STS 51-C
 National Space Transportation Systems Program Mission Report

March 1985

National Aeronautics and
Space Administration
Lyndon B. Johnson Space Center
Houston. Texas

NATIONAL SPACE TRANSPORTATION SYSTEMS PROGRAM MISSION REPORT

Manager, National STS Program

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS 77058

March 1985
table of CONTENTS
Title Page
INTRODUCTION AND MISSION OBJECTIVES 1
MISSION SUMMARY1
VEHICLE ASSESSMENT 3
SOLID ROCKET BOOSTER 3
EXTERNAL TANK 3
SPACE SHUTTLE MAIN ENGINE 3
MAIN PROPULSION SYSTEM 4
ORBITER 4
Improper Moding and Timing in BFS 4
TACAN 3 Pailed to Lock Up During Entry 4
Radar Altimeter 2 Was Erratic At High Altitude 4

INTRODUCTION AND MISSION OBJECTIVES

The STS 51-C National Space Transportation System Program Mission Report contains a sumary of the Orbiter, ET (external tank), SRB (solid rocket booster), and SSME (Space Shuttle main engine)/MPS (main propulsion system) systems operation for the fifteenth Space Shuttle mission, which was also the third flight of the Orbiter vehicle, Discovery ($0 \mathrm{~V}-103$). Because of the security classification assigned to this mission, this report contains no discussion of any of the mission activities or accomplishments.

Table I contains a partial sequence of events, including only those activities that are unclassified. Additionally, this report contains a discussion of the most significant Orbiter problems/anomalies. Table II is a listing of all unclassified Orbiter problems/anomalies. Table III is the Marshall Space Flight Center problem tracking list.

MISSION SUMMARY

The STS 51-C mission was launched on January 24, 1985, at 19:50:00 G.m.t., 1 hour and 35 minutes into the 3 -hour launch window. The flight was originally scheduled to be launched on January 23, 1985, but because the expected cold temperatures might cause ice formations on the vehicle, the launch was delayed until January 24, 1985.

The crew for the STS 51-C mission were Thomas K. Mattingly, Capt., U.S. Navy, Commander; Loren J. Shiver, Maj., U.S. Air Force, Pilot; Ellison S. Onizuka, Maj., U.S. Air Force, and James F. Buchli, Maj., U.S. Air Force, Mission Specialist; and Gary E. Payton, Maj., U.S. Air Force, Payload Specialist.

The countdown phase was completed satisfactorily, however, two minor Orbiter problems were noted during that period. The first occurred during the $T-3$ hour hold and involved a force fight in the right inboard elevon actuator between channel 4 and channels 1,2 , and 3 . The condition corrected itself within 22 seconds after APU (auxiliary power unit) start up at $T-5$ minutes. A similar problem with the same channels in the same actuator occurred on STS 41-D (first flight of this vehicle).

The second problem that was noted during the countdown phase was the high helium concentration in the Orbiter mid-body. A pressure decay test showed no significant system leakage. The high helium concentration disappeared when the MPS (main propulsion system) gaseous helium system was pressurized to the flight level.

System operations were all nominal during the ascent phase. SRB motor performance was near the predicted levels and well within the allowed envelopes. External tank and MPS performance was excellent with MECO (main engine cutoff) near the predicted time.
table I. - STS 51-C SEQUENCE OF EVENT

Parameter	IG.m.t., hr:min:sec
APU Activation (1)	024:19:45:08
(2)	\| 024:19:45:09
(3)	\| 024:19:45:10
SRB HPU activation command (LH-A2)	\| 024:19:49:32.14
MPS start command sequence (engine 3)	1 024:19:49:53.44
SRB ignition command from GPC (lift-off)	024:19:50:00
MPS throttle-down to 92-percent (engine 3)	\| 024:19:50:15.48
MPS throttle-down to 65-percent (engine 3)	\| 024:19:50:29.4
Maximum dynamic pressure	\| 024:19:50:52
MPS throttle-up to 104-percent (engine 3)	\| 024:19:51:01.08
SRB separation command from GPC	\| 024:19:52:07
MPS throttle-down from 3g acceleration (engine 3)	\| 024:19:57:34.54
Main engine cutoff (MECO)	\| 024:19:58:32
External tank separation	\| 024:19:58:49
APU deactivation (1)	\| 024:20:06:15
(2)	\| 024:20:06:17
(3)	\| 024:20:06:14
Flight control system checkout APU 2 start	\| 026:22:15:02
APU 2 shutdown	\| 026:22:20:20
APU 3 activation	\| 027:20:11:03
APU activation (1)	\| 027:20:39:29
(2)	\| 027:20:39:28
Entry Interface	\| 027:20:52:29
End blackout	\| 027:21:08:16
Terminal area energy management (TAEM)	\| 027:21:16:45
Main landing gear contact	\| 027:21:23:23
Nose landing gear contact	\| 027:21:23:35
Wheels stop	1 027:21:24:13
APU deactivation complete (3)	\| 027:21:43:41
	1

At external tank separation, the BFS (backup flight system) did not automatically proceed to major mode 104. The crew performed the necessary manual procedures, and the BFS operated satisfactorily until the deorbit maneuver when the BFS time for deorbit maneuver ignition was 8 seconds late. However, the BFS operated satisfactorily for entry.

The entry phase systems operations were satisfactory with the Orbiter landing on runway 15 at Kennedy Space Center at 027:21:23:23 G.m.t. (4:23 p.m.e.s.t.) on January 27, 1985. The rollout distance was 7352 ft . An inspection of the Orbiter after landing showed the vehicle to be in excellent condition.

VEHICLE ASSESSMENT

SOLID ROCKET BOOSTER

All SRB systems performed as expected. The SRB prelaunch countdown was nominal with no problems noted. Performance of both SRM's (solid rocket motors) was close to predicted values and well within the allowable envelopes.

The average head pressures during the first 20 seconds as well as the propellant burn rates were approximately 1.0 -percent below predicted values, thus resulting in longer than predicted web and action times. Preliminary indications are that the SRB separation occurred approximately 1.7 seconds later than predicted. The SRB recovery system performed nominally, with both SRB's reported floating in the normal manner.

EXTERNAL TANK

All ET systems perfomed as expected. There were no ET preflight or flight anomalies. There was some ice/frost buildup observed as predicted, however, the vehicle was clean at lift-off.

SPACE SHUTTLE MAIN ENGINE
The SSME performance data during prelaunch, mainstage, shutdown and propellant dump looked good, following trends which were similar to those observed during previous flights. Predicted data for engines 1 and 3 were very good, however, engine 2 HPOTP (high pressure oxidizer turbopump) turbine discharge temperatures during mainstage were slightly higher than the predicted values.

MAIN PROPULSION SYSTEM

Overall performance of the MPS was excellent. Liquid oxygen and liquid hydrogen loading was accomplished as planned. Ascent performance appeared to be normal with MECO near the predicted time.

ORBITER

All Orbiter systems operated very satisfactorily with only two minor anomalles occurring during the flight. A discussion of each of these is contained in the following paragraphs, and a complete listing of all problems and anomalies is contained in Table II.

The BFS did not automatically proceed to major mode 104 after ET separation. The condition was noted, and the crew manually made the mode change. The criteria for the mode change is a $3.6 \mathrm{ft} / \mathrm{sec}$ velocity change after receiving the ET separation indication. Assuming worst case timing and maximum acceleration in the early portion of the separation maneuver, analysis indicates that the BFS sensed only 3.5 of the required $3.6 \mathrm{ft} / \mathrm{sec}$ velocity change. For STS $51-\mathrm{E}$, no change will be made to the software and the crew will be instructed to manually proceed to the major mode 104 , if the same problem recurs.

Also, the BFS TIG (ignition time) for the deorbit manuever was 8 seconds later than the PASS (primary avionics software system). The TIG for the deorbit maneuver ended on an even minute and the zero seconds were not entered by the crew. As a result, the burn time for a previous maneuver which occurred 8 seconds after the even minute was still present in the register. The crew will be instructed to enter all digits of maneuver times.

TACAN 3 Failed to Lock Up During Entry

During entry, TACAN 3 was operating in the search mode, but failed to lock up on the selected ground station. Postflight tests at Kennedy Space Center revealed reduced receiver sensitivity.

Radar Altimeter 2 Was Erratic At High Altitude
During the descent phase, RA (radar altimeter) 2 did not lock on the ground until the vehicle reached an altitude of 2300 feet. Normally, ground-lock occurs at about 5000 feet. Between 2300 and 1400 feet, ground-lock was intermittent. From 1400 feet through landing, ground-lock was solid and the difference in the RA 1 and RA 2 altitude readings was within acceptable limits. Postflight troubleshooting indicated that the unit was marginal with the lock-loop sensitivity being 3 to 4 dB less than that observed for RA 1 . RA 2 was removed, replaced, and returned to the vendor for a loop sensitivity (far range) checks and possible re-adjustment. For the next flight of $0 V-103$, RA 1 will be flown in slot 2 and the spare RA will be flown in slot 1 .
TABLE II.- JSC OV-103 STS 51-C PROBLEM TRACKING LIST

 I

CLOSED
$02 / 20 / 85$
P. cota
0
0
4
4
8
$\begin{array}{ll}1 & 02 / 20 / 85 \\ 0 \mid & \\ 1 & \\ 1 & \text { CLOSURE } \\ \text { IN PROCESS }\end{array}$
IN PROCESS
H. SCOTT
CAR 20F004

N
$=$
0
0
0
0
0
0 FUEL CELL AND OTHER FORWARD POWER CONTROLLER AMPSI NORMAL. CAUSE INIKNOWN. FLY AS IS.
READING WAS ERRATIC. PROBABLE TRANSDUCER
PORCE FIGHT CLEARED DURING PRELAUNCH PROPILE.
SANE CHANNEL AND SAME ACTUATOR HAD A PORCE
PICHT PRELAUNCE ON FIRST FLICHT OP OV 103 , BUT
IT CLEARED JUST PRIOR TO PRELAUNCH PROFILE.
RGR ACTUATOR. CAUSE UNKNOWN.
MASS SPEC IN MIDABODY INDICATED 11,200 PPM OR
ABOUT 0.36 /MIN. MPS PRESSURE DECAY TEST SHO

 UMBILICAL.
RBAD OPP SCALE HIGH AND THEN PAILED LOW. SAME MBASUREMENT PAILED OFP SCALE LOW LAST PLICHT 5 MINUTES BEPORE TOUCHDOWN. SENSOR WAS REPLACED
PRIOR TO 51+C. REMOVED AND REPLACED.
READ OFF SCALE HIGH A FEW MINUTES AFT
READ OFF SCALE HIGH A FEW MINUTES AFTER LIFTOFF.
TBANSDUCER FAILED. REMOVED AND REPLACED. .
DEAD BETWEEN 105 AND 155 AMPS FOR 3 MINUTES.
FUEL. CELL AND OTHER FORHARD POUER 3 MINUTES. FAILURE.
STOPPED AT INTERMEDIATE POSITION AFTER OMS +1 WERE REPLACED POSTPLICHT. FLY AS IS.

1 PRELAUNCH
PRELAUNCH
APU START

$-$

APU I EXHAUST CAS TEMPERATURE 2 (V46TOI4OA) RAILED.

- 8SHE 2 GH2 OUTLET TMPERATURE
(V41T1261A) PAILED.
(V41T1261A) PAILED.
C I MAIN BUS "B" FORWALD POWFR CON TROLLER AMMETER (V76C3076A) VERY
MOISY.
ET LH2 100 PERCENT LIQUID LEVEL
POINT SEMSOR (TA1X1718E) ERAATIC.
STS 41+D CAREYOVER:
LEPT OMS PUEL TOTAL QUANTITY
(V43Q4331C) FAILED.
TABLE II.- JJC OV-103 STS 51-C PROBLEM TRACKING LIST

TABLE II.- JSC OV-103 STS 51-C PROBLEM TRACKING LIST
 JSC OV +103 STS $51+C$ PROBLEM TRACKING LIST
 1 NO. 1 TITLE
 E. LATTIER CLOSURE
IN PROCES J. SMITH \qquad D. RHOADES CAR $20 F 005$
CLOSED 02/20/85
J. HOOPER
CAR 20F006
CLOSED 02/20/85
G. GRUSH
CAR AC 9013
SSB3OYd NI
D. yEATES
SS3j0yd NI
R. BURGDUFF
CAR 14 F024
CAR 14 F024
CLOSURE
IN PROCESS IN PROCESS 02/25/85
DATE SENSITIVITY ON FAR RANGE. R\&R WITH RA 1. PLACED
SPARE IN RA 1.
FOUND FUSES BLOWN AND AN INTERNAL SHORT ON BOTH CIRCUITRY. R\&R TOTALIZER.
PREFLIGHT WAIVER DUE TO SLOW ACTIVATION OF AC MOTOR VALVE MANIFOLD 4 OX PRELAUNCH. T/S fuse blown in old floodlight. see problem
 WO甘d XDOT aNnO\&S LNGLLIW\&GLNI •SISXTVNV VLVa JSC 2300 TO 1400 FEET. T/S FOUND MARGINAL LOOP USED TACANS 1 AND
SENSITIVITY. R\&R. | $x+2 \operatorname{LNG} \mid$ 1 ENTRY LAUNCH mry/s/: גq UGyVdayd
TABLE III.- MSFC ANOMALY AND FAILURE LIST

