STS 51-J
 National Space
 Transportation System Mission Report

December 1985

N/SN
National Aeronautics and Space Administration

STS 51-J
NATIONAL SPACE TRANSPORTATION SYSTEM

MISSION REPORT

A. D. Ayarich, Manager

National \&pace Transportation System Office

TABLE OF CONTENTS

Title Page
INTRODUCTION AND MISSION OBJECTIVES 1
MISSION SUMMARY 1
VEHICLE ASSESSMENT 1
SOLID ROCKET BOOSTER 1
EXTERNAL TANK 3
SPACE SHUTTLE MAIN ENGINE 3
MAIN PROPULSION SYSTEM 3
ORBITER 3
Intermittent Power to SSME 3 LH2 Prevalve 3

INTRODUCTION AND MISSION OBJECTIVES

The STS 5l-J National Space Transportation System Mission Report contains a summary of the Orbiter, ET (external tank), SRB (solid rocket booster), and SSME (Space Shuttle main engine)/MPS (main propulsion system) systems operation for the twenty-first Space Shuttle mission. This was the first flight of the Orbiter vehicle Atlantis ($0 \mathrm{~V}-104$). Because of the security classification assigned to this mission, this report contains no discussion of any of the classified mission activities or accomplishments.

Table I contains the sequence of events of major mission activities that are unclassified. This report also contains a discussion of the most significant unclassified Orbiter problem. Table II contains a listing of all unclassified Orbiter problems/anomalies.

MISS ION SUMMARY

The STS 51-J mission was launched on October 3, 1985, at 273:15:15:30 G.m.t., from KSC with five crew members. The crew members for this mission were Karol J. Bobko, Col., U. S. Air Force, Commander; Ronald J. Grabe, Lt. Col., U. S. Air Force, Pilot; David C. Hilmers, Maj., U. S. Marine Corp., and Robert C. Stewart, Col., U. S. Army, Mission Specialists; and William A. Pailes, Maj., U. S. Air Force, Payload Specialist.

The countdown phase was completed satisfactorily. All system operations were nominal during the ascent phase. SRB motor performance was near the predicted levels and well within the allowable envelopes. External tank and MPS performance was excellent with MECO (main engine cutoff) near the predicted t ime.

The entry phase system operations were satisfactory with the Orbiter landing on runway 23 at Edwards Air Force Base at 280:17:00:08 G.m.t. on October 7, 1985. The rollout distance was 8056 ft . An inspection of the Orbiter after landing showed TPS (thermal protection system) damage to the left inboard elevon and the nose cap.

VEHICLE ASSESSMENT

SOLID ROCKET BOOSTER
All SRB systems performed as expected. The SRB prelaunch countdown was nominal with no problems noted. Performance of both SRM's (solid rocket motors) was close to predicted values and well within the allowable envelopes.

The SRB recovery system performed nominally, both SRB's drogues, frustums, and main parachutes were recovered and are reusable.

I. - STS 51-J SEQUENCE OF EVENTS

All ET systems performed as expected. There was only one minor ET instrumentation anomaly. There was no ice/frost buildup observed, and the vehicle was clean at lift-off.

SPACE SHUTTLE MAIN ENGINE

The SSME performance data during prelaunch, mainstage, shutdown and propellant dump were within specifications. Engine 1 HPTP (high pressure fuel turbopump) line pressure oscillations were observed during mainstage. This pump will be replaced before the next f1ight.

MAIN PROPULSION SYSTEM
The overall performance of the MPS was excellent. All pretanking purges were performed satisfactorily. The LO2 (liquid oxygen) and LH2 (liquid hydrogen) propellant loading, prepressurization and pressurization systems performed as planned. Propellant loading was accomplished with no flow stopages.

Ascent performance of the MPS was normal and was within specification requirements throughout the flight. At approximately $\mathrm{T}+235$ seconds, the Orbiter ME (main engine)-2 LH2 inlet temperature measurement failed; however, this had no effect on the flight. Trajectory reconstruction indicated that the vehicle specific impulse was near the MPS assessment tag values. One DTO (detailed test objective), 40 percent MPS Vacuum Dump Test, was successfully performed.

ORBITER
All Orbiter systems operated very satisfactorily with only eleven anomalies occuring during the flight. A discussion of the most significant problem is contained in the following paragraph, and a complete listing of all problems and anomalies is contained in Table II.

Intermittent Power to SSME 3 LH2 Prevalve

During preflight ground checkout, the right LH2 prevalve close RPC (remote power controller)-A power output indication was intermittent. Troubleshooting procedures were implemented to verify that the prevalve open functions were good. During this activity, the right LH2 prevalve open power on indication was intermittent when open command C was removed. Analysis of the circuitry indicated that even if the above two failures became hard failures during ascent, it would have required an additional failure to cause inadvertent closure of the prevalve. Therefore, the vehicle was launched with potential intermittent conditions and there was no mission impact.

UNCLASSIFIED

