
(NASA-CR-134033) GOAL-TO-HAL TRANSLATION N73-3114 1
STUDY Final Report (Intermetrics, Inc.)
85-p HC $6.25 CSCL 09B
9/ Unclas

G3/08 14032

ITERmETRIE

-, r . AP C

I I1TERMETRI[ES

STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date
FINAL REPORT ON GOAL-TO-HAL June 1973
TRANSLATION STUDY 6. Performing Organization Code

7. Author(s) Flanders, J.H., Helmers, C.T., 8. Performing Organization Report No.

Stanten, S.F.
9. Performing Organization Name and Address 10. Work Unit No.

INTERMETRICS, INC.
701 Concord Avenue 11. Contract or Grant No.

Cambridge, Mass. 02138 NAS-9-12291, 6c
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address FINAL REPORT ON TASK 6cNational Aeronautics and Space
Administration

Johnson Space Center 14. Sponsoring Agency Code
Houston, Texas 77058

15. Supplementary Notes

16. Abstract

This report deals with the feasibility, problems, solutions,
and "mapping" of a GOAL language to HAL language translator. Ground
Operations Aerospace Language, or GOAL, is a test-oriented higher
order language developed by NASA's John F. Kennedy Space Center
to be used in checkout and launch of the Space Shuttle. HAL is a
structured higher order language developed by NASA's Johnson Space
Center to be used in writing the flight software for the onboard
Shuttle computers. Since the onboard computers will extensively
support ground checkout of the Space Shuttle, and since these
computers and the software development facilities on the ground use
the HAL language as baseline, the translation of GOAL to HAL becomes
significant. The report examines the issue of feasibility and finds
that a GOAL to HAL translator is feasible. Special problems
are identified and solutions proposed. Finally, examples of
translation are provided for each category of complete GOAL state-
ment. A companion report is entitled: Final Report on Shuttle
Avionics and the GOAL Language including the Impact of Error
Detection and Redundancy Management.

17. KeyWords 18. Distribution Statement

Test Oriented Language
Space Shuttle
GOAL
HAL

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 84

KSC FORM 16-272 (5/72)

FINAL REPORT
ON

GOAL-TO-HAL
TRANSLATION STUDY

Change 6c
Contract NAS 9-12291

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

NOTICE

This report was prepared as an account of Government-sponsored
work. Neither the United States, nor the National Aeronautics
and Space Administration (NASA), nor any person acting on behalf
of NASA:

(1) Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness of
the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in
this report may not infringe privately-owned rights; or

(2) Assumes any liabilities with respect to the use of, or for
damages resulting from the use of, any information, appara-
tus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any
employee or contractor of NASA, or employee of such contractor,
to the extent that such employee or contractor of NASA or employee
of such contractor prepares, disseminates, or provides access to
any information pursuant to his employment or contract with NASA,
or his employment with such contractor.

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

FOREWORD

This Report has been generated in partial fulfillment of
Change 6c to NASA Contract NAS 9-12291. The basic contract
has had as its objective the development of a high-order
programming language known as HAL to be used as a tool for
developing onboard computer software for manned space flight.
With the advent of the Shuttle Program, HAL will be used by
the teams that will write the flight software for the onboard
computer.

At the same time, a high-order language has been developed
by NASA's John F. Kennedy Space Center. This language is
Ground Operations Aerospace Language or GOAL. GOAL is
specifically designed and specified for ground checkout
applications.

The onboard computers will be used extensively to support
the checkout of the Space Shuttle on the ground. The
question of reliably and efficiently implementing GOAL
statements in the onboard computers becomes important.
Change 6c to the referenced contract is a study task to
determine the feasibility of a translator which would take
GOAL statements and, in one or more stages, generate verified
HAL code which would then be fully compatible with the
onboard computer system during ground checkout.

Related topics deal with executive support, particularly
achieving compatibility with the Flight Computer Operating
System, and the impact of error detection and redundancy
management on GOAL. This Report deals with general compile-
time and run-time features that must be present in the
operating system. A parallel report published concurrently
and entitled, Final Report on Shuttle Avionics and the
GOAL Language, Including the Impact of Error Detection and
Redundancy Management, takes up various options to consider
for integrating GOAL-derived code into the onboard computer
system and also addresses error detection and redundancy
issues.

Note: Chapter 4.0 of this Report satisfies Task 1.3 of
the Work Plan, dated 4/10/73. The whole Report
satisfies Task 1.4 of the Work Plan.

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

TABLE OF CONTENTS

Page

1. INTRODUCTION 1-1

1.1 Genesis of GOAL 1-1

1.2 Genesis of HAL 1-2

1.3 The Translation Problem 1-3

2. FEASIBILITY OF TRANSLATION 2-1

2.1 Syntax and Semantic Level 2-1

2.1.1 Global Block Structure 2-1

2.1.2 Data 2-3

2.1.3 Procedural Statements 2-7

2.1.4 System Statements 2-14

2.1.5 Feedback Loop Limitations 2-14

2.2 Other Feasibility Issues 2-15

2.2.1 Combining GOAL and HAL Programs 2-15

2.2.2 Definition of a Translator 2-19

2.2.3 Run Time Issues 2-20

2.2.4 Inflight Operation 2-20

2.2.5 Debugging GOAL-Translated
Programs 2-21

2.2.6 Software Reliability Issues 2-22

3. SPECIAL PROBLEMS AND SOLUTIONS 3-1

3.1 Individual GOAL Features 3-1

3.1.1 Revision Control 3-1

3.1.2 STOP and Restart 3-2

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Page

3.1.3 Repeat 3-2

3.1.4 Software Interrupts 3-6

3.1.5 Non-GOAL 3-7

3.1.6 Data Bank 3-8

3.2 The GOAL Master Program Concept 3-14

3.2.1 Overall Organization 3-14

3.2.2 GOAL Master Program Example 3-16

4. GOAL-TO-HAL MAPPING 4-1

4.1 Declaration Statements 4-1

4.1.1 Single Data Type 4-1

4.1.2 List Type 4-3

4.1.3 Table Types 4-7

4.2 Procedural Statements 4-13

4.2.1 Prefixes 4-13

4.2.2 External Test Actions 4-15

4.2.3 Internal Sequence Control 4-22

4.2.4 Arithmetic/Logical Operations 4-26

4.2.5 Execution Control 4-26

4.2.6 Interrupt Control 4-29

4.2.7 Table Control 4-31

4.3 System Statements 4-32

4.3.1 Boundary Statements 4-32

4.3.2 System Directive Statements 4-35

4.3.3 Special Aid Statements 4-25

5. CONCLUSIONS 5-1

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1E

1.0 INTRODUCTION

1.1 Genesis of GOAL

The development of GOAL was brought about by the need
for a standard test language to be used for maintenance,
refurbishment, checkout, and launch of the Space Shuttle.
Apollo experience had already proven the value of computer-
automated checkout programs, while at the same time high-
lighting the importance of early source language capabilities.
ATOLL was such a language and was applied to Saturn V checkout
and launch.

As the requirements of the Shuttle program unfolded,
it was evident that a high degree of checkout computer auto-
mation would be required to meet schedule and cost objectives.
Furthermore, the opportunity existed to develop a high order
language early in the program so that, from the beginning,
it was an integral part of the system. Requirements
contracts were let by KSC in July of 1970. In May 1971,
a language requirements document was published (KSC-TR-111).
Currently, three documents have been published which define
the language. These are the GOAL Overview Document, the
Syntax Diagrams Handbook (KSC-TR-1213), and the GOAL Textbook
(KSC-TR-1228). Also, a GOAL compiler is currently being
developed.

1-1

ITERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

1.2 Genesis of HAL

The development of HAL was stimulated by the same
combination of Apollo experience and anticipated Shuttle
requirements that stimulated GOAL, except that HAL is oriented
towards the onboard mission software for manned spaceflight
with its great emphasis on 1) the mathematical requirements
of navigation, guidance, and control and 2) the need for
highly reliable real time control programs. Apollo exper-
ience had shown that the resources needed to program mission
software in assembly language in a multi-program environment
were excessive.

Development of HAL began with a contract let by JSC
early in 1970. This contract supported the generation of
requirements, a survey of other languages, synthesis of a
new language, and the building of a HAL compiler to run on
the IBM 360/75 at the JSC Real Time Control-Center. This
effort was augmented a year and one-half later by a JSC
contract to advance HAL to an operational status. As a
result of this last contract, the HAL language was ready
when the decision to specify the onboard software for
Shuttle came up, and HAL was chosen as the language in which
the software will be written.

1-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1:

1.3 The Translation Problem

The translation of GOAL statements into HAL/S* is the
subject of this section. The general problem of such a
translation involves two aspects: 1) identifying simple
parallel forms in the two languages and performing a mathe-
matical syntax conversion; and 2) identifying more fundamen-
tal semantic differences which will require the synthesis
of functional groups of statements in the target language,
HAL, corresponding to forms of the source language, GOAL.
This latter problem will prove the more complex part of the
process.

As an example of each, consider two classic types of
translators: assemblers and Fortran compilers. An assembler
is fundamentally a simple program to make a one-to-one mapping
from its source, symbolic machine instructions, to its target,
machine code. In contrast, the Fortran compiler must trans-
late a much more abstract source by synthesizing multiple
primitives of the target language to accomplish the functions
of its source language.

Of necessity, this Report is primarily concerned with
the semantics, the meaning of actions performed by the GOAL
statements, and the proper translation of GOAL semantics into
corresponding HAL/S forms. Syntax, by itself, cannot be
translated ythout reference to semantics, unless of course
the languages are completely identical in their functional
descriptions. GOAL and HAL/S are alike only to the extent
that they are both computer languages; thus they share a
common general framework of actions. However, their detailed
functional characteristics are sufficiently different to
make a mere mechanical syntax conversion out of the question
except in special cases, which will be noted in the text
which follows.

Also, many features of GOAL, particularly among those
designated System Statements, are not actually language
features. Instead, they represent requirements which will
be applied to any operating system upon which GOAL is to be
implemented. This topic is brought up in several appropriate
places in this Report.

* HAL/S = HAL Shuttle, or HAL for the Shuttle Onboard
Computer(s).

1-3

4TERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.0 FEASIBILITY OF TRANSLATION

The GOAL-to-HAL feasibility discussion is divided
into two main technical areas. The first deals with SYNTAX
and semantic questions. The second area addresses other
feasibility questions relating to compile and run time.

2.1 Syntax and Semantic Level

This section demonstrates that a syntax mapping from
GOAL to HAL is feasible. The content reflects the results
of the first effort at demonstrating feasibility and as
such does not correspond exactly to the indepth mapping
presented in Section 4. The differences arise due to the
fact that there are a number of ways in which the transla-
tion may be implemented.

2.1.1 Global Block Structure

There are two major block forms in GOAL which may
be defined:

a. The DATA Bank. This particular block identifies
a rough equivalent of the HAL/S COMSUB/COMPOOL
mechanism. Its purpose (as in the HAL/S forms)
is to provide system-wide global information.
However, unlike the HAL/S forms of COMPOOLs and
COMSUBs, the GOAL Data Bank is in effect an
extra-lingual data management system used to
interface the GOAL translator or compiler with
the world of the Operating System and the various
hardware units to be controlled by test programs.
It is available for symbolic reference by the
compiler in the course of interpreting function
designator names.

b. The PROGRAM. This particular GOAL block form
identifies the equivalent of the HAL/S program
block. It is a delimited block of code which
stands alone for purposes of compilation.

A GOAL compilation, then consists of the processing of
source code for a single program and its references to a
data bank. This corresponds roughly to the HAL/S equivalent

2-1

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

of a set of COMPOOL/COMSUB templates (i.e., data bank)
followed by a single outer block compilation.

Within the DATA BANK or PROGRAM blocks of a GOAL
compilation, a single level of nesting of additional modules
is allowed. (In no case is static nesting of GOAL blocks
allowed beyond the single level to be described here.)
These modules are potentially either subroutines for run-
time execution, macros for compile-time substitution, or
non-GOAL subroutines in object form for use at run-time.

a. The GOAL subroutine block is the equivalent of
a HAL/S Procedure block without "input parameters".
It is allowed any number of "ASSIGN" parameters.
It is invoked by a PERFORM SUBROUTINE statement.
The detailed correspondence of HAL/S and GOAL
versions of this block form will depend upon
whether or not subroutine invocation is limited
to the "PERFORM" statement.

b. The GOAL macro block is a compile-time routine
used to generate source code. The GOAL form
of a MACRO is a simple replacement with no
"conditional assembly". The macro is a skeleton
with optional parameters. When it is invoked,
the textual parameters are substituted and
the completed macro is then compiled as if it
were coded directly. The GOAL macro is thus
effectively a HAL/S "REPLACE" with the addition
of parameter substitution within text.

c. The non-GOAL subroutine is a data bank subroutine
written in a language other than GOAL, presumably
HAL or machine language. It may be invoked by
the PERFORM SUBROUTINE phrase in the same manner
as regular GOAL subroutines. A non-GOAL sub-
routine is assumed to be a separately compiled
or assembled element and therefore enters the
translation and compile process only by adhering
to predetermined linkage conventions. A non-GOAL
subroutine is incorporated into the compiled
code by the link editor.

The global block structure of a GOAL program can thus
be described in a schematic form as follows:

2-2

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

DATABANK

SUBROUTINE

MACRO

STATEMENTS

NON-GOAL SUBROUTINE

MACRO

STATEMENTS

STATEMENTS

PROGRAM

SUBROUTINE

MACRO

STATEMENTS

MACRO

STATEMENTS

STATEMENTS

2.1.2 Data

2.1.2.1 Data Types. GOAL has four data types:

a) Number

This is a very simple data type with a fixed or floating
point representation depending on the machine characteristics.
It is analogous to a HAL/S scalar type. It contains
no implicit dimensions and stands alone as a single element
unless included in a table or a list.

b) Quantity

This is very similar to a HAL/S scalar type, but it
has explicit units associated with it. Thus, a quantity
is a scalar number of volts, a scalar number of ergs,
a scalar number of pounds per square inch, etc.

c) State

This is a direct equivalent of a HAL/S Boolean. It
is a single, unarrayed bit which can have a value of true
or false, on or off, and open or closed.

2-3

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

d) Text

The text data type is the direct equivalent of a HAL/S
character string data type. GOAL uses a qualification on
a declaration of this data type to set a maximum length
for input only, just as in HAL/S.

The problem of translating GOAL data types into a
HAL/S equivalent is fairly simple. GOAL's number, state
and text data types have direct HAL/S equivalents: scalar,
boolean, and character respectively. Quantity data is,
however, characterized by two aspects, a number in GOAL
terminology and some units.

At present, the dimensions of a GOAL quantity are not
used at all except for documenting printouts. The use of
dimensional analysis is not contemplated in the GOAL language
and therefore need not be dealt with in the HAL version.
Scaling of units of a given dimension may be automatically
performed in GOAL. (For instance, millivolts, volts, kilo-
volts). In translation to HAL this would turn into a
scaling factor applied to a floating point scalar. It is
suggested that quantity dimensions be placed in a special
table, with one entry corresponding to each quantity type
variable. Thus, when I/O is done with a quantity, a look-
up in this dimension table will enable the dimension to
be found and printed on output appropriately.

2.1.2.2 Data Organization. GOAL has two forms of organizing
data: these are lists, and tables. The list form of data
organization is roughly the equivalent of a HAL/S array
or a structure with one dimension of arrayness. In either
case a list must have only one dimension in GOAL. A GOAL
table is somewhat more complicated and is indexed via
name, and function designators.

The table organization in GOAL is a two-dimensional
array of rows and columns. The column is addressed by
a column name or index and the row is addressed by a
function designator.

In the GOAL manual, lists are classified according to
the GOAL data type in question. Thus, one may have a
numeric list, a quantity list, a state list, or a text
list. Mixtures of types are forbidden within a given
list, as in a HAL/S Array.

2-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-184

a) DECLARE NUMERIC LIST

The GOAL declare numeric list statment would map
directly into a scalar array in HAL/S. This form
effectively declares an array with some length and some
optional initialization just as it would be done in HAL,
but with the syntax of GOAL.

b) DECLARE QUANTITY LIST

The declare quantity list statement in GOAL declares
a list of quantities or an array of quantities. The
equivalent would be 2 arrays, one for the numeric and one
for the dimension information. For example, the statement:

DECLARE QUANTITY LIST(LIST A) WITH 3 ENTIRES;

would translate in HAL/S into the following statement:

DECLARE LISTA ARRAY(3) SCALAR,

DIM_LISTA ARRAY(3) CHARACTER(6);

This assumes all dimensions can be specified in six
characters or less.

c) DECLARE STATE LIST

A state in GOAL is a single, unarrayed, unstrung
boolean quantity. This maps into the HAL/S boolean form.
The declare state list statement sets up an array of these
GOAL states. Consequently, the declaration of a state
list will map into the declaration of an array of booleans.
In view of the discrete nature of these states, it might
be more appropriate to map them into an array of booleans
in HAL/S. As an example of the translation which is
possible, consider the following statement in GOAL:

DECLARE STATE LIST(LIST 3) WITH 3 ENTRIES OFF, OFF, OFF;

which would translate into the following HAL/S statement,:

DECLARE LIST_3 BOOLEAN ARRAY(3) INITIAL (OFF,OFF,OFF);

2-5

TERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

d) DECLARE TEXT LIST

The declaration of a text list in GOAL will be
directly translatable into declaring an array of character
values or character string data type in HAL/S. Thus,
for example, consider the following GOAL statement:

DECLARE TEXT LIST (INPUT OUTPUT MESS) WITH 2 ENTRIES
(PLACE ABOVE SWITCHES AS INDICATED),

(SWITCH SCAN IN PROGRESS)
WITH A MAXIMUM OF 36 CHARACTERS;

This would translate in HAL/S to the following statement:

DECLARE INPUT OUTPUT MESS CHARACTER(36)ARRAY(2)INITIAL
('PLACE ABOVE SWITCHES AS INDICATED','SWITCH SCAN IN
PROGRESS');

The second major form of organization of data in GOAL
is the Table. This is an internal organization effectively
in a row/column format combined with an implicit action
keyed to some "function designators" defined elsewhere in
the "Data Bank" of the GOAL program. The "function
designators" identify rows in this row/column format and a
user-supplied name identifies columns within this format.
The column name is optional and may be left out uniformly
throughout the whole table when it is declared. If column
name is left out, then columns may be referenced via sub-
scripting. A table can be declared with no data columns
which leads directly to the interpretation as if it were
"an array of functions". Each function designator is, in
effect, a hook to some piece of code or data type which
may be internal or external to the computer. It is assumed
to exist within some GOAL compilation called the data bank
and its name must be available to the compiler as a piece
of global information.

Another characteristic of these tables is that they
have a specific data type which must hold throughout the
whole table. There are quantity tables, numeric tables,
text tables, and state tables. A quantity table
has quantities for every entry into it, or a numeric table
has numeric GOAL data types associated with every entry.
The table name itself and all the column names are internal
names in that they are programmer-defined. It is only
the row names (i.e., the function designators), which are
externally defined and global. The actions which can occur

2-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

when you execute statements referencing these tables are
a READ, a WRITE, ASSIGNMENT, etc. These statements define
and use the values of function designators. The data
portion of the table is the place to keep copies of the
data after having defined them with function designators.
The important characteristics of these tables then is that
function designators implicitly fit into an I/O scheme
and are interpreted whenever they are used in a GOAL state-
ment that is to be converted to HAL. An example of the
equivalent form is in Chapter 4.0.

2.1.3 Procedural Statements

2.1.3.1 Prefixes. The GOAL language procedural statements
execute in the usual sequential fashion of a programming
language unless modified by explicit means. The key to
modifying the order of execution in GOAL is the procedure
statement prefix form. Any or all of three prefixes may
be applied.

1. A "step number" is used to reference the statement
as a label.

2. A "time prefix" causes a delay or a wait for some
absolute time.

3. A "verify prefix" is used to turn a statement
into the equivalent of an "IF" statement.

Both the time prefix and the verify prefix are inherently
simple to translate into HAL/S due to the fairly local
effect. The step number, because of its global significance
in the GOAL program, will ultimately require a more compli-
cated treatment.

a) The Step Number Prefix

The step number prefix of a GOAL statement may translate
into a HAL/S label or set of labels depending upon the
type of statement being translated. The translation is
direct and generates but a single label. Of course, the
translation algorithms will, in certain instances, generate
other labels for implementation purposes.

2-7

4TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

b) The Time Prefix

The translation of a GOAL time prefix into HAL/S
reduces to the insertion of an appropriate WAIT statement.

c) The Verify Prefix

The translation of a verify prefix into HAL/S will
depend upon its form. An IF...THEN verify prefix will
translate into a simple HAL/S IF statement, possibly with
a simple DO...END group to surround the translated statement.
The verify prefix will turn into an IF statement employing
the results of a comparison, an optional time dependent
true-part enclosed in a DO-END group, and an optional ELSE
clause used for an "output exception". For instance,

VERIFY <TEST POINT 3> IS BETWEEN 3 AND 5

ELSE....

Becomes

IF TEST POINT 3<31TEST POINT_3>5 THEN......

where in the HAL/S version the function designator
<TEST POINT 3> has been replaced by a HAL/S function
block which returns an appropriate value of the current
status of the test point.

2.1.3.2 External Test Action (Command/Response). "Command/
Response" is the GOAL term which means "I/O". The GOAL
language employs APPLY, ISSUE, SET and RECORD statements
to send data to the system under test. It reads responses
with the AVERAGE, READ and REQUEST KEYBOARD statements.
The general address term used with all these statements is
the "function designator", which can be interpreted as
an external data address, an I/O unit channel, a discrete
bit line, etc, depending upon the GOAL Data Bank definition.
In all cases, when the function designator is referenced
by one of these statements an appropriate linkage will be
generated to read data from or output data to the I/O device
in question.

Another way in which I/O through function designators
is performed implicitly is by reference in a statement.

2-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-184

Command/Response statements should provide no great
difficulties in translating to HAL/S assuming that the
full meaning of a GOAL Function Designator is made explicit
in each context of the GOAL language.

The most complicated (in terms of function) of the
command/response statements is the Average statement,
used for input of analog readings with a built-in averaging
function. This statement can be generated in-line in
HAL/S employing an iterative DO FOR loop surrounding appro-
priate calls to input routines for successive values of
the reading being averaged. All the other Command/Response
routines involve single operations upon data elements or
lists of elements.

2.1.3.3 Internal Sequence Control. The internal sequence
control statements of GOAL are discussed in this section.

The DELAY statement of GOAL takes two forms which have
the verbal interpretations of: a) "Wait x time intervals"
or b) "Wait until some condition is satisfied". The GOAL
syntax allows both forms to be in the same statement. Also
possible in GOAL is a specification of the units of time
in every time referencing statement. The DELAY statement
will become a WAIT statement in HAL/S with appropriate
conversion of time to the HAL/S clock units, and use of
an event expression for the function designator.

The GO TO statement of GOAL maps directly into the
GO TO of HAL/S with no change. The GOAL language restricts
GO TO targets to the local block so there is no semantic
difference between the two languages.

The STOP statement presents a problem in translation:
there is no semantic form of HAL/S which allows any state-
ment to be executed subject to operator command. The
translation of this form will have to be implemented by
some form of hook into the run-time facilities to symbolic-
ally look up restart points within the program. The
restricted case of an "indicate restart" will not require
this treatment since a series of labels is explicitly
listed, and can therefore be generated with the program.

The GOAL TERMINATE statement will have effects which
depend upon its exact position in the procedure and its
form. The simple TERMINATE statement will always translate

2-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

into the HAL/S RETURN statement, since it unconditionally
implies this action. The TERMINATE SYSTEM statement of GOAL
is in contrast a complete system stop and no such real form
exists in HAL/S. One mechanization of this form would be
to require that all processes in the equivalent HAL/S
system be scheduled from a common HAL/S program which,
following scheduling, reaches its CLOSE statement and an
implicit WAIT until all dependent processes are finished.
If all the programs we scheduled dependently, then if this
central program dies then all its derivative processes die
as well. Any dependent process can signal a request to
cancel the whole test system by a HAL statement:

TERMINATE GOAL MASTER PROGRAM;

With this approach, however, all tasks and programs scheduled
would have to be scheduled in a dependent manner. This
topic is discussed further in Section 3.2.

2.1.3.4 Discussion of REPEAT. The REPEAT statement in
the general case is a problem. The GOAL language has a
form of internal label called the "STEP NUMBER" which is
used to identify individual executable statements within
the GOAL test procedure or subroutine in question. In'
the translation of GOAL into HAL, these labels will have
to be translated in a manner which is to a large extent
dependent upon the global context of the procedure. In
certain cases, a step number will translate directly into
a simple statement label in the corresponding HAL program,
provided that the original GOAL program references the
step only from a GO TO context. In the more general case
of a label referenced from GOAL's reiterative REPEAT state-
ment, the use of global synthesis and reorganization of
code will be required in order to handle all the possible
cases. This latter case is intimately bound up with the
problem of translating the GOAL repeat statement, and
forms a major topic of Section 3.0.

2.1.3.5 Arithmetic/Logical Operations. The arithmetic/
logical operations of GOAL are performed by the ASSIGN
and LET EQUAL statements for state and arithmetic data
respectively. There is no such thing as character assign-
ment in HAL.

2-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138* (617) 661-1840

Both forms of statements are equivalent to the
assignment statement of HAL/S but with the additional
restrictions. First, the ASSIGN statement of GOAL applies
only to the STATE data type, and involves no possibility
for Boolean expressions involving state data. It is thus
the equivalent of a HAL/S assignment in which a BOOLEAN
on the left is set equal to a BOOLEAN on the right, or a
BOOLEAN function, or a single bit literal. No mention
is made of whether or not this form of an assignment may
be arrayed in GOAL.

The LET EQUAL statement is the equivalent of a HAL/S
arithmetic assignment statement, in which a suitable
arithmetic term on the left is set equal to an expression
on the right. The forms of expressions legal in GOAL are
a subset of the possible forms of arithmetic expressions
in HAL/S.

2.1.3.6 Execution Control. The execution control statements
of GOAL include the CONCURRENT, RELEASE, PERFORM SUBROUTINE
and PERFORM PROGRAM statements. The HAL/S equivalents of
these statements are described in this section.

The simplest translations in this set of GOAL forms
are PERFORM statement variations. The PERFORM SUBROUTINE
statement of GOAL is available in two forms: critical and
non-critical. The semantic interpretation GOAL gives to
CRITICAL is "of highest priority". In either case, the
basic mechanization of the PERFORM subroutine is via the
CALL statement; with the subroutine itself translated into
a HAL/S procedure.

In the case of a critical subroutine, the CALL must
be preceded by what is effectively an "inhibit all
software interruptions" action. This can be accomplished
in HAL/S by updating the priority of the current process
to a special "critical" priority which is higher than the
priority of all interrupt routines which must be masked.
Thus, the "PERFORM CRITICAL SUBROUTINE" statement of GOAL
would be equivalent to the following HAL/S sequence:

SAVED PRIORITY = PRIO;

UPDATE PRIORITY TO CRITICAL VALUE;

CALL xxxxx;

UPDATE PRIORITY TO SAVED PRIORITY;

2-11

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

The temporary SAVED PRIORITY is used to record the current

priority (the PRIO function reference) prior to resetting
priority to the CRITICAL VALUE during execution of the

critical subroutine (xxxxx).

The PERFORM PROGRAM statement of GOAL is equivalent
to the following sequence of HAL/S code which schedules

the program in question and then waits for its completion:

SCHEDULE PROGRAM X;

WAIT FOR 'PROGRAM X;

This sequence assumes that the process event declaration
"DECLARE PROGRAM X EVENT;" had been given previously.

The CONCURRENTLY PERFORM PROGRAM statement of GOAL is
effectively equivalent to a HAL/S SCHEDULE statement for

the program in question, subject to the variation that in
GOAL the step number of this statement serves as a "process
identification" when referenced in the RELEASE statement.
GOAL has no provisions for priority, distinguishing independ-
ent or dependent processes, or making conditions upon the
scheduling other than those needed for cyclic activation.
The only question to resolve in connection with the trans-
lation of this statement is whether or not multiple CONCURRENT
statements using the same program name are possible, in
which case HAL/S is incapable of doing the appropriate
scheduling because HAL/S allows only one process to be
scheduled off one program or task name at any given time.
This issue is discussed further in Section 3, where an
indirect approach using dummy task blocks is introduced.

In the case of the CONCURRENTLY VERIFY and/or the
CONCURRENTLY DISPLAY statements, the HAL/S equivalent
becomes much more complex due to the fact that these state-
ments define small concurrent tasks which are implicitly
scheduled at the same point as the definition. The HAL/S
handling of this statement would consist of generating
a TASK block in line containing the actions specified
(verify or display), then SCHEDULING the task so defined
with the same priority as the original task. In this
case, the RELEASE statement would translate into a HAL/S
TERMINATE directed at the process so generated and scheduled.

2.1.3.7 Interrupt Control. The GOAL interrupt control
statements consist of WHEN INTERRUPT and DISABLE INTERRUPT
statements. The translation of these forms into the HAL/S
language is the subject of this section.

2-12

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18,

The interrupt forms of GOAL involve either or both of
a GO TO action and a "PERFORM" action. Of these two, the only
available HAL/S form is the "PERFORM" equivalent. This
is realized in HAL/S by issuing a SCHEDULE statement with
an EVENT expression corresponding to the interrupt in
question as the activation criterion and with a priority
higher than any non-interrupt routine. Once the SCHEDULE
has been given, the interrupt action in question is effect-
ively a real time queue member set to activate whenever
the event expression becomes true. The complementary
action of the GOAL "INHIBIT" interrupt statement
would be achieved by issuing a "CANCEL" statement in the
corresponding HAL/S program.

The GO TO form of an interrupt action is not
directly possible in HAL/S. With some difficulty
(assuming this form of interrupt is desirable at all) it
will be possible to implement the GO TO action by creating
appropriate systems routines to raise a "pending interrupt"
error condition which can cause an ON ERROR statement with
the GO TO action to be activated. In such a case, the
interrupt event should be checked for at the target of
the GO TO, and the event must be latched; the INHIBIT
action in such a case could consist of a HAL/S ON ERROR...
IGNORE statement.

To conclude, a WHEN INTERRUPT...PERFORM statement of
GOAL maps into a SCHEDULE statement of HAL/S, with the
corresponding INHIBIT performed by the CANCEL statement;
and the WHEN INTERRUPT... GO TO of GOAL maps (in conjunction
with systems routines) into a HAL/S "pending interrupt"
error code amenable to the ON ERROR...GO TO statement,
with the ON ERROR...IGNORE performing the inhibit function.

2.1.3.8 Table Control. The ACTIVATE and INHIBIT table
statements concern control of function designator use
when referenced from a GOAL table. They essentially
control whether or not the particular function designator
and its row will be included in a reference to the whole
table. Given the translation of a GOAL table into HAL/S
equivalent forms as outlined in Section 4, the ACTIVATE
and INHIBIT statements present no difficulties and have
direct equivalents in the HAL/S code (see 4.2.7).

2-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2.1.4 System Statements

The GOAL Language System statements are primarily
concerned with the control of a GOAL compilation on
translation. As such, their effects are generally confined
to the translation process and are not evident in direct
form in the translator's output. Note, however, that
analogous HAL/S forms may be used in order to best generate
HAL/S equivalents of various GOAL constructs as a matter of
convenience. The problem of interpreting GOAL system
statements is left to Section 3, in which a more detailed
discussion of the system aspects of translation is presented.

2.1.5 Feedback Loop Limitations

There are no inherent HAL syntax feedback loop
limitations, which would be binding on GOAL. HAL syntax
feedback loop limitations are implementation dependent.

2-14

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184(

2.2 Other Feasibility Issues

Section 2.1 has presented various observations
concerning the translation of GOAL programs into a form
acceptable to the HAL compiler. This section will discuss
the broader problem of running HAL-written and GOAL-written
programs in the same computer. In order to give broad
scope to consideration of feasibility, the discussion
includes mention of inflight checkout situations. The
purpose of the discussion is to introduce and discuss
potential problem areas within the context of an overall
feasibility determination.

2.2.1 Combining GOAL and HAL Programs

When considering combining GOAL and HAL programs
into a single software system one may approach the problem
from several points of view. All of the following possi-
bilities assume that HAL is the major language and GOAL
programs are used only for checkout.

a. GOAL to HAL Translator. This method transforms
all GOAL data and program statements into
corresponding HAL data and program statements.
The results of the translation process are HAL
program and compool statements which are used
as input to the HAL compiler. Neither the HAL
language nor compiler are modified. The overall
process of creating, running and debugging a
GOAL process in this environment is depicted
in Figure 2-1.

b. GOAL to HALMAT Translation. The HAL compiler is
segmented into two distinct portions as shown
in Figure 2-2. The syntax analyzer is essentially
machine-independent and accounts for the major
portion of the compiler. It parses the source
code, checks for legal HAL constructs, provides
formatted HAL listings, .and performs all the
programmer interfaces required to produce reliable
static code. The output of the syntax analysis
is in the form of a standard intermediate language,
called HALMAT.

The code generator part of the compiler transforms
HALMAT into the machine code. As such, it embodies

2-15

4TERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

'
u

0
H

'
U

4
O

ot
O00

U
I-

E
-
4
-

S
I

to
U

I

.
H

14

4

I

S, r U1H

.
0k
0

0O

D
a

C
O

U
)

2
-1

6
IN

TE
R

M
E

TR
IC

S

IN
C

O
R

P
O

R
A

TE
D

* 701 C

O
N

C
O

R
D

A

VEN
U

E
* C

A
M

B
R

ID
G

E
,

M
A

S
S

A
C

H
U

S
E

TTS

02138
(617) 661-1E

Figure 2-2

HAL COMPILER

H1AL CO4PIL.:ER

IAL Object
ource I -SYNTAX CODE I achine

Code AL G TO Code

IIALMAT

Intermediate

2-17

ITERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

all the machine-dependent features of the compiler.
Instead of translating GOAL directly into HAL,
it is possible to translate GOAL into HALMAT.
An argument may be made for this case by realizing
that the translator is a piece of software, which
is assumed to be error free. It cannot produce
incorrect HAL syntax. Therefore, many of the
features of the HAL syntax analyzer would never
be exercised for mechanically translated GOAL.
Any of the source listings and software error
reporting features of the HAL compiler would only
produce indications relating to HAL source code.
This would be very difficult for a GOAL programmer
to understand.

All the GOAL error detection and output listing
features would have to be implemented in the
translator anyway. For these reasons one may
seriously consider producing HALMAT directly
from the GOAL translator. The GOAL translator
would become the syntax analyzer of the GOAL
compiler and would product HALMAT as an inter-
mediate language.

c. GOAL as a Subset of HAL. A possibility exists
that GOAL could be made a subset of HAL. One
may eliminate this approach almost immediately
by realizing that the syntactic constructs of
GOAL and HAL are quite different. A major modi-
fication to the HAL language would have to be
made. Unless GOAL programs constituted a large
portion of the programming, this approach would
be costly and could delay the present plans for
HAL implementation.

d. GOAL Interpreter Written in HAL. Another possi-
bility exists, whereby GOAL programs are executed
interpretively. The interpreter would be written
in HAL. In a sense, this interpreter can be
viewed as a run-time GOAL-HAL translator.
However, implicit in this approach is some sort
of off-line syntax analysis for GOAL software
error detection and output listing.

One might decide to use this interpretive approach
for two reasons. First, if a large amount of GOAL
code is anticipated then a potential memory
savings is possible. Second, the interpretive
approach would make the dynamic execution of GOAL

2-18

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184'

statements more controllable by the operator.
The penalties are, of course, speed of execution
and the cost of developing the interpreter.

The Intermetrics work statement specifies the GOAL-HAL
translator approach. The use of HALMAT can still be
considered in this context. For the most part, the trans-
lator approach is assumed in the remainder of this section.
However, if GOAL were to be combined with HAL into a single
operating environment then the question discussed above
should be given more detailed thought, and HAL interpretive
execution of GOAL is also a candidate approach.

2.2.2 Definition of a Translator

There are a number of requirements which a transla-
tor must meet. This is independent of whether the transla-
tion is made into HAL or HALMAT. Three basic language
elements must be translated; data types, procedural state-
ments, and system constructs.

a. Data Types. Both GOAL and HAL possess their own
data types. A definition of how to represent
the unique GOAL data types in terms of HAL data
types must be made before the translation of
procedural statements is performed. For example,
GOAL numeric, quantity state and text elements
must find their counterpart in HAL. Lists
and Tables must be constructed out of HAL arrays
and/or structures.

b. Procedural Statements. After the data types
translations have been made then a correspondence
between the various procedural statements must
be determined. This correspondence involves GOAL
command, response, sequence control, arithmetic,
execution control, table control statements.

c. System Constructs. This is an area, on a higher
logical plane than data and procedural statements,
which must be considered in order to produce
satisfactory GOAL execution. System constructs
involve the translation of the fundamental GOAL
concepts such as the Data Bank, GOAL Programs,
and some of the GOAL interactive control sequences.
These concepts form the environment in which GOAL
statements compile and execute.

2-19

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Many of the system constructs found in GOAL are normally
not present in other languages since they are services
provided by an operating system. For example, the idea of
REVISION numbers is a GOAL semantic features. Conventionally,
this is handled by the operating system's data management
function. By introducing revision control into the language
directly some sort of data management system is implicitly
assumed. This must be provided by the operating system
and forms a major interface with the GOAL-HAL translator.
Discussion of these system construct issues is deferred to
Section 3.0 and its discussion of Special Problems.

2.2.3 Run Time Issues

One of the main reasons for considering a GOAL-HAL
translation process is to force HAL-generated code to be
the only software interface with the operating system.
However, in writing GOAL programs one cannot in reality,
ignore the operating system. The operating system provides
a large number of services to applications level software
(a GOAL program being a particular application level module).
For example, the operating system provides a timer control,
process control, I/O services, data management control,
memory control, etc. The GOAL programmer must be aware of
which GOAL features are supported by the operating system
and which features are not. This could potentially be a
limiting factor.

2.2.4 Inflight Operation

The major emphasis of the present study is to demon-
strate the feasibility of a GOAL-HAL translation process to
be used on the ground for pre-flight checkout. That is,
while the vehicle is on the ground the onboard computers
would participate in the checkout process.

If, indeed, the idea proves feasible and cost-
effective, then one must naturally inquire about the
possibility of using GOAL for onboard checkout during flight
and orbital operations as well as on the ground.

There are a number of fundamental differences between
ground and flight operations. These differences make the
use of GOAL for ground-based checkout much simpler than
during flight. Some of these issues are:

2-20

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18

a. Efficiency. One might inquire into how much
efficiency is lost going through a translation
process from GOAL-to-HAL. Efficiency is defined
in terms of space (amount of memory used) and
time (execution time of program). Efficiency
becomes a big issue for in-flight programs
especially memory size. On the ground memory
overlap may be used, thus compensating for an
inefficient translation process. Ground opera-
tions can employ a simple straightforward
translation with minimal regard for efficiency.
In-flight GOAL programs would require some sort
of optimization process to utilize fully the
limited resources of the flight computer.

b. Flight Qualified Software. A program executed
during flight would have to be flight-qualified.
This includes GOAL programs as well. Flight
verification can be a very expensive process.
However, ground checkout software need not be
so rigorously verified.

c. GOAL-HAL Partitioning. If both GOAL and HAL were
used in flight then questions arise as to which
processes are written in GOAL and which in HAL.
Where are the interfaces between the two languages?
The utilization of two languages in flight can
only complicate the control exercised by the
operating system. Whether the readability and
ease of programming which GOAL provides to the
test engineer (and presumably which HAL doesn't
provide) justifies the complication introduced
by a two language system, is not clear.

2.2.5 Debugging GOAL-Translated Programs

The introduction of GOAL programs into a HAL-compiled
environment produces some interesting problems during the
software development process. Software errors are discovered
both statically (by a compiler) and dynamically (by the
Operating System or the software designer).

The software error detection normally provided by a
compiler must be provided by the translator. See Figure
2-1. These error types include any syntax-related errors
and inconsistencies. By definition, the HAL compiler would
not detect any GOAL syntax errors since it is assumed that
the output of the translator is perfect.

2-21

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

An error discovered during run time by the operating
system must, of necessity, be related back to either
HAL statements or variables. It would be extremely diffi-
cult to relate them to GOAL statements and variables.
Any variable trace would have to be specified in terms
of HAL variables and not GOAL variables. GOAL programs
are two languages removed from the machine. One can appre-
ciate the debugging problem by realizing that the GOAL-HAL
translation process can be performed off-line. The results
are HAL statements. The logic expressed in GOAL, must
obviously, be maintained in the translated HAL form. However,
the readability of the HAL produced by the translator will
not be as clear to the GOAL programmer as the original GOAL
statements. Debugging is made more difficult by the trans-
lation process.

2.2.6 Software Reliability Issues

One of the major attributes of the HAL language
are those features which tend to produce code more reliable
than that produced at the machine level by hand. Some
of the HAL reliability features include:

a. Block Structures and Name Scope

b. COMPOOL and Access Control

c. Various Debug and Trace Features

d. Explicit Declaration of all Data Elements

In developing a combined GOAL-HAL environment one
must make certain that none of the reliability-enhancing
features of the HAL language are compromised. A combined
language system is possible only if it is implemented
with care and with full appreciation for all the features
of both languages as well as careful resolution of the
conflicts between the languages.

2-22

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18
1

3.0 SPECIAL PROBLEMS AND SOLUTIONS

3.1 Individual GOAL Features

3.1.1 Revision Control

A revision number may be applied in specifying a
program or a data bank name. BEGIN DATA BANK and BEGIN
PROGRAM must use a REVISION suffix following the name.
The invocation of a program or data bank by means of a
PERFORM, USE, or FREE statement may optionally utilize the
revision number in conjunction with the name.

If the revision number is always used then it becomes
a fixed part of the name in the HAL/S equivalent form.
However, if the revision number is not employed then either
the run time operating system, the linking loader, or some
special pre-run program must resolve the addressing problem.
The GOAL manual indicates that when the revision number is
not employed then the first program or data bank that the
language processor encounters will be used regardless of
the revision label.

The following suggestions are offered concerning
revision control:

a) No run time decisions should be made by the
flight computer operating system based upon
revision number. Such run time decisions
inherently create unreliable software situations.
The program name including revision number must
be determined statically prior to run time.

b) If revision labels are used, they must be used
all the time. A program or data bank should
always make reference to the revision label. There
should be no implicit reference. This essentially
makes the revision label part of the name.

3-1

TERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

3.1.2 STOP and Restart

There are two forms of STOP in GOAL, restricted and
unrestricted. The restricted form is given a specific list
of start-up points. The unrestricted form allows arbitrary
statement numbers to be selected for start-up points. Both
forms are equivalent to an appropriate computed GO TO or
similar form following a simple halt. This could be imple-
mented in HAL, with a look up table and the DO CASE state-
ment. Essentially, every program would have to have its
own little stop-reentering point so that it could have its
DO CASE implemented when the stop occurs. This would be
awkward.

The rationale for desiring to STOP and restart at
pre-selected points during a checkout procedure is clear.
However, the ability to restart at any statement seems to
be unnecessary. It would be extremely difficult to
verify that a program will perform satisfactorily
if it is started at an arbitrary point. To implement the
stop and restart anywhere in HAL is equivalent to a FORTRAN
assigned GO TO using a control variable. The FORTRAN
assigned GO TO has a label form in which you assign a name
to an integer and then you go to this particular label or
name. HAL has eliminated this particular form intentionally,
as being unreliable due to the fact that it is calculated
at run time. The address is not fixed in the compiler. It
is recommended that this unrestricted form of the STOP state-
ment be eliminated from GOAL for the same reason.

3.1.3 Repeat

The following discussion exposes the complexity
of translating the Repeat statement, with all its implica-
tions, into HAL.

The GOAL language has a form of internal label called
the "STEP NUMBER" which is used to identify individual
executable statements within the GOAL test procedure or
subroutine in question. In the translation of GOAL into
HAL, these labels will have to be translated in a manner
which is to a large extent dependent upon the global context
of the procedure. In certain cases, a step number will
translate directly into a simple statement label in the
corresponding HAL program, provided that the original GOAL
program references the step only from a GO TO context.
In the more general case of a label referenced from GOAL's

3-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18

iterative REPEAT statement, the use of global synthesis
and reorganization of code will be required in order to
handle all the possible cases. This latter case is
intimately bound up with the problem of translating the
GOAL statement, and forms the major topic of this section.

A step number is used in the following senses:

a) as a reference point for branching

b) as a delimiter of a block (internal) of code
referenced from a REPEAT statement

In translating a GOAL program into the HAL/S language, the
first step may be to analyze the GOAL program's step numbers
for their ultimate usage as follows:

a) identify all labels which are the targets of
GO TO statements within the procedure

b) identify the objects of all REPEAT statements, in
terms of the starting and ending statement step
numbers, static overlap of ranges, etc.

The first result of this analysis will be a list of step
numbers with various possible combinations of references:

1. Unreferenced

2. Referenced in one or more GO TO's

3. Referenced as the start or end of REPEAT group

4. Referenced as a GO TO target and as the start or
end of a REPEAT group.

The second result will be a list of REPEAT groups broken
down into several classes depending upon their physical
relation to all the other REPEAT groups in the GOAL test
procedure or subroutine:

1. Independent (not nested within another REPEAT and
not overlapping another REPEAT group).

2. Nested. This form of REPEAT group is entirely contained
between the starting and ending labels of another
repeat group.

3-3

ERMETRICS INCORPORATED -701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3. Overlapping. This form of REPEAT group has either
its opening or closing statement (but not both)
contained within the scope of another REPEAT group.
The common statements can be a single statement or

any number of statements.

It should be noted that the physical nesting of GOAL's

REPEAT groups has no effect upon the dynamic execution which

occurs; it is merely a static blocking of statements known

at compile time. In contrast, the dynamic relations which

occur enter when a given REPEAT group contains a REPEAT
statement referencing another REPEAT group. Thus, in GOAL

the local structure of iterative forms has no relation to

the physical layout of program text as it does in the HAL/S
nested DO forms.

Generating the equivalent of a GOAL REPEAT group
in the HAL/S language will prove to be fairly complicated.
For instance, consider the case of overlapping ranges:

I REPEAT S 10 TO S 15 FOR 3 TIMES;

II REPEAT S 13 TO S 19;

III REPEAT S 16 TO S 35 FOR 5 TIMES;

The three distinct overlapping REPEAT groups can be depicted
as follows:

S 13

S 15

S 16

S 19

These three groups can be divided into 4 zones, with each

zone being made a procedure with the name indicated below:

OE START -rlI NAME

S 10 S 12* APROC

S 13 S 15 B PROC

@ S 16 S 19 CPROC

S 20 S 35 D PROC

3-4

INTERMETRICS INCORPORATED , 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1f

The translation to HAL/S of the three GOAL state-
ments then becomes:

1: DO FOR J = 1 TO 3;
CALL A_PROC;

CALL B_PROC;

END

II. CALL B_PROC;

CALL C_PROC;

III, DO FOR J = 1 TO 5 ;
CALL C_PROC;

CALL D_PROC

END;

This particular translation does not involve any GO TO
actions from within REPEAT groups to points outside their
range. This may be handled by further partitioning the
code and using control variables as arguments of the trans-
lator-generated procedures.

The above discussion clearly demonstrates the
complexity involved in treating overlapping REPEAT groups.
REPEAT is obviously a necessary construct in GOAL especially
when one realizes that there is no DO form. However, it
is difficult to understand why the general overlap of
REPEAT groups is required. Other modern programming higher
order languages such as PL/1, HAL, FORTRAN, etc. do not
allow the overlapping of program blocks. Programming
limitations have not been discovered due to the lack of
this feature.

It is therefore suggested that:

a) REPEAT groups be limited to non-overlapping
groups with the grouping performed by the
programmer.

b) Overlapping REPEAT groups should be flagged as
an error condition by the translator compiler.

3-5

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

c) The generality of arbitrary REPEAT groups
tends to complicate the software verification
process.

3.1.4 Software Interrupts

The software interrupt capability, with the conditional
GO TO and RETURN options, presents some unique problems for
a GOAL-to-HAL translator. There are two basic GOAL constructs
to consider. The GOAL statement,

WHEN INTERRUPT X OCCURS PERFORM SUBROUTINE(SUB);

can be handled by a HAL SCHEDULE statement

SIGNAL ACTIVE X ON;

SCHEDULE SUB ON INTERRUPT X & ACTIVE X & INTERRUPTABLE

PRIORITY (PRIO+1);

INTERRUPT X is a translator defined event corresponding
to the GOAL defined interrupt function designator labeled X.
ACTIVE X is a translator defined event which is SIGNALLED ON
by the WHEN INTERRUPT statement and SIGNALLED OFF by the DISABLE
statement. INTERRUPTABLE is a global pulsed event which is
signalled at the end of every GOAL translated statement. This
guarantees that GOAL programs are only interrupted at the end
of GOAL statements. It should be noted that the interpretive
execution of GOAL statements would require essentially the same
mechanism. PRIO is a HAL/S built-in function whose numeric
value is the priority of the process which is currently running.

The modifier "AND RETURN TO STEP 900" can be applied
to a WHEN INTERRUPT statement in GOAL. This form has no
corresponding HAL construct. It can only be implemented by an
additional element in the HAL/S language. This element would
take the form

ON event-expression statement;

event expression::= INTERRUPT X & ACTIVE X & INTERRUPTABLE

statement::= DO; GO TO; SIGNAL INTERRUPT X OFF; END;

DO; CALL SUB; SIGNAL INTERRUPT X OFF; END;

DO; CALL SUB; GO TO; SIGNAL INTERRUPT X OFF; E!

It should be noted that the event variables INTERRUPT X,
ACTIVE X, INTERRUPTABLE must be declared (by the translator)
for the HAL/S compiler, at the beginning of the program.

3-6

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184

For example, the GOAL statement

WHEN INTERRUPT X OCCURS PERFORM SUBROUTINE (SUB) AND

RETURN TO S900;

translates into:

SIGNAL ACTIVE X ON;

ON INTERRUPT X & ACTIVE X & INTERRUPTABLE

DO;

CALL SUB;

SIGNAL INTERRUPT X OFF;

GO TO S 900;

END;

The GOAL Statement

WHEN INTERRUPT X OCCURS GO TO STEP 900;

will translate into:

SIGNAL ACTIVE X ON;

ON INTERRUPT X & ACTIVE X & INTERRUPTABLE

DO;

SIGNAL INTERRUPT X OFF;

GO TO S900;

END;

If the RETURN TO and GO TO options of the WHEN
INTERRUPT statement are disallowed then the new HAL/S
construct would be unnecessary. The form was considered
in the specification of the original HAL language, but
was rejected because of its potential misuse and its inherent
contribution to software unreliability.

3.1.5 Non-GOAL

Non-GOAL subroutines may be incorporated into a Data
Bank by means of the LEAVE and RESUME statements. These
statements are system directives and as such do not produce
any executable HAL code. The Non-GOAL subroutine which is
bracketed by LEAVE and RESUME are combined with other GOAL
subroutines and programs during the link edit process.

3-7

ERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

3.1.6 Data Bank

The "Data Bank" is a concept introduced into the
GOAL language for a number of reasons.

a) The concept will isolate the test programmer
from the details of manipulating the test
equipment.

b) It allows the test programmer to access test
points in a concise English format which is more
meaningful to the logic of the test sequence.

In a sense, the Data Bank provides a cross reference between
the test programmer's English-like statements and the para-
meters required by the I/O routines to access a particular
test point.

The "Data Bank" concept involves more than a simple
language construct which is ultimately translated into
machine code. The creation, control and use of the Data
Bank imposes requirements upon the run time operating system
as well as upon the translator (or compiler). In addition,
there is an implicit data management system involved in the
generation of the Data Bank.

Figure 3-1 shows the basic elements involved in the
Data Bank system. A discussion of these elements is
important in order to ascertain the impact upon the trans-
lator.

3.1.6.1 Data Bank Creation. Fundamentally, management and
engineering must indicate to the test programmer all the
system test points and sequences, what they measure, and
how to invoke them by means of a GOAL function designator.
A formal documentation system for the test engineers must
be developed and maintained. In addition a computerized
data management system must be implemented to control the
creation of the Data Bank and provide revision control.
The Data Bank is compiled independent of a GOAL program.
It provides a common pool of information for use by programs.
It can be modified, via revision control and specified
statements.

3-8

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18

MANAGEMENT AND
ENGINEERING

PROGRAMMER

\\\ //// PRE-TRANSLATE
DATA TIME

/ MANAGEMENT
l' SYSTEM

///" II \\\\\\ FILE
SYSTEM
(library)

DATA

BANK

TRANSLATE
TIME

GOAL TRANSLATOR

SOURCE
STATEMENTS (COMPILER)

- - - - - - - COMPOOL - - - -

LINKS AND DATA BANK

POINTERS TO TABLE
COMPOOL

RUN TIME CODE

RUN

RUN TIME TIME
OPERATING /-- i/O

SYSTEM I COMMANDS

SUBROUTINE
CALLS

Figure 3-1

Elements of Data Bank System

3-9

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.1.6.2 Data Bank Control. Even though Data Banks have
been created, each Data Bank must be specifically controlled
by use of the GOAL USE and FREE statements. These state-
ments are directives to the translator. They do not produce
any code. They are provided to allow controlled access
rights to the various Data Banks and enable a translate time
error detection capability if unauthorized access to a
Data Bank is attempted. The interface between the trans-
lator and Data Bank provides a control table for this purpose.

3.1.6.3 Translator Inputs and Outputs. The translator's
role in terms of Data Bank creation, control, and use can
be determined by investigating the various inputs and out-
puts to the translator.

There are two input sources to the translator. These
are GOAL source statements and the Data Bank. The GOAL
statements and primitives involved with the Data Bank
include:

a) USE, FREE and SPECIFY Data Bank

b) BEGIN and END Data Banks

c) Function Designators

d) Revision Labels

The Data Bank is a creation of the data management system.
The data management system contains all the possible test
point access information. This information is placed into
the data bank by means of the SPECIFY statement. A particular
program may eliminate entries in the Data Bank by means of
the FREE statement and may direct the compiler to include a
given Data Bank by means of a USE statement. Basically,
all the GOAL system constructs involve communication between
GOAL source code and the Data Bank. These statements
would not be involved in the GOAL-to-HAL translator. The
syntax analyzer (the front end of the GOAL compiler) would
be the same, independent of whether a GOAL-to-HAL translator
was used or not. The impact of the Data Bank concept upon
the GOAL system is very large. However, the impact upon a
GOAL-to-HAL translator can be made small (depending of
course, on what is included in a translator).

The GOAL SPECIFY statement causes the translator to
place in a HAL COMPOOL block all the information required
by the I/O routines in the operating system to access the

3-10

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

given test point. In addition, any specialized routines
needed to access a given test point must be specified.
The GOAL function designator causes the appropriate run
time code along with the necessary linkages and COMPOOL
pointers to be generated. The details of this process
are very dependent upon the run time operating system.

If one considers function designators to be external
test points which are accessed by means of a channel number
then each specific function designator might be replaced
by a HAL FILE statement containing two literals:

Ci , which indicates the ith channel

Ai , which indicates the ith address

For example, the function designator <TEST POINT 5> might
be accessed by channel Ci and address Ai. The equivalent
HAL form would then be:

FILE(C i, Ai)

The Data Bank actually supplies the value of Ci and Ai .These were previously generated by the Specify statement*.

A possibility exists that certain test points are not
directly addressable and require a complex set of actions
to access them. These actions can be very device-dependent.
For these situations, specialized I/O routines must be
written to service these devices. If the Data Bank indicates
that a specialized subroutine is required then the HAL
translation becomes a CALL statement to that routine.

Consider the following example of the specification
and utilization of a Data Bank element.

* This method is an illustration of an equivalent HAL/S
I/O form. Final decisions will be based on the I/O
available in HAL/S under the FCOS.

3-11

INTERMETRICS INCORPORATED -701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

SPECIFY <TEST POINT 5> AS SENSOR USING SUBROUTINE
(CONVERT) *CH3, ADDRESS12;

The data management system extracts from the SPECIFY
statement all the pertinent information and places it
in the Data Bank. When function designator <TEST POINT 5>
is encountered by the translator, Data Bank information
is accessed through a control table as illustrated in
Figure 3-2. The following HAL code is produced.

X = FILE (CH3, ADDRESS12)

CALL CONVERT(X) ASSIGN TEST POINT 5;

The HAL compiler and the operating system will use CH3,
ADDRESS12 to provide the details of the I/O.

3-12

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

CONTROL TABLE DATA BANK

<TEST POINT 5>

USE INPUT
BIT CH3

POINTER ADDRESS12
CONVERT

ERROR

HAL CODE

X = FILE (CH3, ADDRESS12)
CALL CONVERT(X) ASSIGN TEST-POINT-5;

Figure 3-2

Function Designator Access of Data Bank

3-13

ITERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

3.2 The GOAL Master Program Concept

3.2.1 Overall Organization

There are several translation and mapping problems
which can be handled together by a single unified
strategy - the concept of a "GOAL Master Program" written
in HAL, produced by the translator program, and responsible
for coordinating all the HAL/S blocks produced by the
translation process. The problems which lead to use of
this strategy are several:

a) GOAL has a "TERMINATE SYSTEM" statement which
is supposed to cause "complete GOAL application
program system shutdown". Thus, a means must be
provided to make its effects global to all
translated GOAL modules at execution time.

b) GOAL allows a "CONCURRENTLY PERFORM PROGRAM"
statement with no restrictions on the number of
such statements referencing a single PROGRAM
and how many such concurrent uses exist simultan-
eously off a single program module.

c) The set of translated GOAL programs have their
own internal system of software interrupts and
other signals which, for reliability, should be
kept self-contained to prevent unwanted inter-
action with the other HAL/S applications software.

In order to treat these problems properly, a GOAL Master
Program should be provided, with the following characteristics:

a) When the GOAL system is to be initiated in the
flight computer, it is the GOAL Master Program
which is scheduled and executed.

b) When the GOAL system is to be shutdown by a
TERMINATE SYSTEM" action (as translated from the
GOAL source into HAL/S), the effect is achieved
by a HAL/S TERMINATE with the name "GOAL MASTER
PROGRAM" as the object of the action (i.e. the
name of the highest level process in the GOAL
section of the software).

c) Each GOAL program which is to be part of the
running GOAL system will become a single HAL/S

3-14

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184'

Procedure within the GOAL Master Program, nested
at the program level. If the original GOAL
Program is subject to multiple concurrent
perform statements, then real time attributes
of REENTRANT or EXCLUSIVE will have to be applied
in order to assure no conflicts.

d) Each PERFORM Program statement, whether with a
CONCURRENT statement or not, will generate a
uniquely named HAL/S task block nested at the
program level. The executable action "PERFORM
PROGRAM" will consist of a SCHEDULE for the task
so generated, optionally followed by a WAIT for
the end of the task if it is not a concurrent
PERFORM. This task block is a dummy whose sole
purpose is to execute a single statement: A CALL
to the appropriate GOAL PROGRAM as translated into
a HAL/S procedure.

e) At the GOAL MASTER PROGRAM level, event variables
can be maintained as software interrupts available
to all the GOAL system's blocks, for use as
described in Section 3.1.4.

Within this strategy, the GOAL-to-HAL/S translator performs
a range of functions:

a) It must act as a source level link editor,
combining all the GOAL programs required for a
given system into a common framework for submission
to the HAL/S compiler.

b) It must resolve all references to various GOAL
source modules and incorporate them in the output
as a self-consistent and complete HAL/S package.

c) It must translate each individual GOAL component
as a self-contained entity within the framework
of the GOAL MASTER PROGRAM block to be created.

In order to support such a GOAL MASTER PROGRAM yet still
allow modular compilation of the GOAL programs, two varia-
tions of compiler operation are required:

a) A single-program translation in which emphasis
is placed on analyzing a single component of the
GOAL system for syntax errors. This type of
compilation is primarily for preliminary testing.

3-15

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

b) A complete system compilation in which all
programs referenced in the GOAL test system are
gathered into appropriate libraries translated as
Procedures and generated Tasks, and merged into
a single HAL/S Program - The GOAL MASTER PROGRAM
and all its subsidiary tasks and procedures as
described above.

Figure 3-3 shows the general conception of translator
operation required to produce the GOAL MONITOR PROGRAM.
The figure illustrates that a whole system of GOAL programs
must ultimately be combined via the translator into a
single integrated HAL/S program.

Figure 3-4 shows the "output" of the translator (the
GOAL MASTER PROGRAM) and identifies several of its components
and their derivation from .the GOAL inputs. In the example
which follows, the GOAL Master Program is explored in some
more detail.

3.2.2 GOAL Master Program Example

The preceding has described the general outline of
a HAL/S organization which will adequately handle the
GOAL-HAL translation problems of concurrency and of certain
systems statements. In the discussion which follows, the
mapping is set forth in a specific example.

Suppose that the GOAL test is to consist of six GOAL
programs called TEST A, TEST B, TEST C, TEST D, TEST E,
and TEST_F, and that the following relations hold:

1. TEST A and TEST B are to be initiated by system
start-up procedures.

2. TEST A PERFORMS TEST C AND TEST D, and
concurrently performs TEST E from two different
locations.

3. TEST B CONCURRENTLY PERFORMS TEST C, TEST E,
and TEST F.

4. TEST D CONCURRENTLY PERFORMS TEST F and calls
TEST E.

3-16

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

GOAL
PROG. A

GOAL
PROG. B(GOAL

MASTER

PROGRAM

(INCLUDES ALL GOAL

HAL/S PROGRAMS AS NEST-

ED PROCEDURE

BLOCKS)
PROG, D

DTRANSLATION

BANKS PROCESS

SYSTEM OF GOAL TEST

PROGRAMS

INPUT Figure 3-3 HAL/S OUTPUT

Figure 3-4

GOAL MASTER PROGRAM: PROGRAM;

PROG A: PROCEDURE REENTRANT;

SCHEDULE PROG B CALL_1;

GOAL
PROG. A

CODE detailed code

* AN ENTIRE SYSTEM

"PERFORM (PROG B);" OF GOAL PROGRAMS
CLOSE PROG A; BECOMES THIS HAL/S

PROGRAM

0iPROG B: PROCEDURE REENTRANT;

GOAL detailed code
PROG. B
CODE

CLOSE PROG B;

PROG B CALL 1: TASK;
translator-generated

PROGB CALLl: TASK;

task calls PROG.B; CALL PROGB;
When scheduled in "perform CLOSE PROG B CALL 1;
program"

translator-generated SCHEDULE PROG A CALL_1;
initial call

CLOSE GOAL MASTER PROGRAM;

This system was imagined in an ad-hoc fashion to
illustrate the process of organizing the GOAL MONITOR PROGRAM;
it does not necessarily correlate to any real-system. The
process of analyzing begins by tabulating the relationships:

Program Scheduled By

TEST_A System

TEST_B System

TEST_C TEST A, TEST B

TEST D TEST A,

TEST_E TEST B, TEST D, (2) TEST A

TEST F TEST B, TEST D

Since each reference to a GOAL program with or
without arguments causes a separate task block to be
generated, there will be 11 task blocks generated in this
example, labeled:

TEST A SYSTEM,

TEST B SYSTEM,

TEST C A, TEST CB

TEST D A

TEST E A, TEST E A2,

TEST E N

TEST ED,

TEST F D, TEST F B

The suffixes here are mechanically derived from
the label of the referencing block; thus when Block D
references Block E, the task name is TEST E D.

The HAL/S program layout in this example can be
diagrammed as follows:

3-19

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

GOALMASTERPROGRAM: PROGRAM;

TEST A: PROCEDURE;

TEST B: PROCEDURE;
Procedures Referenced

TEST_C: PROCEDURE; by Dummy Tasks (One
Procedure for Each

TEST_D: PROCEDURE; GOAL Program)

TEST E: PROCEDURE;

TEST F: PROCEDURE;

TEST A SYSTEM: TASK;

TEST B SYSTEM: TASK;

TEST C A: TASK;

TEST D A: TASK;

TEST E Al: TASK;

TEST E A2: TASK; Dummy Tasks ReferencedTESTEA2: TASK; by Procedures or System

Initiation SCHEDULE
TESTEB: TASK; Statement

TEST E D: TASK;

TEST F D: TASK;

TEST F B: TASK;

3-20

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18,

The program level code in this example would consist of
statements needed to concurrently initiate the two blocks
TEST A and TEST B when GOAL MASTER PROGRAM is initiated.
This-code is simply:

SCHEDULE TEST A SYSTEM;

SCHEDULE TEST B SYSTEM;

When executed, these two statements cause the two tasks
mentioned to be immediately entered into the FCOS queues
as active tasks, (i.e. subject only to priority restrictions
on running). The task block for TEST A SYSTEM would have
the following form, which is completely typical of all
11 Task blocks in the system:

TEST A SYSTEM: TASK;

CALL TEST A;

CLOSE TEST A SYSTEM;

When TEST A (as initialized) enters the HAL/S
equivalent of the GOAL statement:

"PERFORM TEST C"

the following HAL/S code will be used:

SCHEDULE TEST C A;

WAIT FOR 'TEST C A;

Because the "non-concurrent" PERFORM is equivalent to the
CALL operation, sequential execution is assumed; thus a
WAIT for completion of the task is required, using the
"task event" TEST C A which is true so long as TEST C A
is in the FCOS real time queues. This example of a simple
PERFORM translation assumes that the HAL/S statement

DECLARE TEST C A TASK EVENT;

appears in the declare group of TEST_A, the "calling program".

As execution continues, the HAL/S equivalent of
"CONCURRENTLY PERFORM PROGRAM TEST E" is encountered from
within TEST_B. Here, the HAL/S equivalent is simply a

3-21

4TERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

schedule statement without the wait required to simulate
a CALL linkage:

SCHEDULE TEST E B;

The effect of the HAL/S statement here is to enter
TEST E B as a new process contending for resources on the
machine.

Later on, during execution of TEST F, it may become
necessary to terminate the whole GOAL system with the
"TERMINATE SYSTEM" action. With the organization outlined,
this can be achieved by the HAL/S statement:

TERMINATE GOAL MASTER PROGRAM;

When this statement executes, since all the nested code
of the various tasks is dependent upon the program level,
the entire system is ended by ending the global program.

This demonstrates an overall strategy of translation
which will enable the translator to implement HAL/S
equivalents of GOAL TERMINATE and concurrently PERFORM
PROGRAM statements, as applied to the specific case
illustrated.

3-22

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-184C

4.0 GOAL-TO-HAL MAPPING

In this section, the proposed relationships between
the GOAL and HAL statements are described in some detail.
This description has been designated "mapping" in order
to distinguish it from the ultimate objective which is a
translator specification. Mapping will give an explanation
or example of each complete GOAL statement. A Specification
would rigorously define all variations, permutations, and
combinations of each GOAL statement and is beyond the scope
of this study.

4.1 Declaration Statements

4.1.1 Single Data Type

GOAL Statement:

DECLARE NUMBER(RESULTS);

Purpose:

This statement declares a numeric data item with
the symbolic name (RESULTS) for purposes of general computa-
tion within the GOAL program.

Equivalent HAL/S form:

DECLARE RESULTS; This statement will declare an
unarrayed single precision scalar variable which can be used
in the same context as the corresponding GOAL form.

4-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

GOAL Statement:

DECLARE QUANTITY (OFFSET) = .5 PSI, (PUMP PRESS);

Purpose:

This statement declares a GOAL "quantity" (a real
number and an associated dimension) as a variable for use
in a program. Since the units associated with these enti-
ties exist for annotation purposes only, the equivalent
HAL/S declarations include a scalar declaration and a
character string dimension.

HAL/S Equivalent Form:

DECLARE OFFSET INITIAL(0.5), DIM OFFSET CHARACTER(6)
INITIAL('PSI'), PUMP PRESS, DIM PUMP PRESS CHARACTER(6);
Note that the initialization value of 0.5 was provided in
the GOAL form as a compile time assignment (the equal-sign)
which becomes the initial value 0.5 in the HAL/S form.
The GOAL declaration becomes an equivalent multiple HAL/S
form. The 6-character "DIM" fields of each quantity serves
to hold its current unity value during execution.
--

GOAL Statement:

DECLARE STATE (FLAG A) = ON, (FLAG B);

Purpose:

This statement is used in the context of a GOAL
program to declare the existence of the single bit booleans
FLAG A and FLAG B. The initial value of the variable FLAG A
is set to be ON. FLAG B is not initialized.

Equivelant HAL/S form:

DECLARE BOOLEAN, FLAG A INITIAL(ON), FLAG B;

4-2

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

GOAL Statement:

DECLARE TEXT(ERROR MESSAGE) = (6D10 BATTERY VOLTAGE LOW);

Purpose:

This statement is used in a GOAL program to declare a
fixed character message which will be used in some I/O
operation. Since there.is no character manipulation or
assignment in GOAL, this message must always be either fixed
or defined in some input operation.

Equivalent HAL/S statement:

DECLARE ERROR MESSAGE CHARACTER(24) INITIAL('6D10 BATTERY
VOLTAGE LOW');

4.1.2 List Type

GOAL Statement:

DECLARE NUMERIC LIST(LIST NUM) WITH 4 ENTRIES;

Purpose:

This statement declares to the GOAL compiler that
the programmer wishes to create a linear array of 4 numeric
elements without any initialization.

Equivalent HAL/S form:

DECLARE LIST NUM ARRAY(4);

GOAL Statement:

DECLARE NUMERIC LIST (ROOT 3) WITH 10 ENTRIES 1.000,
1.260,1.442,1.587,1,710,1.817,1,903,2.000,2.080,2.154;

4-3

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Purpose:

This statement declares to the GOAL compiler that the
programmer wishes to create a linear array of 10 numeric
elements with the indicated initialization.

Equivalent HAL/S form:

DECLARE ROOT 3 ARRAY(10) INITIAL(1.00,1.260,1.442,
1.587,1.710,r.817,1.903,2.000,2.080,2.154);

GOAL Statement:

DECLARE QUANTITY LIST (LIST A) WITH 3 ENTRIES;

Purpose:

This statement creates a list of 3 GOAL quantities
in a linear array form. Each quantity has a scalar value
and a physical units dimension.

HAL/S Equivalent Form:

DECLARE ARRAY(3) LIST A, DIM LIST A CHARACTER(6);

GOAL Statement:

DECLARE QUANTITY LIST (VOLTAGE LIST) WITH 6 ENTRIES
28V,+0.5V,-0.5V,OV,50V,10 SECS;

Purpose:

This statement sets up a list of 6 GOAL quantities,
with initialization to the values indicated. A more
consistent practice might be to keep the identification
of units out of the language - or introduce syntax and
semantic checking of the units of scalars to flag such
combinations as are illegal by dimensional analysis.

4-4

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-18,

HAL/S Equivalent Form:

DECLARE ARRAY(6) VOLTAGELIST, INITIAL(28,.5,-.5,0,
50,10) DIM VOLTAGE LIST CHARACTER(6)
INITIAL('V ,'V','VT , 'V ' ,'V','SECS');

Note, that again the units are present in the HAL/S
character string form.

GOAL Statement:

DECLARE STATE LIST (FLAG LIST) WITH 10 ENTRIES;

Purpose:

This statement sets up an array of 10 booleans for
reference within the GOAL program. No initialization
is performed.

HAL/S Equivalents:

In HAL/S there are two ways such an array might be
handled; each with its own relative merits.

a) DECLARE FLAG LIST ARRAY(10) BOOLEAN; This
version corresponds directly with the GOAL form,
since it is a simple array of one bit values.

b) DECLARE FLAG LIST BIT(10); In this form, the use
of a single bit string is designed to do the same
thing. This form has the advantage of efficient
storage but it is much more costly in terms of
time overhead, and it cannot handle arrays longer
than the maximum length of a HAL/S bit string.
It will be assumed that the array form is to
be used.

4-5

NTERMETRICS INCORPORATED " 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

GOAL Statement:

DECLARE STATE LIST (LIST STATE) WITH 6 ENTRIES
ON,ON,ON,OFF,OFF,ON;

Purpose:

This statement declares an array of 6 binary
values (Booleans) for use within the GOAL program to store
the states of discretes.

Equivalent HAL/S form:

DECLARE LISTSTATE ARRAY(6)BOOLEAN INITIAL(ON,ON,ON,OFF,OFF,ON);

GOAL Statement:

DECLARE TEXT LIST(INPUT) WITH 2 ENTRIES WITH A
MAXIMUM OF 25 CHARACTERS;

Purpose:

This statement sets up an array of two text strings
for use as the receiver of some input followed by later
use as the source of some output (no internal manipulations
of text are provided by GOAL).

Equivalent HAL/S form:

DECLARE INPUTZ ARRAY(2) CHARACTER(25);

Note that in this example the original name duplicated a
HAL/S keyword and thus had to be modified in some way follow-
ing the translation. In the example, the letter Z was
appended to the original name thereby resolving the keyword
conflict. The maximum length of 25 carries over directly.

GOAL Statement:

DECLARE TEXT LIST (OPERATOR INSTRUCTION) WITH 2 ENTRIES
(PLACE SWITCHES INDICATED),(*PREFLIGHT TM CAL IN
PROGRESS*);

4-6

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Purpose:

This statement declares an array of two character
strings which are initialized to the values indicated, with
a maximum length determined by implication from the length
of the initial values.

Equivalent HAL/S form:

DECLARE OPERATOR INSTRUCTION ARRAY(2) CHARACTER(30)
INITIAL ('PLACE SWITCHES INDICATED','*PREFLIGHT
TM CAL IN PROGRESS*');

This is a direct translation, with the only subtlety
being the determination of the length maximum of all the
initial values so that the character string maximum length
may be found used in the declaration.

4.1.3 Table Types

The translation of GOAL table data types requires a
strategy employing several HAL/S arrays to accomplish the
same ends within the framework of a HAL/S program. A set
of arrays which will accomplish this is the following:

1. A main data array with row and column dimensions
identical to the row and column dimensions of
the original GOAL table. The HAL/S data type
of this table will be SCALAR, BOOLEANS, or
CHARACTER depending upon the original GOAL
table's data type (QUANTITY & NUMERIC, STATE,
or TEXT respectively). This array will store
data in the HAL/S version. For GOAL QUANTITY
tables, an auxiliary character array of dimensions
is required.

2. An auxiliary "activation array" of BOOLEAN
elements controlling whether or not the given
row is to be active at some time during execution.

These two arrays cover all the variable information about
a GOAL table as translated into HAL/S. During translation
only, two other sets of data are needed for each table:

1. A list of pointers to various function
designator processing routines.

4-7

TERMETRICS INCORPORATED ' 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

2. A list of the names of the various data array
columns.

In both cases, there is not necessarily any need to
code a HAL/S array, although such an array might prove
convenient in the translated code. In the examples that
follow, only the required arrays are shown in the HAL/S
equivalent form.

--

GOAL Statement:

DECLARE NUMERIC TABLE(HIGH LOW RUN) WITH 3 ROWS
AND 4 COLUMNS TITLED

(HIGH), (LOW), (RUN), (CUR) WITH ENTRIES

<El GG CHAMBER P> , 1000.1, 1.0, 500.0,

<E2 GG CHAMBER P> , 1001.2, .9, 500.0,

<E3 GG CHAMBER P> , 999.8, 1.2, 500.0,

Purpose:

This statement sets up a GOAL table with initial
values in 3 columns, and 3 rows of function-designators.
A fourth column is left uninitialized.

Equivalent HAL/S form:

Main Data Array:

DECLARE A HIGH LOW RUN ARRAY(3,4) INITIAL(

1001.1, 1.0, 500.0, 0,

1001.2, 0.9, 500.0, 0,

999.8, 1.2, 500.0, 0);

Note here that the HAL/S initialization cannot embed
uninitialized values within its list so a "0" has been
used in the fourth-column entries.

4-8

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

Activation Array:

DECLARE A HIGH LOW RUN ARRAY(3) BOOLEAN
INITIAL (TRUE, TRUE, TRUE);

Here the value "true" has been assumed to indicate that
the row in question has an active function designator -
initialized active as in the GOAL specification.

In addition to these two explicit tables, the GOAL-to-
HAL/S translator program keeps track in this case of:

1. The function designator routine addresses for
<El GG CHAMBER P>, <E2 GG CHAMBER P>, and
<E3 GG CHAMBER P>.

2. The texts "HIGH", "LOW", "RUN" and "CUR" associated
with columns 1 to 4 of the table, respectively.

GOAL Statement:

DECLARE QUANTITY TABLE (MAIN FUEL FLOW) WITH 5 ROWS

AND 3 COLUMNS WITH ENTRIES

<El MAIN FUEL>, 0.1 PPS, 300,1 PPS,

<E2 MAIN FUEL>, 0.3 PPS, 300.2 PPS, ,

<E3 MAIN FUEL>, 0.4 PPS, 300.1 PPS, ,

<E4 MAIN FUEL>, 0.2 PPS, 300.1 PPS,

<E5 MAIN FUEL>, 0.1 PPS, 299.8 PPS,

Purpose:

This statement sets up a GOAL quantity table with
5 function designators and 3 columns. Since this is a
quantity table, and since quantity units can change as
data, the HAL/S equivalent will have two main data arrays.

4-9

ITERMETRICS INCORPORATED * 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Equivalent HAL/S forms:

Main Data Arrays:

DECLARE MAN FUEL FLOW ARRAY(5,3) INITIAL (

0.1, 300.1, 0,

0.3, 300.2, 0,

0.4, 300.1, 0,

0.2, 300.1, 0,

0.1, 299.8, 0);

DECLARE MAIN FUEL FLOW UNITS ARRAY(5,3) CHARACTER(6)
INITIAL (f5#'PPS') ;

Activation Array:

DECLARE A MAIN FUEL FLOW ARRAY(5) BOOLEAN INITIAL
(5#TRUE); -

The main data array is again initialized in HAL/S with
zeros replacing uninitialized embedded values. The units
array for this quantity table is initialized with 'PPS'
in all 15 positions; since the uninitialized positions of
the original GOAL table can have arbitrary values, this
in particular may be used as a value. The activation
array is initialized "true" in all 5 positions.

In addition to these explicit arrays, the translator
must (of course) keep track of the function designator
routine addresses so that proper code will be generated.

GOAL Statements:

DECLARE STATE TABLE (THRUST OK) WITH 5 ROWS AND
3 COLUMNS TITLED (THRUST OK), (THRUST NOT OK),
(STATE) WITH ENTRIES

<THRUST OK lEl> , ON, OFF, ,

<THRUST OK 1E2> , ON, OFF, ,

4-10

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

<THRUST OK 1E3> , ON, OFF, ,

<THRUST OK 1E4> , ON, OFF,

<THRUST OK 1E5> , ON, OFF,

Purpose:

This statement sets up a GOAL "state table" with
3 columns and 5 rows, initialized as shown.

Equivalent HAL/S form:

Main Data Array:

DECLARE THRUST OK ARRAY(5,3) BOOLEAN INITIAL (
5#(TRUE, FALSE, FALSE));

Here, the initialization of the third column has been
specified as "false" in each case in order to pick an
arbitrary value for a field which was left uninitialized
in GOAL. The values of each row in the table are identical,
so tha repetition factor ("5#") is used rather than writing
out the values.

Activation Array:

DECLARE A THRUST OK ARRAY(5)
BOOLEAN INITIAL (5# TRUE);

As in previous example, this activation array masks each
function designator as "on" (true) at the start of processing.

The translator in this case will keep track of the column
names "THRUST OK", "THRUST NOT OK", and "STATE"; it will
also supply the code required to reference the five
function designators.

GOAL Statement:

DECLARE TEXT TABLE (MESSAGE TABLE) WITH 2 ROWS
AND 1 COLUMN TITLED

(MESSAGE A) WITH ENTRIES

<224 DISPLAY B35> , (SWITCH SCAN IN PROGRESS),

<224 DISPLAY B42> , (PLACE ABOVE SWITCHES AS INDICATED);

4-11

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Purpose:

This GOAL statement prepares a table of character
string data associated with two function designators. The
table has but a single column.

Equivalent HAL/S form:

Main Data Array:

DECLARE MESSAGE TABLE ARRAY(2) CHARACTER(33) INITIAL(
'SWITCH SCAN IN PROGRESS',
'PLACE ABOVE SWITCHES AS INDICATED');

Activation Array:

DECLARE A MESSAGE TABLE ARRAY(2) BOOLEAN
INITIAL (2# TRUE);

Note that in this case, a maximum of 50 characters is
allowed in the main data array elements.

4-12

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2 Procedural Statements

4.2.1 Prefixes

GOAL Step Number Prefix:

STEP 163 ... rest of GOAL statement

HAL/S Equivalent Form:

STEP 163: ... rest of HAL statement ...

--

GOAL Time Prefix:

WHEN <COUNT DOWN CLOCK> IS
-80 HRS 27 MIN 00 SEC THEN

... rest of GOAL statement

Purpose:

Cause the GOAL program to wait until the
<COUNT DOWN CLOCK> value is greater than or equal to
-80:27:00.

Equivalent HAL/S form:

WAIT UNTIL XXXX;

In this example, "XXXX" is -80 hrs., 27 minutes, as
converted to absolute time in "machine units".

The effect of the WAIT statement of HAL/S is
independent of any following statements (it is not a"prefix" as in GOAL). However, by delaying processing
of statements which follow it, the WAIT works as if it
were the prefix. The effect is also identical to the
GOAL "WHEN" prefix since any clock time greater than or
equal to the specified time will cause the halt to be
ended and/or ignored.

4-13

ERMETRICS INCORPORATED . 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Note also that all HAL/S Real Time statements
assume a single real time clock. In order to allow the
possibility of multiple clocks (not ruled out by GOAL
specification), the translator will have to incorporate a
scaling and offset algorithm so that all clock function
designators can be driven by the single HAL/S Real Time
Operating System clock.

GOAL Time Prefix:

AFTER <COUNT DOWN CLOCK> IS -80 HRS 27 MINUTES
00 SECS THEN

Purpose:

Delay execution of the particular statement until
after the time named. In any time-dependent digital
system, "after" may only mean "one system clock tick"
later than the specified time. Thus, this statement is
the same as a WHEN statement with a time value increased
by the unit of the basic clock period.

Equivalent HAL/S form:

Thus, the HAL/S Equivalent becomes:

WAIT UNTIL XXXX + AX;

where XXXX is the machine-unit (absolute) equivalent of
the specified time and AX is the granularity of time in
the clock, expressed in "machine units".

GOAL Statement:

IF (MIDDLE GIMBAL ANGLE) IS GREATER THAN (MIDDLE
GIMBAL LIMIT) THEN

4-14

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184C

HAL/S Equivalent Form:

IF MIDDLE GIMBAL ANGLE >
MIDDLE GIMBAL LIMIT THEN DO;

In this equivalent form, "MIDDLE GIMBAL ANGLE" is assumed
to be a HAL/S function reference to a block which performs
the function designator I/O.

--

GOAL Verify Prefix:

VERIFY <MIDDLE GIMBAL ANGLE> IS LESS THAN
(MIDDLE GIMBAL LIMIT) ELSE ...

HAL/S Equivalent Form:
READ (CHANNEL) MIDDLE GIMBALANGLE
IF MIDDLE GIMBAL ANGLE >=

MIDDLE GIMBAL LIMIT THEN
DO;*

HAL/S Statements equivalent to "ELSE" part
of GOAL statement

END;*

* Note that if the GOAL form following this prefix
becomes a single HAL/S statement, then the DO...END group
is not needed.

4.2.2 External Test Actions

GOAL Statement:

SEND 10V TO <POWER SELECTOR 1>, <POWER SELECTOR 2>;

Purpose:

This statement is used to implement an I/O operation
to some specific external device. Assuming a mechanism which
employs a channel address and a subaddress for location within
the channel, then a source language construct such as the
HAL/S FILE statement might be used to specify such I/O.

4-15

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL/S Equivalent Form:

FILE(Channel, address of power selector 1) = 10;

FILE(Channel, address of power selector 2) = 10;

The lower case texts in these statements will be filled-
in with the appropriate references to hardware in the
translated form of arithmetic literals. In the event that
a conversion routine is specified in the data bank for the
function designator in question, then an appropriate function
reference with "10" as its argument could be used in place
of the simple literal shown.*

GOAL Statement:

APPLY PRESENT VALUE OF <POWER BUS 1> TO
<POWER BUS 2>;

Purpose:

This statement is used to implement an input
operation from power bus 1 and a corresponding output
operation to power bus 2 with no intermediate storage in
program variables.

HAL/S Equivalent Form:

FILE(Channel, address of POWER BUS 1) = FILE (channel,
address of POWER BUS 2);

In this example, as in the previous, the file statement
of HAL/S has been assumed to be the I/O mechanism used.
The translator must generate the channel addresses and
channel numbers based upon data bank information.

GOAL Statement:

ISSUE (OCTAL SEVENS), (OCTAL ONES) TO
<PANEL LIGHTS 32>, <PANEL LIGHTS 31>;

* Throughout the report we have used the "file statement"
of HAL/S in the function designator context. Other possi-
bilities include various forms of READ or WRITE statements,
depending on particulars of Flight Computer System.

4-16

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Purpose:

This statement is supposed to send a "digital
pattern" in the form of a numeric internal variable to a
selected I/O word identified by the selected function
designators. In this case, the internal variable (OCTAL
SEVENS) is sent to "PANEL LIGHTS 32" and (OCTAL ONES) is
sent to "PANEL LIGHTS 31";

HAL/S Equivalent Form:

Assuming a channel designation "a" and channel
address designations "b" and "c" derived by the translator
from the data bank at compile time, then the following
HAL/S File statements could achieve the same effect:

FILE(a,b) = OCTAL SEVENS;

FILE(a,c) = OCTAL ONES;

--

GOAL Statement:

ISSUE PRESENT VALUE OF <CH 63> TO <CH 11>;

Purpose:

As in the above example, this is simply some I/O
of data to a particular set of channel addresses in some
channel or channels of the implementations' I/O hardware.
Assume that the I/O designations of channel "a" and
addresses "b" or "c" correspond (via the Data Bank) to
"CH 63" or "CH 11" respectively.

HAL/S Equivalent Form:

FILE(a,b) = FILE(a,c);

Note that this I/O entirely bypasses setting any programmer-
defined variables during the course of the I/O operation.

--

4-17

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

GOAL Statement:

S 104 AFTER <CLOCK> IS -1 HRS, OPEN <HELIUM SUPPLY>;

Purpose:

This GOAL statement has a time prefix, and a label
prefix, used to control when and under what conditions the
action of sending a bit valve corresponding to an OPEN
value to an external register symbolically identified by
the function designator "HELIUM SUPPLY".

HAL/S Equivalent Form:

Assuming that the compiler translates the units of
hours into units of seconds (or any others depending on
implementation), and that the value of a bit controlling
a valve is "O" if "OPEN", and that the symbolic address
of the HELIUM SUPPLY valve control bit is given by
channel a, subchannel address b, then the following HAL/S
statement accomplishes the same function - with the time
prefix implemented by a WAIT statement:

S 104
WAIT UNTIL -3600.0001
FILE(a,b) = BIN'0';

The label has been translated directly; the time value
for the clock in the executive is treated as seconds in
this example, with a granularity of .1 millisecond.

--

GOAL Statement:

STEP 5: TURN ON (THRUST OK IND) FUNCTIONS;

Purpose:

This GOAL statement is supposed to set all the bits
in all the active function designators of a STATE table
to the "ON" value.

4-18

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL/S Equivalent Form:

Assuming that each I/O operation could translate into
a single FILE statement, the result of this one would be
a series of FILE statements.

GOAL Statement:

RECORD (INTERNAL TIME) TO <MAG 2-5>;

Purpose:

This statement is supposed to send data from a GOAL
internal variable named "Internal time" to the function
designator identified. This means in effect that an I/O
operation of writing the internal value to the implicit I/O
address of the function designator is required.

HAL/S Equivalent Form:

Assuming that channel a, address b is the external
location of the function designator "MAG 2-5" and that no
conversion could be used to do this I/O operation:

FILE(a,b) = INTERNAL TIME;

GOAL Statement:

DISPLAY TEXT (ALL SYSTEMS READY FOR POWER TRANSFER)
TO <CRT 9>;

Purpose:

This statement is supposed to write the given text
out onto a character-oriented I/O device, namely a display.
Since this output is character-oriented, the equivalent
HAL/S form will have a character output statement form.

4-19

NTERMETRICS INCORPORATED * 701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL/S Equivalent Form:

WRITE(display) 'ALL SYSTEMS READY FOR POWER TRANSFER';

The channel number of the display unit will have to
be filled in by the translator, by means of Data Bank
information.

GOAL Statement:

AVERAGE 10 READINGS OF <IU COOLANT TEMPERATURE> AND
SAVE AS (COOLANT TEMP);

Purpose:

The purpose of this statement is to read a hardware
input channel 10 times, averaging the readings. No time
delay other than the response time of the software is to
be employed explicitly between successive readings.

HAL/S Equivalent Form:

The HAL/S equivalent could be coded with a file state-
ment enclosed in a DO FOR loop, followed by the final division
operation needed to produce an average from a sum of the
components. Thus:

SIGMA = 0
DO FOR I = 1 TO 10:
TEMP = FILE (a,b);
SIGMA = SIGMA + TEMP;
END;
COOLANT TEMP = SIGMA/10.0;

GOAL Statement:

READ <PC STAGE INLET PRESSURE> AND SAVE AS
(INLET PRESSURE);

4-20

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840

Purpose:

This statement is supposed to evaluate the present
value of the function designator addressed, then assign the
value into the internal variable INLET PRESSURE.

HAL/S Equivalent Form:

This is another example in which the file statement
may be used. However, in this case it will be assumed that
a conversion is required as indicated in the corresponding
Specify statement for the function designator:

INLET PRESSURE = FILE (a,b);

INLET PRESSURE = CONV FUNC(INLET PRESSURE);

In this case, (a,b) is the address of the input channel/
location and that CONV FUNC is the conversion function
required.

--

GOAL Statement:

READ (TABLE A) FUNCTIONS AND SAVE AS (CURRENT VALUE);

Purpose:

The purpose of this statement is to evaluate the
current value of all the function designators (which are
active) in the TABLE A and assign the results into correspond-
ing positions in the table column indicated.

HAL/S Equivalent Form:

Assume that the mapping of each function designator
into an I/O operation can be done in terms of an I/O
address pair of channel and address: (a,b) for a file state-
ment. Further, assume for simplicity, that the pointer
table associated with this table contains the addresses
for each function designator on a common channel a. Also
assume that an array of booleans is associated with the
table to distinguish active functions from inactive functions,
and that "z" represents the column index of "CURRENT VALUE).
Thus:

4-21

ERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

TABLE A dimensioned x by y. Scalar

TABLE A BOOLEANS, dimensioned x. Boolean

TABLE A POINTERS, dimensioned x. Integer

The HAL/S statements are:

DO FOR I = 1 TO x;
IF TABLE A BOOLEANS I THEN
TABLE A = FILE(a,TABLE A POINTERS);

END; - IzEND;

The IF statement checks for whether or not the row is
active, in which case the input file statement completes
the operation.

--

GOAL Statement:

REQUEST TEXT (DEGREES PITCH) FROM <CRT 7> AND SAVE
AS (DEG PTCH);

Purpose:

Display a request on the console and then reads in the
result. Since a character-oriented operation with conversion
to scalar is involved, a conversion function in the HAL/S
version will be used.

HAL/S Equivalent Form:

WRITE(CRT 7) 'DEGREES PITCH';
READ(CRT_7) DEGPTCH; (automatic conversion is done)

4.2.3 Internal Sequence Control

GOAL Statement:

DELAY 5 SECS;

4-22

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

Purpose:

Cause the program to "go to sleep" for a time
interval of 5 seconds.

HAL/S Equivalent Form:

WAIT 5;

Where the units of time involved in the wait state-
ment are assumed to be the same as the GOAL units prior to
translation, or the translator will scale the internal
value accordingly.

GOAL Statement:

WAIT UNTIL <SIVB 3200 PSIA SUP VENT> IS OPEN;

Purpose:

Cause the program to "go to sleep" for a time interval
of unspecified length until the boolean (state) function
designator is recognized as being "OPEN".

HAL/S Equivalent Form:

WAIT UNTIL-ISIVB 3200 PSIA SUP VENT

This is equivalent, provided that in the case of
function designators used as events, the translation
process turns them into event variables, which may be
tested in the context shown. The definition of "OPEN"
is defined to be a binary value of 0.

--

GOAL Statement:

GO TO S 20;

4-23

ERMETRICS INCORPORATED -701 CONCORD AVENUE -CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

HAL/S Equivalent Form:

GO TO S 20;

where the label S 20 of GOAL has been translated
into a HAL/S identifier.

GOAL Statement:

STOP AND INDICATE RESTART LABELS S100, S200;

Purpose:

To give the GOAL program an ability to cease active
execution and wait for operator intervention, followed
by a jump to one of the indicated labels.

HAL/S Equivalent Forms:

Assume that the restart routine is in line, then:

BACK: DO WHILE TRUE;
WRITE (CONSOLE) 'ENTER RESTART LABEL S100 OR S200';
READ (CONSOLE) RESTART;
IF RESTART = 'S100' THEN GO TO S 100;
IF RESTART = 'S200' THEN GO TO S-200;
WRITE (CONSOLE) 'ERROR';
END BACK;

It is assumed that if the keyboard message is other
than 'S100' or 'S200' then an 'ERROR; is sent to the
CONSOLE and the entire sequence is repeated.

GOAL Statement:

TERMINATE;

Purpose:

The TERMINATE statement of GOAL is used to:

4-24

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

a) Return control to the calling program if it is
found in a GOAL subroutine.

b) Stop execution of a program if found at the
program level, returning control to the caller.

HAL/S Equivalent Form:

In either case, the HAL/S statement:

RETURN;

will be equivalent. This HAL/S statement will return control
to the calling routine from a HAL/S procedure. Assuming
the PERFORM PROGRAM maps into a:

"SCHEDULE X" /*SCHEDULE*/

"WAIT FOR -X" /*AND WAIT FOR COMPLETION*/

sequence in HAL/S, the return to the operating system of
this statement at the PROGRAM level in HAL/S will have the
same effect - the caller resumes execution after the "WAIT
FOR COMPLETION OF X" part of the HAL/S form.

--

GOAL Statement:

TERMINATE SYSTEM;

Purpose:

This statement is supposed to shut down an entire
system of programs. As such, it has special executive
effects. Its operation was discussed in Section 3.0 above.

GOAL Statement:

REPEAT STEP 5 THRU STEP 7;

HAL/S Equivalent Form:

For a discussion of this equivalent and the purpose
of this GOAL form, see Section 3.0.

4-25

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2.4 Arithmetic/Logical Operations

GOAL Statement:

ASSIGN (FLAG B) = ON;

Purpose:

Set a new value of "ON" into the (FLAG B) internal
name.

HAL/S Equivalent Form:

FLAG B = TRUE;

This equivalence assumes the convention that "ON"
has a binary value of "1" or "true". FLAG B is assumed
to be a HAL/S BOOLEAN.

GOAL Statement:

LET (A) = (A) + 1;

Purpose:

Assign a new value to GOAL internal variable (A)
calculated as shown.

HAL/S Equivalent Form:

A = A + 1;

4.2.5 Execution Control

GOAL Statement:

CONCURRENTLY PERFORM PROGRAM (BE01);

4-26

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184C

HAL/S Equivalent Form:

SCHEDULE BEO1;

--

GOAL Statement:

CONCURRENTLY VERIFY <PRESS ENG 102 GIMBAL>
IS BETWEEN 1665PSIA and 1465PSIA and
DISPLAY EXCEPTION TO <CRTI2>;

HAL/S Equivalent Form:

EX DES16 = PRESS ENG 102 GIMBAL;

HIGH = 1665;

LOW = 1465;

SCHEDULE VERIFY;

DISP = CRT12;

SCHEDULE DISPLAY EXCEPTION ON EXCEP;

In the above example it is assumed that EX DES16,
HIGH, LOW and DISP have been previously declared as
compool variables. The verify procedure uses EX DES16
to access the test point PRESS ENG 102 GIMBAL and test
between the limits of 1665 and-1465. If an out of
tolerance condition occurs then the event EXCEP will be
signalled. The procedure DISPLAY EXCEPTION will use an
appropriate compool variable to be displayed on DISP. If
a GOAL table were involved above, the translated form would
involve an iterative DO group to scan the table.

GOAL Statement:

RELEASE STEP 10;

Purpose:

Step 10 had "concurrently' set up some cyclic process
at a previous time. This statement "releases" the
concurrent process initiated, by removing it from the
implicit executive queues involved (see Section 3.0).

4-27

ERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

GOAL Statement:

RELEASE ALL

Purpose:

Terminate all concurrently scheduled operations
within the current GOAL component.

HAL/S Equivalent Forms:

Assuming the translator had generated process names
A, B, and C in translating the current component, then the
release would become:

TERMINATE A,B,C;

Terminate causes immediate cessation of execution; if
cessation prior to the next execution cycle is required
then use: "CANCEL A, B, C; (see Section 3.0).

GOAL Statement:

PERFORM PROGRAM (LVDC POWER ON);

Purpose:

Branch to the program selected, execute it and
return.

HAL/S Equivalent Form:

DECLARE LVDC POWER ON PROGRAM EVENT

SCHEDULE LVDC POWER ON;
WAIT FOR -LVDC POWER ON

4-28

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

The HAL/S PROGRAM form requires that a SCHEDULE
invoke it, not a call. The call action can be duplicated
with SCHEDULE and WAIT; SCHEDULE invokes the program and
turns "on" its "PROGRAM EVENT;" The WAIT is for the
PROGRAM EVENT to turn off, indicating that the program is
done and out of the queue.

GOAL Statement:

PERFORM CRITICAL SUBROUTINE
(CALCULATE DELAY TIME);

Purpose:

Inhibit all software-level interruptions by other
system components (this does not refer to physical interrupts
which the OS handles) during the execution of the subroutine.

HAL/S Equivalent Form:

X = PRIO;
UPDATE PRIORITY TO HIGHEST;
CALL CALCULATE DELAY TIME;
UPDATE PRIORITY TO X;

This HAL/S form achieves the same function, since
any routine at the highest priority may not be interrupted.
Since the new, highest priority is only to last while the
subroutine is being performed, the second update and a
temporary variable are required to return to the original
state following the UPDATE.

4.2.6 Interrupt Control

GOAL Statement:

WHEN INTERRUPT <POWER FAILURE> OCCURS
GO TO STEP 9000;

4-29

TERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Purpose:

Send control to step 9000 when the indicated
interrupt occurs.

HAL/S Equivalent Form:

Refer to Section 3.0 for a discussion of the implicit
operating system functions of this statement and how it
would be handled in HAL/S.

GOAL Statement:

WHEN INTERRUPT <CLOCK T-22 MINS> OCCURS PERFORM
SUBROUTINE (START TANK CHILLDOWN) AND RETURN TO
STEP 9999;

Purpose:

When the indicated interrupt occurs, perform a
subroutine then unconditionally branch to the indicated
step number.

HAL/S Equivalent Form:

Refer to Section 3.0.

GOAL Statement:

DISABLE STEP 20;

Purpose:

Inhibit a software interrupt set up by a "WHEN
INTERRUPT" at the step indicated (STEP 20);

HAL/S Equivalent Form:

Refer to Section 3.1.4.

4-30

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

4.2.7 Table Control

GOAL Statement:

ACTIVATE (TABLE A) ROW 1, ROW 3;

Purpose:

Activate the function designators associated with
the indicated rows so that future I/O to this table will
include the rows in question.

HAL/S Equivalent Form:

The HAL/S translation of a GOAL table involves a
data array and an activation array of BOOLEANS. Assuming
that "A TABLE A" is TABLE A's activation array, and that
"TRUE" means the corresponding row is active, then the
HAL/S equivalent is simply:

A_TABLE A , A_TABLEA 3 = TRUE;

GOAL Statement:

INHIBIT (TABLE A) ROW 2, ROW 3;

Purpose:

Disable the function designators associated with the
indicated rows, so that future I/O to this table will
exclude the rows in question.

HAL/S Equivalent Form:

Analogous to the ACTIVATE case:

A TABLE A 2 ,ATABLEA 3 = FALSE;

4-31

ERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

4.3 System Statements

The GOAL system statements serve primarily as inputs
governing the course of the GOAL-HAL/S translator's operation.
Some of these statements have implications which are reflected
in the HAL/S code produced.

4.3.1 Boundary Statements

GOAL Statement:

BEGIN DATA BANK (S2 DATA BANK) REVISION 0;

Purpdse:

Mark the beginning of the Data Bank named for input
to an appropriate data bank compilation. This statement
has no equivalent in the generated HAL/S code since the
generation process resolves all references in detail.

GOAL Statement:

BEGIN PROGRAM (LV TM CAL) REVISION 0;

Purpose:

Mark the beginning of a GOAL program.

HAL/S Equivalent Form:

LV TM CAL O0: PROGRAM;

Note that a series of revision numbers is an
operating system and translator system feature (see Section
3.0), not a language feature. These two are kept separate
in HAL/S.

4-32

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

GOAL Statement:

BEGIN SUBROUTINE (FORCETERM)(PARAMETER 1);

Purpose:

This statement begins a GOAL subroutine block,
passing one formal parameter.

HAL/S Equivalent Form:

A direct HAL/S equivalent exists if the SUBROUTINE
of GOAL maps into the HAL/S PROCEDURE block form. Then
the BEGIN SUBROUTINE becomes:

FORCE_TERM: PROCEDURE ASSIGN(PARAMETER 1);

GOAL Statement:

BEGIN MACRO AZ (PARAMETER 1);

Purpose:

This statement specifies the start of a GOAL source
language macro. Since macros only refer to the source code
and are expanded within the translator, there is no HAL/S
equivalent.

This does not exclude use of a HAL/S macro form as
part of the generated HAL/S source code if a GOAL to HAL/S
translation is done at the source language level. But
such use is completely separate from the GOAL macro and
its use.

--

GOAL Statement:

END DATA BANK;
END PROGRAM;
END SUBROUTINES:
END MACRO;

4-33

ERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

Purpose:

Mark the end of the particular GOAL block (or
component).

HAL/S Equivalent Form:

Since DATA BANK and MACRO forms exist only in the
source inputs to the GOAL-HAL translation, the END state-
ment for these blocks are similarly devoid of HAL/S
equivalents.

The HAL/S equivalents of END PROGRAM and END SUBROUTINE
are provided by the HAL/S CLOSE statement; i.e.

CLOSE;

or

CLOSE X;

GOAL Statement:

LEAVE:

Purpose:

Link to some other language subroutine (in object
form). This is an operating system function which has no
equivalent in HAL/S (see Section 3.0).

GOAL Statement:

RESUME;

Purpose:

Return to GOAL compiling after LEAVE. See comments
in Section 3.0 and in the discussion of "LEAVE" above.

4-34

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-184

4.3.2 System Directive Statements

The GOAL system directive statements are USE,
FREE, and SPECIFY - all of which refer to the DATA BANK.

These statements have no HAL/S equivalent (see
Section 3.0) and are system-oriented inputs to the trans-
lation process. All data bank references are resolved by the
translator - the data bank (as such) does not appear in
the output of the translator.

4.3.3 Special Aid Statements

GOAL Comment Statement:

$ POWER TRANSFER SWITCH VERIFICATION;

Purpose:

Annotate listing.

HAL/S Equivalent Forms:

a. Embedded Comment

/* POWER TRANSFER SWITCH VERIFICATION */

b. Comment Line

pos 1

C POWER TRANSFER SWITCH VERIFICATION

Note: Comments map directly into comments with identical
text and minor syntax changes.

--

GOAL Statement:

EXPAND MACRO ADJUST, <AC SIGNAL>,
(0.5V), 5340,;

4-35

!TERMETRICS INCORPORATED * 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Purpose:

Expand a GOAL substitution macro prio to further
compilation.

HAL/S Equivalent Form:

None. All macros involve expanding GOAL source
statements, so the macro itself and its expansion disappear
in the translation process.

GOAL Statement:

REPLACE <POWER SUPPLY NO 1>
WITH <POWER SUPPLY NO 2>;

Purpose:

Replace is a source level substitution of characters
prior to compilation, a sort of "mini-macro" facility.
As with macros, it disappears following translation
because it must be expanded in order to translate.

4-36

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

5.0 CONCLUSIONS

A GOAL-to-HAL translation with the design and opera-
tional objective of running GOAL-derived HAL-compiled
code in the Shuttle onboard computers has been evaluated
in this Report and pronounced feasible. The individual
categories of GOAL statements as set forth in the NASA/KSC
Syntax Diagram Handbook and Textbook have been studied and
divided into 1) syntax and semantic issues and 2) other
issues.

The overall GOAL statement roster has been mapped.
Those statements which are syntax and semantic issues only
have been mapped into HAL/S equivalents. In the case of
GOAL statements which are basically operating system issues,
two courses of action have been proposed. First, a GOAL
MASTER PROGRAM has been identified and described as the
means of fitting the GOAL-derived checkout programs into
the Flight Computer Operating System (FCOS). Secondly,
in some cases, limitations have been proposed to some HAL
features, such as the overlapping of REPEAT groups. The
primary effect of these proposed limitations is to enhance
reliability. There are no inherent HAL/S syntax feedback
loop limitations, such limitations being implementation-
dependent.

GOAL-to-HAL/S translation has matured as a concept
to where it is ready for a Specification. Such a Specifica-
tion must include a careful statement about operating system
assumptions, and it should spell out requirements in the
areas of implementation, verification, and documentation.

5-1

RMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

