER: IF TGO < 4 THEN DO;

OMEGACNB = 0;

SW = OFF;

SCHEDULE ENGINE OFF AT (TIME+TGO)

PRIORITY (20) E OFF ID;

GO TO START;

END;

DELM = C B DELT - DELV;.

O--MEGA C = K(VG*DELM)/(ABVAL (VG) ABVAL (DELM));

OMEGA CNB = SMNB REFSEMAT OMEGA C;

GO TO START;

SLIDE 10

where TGO E "time-to-go"

VG E "velocity-to-be-gained"

OMEGA -E rate command

EXAMPLES OF MATRIX PARTITIONING

Given: 9x9 covariance matrix E of errors in position, velocity

and landmark location. That is,

E E E
p-p p-v p-Z

* . * * *.
E = E E E

v-p v-v v-z

1. RMS Errors

RMSPOS

RMS VEL

= SQRT(TRACE(E1 TO 3, 1 TO 3

= SQRT(TRACE(E4 TO 6, 4 TO 6)) ;

2. Initialize E for

E1 TO 6,

7 TO 9,

E 7 TO 9,B7 TO 9,

new landmark

7 TO 9 = 0;

= 0;1 TO 6

7 TO 9 3 ,3

SI-'E 1

SLIDE 11

(A2 , 0, 0

0, B , 0

0, 0, C 2);

- .01 -

BIT AND CHARACTER MANIPULATIONS

Suppose the system-status word is made up as follows:

SYSTEMSTATUS 1 0 1 1 1 0

Example: system status

A = 'SYSTEM STATUS:';

DECODE: DO CASE SYSTEM STATUS
1 TO 3;

MESSAGE = 'ENGINE' |A;

MESSAGE = 'POWER'II A;
MESSAGE = 'IMU'IIA;

MESSAGE = 'LIFE SUPPORT'IIA;

CASE 1

CASE 2

CASE 3

CASE 4

END;

DO CASE SYSTEM STATUS4 TO 6;

· p

MESSAGE = MESSAGEII'O.K.';

MESSAGE = MESSAGE| ' RECONFIGURED';.

MESSAGE = MESSAGE'! IN SELF-CHECK';

CASE 1

CASE 2

CASE 3

*

... END;
r - END DECODE: WRITE(DISPLAY)MESSAGE;

D LLJ El E2 1 EA iE
SLIDE 12

. .,

EXAMPLE OF IF-STATEMENTS
(Flag-checking in Apollo Rendezvous Data Processing)

A: WAIT FOR SYNCH SIGNAL;

IF REFSMMAT FLAG THEN

IF R 60 OP THEN GO TO A;

ELSE IF UPDATE FLAG THEN DO;

IF VHF RANGE THEN.

IF TIME>60-TIME VHF THEN GO TO VHFREAD;

GO TO D;

END;

ELSE IF TRACKFLAG THEN GO TO D;

GO TO EXIT;

Note: ELSE always refers to immediately preceding IF (except when IF
is within a DO group)

P)

EXAMPLE OF A PROCEDURE

(The Apollo Time-Radius Routine
from GSOP)

CALLER:

CALL TIME RADIUS (RT2, VT2, (ABVAL (RT2) - 30480), MU EARTH,

TR FLAG)) ASSIGN (TIME_32, RT3, VT3);

SUBROUTINE:

TIME RADIUS: PROCEDURE (A,B,C,D,E) ASSIGN (F,G,Hi);

RETURN;

END TIME RADIUS;

NOTE: "Call-By-Name", "Call-By-Vai'ue"

4

EXAMPLE OF A FUNCTION

ABLE: N = TRACER(A+B);

GO TO BAKER;

TRACER: FUNCTION(Q);

DECLARE Q MATRIX(A,*);

IF TRACE(Q) > 100 THEN

* *-1 * ** ***
RETURN (Q Q + ± + QQ + QQQ)

ELSE RETUIRN(0);

END TRACER;

NOTE: "CALL BY VALUE", "run-time" dimensions

PROGRAMMING
REAL TIME SP

REQU I REMENTS
ACE

FOR
APPLI CATI ONS

Tasking

Soft ware performs
to interrupts
capability to

time critical
in a complex

schedu le,

functions and responds
environment requiring the

control and synch ronize tasks.

Recovery From Error Conditions

Techniques are required to p
to "continue" after detection
cond ition.

)rotect and enable system
of unexpected error

Common Memory Sharing and Control

'Tech n iqu es are required to dynamically control the
use of common data elements among tasks in the
environment.

Schedu ling and

EXAMPLE OF HAL REAL-TIME CONTROL

/
/-

I

N

DDF] ENDMANU and ENDMEAS are programmer-defined events
wtl, jT1 ,'. 1- .

SLIDE 13

TASK: MANEUVER;

I:c

S IGNAL ENDMANU;
CLOSE MANEUVER;

PROGRAM: CONTROL;

SCHEDULE MANEUVER; X

SCHEDULE MEASU REMENT;

WAIT FOR ENDMANU
AND ENDMEAS;

CLOSE CONTROL;

TASK: MEASU REMENT;

SI GNAL ENDMEAS;
CLOSE MEASU REMENT;

I

REAL TIME STATEMENT EXAMPLES

SCHEDULE TARGETING PRIOR ITY(3);

SCHEDULE RADAR ON R RU PT PR I OR ITY(PR 10 + 2) RADAR PROG;

I F TRACKFLAG = ON THEN SCHEDULE AUTOMANEU VER IN 5;

ELSE WAIT UNTIL (TIME + 5);

SCHEDULE STEERING AT(IGNITiON + 3)PRIORITY(1O) INDEPENDENT;

TERMINATE RADAR _PROG;

WAIT FOR OK;

SIGNAL OK;

CONTROL OF SHARED DATA

EXAMPLE 1: READ AND WRITE CONFLICTS

UPDATE;

CONTROL -

" CLOSE;

U PDATE;

' CLOSE;

EXAMPLE 2: UPDATE CONFLICTS

U PDATE;

---- CONTROL

2 CLOSE;

U PDATE;

"'CLOSE;

NOTES:

1. B "INTERRUPTS" A IN BOTH CASES

2. #1 TASK A RESUMES USING OLD AND NEW VALUES FOR N

D-D i. 3. #2 TASK A RESUMES "CLOBBERING" THE VALUE FOR Y SET BY TASK B

SLID E 8

A: TASK;

M= N+ P;

CLOSE A;"

B: TASK;

N= XY;

CLOSE B;

A: TASK;

Y= Y -X;

CLOSE A;

B: TASK;
4-

Y=Y-Z;

CLOSE B;

ERROR CONDITION STATEMENTS EXAMPLES:

ON ERROR12 GO TO ABLE;

ON ERROR GO TO BAKER;
1 TO 5

ON ERROR4 SYSTEM; '

E RUPT ERROR;- 6'

, SUMMARY

* HAL emphasizes reliability

t Readability
"* Data protection

* HAL is a full-capability language:

Includes all data types
Real-time control statements

* Supports on-board computer software
Floating- or fixed-point synta.

t Supports ground, checkout, simulation software

* Schedule of Events

. , First version delivery to MSC in June, 1971
e Development to continue compatible with Shuttle schedule

~7[_~ '.' Object-code-module required for selected on-board-computer

7W ~1 U I.E ' ~,~ t~ l,,E , .: ..
SLIDE 14

.

A.2 LONGER HAL COURSE

69

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

HAL Data Operations- I

Arithmetic

All common operations including:

* Vector dot, cross and outer - products

* Matrix multiplication, inverse transpose

* Integer mathematics

* Combined integer-scalar operation

Bit String

Logical AND, OR, 'NOT, of:

* Long bit strings, bit-by-bit

* Single bit "booleans"

Concatenation

Character String

Concatenation of characters and data into messages

Arrays
Most valid element-by-element operations apply to arrays

I .

· HAL Data Operations - I I

Comparisons

A comparison of data always results in a single TRUE or FALSE answer.

* Absolute comparison

VECTOR, MATRIX, ARRAY, STRUCTURE
NOT=

* Absolute and Relative Comparisons

scalar
NOT-integer

bit

character

-J
H

NOT<
NOT >

I

EXAMPLES OF DATA OPERATIONS - I

Arithmetic Operations

I = (-J)3 + K(3+J); all integers

A = P/R + R - V.M V; scalars, vectors, matrices

B = ':* V + 5M V + A(V.P) F + F/(V.V M);

* ** * *-1 * * T'
.C = -M N + M + V V/A - (M+N) ; ---- sc

scalars, vectors,
matrices

:alars, vectors, matrices

A = I/J + B J + J ; --------- integers, scalars

EXAMPLES OF STRING OPERATIONS

Bit String

D = B AND C;

D = A OR (B AND C);

A = DIINOT BII(B AND C);

Character String

C = 'PLEASE'II'HELP';;

D = 'THE ANS. IS'IIXII'N.M.';

EXAMPLES OF ARRAY OPERATIONS

"Two-array" operations:

-[P]/[A], [P] * [V], [R][]j, [AI OR [B]

One-array operations:

v . . -P/[A], P * [V], R[P] , [A] OR B

EXAMPLES OF COMPARISON OPERATIONS

IF I>J THEN ------

IF A NOT <(X2 - 5 V. V) THEN ------

DO WHILE S = (A AND B) ------

IF M = N THEN------

DO WHILE [Al NOT = [B] ------

HAL Explicit Declarations

* In general, all data must be declared by declare statements
(with the exception of those permitted by implicit declarations).

* The declare statement specifies the name, organization, type
and attributes of data quantities.

Keywords used in declare statements:

Organization

ARRAY

Type Attributes

INTEGER
SCALAR (optional)
VECTOR
MATRIX
BIT
CHARACTER

PRECISION
INITIAL
CONSTANT
STATIC
AUTOMATI C
LOCI<TYPE
DENSE
ALIGNED'
VARYING

EXAMPLES OF EXPLICIT DECLARATIONS

1. DECLARE I INTEGER INITIAL (65);

I is an integer with an initial value = 65.

2. DECLARE X PRECISION (8) AUTOMATIC INITIAL (6.061);

X is a floating point scalar with at least 8 significant decimal
digits.

3. DECLARE A ARRAY (5,3,4) VECTOR (6) PRECISION (10);

A is a 5x3x4 array. Each element is a 6 dimensional vector with components
represented to 10 significant decimal digits.

4. DECLARE MATRIX (3,4) INITIAL (0) AUTOMATIC

A, B, C PRECISION (10);

A, B, and C are all (3,4) matrices with automatic storage. All components are
set to zero.

5. DECLARE A PRECISION (10, 15)

A is a fixed point scalar with 10 integer bits and at least 15 fractional bits
(i.e. maximum value < 210, granularity > 2-!5).

INDEX OPERATORS

1. The "TO" operator

Selects a subset of elements from element-i

"TO" element-j.

For example:

A1 TO 10

2. The "AT" operator

Selects a subset of N-elements starting at

element-i.

For example:

1 0 AT 1

3. The number of elements in any "partition"

must be known at compile-time.

EXAMPLES OF INDEXING - I

1. Vectors and Matrices (given V, M)

V 2 scalar element,

V ----- sub-vector,
1 TO 5

M2,3 ------ scalar element,

M*,i ------ vector element, 3 AT sub-matrix
M3 AT P, 3 AT Q

2. Bit and Character Strings (given S, C)

S3 --------- single bit,

2 TO 10 sub-string, AT Psub-string

3 TO # - sub-string,3 TO #

EXAMPLES OF INDEXING - II

3. Arrays (given [A], a two-dimensional array of matrices)

[A TO sub-array

[Alp Q --------------------------- an array of scalar elements

[A]* [Al 2--------------- sub-array of vector elements

O 4. Array of Bit Strings

[Al ----------------- sub-array of sub-strings
3 TO 5, I:! TO 6

A --------------------------- one particular bit6,4:3

DO - STATEMENTS

e DO - statements' block out a set of statements which
are to be treated as a single unit.

o There are four types of DO - statements

1. Simple .DO-END

2. Iterative DO-FOR

3. Iterative DO-WHILE

4. Selective DO-CASE

ILa

EXAMPLES OF DO-STATEMENTS - I

Simple DO-END

IF X>5 THEN BAKER: DO;

. 'A = B;

C = D;

GO TO ABLE:

END BAKER;

ELSE CHARLIE: DO;

Z = M V;

F = V * Z;

IF Y = 0 THEN GO TO OUT;

END CHARLIE;

EXAMPLES OF DO-STATEMENTS - II

1. Iterative DO-FOR

ABLE: DO FOR I = P TO (N/S) BY L WHILE N>0; limits and increment.
are computed once. -

X = Y + AI;

N = N - .006 X;

P = 1; S = 2; L = 3;

END ABLE;

2. Iterative DO-WHILE

ABLE: DO WHILE (X > Y AND GO_FLAG = ON); X,Y and GO FLAG
are recomputed.

X = y2 + PLOQG(Z);

GO FLAG = TRAKFLAG OR NAV FLAG;

LStatementsi

END ABLE;

EXAMPLE: SEARCHING AN ARRAY OF DATA

The final phase reference for Apollo reentry:

DECLARE ARRAY (13) VREF CONSTANT (994, 2103, 3922,...);

DECLARE ARRAY (13) RDOTREF CONSTANT (-690.0, -719,...);

DECLARE ARRAY (13) DREFR CONSTANT (41.15, 60, 81.5,...);

etc.

INTERPOLATE: I = 0;

DO WHILE (VREF
I
NOT< V) AND (V NOT< VREFI+1);

I = I + 1;

END;

GRAD = (V - VREFI)/(VREFI + 1
- VREF

I
);

RDOTREF_V = RDOTREF
I

+ GRAD (RDOTREF+
1 - RDOTREF

I
);

GO TO CONTINUE;

EXAMPLES OF DO-STATEMENTS - III

Selective DO-CASE (Computed DO-Statement)

DO CASE N;

DO CASE P;

F = A + B;

G = M V;

'CASE 1

:' CASE 2

CASE 1

CASE 2

GO TO CHARLIE;

Z = W + B;

END ABLE;

ABLE:

X y2;

BAKER:

END;

CASE

CASE

3

4

N-

EXAMTPLES OF IF-STATEMENTS

1. Simple:

IF X = 5 AND Y > 6 THEN ABLE: GO TO PLACE;

ELSE GO TO TRY AGAIN;

2. Complex:

IF X = 5 THEN IF Y > 6 THEN IF B OR C THEN Z = M V;

-- *-1 -
ELSE CHOICE: Z = M V;

3. More Complex:

IF S = (A OR B) THEN IF X > 5 AND Y > 6 THEN GO TO OUT;

ELSE IF [A] NOT= [B] THEN [A] = [C];

ELSE IF -----THEN -----; ELSE IF ----- THEN

ELSE GO TO TRY AGAIN;

note: ELSE always refers to immediately preceding IF.

SELECTIVE INCLUSION OF OUTER-NAMES

a Only B,D,F are recognized
outer names. (A,C,E, are
"rejected").

¢ A,Erare defined locally.

Note: COP0OOL variable-names may be accepted, rejected and/or

locally defined by combinations of DECLARE and OUTER

statements. In order to use implicit declarations within

a block (except for PROGRAM-level) an OUTER-statement must be

present.

ABLE; PROGRAM;

A,B,C,D,E,F;DECLARE

I

I

BAKE R: PROCEDURE;

OUTER B,D,F;

DECLARE A,E;

I

PRECEDING PAGE BLANK NOT FILMED

APPENDIX B.

HAL-in-HAL Detailed Description and Listing

B.1 INTRODUCTION

The output from the HAL-in-HAL experiment consists of
the following:

1. The HAL program listing, symbol table, and cross
reference

2. The output of the HAL program execution

3. A listing of the source data read by HAL-in-HAL

(a sample HAL program)

B.2 HAL-in-HAL PROGRAM DESCRIPTION

This section will describe the general function of each
of the routines in HAL-in-HAL. Refer to the program listing
for specific details.

B.2.1 STREAM (Statements 100-542)

The overall functions of the STREAM procedure are as
follows:

1. Convert the multi-line format of the input cards
to a one-line format, which is required by the scanning
and syntactic analysis routines.

2. Process Comment and Heading cards to aid readability
of the source program, and also to enable certain
compiler toggles for assisting the person who is
debugging the compiler.

3. Eliminate LHAL in-line comments (strings contained
between /* and */).

4. Perform substitutions for replace type strings (not
demonstrated).

To convert input to one-line format requires the following:

89

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

1. Enclosure of each level of subscripting in parentheses,
preceded by the dollar-sign character ($).

Ex.
M S =S2

I IX
S
S

becomes

S1i$(I) = S2$(IX$(I));

2. Enclosure of each level of exponentiation in
parentheses, preceded by two asterisks (**)

Ex.

E 2
E 2 I
M S2 = X

becomes

S2**(2) = X**(I**(2));

STREAM contains ten local subroutines which assist it in perform-
ing its function. They are local because they are of no value
outside of STREAM. The non-local procedures are general interest
routines, which are useful at levels other than within the
STREAM procedure.

B2.2 CARD.TYPE (Statements 26-33)

CARD TYPE is a function which receives as input the first
character from an input card and returns an integer typifying
the card in one of five classes.

B2.3 CHARINDEX (Statements 34-44)

CHAR INDEX locates one string within another, returning
the relative position of the desired substring if found, and
0 otherwise.

B2.4 PAD (Statements 45-53)

The PAD function forces a varying character string to a
minimum specified fixed length by appending trailing blanks.

90

INTERMETRICS INCORPORATED · 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

Its primary function is for WRITE list items.

B2.5 I FORMAT (Statements 54-61)

The I FORMAT function first converts a number to a
character string, and then adds high order blanks to force
a right justified integer string of a specified fixed length.
This routine is also primarily for WRITE list items.

B2.6 ERRORS (Statements 62-82)

ERRORS both prints error messages when reported, and
saves a record of their occurrence for later reporting. It
also will terminate the compilation if either too many or too
severe errors occur during compilation.

B2.7 PROCESS COMMENT (Statements 116-133)

This routine processes heading cards, as well as looking
for special debugging directives on comment cards.

B2.8 STACKRETURN CHAR (Statements 134-144)

This routine locates an available position in the
return stack and records both a count and the character to be
added to the output stream to formulate one-line output out
of multi-line input.

B2.9 READ CARD (Statements 145-157)

This routine reads the next input card and prints the
card previously read. (This is because a group is only
defined by the next non-group card.) It also counts the input
cards and checks for an end of input condition.

B2.10 ORDER OK (Statements 158-189)

This routine verifies that cards are in the proper sequence
to formulate a proper HAL group. It also signals when a group
is completed.

91

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

B2.11 COMMENT (Statements 190-201)

This routine removes '/* */' type comments from E and
S lines, when they exist.

B2.12 SCAN CARD (Statements 202-220)

This routine scans E and S cards for non-blank characters,
compressing multiple lines into one line, with an indicator

recording which level the character appeared on. If an overlap
occurs, the one closest to the M line is retained, and a diag-
nostic is issued.

B2.13 COMP (Statements 221-244.)

This routine is called when either an E line or S line
is first encountered in a group. It keeps reading cards and
calling SCAN until an entire E or S group is compressed into a
single line as described in B2.12

B2.14 GET GROUP (Statements 245-297)

This routine is called to assemble a complete group,
which consists of an M line and one or more E and/or S lines,
formulating as output a single E line, M line, and S line, with
corresponding indicators.

B2.15 CHOP (Statements 298-306)

This routine advances the M line character index by 1,
forcing a new group to be read when the M line termination
is reached. The information concerning the last character on
the previous card is retained.

B2.16 STACK (Statements 307-325)

This routine builds on Exponent or Subscript stack
corresponding to a single blank field on an M line; i.e., those
subscripts and/or exponents related to a specified variable
or function. This is in preparation for outputting from STREAM
within stacked Return characters (see B2.8).

92

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

B2.17 BUILD XSCRIPTS (Statements 326-362)

This procedure invokes STACK for building both the E and
S stacks for a single blank field, including M line comments
as blank fields. Residue blanks for which no E or S line charac-
ters exist are treated as blank fields by the scanner (blank
fields by the scanner (blank is a legal delimiter in HAL).

B.3 DESCRIPTION OF HAL-IN-HAL OUTPUT

The output of the HAL program is interpreted thusly. The
program reads in a group of data cards. A group can consist of:

1. a single M line

2. one or more E lines followed by a single M line

3. a single M line followed by one or more S lines

4. one or more E lines followed by a single M line
followed by one or more S lines

Each group is then converted into one line of output to the
scanning routine. A group of type 1 is transmitted directly
except for elimination of redundant blanks. A group of the
other three types involves processing of S line and/or E line
stacks and the addition of the appropriate subscript and/or
exponent enclosures (subscripting is performed first if the M
line identifier has both a subscript and an exponent attached).
As the scanning routine continuously calls STREAM, identifier
tokens are formed. All identifier and special character tokens
are printed as they are encountered, including identifier over
punches. When the token is a blank, a count of the blanks
scanned is printed.

The full output consists of the following:

1. a printout of the entire card group just read,

complete with card numbering

2. a printout of the individual tokens encountered within
the group just read (signalled by TOKEN= or BLANKS=)

3. a printout of the combined one-line format and any
possible over-punch characters whenever a semi-colon
(;) is returned by STREAM. This represents a complete
HAL statement as seen by the scanning routine (signalled
by OVER and MAIN in succession).

93

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

This sequence is repeated until the input is exhausted (signalled
by a "?" for this test). Note in the TOGGLE sequences where the
subscript and exponent enclosures are added to the characters
on the actual input cards.

94

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE · CAMBRIDGE, MASSACHUSETTS 02138 · (617) 661-1840

H A L C.CPVP I L/ATIGCN - -PHA SE I -

STtVT :I. Sn1UzRC. .. .

PAGE 1I N T E R M E T R I C S, I NNC .

.. _-, · ~LINE CURRENT SCOPE

C I

cl'cl

2

MC

6 M

CMl

L~q
12 MI

13 ~1

14 V.

14 MI

j·· ~ ~

14NI14 Mi

].5 .~1

16 M

17 Ml

lg MI

2C ;I

21 M1

HAIN-AL: PP.,lAM.:

6 p C PI F F G
THE FCLLOIeNG GRCLP CF CECCI. tRE

FFPLACE q RY 'FPL.ACE';

R FALSE BY '0'; P TPUF BY '1'

P IF _CT DY.'IF 0 ='; R Irf P

CUT BY 'WERTF(5 ' :

R FOPEVEP HY '"HILE 1 = 1';

CEFAULT INTEGER;

rFCLA^.E X70 CNAFACTEP(7O) ItII

CrCLARE CHAP4CTEP(_55) VAPYINC

CECLARE .OLANK_FLACG IT_] INITI

CFCLARE INTFGER !NITIAL(O).,

EFCRCOUT, A('R(CC_FPOINT, MNC

OLDLEVEL, NEWLEVFL...

PlAX_SEVEITY, ST.TTE!,FT_SEVER

SAVE_SEVERITY ARRAY(100),

SAVE_LINE ARRPPAY(i00), PREVICUI

C'CLARE CCFILINCG PIT_] INITIT

DECLARE INTEGER, TIElt, TIKE2;

CECLARE MAC. CSTREAM CHARACTER

EFCLARE MACPCFOUNC EITI INIT

£ECL'ARE CARD_CCUNI INTEGER INI

CECLARE .ISASTER LAeFL;

CECLARE NEXT_CHAR CHARACTER(.

I' ~- -,. .. - ,-, __.1 - .- I I I

I?I 3
1

S APE CNLY TFMPCRkPY , : - - 3

4 HALTNHAL

R EIT_ BY 'INTEG.R'; I 5 HALINHAL

Y 'IF : ..., - I 6 HALINHAL

7 HALI NHAL

P HALINHAL

. 9 HALINHAL

IAL (' 'f); ; ' C1 HALLINH,, L

, BUILT, BUILTUP, BUILTTOKEN, BUILTOP; 11 HALINHAL

ALIFALSE); 12 HALINHPbL

..I 3 HL I NHAL

RCLIMIT, I 14 HALINHAL

...... ,..... 15 HALINHAL

ITY, ' - I 16 HALINHAL

................ 17 HALINHAL

S...ERROR, I ; --. I·f HALT NHAL

L(TPUF); 1 HALINHAL

20 HALINHAL

(255) VARYING; .2.-..,.,.: 21. HALINHAL ..

TAL(F: .LSE); };.. 2.:. . 1.-2 HALINHAL

TIAL(-1); 23 HALINHAL

.24 HALINHAL

~~~; ' `· ·~. :". _'": j ~ 25 HALINH L



.1 N T E R M F T R I C S , · I N C .

STNT

22

23

24

26

2 R

2;'

'C

31

31

33

C I
Cl
Cl
Cl

34 M1

'~ MI

3"5 I

'7 ·4 I

2"

39 :1I

40 I 

42 M I

* .... .. . SCOURCE

CtI CECLAPF OVER_PUNCH CF R-:FCTFR(!):

Ml CFCLARE BLANKCOUNT INTEGER INITIAL(O);

M I CECLARE CCNTCL AR 1C) BIT(32); ...... ...

] ['CL AREF TCGr-I FS C EtAR .CTFR(O I) INITIALL('3.4567CO');

Ci

Cl THE ARRAY CAnC_TYrF IN XFL IS REnLACEC BY TFIS FUNCTION
ci

r. CARf TYFE: 
..... ..

Pi FTINCTICN(SELECT) INTEGFR;

P"l CFCL,,' F SELf:LC CF2;FCTF.R( );

N') IF SELFCT.=- ' OP SEt. FCT = '. THEN PETURN 2;

Ml IF SELECT = 'S' THEN RETUPN 3;

IJI I F SELECT = '' T TF-N PFTUf:N I;

VI. IF SELECT = 'C' OR SELECT = 'r' OR SELECT = .H'

M| THFN RETLRN 4;

F ETU?2N O;

CLOSE CARDTYPE; . . .. .... ....... ..... ..

N I

MI

.:L... . - t I NE

I 26

I 27

28

I ?

, ..... 37

38

39

.40

41.
4 4

44

TE- CHAR_INCEX FUNCTICO iS THE SANE AS THE IN!DEX ELILT IN FUNCTICON

CHAR_INDEX: FUNCTICN1 STRING9PATTERN) INTEGER:

CECLARE CHARACTER(*')k. STRING, PATTERN;

CECLARP INTEGER, I, J, K;

J = LENGTH[ STRING);

K = LEIGTH(PTTEN); .

IF K > J THEEN RETULIP G;

ELSE DC FOR I 1I TC J-K+I;

IF STR'ING$(K AT I) = PATTERN THEN RETURN I;

I '6
1 47

I 48'8

1 49

1 50

i 51

1 52

53

I 54

. 1 55

1 56FND;

CURRENT SCOPE

HALI NHAL

HALINHAL

HALINHAL

H A L-I NHAL

HALINHAL
HA L I NH4L
HALT i HAL

HALINHAL

CARD_TYPE

CARDTYPE

CARDTYPFE.

CARO TYPE

CARD_TYPE

CARDTYPE

CARDTYPE

CARD TYPE

HALINHAL ..... -

HALI NHAL
HALI NHAL .

H L I NHAL
HAL N NHAL

CHARINDEX

CHAR INDEX

CHAR INDEX

CHAP_INDEX

CHAR_INDEX

CHAR INDEX

CHAQ_I NDEX

CH AR INrEX

CH PR_I NDE X

PPGE 2H A L C r M P I L A T I C N -- P A S F 1 I

. I 



H A L

STMT

44

45

46

47

4 

50

5C

5]

5?

53

54

55

56

57

5?·

c.

6C

61

V..

C 0' P I L A T I C N -- P H A S E 1 -- N T E R M E T R I C S I N C . PAGE 3

-. -..SCURCE . .. .-... -. ... LINE CURRENT SCOPE

mI FETU'N O: '- '57 CHAR_ INDEX

Mj CLOSE CHARINDEX; I 58 HALINHAL

~~~~~~cI · ·- - ...-t,-~~~~~~~~.-·----·~ I ~ 99 HALINHAL ..
rCI) 50 HALINHAL
.I kFPE IS PAD A FUNCTT! ONF FR CM H LPASS! 61 HiALINHAL

CI · - ? "-'- ' ... 2 W'LINHAL

MI PAD: FUNCTION (STPINC.WIDTH) CHAR4CTER(255) VARYING; 63 PAD

MI CFCLARF CHAP/'TCR(*), STRIN,., 4 PAC

FL ECLARE CFAFACTFR(?5'5) VARYING, TEMPSTRINO,; - .. .-'.:- -- 65 PAD

MI rFCLARE !NTFEGER, L, IC'T; 66 PAD

VI L = LEIGTHFSTRIN); . 67 PAD·

.I F L <.WIDTH TFEN. .-- :-- .. . ~.';- ...--' 'F -- '- I6 PAD...'....

VI TEMP_STRING = STPING II X705(1 TO WIDTH-L)i; 9 PAD

vl FLSE TE!,'PSTPING = STF IN ; . : 70 P ,D

M I FFIL !PpN IF-MD TfST RINC · ·7 7 3- PAD---, ·--'_.'__--·b~~~~~~~~

HI CLCSF PAn; 72 HALINHAL

C I 7, HA LI NHAL'
CI 4 HALINHAL
C HFF'E IS THE FUINCTiTON -FCRMAT -FROM HALPASSI-' _.- 75 HAL INHAL........
CI \ . I 76 HALINtHAL

YI IFC:R,~,T: F)CTICN(INUMPFR WIt.TF-) CHARACTERI~-.:. 77 IFORMAT

DI ECLARE CH ,F, CIE(2?5DE) VARYING, STRING; . · I 78 IFRMAT

PI DECLARE INTEGER, L, NUD2ER, WITCT-; 7 9 I-FORMAT

Hv STRING NUMPEP; . 180. 1 _FORMAT a

MI L LENGTH(ISTRING); . 81 : FORMAT. ~ ~ ~ ~ ~.-..~~~~~~~~.."'i .'<' J81 TF:R AT '.

V IF'L < AICTH THEN . 82 I_FORMAT

MI STRING = X70S(!1 T.WIDTH-L) II .STRING;,:-- .- , ... 83 I FORMAT.

VI PETURN STRING; 84 1 FORMAT

VI CLCSE IFGRMAT; 85 HALINHAL

CI 86 HALINHAL
CI 9 7 HALI, "NAL
CI THF FOLLOWINC IS THE FPRRDR PROCE.UP.F FROM PASSI.:: I '8 HALINHAL

C O M P I L A T I C N P H A S E I -- I h T E R M E TR T C S t . I N C

STVT SnURCE L....- . LINE

Cl 80

62 V'I ERRORS: PROCEDURE (MFSSACESEVERITY): 90

CJ PRINTS ANn ACCCUNTS 7Cr ALL ERRPCRS - 91

Ah C!CLRE MSGC CRCRE (CTEr.(q) VARYING; l 92

64 Ml DECLARE MESSAGF CHAACTFP(*);; 93

6C5 i CF-CLARE SEVERITY NTEGR; 94

6 E|R.CRP CCUNT = FIRR.R' CULNT + 1; I 98

67 Vl MSG = 't*4*, ERRCR Y ' II EFROR_CCUNT I ' OF SEVERITY ' II 96

6;7 MI SEVER'ITY l : ' FSSAGE; 97

6 MI IF LRRC_Cuh. T > 1 THF 9,

e6 vl r'SG = MSG 11 '. LAST ERROR CN LINE ' II PREVIOUS_FRROR; 99

6q 1 .RITE(6)" SG 11 '. :":'' ; ..- I 100

7C VI SA_SFSVERITY,(r,: C ,_-CCLNT) = SE VFR!TY: I o-

71 Hl SAVE_LINE$(FfPCR_CCUNT) = CAPC_COUNT; 102

72 2l PREVIOUSE ERR'R R = CRClJT ; 1 03

7 t'Jl IF Fr. RCRCCUt'T >= 9 TI-F.N .cO;]04

74 Pl IF EFRRCRCOUNrT = 100 TFEN . 105

74 Ml hF.ITE(6) 'TCC PAN'Y ERRCPS: COMPILATICh. APCRTED.';... 1 106

7c tI IFF CCFPILING THEN" CC't'PLINC - FALSE: ' 107

76 1I ELSE GO TO DISASTER; /* THEN EKD IT THERE 1/ 108

77 PI END; . · .

75: Ml IF SEVERITY > VAX SEVERITY THEN MAX SEV ERTITY = TY; I 110

7c: N IF SEVFRITY > STATFMENTSEVERITY THEN . 111

75 ',I STATEMENT-SEVER.TY = SEVERITY;'2..... 112

80 WI IF SEVERITY > 3 THEN IFF COMPILING THEN 113

PC VI CONPILING = FALSE; l 114

91 rI ELSE CC TO CISSTER; 115

CI F? OnF PASSI ERPCR 116

CURRENT SCOPE

HA LI NHAL

ERPOPRS

E."RORS

ERRORSERROFRS

ERRORS

ERRORS

ERRORS

ERROR S

ERRORS

ERRORS

ERR POP RS

ERRORS

ERRORS

ERRORSI

ERRORS
ERRORS

ERRORS

ERRORS

ERRORSERRORS

ERRORS .

ERRORS

ERRORS

ERRORS

ER.ROR S

p A L PPGE 4

H L

STtl

82

P,

. 4

8e7

87

gO
CO

93

33
0?

05

q6

97

2
q9

1CC

C O M P I L A T I O N -- P H A S E I -- - h T E R M E T R' I

- SOURCE ·

CI CLCSE 'ERRCRS; /* CLtS ING ER.RCRS AN RETURNING. 4/

r.I
Cl
r I
C I

MI

I I

,I1rl

I

M I

Ml

Ml

MI

MI

Mdl

. I

P I

rl
Ml

M I

V IClI

THIS NEXT PROCECDURE IS PRINT_SUMARY..... . ..

PR IT_SUMMARY: PROCFDURE; ;

,RITE(6)CARD_CCLNT II ' CARDS WERE PRCCFSSED';

IF FiRFCRCCU'T = 0 TFi-N ,RITE(6). ' NC ER.PPCS 'ERE CETECTFO.';

FLSE IF ER(RP_COLNT. > 1 ·TIEN DC; .

hRITF(6) ERRCR_CCUNT 1I ' ERRORS WERE CETECTED,'

II ' THE LAST E3lRCr ',,AS UN LINF ' II PR;EVICUS- EROR.;

WRITF(6) 'p***4SUMA4FPY CF nETECTED FP.RCPS.***,*; -

CC FOR I = I TC ERRCR CCUNT;

WRITE(e) 'EiFR:CK : ' !I I I I ' [N Li- ' Il

SAVF_ LNFI II ' tF SVERITY '. ..

SAVE_SEVFRITY$I II '.';

CS, INC.

I 11

I 11.
I 120

122

123

. i 12',

· 125- 1 2-

l 126

1 12P

120

10

I 13!

132

END;

ELSE WRITEIe) 'CNE ERRCR WAS CETECTED hHICH CCCURREC ON LINE ' I

pFrVICUS_ RPOP II ' CF SEV.RITR ' II S:'VECSEVERITYSI II '.'i

TIME2 = TIMF;. ·.....

I =TIME2-T!MF1;

W'.PITEf6) 'CAR£-PRCC'SSING RATr: I' l 6000 CARD_COUNT/I I

' CtRDS PFR MINUTF.';.

hRITE(l) ' CLCCK TIME IS ' II TIME2;

RETURN;

CLCSE PINT UMAY;

STRFAY: PROCTCURF;:

THIS PR([CFDIIPTF FILLS THE VARI A3L ES NEXT_CHARt
ARRCW, :NrC DVF,_strNCH.

1 'L33

I 134

1 135
135

! 136

i 137

I 138

1 139

I 140

I 141

I 1 4

PAGE 5

CURRENT SCOPE

HALI NHAL

HALINHAL
HALINHAL
HALINHAL
HAL! NPAL

P.INT_SUMMARY

PRINT_SUMMARY

PR I NT_SUMARY

Pi, iNT_SUMMA RY

PRINT_SUMMARY

PR INT_SUMMARY

PR INTSUMMARY

PR I NT_ SUMMARY

PR INT_SUMMAPY

PRINTSUMMARY

PRINT SUMMARY

PR INT_SUMMAR Y

PRINT_SUMMARY

PR INT_SUMMAPY

PRINTSUMMARY

PRI NT_SUMMARY

PRINTSUMMARY

PR I NTSUMMAPY

PRINT_SUMMARY

PRINT_SUMMAPRY

PRINT_SUMMARY

I 143 HALINHAL

I 144 STREAM

'I 145 STREAM,
l 146 STREAM

-- I-N T E R M E T R I C S ., I N C .

ST NT

CI
Cl
Cl
CI

C
CI

CI

Cl
C I

Cl

102 Yl

'C? I

C04 MI

!07 Ml

107 MV

10P Ml

3)0 MI

111 MI

112 ?I

114 Vl

.!4 vI

SOURC E.

NF.XT CHAR IS ChNE BYTE VRPIAFLF Ti-AT CCNTA!NS THE
NEXT CHARACTER ITN THE ItNPUTT STRAM,.

nAFrW IS A HrLF wCPC VARIABLE THAT CONTAINS THE
INTEGFR NHICH REPDESENTS THE RELATIVE
DISPLCLEM:4.NT CF THE CHARACTE.P, IN NEXT_CHAR
WIT4H flSPRf'T I' THE LAST CH,:ACTER.
A P SSITIV! VALUE IfNOICAT ,5 V(j !JR.

CVEIF'_PIUNH IS A G;NF- YT- VARIA!.LF THAT IS FILLED WITH,
A NCN ZERC VALUE WN-EN a CFARACT-.R CT-ER
THAN A RBLANK ?PPFARS CInFCTLY CVE r.AN
Y-LIN CHARPCTF.--THF VALIUF IS TUE 3YTr VALUE
ClF- TH-Fi (VR_F PUNCH.

DECLARE CHARACTER(.55) VARYING, F_LINE, S_LINE, M_LINE;

CECLAPE CFAR.ACTER(RO), SDVE_CARD, CU.RENT_CAR;

iECLARE HLANKS CHRRTE.R(127) INITIAL(' ');

CFDECLARE E_LINE_ERP CH6PACTER(50) VARYING

INITI AL(E LINE CHaRCTTER O.E THPN 1 LINE AbCVE PRECEECING CHARACTER '} ...

CFCLAPE CRDFR_ rRR CHACACTEP(?7) INIT[AL('SOJRCE PROGRAM D!T oF ORDER');

CFCLARE CHARACTER(1), PFFV_CARD, SAVE_NFXT_CIHAR, SAVE_CVER_PUNCH;

CECLARE INTEGER INITIAL. (O) LAST_E_IND, LAST_S_INC, E_RLANKS, M_ BLANKS ,.

S_-LANKS, fP, SP, tEXTLtr'IT, F_CCUNT, LAST_ ECOUNT, S CCUNT,

LASTS_CCLNTt INrX, CP, PCINTER, ARRCW. II;

DECLARE ARRAY(256) INTEGER INITIAL.(O), E_INt S_IND, E_INDICATOR, .

S_INSICATC?;

DECLARE BIT_1 INITIAL(FALSE), RETURNINGE, RETURNINGM, RETURNING_S,

ENC_GRCUP, V CCYiEN'T, ARRCW_LA;............

DECLARE BIT_1 INITIAL(TRUF), FIRST_CALL_TC_STRFAM.;

CECLAFE AFRAY(3) CHARACTER(l), TYPE_CHAR;

CECLARE AFRAY(?) INTEGER i'EITIIALO) RETPUR NCH A ..

CECLARE CFAR.,CTERP25 c) VARYING, E _SAK, S S STACK;

CECLARE INPUT_FAD CHARACTEP(23) INITIAL

('M /* */ CF''ECF EOF');

LINE

I 14-7
14IF

I 1'9
1 150
151

15?
i 155

155

1 5615?

160

16?

1 163

16z

166

167

169

170

171

172

173

174

175

1176

177

178

179

CURRENT SCOPE

STREAM
STREAM
STREAM
STREAM
STPEAM
STIRAM

S T ;P A M

STREFAM
STREAMSTREAM

ST' E AM
ST EAAM

STREAM

STREAM

STl F AM

STREAM

STREAM

STl P rA STREAM

STREAM

STREAM ..

STREAM

STREAM

STREAM

STREAM

STREAMSTREAM

STREAM

STREAM

STREAM

STREAM

STREAMSTREAM

STnPEA .

SO STRFAM
lRI SITREAM

I0

. I

PAGE 6H A L C C OM P I L A T I C N -- PH A S E I

I " '

/ ,:

HAL C

3 T r I

rlI
Cl

115 xl

116 c I

117 MV

11] MI120 i'I

120 :'

!21 M|

122 M

125 .I1

125 iMI

124 ?I

127 M|
127 S

129 VI
129 Ml

129 M}

12 S I

130 Yl

t31 MI

1I t'
13 mI"

O.M P I L A T I O N -- P H A S E 1 -- I N T E P M E T R C S, I N C .

S. URCE .-. -- - - LINE

Twn DIMENSICINAL PROCECURES. - 1
I 183

GO TO STREAM_START; 184

Cr CC[SCSCc',-NT: cCCFCUqE; 185

rECLARF KCHAP C-TFE. - · · -: s 186

CFCLARE J INTEGER; | 187

TF CURPENT_E.rC1 = 'F' TFFN . . I.

WRiTF(6) LINE(1), CURRENT_CARDS(2 T 4i) /* ISSLE-A NFW HEADFR*/- r I p

I 0

ELSF !

!F CUIRRENT_CARC$1 'C , TFFN .- - - --.. ..s i 192

OC FCR 1=1 TC TFXT_LIMIT-I; 193

IF CURRFNT_CAPRlI = ' T' HEN D)0; 1"4

K = CURREMlT- CA CR fli++); -- - -..; , , ;, I

J = CH-AR_INrEX(TOGGLES, K); 19

IF J -= 0 TH-:N oD]; O .. 17

IF I < TEXT _LMIT-1 THFN , . 198

K = CUPPENT_CAR$(IT+2); | 19c

ELSE CC TO CCNPLEMENT; ' 200

IF K = '+ TFEN CONTROL = TRUF; ...- -- - --.i. -' .. : -----..- ... 201
J: I 202

ELSE IF K = '-' TFEN CCNTRCL = FALSE:; ... 203
J: .' I 204

ELSE ,.. 205

CORPLEMENT: CCNTRCL = NOT CCNTRCL ; I 206
J: J:... r J. 1 207

END; . , .. I 208

END; 1 209

END; :: 1 21.0

CLCSE PROCESSCONMMFNT; I. , ' . 211

PAGCE 7

CURRENT SCOPE

STREAM
STCEAM

STREAM

PROCESS COMMENT

PROCESS_ COMMFNT

PR OC ESSCOMMFNT

PROCESS COMMENT

PROCFSS_COMMFENT

PROrCESS_CtOMMFNT

P R C FSS -_CMM E

PRCC FSSCnM0MENT

P;.)CCFS _C CM1X E,:T

PROCESS_COMMENT

PRnCFSS-CIMMENT

PROCESS_CO''MENT

PROCESS COMMFNT

PROCESS_COMMENT

PR OCE SS_COMMF NT

PPOCESS_ CO'MFNT
PROCESS_COF.MENT

PROCESS_CCMMIENT
PROCESS_COMMENT

PROCESS_COMMFNT

PROCESS COMMFNT
PR OCESS-CCMMCF NT

PROCESS_COMMENT

PPOCESS_COMMENT

PROCESSCOMME NT

STREAM

-- I h T E R M E T R I C S I.C

ST."T .. S . SlFURCE LINE

¢CI' 2 1 2!2

CIl' I 2! 13

134 Ml STACK_.ETTURN_-CHAR: i 214

p f, p'cEDURF(NU'FF~,,C:', }; ~

r15 'M 1'FCLARE INTEGEFR,. NUJFR,.. . .. --. , 216

13Ah 6 CFCLARE CHARP CHARACTER(1): 1 217

157 H', DC. FOR I = 1 TC 3;: 21V

12.R Yl IF RETURN-CHAR = 0 TFEN D0; .. *. _ ... l 21r

138 Sl I: l 220

13 r'l RE:TURN-CHAR = NUM3ER;:.. 221

13' Sl T: .. 222

l O Ml TYPE_CHAPR CHARP; .. .- -'. 2

140 SI I: I 2I 2

CI THE. FCLLOIING STATE:"IFNT IS FOC. DEBUGGING PURPCSES CNLY-... . 225

CI GUT 'STACKEr "' II | CHN-RR (' I ')- INDEX(' I I '); I 226

141 HM PcTUPN; -1 227

147 MI FNC; I 22.

1.4 Yl V N C CI NC;

144 YrI CtLSE STACKRETURNC: H; ' . . -.. 23

Cl . I 231
C-- i 2:2

14 5 FEPCACA:RC: - 23'

145 ,I PROCFDURE ; I 234

146 .I CECLARF END_CFINPUT BIT_1 INITIAL(FALSE); ,.-,.235

147 Ml IFF [NC_OF_IhPLT THEN CC; . l 236

148' MI CURRENT_CARD = INPUT_PAC; ! 237

l47 ~/I RET'UR: ; ., . ; , : _...,,. _.......,.,,,-. . | 38

150 Ml ENn; . 1 239
....._,..:._..., .: .:. _.4:......... -,_:. _r...i-

151 Nl READ(5) CURRFNT_CARC; I 2z0

Cl END_OF_INPUT = TRUF;- , -. .. . - - -..-...- - 241].

152 l CAklD_)CCLNT = CARD_CCUNT + 1; . 242

3"*

2"

CURRENT SCOPE

STREAM
STREAM

STRE AM

STAC<K_RETlURN_CHAR

STACK_RETURN_CHAR

STACK_RETURN_CHAP.

STACK -RFTtUrN_ClF

STAC K_ RET UN CHAR

ST AC K_RETUR.N_CH AR

ST ACK_ FTURN-_CHAR

ST ACK_RETUPN CHARP
ST ACK _RETURN-CHATR
STACK_RETURNCHAR

ST CK_R ET IRN_CHAR

STACKR ETUIPN_ CHAP

STACK_RETURN_CHAR

STACKRETURNCHAR

STREAM

STREAM
STREAM

STREAM

READCARD

READ_CARD

REAO-_C AP

READCARD

READCARD
READ_CARD

READCARD

RE AD_CARD

PAGE 8INC .F. A L C O.M P I L A T I 0 N -- P H A S E 1

I

H A L C

STVT

15? MI

154 yI

154 Wl

155 MI

156 ,v

157 WI

cl
Cl

158 Nl

159 MI

160 MI

161 HlI

16? Nl

163 F1

165 Mi

1e Mi

166 Mi

168 WI

!as ~l

t70 vl

171 N1

172 Pi

173 Ml

C C.M P I L A T I C N -- P H A S E 1 -- I N T E R M E T R. I C S . I

....SOURCE - .

TF CARCCCUNT .NOT ='O THEN DC;

WRITE(6) IFORMAT(CARD_CCLNT, 4)

II ' ' II SbVC_CARC) i| 'I' II SAVE._CARO$(2 TO #).. 'I 'I I CA

ENC;

SA'F_CARD = CUPRENT_CARC;

CLCSE RE2C_CARC;

tRCERCK:

FUNCTION(TYPE) RIT I;

CECLARE TYPE CHA CTERl); ----

CC CASE CARD_TYPE(CURRENTCAPC$ 1} + 1;

cn; /4CASE 1--ILLEG)AL CAP' TYPT#/

ENCGROUP = F4LSF; . .. A , :

RETURN FALSE;

ENC; /:OF CASE 1*/

/* CASE 2--E CARC*/

E_CARD:

DO;

N C .

.LI:NE

1 24

244

RDCOUNT; I 45

21,5

247

.... 248

a 250250

251

.?252

.253

254

25r

·,, I 256

257

I 25P

1 259

260

26.1

I F CARDG_TYPE(YP PE =-2.-OR -...-.. :.............:

CARD-TYFPETYPE) = 3 THEN ENC_GRCUF = TRUF;

ELSE END_gPOUP = ALS; . . .

REIURN TRUF;;.-

ENC: /*CASE 2*/

/*CASE 3--M CARD*/ GC TO E_CAPO;

DC; /* CASE 4--S CAR*// --..-

ENCGRCUP = FALSF;

IF CARD_ TYPTITYPE) = ? OR

267

263

I 264

| 265

i 266

I 26.7

1 2.66

I 269

'1 270

PAGE 9

CURRENT SCOPE

RFAO_CARD

READ_CARD

RE tD_CARD

READ_CARD

RFAD_CARD

STREAM ..

STREAM
STREAM

STREAM

OR')P r-OK

ORnDEROK - -

ORDEP_OK

OPDER_OK CASE 1

ORDER OK

ORCEPOK

ORDER_OK

ORDER_OK'...--

ORDER_OK CASE 2

ORDE,_OK

ORDER_OK

ORDER_OK

ORDER OK:

ORDEP_OKORDER_OK

ORDEP_OK CASE 3

ORDER_OK CASE 4

ORDER_OK

(lRDER_OK

H A L C C.N P I L A T I C N -- P H A s E 1

STMT

!7- MI

174 MI

175 ,v

1.76 N'

]77 YV

177 V

17q r I

179 MI

s r2

!.1 ", M

190 -v

91? II,

1i5 NI

CI

Cl

3..
1'0 li

191 MI

1I1 MI

192 'I

UC? ,NI

SCURCE

CARD_TYPF(TYPF) = 3 THEN RETU'PN TRU:;

ELSE RETURN FALSE;

END: /* CASE ~/ -

CC; /*CASF 5--^ CCVM;NT*/

IF CARD_TYPEYPEYPE) = 2 CR

CARTYPF(TYPYPE) - THEN FNCRCUP = TRUF; .

ELSF ENOGRPCU = FALSE;

IF CURRENT_CARD$1 = 'P' T-EN CO;

IF TYPE = 'C' THEN RFTTUPRN TRUF;

cELSE RETURN FALSE;

ENr;

ELSE DC;

IF CARD_TYPF(TTDE) = I THEN PFT! QDN FALSF;

ELSE RETURN TQUF;

ENDC;

ENC; /* CASE 5

END; /*CF CO CASE*/

CLCSE CRDERCK;

LINE

271

277

27'

27L

275

276

. 277

278

279

1 28?

,... .. .: . 2

-283

I 28

I 285

2 2P

287

290

CCONVENT:

FUNCTICN 2IT 1;

IF CURRENT_CaRC$CP= '/' THEN

IF CP < TEXT_LIMIT THEN

IF CURRENT CARF(CP 4 1) '= '4' THEN CC;'

Lf'OK FOR FND OF COMMENT. : -: : -- :..........:

DC FOR CP = CP+2 TO TEXT_LIMIT-l;

IF CURRENT_CARCS CP = '4' THEN

1 291

I 292

1 293

J 294

1 295

I 296

I 297

1 2q8

CURRENT SCOPE

ORDER_OK

ORCEP_OK

ORDER_CK

ORDCEROK CASE 5

ORDER_OK

CREEP_ POK

OP DERCK

ORDFROK

OP DERK

OCDEP_OK

ORDER_OK

OnDERP_OK

ORDERCK

ORDEROK

OP Or _CK

ORDEPCK CASE 6

STREAM

STRFAM
STREAM

STREAM

COMMENT

COMMENT ..

COMMENT

COM MENT

COMMENT -- --.

COMMENT

COCMENT

I- N T E R M E T R I C S I N C . PAGE 10

HALH A L

ST /T

1R3

!g?

1-" !I I
1.9 C5

107

1 -,)7)loo

t";?2OO

?C1

202

202

207

204

205

2 06

207

200

3"

3...
20C

2CC

210

211

212

21!
I"

C C Y P I L A T I C N -- P H A S E 1 -- N T E R M E T R 'I C S

SOURCE

,I !F CURRENT C_ C; CC$.P.) = '/' THEN

Pi FETURN_TRUE:

l C = CF + 1;

M RETUPN TRUF;

r., I TS.¥ E~ND;.·:....-

M GO TO RETURN-TRUE;

I T !L:TUN Ft ALSE;

NI CLCSF CCMMENT:

CI
CI

m I

v.1

'~ 1

MII I

M I

,v.Im I

MI

MI
V I

m I
TA

SCaNC RD: . .-

PRCCEDURE(TYPE,CCUNT) ASSIGNILIN, INCICATOR);

[ECLARE INICaT7i, ,A, Y(2%) [NTE7G=F;

DECLARE INTEGER, TYPE, CCUNT; .. . -

CFCLARE LIN CPARPCTER(*);

D0 FOR CP = 2 T0 TEXT_ L,!MIT;

IF CURRENTCT_ RC$CP NCT = '. 'THEN CO;

IFF COMhMET THEN GO TO CONTINUE;

IF LIN$C° NOT = ' ' THEN

CC CASE TYPF + 1; /*HAL DOC, CASES START WITH 1'/ .

/* CASE 1*/ CALL ERRCiRS('CVERLAPPINGC E-LINE CHARACTERS',!);

DC; /* CASE 2*/

CALL -ERRORS ('OVERLA P. ING S-LINE CHARACTERS' t .);

GO TO CONTINLE;

EC; /I4CF CASF -'/1

INC.

LINE

2g?

300

701

30?

303

304

70';

306

307

30O

30

310311

I 312

I 3.3

I 314

315

I 316

I 317

I 318

31c

I 320

.1 321

I 322

323

1 324

I 325

'I 326

PAGE 11

CURRENT SCOPE

C C N ME NT

COMMENT

C rlQM.,'E NIT
COMNMENT

COMMENT

COMMENT

COYMFENT

COMMENT

C CM ME NT

STREAM

STREAM
S T RE A N

STREAM .

SCAN_CARD

SCAN_CARD

SCANCARD

SCANCARD

SCANCARD

SCAN_CARD

SC&AN_CARD

SCANCAPD

SCAN_CARD CASE 1

SCAN_CARD CASE 2
SCANC~,PD C4SP 2

SCAN_CARD .

SCAN_CARD

SCAN_CARD

. I

·.

HAL C

STYT

219 '*1

216 MI

218 'rJ

2709 M

2?0 V'

CICl

221 ?il

72l 31

224 M2

225 MI

??6 Yi

22 N M

228 M

2?0 i

23C MI

231 MI

232 M|

Cl

233 Pl

233 FI

0. M P I L A T I N -- P H A S E 1 -- I N T E R

· SOURCE

FNC.; /CF! DO CASE TYPE + 1*/

INCICATCR$CP = CCUNT;

LINSCP = CUPRFNT_CARC$CP:.

CCNCTINU.:

CLOSE SCAN_CARC;

M E T R-I C S I NC.

LINE

327

3 328

329

330

331

322

335

335

i 33e,

PRCCFCrUF'F(YPE) ASSIGN(LIN,INCICATCCCUNT);

DECLARE PCINT CHARACTER(1);

C.CLARE INTrCER, CCUNT, TPRE:

CFCLARE CHARACTER({1) LIN;

CFCLARE ARRAY(256! INTFGR, INDOICATCR;

If TYPE = l THEN PC'(iT = 'S';

ELSE PCINT = '';

COUNT = 1;

CC FOREVER;

CALL-SCAN_CARD(TYPE ,CCUNT) ASSIGN

(LIN,INDICATCR);

CALL READ_CARD;

IF CURRENT_CARC$1 NOT = PCINT THEN PD;

NC MORE OF THIS TYPE CARD.

IF_NCT CPDRC_CK(FCINT) THFEN

CALL FRRRS(CC ERR ; -....

1 337

I 33A

1 339

- I Oto

341.

342

I 344

I 345

-1 346

3I 47

I 348

- 349

1 350

1 351

CURRENT SCOPE

SCAN_CARD CASE 3

SCAN_CARD

SCAN_CARD

SCAN_CARD

SCANCARD

SCAN_CARD

STREAM

STREAM
STREAM

STREAM

COMP

COMP

CO FM

COF'P

COMP

COMP

CoMP

COMP

COYP

COMP .

COMP

COMP

COMP ...

COMP

COMP

1 352 CO MP -- ,

234 Ml DO FOR CP = 2 TO TEXT_LIMIT;

235 ; I IF LIN$CP = '" TI-EN

I 353 COMP

'1 354 CEMP

PAGE 12

.N t' CO .M P I L A T I O N -- P H A S E 1 -- I. T E R M E T R T C S · I

ST T . -T SOURCE

225 i TNCICATCR.CP 0;=

2326 1 FLSE IF TYPF = 0 THEN CC;

237 l ITNCICATCR$CP = CCUNT-ITNCICTOR$CP +;1;

FNr;

FNC;

RETURN;

I' ND;

CCUNT = CCUNT + 1;

C-ND;

CLCSF CCMP;

GFT_GROUP:

PRCCFCUR;

E_LINE = E_LINES(I NDX TO N) I

SLINE = S LINE'tINM TC) II

LAST_ECOUNT = E-CCUNT;

LAST_S_COUNT = S_CCLNT;

F_CCI)NT, S_CCt;NT = 0;

NC -

LINE

I 355

1 356

1 357

358

359

360

I 361

362

.... 363

65
1 366

I 67

I 68

I 369

370

37 1

372

373

BLANKS;

EL NKS;

GO TO LOOP; . .- . 374

PEAD_IT: 375

CALL RE-D_CARC; : - .. 376

TF_NOT CRDEE CK(PRFV_ CARD) THEN .rfD; -...;. .: ,- .:. -.-., | 377.

CALL ERRCRS(RCFRERR,1); 1 378

C0 TO READ_TT; I 375

FND; - : - - - - : - - - - ; - - 1 3 0

LI OP: I 3,1

IFF FND_GRC(IJP THE, GC TC FCUNC_GRCUP: . 382

' .. ~~~~~~~~~~~~. ...:' ..

PAGE 13

CURRENT SCOPE

CO MP

COMP

CGr:P

COMP

COMP

CO NP
COMP

STREAM

STREAM

STREAM

GET_GROUP

GETGROUP

GFT_GROUP

GET_GROUP
GET-GROUP
GET_GROUP

GETGROUP

GET_GROUP

GET_GROUP

GET_GROUP

GETGROUP

GE T_GRt(P

GFT_GROUP

GET_GROnP

240 21

241 M1

242 P

?^4 PI

Ci
Ncl

245 rF

246 MI

247 'M

24c MI

24q MI

250 PI

25! M|

252 MI

253 5

254 V1

255 H1

256 I

257 I

?57 YI

H A L C C M P I L A T I 0 N -- P H A S E 1 - I N T E R M E T R I C S , I N C .

STY. T

25s Yll
25 e , M7

51 PI

26? 21

2623 tI2(: 3 ? I

264' :7I
26& ,v

267' I
yF., y' I

26?N!l

270 ,

271 M'

272 M1

27 I

274 MI

275 I

276 .v

277 Pe

278 MI

27g' I

280 MI

2"

2R? M I

28P3 VIY

SOURCE

C! CASE C D1)_TYPE(CURE,'T.CAPPS13 + i;

Dr; /*CASE 1, A OLMMY*/ END;

DC; /*CASF 2 E-LIN*/

CALL CCMP(O) SS.TCN-

(EL I NE, F_ INC I CATCR, ECCUNT);

CC TC LCOP;

E'FI; I"1'(3 CA ~ = 2'/

DC; /*CASE 3 V-LIN*/

V_LINE = _' LIN$(IN)X0 TO 8I CURRENTCARD$(2 TO !);

SAy_CA IRO$ = ,I,;

PPVCA8RD = CUfRENTCRC$;;

O TO READIT; .

FhC; /4.F CASE 3*/

00; /*CASE 4 S-LIN*/

CALL CCMP(1) 4SSIGN . , ...

(S_ I NE ,S_ NC I CATCRSS_CCUNT):

GO TO LOOP;

ENC; /*CF CASE 4*/

;C; /*CASE 5 C~fl:ENT*/ ·

PREV-CARD = CLRRENTCARC$1;

CALL FPRCCESSCC MMENT;I

GO TI) READTT ;

FNC; /*OF CASE 5*/

ENC; /*OF DO CASEs/

F:LNI)_GROUP:

WRITE(6) SKIP(l);

ENCGRO(Un = FLSF; ..

FLINE = E_LINE$(I TO LENGTH(Y_LINE)); -

LINE CURRENT SCOPE

384

385

386

3867

38.

390380

391

392

393

39t,

396

397

39F

399

400

401.

402

403

404

405

406

407

408

409

410

GE._.ROUP

GET_GROUP CASE 1

GET_GROUP CASE 2

GET_- P'UP

GETGROUP

GET GROUP

GTC- ROUP

GET_GRCUP CASE 3

GETCRCUP

GE T_GPCU P

GET _GROUP

GET_GROUP

GET_GROUP

GFT_GROUP CASE 4

GET_GROUP

GETGROUP

GET_GROUP

GETGROUP

GETCROUP CASE 5

GE TGROUP

GETGROUP

GETGROUP

GETGPOUP

GETGROUP CASE 6

GFTGROUP

GETGROUP

GETGROUP

GETGROUP

PAGE 14

-- I N T E R M E T R I C S ,

ST VT

2846 H

.8 5 M'

2 7 '4

28, MI

2'9 HI

29? V,

2oA M

204 MI

29;5 MI

2C 6 MI

cl
cI

227 vI

CI
Cl

2c.5 1.1

301 v i

3202
3o? 03 I

304 YI

3Cc ;'1

SOURCE

IF E_COUNT NOT > C THEN CO;

DC FOR CP = 2 TO TEXT_LIMIT;

EINICATC$CP =O:

E_CCUNT = LASTE_COUNT;

FNC;

SLI.F = S_LINF-S(1 TC LE;GTH(M-_LINE));

IF S_CCUNT NOT > 0 THEN DC;

DC FOPR.C = 2 TO TFEXLIMIT;

SThNICATCR$CP - 0:

SCGUNT = LAST_S_CCUT;

E:hC;

THE FCLLOWING STATEMENTS ARE FOR EEBUCGING PURPOSES ONLY
'UT 'ELINE="' II F_LINE]I "';

CUT ' ._LI NE="' |I S_L IF I '"' ; . ..

CLCSE GET 'SUP;
CLCSE CET_ORCUP; k..

CHO CP:

PROCFCURF;

INOX = INDX +

IF It:CX = TFXTLIMTT TTHEN CID; .

OUT OF nATA, GET MORF.

E_INOICATCR]. - E_INCICAtTCRSTEXT_LIM"IT;. .- - -....

S_INDIC4TOR$1 = S_INCICATiP7ST FXT_LI-IT;

CALL GET_GROUP;

INCX -' 1; .. .

FNO;

LINE

41!

412

413

414

41-5

416

417

418

41C

420

421

422

423

424
425
426
'.'7

428

429
6!30

431

432

433

434

435

436

437

438

43c

440

CURRENT SCOPE

GET_GR OL P

GETGROUP

GET_GROUP

GE TGRCUP

GET_GROUP

GET_GROUP

GET_GROUP

GET GROUP
GET_GROUP

GET_GROUP

GET_-ROUP

GET_GROUP

GET-GROUP

GET_GROUP
GET_GROUP
GET GROUP

GF T_OOUP

STREAM

STREAM
STREAM

STREAM

CHOP

CHOP

CHOP

CHOP

CHOP

CHOP

CHOP

CHOP

CHOP

H A L C M P I L A T I C N - P HA S E 1 I N C . PAGE 15

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
I

I

H A L C C . P I L A T I C N -- P H A S E 1 -- I- N T E R M E T R I C S , I N C .

ST MT

3C6

307

'07

3C7

30

310

312

313

'14

315

317

'17

31'.

-31

32C

3?2

323

224

325

.SCURfE . :

CLCSE CHCP;I

Cl
c I

STACK:I

Ml

y I

MI

¥1

'1

Il

Y I

m1I
MI

N' I

rI'lI

MI

MI

I

mI

Cl
CI

326 I'l

PFCCEDURF(TYPF,INNlICATOR,LIN) ASSIGN

(INC,STACK,PP);

CECLkRE INTFC'R, TYPE, PP;

CFCLARF CHARACTER(*), LIN, STACK;

C'CLARE ARRAY(256) IKNTFCER, INDICATCR, IND;

If i'P < 1 THN !;C TO 'CTMNULTIPLF;

IF LINSINDX = ' ' THEN CO;

IF STACK$PP = ' ' THEN

!NDClPF = INDfPP +!:

ELSF fC TO NOT_ LLTIPLF;

ENC;

FLSE DO;

C _ U LT IPLE:

PP =PP + ;

IF PP > 256 THEN CO CASE TYPf+l;

CALL FRRGRS({EXPCNENT- STRiNG OVFR FLGW'3): --

CALL ERROPS{'SUBSCRIPT STRING OVER FLC%',9);

ENC; /*CF CO CASE*/

STACK-= STACK II LINNX;

INDSPP = INDICATORSINDX;

ENC:

CLOSE STACK;

.. LINE

1 441

442
443

445

446

L-.47

449

4 50

451

I 452

45:

454

455

" 456

.:.:457

458

450

....--;.: -...-- . 460

I 461

) 462

4:. 63

I 464

I 465

466

467
.. I t68

I 46 °

A6 8!

4 69PFUILO_XSCRIPTS:

CURRENT SCOPE

STREAM

STRFAM
STREAM

STREAM

STACK

STACK

ST CK

STACK

STACK

STACK

STACK .

STACK

STACK

STACK - - -

STACK

STACK

STACK . .

STACK

STACK

STACK CASF -1

STACK CASE 2

STACK CASE 3

STACK ..

STACK

STACK

STREAM . ..

STREAM
STPEA-M

STREAM

PAGE 16

I N T E P M E T R I C S ,

ST'.MT

32' rli

327 !V

323 M
320 MI

330 MI

P,

330 MI

330 Pm

33·0 MI

33! ,1

?3! ,v

3_2 MI
332 MIl

333 Mf,

334 Ml

3?5 rl

336 MI1

337 M

33P 'I

33(' Mil
3" "

340 !I

341 MI

2"

343 i"l

344 MI

344 MI
I..

349 MI

SOURCE '

PPCCEDURE;

ESTACK, S-STACK =

F-_LANKS, SBLANKS= -1;

EP, SP = O;

CHECK_-M:

TF .- _LI\E$TtCX = ' ' THEN

PCCFSS:
......x.~ , , . .~-,;...

DO;

CALL STACK(O,EINCICATCR,FLINE) ASSIGN.

(E_ INC,EP)STACKE;

CALL STACK1,SINCICATCRSSLINE) ASSIGN

CSIN,SSTACKtSP); ...

CALL CHOP;

GO TO CHECKM;

E.LSF /*. N·N ELANK CN S-LIN*/

IFF IMCOMMENT THEN DC:

IF V-LTNE$INCX = '4' TFEN

IF KLINF$(INCX +1) = '/' THEN DC;

1_CIMMENT = FALSE;

"_LINE$(INOX +1) = ' '

END;

GO TO PROCESS;:.:.......

IF M_ LINE$INDX = '/' THFN

IF vLINhE$(INCX +1) = '*' TEN DO;

,k CUMMENT = TRLF;

LINE CURRENT SCOPE

470 BUILD_ XSCRIPTS

471. BUILDXSCRIPTS

472 BtIILD_XSCRIPTS

473 BUILD_ XSCRIPTS

474 RUILD_XSCRIPTS

475 JUILDXSCRI PTS

476 BUiLD_ XSCRIPTS

477 BUJILDXSCRIPTS

478 DBTIILDXSCRIPTS

479 BUI ILD_XSCR IDTS

490 BUILD_XXSCRIPTS

4-8 BUILDXSCRIPTS

4?2 BUILD_XSCRIPTS

483 BUILD_XSCRIPTS

484 BUILDXSCRIPTS

485 BUILD XSCRIPTS

486 BUILDXSCRIPTS

487 BUILD_XSCRIPTS

488 BUILDXSCRIPTS

48I
'

BUILDXSCRIPTS

490 BUILD._XSCRIPTS

491 BUILD_XSCRIPTS

I 492 BUILD_XSCRIPTS

493 BUILDXSCRIPTS

494 BUILDXSCRIPTS

I 45 BUILD_XSCRIPTS

1 496 BUILDLDXSCRIPTS -.

I 497 BUILDXSCR IPTS

INC,, PAGE 17H A L C 0. Y P I L A T I C N : -- P H A S E 1

H A L C G.M P I L A T I C N -- P H A S E 1 -- I N T E R M E T R I C S 7

STMT

347 NI

?48 MI

350 MI1

351 M1

353 MI

354 MI

257 NI

359

35e

361

363

_62

- .. 365

.66

I6h

SOURCE

-LI NESINX *1 =' ';

GC TO PROCESS;

END;

TF S_STACK$SP = ' T iHEN CO;

IF SP > 1 THEN SSTACK = SSTACK$(1 TC SP-1);

ELSE S_STACK = ; ..

S_PLANKS = S_ iNDn P;

ENC;

TI FSTACKSEP = ' ' THEN ; ...C;

IF EP > 1 THEN E_STACKS(1 TO EP-1)

ELSE E_STACK = '";

E-_PLNKS = E-_INDP; .

Ml FND;

VI IF FBLANKS >= S_ELANKS THEN

M| M_BLANKS = S_LANKS;

MI F.LSF M_BLANKS = EBLANKS;

Ml ENC;

Cl THE FCLLOhING STATEMENTS ARE FOR CEEUGGING Pl
Cl OUT '-_STACK-" II E_STACK II '"';

Cl CUT 'S_STACK="' 1 S_STACK i '"';

362 Mi CLOSE BLILD_XSCRIPTS;

...;. - LINE

I 49c

I500

501

50o2

. 503

504

505

506

. 507

508

50?

510

I Sll

~,. r1 512

5135 13.3

514

URPOSES ONLY 515

: 5167

51e'

Cl 51 9
C I ' 520

M| STREAM_START: - ... - -..... 521

Mil IFF FIRST-CALL-TCSTREA THEN DC; 1 522

Ml TINEI = TIMF; ' 1 5?3

MI FIRST_CALLTO_STREAM = FALSE; . .---- - -. -.- 1 524

MI AGAIN: I 525

MVI CALL P[EADn-CARPC; . 526

CURRENT SCOPE

DU ILD-XSC P IPTS

BUTLD XSCRIPTS

BUILDOXSCRIPTS

BUI.LD_ XSCRIPTS

BUILD_XSCRIPTS

BUILDXSCRIPTS

BU I L C_XS C. I PTS

BUILD_XSCRIPTS

BUI LD_XSCRI PTS

BUILD_XSCRIPTS

BUILD_XSCRIPTS

RUILD_XSCRIPTS

°UILD_XSCPIPTS

BUILD_XSCRIPTS

BUILD_XSCRIPTS

BUlIL_ XSCRIPTSB'J I LCX SC RI PT S

BUJILD_XSCRIPTS

BIJLD_XSCRIPTS
BU IL D _XSCR IPTS
BUILD_XSCRIPTS

STREAM

STREAM
STREAM

STREAM

STREAM

STREAM

STREAM -

STREAM

STRFAM

I N C . PAGE 18

H A L CC M P I L A T I C N -- PH A S E 1 -- I N T E R M E T R I C S . I N C.

STMT ... · · SOURCE ,.-, ': - ,.,,. . .LINE

2T/'7 r'f !FNCT CDEFP CK('C') THFN CO; " 527

369 Ml CALL ERRCFS(CRCEP_EFRR,1); I 528

?69 ;1I CO TO AGAIN; ---. . 529

270 Pl FNO.; 530

371 MI TEXT_LIMIT = LENGTH(CURRENTCARD) ; 531

372 MI PFTURNINGM = 7RLF;' ... : , 532

7.73*':1 _LINE, ELINE, SLINE = ' '; 533

374 PI INDX = 1; 534/

375 F l CALL GETGROUP; , -- 535

76 MI NLANKS = -1; " 53.6

277 MI INDX = 2; 537

378 MI . I 1; 538

,.7e 7', ENC, ., .: 3' ;37' ,,I '.O; I 53q

30 t: IFF MACROFOUND THEN CC; 540

351.) M IF M4ACRC_ POINT < VACROLIMIT THEN DO; 541....... 54

_2 _I _ ,.HA, · 542

9? .21 MACRC_STREtM,$ACRC_PC INT; 543

'93 M I VAC,_POP!NT = .ACRC FC'INT +1; 54... 5

3?4 F PTRTtjN.; . I 545

385 M ENC; 546

086 M IF SAVEBLANK-COLNT >= 0 THEN DC; .9 7

3. 7 I NFXTCHAR ' '; ... , 548
.... : _.:::~..:i...:.~,,L..:-:.....:' :~,, ~.~x. ...

3R' HI RLANK_CCUNT = SAVEBLANKCOUNT; 54,

389 MI SAVE_EBLANKCOUNT =-1; 0

90 MI RTURN; URN .551

?91 M ENC; 552

2G32 MI MACP.OFOUND: FALSE; .'" '"., 553

I·

PAGE 19

CURRENT -SCOPE

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM.

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STfl AM

STREAM

STREAM......

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

3°-3 Yl NFXTCH4R =SfiVENEXT_'CFAR; ' " . , " -54 STREAM

H A L C O.M P I L A T I 0 N -- P H A S E 1 -- I N T E R M E T R 'I C S t I N C .

STMT V. ;S1URCE LINE

3iM, MI GVER_PUNCH = SAVEOVER PUNCH; I 555

'q5 MI MACRC_STPEAM = I'; 556

9; "1 RETURIN; -. 1 557

3-7 !I Fr; - I 55P

?97 Vl PLANK_CCUNT = -1; 1 559

3ce :'] STACK_C'- CK: .. - : .,... .. 560

~7C !, ',rc FOR II = TI TC ?3;/sCHECK LIMITS/ I 561

4CO MI IF RETURN_CHAR NOT = 0 THEN DO; 562
4CC SI I: 563

40! "Il ! RW'_FLAG = TRUF; I 564

4C2 MI FTIJRN _CHAR = RETURN__C-AR -1; I 565
402 SI II: II: I 566

4C3 MI NEXT_CHAR = TYPE_CHAR . ; ,...... 567
40 Sl TI: I 56R

·C4 ,I CVEP_ PUNCH =0; - -. F56

405 Ml PETURN; I 570

4Ce MI ENC; I 571

407 VI FNC; .:... · ..-.. .:I :.'; -- 572

40 MI IT = 1; I 573

40S MlI IFF APRCWFLAG THEN CC; . I 574

410 MI ARROW_FLAG =.FALS; F... : 1. _.:..:- ;.--.;.. ... 575

4!. MV NEXT_CHAR = SAVE_NEXT_CHAR; 1 576

41? Il rVFP_PUNCH = SAVEOVFR_PUNCh; . I 577

4!.3 I H.L.NK_CCUNT = SAV;_ eLANK_COUNT;. -;- .. 7 578

414 MI RETURN; 579

416 MI BFGIN INING:..- -.......... I 81..... ... - . 7 5

416 Ml IFF RETURNING_- THEN CC; 582

41' -I IF M _RP.LNKS)> 0 THE N Cr; 1 58.

3.

I.,

CURRENT SCOPE

STREAM

STREAM

STREAM

STPFAM

STREAM

STREAM

STREAM

STREAM
STREAM

STREAM

STREAM
STREAM

STREAM
STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

PAGE 20

C�VTS - - I I

. . .

H A L C O.M P I L A T I C N -- P H A S F 1 -- IN T F R M E T R I C S , I N C .

SOURRC E

NEXTCHAp = ' ;

AI,.qW = - LAST_EIND;

LAST_E_TND = C:

FLhNK_CCUNT = H_EL-NKS;

MeLANKS = -1;

GC TO FCUNC_CHR;

F C;

IF M_LINE$INOX NOT = ' THEN DC;

IF HV_LINE$INCX = '/' THEN

!F ,'_LINr!$(IDOX +1) ':' THEN DC;

HFRE IS A ST.RT CF A COMMENT

h. _C6ON:T = t RUF;

_LINE$INOX = ' ';

_LINE$(INCX +1) = t

4.. 4C MI GC TO BLANK;

IF ECCUNT > 0 TFEN Cn;

IF E_LINE$INCX NCT = ' ' THEN DO;.

IF E_INCICATC:.$INCX NOT = 1 THEN

LINE

584

58r

·I 5 7

I 5S.

5 53F

59]

- I 592

59-3

59'

595

5c6
/ *, I 5I?

597

508

600

601

602

CURRENT SCOPE

STREAM

STREAM

STREAM

STPEAM

STREAM

STREAM

STPE aM

STREAM

STREAM

STI E ,

STREAMSTRb, ·.

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM.

434 MI CALL ERRORS('E-LINE CVERLAPS M-LINE',1);

3 435 YI

436 VI

437 Mi

435 MI

43, M

440 MI

440 M1

1 603 STREAM

ELSE CVER_PUNCH = E_LItE$INCX;60C

ENC; - -.| 605

FLSE OVER_PUNCH = O; I 606

ENC; * , I 607ENC; -- =-. ,, :-.. r. * ' | 607

ELSE OVER_PUNCH = 0; 60P

IF S_CCLNT > 0 THEN I 609

IF S_LINE$INCX NOT = ' ' THEN .. -.... 60

CALL ERRORS('S-LINF CVFRLAPS M-LINF',1);. ;:" I 61I .

STREAM

STREAM

STREAM

STREAM . . .

STREAM)

STREAM

STREAM

STREAM

STMT

41E MIl

419 "I

422 MI

423 V I

4325 M

426 Vl

42 fl

CI

427 yI

42^ Ml
l?2 ;iY

431 VI

432? MY

433 Ml

434 .I

PAGE 21

*~~~~/ '' /04 'a

u~~P ;:ft0S>... .-

H A L C 0 Y P I L A T I O N -- P H A S E 1 -- I N T E R M E T R 1. C S

STMT *. I SOURCE - -..-

oL4 YIIV APROW = - LASTE_INNO;

442 MI LAST_E_INO = C;

43 ?I NXT_CHAR = _LINE$NCX; . .

444 -1' C:ALL CHCP;

445 MI GC TO FClJND_CHAR;

't46 MI ENC;

4 47 '. FL Sr

,47 M1 PLANK:

447 P' D;:

4?F MI CALL BUILD_XSCRIPTS;.

449 VI CVER_PUNCH = 0;

45C MI RETURNING_M = FALSE; . .

451 Ml LAST_S_iNO = 0;

452 MI RETURNING_S = TRUF;

453 VI FCINTER = 1; /-THIS CNE MAY NOT eE NEECED*/

454 I E.NC;

455 Ml END;

456 Ml IFF PETURNING_S THFN ;

457 MI IF LENGTH(S_STACK) > 0 C

457 VI PCINTER <= LENGT-(S_STACK) THEN CO;

45 rMl IF S-STACK$PCJINTER = ' THEN DC;-

45e MI IF S_ IN3SP]INTFR >= 0 TFEN

CI MORE LEFT

455 'VI DC;

460 VI NEXT-CFAR = ' ;

461 YI PLANKCCUNT = S_INODPCINTER;

462 V1 FCINTER = POINTER + 1; .

4k 1 "I . AFRC = LST_S_INC - S_ INC$POI NTER;

LINE

617

613

614

615

616

i 617

61p

620

62]

622

623

624'

625

626

627

628

I 629

630

631

632

633

634

635

676

637

CURRENT SCOPE

STREAM

STREAM

STREAM

ST P. EAM

STREAM

STREAM

ST'REAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STPREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

I 63 STREAM .

i 6k9 STREAM

3".

I N C . PAGE 22

..z

2'"

H A L C O M P I L A T I C N -- P H A S E 1 -- I N T E R M E T R I C S ,

STP.T

464 YI

465 P I

4E6 :1

4h67 f

470 YI

471 M

472 Y,

474 Ml

475 . I

47~ H

477 P

478 M

479 N I

4R3 MI

a43 M.

4pc4 l

4P5 . Il

102'

4P.. pI

4EE, NI

SOURCE -- LINE

LST_ S_IND = S_lNrS[C'EINTF; . 640

FNC; I 641

ENC; - . .-..... . - -.....-. .. I 642

rLSF C; /*A NCN PFANI'*/ j 4^"

NEXT_CH6R = S_STACKtPOMINTER; " 644

A:. RO' = LAST_S_PIN - S INCGCPOINTF R; -......... h45

L;ST_S_IND = S_lrnsPCITNTER; I 6/ 6

PUINTER = PUINTER + 1; 647

EN'; .4 -.....- | 4e

GO Tl' FC.UND_CHAR; I

FND; | 650

FLSE DC; /* CAN NOT RETUN*/ ...-... .., 651

RFTURFNINGN_ S = FALSE; I 657

FETURNING_E = TRUF; 653

LAST_E_IND = -LAST_S_INC;O; .- 1 65&

rP!NPTFR =1; '. I 6'

ENC; ' .656

END;: . 657

IFF rETURNING_E THFN EC; . ' i 65s

IF LENGTH(E_STACK) > O E I 659

FCINTER <= LENGTH(_ST ACK) THEN CC; .:. 660

IF FSTACK$PCINTFP = ' ' THFN DO; 661

IF F_INDSPOINTER >= 0 THEN | 662

,PCRE TC GC.- 663

DC; " · · . ,64

NEXT_CHAR = ' '; 565

OLA5NK_CCUNT = F_INDSFC INTER; . . 1 . .. 666

FCTNTFP = POINTERR + 1; 6· 567

CURRENT SCOPE

STREAM

STREAM

STREAM

ST REAMN

STREAM

STREAM

ST RpE A.

STREAM

STREAM

ST .EA M

STREAM

ST RE AM

STREAM

STREAM

STRE-AM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

STREAM

I N C . PAGE 23

H A L C M P I L A T I 0 N -- P H A S E 1 -- I N T E R M E T R I C S , . I N C .

ST T

4 9 c'

4S9C

49.

4C

493

494

495

497.

40e

4qg

500

501

501

502

503

504

505

506

507"

507

5O8

5CC

510
$t!

SOURCE

,'I AiPC' = E..':IND~EFOINTER - LAST_E_IND:

f!j LASTEIND = EINCS$PCIVLEE;

Yl

MI [NC;-E FINC CIN

"!I ENL;

Vl ELSE

CI A NON BLANK..

!.' J .C

.I NFXT_CHAR = F_STACKSPCINTER;

RE.OWI = E-INCSFOT\TER - LAST 5 INC:

Ml LAST.E_IND = E_ INC$PINTER;

MI POINTFR = POINTER + 1;

MV END;

V'I GC TO FCUNCCFAQ;

M1 FND;

VI ELSE

C I CAN NC1 RETURN

MI 00;

MI RETURNING_ E FALSE;

vl RFTURI\NI M = TQUF;

MI FND;

1 FNC; T . .,

CO TO BEGININS;

NM I

V I

V I

v I

MI

FC;ND CHAR:

IF ARRCW NOT = 0 THEN. CC;

OLD_LEVEL = NE,_LEVFL;

NE'_LEVEL = NEWLEVEL + ARPCW;

SAVVE CVER PIUNC : OVERo PUNCH:

SAV-_NFXTCHAR = EXT _Cf-AR;

... . LINE CURRENT SCOPE

I 66 STRPEAM

I 660 STREAM

670 STREA:M

67! STREAM

67? STREAM

673 STREAM

!74 STQEAM

I 675 STREAM

67? STREAM

677 STRFAM

678 STREAM

679 STREAM

(6P0 STRFAM

681 STPEAM

682 STREAM

603 STREAM

I684 STREAM

I 685 STREAM

I 686 STREAM

687 STREAM

I-.:~ I 638 STREAM.

689 STREAM

I 690

I 691

692?

I 693

I 694

i 695

STREAM

STREAM

STREAM

STREAM

STREAM .

STREAM

PAGE 24

I ·1 -,

I I

H A L CO.M P I L A T I O N -- P H A S E 1 -- I N T E R M E T R' C S I N C G

STMT

512 MI

51' MI

51, I'I

515 ~I

515 I

515 NI

516 i

* 516 ;.¶I

;17 7 I

518M

520 WI

521 MI

57? M l

522 mI

522 MI

5 2 3 111

5?3 vl

52? ~l

524 MI

525 "I

526 MI

527 MI

522 MI

529.MI

530 pI

531 MI

531 NI

SOURCE -. -....- ---.. ...LINE CURRENT SCOPE

SAVESLANK_COUNT = 'LANK_CCUNT; 696 STREAM
"L,' , ,..,..: '~.,,-

IF OLDLEVEL > 0 THEN DC; 697 STREAM

IF ARRCW < 0 THEN .. I ' 7. 698 STREAM

CALL STACK_ RETURN _CHAP(-ARRO?)'');' ; I 6~ STREAM

ELSE 700 STREAM

CXPCNENT: ., . .. : .-. ..·. I ·O................:'.'.7'"" :,:~ ... 70. STREAM

EXPONE; N 70? STREAM

IF AF:RCW > 1 THEN 703 STREAM

CALL ERRORS(ELINEEPRR1i; 7 . , I Of STREAM

CALL STACKRFTURNCHAP(2,'*'); . : . 705 STRE/M

CALL STACKRPETURN_CHAR (ARROW,' '); 706 STREAM

r N; 707 STREAM

~~~~~~~~~~~~~~~~~~~ · ' 708ti;
FNC; . I 0 STREAM

..,,a.,cl~..

ELSE IF OLDLEVFL C THEN DO; 1 709 STREAM

IF ARRCW < 0 THEN . . ... 710 STREAM

.SU 5:. I 711 STREAM

DO; ' 712 STREAM

IF ARRCW <-1 THEN.-CALL.ERRORS .... ...:I ...-,,.. . ....-. I.: %' : 713 STREAM ....

'S-LINE CHARACTER MOP E THAN 1 LINE BELOW PRECECI.NG CHARACTER',!1; 71 STREAM

CALL STACK_ RETURN\_CH4R(1,'$'); 1'715 STREAM

CALL STACK_RETURN_CHAR(-ARRCW,'('); ....... ,. I 716 STREAM

ENO; .· . ~rr· 1 717 STREAM . ....

717 STREAM

ELSEEC GC TO EXPONENT; 718 STREAM

END; . .7.1.... 1'719 STREAM

ELSE /*01D < Q*/ CO; 720 STREAM

IF ARROW < 0 TI-EN GO TO SUBS; 721 STREAM

IF NFW-LEVEL <= C THEN . . .. I 722 STREAM

CALL STACK REFTURN CHAP(ARPOW,')'); . 723 STREAM

PAGE 25



H A L C n M P I L A T I C N -- P H.A S E I T E R M E T R I C

STMT

53L :I

5c ;3 I

(J 53f Ml

537 MI

53S M

540 nI

547 I

543 2I

Cl
Cl

C I

544 M|

545 MI

56 ,I

547 MI

548 MI

3..
5;S MI

551 M|
55! M1

553 MI

* 5ei bt 8~

SOURCE - - -

ELSE OC;

CALL STACK_RETURN_CHAR(-CLCLEVEL,' )';

IF NEW_LEVEL > 1. THEN CALL ERRORS(E_-LINEERR, L):

CALL SIACK_FCi LELN CHAPR(2,,') ;-

CALL STACKRETURNCHAR{NE,_LEVEL,'(' );

E ND; ,

AfROW = 0;

GOd TO STACK_CHECK;

PETURN;

CLCSE STREAM; 

PROGRA4 TO TEST THE STREAM PRCCECUPE

A IN_-PRCGRAM:

C S I N C

LINE

724

725

726

727

728

.2q

I 70

731

732

733

734

. 735

736
7537

738
73g

! 7C'0

WPITE(6) .'PFGIN, TEST'OF HL IN AL'; .. ..... ---- 741

BUILT, BUTLT_UP, RUILT_TCKEN, BUILT_C_P='; 742

Y,51NLCCP: CC FCREVER; . 1 743

CALL STREAM;- - -. --. _ I. .. .. 744

IF NEXT_CHAR = ' ' THEN CC; I 745

IFF OLANK_FLAG THEN GG TO MAIN_LOOP; i 746

ELSE BLANK_FLAG = TRUF;. ... ~ .-.. 747

END; I 748

ELSE BLANKIFLAG = FALSE: ' - I 749

BU[ILT - BUILT II NEXT_CH'AR; - -. ..- .... .......·. ,-.......;.......... - .. .1 750

PAGE 26

CURRENT SCOPE

STREAM

STREAM

STREAM

STRE AM

STREAM

STREAM

STREAM

STREAM

STREAM

STRFAM

STREAM

H'LINHAL

HAL I NHAL
HALINHAL -- ' -
HALINHAL
HALINHAL

HALINHAL

HALINHAL '-.

HALINHAL

HALI NHAL

HAL INHAL........

HALINHAL

HALINHAL.
HALINHAL:
HALINjHAL.i~ .·.....

HALINHAL

HALINHAL

HALINHAL--,]~

5F4 M1 IF CVER_PUNCH = '0' THEN CO;

C| OUT 'STRFAM PFTURNS "' J| NEXT_CHAR II '"' II ' - BLANKS='
C. It eLANK_CCUNT;

1 75] HALINHAL

1 752 HALINHAL
1 753 HALINHAL

I



H A L C C..rM P I L A T I C N -- P H A S E 1 -- I N T E R M E T R I C S .

ST~rT . ... s·u· cF . . . .. . ...........OURC

.s ,5' l P UILT_UP = UILTL-UP J t ';

55t, PI ErNI;

INC.

LINE

75/,

755

PAGE 27

CURRENT SCCPE

HALINHAL

HALINHAL

557 ItI

¢'1cl

55° Fl

560
F5s r "v 
561 I

15562 ? 

563 M

564 M 

5h5 t.1

566 I

56.7 1

7,6, S 5 6. P. 

FLSE DC; - -

OUT 'STRFA' RETURNS "' II NEXT_CIAR II "' - OvER PUNCH "'
II OV:R_PUNCH II '" ANK ' - BLNKS=' l BANKCOUNT; 

BUILT_UP = BUILTUP II OVFPPUNCH;
· , - ., · , ". ....

END;

IF NEXT_CHAR NOT < 'A' THEN DO; . . . . - . . . -...

BUILT_TCKFN = PLILT_T CKEN I| NEXTCHAR;

ir- CVFR_P UNCH NOT= 'O' T.EN PUILT_J_P,= OVERPUNCH:

ENC; ...................

FLSF DO;

IF LENGTH(RUILT TCKEN) NCT = O TIAFN O;

... i, I .

. . -I 

r wae -

1 756

757
758

759

176

761

762

1 73

. :176-

765

766

767

768

7(,C

'- 770

1 771

77 

773

1 774

775

1 776

777

HALINH4L

H AL I N'HPqt'
HALINH4AL

HALINHAL

HALINHAL

HALINHAL 

HALINHAL

HALINHtAL

HALINHAL

HALINHAL

HALINHALHALINHAL ~~~~..-..

HALINH^L

HALINHAL

HALINHAL

HALINHAL

H4LINH4L

HALINHAL

HALINHaL

HALINHAL.

HALINHAL

HALINHAL

HALINHAL
HALINHAL-

IF nUILT_O_P =. THEN WRITF(6)h '***TOKEN=' 1-BUILT_TCKEN; --- 

ELSE WRITF(6) '***TCKEN=' 11 EUILT_TOKEN 1I ',MARKER=' 11 BUILTOP;

RUILT-TCKEN, ILTTC_P = '';

END;

570 MI IF NEXT_CHAR NOT = ' ' THEN WRITE[6) '**TOKFN=' || NEXT_CHAR;

573. I

572 Ml

573 1

574 M 

575 mI

576 Ml

577 MI

578 yl

ELSE WRITF(6) '**3RLNKS: ' = eSLANK_CCUNT + 1;

fEND; ............................. . . . ....... .. . . .. . .

IF NEXT_CHAR = ';' THEN CC;
*~~ ~ ~~~~~ . , . .. ,. -.-. :/ . . .

WRITE(6} SKIP(2), '***CVEPt*' II BuUILT_UP;

WPITE{6) '***PAIN**' J| BUILT, SKIPM();

BUILT, BUILT_UP = ';

IF N, FXT CHAF = '?' THFN GC TO 0IASTER;1--- ; ;ia------2>fi. *.. ---IF NFXTCHAR = ?' THEN GO, TO DISASTER; ,:..'.~.-'.J:,.-,.~.".:'.-

. . I...

. . .

: ? ' ' 778

, -.:-,- - :.. 1 779

57. VJ END; /* OO FPFFVFR */

I rC VI CE .S6TFR: 

| 780 HALINHAL

'1 78] HALINHAL



H A L C C £MP I L A T I0N -- P H A S E 1 -- I ,NT E R M E T R I C S , I NC C

STMIT . SgURCE ·· ··.........E Cc 7 IM T SOURCE ~~~~~~~~~~~~~~~~LINE CUR

0 v CILL PRINT-SU , YAR'Y; J 782 HAL

gel !I ,RITE(6) ' T7HI c TST IS NCW CCMPLETE-t; 783 HAL

'~2 FJI CLCSE FALINH, . L ; t.· ,. J 78 L

CI i 755
rl d 8 · C . -, F ............................................:.. I 786

[

~~~~.. . ...... · ... :.."..I ....... ''7'.·...'- .. ·.'.~.r .. '-:,"

..,~; '

PAGE 28

RRENT SCOPE

LINHAL

LINHAL

- · · · I · r -1 - .1-I - .. -

H A L C O.M P I L A T I 0 N -- P H A S E 1 -- I N T E R M E T R I C ,

n C L T A L L I S T I N G:

NAF - ---- - TYPE- -CLASS -- ' LENGTH---- .PRECISION -- NEST - OUTER_EVEL - FLAGS' - SYT_PTR

1 FAL INI-'AL
2 R
· FAL3C
4 TrUF
5 t' ! " ..T 1

6 IFNCT
7 TEF
8 CUT'J .T

F,') :' F' V C P.

lC X?0
1 t U I LT U P
12 B3UILT_Ur
1? LJI LT_T CKFN
14 eC3 LT_L _P .P.
] S PL Nt

'K_ FL AG
le. 1-2F !. ('CUNT
17 F'ACQC_ PF NT . -

1 C , A, rL PR C.- L I I I T
1a Cl.rLEVrL
20 ! _ L':\V!:L
2! 0':" S - '.' I TY
?2 STTTF l':-T_SEVER! TY
23 SA VF-_ CS VFP I TY

24
25
26
?7

2C
30

SAVE_L INE
PPFITCLS_ERRCR

CISNP IL I NG
TTR'C R
TTIE2-
'4ACRCSTREAM

31 t'ACRC_FCUND
32 CA2q_CCtUNT
31 'I$S;STFR
3 I !XT FUCl(

35 CV a_PUNCH
36 PLN _ CCLNT
37 CCNTROL -(

3P T;,.GLS

3c. CA,,:_ TY' E
40 SFLECT
4! Cf-R'_ li.FFX
42 STR I N
43 PATTERN
44

2" 4 5

46
47

48
49

5
51

-5?

PP.OG LABEL 0
O. REL '. 0

0 REPL 0
O REPL 0
.O- PRrL ' -P L ... 0

O. REPL
O REPL 0
0 REPL . - 0
C0 PFPL 0

CHAP VAR . 70 F
.- . .---..-. ----- CHAR- -VAH . . - .255 .----- - --VA

CH.AR VAR 255 VAP
CHAR VAR. 255 VAF
CHAR VAR 255 . . VAr

INT VAR 0
INT V;R 0

-TN TT- VAR -- R-.--.-. 0 --- :"
TNT VAR 0
INT VAR . 0

INT VAR : 0
TNT VA- 0
iNT V A R 0

--T INT -ARPRAY 0 --- 0
INT

INT
TNT

TNT
. TNT

CHARP.
I NT

Y/ I '. I TNT
STMT
CHAP

- -. : . CH4R
I NT
BIT

CHAR
INT

C. . ',

J

PAD
STT NG -

TF _C_ STR ING '

IFCRFVT

. , INT

CHAR
CHAdR
INT
INT
I NT

CHAR

CHAR
INT

INT
CHAR

ARRAY
VAR

VAr:

V,\

VAR
VAR

i. qEL
V^R

VbR

VAR.
FUNC
VAR
FUNC '--

VAR

VAq
VAR
VARFUNC

VAR
VAR

FUNC

O O
0 1

0 1

- 10 - --- -

FIXE
RYIN
'YIN

RYIN
RYIN

0
0
0
0
0

255 VARYIl
0

0

-1 .: FFIX
... ::· .. i .,"-,':'-'.'FIX

0
32
. ..-.. FIX

0

·* FIX

·** FIX

0 '

-0

255 -- VARYT
·* FIX

0
25 5 VA.RYI

0
* - FIX

0 I

0

0

0

0-

0 1i 0
0 · 1 .-: . ' 0

0 1 . -:- O
' 1 . ' 0

·Gi --..-.- 0-.. 0
JG 1 0
10 1 0

0G 1 0.0. 1- ...-...... . 0

0 1 " 0

O -------- 1 .--- '---- -- O

0 1 0
0 1 0
C -, 1 F- .~ '0 3·~ · O0
0 01 .'
0 1 '' 0
0 1'.......... O- -
0 1 O.
0 1 0

0 1 .'. ',:). :O 0 1 0
0 0
0 1' -- ':.-.I"-:- . '. . 0

NOG 1 0
0 1 0
O . - 1 0..- ... O
0 1 0

;O 1. ES ! .- 0

0 1 0

0 1 0

ED
0

ED
0

ED
ED

0
0
0

NGC
ED

0
NO

0
K F

1
2- -1.a;. _ .~ . ,_

2
2
2 -- r

2

2

2
2
2

2
1 .

. O

0
0

.... - 0

0
0

0

00

O

'O

S Y v

LCF
ARRAY

2

I2

5
6
7
8
0

-:tO

a

a0
0
00
0

'* O

0
0
0
0

00

0

0
0

.,:.... 0

0
0

0
0

v O

0

0

0

0qo0

0
40

. .. -0 '.o
0

0

* 0
0

* 0
O

0
a

.40
8000
8000
q9000

P 000
8000
3000

O Ao ,

oAOB8?OB

9AOR

8 A703

0 0 -.

8 aOB

8408

BAOB
PAOB

8 AO3F1 .0 B

820B-
820B
8208

8 AOr

C ?08
8 AOB
820B
8 .Oe

8040
C60B

C- 040

8AOB

040R&0!3

C ?0tX

8 0t0

.100
100

10

0

0.
0
0

53

I N C . PAGE 29

· "" ·

PAGE 30
H A L CC.PILATION ' P H A S E 1 I- E N T E R M E T R I C S t I N C .

TYPE CLASS. LENGTH PRECISION NEST_. CUTER_LEVEL FLAGS SYTPTR

wIT4 13F
STRING
L
EeRCRS

SfVCr TPYSC,svrp I TY

. I SASTE
PR NT SU4MARY
STIF-r

t, LI t,
S VF_ CARD
CUP R ETCAR C
2t ANKS

Cr . INR_ F, R

PP F.V_C . A:, C1,
SAV:_N, XT_CH4R
SAVF _V 'cRPUNCH
L:ST F_IND
LST I':JD

EFLAKS
- HLANKS

S_L4ANKS
FP
SP
TEXT LIMIT
F_C CUNT..
L. T_ E_CCtJNT
S_CCUNT
LA ETSC CUJNT

CR
PCI NTEF.

II
F INO
S_ INr
E_ TNfCATCR
S_ INCTCATCR
F:TIIRN IC_ 'F .

R FTURN I NG_M
EP TU URNI T G_ S

E N ._ C R CUP
V CCVrFNT
AR I'1,._ F L A(;
FTPST C I LL TC_ _STRFA
TYPF_CHAR
RElTtlIRN_CHAR
F_STACK

iC7 '_STACK
107 INPIUITP A .

,Ei I'_ M SIARI

INT
....- iNT

CH APR
I NT

P 0C

iNT

T-ST.
PR CC
PR C

......... CHRCHAR

CHAP
C H A

C H A "

CHAR
C H A R
CHAR

INT
I NIT
INT
INT

TNT
INT
TNT
INT

INT

INT

TNT
TNT

TNT

I NT
INT

I NT
I NT

ITNT.. ITNT
INT

INT

I NT
I NT

CH AR
TNT

CHAR
C H AR

ST MT

VAR
VAR
VAR
VAR
LAB EL
V.3R
V ;:,
VARg
LABEL
LABEL
LABEL
VAQ
VA-R
V A 7

VAR
VAR
VA
VAR
VA :

V A R

VAR
VAR

VAR
VAR

VAR
VAR

VAR
VA R
V ...
VAR.
VAR
V4AR

VAR

VAR

ARRAY

ARRAY

V4R
VAR A

VAR
VAR
VAR
VAR
VA . .

,RRAY
ARRAY

VAR
VAR
VAR
LA^R EL

0
. 0

255
O

O
255

0
0
0

255
255

....... 255
so

80
12ZO

50
27

1.
I

I
0

VARYI N

FIXE

FIXE
FIXE

VARYIN

- VAr Yl

FIXF

FIXE
F I XFFTXE

0
0

O'
0

O .

0O

O

0O .

O0

0
O L_

0
0
0
0

0
0

2 F

O0

55 VAR

20' '' F

0?5

' O 0

:IX

YIYlI x'

C 2

0 2

0 2
0 1

O 2
0 2

CG . 2 .
0 2
0 1
O .1 .

\c 2-

.n 2
FD 2

0G 2

FD 2:0 2

CD 2

0 2C 2

O 2
O -. ..-

0 2
0 2
0 2 -
0 2
0 2

0 20 2
0 2
0 . . 2 ,,

C 2

0 - 2
0 2
0 2
0 2
0 2
0 2

0 2
0 2
0 2

Er) 2
0 2
o 2

NG 2En 2

0 2

LEC NAVE ARRAY

5,

55
56
57
5.!
55
60
61.
62
63

6A

67
68
69
7C
7l
7?

74
75
76:
77

75
P.O

86
7

91

902

84
g5

¢6

97

909t

S2

104
3C9
10 4

,, l5

0 S60B
0 8608
0 P 20B
0 C20B
O R 040
0 85-0B

0 920B
O. CO1 0O

0 0'.0
0 : 040
0 ,20DE0 ?20B

0 8 20B
0 8 OB

0 2AOB
O 1q20B
0 P20B

0 8AOB

0 DAOB,O 8AOB

0 9 A08

O SAOR
0 5AOB
0 sAOB
0 'AOB
0 A38B

0 RAOB

0 .RAOBo .sAOe
0 8AB0
0 RAO 0
0 8AOR

O 5403
O 9AOB

0 8AOB0 8 AO1B
O PAOB

0 8AOB
0 8AOB0 .9PAO

0 q20B

0 C08B
0 09AOB
0 ~ O,'40

o
0O

0
0

58

0

0

64
0
0
0
0
0
0
0
0
0
0
o
O
O
O0

O
0

0

O
0O0
0
0
0

0
0
0
0

0

0

0
0
0O
0

0
0
000

o0

256
256
256
256

3
3

P A L C O'. P I L A T I C N -- P H A S E 1 -- I N T E R M E T R I C S .. I N C .

TYPE CLASS - LENGTH ..PRECISION NEST OUTER_LEVEL FLAGS SYT_PTR

P'.CE SS_CO4MM. NT
K
J
C r) PL F.MrNT
ST ^CK_tPETUJRN'_CHAR

A RC A
ENS_ CF_ ! N PUT

rN _ C!:r I

C AI] .:"'T

C F-TURN- TP JF
SC ANC ARC

I Nr I C A TO R.
CrlT INUF

TYP'

IN'IIC AT.5R
CCUiNT
PrI NT
SCAN '_CARD

FI.f' P
!FAD IT
f.' F .q _CARC
F:C< CAS

CC:':P
r CCF SS_CMMEFNT
CHOP
r HTIGC 'lET Y-:_ GO P
STACK
TY"Dr
INCICATOR

L NP
IN
ST^CK

PRCC
CHPR

INT
STAT

INT

....... : .. INT
PROC-

INT

C HAP

PRFnc
INT
T NT
TNT

- ^ INT
STMT
I-CL
PRCC

I NT
INT

CH AR
1-Cl.

I-CL
,,, ,,, . CR.C

STATSTMT

I-CLI-Cr
STi'T

- 1-CL
I-CL
PRCC

...- CL

INT
. l....--:-T.- - . --- - INT-.

CHAR
INT

' -'... '' .. , ·- - .- -. CHAR
y~~~~~~r :s I ~NT

'nT_ UlJLTIPLE ST !T
FNRCRS-i,:I-CL

lJULD_XSCRIPTS PROC
CHFCKt_ STMT
PRP!CSS ST!MT
STACK I-CL
CH C I-CL
AGAIN .. ST-T

LABEL
VAR
VAR
LABEL
L 3 EL
VAR
VAR
VAR
LABEL
VAR
FUNP C

VAR
L .A L

L A '3EL
VAR
V R

ARRAY
LA3 EL
LA5 EL
lAEL.
VAS
VAR
AR.AY
VaR
V AR
L BEL .L
LA : L
L ;3 EL
LAPEL
t ABEL
LA EL
1. :AS ...

L. .A L
L C EL
LAEL -' -
LA3FL
LA B EL
L aEr .L
LA;3-'L
V.9
AQRaY -A . -; -
VAR

0 0
-... --- FIXFD

0 0
0 0
O .. 0
0 0
1 FIXCD
O -'-- -- O
O .. 0

0 0
0 0
1 F FIXED
0 0
0 0
0 0
0 0
0 . ,. 0

0 0
**^ FIXFD
- 0

0
0

0
0

0 0..I
0 - 0

** FIXDO
-0 .-. ...-. I 0

0 0
1
0.

0
0

-0 %

O.
0

FIXED
0
0
0
0
0
0

O
. .

o0 '...'- o

0 . 0

0 0
0 0

0 0
0 0
0 . . 0o

...: F IXE0
· * FIXED

ARRAY 0 0
VAR . ** FIXE .

0 0
LAOEL O 0 0

LAEL ,EL : .,-: : -. O- . ; :,. .' , O 0. . .

LABEL
LAB3 EL

0
0

LALIEL . 0
LAFEL 0
LA;EL 0 I .:
LABEL · - 0 ..

2
3..
3
3

3
3

3

2
3

7

32
3

3
3..
3

3
23

3
3
2
3
3

32 -" :T.

3
3
33

32

3

3

3 ..

3

2

2 - -- "

3,3 ·-.. -> r .· .
2-
3 ;
.. .R_

3
3
3 :

3
3, .,

0 2
0 3
0 3 .
0 3
0 %'
0 2 -

0 3040 1!.C
0 R20B - 0
0 8?0B - 0
0 C040 0
0 8040 114
0 1605 0
0 360B 0
0 C20B. 0
0O 8040 118
0 CAOB 0
0 20o0 120
0 %0CP 0
0 C040 0
0 8 04 0 123
O C040 0
0 8040 125
O 3605 . 0

0 %T(oD 0
0 e. 822! .. 0
0 q040 0
0 C040 7
O 9040 . .. 13?
0 322.O 0

0 2 ?2B 0
0 8202R
O ' ?0C 0
0 ,040 .124
0 83L. 0 117
0 C040 57
0 5040 ..

0 8040 0
0 8040 0
O 0 040 ., 117
0 3040 57
0 R040 0
O -- - R040131
0 C040 log
0 80'40 14o
0 C040 .: 40
0 P040 ! !
0 :3600 0
0 .. 60 0
0 560B 0
0 5228 0
O0 8kL28 ... -.. 0

0 822B 0
0 P040 0
O C040 :.::! 57
0 8040 160
0 R040 0
0 8040 0

0 q040 150
0 C040

.0 8040 0

LCC N4A8tE

PAGE 31

ARRAY

ICs

112
11'

3.15
llS
117
117

I 1
! 21
122
123
124

1 3

1 3?

1 3 7

I 25

43'
12 6
127

135
1 3 ?

327

133

135

134
147

14C

!1 :9

146
147

1453

15C
15.
152
153
154
1 ''-
1 5
155
159

15615]
155
13h

256

- - 256

.. . 256

256

I

HAL C r. M

L CC N A: ,'E

169 P5 fR]&5 E~cR.Os
166 SV7 _P[IN H
167 STA.K CHC
169 9FG I ING
163 FCU'D_ CHA!
17C _t A' K,
171 FX CX : " T
172 SL?,S

174 I,1N_CPOGR
174 AI N 4_ I.O]

PILATION -- PHASE 1 -- I N T E R M ETR 'I

TYPE CLASS.. LENGTH .PRECISICN N'

I-CL LABEL 0 0
K_CCUNT . ..:. NTN VAR 0 .0.... ..
CK STPT LABEL 0 0

STMT LBEL 0 0
R . . STMT LA3El. - 0 0

ST'.T LX3EL 0 0
S T.T L A~ L 0 0

............ - STiT La tBL .0 . - 0
RAM STYT LAtEL 0 0

STT LABEL 0 0

.~~~~~~~1

I CS , I N C.

ST. OUTERLEVEL F

2 0
2· 0
2 0
2 0
2., . . 0
2 0
2 0
2-- . .. 0
1 0
1 0

FLA(

.30'
82:
.Oz

804
,01'S0,I

,'?_ 0 z
gO,
COZ
90O
CO1

PAGE 32

GS SYTPTR ARPRAY

1:0 57
i8 .. - 0
40 0
40 0
40 0
40 0
4.0 0
40 0
40 0
40 0

40-. :~

.H A L C 0GM P I L A T I C N -- P H A S E 1 -- I N T E Rp M E T R I C S , I N C A

C R C s S R

LCC FLAS'

F F E R E N C F L I S T I N G:

C ST.TEMENT NUM9FR" -iFLAG KFY: 4 = ASSIONMFNT, '2:-= RFERENCE, 1--SURSCRIPT. USE)

1 0 0001
2 0 C00?

0 C20
2 0200

4 0 COa0
2 0477

5 0 0005
6 C COO7
7 C 7

9 0000

10 0 00!1
11 0 O0012
12 0 Co12
13 0 Cil?
14 0 O01.'~
15 0 001?
15' 0014
!7 0 00!4
18 0 Co!4
19 0 0014
2?0 0 0014
21 0 0014
22 2 0014
23 0 0014
24 0 00!~1
25 0 0014
26 0 C0)4
27 0 0016
23 0 C016
2$ 0 C016
30 0 0017
31. 0 C0,).
32 0 CC13
33 0 0020
34 0 0021

2 0561
35 0 0022
36 00 23.
37 0 CC2z'
38 0 C025
34 0'0026
40 0 C026
41 0 0034

2"·
4? C C03.4
43 0 C03'
44 0 CC30
45 0 00E6
44 0 C036
47 0 C045

j,,

40 o 0045
46 C 0045

2 0003 2 0004 .2
2 0013 2 CC01 2
2 02 2 2 0219 2
2 001.5 -202 !0 2
2 0503' 2 0550
2 OC1? 2 0C]5 2
2 0233 2 (253, 2
2 00C7 2 "CCC 2
r'f.T R0E'=R E,.Crc
2 0224 2 0',5
2 0050 2 CC59
4 0545 6 '0553 2
4 0545 6 059 6
4 C5;, 6 CS51 2
4 S'S 4 C05? 2
2 0r46' 4 05;0 4.
0066 2 0C67 2

2 0391 1 0352 6
2 0?F 1
4 05C9 2 C513 2
2 0503 6 0509 2
6 0073
6 00C7
4 C0070 2 CC,0 2
4 0071 2 00CO
? 0056 4 C072 2
4 0CS3 3 00S0 4
6 0075 6 CO00
2 0095 4 0364
4 0CC04 CC2 5 2
2 0352 4 C305
2 03?0) 4 03C2'
2 0071 2 0072 2
2 UC76- 2 C001 2
4 039? 4 03P7 4
2 0570 2 0573 2
4 0354 4 C4C4 .4
4 024, 4 03,8 z,
4 0127 4 Ci02 5
2 012 .

2 0160 2 0166 2
C OC27 2 C028 2
2 0123
0 0935 2 0077 2
0 0035 2 6038 2
4 0C4C 3 CC41
4 0037 2 0039 2

4 0039 2 0030 2
NF;T REcr hNCf
C 004,6 2 CC.q' 2
0 0048 3 C050

0CC5
0075

C 127-60 12 7

2 o0006
2 0000
2 0392
2 0166

2 0007
? 0!Ca
2 3410

'2 0168

2 0008
2 01-29
2 0450
2 0173

2 000 ..

2 0!46 2 0162
2 047A 2 0502
21,0177 2 Ole0

2 0163 2 0167 2 0172 2 0174 2 0178 2 0181 2 0184
2 0552
2 0185 -...2 0195- 2 0345 .2 0372- 2 0401 2 0427 2 0452 -

0019 2 0108 2 0110 2 0146 2 0158 2 0190
0367
0147 2 02'3 2 0257' 2 0337 2 0363 2 03Q0 2 0409 -2 0416 2 0456 2 0482 2 0546

C575 4 0576
0558 2 0574 4 0576 ·
C065 2 0556 2 0567 4 056B
0b66 2 0567 4 0568
0552 ' , ···· :2(···; ..- ···· - i.:...-;.1........
0069 1 0070 1 0071 2 0073 2 0074 2 0085 2 0086 2 0097 2 0089
0'03

0521 2 0533
0531 2 0534 2 05 6

CO,3

C087 2 0093
CO0 5 .2 0096 4 0120 1 0!21 1'0122 3 0125

C097

C00P 2 0096 6 0152 2 0153 2 0154
5 7I8 .0 .050.p..-..-..

0733 4 0403 4 0411 4 0418 4 0443 4 0460 4 0468 4 0486 4 0494 2 0511 2
C578
C412 .4 0C435 4 C437 .4.0439 .4.0449 2 0510. 2 055-, 2 0558, 2 0562.,
C013 4 0V21 4 0461 4 0457 2 0512 2 0571..'

0173 2 0177 2 0194 2 0258
CC002 2 0030 2 0031

0548 2 0553 2 0560

0C) 41
0041

00CC4C 1 0041
0"040 1 004!

CO(; 2 0051

PAGE 33

I-- I

.... ~~~.~~-;!,-~~~-·. .r ..· ..-... ; i..·, cl L

.1 , ,1 ' ; I I- . I : . . -- ;~--: · · - ·· 1·· f · . i I

~ -1 - 1. I -. - - I 1

. , --

H A L C OM P I L A T I 0 N -- P H A S F 1 -- I N T E R M E T R I C S · I N C .

50 0 0047
5 C C C4 P
52 0 0051

53 C C054
54 C C054
55 C 0(:55
56 0 C05a
57 0 t0.?
5p 0 CC62
59 0 0062
60 0 0 06
62 0 CC"5
63 l0 013
64 0 C'01
65 0 lC. 1
65 0 0101
67 0 010?
68 C 0!02

2 ()025
6s C C10
70 0 0104
71 0 0105
72 0 O! Oh
73 C 0106l
74 C CI0b
75 0 0107
76 0 0!.07
77 C 0107
7P 0 0107
70 C 0107
7;C C C 07
0 C 0107

2l C 0!07

83 C 0107
84 0 0107
85 C 0107
86 C C10'
37 0 0)107

4 0377
83 0 0107

1. 02072

1 0404
8c. C C I'7

. (14 r; C>
90 C 0107

-2 5311
S1 0 G107

,2 0 010
c3 C C]OI!

.5 C 010 e

96 0 (l!0o
57 0 01.00
S8 0 010l
SS C CIC'O

10(C 010 °0
IC1 C CL01

4 0050 4
4 CC04 3
2 0154
0 0056 2
C 0056 3
4 CC57 2
4 005P 3
2 0?21 2
0 0064 2
o 0065 2
4 00o 7 6
2 (0)EC
? 0S47
6 02.,5 4
6 02 '7 4
6 0266 1
2 0154 4

2 O0lS 22 0?'3 2

2 05!6 2
2 0233 2
2 0253 4
2 0303 2
2 031S ?
2 0411 4
4 0451 2
4 (328 4
4 0359 4
4 0323 4
4 C02? 4
4 0329 4
2 0120 .2
2 0248 4
4 0249 2
2 0249. 4
4 0?24 2

I 0246 1
1 0425 1
3 01S1 6

4 0453 2
1 04Q7 6
4 04!9 4
4 0539
4 0376 6
4 0331 2
4 C3:2 2

4 02-f2 4
4 0272 4
4 0477 2
4 0372 2
4 045? 2
4 C1 2 4
2 01'7 4
4 04C1 Z

0057
CC'9

CC .3
"'1 _

C '; 7
CC067

2 00%.

6 0059 2 0060 .

2 C233

2 CC070
2 t00k9

C 27 6 C07?
C27? - C02C
02P3 1 C2SCO
C1'6 4 C-247
C120 2 C0121

C .' ' 7
C534
C254 2 C036
026s 4 0276
C!ilI 4 G511
C412 4 C51C
0420 2 C441
C46 3 -4 06,4
C0357 2 0359
CtO0 4 C376
C352 2.0359
C'031 1 C3"4
C'2? 1 C749

0125 2 01C!
C?50 4 C?62

C250- 4 0272

02c7 i. 0.ef
C426 1 C0428
C0S2 1 C123

C457 .. C4·5 p
04E;9 1 C'F

0461 4 C046

039 1 C04CC
0357 2 048i5
C352 2 0/50
C2C6 (- 0C'O1
05?3 6- 002
049? .4 C5C2
0416 4 C')5

l3tCR 4 0Z'f5

2 0,54 2 031C 2 0320 2 '039 2 0434 2 0440 2 0516 2 035?3 2 0534

2 007° 2 0C79 2 0080

2 0G31
? 0332
2 0330

4 0373
4 03731
2 C338

2 0-3.s 2 043 5
7 0440 .. -.. -.. -
4 0340 2 0344 4 0346 4 0373 2 0425

2 0172 2 0125 4 0143 4 01.51 2 0156 2 0160 2 0179
2 0771

4 C442 4 047F
2 04.9.q 4 0470
2 0160
2 0417 2 0421

3 0?55
0 C3j50

2 0lP?
2 0284

1

2
4

0357
0)35?
0206
0299

2 0426 4 0428 4 0429 2 0443

2 0191 2 01S3 2 0207 2 0217 2 0232

2 0485 4 090 2 04$95 4 0496
2 0478 I

4 0422

2 0?234 .2-0?5 20292. 2 03001,=i'1 0301 1 0302-- 4 0371-
2 0432

2 0291 .4 0295 *2 0440 -

6 02?5 2 0300 4 0304 03?12 1 0322 1 0323 1 0330 1
1. 042o 1 0433 1 0434 -1 0435 1 0440 1 0443- .
6 01$4 4 02C6 1 02G7 1 0209 1 0216 1 0217 4 0234 1

1 C459 . 1 0461

1 Cz'°O !. 04';4
4 C,6g5 4 04da

1 0402 1 0403
2 0487 2 0"85
2 C61 .2 0463

7 0??1 2 04 3'
2 03:32

4 CC03

4 C17? 4 0177
4 (4.t?7

.6 0452.
1 0495
4 04c5

1.0463 1 0464. 1 046P.-.1
1 0406 6 0497
; 05007 2 050o 2 0514' 2

0459 ..1

051. 2

0338 1 0340. 1

0235 1 0237 4

0344 1 0346 4 0374

0285 1 0286 4 02S2

0470 .6 0471. 4 0479 2 0483 . 1 0484 ,..

0518 2 0522, 2 0523 2 0525 2 0530

4 04CF
2 04CO 2 0495 2 046
2 0464 .2 0469 2 0470

4 017f 2 0257 4 0282

PAGE. 34

-1 I -:

-- I N T E R M E T R I C S i I N C .

0363 4
014C 2
013q 4
03?7 4
0327 4
014 '3

0322 20277

0123 2
01? 29
0514
0135

0137
0231
0147
0233

01 50
0208
0198
C?3C
0204

0205
0203
0213
0252
0223
0224

0233
0226
0303
0257
0755
0281
03 3
0331
03C8
0310
0309

0314

0 2 4 O

0334

0734
034?
03S2

0'40

0445
0447

. 65
C403
Cl?
0C331
C332

2 04CC
2 0354
2 0 349

01.23- 4 012?5
0124 1'0127

6 C402?
6 0355 4 0356 2 0483 2 04S4 2 0494
6 0350 4 0351 2 0457 2 0458 2 0468

? 0127 -2-012 :
1 0129 1 0129

2 0517 '2 C018 2 0524 -2 0525- 2 0531 2.0533 2 0535 2 0536..
2 C!3.
2 C140
I 01o -! O1. Ic 1 0140- - --
2 C252 2 0366

2 02r3 2 0367, ..
2 016 . 0!7 2 0173 0177 2 01Y0 2 0184

2 0209 -
2 027]1
2 0209 4 0217
4 C726 -
0 C219
2 0272
2 C276 2 0230
4 C700 2" C03
4 C?30 4 0235
4 C223 2 0230
4 C227 2 C232
2 0375
2 0263 2 0273
2 C6?9 2 0977

2 0444
2 0332
2 C318
2 0323
2 03!2
6 C0313
2 031.3
2 0311
0 0317

.

2 0236

6 0237
2 0237
2 0233

6 0742" -,-- ? -. .. - --...... -

2 0C22
4 C323
I 03?? 17 2 031 032. -
1 0313 c 0317 2 031P 1 0323

2 0347

4 0C39 2 0413 4 0512

2 C473 2 04CS9 0 0507

102
lC?
103
104
105
1C6
107
I C'

I 10111
112
1!3
1!4
115

119
1 12
1 2C

1?2
123

I 2 7
124
125
!7 2
127

12e
131.
132
133

135
136
140
141
14
1 ',5
140
150
15]
152
153
154

156
157

60hO
61

164
166

1* 1 67

Ih170]70

C 0110
0 l 01!
0 0112
0 C! 13
O C1 1
0 0114

0 C 1 1
0 011I
0 0!17
0 C11l
2 01.2
0 C 34

0 (C! Lt

0 0135
0 C145
0 01 46
0 0! 5?

0 C1'I
0 0165
C 01 Co
0 ClC2
0 02C?
0 0202

0 077?

O CC1
0 02?1

0 0?26
0 C?022

0 C222
0 C245
2 C?5!
C C252
2 257
0 02CP
C 0307
C 0307
C 0307
C 0307
C (0307
0 0307
0 0307
2 0311
C 032??
0 0320
0 033)
0 0366
2 03,96
0 03 ° e

0 C41'-.,
? 042'
2 0430

2

4

4

2

4

4
0

2

C

2

2

2

2

4

CC

2

0
2
2

4

2

C

2

2

C

C

0

2

2

2

2

2

2

0
0
2
2
C

2

2
0

H a L C O M P I L A T I O N -- P H A S E 1 PAGE 35

., . I . .. , .. ., - I " IIII . I . . I. - I . ..

I

I

k

H A L C CM P I L A T I C N -- P H A S E I -- I- N T E R M E T R 'I C S , I N C .

171 C 0515
172 C 0 ?r2
177 0 0&44
174 G C546

2 05?7
2 0530
NOT REFERENCED - E.
2 054G

, A C TE XT LI TING:

LCC TEXT

1 R.PLPACE
2 0
3 !
4 INTFGI:
5 IF C =
6 IF 1 =
7 ;,RTITF{6)
q ',-ILF 1 = 1

STACK I NG DECISICNS
CALLS TC SCAN
CLt.S TO ICNT IFY
NU'.'!'l CF PF'LCTICNS
,,X STACK SIZE
MAX IN.o ST.CK SIZE
ENO IN. STACK SIZE
MAX EXT_ ARRAY INDEX
XPFF LIST FNTPIFS
S'rA T, v r: hT C i: ',,N T
:AX CUTFP_ L ST IrqDEX
PAX NESTING CFPTH
FFEE STRING AREA

,= 3A62
= 3936
= 0cFg9
= 9727'
= 25
= 32
= 17
=2
= P70
= C.F, -
= 0

= 5355
- "5355

7P6 CICS WFiR PRCCESSED. .. .

NC EPR(RS WERE CETECTEO DUPING PHASE 1

TCTAL PLAPSEE TIME IN CC VPILEP
FLAPSzC SFT UP TIfE
ACTUAL FLPAPSFG COMPILING TIME
ELAPFSC'CLEAN-UP TIME AT END
PRCCESING RATE: 2465 CARCS PER

C:C:20.52.
0:0:. ' .04 .
0O:0:c I .O.3
0:0:1.35.

KINUTE.

PAGE 36

BFCIN TEST CF PAL IN HAL
I Cl 2 5 6
2 ,'I TFA'PF': G,. :

,.,,']LrV.S=]
**. T[;K:N=TPR M - . ..T.-P .' : :.':,
***TCKFN==:

**tTKFr=PRCC.RAM

*: * 4TV' 4": P- :-O
-' ~M a i.*4',* TP irU' : PPCOGRAM; - --- ^ - -.

'" FI *

4 I FFCL ;',R ,1
- I. 3,3

I 1
.. -.':'"::7 I 2 i

.- 1 3
. . L

,,I S

:B*LtNKS=65

*t ' T ' C K F N=C

::,T K S= 3

7 '1 M 2
7 SI M2 R

1 7
1 8

**.F,. ,bvqKA=(,
. t'* TCKFN- =t'2 '..RKKFR=-

4gx Ti K. N.-S <--i
g*sT(iK Fv=
*'TCK rFN= R

8zt- TI: 'K' N=, -.., o w ... 6,e ...,..,._.......~:.. ;.. -.,. g. ;. ..:,i ·i·-- t-- ···
~' ' T. !_c .:'i ..~,*T K N=) .. . '.-

+ * T' T C. K F N =; -· : *- · *· ··-· -· :- -·;· ···: ·· ···-.. :..:-.... .. ;....... ,:...... ;.. i ,. : z.., ~..,,,~

3*' 4.,*IkIN<*- DECLARE M1$(3.3)., 2$i(8'.83); . .
-.

N , .

C WI CECL/tE I1 APRAY() INTFGFR .INTIAL(,2.5,4, t);. -I..: -;'"---: .::.. : ,'L :.;3, ·..:..I.:....: ...,1fl.' --:.<;.; 9 .: -*.

**eLANKS=72
2" ***TCKEN=CFCLARE

*BLANrKS=j
4* §TCKFNi=
**LANKrAc=l
*4TCKPN= ARqAY
*t*TC'rN=(

-: TrKFN=5

37

··, ··1 ; ~- ·-- ··;:. .; ·- .~·... ' ': _ ' : ' 7 r .

.......: .. .:. :- > _ , .,,
, *)

4*--, B t. A N K S: =1
**TTCKFN=INTEG ER
**2LANKSc= Il ,. .~- . .

4***ICKrN,-

* :: ,:a T QJ v,' r., = (:iT I

***TCKPN=2

***TCKFN=1

*44TYFlKTN~

**T7CKFN=)

**sPL"TK?= , 3 ~. ,

::T , K F ,=

.. *TCKF=rFCRA
**BLANhisS.l
***TCKFN=!iRxtY

444T NE

a 'T2 K E- = 5
* **"T C K " .
**BLANKSS=
**TGK FN:SCAL/.R
;**TrK- N,, = .. = S, . .

4*EL ANKSS1

* L ATCNK S= I=

*4 4TT(K FN= S2 ...

eL ANK S= N

;*4C:*ISKFVA=, .

NAIt DECLARE ARRAY(5) SCALAR, S1 , S2;

'"' · ' L. · '~~:

.. ,.r.:~ _.,,,,,,~-,..,.,.:,..... r.rr..ii,~...~.-,a......,.~ _, I;..,I.~ i ~-, .~ ... *.-

FUNCTITON DFCLAPATI.ONS
11 HI FUNCTICN Cr-CLARATICNS
12 F 1
13 1i Pr.l: FUNCT'vN (P) vATPFIX (*,*);
14 SI * *

- 12-~~~ ',
i 14
14

**P L AN K S=i,7
s'fCKFN=PRC

*~.v T IK F ,x= P IFCT 1ON

**·*TCKF,;\=
f * LL. ' A S

P4 L T . NK S=

***TCKRKEN=
*-4T C K P , =)
44ATriK ;=*

***FTCKFN= =
*T KCN=) ,

* 4 x T 'L K r,= ¢-
444 TT;,K C-= · ., ..

~OVER * *

4*;tA!.N.t' ; PkOl: FUNCTICN (PSI*,4*)) ,TIIX

15 El - -*
16 VI RFTURN P ;

**BLANKS=45
* TCK rFN=P ETUPR!N
**PL.tKS=i*P L . K S = .
** TlKFN=P, A K F; R=* - -

**tTC. K'N=*

* 4TCK F N=
-- > K .. %=

t**TKF'=' . ; -:
***TOKEEN=;

.I 16

2"
"*-*4t.Af.!.x,* RETIPFN P**(-); :.,' :.-

17 ,I CLCSE PRC1; I 17

,**TCKF N=K CLC-"

.'.
*.' *:r.h: ...; . ' .. :. i:. '&: r· 1 ·;.__Sx;r~t '74

~~~~~~~~~: ·... : lii



e*ELANKS=I
***TrKFN=PPrIl
*4TCKE '=;0· ...... . ..... -. .. . ......- ..' ............ ...:, ..................'.. 

*:;;A I;j:~* tCL SF PROl ; ·' . .. ... · .. ..I - - - -..-i.. -'.-.- ...-.... ;-.. .... ..... .. .... ...

19. 'I PR3 : FUNCTICN (E) MATRIX t*,*); . .. ........ ..

**9LAIKS=t?
**, , UV` N=PR(,

44 TCK 'N=
R LAIRN

.4T(:rlC FNUNCT IGN

* 'T r K r = 1

*4*TCKYFN=

tt e.L AN g5=

a3*'lrr.KE=t E;

**tT(KrN=)
** *TCK:'t-=

*#*AI ,'4: * .. .P: F... CT.......ON ) MATRIX , '..*. ... -)-.... -I
+t~t8TNj4 PRO: FUNCTION (e) MATRIX (l *) ;

I "'I DF°CLRPE MATPTX (*,4), ,;

LAN-K= & .... .....
***TOKFN= FCLARE
*42eL'NKS=1
*TTCKEN=ATFIX .. .

t*TCKFN.=
4*t4TCKFN=* . t ' -

***TCKFKN=

*4*T4 K FN= ,

*PIt.ANKS=1
* t*tTrKFN= -
***TCK -N=;

t***'AIN;*" CFCLARE MATRIX (*,4), D;

20 MI RETURN PRO1(B
21 Si

, **#'~L'':K S= 5 

I 20
2 TO 4,1 TC 3 I 21

.... r-:, ,, I 1 1

I 1 1

....� ... �. .;�.I·,.,�......... ��. . ·.. ·... -. i,�;;..�.Il;i:

· · ... I..;. ,.i....~.. ·.- . 18 
..-..

~.. .. i.....~-,... ... c: :.,. _,-.~;....-.,~....~ .I,~... ,...:.,.

.. . .·* _._ i-r.I- :.·i~li- d ~x. .l.- . . _: _-·-. -- _



***TCKFN=PETUP,

~'-~T.". F ~= ~'F'Pu3 . . ,~- ~.........~..~. . ?:~......,-.
4*4TCKL.. .

,*:e* TE- K E ,, = (

***TCKFN=(

-,:.~ LAI.KS'.'I ~.. :· .·- ; .- ~:- .... , ,.-.. -·

*,:'L ,S= 1
~: T C11 -,,=4

.q'-*:~-TCKFN=4 ~ . .... . ' ..... ........ ' ;-. ...... ... : ....I.... . ,-,: · ....... ,.. ...

* * T £ K< F N
*,T [) FN =
*,*-LAN."KS=I . .. .-:..

5 8 .Z'::-'S= 
4:4Tf K.rN=.

***TCKCN=) . . . . . . . , 
***TVCKEN=:

**f)V% *

4***t:"IN*-4-* RF['TURN PPOJ(F$(2 .-T 4,1 Tr3) ... 

2? rI, CLCSE PR; ........................ . .......

***TCFKFN=CLCS .. .........

**BLANKS =
* * B T A."K C = P R

***TCKFN=;

*i** 'CLV F LSE PRO;: :
*:¢'*f~^I'Nm*~ CLGSE PRO;''.... .......... .......-- ....... . . .. . . . . . .'- .... . . . . .........-

Jh
..I

..,

·, I -22

· ~ ~ ~ ~ ~ ~ ~ ~ ~~;_... :. r:-*.l- . '~r~L ·: ,·I;-r.- rr-· ·. - ..:lr~ i. .:. .. l ¢,

:, .. ~~~~ ~~.: .. :'.: ..... }: ,1,

V . ;- I 11.1 -� �-. I . .

..- . . . i- -- ., .

'.. :':. ·;.:..... . .-.- :7"

"7: ' "T '"::

.... . ~· ¢ .'

3" 

2"



VAIh PRCGRPA
22 FI MA4IN PPCSRAV
24 VI £C FCR 1=1 TO 5;

*,5 AK (F-=67

*4BI ANK S=t'
* TK F N =F CR

*, T A 2 K L ' A '= 1
* T r K -N'= 

**2LAiN KS=l
* ** T 2 K F r%= TO
4 7pL ,L'K$=.

, ' Tp f'K; n'1=;

***CVERi***
***MAIN4*** nC FOR I=l TO 5;

25 I1 DC rrF J=l TC 5;

**8LANKS=63
***TOKEN=tDC
*PR.LA.:':KS= 1
* i¢ TCKF -F = 

*4 :L L!A N K = 1
***TOKrN=J
***TCKFN'-=
k** 4TCKF.:= I

4*PLA.tK.S= I
*i* T :: F=TO

*i*TOf=K fN=5 
***TCKN=;

+*44O VE N4 CC FI :. J=l T 5; -*44'"144*CC FOR J=T TO 5;

26 El
27 El

3 2 :IM M;3 c M
2c SI
3c sI

**PLANKS=65
***TCI F N=,v ?
**#TCKNN'= 

**4TCKFN=I
***TnKFNz,
***TCKrN=J
***TCKFN=)

4**4 T 'K FN:==
P* LA k I, S=1

J

= Sl
1 1

I

2
I,J

1 23
_, . . . -- 24

I ?5

I 26
I 27

. ......,.............. . .............. 1.I 28
.I 20

.. -1 ... . ... i ., . .1 ., ..... - .. . ... + i .. . . - .. . .. , I . ^ ... .-

-.:... '... .:~·.... - . -... .- I.



*4*TCKFN=S -. f3
* T<TOK N=$ 

*:-'T$.- EN= - - . . : ,( .. .. ,. ,,;

A t TCK E= I
-$ : T C K' N $***TCK :N=

***TCK,\=)

T '-'.!=; K N .

4***TCKc-N=J

.- T'iKF,-=I , ........ .- -,, ..... , ........ .. .. ........ .~ -.... ·

***TrKFN=)

t ." T C! K1 ' ,-,;

#tMA IN:¢¢~ M$(IIJ}= .Sl$S(I$(I))*4(1l$ I**(d));

: 1 3!31 Yl ND;

**BL'NKS=62
* ** T CK N = END

***TCKFN'=:

tt$¢!3VEO ': Fr.C;

32 Cl THE NEXT GROUP HAS AN OVERLAPPING E LINE
3, El I .. .... . .... , .... .. -..

t**'- mRPCR # 1 [(F SE-VEF!Tf I: C\FPLPFFINC E-LINE.CFAqACTERS. **.'
34 El I1SI
35 I 5c? =S1 ; /* CCVMFNTS PRE PLANKS f. 
36 SI I I

*4*RLANK5=75
***TCcS;N=S

*4T .......... ........ ....... ' 

**TCKFN=I 

***TCKFN=)
T *,,, r K

1 32
- .., 33

34

36

-,'ilii. ".-.. ..... - ... _ :o -,. _' -.... ..-. . i . .. , ,r ,, -, ;-1-

... , ~~;i . W.~... ' .... . . ·. f -- -*-^ 

I

... I



***TCKrN=T 

***TCKN= '

*P*'TCK N= )

***'/~ l ~:***: S25(I )= Sl!( I )S * II$I); ... .

7 ~- I 2 ........ ........ .... ... .. - 37
***** FPRCR 4 2 OF SEVEPITY 1: S£UPCE PROGRAM CUT OF ORDER. LAST EPROR ON LINE 33. :****

?P CI THIS SHOULD DEMCNSTRATE CAPRDS CUT CF CRCER I 39
? "I ,52 = S? ...... .. .
4C SI I ! I I 4O

* LANK =67 ... . .

**** :rROR 3' OF SEVEPITY 1: S-LINE CVfRLAPS t-LINE. LAST ERFOR ON LINE 37. *-***
4**TCKE-'JS2

4' 4 T Cl K c'": 
!<***Tq~KI==

***TCK:N=S?
- · T C K -.-:' N = $

.,,TCK< N=(

T C K r,%=

**-TrK. : ,i - ,

42 T 1 FND:'"''I4

T K3
~tTC K iN

3 4" TIKEN=;

41 (',I t- S LINF. CVFrlALP t&7CVE 41

42 4f FVNl N 42

2" 43E14~ * :.:.:.. .,:, I43
44 NI Y1=PRCif:2 /4 IGN[IRED 4:/ ) ; . ]44
c5 SI 4 AT 3,4 t.T c' .' I 45

**CLANKS=75
" **TCKVN=I FR

V. T UK E NPC

44 VI Y-I=PPC0,2 /* I GN Cl a r ) 44
45 51 4 AT 3,4 t T C;· · ; ·· 45

**BLANKS=75

**,%7CK FN~f/j VARKER=



(fJs**TC.KEN=(
*",TCK~N=MS-N~RK ER='*
*~*TF~i= ·- ·I:`-::K N=: (, , ;.. ' , ' : ...~'.."-~~-: · ·:-· ·· 

T~s \.'K~ 1
*',.,T !: K :: A" T ·

AT

4s*TCKCN=AT

**.L NKS=!

* * L 'N 

"~*TOKEN=&T

f· 'j T "l N=I· I [ I : '' l' l ' ·I ......... I i I· ....... l ··I:·^·-~i

*4 T rCK Fv N 

4~TC~:= p L ANx.;.c=2 " ": "' ' ··: ·;· · ·-···- · '.·;r:.L:. ' '..i.m ;r~i.r;.·-ri;~-i-:^i;-r·;; .l- ·:.

,a-:*'-'* I-**:-": :'z=P'RPO(,25(4 AT 3,4 A 5)): 

46 MI CLOSE TPARP;. 46

**;TCKFN=TPARV
***TCK:N=F

";*I"A7N ~ : CLCSE TPARM;

47 VI ? . 47

*t2L'ANKS=67 . . ... ., ... 

**TCKr N=?
47 CAP.U: C EE PP(ICESSFDO
3 Ei'CF'S WERE CFTECTEC, T E LAST ERROR -WAS - ON, LINE -40 .- ...... ... . . . " .. ...

*****SU,'iNARY CF DETFCTED EPRCPS.****
EPROR , ] ON LINE 33 OF SEVEP.RITY I.
ERRCR : ? ON LINE 37 CF SEVERITY 1.
FErr-f C t 3 ON' LINE 40 OF SEVERTTY 1.
CAPR-PRflCF FSSINC RATE: 4.426SgcSF+C2 CADS PER MINUTE.

CLCCK TINE IS 413.1443 , 

THIS TEST IS NCW CCEPLETE.

2"

2" ... ''.....'~ .. "":f"' ''' ;
] .. '....



C :2' 5 G6
M TPARI!:PROGRAM;

M1 DECLARE il ,
S 3,3
E *
1'4 M 12 ;'- . . . . '>

S 8,3
i'4 DECLARE I1 ARRAY(5) INTEGER I IITIAL(3,2,5, 4,I);
M DECLARE ARRAY(5) SCALAR, Si , S2;
H FUNCTION DECLARATIONS

ii PRO1: FUNCTION (P ) MATRIX (*,*);

E -1
Mi RETURN P
! CLOSE PROl;

M PRO: FUNCTION (B) IMATRIX (*,*);
II DECLARE 4iATRIX (*,*), B;
I.' RRETURN PROl( ); 
S 2 TO 4,1 TO 3
M CLOSE PRO;
11 MAIN PROGRAM
!. DO FOR I=1 TO 5;
M DO FOR J=l TO 5;
E j
E 15
/i 1i2 = S1i
S I,J I1'
S I
14 END;
C TtiE NEXT GROUP HAS AN OVERLAPPING E LINE

E ~ ~ ~ ~..... -. .... .. . . . . . . . . . .:'. ,.:! ....
E I151
M S2 =S1 ; /* COMMENTS ARE BLANKS */
S I I
E 2
C THIS SIIOULD DEMONSTRATE CARDS OUT OF ORDER
1MS2 S2 ; . .
S I I
C AN S LINE OVERLAP ABOVE
M END;

E~~~~

MN i4l=PROM2 /* IGNORED */ );
S 4 AT 3,4 AT 5.~ ... ,,
14 CLOSE TPARM;

I4 .

.,.;... .,, .....-


