LEVEL C
FUNCTIONAL SUBSYSTEM SOFTWARE REQUIREMENTS SEQUENCE REQUIREMENTS

January 25, 1991

Contract NAS9-18500
IRD SE-694D1
WBS 39

Flight Systems and Performance

Rockwell International
Space Systems Division

FOREWORD

The primary avionics software system (PASS) requirements for the computer programs that execute in the Shuttle general-purpose computers (GPC's) are specified in the Computer Program Development Specifications (CPDS's) and the Functional Subsystem Software Requirements (FSSR) documents. The requirements are specified at three levels:

- Level A CPDS - System-level constraints and capabilities
- Level B CPDS - Functional requirements
- Level C FSSR - Detailed-level requirements

The Level A CPDS specifies system-level constraints and capabilities that are not oriented toward any particular program end item. The Level B CPDS specifies system-level requirements for guidance, navigation, and control (GN\&C) and detailed requirements for systems management (SM) and vehicle utility (VU). The Level C FSSR's specify the detailed requirements for GN\&C and display/controls. The Level C reconfigurable requirements are specified in the systems management and payload documents. The Level A, Level B, and Level C requirements documents are listed in Section 2, Applicable Documents.

DOCUMENT CHANGE RECORD

The following tabulation summarizes the change activity to Revision D dated January 25, 1991.

Issue and Date	Change Surmmary/Effectivity
Revision D	This baseline release for effectivity OI-21 and subs includes CR's
January 25,1991	89319C, 8990E, 90102D and 90114B.

CHANGE REQUEST SUMMARY

The following tabulation lists the paragraphs, figures (F), and tables (T) that have been changed as a result of approved change requests commencing with OI-8A. Changes incorporated prior to OI-8A are listed in the Historical Change Request Summary.

Paragraph	CR No.	OI-	Title
4.1.1.3			
Step 1C	89313A	OI-8C	CLOSE LH2 RECIRC DISC VLV FOR PAD ABORT
Step 1D	79997A	OI-8A	INTCON MPS HELIUM PAD ABORT
Step 1E	79997A	OI-8A	INTCON MPS HELIUM PAD ABORT
Step 1F	79997A	OI-8A	INTCON MPS HELIUM PAD ABORT
Step 2A	89157A	OI-8B	SSME LIMIT EXCEEDANCE PAD ABORT
Step 3A	89157A	OI-8B	SSME LIMIT EXCEEDANCE PAD ABORT
Step 4A	89157A	OI-8B	SSME LIMIT EXCEEDANCE PAD ABORT
Step 13	89355B	OI-8D	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS
Step 14	89355B	OI-8D	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS
Step 17	89355B	OI-8D	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS
Step 17A	89355B	OI-8D	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS
Step 18	89355B	OI-8D	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS
Step 28A	89348B	OI-8C	MM103 FAST SEP CORRECTION
	90188	OI-8D	CHANGE ENGINE START TIME COMPUTATION
Step 30	89349A	OI-8C	PREVLV CLOSEURE FOR PAD ABORT
Step 30B	89349A	OI-8C	PREVLV CLOSEURE FOR PAD ABORT
Step 31	89349A	OI-8C	PREVLV CLOSEURE FOR PAD ABORT
Step 31B	89349A	OI-8C	PREVLV CLOSEURE FOR PAD ABORT
4.114(F)	79997A	OI-8A	INTCON MPS HELIUM PAD ABORT
4.1.1.4 (T)	89157A	OI-8B	SSME LIMIT EXCEEDANCE PAD ABORT
	89313A	OI-8C	CLOSE LH2 RECIRC DISC VLV FOR PAD ABORT
	89348B	OI-8C	MM103 FAST SEP CORRECTION
	89349A	OI-8C	PREVLV CLOSEURE FOR PAD ABORT
	89355B	OI-8D	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS
	89875A	OI-8B	CLEANUP TO CR 89819
	90054A	OI-8D	ENTRY FCS ERRATA

Paragraph	CR No.	OI-	Title
4.1.2.2	89875A	OI-8B	CLEANUP TO CR 89819
4.1.2.3			
Step 17	89819	OI-8B	QD FAILURE PROTECTION FOR RSLS ABORT
Step 17	89875A	OI-8B	CLEANUP TO CR 89819
4.222 (F)	89819	OI-8B	QD FAILURE PROTECTION FOR RSLS ABORT
4.1.2.4 (T)	89875A	OI-8B	CLEANUP TO CR 89819
4.2.1.1	89325B	OI-8B	LOW LVL SNSR MOW SGL SNSR DIS
4.2.1.2	89325B	OI-8B	LOW LVL SNSR MOW SGL SNSR DIS
4.2.1.3			
Step 2	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 3	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 3A	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 6	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 7	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 7A	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 10	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 11	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 11A	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
Step 17	89108A	OI-8A	ERRONEOUS ENG PHASE FLAG FIX
Step 17B	89505B	OI-8D	MODIFY MPS MECO HELIUM INTERCONNECT
	89809B	OI-8D	CR 89505B CLEANUP
	89846B	OI-8D	CR 89809B CLEANUP
Step 17C	89505B	OI-8D	MODIFY MPS MECO HELIUM INTERCONNECT
	89809B	OI-8D	CR 89505B CLEANUP
	89846B	OI-8D	CR 89809B CLEANUP
Step 17D	89505B	OI-8D	MODIFY MPS MECO HELIUM INTERCONNECT
	89809B	OI-8D	CR 89505B CLEANUP
	89846B	OI-8D	CR 89809B CLEANUP
Step 22	89287	Or-8A	SSME OPS SCRUB
Step 22A	89287	OI-8A	SSME OPS SCRUB
Step 22B	89287	OI-8A	SSME OPS SCRUB

Paragraph	CR No.	OI-	Title
Step 22C	89287	OI-8A	SSME OPS SCRUB
Step 22D	89287	OI-8A	SSME OPS SCRUB
Step 22E	89287	OI-8A	SSME OPS SCRUB
Step 22F	89287	OI-8A	SSME OPS SCRUB
Step 24A	89278A	OI-8B	LH2 PREVALVE TIMER FOR FAST SEP
	89325B	OI-8B	LOW LVL SNSR MON SGL SNSR DIS
Step 25	89325B	$\mathrm{OI}-8 \mathrm{~B}$	LOW LVL SNSR MON SGL SNSR DIS
Step 25A	89325B	OI-8B	LOW LVL SNSR MON SGL SNSR DIS
Step 26	89325B	OI-8B	LOW LVL SNSR MON SGL SNSR DIS
Step 26A	89325B	$\mathrm{OI}-8 \mathrm{~B}$	LOW LVL SNSR MON SGL SNSR DIS
4.2.1.4-1(T)	89990E	OI-21	SINGLE ENGINE AUTO CONTINGENCY ABORT
4.165(F)	89278A	OI-8B	LH2 PREVALVE TIMER FOR FAST SEP
	89325B	$\mathrm{OI}-8 \mathrm{~B}$	LOW LVL SNSR MON SGL SNSR DIS
	89369B	OI-8C	PD3 SAFING FOR INFLT SHUTDOWN
	89505B	OI-8D	MODIFY MPS MECO HELIUM INTERCONNECT
	89809B	OI-8D	CR 89505B CLEANUP
4.2.2.2			
Step 1	79987D	OI-8A	SRB SEQ-MDM FAILURES
Step 2	79987D	OI-8A	SRB SEQ-MDM FAILURES
Step 4	79935H	OI-8A	SRB RGA $\dot{R} E C H A N N E L I Z A T I O N$
4.115 (F)	79987D	OI-8A	SRB SEQ-MDM FAILURES
4.2.3.3			
Step 1	89165H	OI-8B	MPS FEED DISC LATCH LOGIC
	89399B	OI-8C	POST MECO LH2 VENT
Step 2	89348B	Oİ-8C	MM103 FAST SEP CORRECTION
Step 3	89165H	OI-8B	MPS FEED DISC LATCH LOGIC
Step 3a	89165H	OI-8B	MPS FEED DISC LATCH LOGIC
Step 3b	89165 H	$\mathrm{OI}-8 \mathrm{~B}$	MPS FEED DISC LATCH LOGIC
Step 3c	89165 H	$\mathrm{OI}-8 \mathrm{~B}$	MPS FEED DISC LATCH LOGIC
Step 3d	89165H	$\mathrm{OI}-8 \mathrm{~B}$	MPS FEED DISC LATCH LOGIC
Step 3e	89165 H	OI-8B	MPS FEED DISC LATCH LOGIC

Paragraph	CR No.	OI-	Title
Step 3f	79935M	OI-8A	SRB RGA RECHANNELIZATION
	89165 H	$\mathrm{OI}-8 \mathrm{~B}$	MPS FEED DISC LATCH LOGIC
Step 5/5a	90277A	OI-8D	ET SEP SEQUENCE CLEANUP
Step 5a	79928	OI-8B	AUTHORIZED SEQUENCER K-LOAD CHANGES
	79935H	OI-8B	SRB RGA RECHANNELIZATION
	89165H	OI-8B	MPS FEED DISC LATCH LOGIC
Step 7	89348B	OI-8C	MM103 FAST SEP CORRECTION
Step 8	89165 H	OI-8B	MPS FEED DISC LATCH LOGIC
Step 9	89165H	OI-8B	MPS FEED DISC LATCH LOGIC
4.116(F)	89165H	$\mathrm{OI}-8 \mathrm{~B}$	MPS FEED DISC LATCH LOGIC
	89348B	OI-8C	MM103 FAST SEP CORRECTION
	89399B	OI-8C	POST MECO LH2 VENT
	90277A	OI-8D	ET SEP SEQUENCE CLEANUP
4.2.3.4(T)	89465C	OI-8C	MPS LH2 DUMP RTLS CONTINGENCY
4.2.3	89319E	OI-21	ORBITER SOFTWARE CHANGE REQUEST
4.2.3.4-1(T)	89990E	OI-21	SINGLE ENGINE AUTO CONTINGENCY ABORT
4.2.3.4-2(T)	89319E	OI-21	ORBITER SOFTWARE CHANGE REQUEST
4.2.3.4-1(T)	90114 B	OI-21	ABORT SEQUENCING REDESIGN
4.2.4.1	89465C	OI-8C	MPS LHZ DUMP RTLS CONTINGENCY
Step 2	89465C	OI-8C	MPS LH2 DUMP RTLS CONTINGENCY
4.2.4.4(T)	90120 B	$\mathrm{OI}-8 \mathrm{D}$	UPDATE GUIDANCE DOWNMODE RQMTS
4.70(F)	89465C	OI-8C	MPS LH2 DUMP RTLS CONTINGENCY
4.3.1.1	89140 E	OI-8A	CENTAUR REQUIREMENTS DELETION
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
4.3.1.2	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
4.3.1.3			
Step 1	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
	89154B	OI-8A	DUMP ITEM DISPLAY CLEANUP
	89193D	OI-8A	ABT CNTR SEQ/OVERRIDE LASHUP

Paragraph	CR No.	OI-	Title
Step 1A	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
	89956	OI-8D	ABORT CONTROL SEQ CORRECTIONS
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 3	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 4	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 4A	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 5	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 6	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 7	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 7A	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 7B	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89154B	OI-8A	DUMP ITEM DISPLAY CLEANUP
	89193D	OI-8A	ABT CNTL SEQ/OVERRIDE LASHUP
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 7C	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 8	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89154B	OI-8A	DUMP ITEM DISPLAY CLEANUP
	89193D	OI-8A	ABT CNTL SEQ/OVERRIDE LASHUP
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
	89956	OI-8D	ABORT CONTROL SEQ CORRECTIONS
Step 9	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971 D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 9A	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 10	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION

Paragraph	CR No.	OI-	Title
Step 10A	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 11	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 12	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 13	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
	89956	OI-8D	ABORT CONTROL SEQ CORRECTIONS
Step 14	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 15	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 16	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 17	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 18	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 19	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
	89810	OI-8D	CORRECTION FOR 89150H
Step 20	89149B	OI-8A	OI-8A VERSION OF CR 79596C
	89193D	OI-8A	ABT CNTL SEQ/OVERRIDE LASHUP
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
	89956	OI-8D	ABORT CONTROL SEQ CORRECTIONS
Step 21	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 22	79643A	OI-8A	OMS DUMP WITH 3 SSME'S FAILED
Step 23	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 24	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 25	89238	OI-8B	ZERO THRUST AUTO DUMP START
	89479	OI-8C	CONTINGENCY DUMP POST-MECO MANUAL START
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 26	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 27	89705	OI-8C	POST MECO NZ TERMINATION CORRECTION
	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 28	89150 H	OI-8D	ABORT CONTROL SEQ SCRUB

Paragraph	CR No.	OI-	Title
Step 29	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
	89810	OI-8D	CORRECTION FOR 89150H
Step 30	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 31	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 32	79643A	OI-8A	OMS DUMP WITH 3 SSME'S FAILED
	89154B	OI-8A	DUMP ITEM DISPLAY CLEANUP
	89193D	OI-8A	ABT CNTL SEQ/OVERRIDE LASHUP
	89229G	OI-8C	TERMINATE OMS-DUMP POST-MECO
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 33	89142B	OI-8A	NZ LIMIT FOR MM304 OMS DUMP
	89154B	OI-8A	DUMP ITEM DISPLAY CLEANUP
	89193D	OI-8A	ABT CNTL SEQ/OVERRIDE LASHUP
	89229G	OI-8C	TERMINATE OMS-DUMP POST-MECO
	89705	OI-8C	POST MECO NZ TERMINATION CORRECTION
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 34	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 35	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
Step 36	89150H	OI-8D	ABORT CONTROL SEQ SCRUB
4.192(F)	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79643A	OI-8A	OMS DUMP WITH 3 SSME'S FAILED
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
	89142B	OI-8A	NZ LIMIT FOR MM304 OMS DUMP
	89149B	OI-8A	OI-8A VERSION OF CR 79596C
	89154B	OI-8A	DUMP ITEM DISPLAY CLEANUP
	89193D	OI-8A	ABT CNTL SEQ/OVERRIDE LASHUP
	89229G	OI-8C	TERMINATE OMS-DUMP POST-MECO
	89238	OI-8B	ZERO THRUST AUTO DUMP START
	89479	OI-8C	CONTINGENCY DUMP POST-MECO MANUAL START
	89705	OI-8C	POST MECO NZ TERMINATION CORRECTION
	89150H	OI-8D	ABORT CONTROL SEQ SCRUB

Paragraph	CR No.	OI-	Title
4.3.2.2	89956	OI-8D	ABORT CONTROL SEQ CORRECTIONS
	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	89237	OI-8B	OMS/RCS I/C DOC CHANGE
	89239B	OI-8B	CLEANUP OF CR 89210B
	89352C	OI-8B	AFT MANIFOLD JET INH RESET DELAY
4.3.2.3			
Step 1	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89185A	OI-8A	ABT OMS/RCS INTRCNT MODE TRANS
	89237	OI-8B	OMS/RCS I/C DOC CHANGE
Step 1A	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
Step 1B	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
Step 2	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
Step 4	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
Step 6	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89320	OI-8B	OMS/RCS I/C DOC CHANGE
Step 7	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89352C	OI-8B	AFT MANIFOLD JET INH RESET DELAY
Step 11	89352C	OI-8B	AFT MANIFOLD JET INH RESET DELAY
Step 13	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
Step 14	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89210B	OI-8B	SMART INTERCONNECT
Step 14A	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
Step 17	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89210B	OI-8B	SMART INTERCONNECT
	89239B	OI-8B	CLEANUP OF CR 89210B

Paragraph	CR No.	OI-	Title
Step 19	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971 D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89210B	OI-8B	SMART INTERCONNECT
	89239B	OI-8B	CLEANUP OF CR 89210B
Step 20	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79972	OI-8A	INTERCONNECT TIMER FIX
	89210B	$\mathrm{OI}-8 \mathrm{~B}$	SMART INTERCONNECT
	89239B	OI-8B	CLEANUP OF CR 89210B
Step 21	59126 H	OI-8A	RCS XFEED MCA OPTIMIZATION
Step 22	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89352C	OI-8B	AFT MANIFOLD JET INH RESET DELAY
4.181(F)	59126H	OI-8A	RCS XFEED MCA OPTIMIZATION
	79971 D	OI-8A	ABORT/INTERCONNECT FLAG FIX
	89210B	OI-8B	SMART INTERCONNECT
	89239B	$\mathrm{OI}-8 \mathrm{~B}$	CLEANUP OF CR 89210B
	89352C	OI-8B	AFT MANIFOLD JET INH RESET DELAY
4.3	90114B	OI-21	ABORT SEQUENCING REDESIGN
4.3.1.4-1(T)			
4.3.1.4-2(T)			
4.3.1.4-3(T)			
4.3.2	90114B	OI-21	ABORT SEQUENCING REDESIGN
4.3.2.4-1(T)			
4.4.1.2	79933F	OI-8A	VENT DOOR SEQ SCRUB CR
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
4.4.1.3	79933F	OL-8A	VENT DOOR SEQ SCRUB CR
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
Step 1	79933F	OI-8A	VENT DOOR SEQ SCRUB CR
Step 2	79933F	OI-8A	VENT DOOR SEQ SCRUB CR
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
Step 9	79933F	OI-8A	VENT DOOR SEQ SCRUB CR

Paragraph	CR No.	OI-	Title
4.161(F)	79933F	OI-8A	VENT DOOR SEQ SCRUB CR
	89140E	OI-8A	CENTAUR REQUIREMENTS DELETION
4.4.1.4(T)	90054 A	OI-8D	ENTRY FCS ERRATA
4.5.1.2	89436A	OI-8C	LG HYD ISOL VLV OPEN CMD TIME
4.5.1.3			
4.5	90102	OI-21	LDG GEAR EXTENSION ISOLATION VALVE
4.5.1			
4.5.1.3			
4.5.1.4-1(T)			
Step 2	89436A	$\mathrm{OI}-8 \mathrm{C}$	LG HYD ISOL VLV OPEN CMD TIME
Step 6	89436A	$\mathrm{OI}-8 \mathrm{C}$	LG HYD ISOL VLV OPEN CMD TIME
Step 8	89436A	$\mathrm{OI}-8 \mathrm{C}$	LG HYD ISOL VLV OPEN CMD TIME
Step 9	89436A	$\mathrm{OI}-8 \mathrm{C}$	LG HYD ISOL VLV OPEN CMD TIME
4.215(F)	89436A	OI-8C	LG HYD ISOL VLV OPEN CMD TIME
4.6.1.1	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
4.6.1.2	$79964 F$	OI-8A	RCS REG FAIL PROTECT SEQ
	89246A	OI-8A	CLEANUP FOR CR 79964F
4.6.1.3	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 1	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 2	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 3	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 4	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 5	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Sub A	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Sub B	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Sub B1	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
Sub B2	79964F	$\mathrm{OI}-8 \mathrm{~A}$	RCS REG FAIL PROTECT SEQ
Sub C	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
4.185(F)	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
4.6.4.1	79964F	OI-8A	RCS REG FAIL PROTECT SEQ
4.6.4.2	79964F	OI-8A	RCS REG FAIL PROTECT SEQ

Paragraph	CR No.	OI-	
	89246 A	OI-8A	CLEANUP FOR CR 79964F
4.6 .4 .3	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
	89246 A	OI-8A	CLEANUP FOR CR 79964F
Step 1	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 2	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 3	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step 4	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Sub A	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A1	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A2	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A3	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A4	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A5	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A6	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A7	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A8	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step A9	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Sub B	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step B1	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step B2	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step B3	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
Step B4	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
4.189 (F)	79964 F	OI-8A	RCS REG FAIL PROTECT SEQ
$4.7 .6 .4(T)$	90120 B	OI-8D	UPDATE GUIDANCE DOWNMODE RQMTS
$4.8 .1 .1 ~$	89968 A	OI-8C	25 MS TIMING REQ FOR MEC NON-CRIT CMDS
4.8 .1 .2	89968 A	OI-8C	25 MS TIMING REQ FOR MEC NON-CRIT CMDS
4.8 .1 .4	89968 A	OI-8C	25 MS TIMING REQ FOR MEC NON-CRIT CMDS
4.8 .2 .3 .4	79973 A	OI-8A	PAD DATA PATH FAIL CRITERIA
4.8 .2 .3 .5	89389 B	OI-8C	SSME CONTINUOUS COMMANDS
4.8 .2 .3 .6	89108 A	OI-8A	ERRONEOUS ENG PHASE FLAG FIX
	89201 A	OI-8A	MAIN ENG SHUTDOWN INDICATION

Paragraph	CR No.	OI-	Title
	89456 A	OI-8B	FSSR 26 ERRATA/DOC CLEANUP
4.8 .2 .3 .8	89389 B	OI-8C	SSME CONTINUOUS COMMANDS
	89201 A	OI-8A	MAIN ENG SHUTDOWN INDICATION
	89456 A	OI-8B	FSSR 26 ERRATA/DOC CLEANUP
$4.8 .2 .4-1$ (T)	89990 E	OI-21	SINGLE ENGINE AUTO CONTINGENCY ABORT
4.1 .1	90023 A	20	GN\&C CHECKOUT CONFIGURATION
Step 41			
$4.114(\mathrm{~F})$			
4.2 .3			
Step 3			
$4.116(\mathrm{~F})$			
4.6 .3	90271	20	CLOSE RCS HELIUM VALVES BASED ON HIGH TANK
OUTLET PRESSURE			
Step 6			
$4.1 .1 .4-1$	89981	20	ADD DOWNLIST REQ FOR LPS ORBITER DOORS
$4.116(\mathrm{~F})$	90114 B	OI-21	ABORT SEQUENCING REDESIGN
$4.184(\mathrm{~F})$	90114 B	OI-21	ABORT SEQUENCING REDESIGN
$4.192(\mathrm{~F})$	90114 B	OI-21	ABORT SEQUENCING REDESIGN
$4.215(\mathrm{~F})$	90102 D	OI-21	LDG GEAR EXTENSION ISOLATION VALUE

HISTORICAL CHANGE REQUEST SUMMARY

The following tabulation is a historical record of the approved software change requests incorporated in this document by software release.

CR No.	Title	Release
02166	OFT GNC ENTRY FUNCTIONS UPDATE	16
02173A	ABORT MODE RESELECTION (G021)	16
02.313A	SRB MON FCN/SEL FILTER/SRB SEP SEQ	16
02340D	ATTITUDE DATA, IMU DATA	16
02449D	ADD OFT CONTINGENCY ABORT RQT	16
02486B	SRB TVD FDIR ACTIVATION/DEACTIVATION	16
02607A	UPDATE TO D\&C BOOK II	16
12008	REDUCE SSME RATE	16
12019	STAND FSSR PRINCIPAL FUNCT	16
12028B	SSME OPERATIONS SEQUENCE	16
12033A	ABORT CONTROL SEQ	16
12034	OMS ENGINE FIRING SEQ REV	16
12037A	ABORT OMS/RCS INTERCONNECT	16
12045	OMS TO RCS GAGING REVISIONS	16
12046A	OMS TO OMS CROSSFEED SEQ	16
12047	VENT DOOR SEQUENCE	16
12071A	MNVR EXECUTE (6.35 AND 6.46) DISPLAY CHANGES	16
12073A	O. OMS/RCS CONN	16
12074A	ET SEPARATION SEQUENCE REVISION	16
12075	HYD SYS LND GEAR ISOL VLV	16
12076A	RCS PROPELLANT CROSSFEED	16
12077A	MPS DUMP SEQUENCE REVISION	16
12078A	SRB MDM DATA ACQUISITION	16
12119	ON ORB I/O UPDT	16
12112	GAX-ANNUNCIATION REWRITE	16
12137	OMS/OMS CONN, RCS/RCS XFEED RATE CHG	16
12160A	RS LAUNCH SEQ REV (4.114)	16
12161	SRB SEP SEQUENCE REVISION	16

January 25, 1991

CR No.	Title	Release
12162	RCS QUANTITY MONITOR	16
12190D	ASC/RTLS GUID, PFG MODE TEAM	16
12217	SRB AND ET SEP SEQ RATE REDUCTION	16
12218 C	AERO ACTUATOR COMMAND SOP	16
12239	GPC/SSME DATA FETCH	16
12240	MEC SOP DOCUMENTATION CHG	16
12241	SSME SOP DOCUMENTATION CHG	16
12248	GAX-RATE TABLE UPDATE	16
12270A	BLOCK UPDT TO OPS 3	16
12313C	ADDITION OF TLM REQMTS	16
12316	GNC SWITCH RM PROC RATE RED	16
12336	I-LD OFT MISS AND LRU DEP	16
12337	I-LD OFT DES DEP PARM	16
12411B	OMS ENGINE FDI SIMPLIFICATION	16
12414C	R/S LCH SEQ AND SSME SOP REV	16
12442A	INTEGRATED ENT NAV, ASC NAV, AND ORB	16
12443	I-LOAD FOR ENTRY FACI	16
12449B	VENT DOOR CONTROL SEQ	16
12455	SSME SOP SWITCH OF EIU 60 KBPS OUTPUT	18
12473B	RCS QUAN MONITOR	16
12480B	SSME OPERATIONS SEQ	16
12481A	MPS DUMP SEQ	16
12482A	ET SEPARATION SEQ	16
12483B	SRB SEPARATION SEQ	16
12484A	MPS DEDICATED DISPLAY DRIVE SEQ	16
12491	OMS FIRE SEQ	16
12494	OMS TO RCS GAGING	16
12495	OMS TO OMS XFEED AND RECONFIGURATION	16
12496	RCS	16
12497	OMS/RCS CONNECT SEQ	16
12508	HYDRAULICS	16

CR No.	Title	Release
12510	PEG TIME-TO-GO AND THRUST INTEGRAL	16
12523	SRB SEPARATION INHIBIT	16
12586	INTEGRATED SIGNAL INTERFACES	18
12639	BACKUP SRB PWR ADDITIONS TO MEC	16
12644C	LAUNCH SEQ COMMAND CODE UPDATE	16
12658A	ASCENT DISPLAYS UPDT	16
12672C	JAN SEQ MODE TEAM MAKE WORK	16
12673A	REDUNDANT SET LAUNCH SEQ	16
12691A	MPS HELIUM REDESIGN	16
12699A	ADDITION OF FAST SEP MODE	16
12704B	RELOCATION OF MPS ACTUATOR PORT CH	16
12716A	MNVR EXEC DISPLAY REFORMAT	18
12722	MANUAL OPEN VENT DOORS DURING ENTRY	16
12745	DELETION OF OMS/OMS INTERCONNECT SEQ	16
12771A	PRINCIPAL FUNCTION DELETIONS	18
12826A	VENT DOOR CONTROL UPDATE	16
12836	RCS RCS XFEED AND RECONFIGURATION	16
12868A	I-LOAD CHG TO REFLECT MODE TEAM	16
12881A	ABORT VENT DOOR	16
12896A	ET SEP SEQ CLEANUP	16
12897A	MPS DUMP SEQ LOX AND LH2 INLET PRESS	16
12901	ORBIT OMS/RCS INTERCONNECT SEQ	18
12928A	SSME OPS SEQ	16
12938A	XXXXXX TRAJ IDD	16
12942A	MPS TVC ACTUATOR BYPASS/OVERRIDE	16
12977	OMS FIRE SEQ CORRECTIONS	18
12981D	ON ORBIT FLIGHT CONTROL	18
12993	I-LOAD FACI	16
12994	I-LOADS OFT-1 FACI U/D	16
12997	ET FAST SEP (MEC SOP IMPACTS)	16
19016	SEQ INTERFACE CLEANUP	16

CR No.	Title	Release
19039C	ASCENT/ENTRY STRUCTURAL PTI'S	17
19040	MANEUV EXEC DOC CLEANUP	16
19048	SRB TVC RST/OVRD SCHEDULING	16
19053A	SRB SEPARATION SEQ LASH UP	16
19060C	VENT DOOR SEQ	16
19061A	FAST SEP CHG TO GRTLS FSSR	16
19066B	CORRECT AND DEFINE MECO ACCURACY RQMT	16
19068A	MAIN ENGINE SHUT DOWN SWITCH RM	17
19081	MPS DED DIS DRIVE SEQ MOD	16
19091B	O. OMS/RCS CONN FAULT.CHECKS	16
19092	OMS FIRE SEQ COMMFAULT CHECKS	18
19097A	ADDITION TO M PAD (I-LOAD)	16
19100	FSSR UPDATE	16
19103A	ABORT CONT SEQ MAKE WORK CHANGES (CONTINGENCY ABORT)	16
19107C	MM 102 3 ENGINE OUT MODING PREVENTION	16
19108A	OMS TO RCS GAGING CONSTANTS	16
19142A	BACKUP TO MECO CONFIRMED	16
19147	ET SEP SEQ COMMFAULT PROCESSING	16
19148	SSME SOP COMMFAULT PROCESSING	16
19149	SSME OPS COMMFAULT PROCESSING	16
19163A	RSLS CLEANUP	16
19165	RCS QTY MON (4.102)	16
19173	RS LCH SEQ I-LOAD CHG	16
19176	RTLS ABORT MPS DUMP TERM SOFTWARE	16
19208A	OMS/RCS ADDITIONS TO D/L	16
19222	ET SEP SWITCH DEFAULT AND OVERRIDE POS	16
19224B	SSME OPS PREVALVE I-LOAD	16
19232	R/S LAUNCH SEQUENCE ADDITIONS FOR FRF	16
19237	FLT ACCEL SAFETY CUTOFF SYSTEM (FASCOS)	16
19238	R/S LCH ACTUATOR PORT CHECKS MOD	16
19239	FAST SEP FOR MM 601	16

CR No.	Title	Release
19240	FAST SEP I-LOADS	16
19300	FSSR UPDATE II	16
19358	DELETE ET SEP IDD	16
19371A	FSSR SD 76-SH-0026A I-LOAD	16
19404A	VENT DOOR SEQ	16
19412	SRB IGN DELAY I-LOAD	16
19416A	OMS/RCS I/C REPRESS FUNCTION MOD STS-2	18
19420	ET SEP DOC CHANGE	16
19440	MPS FUEL DUMP LOGIC CORRECTION	16
19455	MEASUREMENT ATTRIBUTE CORRECTIONS	16
19464	INCORRECT BCH CODE	16
19475	SSME SOP DOCUMENTATION CHG	16
19476	R/S LCH SEQ CLARIFICATION	16
19496	GPC CMD PRIORITY TO SSME	16
19500	FSSR UPDATE 3	16
19507	VENT DOOR SEQ ON ORBIT/ENTRY I-LOAD	16
19532A	ET SRB SEQ/UMB RETRACT TIME-DELAY CHG	16
19533A	ADDITION OF "C" CMD TO LO2 AND LH2 FEEDLINE RELIEF S/O VALVE CLOSE COMMANDS	16
19534A	ADDITION OF "C" CMD TO LH2 RTLS MAN REPRESS OPEN CMDS MEC NON-CRITICAL COMM	16
19541	MEC NON-CRITICAL COMMAND CONSTRAINTS	16
19553C	CREW OVERRIDE OF OMS TARGETS VIA ITEM ENTRY (STS-2)	18
19558	SSME SOP FASCOS CHANGE	17
19598A	ATVC DEADFACE REQUIREMENTS IN SRB SEP SEQ	16
19623B	REMOVAL OF 30% CHAMBER PRESSURE INTERLOCK ON PREVALVE CLOSE COMMANDS	16
19626	I-LOAD CORRECTION	16
19632	INCORRECT BCH CODE SPECIFIED FOR GPC TO EIU COMMAND WORDS	16
19651	R/S LCH SEQ RECYCLE I-LOAD	16
19657	OMS BURN AFTER RCS ROLL CONTROL	16

CR No.	Title	Release
19659	VENT DOOR SEQUENCE	16
19664	ABORT CONTROL SEQ CONTINUATION OF INTACT OMS DUMP	18
19665	ABORT CONTROL SEQ CONTINUATION OF INTACT OMS DUMP	17
19681A	SOFTWARE CHANGES TO ACCOMMODATE LO2 LOW LEVEL SENSOR RELOCATION	16
19686A	FRF I-LOAD	16
19698A	RCS QUANTITY MONITOR (STS-2 \& SUBS)	17
19713	MAKE WORK CORRECTION CR 19280 AND CR 12899A	16
19736	MAKE WORK LASHUP OF GRTLS DAP REQMTS TO CR 19239 (MM 601 FAST SEP)	16
19738A	RCS QUANTITY MONITOR SEQUENCE ALGORITHM CONSTANTS AND I-LOAD VALUES	17
19770A	ET SEP SEQ CHANGES FOR FAST SEP AFTER RTLS MECO	16
19800	UPDATE OMS/RCS GAGING SCALE FACTOR	19
19823A	VENT DOOR SEQUENCE COMMANDS TERMINATION	16
19824A	ET UMBILICAL DOORS COMMAND ON CHANGE ONLY SEQUENCE TERMINATION	16
19827A	-Z MANEUVER INITIATION MODIFICATION	16
19836	CLOSE OMS TK ISO VALVES FOR RTLS (OPS SINGLE POINT FAILURE)	16
19837A	AFT COMPT RTLS HELIUM PURGE	16
19844	STS-1 RTLS PROPELLANT BURN TIME I-LOAD CHANGES	16
19853A	FAST SEP I-LOAD FOR ME LH2 PREVALVE	16
19857B	UPP I-LOAD REQ CHANGE AGREE WITH IMPLEMENTATION	16
19893A	SEQ FSSR I-LOAD SYMBOLIC NAME CHANGE	16
19900	FSSR UPDATE NO. 5	16
19922	R/S LAUNCH SEQ 90\% CHECK I-LOAD CHANGE	16
19923	MOD TO CR 19664 - ABORT SEQUENCE, STS-2 OMS FUEL QUANTITY COMMFAULT MONITORING	18
19946A	STS-1 VENT DOOR I-LOADS	16
19958A	ASCENT FLIGHT CONTROL DOCUMENTATION CLEAN UP	16
19964	SSME COMMAND PATH FAILURE (STS-1)	17
19970	DELETION OF KI-SCALE FACTOR 1 FLAG	17
19973	OMS LEFT/RIGHT AND OMS/RCS VALVE MISCOMPARE RESET	19

CR No.	Title	Release
19998A	SSME STAGGER START	16
29022	REDUCTION OF LOX RESIDUALS FOR ENGINE OUT LOW LEVEL SHUTDOWN	17
29025B	PRE-SRB IGNITION MONITORING OF FASCOS	16
29037	RELOCATE LO2 LOW LEVEL SENSOR	16
29049	FRF' I-LOAD CHANGES	16
29081	VENT DOOR SEQUENCE, CORRECTION TO CR 19823A	17
29095	SSME SOP COMMAND CHANGE	16
29099B	POST MECO RCS DUMP DURING RTLS	18
29106B	EIU 60 KBPS OUTPUT SWITCH	16
29119B	SRB SEQUENCE I-LOAD UPDATE	16
29142B	MPAD I-LOAD UPDATE NO. 4 FOR STS-1 CYCLE 3	16
29154B	STS-1 RTLS-PROPELLANT BURN TIME I-LOAD CHANGE	16
29162A	I-LOAD CHANGES 'OWNER AUDIT'	16
29192	VENT DOOR COMMAND STAGGER TIME FOR	16
29207	MODIFICATION OF CR 19998A	16
29211	SSME LIMIT CONTROL INHIBIT/ENABLE (STS-2)	18
29216	OMS/RCS DOWNLIST REQUIREMENTS UPDATE	16
29323A	COMPUTER CG TRIM AND IGN PRESS	16
29328A	FAST SEP LW LVL SEN ARM 601	16
29333B	I-LOAD CHANGES RESULTING FROM OWNERS AUDIT	16
29343	RESET EVENT TIME START FLAG	16
29377	VENT DOOR STATUS AND OVERRIDE WORDS	16
29378A	OMS VALVE MISCOMPARE MESSAGE CLEANUP	OI-4
29405A	MPS PREVALVE OPER TO PRECLUDE POSSIBLE HARDWARE DAMAGE	16
29429	MPS LH2 FEEDLINE PRESS RELIEF	18
29433	RCS QUANTITY MONITOR UPDATE	18
29457	SSME STAGGER START TOLERANCE	16
29471B	HFE OVERRUN DEFINITION	16
29480B	MEC SOP NON-CRITICAL CMDS INIT	18
29481 A	SSME CHAMBER PRESSURE	16

CR No.	Title	Release
29503A	RTLS ET SEP	16
29548B	ENG TIMER FOR THRUST OK (I-LOAD)	16
29551B	I-LOAD SCRUB - SEQ	19
29552B	SRB IGN TIME DELAY	18
29562	MPS TVC OVRD FOR PRE SRB FTS	18
29574A	LAUNCH SEQ ABORT LOGIC STS-1	16
29582	RTLS HELIUM PURGE I-LOAD	16
29597A	DELETE I-LOADS: ET SEP	19
29603A	SSME DOWNLIST DATA	18
29607A	MPS LH2 LOW LEVEL DELAYS	19
29619A	CALCULATION OF COUNTDOWN TIME	16
29664	LATCH ME-X TVC SERVO OVRD CMD	16
29668A	CMD PATH FAIL	16
29675	SSME STAGGER START TOL	16
29720	FAST SEP/MM103/TWO SSME FAIL	18
29725	AOA I-LOAD TITLE CORRECTION	16
29737A	AFT COMP/OMS POD AOA HELIUM PURGE	16
29749B	LPS COMMAND PROCESSING	19
29762A	ATT PROC IDD CLEAN UP	16
29775	SELECTIVE INHIBIT OF SSME S/D FOR DATA FAIL	OI-4
29783	SRB SEP BACK-UP CUE TIME I-LOAD	16
29793	ET UMBILICAL DOOR CLOSURE	18
29797C	LH2 DUMP VIA FILL/DRAIN VALVE	16
29800	FSSR UPDATE 8	16
29851	DELETE CR 29211 C - SSME LIM CNTL	18
29855B	HPOTP OVERSPEED AT MECO	16
29870C	ADD GMTLO TO DOWNLIST	19
29872	CLEAN-UP OF CR 29552B	18
29877B	MPS ENTRY HELIUM PURGE	18
29879	TRANS DAP RATE AND ATT D/B I-LOAD	16
29880	ET FAST SEP I-LOAD CHANGE	16

CR No.	Title	Release
29883	MPS LO2 LOW LVL CUTOFF DELAY	16
29891A	RTLS OMS PROP DUMP I-LOAD CHANGES	16
29943A	CRT TIME TO GO TO SRB IGN (SUPERSEDES 29421)	19
29970C	VENT DOOR PURGE COMMAND TERM	18
29987	POST MECO RCS DUMP-RTLS	18
29996A	CORRECT CR 29720 - FAST SEP/MM103	18
39000	FSSR UPDATE 9	16
39022	LPS - RESUME COUNT COMMAND	19
39065A	LOX LOW LEVEL CUTOFF DELAY	16
39079	LO2 PREVALVE MECO I/L CHANGE	16
39080	FRF THROTTLE CMD	16
39091E	BACKUP MECO CONFIRMED	18
39103A	OMS RTLS PROP DUMP	16
39110A	ADD LO2 PREVALVE CLOSE CMDS	19
39137D	SSME FAIL MESSAGES	OI-2
39220A	OMS RTLS PROP DUMP	16
39244A	MEC SOP ET TUMBLE	18
39253A	SSME CMD PATH FAIL CHECK	18
39261	RTLS PURGE INITIATION	19
39265	RCS QTY MONITOR DOCUMENTATION	16
39323A	STS-2 CYCLE 1 MPAD ABORT I/L	18
39326	ET DOOR LATCH CMD RESET	18
39328B	DELETE FRF REQUIREMENTS	18
39358A	RCS QTY MONITOR UPDATE I/L	18
39370	RCS QTY MONITOR UPDATE	18
39394	MPS LO2 PREVALVE CMDS TO RSLS	OI-2
39400	FSSR UDATE NO. 10/R18 AND R19	18
39401	TRANSATLANTIC ABORT LANDING	18
39430	LATCH MAIN ENGINE SAFING CMDS	OI-3
39447C	SINGLE SSME OMS PRESS	19
39452D	LPS CONTROL-SRB RSC SAFE COND	18

CR No.	Title	Release
39470A	SRB SEP SEQ AND MEC SOP DOC	18
39475A	DELETE MECO HE INJECTION CMDS	OI-6
39477	LAUNCH VENT DOOR SEQUENCE	19
39478	OMS/RCS CONNECT PRIOR TO RRA	18
39492A	DELETE FASCOS LOGIC	OI-6
39503	SSME \& SB POSN-ABORTED LAUNCH	OI-4
39520	DELETE HE VLV CK-OMS FIRE SEQ	OI-4
39530F	STS CYCLE 2 I-LOADS	18
39564	THIRD LO2 LL CUTOFF TIMER	18
39575	LO2 LOW LEVEL CUTOFF MOD	18
39579A	CLARIFY RCS/RCS XFEED AND RECON	18
39585	STS-2 CYCLES 2 RTLS DUMP I/L	18
39612	ELIM OF SRP-SEP-MODE FLAG	19
39614	SRB STAGGER START CONSTANT	19
39624	PREVENT EARLY GEAR DEPLOY	18
39630	OMS DUMP TIME FOR UPDATED CG	18
39651	TAL ABORT PRE MECO BURN	18
39681 A	FAST SEP IN MM 103/I-LOAD CHANGE	18
39694	ORB OMS/RCS CONN REPRESS FLAG	OI-4
39718A	SRB IGNTION/SEPARATION CMD	18
39721B	ENABLE GEAR DEPLOY AT 800 FPS	18
39732B	ABORT DOWNMODE IN MM 103	18
39846	RTLS OMS PROP DUMP DELAY	18
39848A	DELETE AUTO RECYCLE-SSME SOP	OI-4
39850	DECEMBER BASELINE	18
39851A	SRB TVC FDIR AT ME START	OI-4
39863C	COUNTDOWN HOLD/ABORT IND	OI-4
39877	LH2 LL CUTOFF DOCUMENTATION	19
39964	ABORT CONTROL OMS ON TIME	OI-3
39965	RTLS POST MECO $4+\mathrm{X}$ CONTROL	19
39968A	LO2/LH2 DUMP TIME REDUCTION	19

CR No.	Title	Release
39977	MECO DOCUMENTATION CLEANUP	18
59019A	HE ISO VLV OPEN CMD TERMINATE	OI-6
59077	PAD DATA PATH FAIL	OI-6
59112B	ET UMB DOOR/RCS XFEED CNTL	OI-3
59126 H	RCS XFEED MCA OPTIMIZATION	OI-8A
59216	RTLS LO2 LOW LEVEL-SSME $=104 \%$	19
59217 C	VENT DOOR ENTRY CONFIG	OI-5
59224	DATA PATH FAIL FLAG CHECK	OI-2
59273C	ABT CONT SEQ-SELECT INTERCNCT	OI-7
59274	LO2 BLEED VLVE CLOSE TIME I/L	19
59276	MPS DUMP SW NOMENCLATURE	19
59329A	VENT DOOR CMD AND FDBK MONITOR	19
59335A	OV-099 RCS QTY MON UPDATE	OI-2
59337	RCS QTY MON I-LOADS UPDATE	19
59368	VENT DOOR SEQUENCE COMMAND	OI-1
59384	SRB SEP TIME DELAY FOR ABORT	OI-6
59397	BIAS COMPUTATION RCS QTY MON	OI-6
59414A	EVENT TIMES RESET AT MECO	OI-5
59418	POST MECO NZ RCS CONTROL	OI-4
59432A	INHIBIT FDI FOR SSME TVC ACT	OI-6
59442B	MEC REDESIGN	$\mathrm{OI}-3$
59470	BYPASS LO2 OVBD BLEED VLV CK	OI-2
59610	PTM LO2 LOW LEVEL I/L	OI-2
59631	STS-9 CY 1 ASC ABORT I-LOADS	OI-2
59654	CORRECT CR 28378A-OMS VLV MSG	OI-4
59689A	CORRECT CR 39863-D/L VENT DOOR	OI-4
59722	EVENT TIMER FLAG POST MECO	OI-5
59753A	MEC REDESIGN MSID CHANGES	OI-3
59754C	MCA OPTIMIZATION MSID CHANGES	OI-3
59765	LATCH RCS QTY DOWN ARROW	OI-6
59824	CLARIFY NZ LIMIT PROCESSING	OI-1

CR No.	Title	Release
59935	DELETE FLAG FROM ET SEP SEQ	OI-2
59957	I-LOAD SCRUB: VENT DOOR	OI-7
59973	I-LOAD SCRUB: MPS	OI-7
59996E	LO2 ECO SENSOR	OI-3
69063	SSME SOP CRIT PAIR EXCEPTION	$\mathrm{OI}-2$
69074	SRB_SEP_ARM_BUFFER ASSIGNMENT	Ol-3
69159A	CORRECT CR 59217C IN MM 304	OI-5
69177	CR 59077 CLEANUP	OI-6
69184A	MPS LOW LEVEL TIME DELAYS	Ol-3
69220F	CENTAUR ABORT DUMP	OI-7C
69482A	DELETE PREVALVE ANTI-SLAM SW	OI-7
69555A	TAL/RTLS WEATHER ALTERNATE	OI-7
69600D	OMS GUIDANCE IMPROVEMENTS	OI-6
69635B	CORRECT CR 59273C	OI-7
69684B	ZFE CATEGORY CHANGE	OI-6
69780B	DELAYS OV-102 UNIQUE RCS I/LS	OI-6
69919	LH2 DUMP FOR RTLS	OI-4
69931B	STAGGERED SSME SHTDN PRIORITY (SUPERSEDED 69525)	OI-6
69951	DEL SRB PWR OFF AFTER SRB SEP	OI-4
69995D	DUMP LOX/LH2 RESIDUALS	OI-7
79010	DUMP LO2 RESIDUALS	OI-5
79028	RCS QTY MON-DOC ONLY FIX	OI-4
79067	MODIFIED RTLS LO2 DUMP	OI-5
79079B	MODIFIED OI-7 DUMP	OI-7
79134E	OMS BURN IN MM 304	OI-7C
79157	S/W FIX FOR HYD BRAKE LOCKUP	OI-4
79190D	OVERRIDE DISPLAY UPDATE	OI-7C
79209B	FWC SRB TIMING	OI-7
79302	CR $69635 B$ CORRECTIONS	OI-7
79304B	OPS 3 DUMP CLEAN UP	OI-7C
79335D	OMS/RCS OPS DOWNLIST CHGS	OI-8A

CR No.	Title	Release
79406A	OVERRIDE DISPLAY CLEAN UP	OI-7C
79465A	VENT DOOR SEQ SOFTWARE RQMTS (SUPERSEDED 79291)	OI-5
79469	DOCUMENTATION CLEANUP FOR CR 69995D	OL-7
79497	OMS BURNTIME BIAS/SF	OI-7C
79498	OMS BURN TIME BIAS	OI-7
79499	FSSR UPDATE NO. 5 STS 83-0026A	OI-7
79562	CHECKSUM SOP SCRUB	OI-8A
79584 C	MPS DUMP SSME IN STOW POSN	OI-8A
79643A	OMS DUMP WITH 3 SSME'S FAILED	OI-8A
79701A	CONT ME SHUTDN CMD FOR PAD ABT	OI-7C
79721	OMS BURN TIME BIAS FACTOR	OI-7C
79796	OI-11 OMS/RCS TIMER FIX	OI-8A
79797A	OMS/RCS INTCT TIMER FIX	OI-7C
79928	LASH-UP REQT'S FOR CR'S 59273C AND 69635B	OL-7
79928	AUTHORIZE SEQUENCER K-LOAD CHANGES	OI-8A
79931	BASELINE PCR'S 56951 AND 56060A FOR OI-8A	OI-8A
79933F	VENT DOOR SEQ SCRUB CR	OI-8A
79935H	SRB RGA RECHANNELIZATION	OI-8A
79964F	RCS REG FAIL PROTECT SEQ	OI-8A
79969A	GSOVEN SCRUB	OI-8A
79971D	ABORT/INTERCONNECT FLAG FIX	OI-8A
79972	INTERCONNECT TIMER FIX	OI-8A
79973	PAD DATA PATH FAIL CRITERIA	OI-8A
79980	I-LOAD UPDATE FOR 59126H	OI-8A
79987D	SRB SWQ-MDM FAILURES	OI-8A
79992B	STS 83-0026A LEVEL C FSSR SEQUENCING REQUIREMENT	OI-7C
79997A	INTCON MPS HELIUM PAD ABORT	OI-8A
89108A	ERRONEOUS ENG PHASE FLAG FIX	OI-8A
89140 E	CENTAUR REQUIREMENTS DELETION	OI-8A
89142B	NZ LIMIT FOR MM 304 OMS DUMP	OI-8A
89149B	OI-8A VERSION OF CR 79596C	OI-8A

CR No.	Title	Release
89150H	ABORT CONTROL SEQ SCRUB	0I-8D
89154B	DUMP ITEM DISPLAY CLEANUP	OI-8A
89157A	SSME LIMIT EXCEEDANCE PAD ABORT	OI-8B
89165H	MPS FEED DISC LATCH LOGIC	OI-8B
89185A	ABT OMS/RCS INTRCNT MOD TRANS	Ol-8A
89193D	ABT CNTL SEQ/OVERRIDE LASHUP	OI-8A
89201A	MAIN ENG SHUTDOWN INDICATION	OI-8A
89210B	SMART INTERCONNECT	OI-8B
89229G	TERMINATE OMS DUMP POST MECO	OI-8C
89237	OMS/RCS I/C DOC CHANGE	OI-8A
89238	ZERO THRUST AUTO DUMP START	OI-8B
89239B	CLEANUP OF CR 89210B	OI-8B
89246A	CLEANUP FOR CR 79946F	OI-8A
89278A	LH2 PREVALVE TIMER FOR FAST SEP	OI-8B
89287A	SSME OPS SCRUB	OI-8A
89313	CLOSE LH2 RECIRC DISC VLV FOR PAD ABORT	OI-8C
89320	OMS/RCS I/C DOC CHANGE	OI-8B
89325B	LOW LVL SNSR MON SGL SNSR DIS	OI-8B
89348B	MM 103 FAST SEY CORRECTION	OI-8C
89349A	PREVLV CLOSURE FOR PAD ABORT	$\mathrm{OI}-8 \mathrm{C}$
89352C	AFT MANIFOLD JET INH RESET DELAY	OI-8B
89355C	SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS	OI-8D
89369B	PD 3 SAFING FOR INFLT SHUTDOWN	$\mathrm{OH}-8 \mathrm{C}$
89389B	SSME CONTINUOUS COMMANDS	OI-8C
89392	RESTRUCTURE LOCAL DATA IN GSR	OI-8D
89399B	POST MECO LH2 VENT	OI-8C
89430	OI-8C IMPLEMENTATION OF CR 89313B	OI-8C
89436A	LG HYD ISOL VLV OPEN CMD TIME	OI-8C
89451C	ADDITION OF SRB IEA MEASUREMENTS	OI-8B
89454A	DELETE 3RD HPFTT DISCHRG TEMP	OI-8B
89456A	FSSR 26 ERRATA/DOC CLEANUP	OI-8B

CR No.	Title	Release
89465 C	MPS LH2 DUMP RTLS CONTINGENCY	OI-8C
89479	CONTINGENCY DUMP POST-MECO MANUAL START	OI-8C
89487	ADDITION OF SRB IEA MEASUREMENTS	OI-8C
$89505 B$	MODIFY MPS MECO HELIUM INTERCONNECT	OI-8D
89561 A	RCS/RCS XFEED AFTER INCT RTN	OI-8B
89598 A	OI-8B SEQUENCING FSSR ERRATA	OI-8B
89705	POST MECO OMS NZ TERMINATION CORRECTION	OI-8C
$89809 B$	CR 89505B CLEANUP	OI-8D
89810	CORRECTION FOR 89150H	OI-8D
89819	QD FAILURE PROTECTION FOR RSLS ABORT	OI-8B
89835	PREVALVE CLOSE DELAY CHNGS STS 26	OI-8B
89846 B	CR 89809B CLEANUP	OI-8D
89875	CLEANUP TO CR 89819	OI-8B
$89956 A$	ABORT CONTROL SEQ CORRECTIONS	OI-8D
89968 A	25 MICROSECOND TIMING REQ FOR MEC	OI-8D
90054 A	ENTRY FCS ERRATA	OI-8D
90120	UPD GUIDANCE DOWNMODE REQUIREMENTS	OI-8D
90188	CHANGE ENGINE START TIME COMPUTATION	OI-8D
90277 A	ET SEP SEQUENCE CLEANUP	OI-8D

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

Section Page
1.0 INTRODUCTION 1-1
1.1 PURPOSE $1-1$
1.2 SCOPE 1-1
1.3 ORGANIZATION 1-1
2.0 APPLICABLE DOCUMENTS 2-1
2.1 LEVEL A DOCUMENTS 2-1
2.2 LEVEL B DOCUMENTS 2-1
2.3 LEVEL C DOCUMENTS 2-1
2.4 INTERFACE CONTROL DOCUMENTS 2-2
3.0 OVERVIEW 3-1
3.1 DEFINITION 3-1
3.2 DOCUMENT DESCRIPTION 3-1
3.2.1 Introduction 3-1
3.2.2 Overview 3-1
3.2.3 Detailed Requirements 3-1
3.2.4 Logic Flow Diagrams 3-1
3.2.5 Parameter Tables 3-1
3.3 TIMING 3-3
3.4 DOCUMENTED REQUIREMENTS PRECEDENCE 3-4
4.0 DETAIL LEVEL REQUIREMENTS 4-1
4.1 PRELAUNCH 4-1
4.1.1 Redundant Set Launch Sequence (4.114) 4-1
4.1.2 MPS Dedicated Drive Sequence (4.222) 4-63
4.1.3 SRB MDM Data Acquisition (4.203) 4-83
4.2 ASCENT 4-95
4.2.1 SSME Operations Sequence (4.165) 4-95

TABLE OF CONTENTS (Continued)

Section

ILLUSTRATIONS

Figure Page
4.114 Redundant Set Launch Sequence (Sheet 1 of 13) 4-38
4.222 MPS D/D Drive Sequence (Sheet 1 of 6) 4-70
4.165 SSME Operations Sequence (Sheet 1 of 11) 4-121
4.115 SRB SEP SEQ (Sheet 1 of 2) 4-145
4.116 External Tank Separation Sequence Logic Flow Diagram (Sheet 1 of 8) 4-166
4.70 MPS Dump Sequence (1 of 5) 4-194
4.192 Abort Control Sequence (Sheet 1 of 7) 4-2264.1844.1614.2154.185
4.102
4.1894. 212
Abort OMS/RCS Interconnect Sequence (Sheet 1 of 7) 4-259
Vent Door Sequence (Sheet 1 of 7) 4-290
Hydraulic Systems Landing Gear Isolation Valve Control Logic (Sheet 1 of 2)4-314
RCS/RCS XFEED (Sheet 1 of 5) 4-333
RCS Qty Mon (Sheet 1 of 2) 4-357
RCS He Regulator Failure Protection Sequence (Sheet 1 of 3) 4-376
. 212 Orbit OMS/RCS Connect (Sheet 1 of 2) 4-391
4.182 OMS Fire Sequence (Sheet 1 of 2) 4-405
4.101 OMS to RCS Gaging 4-416
4.8.1-1 MEC SOP Functional Block Diagram 4-424
4.181 .1 SSME SOP Functional Block Diagram 4-462

THIS PAGE INTENTIONALLY LEFT BLANK

TABLES

Table Page
4.1-1 Orbiter Vent Doors Status Word - V90J8201 4-21
4.1-2 LPS Orbiter Vent Doors Override Word -V99J8836C 4-22
4.1.1.4-1 REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-51
4.1.1.4-2 REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) I-LOADS 4-58
4.1.1.4-3 REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) K-LOADS 4-60
4.1.1.4-4 REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) CONSTANTS 4-61
4.1.2.4-1 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVE SEQ (G4.222) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-77
4.1.24-2 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) I-LOADS 4-79
4.1.2.4-3 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) K-LOADS $4-80$
4.1.2.4-4 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) CONSTANTS 4-81
4.1.3.4-1 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-85
4.1.3.4-2 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) I-LOADS 4-92
4.1.3.4-3 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) K-LOADS 4-93
4.1.3.4-4 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) CONSTANTS 4-94
4.2.14-1 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-133
4.2.1.4-2 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) I-LOADS 4-138
4.2.1.4-3 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) K-LOADS 4-139

TABLES (Continued)

Table Page
4.2.1.4-4 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) CONSTANTS 4-140
4.2.2.4-1 SOLID ROCKET BOOSTER(SRB) SEP SEQUENCER (G4.115) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-147
4.2.2.4-2 SOLID ROCKET BOOSTER SEP (SRB) SEQUENCER (G4.115) I-LOADS 4-149
4.2.2.4-3 SOLID ROCKET BOOSTER SEP (SRB) SEQUENCER (G4.115) K-LOADS 4-150
4.2.2.4-4 SOLID ROCKET BOOSTER SEP (SRB) SEQUENCER (G4.115) CONSTANTS 4-151
4.2.3.4-1 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-175
4.2.3.4-2 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) I-LOADS 4-180
4.2.3.4-3 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) K-LOADS 4-181
4.2.3.4-4 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) CONSTANTS 4-182
4.2.4.4-1 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-199
4.2.4.4-2 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) I-LOADS 4-203
4.2.4.4-3 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) K-LOADS 4-204
4.2.4.4-4 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) CONSTANTS 4-205
4.3.1.4-1 ABORT CONTROL SEQUENCER (G4.192) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-233
4.3.1.4-2 ABORT CONTROL SEQUENCER (G4.192) I-LOADS 4-236
4.3.1.4-3 ABORT CONTROL SEQUENCER (G4.192) K-LOADS 4-237
4.3.1.4-4 ABORT CONTROL SEQUENCER (G4.192) CONSTANTS 4-238
4.3.2.4-1 ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) INPUT/OUTPUT FUNCTIONAL PARAMETERS 4-267

TABLES (Continued)

Table	,	Page
4.3.2.4-2	ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) L-LOADS	4-272
4.3.2.4-3	ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) K-LOADS	4-273
4.3.2.4.4	ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) CONSTANTS	4-274
44-1	Vent Group Close Commands	4-284
4.4-2	Vent Group Open Commands	4-286
4.43	Vent Group Purge Configuration Commands	4-287
4.44	Vent Group Close Measurements	4-288
$4.4-5$	Vent Group Open Measurements	4-289
4.4.1.4-1	VENT DOOR CONTROL SEQUENCER (G4.161) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-297
4.4.1.4-2	VENT DOOR CONTROL SEQUENCER (G4.161) I-LOADS	4-304
4.4.1.4-3	VENT DOOR CONTROL SEQUENCER (G4.161) K-LOADS	4-305
4.4.1.4-4	VENT DOOR CONTROL SEQUENCER (G4.161) CONSTANTS	4-306
4.5.1.4-1	HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-317
4.5.1.4-2	HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) I-LOADS	4-319
4.5.1.4-3	HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) K-LOADS	4-320
4.5.1.4.4	HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) CONSTANTS	4-321
$4.0 .1 .4-1$	RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-339
4.6.1.4-2	RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) I-LOADS	4-342
4.6.1.4-3	RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) K-LOADS	4-343
4.6.1.4.4	RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) CONSTANTS	4-344
4.6.3-1	RCS Propellant Transducer Limits	4-352

TABLES (Continued)

Table		Page
4.6.3-2	Forward RCS Propellant Quantity Primary/Substitute Parameters	4-353
4.6.3-3	Aft Left RCS Propellant Quantity Primary/Substitute Parameters	4-353
4.6.3-4	Aft Right RCS Propellant Quantity Primary/Substitute Parameters	4-354
4.6.3-5	RCS Propellant Quantity Constants	4-355
4.6.3-6	RCS Propellant Quantity I-Loads	4-356
4.6.3.4-1	RCS QUANTITY MONITOR (G4.102) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-359
4.6.3.4-2	RCS QUANTITY MONITOR (G4.102) I-LOADS	4-362
4.6.3.4-3	RCS QUANTITY MONITOR (G4.102) K-LOADS	4-363
4.6.3.4-4	RCS QUANTITY MONITOR (G4.102) CONSTANTS	4-364
4.6.4.4-1	RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) INPUT/OUTPUT FUNCTIONAL PARAMETERS .	4-379
4.6.4.4-2	RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) I-LOADS	4-381
4.6.4.4-3	RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) K-LOADS	4-382
4.6.4.4-4	RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) CONSTANTS	4-383
4.7.2.4-1	ORBIT OMS/RCS INTERCONNECT (G4.212) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-393
4.7.2.4-2	ORBIT OMS/RCS INTERCONNECT (G4.212) I-LOADS	4-397
4.7.2.4-3	ORBIT OMS/RCS INTERCONNECT (G4.212) K-LOADS	4-398
4.7.2.4-4	ORBIT OMS/RCS INTERCONNECT (G4.212) CONSTANTS	4-399
4.7.6.4-1	OMS FIRE SEQUENCER (G4.182) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-407
4.7.6.4-2	OMS FIRING SEQUENCER (G4.182) I-LOADS	4-409
4.7.6.4-3	OMS FIRING SEQUENCER (G4.182) K-LOADS	4-410
4.7.6.4-4	OMS FIRING SEQUENCER (G4.182) CONSTANTS	4-411

TABLES (Continued)

Table		Page
4.7.9.4-1	OMS TO RCS QTY GAUGING (G4.101) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-417
4.7.9.4-2	OMS TO RCS QTY GAUGING (G4.101) I-LOADS	4-419
4.7.9.4-3	OMS TO RCS QTY GAUGING (G4.101) K-LOADS	4-420
4.7.9.4-4	OMS TO RCS QTY GAUGING (G4.101) CONSTANTS	4-421
4.8.1-1	MEC Critical Command Processing	4-425
4.8.1-2	MEC Noncritical Command Processing	4-428
4.8.1-3	MEC SOP Input Parameters	4-431
4.8.1-4	MEC SOP Output Parameters	4-434
4.8.1-5	MEC SOP Output Requirements	4-437
4.8.1.4-1	MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-439
4.8.1.4-2	MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) I-LOADS	4-442
4.8.1.4-3	MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) K-LOADS	4-443
4.8.1.4-4	MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) CONSTANTS	4-444
4.8.2-1	SSME SOP Command Processing	4-446
4.8.2-2	GPC Engine Status Word	4-453
4.8.2-3	Phase Mode Processing	4-461
4.8.2.4-1	SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) INPUT/OUTPUT FUNCTIONAL PARAMETERS	4-463
4.8.2.4-2	SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) I-LOADS	4-471
48.2.4-3	SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) K-LOADS	4-472
4.8.2.4.4	SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) CONSTANTS	4-473

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to specify the requirement details and formulations of Sequence Level B functional requirements for orbiter GN\&C flight software.

1.2 SCOPE

This document contains requirement details and formulations for sequencing functions that are operative during operational flight. The sequences described in this document are processed by the redundant computer set. They can be classified into the following two categories:

1. Mission events that are nonrepeating, but predictable occurrences and require software to initiate and/or control the subsystem hardware functions. The requirement to use software for this process can be the result of time- or mission-critical events, hardware mechanization complexity, or effective reduction of the crew's workload.
2. Special computations, such as consumables monitoring (quantity gaging).

1.3 ORGANIZATION

This document is organized into the following sections:

1. Introduction
2. Applicable Documents
3. Overview
4. Detail Level Requirements

Section 1 defines the purpose, scope, and organization of this document. Section 2 lists applicable documents. Section 3 describes the contents of Section 4 . Section 4 specifies the requirement details for each sequence, and includes the associated input/output functional parameters (IDD), I-loads, K-loads, and constants.

THIS PAGE INTENTIONALLY LEFT BLANK

2.0 APPLICABLE DOCUMENTS

2.1 LEVEL A DOCUMENTS

SS-P-0002-140 Shuttle Downlist/Uplink Software Requirements
SS-P-0002-150 Shuttle Launch Data Bus Software Interface Requirements
SS-P-0002-170 Shuttle Systems Level Requirements, Software

2.2 LEVEL B DOCUMENTS

SS-P-0002-510	Shuttle Functional Level Requirements, GN\&C
SS-P-0002-550	Shuttle Functional Level Requirements, Vehicle Utility -02
SS-P-0002-580	Shuttle Functional Level Requirements, System Management

2.3 LEVEL C DOCUMENTS

STS 83-0001 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part A, Entry Through Landing Guidance

STS 83-0002 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part A, Guidance Ascent/RTLS

STS 83-0003 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part A, Guidance On-Orbit/Deorbit

STS 83-0004 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part B, Entry Through Landing Navigation

STS 83-0005 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part B, Navigation Ascent/RTLS

STS 83-0006 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part B, On-Orbit Navigation

STS 83-0007 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part C, Flight Control Entry GRTLS

STS 83-0008 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part C, Flight Control Volume 1, Ascent Flight Phase, Volume 2, Ascent

STS 83-0009 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part C, Flight Control Orbit DAP

STS 83-0010 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part D, Redundancy Management

STS 83-0013 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Inertial Measurement Unit Subsystem Operating Program

STS 83-0014 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Volume 1, Navigation Aids Subsystem Operating Program, Volume 2, Star Tracker Subsystem Operating Program

STS 83-0015 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Subsystem Operating Programs, FC Sensor/Controller

STS 83-0016 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Subsystem Operating Programs, FC Effector

STS 87-0017 Operational Flight Level C, Functional Subsystem Software Requirements; Remote Manipulator System

STS 83-0020 Operational Flight Level C, Functional Subsystem Software Requirements; Displays and Controls

STS 83-0026 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Sequencing

JSC-19350 Shuttle Flight Software Initialization Load

JSC-19478 Payload Management, Level C Flight Software Requirements
JSC-19590 Systems Management, Level C Flight Software Requirements

2.4 INTERFACE CONTROL DOCUMENTS

ICD 3-1011-02 GPC/DEU ICD
ICD 3-0068-03 PASS/BFS ICD
In the event of a conflict between the documents referenced herein and the contents of this specification, the precedence shall be determined as defined in paragraph 1.3 of CPDS SS-P-0002-170, Volume 1 , System Level Requirements, Software.

3.0 OVERVIEW

3.1 DEFINITION

Subsystem sequencing is defined to be application processing in the avionics GPC's that is not a standard or self-contained portion of GN\&C or SM application programs. Examples: IMU sequencing is a standard portion of GN\&C; fault detection and annunciation (FDA) is a standard portion of SM; master timing unit (MTU) time management is contained in system software and, therefore, is not an application program. None of the examples is included in subsystem sequencing. Subsystem sequences are detailed in Section 4.

3.2 DOCUMENT DESCRIPTION

The detailed requirements described in Section 4 are organized according to subsystem disciplines; however, certain large sequences, e.g., launch, do not lend themselves to an individual subsystem approach and are defined as integrated sequences.

Each sequence contains the following five elements:

1. Introduction
2. Overview
3. Detailed requirements
4. Logic flow diagrams
5. Parameter tables

3.2.1 Introduction

This paragraph (4.X.X.1) contains a brief description of the sequence, when it is used, and how it interfaces with the crew, subsystem, and/or integrated mission event or events.

3.2.2 Overview

This paragraph (4.X.X.2) scopes the software requirements for the sequence. It expands the introduction to state when and how the sequence is initiated, how the sequence is controlled, and how it interfaces with the subsystem and mission events.

3.2.3 Detailed Requirements

This paragraph (4.X.X.3) contains the detailed step-by-step requirements for each principal function.

3.2.4 Logic Flow Diagrams

The logic diagrams show the logic flow of each principal function and are included for information only.

32.5 Parameter Tables

This section contains the following tables:
Input/output functional parameters (4.X.X.4-1)

This tabie contains a list of all input parameters from the GN\&C Interface Definition Document (IDD) for each principal function. The table, in alphabetical order by FSSR parameter name, contains the following:

FSSR Name	- Parameter name as defined by the source principal function
MSID	- As defined by the Shuttle Data Integration Plan (SDIP)/measurement and stimulus system
Nomenclature	- As provided by the principal function owner
Source/Destination	- Source of input function, destination of output function
Units	- The units of the parameter
Data Type	- Designation of parameter as bit string, discrete, floating, or integer
Precision	- Designation of parameter as single or double precision
Last CR(s)	- Lists last of CR Number(s)

Signal Interfaces

The automated IDD tables provided herein define signal (parameter) interface requirements either between hardware (LRU) and software elements or between software elements and other software elements ${ }^{1}$. In the event of a conflict between the IDD tables and other internal text input/output tables, the SASCB data base controlled IDD tables take precedence.
NOTE
IDD output (destination) tables that reflect parameters going to "TLM" shall not be interpreted as a signal actually being downlisted. The parameter may only be available for downlist in COMPOOL and may not appear in a downlist format.
${ }^{1}$ A GN\&C software element is either a sequenced principal function (PF), crew generated specialist/ display function, or an operations display functions.

I-Load Table (4.X.X.4-2)

This table contains a list of all I-load parameters from JSC-19350, STS Flight Software Initialization Load, for each principal function. The table, in alphabetical order by FSSR name, contains the following:

FSSR Name - As defined by the source principal function
MSID - As defined by the Shuttle Data Integration Plan (SDIP)/measurement and stimulus system
Units - The units of the parameter
Data Type - Bit string, discrete, floating, or integer parameter
Precision -- Single or double-precision parameter
Dependency - Design, mission, or LRU dependent I-load
Software - Common, PASS, BFS, primary driver, or converted parameter
PR FCTN - Principal Function
Category - Occurance of I-load values

K-Load Table (4.X.X.4-3)

This table contains a list of all K -load parameters for each principal function. The table is in alphabetical order by FSSR name. The table contains the following:

FSSR Name	- As defined by the source principal function
MSID	- As defined by the Shuttle Data Integration Plan (SDIP)/measurement and stimulus system
Value	- The value of the K-load
Units	- The units of the parameter
Data Type	- Bit string, discrete, floating, or integer parameter
Precision	- Single or double-precision parameter
Software	- Common, PASS, BFS, primary driver, or converted parameter
PR FCTN	- Principal Function
Last CR	- The last CR against each load
EQTN MSID	- Derived Equation

Constants (4.X.X.4-4)

This table contains a list of all constants for each principal function. The table is in alphabetical order by FSSR name. The table contains the following:

FSSR Name	- As defined by the source principal function
MSID	- As defined by the Shuttle Data Integration Plan(SDIP)/measurement and stimulus system
Value	- The value of the K-load
Units	- The units of the parameter
Data Type	- Bit string, discrete, floating, or integer parameter
Precision	- Single or double-precision parameter
Software	-- Common, PASS, BFS, primary driver, or converted parameter
PR FCTN	- Principal Function
Last CR	- The last CR against each load

3.3 TIMING

Timing in this document is related to error free processing conditions. See Level A CPDS SS-P-0002-170 paragraph 4.4.2A for timing related to error processing conditions.

3.4 DOCUMENTED REQUIREMENTS PRECEDENCE

Requirements precedence in this document shall be as follows:

1. If there is a conflict between the data in the function subtables and the standard principal function tables, the principal function tables shall have precedence.
2. If there is a conflict between the data in the flow diagrams and the written requirements, the written requirements shall have precedence.

4.0 DETAIL LEVEL REQUIREMENTS

4.1 PRELAUNCH

4.1.1 Redundant Set Launch Sequence (4.114)

4.1.1.1 Introduction

The redundant set (RS) launch sequence is used during the launch countdown in conjunction with the launch processing system (LPS) to perform the on-board automatic functions required in the last 28 seconds before SRB ignition. In addition, the RS launch sequence controls the on-board countdown clock from flight software initiation at the transition to OPS 1 until SRB ignition. The ability is also provided to call countdown holds; accept "hold" requests from LPS; and accept "resume count" or "recycle" commands from LPS. The SSME ignition commands are issued; and, after the required thrust level is reached and the required time delay has elapsed, the SRB's are ignited. Failure of the SSME's to reach the required thrust level will result in an inhibit of SRB ignition and a controlled SSME shutdown. The RS launch sequence terminates immediately after issuing SRB ignition and related commands.

4.1.1.2 Overview

The launch countdown is controlled by the LPS until 28 seconds before launch, at which time the onboard automatic RS launch sequence is enabled by LPS command. From this point, the on-board computer will perform functions by the on-board clock, but will honor "hold," "resume count," and "recycle" commands from LPS within the constraints of the auto recycle time.

The RS launch sequence sets flags to command the arming of the SRB ignition and hold-down release system PIC's and the T0 umbilical release PIC's. After a time delay, the SRB ignition PIC voltages are monitored for acceptable levels. The hold-down release system PIC's and the T0 umbilical release system PIC's are monitored by the LPS. The RS launch sequence logic provides for initiating a countdown "hold" if the SRB ignition PIC voltages fall below an acceptable level at any time prior to issuance of the SSME start commands. After the SSME start commands are issued, if the SRB ignition PIC voltages are not acceptable, the SSME's are shut down.

The RS launch sequence also controls certain critical main propulsion system valves and monitors the engine ready indications from the SSME's. After the main engine start commands are issued, the sequence monitors the thrust buildup of each engine; and unless all engines reach the required level within the required time, an orderly shutdown is commanded, and safing functions are initiated.

Normal thrust buildup to the required level will result in the SSME's being commanded to the lift-off position, the SRB ignition and hold-down release commands being issued, termination of LPS polling, reset of the master timing unit, commanding of T0 umbilical release, and start of the event timer.

4.1.1.3 Detailed Requirements

Step A - LPS Processing. This step addresses the LPS processing that is performed every minor cycle by the RS Launch Sequencer. It ensures that the LPS GMTLO, RECYCLE, and RESUME commands are accepted only during countdown holds.

Monitor the following:
(a) LPS Countdown Hold Flag V99X8829X
(b) RS Countdown Hold Flag V90X8667X
(c) GMTLO Set Command V99X8827X

If (a) and (b) are false, do not accept (1), (2), or (3).
If (a) or (b) is true and (c) has not been accepted since it last became true, do not accept (3).

(1)	GMTLO SET COMMAND	V99X8827X
(2) RECYCLE COUNT CMD FLAG	V99X8830X	
(3) RESUME COUNT COMMAND FLAG	V99X8828X	

Proceed to Step 1.
Step 1 - First Pass Check. This step provides a means of deactivating the FDI for MPS TVC CMD SOP and initializing the countdown clock on the first pass through the logic. The sequence is first called with OPS 101 PRO at T0-20 minutes in the count. The GMT of lift-off (GMTLO) is defined by the GMTLO_SET_COMMAND from LPS.

On the first pass through the logic issue (1) and (2) below, proceed to Step 9.
(1) RS COUNTDOWN HOLD FLAG
V90X8667X
(2) MPS TVC SERVO OVRD CMD
V90X8374X

On subsequent passes, if the countdown clock is being incremented, proceed to Step 1A, otherwise proceed to Step 9 .

Step 1A - Termination of MEC Command Flags. This step provides for the termination of MEC commands, the issuance of the MEC master reset command, and the termination of the RS launch sequence.

Monitor the following:
(a) TO UMB RELEASED FLAG
(INTERNAL)
If $(\mathrm{a})=$ false, proceed to Step 1B.
If $(a)=$ true, terminate the following outputs:

(1)	TO UMB RELEASE FIRE 1 FLAG	V90X8408X
(2)	T0 UMB RELEASE FIRE 2/3 FLAG	V90X8698X
(3)	SRM IGN ARM FLAG	V90X8404X
(4)	T0 UMB RELEASE ARM FLAG	V90X8407X
(5)	EVENT TIMER START FLAG	V90X8403X

and issue the following output:
(6) MEC 1 AND 2 MASTER RESET FLAG

V90X8258X
and then terminate the RS launch sequence.

Step 1B - Initiation of T0 Umbilical Release. This step provides for the issuance of the T0 umbilical release fire 1 and fire $2 / 3$ commands on the next pass through the logic after the SRB ignition commands are sent.

Monitor the following:
(a) SRB IGNITION CMD FLAG

V90X8377X
If $(a)=$ false, proceed to Step 1C.
If $(a)=$ true, terminate the following outputs:
$\begin{array}{lll}\text { (1) SRM IGN FIRE } 1 \text { FLAG } & \text { V90X8405X } \\ \text { (2) SRM IGN FIRE 2/3 FLAG } & \text { V90X8699X }\end{array}$
and issue the following outputs:
(3) T0 UMB RELEASE FIRE 1 FLAG V90X8408X
(4) T0 UMB RELEASE FIRE 2/3 FLAG V90X8698X
(5) T0 UMBILICAL RELEASED FLAG (INTERNAL)
and then return to Step A.
Step 1C - Launch Sequence Abort Check. This step monitors the LAUNCH SEQUENCE ABORT FLAG, which is set, by (1) any engine failing to achieve the required percent chamber pressure within the required number of seconds after the start commands are issued, (2) any engine going into auto shutdown, (3) loss of data path or command path to any engine, (4) hydraulic or electronic lockup of any engine, or (5) an LPS countdown hold flag being set prior to issuance of SRB ignition commands. If the LAUNCH SEQUENCE ABORT FLAG is set, this step terminates the SRB ignition and T0 umbilical PIC arming flags and invokes the engine shutdown logic.

Monitor the following:
(a) LAUNCH SEQUENCE ABORT FLAG

V90X8382X
If $(a)=$ true, terminate the following:
(1) SRM IGN ARM FLAG V90X8404X
(2) TO UMB RELEASE ARM FLAG V90X8407X
issue the following one time only
(3) MEC 1 AND 2 MASTER RESET FLAG

V90X8258X
and terminate the following output:
(4) MPS-LH2 RECIRC DISC VALVE OPEN CMD

V41K1421X
and issue the following output:
(5) MPS-LH2 RECIRC DISC VALVE CLOSE CMD

V41K1422X
then proceed to Step 1D.
If $(\mathrm{a})=$ false, proceed to Step 2.

Step 1D - Main Engine 1 Shutdown. This step controls pad abort helium interconnect and shutdown command toggling for ME-1.

Monitor the following:
(a) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(b) MPS E-1 SHUTDOWN ENABLE CMD

V90X8367X
If (a) is false, proceed to Step 1E.
If (a) is true, issue output (1) and monitor (b).
If (b) is false, issue output (2), terminate output (3), and proceed to Step 1E.
If (b) is true, issue output (3), terminate output (2), and proceed to Step 1E.
(1) MPS E1 HE INTCON OUT/OPEN CMD A V41K1168X
(2) MPS E-1 SHUTDOWN ENABLE CMD V90X8367X
(3) MPS E-1 SHUTDOWN CMD V90X8370X

Step 1E - Main Engine 2 Shutdown. This step controls pad abort helium interconnect and shutdown command toggling for ME-2.

Monitor the following:
(a) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(b) MPS E-2 SHUTDOWN ENABLE CMD

If (a) is false, proceed to Step 1F.
If (a) is true, issue outputs (1) through (3) and monitor (b).
If (b) is false, issue output (4), terminate output (5), and proceed to Step 1F.
If (b) is true, issue output (5), terminate output (4), and proceed to Step 1F.
(1) MPS E2 HE INTCON IN/OPEN CMD A

V41K1262X
(2) MPS E2 HE INTCON IN/OPEN CMD B

V41K1263X
(3) MPS PNEU CROSSOVER NO. 2 OPEN CMD

V41K1613X
(4) MPS E-2 SHUTDOWN ENABLE CMD

V90X8368X
(5) MPS E-2 SHUTDOWN CMD

V90X8371X
Step 1F - Main Engine 3 Shutdown. This step controls pad abort helium interconnect and shutdown command toggling for ME-3.

Monitor the following:
(a) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(b) MPS E-3 SHUTDOWN ENABLE CMD

If (a) is false, proceed to Step 1G.

If (a) is true, issue output (1) and monitor (b).
If (b) is false, issue output (2), terminate output (3), and proceed to Step 1G.
If (b) is true, issue output (3), terminate output (2), and proceed to Step 1G.
$\begin{array}{lll}\text { (1) MPS E-3 HE INTCON OUT/OPEN CMD A } & \text { V41K1368X } \\ \text { (2) MPS E-3 SHUTDOWN ENABLE CMD } & \text { V90X8369X } \\ \text { (3) MPS E-3 SHUTDOWN CMD } & \text { V90X8372X }\end{array}$
Step 1G - Increment Previous Value of CRT Timer Base Time. This step increments the previous value of the CRT timer base time stored in User Interface compool to cause the displayed time-to-go to become static.

Add 0.04 second to the previous value of the CRT timer base time stored in User Interface compool.
Proceed to Step 30.
Step 2-ME-1 Pad Data Path Fail Check. This step monitors for a flag from the SSME SOP indicating invalid data from either the primary or secondary channel of the EIU. If the ME-1 PAD DATA PATH FAIL FLAG is set, the RS launch sequence will either call a countdown hold or initiate shutdown for ME-1.

Monitor the following:
(a) ME-1 PAD DATA PATH FAIL FLAG

V95X1217X
If $(\mathrm{a})=$ false, proceed to Step 2A.
If (a) = true, issue the following output:
(1) ME-1 PAD DATA PATH FAIL HOLD

V90X8670X
and proceed to Step 2D.
Step 2A - ME-1 Control Failure Check. This step monitors for the ME-1 controller indicating either an electronic lockup, a hydraulic lockup, a major component failure, or engine limit exceeded. If any of these indicators are present and the engine start flag has not been issued, then a countdown hold is called. If the engine start flag has been issued, then shutdown commands for ME-1 are initiated.

Monitor the following:
(a) ME-1 ELECTRONIC LOCKUP MODE FLAG

V95X1194X
(b) ME-1 HYDRAULIC LOCKUP MODE FLAG

V95X1198X
(c) ME-1 MAJOR COMPONENT FAIL FLAG

V95X1230X
(d) ME-1 ENGINE LIMIT EXCEEDED FLAG

V95X1190X

If (a), (b), (c), and (d) all = false, proceed to Step 2C.
If either (a), (b), (c), or (d) = true, issue the following output:
(1) ME-1 CONTROL FAIL HOLD

V90X8679X
and then proceed to Step 2D.

Step 2B - Deleted.
Step 2C-ME-1 Channel Fail Check. This step monitors for a flag from the SSME SOP indicating that the engine controller has declared a failure in one or more of the three command channels. If the fail flag is true, a countdown hold or engine shutdown is initiated. This step prevents lift-off with one channel failed on the pad.

Monitor the following:
(a) ME-1 CHANNEL FAIL FLAG

V95X1236X

If $(a)=$ false, proceed to Step 3.
If $(\mathrm{a})=$ true, issue the following output:
(1) ME-1 CONTROL FAIL HOLD

V90X8679X
and then proceed to Step 3D.
Step 2D - Initiation of Countdown Hold/ME-1 Shutdown. This step monitors the start flag for the main engines, and if the engines have not been started, it will call a countdown hold. If they have been started, it will initiate ME-1 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
If $(\mathrm{a})=$ false, then issue the following output and proceed to Step 9 :
(1) RS COUNTDOWN HOLD FLAG

V90X8667X

If $(a)=$ true, then terminate the following outputs:

(2)	PREP SSME'S FOR LIFTOFF FLAG	V90X8373X
(3) SRM IGN ARM FLAG	V90X8404X	
(4) TO UMB RELEASE ARM FLAG	V90X8407X	

and issue the following outputs:

(5)	ENG 1 SHUTDOWN FLAG C	(INTERNAL)
(6)	CMD SSME's TO PRE-START POS FLAG	V90X8412X
(7)	MPS E1 SHUTDOWN ENABLE FLAG	V90X8367X
(8)	MPS SLEW COMP FLAG	V90X8400X
(9)	MPS TVC SERVO OVRD CMD	V90X8374X
(10)	LAUNCH SEQUENCE ABORT FLAG	V90X8382X

and then return to Step A.
Step 3-ME-2 Pad Data Path Fail Check. This step monitors for a flag from the SSME SOP indicating invalid data from either the primary or secondary channel of the EIU. If the ME-2 PAD DATA PATH FAIL FLAG is set, the RS launch sequence will either call a countdown hold or initiate shutdown for ME-2.

Monitor the following:
(a)

ME-2 PAD DATA PATH FAIL FLAG
V95X1218X

If $(a)=$ false, proceed to Step 3A.
If $(\mathrm{a})=$ true, issue the following output:
(1) ME-2 PAD DATA PATH FAIL HOLD

V90X8671X
and proceed to Step 3D.
Step 3A-ME-2 Control Failure Check. This step monitors for the ME-2 controller indicating either an electronic lockup, a hydraulic lockup, a major component failure, or engine limit exceeded. If any of these indicators are present and the engine start flag has not been issued, then a countdown hold is called. If the engine start flag has been issued, then shutdown commands for ME-2 are initiated.

Monitor the following:
(a) ME-2 ELECTRONIC LOCKUP MODE FLAG V95X1195X
(b) ME-2 HYDRAULIC LOCKUP MODE FLAG V95X1199X
(c) ME-2 MAJOR COMPONENT FAIL FLAG V95X1231X
(d) ME-2 ENGINE LIMIT EXCEEDED FLAG V95X1191X

If (a), (b), (c), and (d) all = false, proceed to Step 3C.
If either $(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$, or $(\mathrm{d})=$ true, issue the following output:
(1) ME-2 CONTROL FAIL HOLD

V90X8680X
and then proceed to Step 3D.
Step 3B-Deleted.
Step 3C-ME-2 Channel Fail Check. This step monitors for a flag from the SSME SOP indicating that the engine controller has declared a failure in one or more of the three command channels. If the fail flag is true, a countdown hold or engine shutdown is initiated. This step prevents lift-off with one channel failed on the pad.

Monitor the following:
(a) ME-2 CHANNEL FAIL FLAG

V95X1237X

If $(\mathrm{a})=$ false, proceed to Step 4.
If $(a)=$ true, issue the following output:
(1) ME-2 CONTROL FAIL HOLD

V90X8680X
and then proceed to Step 2D.
Step 3D - Initiation of Countdown Hold/ME-2 Shutdown. This step monitors the start flag for the main engines, and if the engines have not been started, it will call a countdown hold. If they have been started, it will initiate ME-2 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
If $(\mathrm{a})=$ false, then issue the following output and proceed to Step 9.

(1) RS COUNTDOWN HOLD FLAG

V90X8667X

If $(a)=$ true, then terminate the following outputs:
(2) PREP SSME's FOR LIFTOFF FLAG

V90X8373X
(3) SRMIGN ARM FLAG

V90X8404X
(4) TO UMB RELEASE ARM FLAG

V90X8407X
and issue the following outputs:
(5) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(6) CMD SSME's TO PRE-START POS FLAG

V90X8412X
(7) MPS E2 SHUTDOWN ENABLE FLAG

V90X8368X
(8) MPS SLEW COMP FLAG V90X8400X
(9) MPS TVC SERVO OVRD CMD V90X8374X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then returm to Step A.
Step $4-$ ME-3 Pad Data Path Fail Check. This step monitors for a flag from the SSME SOP indicating invalid data from either the primary or secondary channel of the EIU. If the ME-3 PAD DATA PATH FAIL FLAG is set, the RS launch sequence will either call a countdown hold or initiate shutdown for ME-3.

Monitor the following:
(a) ME-3 PAD DATA PATH FAIL FLAG

V95X1219X

If $(a)=$ false, proceed to Step 4A.
If $(\mathrm{a})=$ true, issue the following output:
(1) ME-3 PAD DATA PATH FAIL HOLD

V90X8672X
and proceed to Step 4D.
Step 4A - ME-3 Control Failure Check. This step monitors for the ME-3 controller indicating either an electronic lockup, a hydraulic lockup, a major component failure, or engine limit exceeded. If any of these indicators are present and the engine start flag has not been issued, then a countdown hold is called. If the engine start flag has been issued, then shutdown commands for $\mathrm{ME}-3$ are initiated.

Monitor the following:
(a) ME-3 ELECTRONIC LOCKUP MODE FLAG
(b) ME-3 HYDRAULIC LOCKUP MODE FLAG

V95X1200X
(c) ME-3 MAJOR COMPONENT FAIL FLAG

V95X1232X
(d) ME-3 ENGINE LIMIT EXCEEDED FLAG

If (a), (b), (c), and (d) all = false, proceed to Step 4C.
If either (a), (b), (c), or (d) = true, issue the following output:
(1) ME-3 CONTROL FAIL HOLD

V90X8681X
and then proceed to Step 4D.
Srep 4B-Deleted.
Step 4C-ME-3 Channel Fail Check. This step monitors for a flag from the SSME SOP indicating that the engine controller has declared a failure in one or more of the three command channels. If the fail flag is true, a countdown hold or engine shutdown is initiated. This step prevents lift-off with one channel failed on the pad.

Monitor the following:
(a) ME-3 CHANNEL FAIL FLAG

V95X1238X

If $(a)=$ false, proceed to Step 5.
If $(a)=$ true, issue the following output:
(1) ME-3 CONTROL FAIL HOLD

V90X8681X
and then proceed to Step 2D.
Step 4D - Initiation of Countdown Hold/ME-3 Shutdown. This step monitors the start flag for the main engines, and if the engines have not been started, it will call a countdown hold. If they have been started, it will initiate ME- 3 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)

If $(a)=$ false, then issue the following output and proceed to Step 9.
(1) RS COUNTDOWN HOLD FLAG

V90X8667X

If $(a)=$ true, then terminate the following outputs:
(2) PREP SSME's FOR LIFTOFF FLAG V90X8373X
(3) SRM IGN ARM FLAG V90X8404X
(4) TO UMB RELEASE ARM FLAG V90X8407X
and issue the following outputs:
(5) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(6) CMD SSME'S TO PRE-START POS FLAG
(7) MPS E3 SHUTDOWN ENABLE FLAG

V90X8369X
(8) MPS SLEW COMP FLAG

V90X8400X
(9) MPS TVC SERVO OVRD CMD

V90X8374X
(10) LAUNCH SEQUENCE ABORT FLAG

V90X8382X
and then return to $\operatorname{Step} \mathrm{A}$.
Step 5 - Time for Arming PIC's for SRB Ignition. This step monitors the countdown clock; and at the proper time before SRB ignition, sets flags for the MEC SOP to initiate arming of the SRM ignition PIC's, hold-down release PIC's, and the T0 umbilical-release PIC's. The arm flags will remain set until (1) SRB ignition, (2) the LAUNCH SEQUENCE ABORT FLAG is set, (3) a main engine control problem develops, or (4) a recycle is initiated.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) SRB_IGN_ARM_T V97U9701C

If (a) is less then (b) seconds, proceed to Step 9.
If (a) is greater than or equal to (b) seconds, issue the following output commands and proceed to Step 6.
(1) SRM IGN ARM FLAG
V90X8404X
(2) TO UMB RELEASE ARM FLAG
V90X8407X

Step 6 - SRM Ignition Arm Voltage Check. This step monitors the countdown clock, and at the selected time before SRB ignition, starts checking the ignition PIC voltages and their associated commfaults. The logic requires two successive passes wherein either one or more of the ignition PIC voltages are low or a commfault exists before a countdown hold is called. If a low voltage or a commfault occurs on the last pass through the logic leading to the issuance of the SRB ignition commands, then a launch sequence abort (SSME shutdown and launch scrub) will not be initiated.

Monitor the following:

(a)	COUNTDOWN TIME	V90W8380C
(b)	SRB_PIC_VOLTS_CHK_T	V97U9702C
(c)	LH VOLTAGE IGN PIC CAP A	B55V1603C
(d)	LH VOLTAGE IGN PIC CAP B	B55V1604C
(e)	RH VOLTAGE IGN PIC CAP A	B55V2603C
(f)	RH VOLTAGE IGN PIC CAP B	B55V2604C
(g)	FA 1 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2845X
(h)	FA 2 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2846X
(i)	IGN CHECK FIRST PASS FLAG "D"	(INTERNAL)
(j)	SRB_IGN_PIC_LEVEL	V97U9853C

If (a) is less than (b) seconds, proceed to Step 9.
If (a) is greater than or equal to (b) seconds and (c), (d), (e), and (f) all equal or exceed (j) counts (normal level of 35.7 volts equals 438 counts), and (g) and (h) both are false, then set (i) true and proceed to Step 6A.

If (a) is greater than or equal to (b) seconds and (i) is true and either (c), (d), (e), or (f) is less than (j) counts, or if either (g) or (h) is true, then set $(\mathrm{i})=$ false and proceed to Step 6 A .

If $(a) \geq(b)$ seconds and $(i)=$ false and either $(c)<(j)$ counts or (g) is true, then issue the following output for downlist:
(1) LHIGN PIC CAP A HOLD

V90X8383X

If $(a) \geq(b)$ seconds and $(i)=$ false and either $(d)<(j)$ counts or (h) is true, then issue the following output for downlist:

(2) LH IGN PIC CAP B HOLD

V90X8384X

If (a) \geq (b) seconds and (i) = faise and either $(\mathrm{e})<(\mathrm{j})$ counts or (g) is true, then issue the following output for downlist:
(3) RHIGN PIC CAP A HOLD

V90X8385X

If $(a) \geq(b)$ seconds and $(i)=$ false and either $(f)<(j)$ counts or (h) is true, then issue the following output for downlist:
(4) RHIGN PIC CAP B HOLD V90X8386X

Proceed to Step 7.
Step 6A - Critical Systems Parameter Check. This step monitors parameters related to flight-critical MDM's. Upon detection of a failure, a launch hold or a pad shutdown will be called.

Monitor the following:
(a) FF 1 MDM RETURN WORD BYPASS (HFE) V91X2904X
(b) FF 2 MDM RETURN WORD BYPASS (HFE)

V91X2905X
(c) FF 3 MDM RETURN WORD BYPASS (HFE)

V91X2906X
(d) FF 4 MDM RETURN WORD BYPASS (HFE)

V91X2907X
(e) FA 1 MDM RETURN WORD BYPASS (HFE)

V91X2920X
(f) FA 2 MDM RETURN WORD BYPASS (HFE)

V91X2921X
(g) FA 3 MDM RETURN WORD BYPASS (HFE)

V91X2922X
(h) FA 4 MDM RETURN WORD BYPASS (HFE)

V91X2923X

If (a) through (h) are all false, proceed to Step 8.
If any failure indication in (a) through (h) is true, then issue the outputs below and proceed to Step 7.

(1) RS COUNTDOWN HOLD FLAG	V90X8667X
(2) FLIGHT-CRITICAL MDM HOLD/ABORT	V90X8767X

Step 7 - Low PIC Voltage Initiation of Hold/ME-1 Shutdown. This step is entered if one or more of the ignition PIC voltages are low for two consecutive passes. This step monitors the start flag for the main engines and, if the engines have not been started, will call a countdown hold. If they have been started, it will initiate ME-1 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
If $(\mathrm{a})=$ false, issue the following output and proceed to Step 9:
(1) RS COUNTDOWN HOLD FLAG

V90X8667X
If (a) = true, terminate the following outputs:
(2) PREP SSME's FOR LIFT-OFF FLAG

V90X8373X
(3) SRM IGN ARM FLAG V90X8404X
(4) TO UMB RELEASE ARM FLAG V90X8407X
and issue the following outputs:
(5) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(6) CMD SSME's TO PRE-START POS FLAG V90X8412X
(7) MPS E1 SHUTDOWN ENABLE FLAG V90X8367X
(8) MPS SLEW COMP FLAG
(9) MPS TVC SERVO OVRD CMD V90X8400X
(10) LAUNCH SEQUENCE ABORT FLAG
and then return to Step A.
Step 8 - Main Engines Started Check. This step provides a bypass of the logic of Steps 9 through 28 inclusive, after the Main Engine 3 start command flag is issued in Step 28. After Engine 2 and Engine 1 start command flags are set true in Step 28A, this step also provides a bypass of Step 28A.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
(b) EI START CMD ISSUED FLAG

If $(\mathrm{a})=$ false, proceed to Step 9.
If $(a)=$ true and $(b)=$ false, proceed to Step 28A.
If $(\mathrm{a})=$ true and $(\mathrm{b})=$ true, proceed to Step 29.
Step 9 - Monitor for Countdown Hold Requests. This step monitors for countdown hold requests from the launch processing system (LPS) as well as for countdown holds generated within the RS launch sequence. This provides a means of stopping the countdown clock and permits further checks for a resume count command or a recycle count command from the LPS. If a hold occurs later than the selected point in the count, an automatic recycle will occur.

Monitor the following:
$\begin{array}{ll}\text { (a) LPS COUNTDOWN HOLD } & \text { V99X8829X } \\ \text { (b) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X } \\ \text { (c) COUNTDOWN TIME } & \text { V90W8380C }\end{array}$

If both (a) and (b) = false, proceed to Step 12.

If (a) is true, issue output (5) and proceed.

If either (a) or (b) = true and (c) is \leq (d) seconds, stop the countdown clock and proceed to Step 10.

If either (a) or (b) = true and (c) is $>$ (d) seconds, terminate outputs (1) and (2) and issue outputs (3) and (4).

(1)	SRM IGN ARM FLAG	V90X8404X
(2)	TO UMB RELEASE ARM FLAG	V90X8407X
(3) MEC 1 AND 2 MASTER RESET FLAG	V90X8258X	
(4)	ASCENT DAP RECYCLE FLAG	V90X8669X
(5) LPS COUNTDOWN HOLD	V90X8768X	

and perform the following functions:
(6) Reset the countdown clock to T0-540 seconds, and stop the clock.
(7) Re -initialize the RS launch sequence.

Proceed to Step 11A.

Step 10 - Monitor LPS Resume Count Command Flag. This step is made after a countdown hold has been called. The LPS has the sole authority to initiate resumption of the countdown. A resume count command will (1) cause a reset of the LPS and RS countdown hold flags of Step 9, (2) reset all downlist items generated by the RS LAUNCH SEQUENCE, (3) issue the SSME SOP recycle flag, and (4) cause the count to proceed.

Monitor the following:
(a) RESUME COUNT COMMAND FLAG

V99X8828X

If $(a)=$ false, proceed to Step 11.

If (a) = true, clear all RS launch sequence downlist items; set (1), (2), and (3) below = false; and set (4) true.

(1)	LPS COUNTDOWN HOLD FLAG	V99X8829X
(2)	RS COUNTDOWN HOLD FLAG	V90X8667X
(3)	RESUME COUNT CMD FLAG	V99X8828X
(4)	SSME SOP RECYCLE FLAG	V90X8668X

Proceed to Step 12.

Step 11 - LPS Recycle Count Check. This step monitors for a recycle count command from the LPS after a countdown hold has been called.

Monitor the following:
(a) RECYCLE COUNT CMD FLAG

V99X8830X
If $(a)=$ false , add 0.04 second to previous value of CRT timer base time in user interface compool and return to Step A.

If (a) = true, terminate outputs (1) and (2), and issue outputs (3) and (4).

(1)	SRM IGN ARM FLAG	V90X8404X
(2) T0 UMB RELEASE ARM FLAG	V90X8407X	
(3) MEC 1 AND 2 MASTER RESET FLAG	V90X8258X	
(4) ASC DAP RECYCLE FLAG	V90X8669X	

and perform the following functions:
(5) Reset the countdown clock to T0-540 seconds, and stop the clock.
(6) Re -initialize the RS launch sequence.

Proceed to Step 11A.
Step 11A - Provide New CRT Timer Base Time for a Count Recycle.
Monitor the following:
(a) CLOCK-COMPUTER (GMT)
V91W5000C
(b) SRB_IGN_TIME_DELAY
V97U9726C
(c) START_SSMES_T
V97U9712C

Store $[(\mathrm{a})+540+(\mathrm{b})+(\mathrm{c})]$, where $(\mathrm{c})<0$, into CRT timer base time location in User Interface compool.

Return to Step A.
Step 12-Monitor Countdown Clock Control. This step monitors for a flag from LPS to read the new GMT of lift-off data and reset the countdown clock.

Monitor the following:
(a) GMTLO SET COMMAND V99X8827X
(b) PREDICTED GMT OF LIFT-OFF V99W8801C
(c) CLOCK-COMPUTER (GMT) V91W5000C

If (a) = false, subtract (b) from (c), convert to seconds. Set this value in the countdown clock and proceed to Step 16B.

If (a) = true, subtract (b) from (c), and convert to seconds. Set this value in the countdown clock and start counting. Reset the GMTLO SET COMMAND V99X8827X and output COUNTDOWN TIME V90W8380C and PREDICTED GMT OF LIFT-OFF V99W8801C for downlist.

Proceed to Step 16B.

Step 13 - LPS Go for Auto Sequence Start. This step monitors the countdown clock and at the proper time looks for a flag from LPS to start the automatic on-board functions. If this flag is not received, a countdown hold is called.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) LPS GO FOR AUTO SEQUENCE START V99X8803X
(c) LPS_GO_FOR_AUTO_SEQ_T V97U9700C

If (a) is \leq (c) seconds, return to Step A.
If (a) is $>$ (c) seconds and (b) = false, then set outputs (1) and (2) true, and return to Step A.
On the first pass that (a) is $>$ (c) seconds and (b) = true, set output (3) = true and output $(4)=$ false; then proceed to Step 15 . On subsequent passes, proceed to Step 15.
(1) LPS GO FOR AUTO SEQ START HOLD

V90X8393X
(2) RS COUNTDOWN HOLD FLAG
(3) INDICATOR EVENT 6 R/S AUTO SEQ START
(4) MPS TVC SERVO OVRD CMD V90X8374X

Step 14 - Deleted.
Step 15 - Command IMU to Inertial. This step monitors the countdown clock and, at the proper time, sets a flag for the IMU INT PROC.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) IMU_TO_INERTIAL_T V97U9704C

If $(a) \leq(b)$ seconds, proceed to Step 16.
If $(a)>(b)$ seconds, issue the following output and proceed to Step 16.
(1) CMD IMU TO INERTIAL FLAG

V90X8411X

Step 16 - Time to Open LO_{2} Accumulator Recirculation Valves. This step monitors the countdown clock and, at the proper time, terminates the LO_{2} accumulator recirculation valve close commands, which permits the springloaded valves to open.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) OPN_LO ${ }_{2}$ ACC_RECIRC_VLV_T V97U9706C

If (a) \leq (b) seconds, proceed to Step 16 A
If $(a)>$ (b) seconds, terminate the following commands and proceed to Step 16 A .
(1) MPS LO 2 ACC RECIRC VLV 1 CL CMD A

V41K1815X
(2) MPS LO ${ }_{2}$ ACC RECIRC VLV 1 CL CMD B

V41K1816X
(3) MPS LO 2 ACC RECIRC VLV 2 CL CMD A V41K1825X
(4) MPS LO 2 ACC RECIRC VLV 2 CL CMD B V41K1826X

Step 16A - Initialize the Navigation System. This step monitors the countdown clock and, at the proper time, sets a flag for the Ascent Nav Sequencer and the Ascent User Parameter Process Sequencer, and initializes the SSME throttle command.

Monitor the following:
$\begin{array}{ll}\text { (a) COUNTDOWN TIME } & \text { V90W8380C } \\ \text { (b) NAV INIT T } & \text { V97U9707C }\end{array}$
(b) NAV_INIT_T V97U9707C

If $(a) \leq(b)$ seconds, proceed to Step 17.
If $(a)>(b)$ seconds and it is first pass, issue the following outputs and proceed to Step 17. Otherwise, proceed to Step 17.
(1) NAV INIT FLAG
V90X8414X
(2) K_CMD (100\%)
V90U1948C

Step 16B - Update the CRT Timer Base Time and Configure Vent Doors for Launch. This step updates the CRT timer base time and then monitors the countdown clock and, at the proper time, sets a flag for the vent door sequence.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) CONFIG_VNT_DRS_FOR_LCH_T V97U9708C
(c) CLOCK-COMPUTER (GMT) V91W5000C
(d) SRB_IGN_TIME_DELAY V97U9726C
(e) START_SSMES_T V97U9712C

Store $[(c)-(a)+(d)+(e)]$, where (a) and $(e)<0$, into the CRT timer base time location in User Interface compool. Then,

If $(a) \leq$ (b) seconds, proceed to Step 13.
If (a) $>$ (b) seconds, issue the following output and proceed to Step 13.

(1) CONFIGURE VENT DOORS FOR LAUNCH CMD

V90X8375X

Step 17 - Time to Verify MPS Ready. This step monitors the countdown clock and, at the proper time, checks for any commfault indications for the LO_{2} accumulator recirculation valve inputs. If any commfaults are present, an internal counter is incremented; and, if the counter reaches a count of two, a countdown hold is called.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) FLAG A
(INTERNAL)
(c) DELETED
(d) FA3 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2847X
(e) FA4 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2848X
(f) CHECK_MPS_VLVS_POS_T

V97U9709C

If $(a)<(f)$ seconds, proceed to Step 20.
If $(\mathrm{a}) \geq(\mathrm{f})$ seconds, and (b) is true, proceed to Step 20.
If $(\mathrm{a}) \geq(\mathrm{f})$ seconds and (b), (d), and (e)are all false, then proceed to Step 19.
If (a) \geq (f) seconds and (b) is false, and either (d), or (e) is true, then increment internal counter A by one count. If counter A is less than 2 counts, return to Step A. If counter A is equal to 2 counts, then issue the following outputs and return to Step A.
$\begin{array}{lll}\text { (1) } & \text { RS COUNTDOWN HOLD FLAG } & \text { V90X8667X } \\ \text { (2) MPS VALVE POS COMMFAULT HOLD } & \text { V90X8769X }\end{array}$
Step 17A - Deleted.
Step 18 -Deleted.
Step 19 - Check for Pogo Recirculation Valves Open. This step checks the two LO_{2} Accum Recirc Valve positions and the appropriate LPS bypass flag. If either of the valves is not in the OPEN position and the LPS bypass flag is not set, then internal counter A is incremented by one count. If counter A is equal to 2 counts, a countdown hold is called.

Monitor the following:
(a) MPS LO 2 ACCUM RECIRC VLV 1 OPEN

V41X1811X
(b) MPS LO 2 ACCUM RECIRC VLV 2 OPEN

V41X1821X
(c) LPS BYPASS OF LO_{2} ACCUM RECIRC VLV OP

V99X8833X
If (a) and (b) are true or if (c) is true, then proceed to Step 19A.
If either (a) or (b) is false and (c) is false, then increment internal counter A by one count. If counter A is less than 2 counts, return to Step A. If counter A is equal to 2 counts, then issue the following outputs and return to Step A.

(1) MPS LOX ACC RECIRC VLV HOLD V90X8392X
 (2) RS COUNTDOWN HOLD FLAG
 V90X8667X

Step 19A - Check SSME's READY INDICATION. This step checks for the engine ready mode of the siart preparation phase for each main engine as determined by flags from the SSME SOP. If all engine controllers indicate engine ready in the status words, the MPS start enable flag is issued, and the LH_{2} prevalves are opened; if not, a countdown hold will be called.

Monitor the following:
(a) MPS E-1 ENG READY IND
(b) MPS E-2 ENG READY IND

If either (a), (b), or (c) is false, issue the following outputs and return to Step A.
(1) R / S SEQ SSME GO FOR LAUNCH HOLD
V90X8395X
(2) R/S COUNTDOWN HOLD FLAG
V90X8667X

If (a), (b), and (c) are all true, then issue the following outputs:

(3)	MPS E-1 LH2 PREVALVE OPEN CMD A	V41K1119X
(4)	MPS E-1 LH2 PREVALVE OPEN CMD B	V41K1120X
(5)	MPS E-1 LH 2 PREVALVE OPEN CMD C	V41K1121X
(6)	MPS E-2 LH2 PREVALVE OPEN CMD A	V41K1219X
(7)	MPS E-2 LH 2 PREVALVE OPEN CMD B	V41K1220X
(8)	MPS E-2 LH2 PREVALVE OPEN CMD C	V41K1221X
(9)	MPS E-3 LH 2 PREVALVE OPEN CMD A	V41K1319X
(10)	MPS E-3 LH 2 PREVALVE OPEN CMD B	V41K1320X
(11)	MPS E-3 LH2 PREVALVE OPEN CMD C	V41K1321X

and issue, one time only
(12) MPS START ENABLE CMD FLAG

V90X8361X
and terminate the following:

(13)	MPS E-1 LH 2 PREVALVE CLOSE CMD A	V41K1122X
(14)	MPS E-1 LH ${ }_{2}$ PREVALVE CLOSE CMD B	V41K1123X
(15)	MPS E-1 LH ${ }_{2}$ PREVALVE CLOSE CMD C	V41K1124X
(16)	MPS E-2 LH L_{2} PREVALVE CLOSE CMD A	V41K1222X
(17)	MPS E-2 LH2 PREVALVE CLOSE CMD B	V41K1223X
(18)	MPS E-2 LH2 PREVALVE CLOSE CMD C	V41K1224X
(19)	MPS E-3 LH 2 PREVALVE CLOSE CMD A	V41K1322X
(20)	MPS E-3 LH2 PREVALVE CLOSE CMD B	V41K1323X
(21)	MPS E-3 LH ${ }_{2}$ PREVALVE CLOSE CMD C	V41K1324X

and set internal flag A true.
Proceed to Step 20.
Step 20 - Time to Close LO_{2} Overboard Bleed Valve. This step monitors the countdown clock and, at the proper time, commands the LO_{2} overboard bleed valve closed.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) CLSE_LO_OVBD_BV_T V97U9710C

If $(a) \leq$ (b) seconds, proceed to Step 21.
If $(a)>$ (b) seconds, issue the following outputs on each successive pass through Step 20 :
(1) MPS LO 2_{2} OVERBOARD B/V CLOSE CMD A

V41K1584X
(2) MPS LO_{2} OVERBOARD B/V CLOSE CMD B

V41K1585X
(3) MPS LO 2_{2} OVERBOARD B/V CLOSE CMD C V41K1586X

Proceed to Step 21.
Step 21 - Time To Check LH_{2} Prevalves. This step monitors the countdown clock, and at the proper time, proceeds to Step 22.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) CHK_PREVLVS_OP_T V97U9711C

If (a) \leq (b) seconds, return to Step A.
If (a) $>$ (b) seconds, then proceed to Step 22.
Step $22-$ ME-1 LH_{2} Prevalve Check. This step monitors the ME-1 LH_{2} prevalve position sensors and their associated commfaults. If either sensor indicates OPEN and is not commfaulted, then the sequence proceeds. If a valid OPEN indication is not obtained, then a countdown hold is called.

Monitor the following:
(a) MPS E-1 LH2 PREVALVE OPEN A V41X1104X
(b) MPS E- $1 \mathrm{LH}_{2}$ PREVALVE OPEN B V41X1106X
(c) FA1 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2845X
(d) FA3 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2847X
If (a) is true and (c) is false, or if (b) is true and (d) is false, then proceed to Step 23; otherwise issue the following outputs and return to Step A.
(1) MPS E-1 LH ${ }_{2}$ PREVLV OPEN HOLD
V90X8396X
(2) RS COUNTDOWN HOLD FLAG
V90X8667X

Step 23-ME-2 LH_{2} Prevalve Check. This step monitors the ME-2 LH_{2} prevalve position sensors and their associated commfaults. If either sensor indicates OPEN and is not commfaulted, then the sequence proceeds. If a valid OPEN indication is not obtained, then a countdown hold is called.

Monitor the following:
(a) MPS E-2 LH $_{2}$ PREVALVE OPEN A

V41X1204X
(b) MPS E-2 LH_{2} PREVALVE OPEN B V41X1206X
(c) FA2 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2846X
(d) FA4 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2848X

If (a) is true and (c) is false, or if (b) is true and (d) is false, then proceed to Step 24; otherwise issue the following outputs and return to Step A.
(1) MPS E-2 LH2 PREVLV OPEN HOLD
(2) RS COUNTDOWN HOLD FLAG

V90X8667X

Step $24-$ ME- $3 \mathrm{LH}_{2}$ Prevalve Check. This step monitors the ME- $3 \mathrm{LH}_{2}$ prevalve position sensors and their associated commfaults. If either sensor indicates OPEN and is not commfaulted, then the sequence proceeds. If a valid OPEN indication is not obtained, then a countdown hold is called.

Monitor the following:

(a)	MPS E-3 LH_{2} PREVALVE OPEN A	V41X1304X
(b)	MPS E-3 LH2 PREVALVE OPEN B	V41X1306X
(c)	FA4 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2848X
(d)	FA3 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2847X

If (a) is true and (c) is false, or if (b) is true and (d) is false, then proceed to Step 25; otherwise issue the following outputs and return to Step A.
$\begin{array}{ll}\text { (1) MPS E-3 LH } 2 \text { PREVLV OPEN HOLD } & \text { V90X8398X } \\ \text { (2) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X }\end{array}$
Step 25 - Orbiter Vent Doors Check. This step monitors for all vent doors achieving the desired position for launch within the required time period. The vent door sequence provides an indication of the status for each of the doors. If a door failure exists and an LPS override for that door has been previously set, then the RS launch sequence will proceed with the count. If an LPS override has not been previously set, then the RS launch sequence will call a countdown hold.

Monitor the following:
(a) ORBITER VENT DOORS STATUS WORD

V90J8201C
(b) LPS ORBITER VENT DOORS OVERRIDE WORD V99J8836C

If all the indicators of (a) (Table 4.1-1) = true (no failures of any doors), then proceed to Step 26.
If any indicator(s) of $(a)=$ false (one or more door failures), then read (b) (Table 4.1-2). If the corresponding override indicator in (b) = true for each specific door failure of (a), then proceed to Step 26.

If any indicator of $(a)=$ false (door failure) and the corresponding override indicator in $(b)=$ false, then issue the following outputs and return to Step A.
(1) RS COUNTDOWN HOLD FLAG
V90X8667X
(2) VENT DOOR POSITION HOLD
V90X8770X

Table 4.1-1. Orbiter Vent Doors Status Word--V90J8201		
Vent Group		Item
Vent group 1	a	L FWD VENTS $1 \& 2$
Left and right	b	L FWD VENTS $1 \& 2$
Forward vent	c	L FWD VENTS 1\&2
Ports 1 and 2	d	L FWD VENTS $1 \& 2$
Vent Group 2	a	L PB VENT 3
Left and right	b	L PB VENT 3
Mid fuselage vent	c	R PB VENT 3
Port 3	d	R PB VENT 3
Vent group 3	a	L PB VENT 5
Left and right	b	L PB VENT 5
Mid fuselage	c	R PB VENT 5
Port 5	d	R PB VENT 5
Vent group 4	a	L PB/W VENTS 4\&7
Left and right	b	L PB/W VENTS 4\&7
Mid fuselage vent	c	R PB/W VENTS 4\&7
Ports 4 and 7	d	R PB/W VENTS 4\&7
Vent group 5	a	L PB VENT 6
Left and Right	b	L PB VENT 6
Aft payload vent	c	LPB VENT 6
Port 6	d	L PB VENT 6
Vent group 6	a	L AFT VENTS 8\&9
Left and right	b	L AFT VENTS $8 \& 9$
Aft vent	c	R AFT VENTS 8\&9
Ports 8 and 9	d	R AFT VENTS 8\&9

Table 4.1-2. LPS Orbiter Vent Doors Override Word-V99J8836C		
Vent Group		Item
Vent group 1	a	L FWD VENTS 1\&2
Left and right	b	L FWD VENTS $1 \& 2$
Forward vent	c	L FWD VENTS $1 \& 2$
Ports 1 and 2	d	L FWD VENTS 1\&2
Vent Group 2	a	L PB VENT 3
Left and right	b	L PB VENT 3
Mid fuselage vent	c	R PB VENT 3
Port 3	d	R PB VENT 3
Vent group 3	a	L PB VENT 5
Left and right	b	L PB VENT 5
Mid fuselage	c	R PB VENT 5
Port 5	d	R PB VENT 5
Vent group 4	a	L PB/W VENTS 4\&7
Left and right	b	L PB/W VENTS 4\&7
Mid fuselage vent	c	R PB/W VENTS 4\&7
Ports 4 and 7	d	R PB/W VENTS 4\&7
Vent group 5	a	L PB VENT 6
Left and Right	b	L PB VENT 6
Aft payload vent	c	LPB VENT 6
Port 6	d	L PB VENT 6
Vent group 6	a	L AFT VENTS 8\&9
Left and right	b	L AFT VENTS $8 \& 9$
Aft vent	c	R AFT VENTS 8\&9
Ports 8 and 9	d	R AFT VENTS 8\&9

Step 26 - SSME's Ready for Start. This step monitors the engine ready mode of the start preparation phase for each main engine as determined by flags from the SSME SOP. If all engine controllers provide engine ready indications in the status words, then the sequence will proceed; if not, a countdown hold will be called.

Monitor the following conditions:
(a) MPS E-1 READY IND

V95X1182X
(b) MPS E-2 READY IND V95X1183X
(c) MPS E-3 READY IND V95X1184X

If (a) and (b) and (c) all = true, proceed to Step 27.
If either (a) or (b) or (c) = false, then issue the following outputs and return to Step A.
$\begin{array}{lll}\text { (1) RS SEQ SSME GO FOR LAUNCH HOLD } & \text { V90X8395X } \\ \text { (2) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X }\end{array}$
Step 27 - LPS Go for Main Engine Start. This step looks for a flag set by LPS indicating a positive "go" for start of the main engines. If this flag is not set, a countdown hold is called.

Monitor the following conditions:
(a) LPS GO FOR ENGINE START FLAG

V99X8804X

If $(\mathrm{a})=$ true, proceed to Step 28.
If $(a)=$ false, issue the following outputs and return to Step A.
$\begin{array}{lll}\text { (1) LPS GO FOR ENGINE START HOLD } & \text { V90X8394X } \\ \text { (2) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X }\end{array}$
Step 28 - Time to Start Main Engines. This step monitors the countdown clock, and, at the proper time, issues the main engine start command flag for Engine 3 and the MPS TVC SERVO OVRD CMD flag. In addition, the timer for checking engine performance, and the start delay timers for Engine 2 and Engine 1 are started.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) START_SSMES_T

V97U9712C

If (a) \leq (b) seconds, return to Step A.
If (a) $>$ (b) seconds, issue the following outputs:
$\begin{array}{ll}\text { (1) } & \text { MPS TVC SERVO OVRD CMD } \\ \text { (2) ENG START CMD ISSUED FLAG } & \text { V90X8374X } \\ \text { (INTERNAL) }\end{array}$
then issue the following output one time only:
(3) MPS E-3 START CMD FLAG

V90X8360X
and start timers for the following:

| (4) ENG_TIMER_FOR_THRUST_OK | V97U9716C |
| :--- | :--- | :--- |
| (5) SRB_IGN_TIME_DELAY | V97U9726C |

(5) SRB_IGN_TIME_DELAY

V97U9726C
and then return to Step A.
Step 28A - Start of Engine 2 and Engine 1. This step provides for a time delay before setting the start flag for Engine 2 and a time delay before setting the start flag for Engine 1. The time delays before setting the start flags shall have an accuracy tolerance of ± 1 millisecond.

If 120 ± 1 milliseconds have not elapsed since output (3) was issued in Step 28, proceed to Step 29.

If 120 ± 1 milliseconds have elapsed since output (3) was issued in Step 28, set the following output true one time only:
(1) MPS E-2 START CMD FLAG

V90X8359X
and set the following output true:

(2) E2 START CMD ISSUED FLAG

(INTERNAL)
and then monitor for a 240 ± 1 millisecond time delay from issuance of output (3) in Step 28.
If 240 ± 1 milliseconds have not elapsed since output (3) in Step 28 was issued, proceed to Step 29.

If 240 ± 1 milliseconds have elapsed since output (3) in Step 28 was issued set the following output true one time only:
(3) E-1 START CMD FLAG

V90X8358X
(4) MPS E-1 START CMD FLAG
(INTERNAL)
and then proceed to Step 29.
Step 29 - Check for any Engine in Shutdown. This step monitors the operating phase of each main engine via flags from the SSME SOP. During the start phase, one or more of the engines could go into automatic shutdown. If this occurs, it is necessary to inhibit the SRB ignition and perform an orderly shutdown of the other two engines.

Monitor the following:
(a) MPS E-1 SHUTDOWN PHASE
(b) MPS E-1 POST-SHUTDOWN PHASE
(c) MPS E-2 SHUTDOWN PHASE
(d) MPS E-2 POST-SHUTDOWN PHASE
(e) MPS E-3 SHUTDOWN PHASE
(f) MPS E-3 POST-SHUTDOWN PHASE

If (a), (b), (c), (d), (e), and (f) are all false, then proceed to Step 37.
If (a) or (b) = true, set output (7) true.
If (c) or (d) $=$ true, set output (8) true.
If (e) or (f) = true, set output (9) true.
If either (a), (b), (c), (d), (e), or (f) = true, then terminate the following output:
(1) PREP SSME's FOR LIFT-OFF FLAG V90X8373X
and issue outputs (2) through (6)
(2) LAUNCH SEQUENCE ABORT FLAG V90X8382X
(3) CMD SSME's TO PRE-START POS FLAG V90X8412X
(4) MPS SLEW COMP FLAG V90X8400X
(5) MPS TVC SERVO OVRD CMD V90X8374X
(6) UNCOMMANDED ENGINE SHUTDOWN ABORT V90X8771X
(7) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(8) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(9) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
Proceed to Step 30.
Step 30-ME-1 Status Check. This step monitors the ME-1 status word via SSME SOP flags; and when $\overline{\text { ME-1 enters shutdown, appropriate time delays are provided before closing the prevalves. }}$

Monitor the following:
(a) MPS E-1 SHUTDOWN PHASE V95X1155X
(b) MPS E-1 POST-SHUTDOWN PHASE V95X1160X

If (a) and (b) both $=$ false, proceed to Step 31.
If either (a) or $(b)=$ true, monitor the following:
(c) ME1_LOX_PREVLV_CLSE_DELAY

V97U9720C
If (c) seconds have not elapsed, proceed to Step 30B.
If (c) seconds have elapsed, proceed to Step 30A.
Step 30A - Issuance of ME-1 Prevalve Close Commands. This step provides a time delay between issuance of the ME-1 LO_{2} prevalve close commands and the $\mathrm{ME}-1 \mathrm{LH}_{2}$ prevalve close commands.

Issue the following outputs:
(1) MPS E-1 LO_{2} PREVALVE CLOSE CMD A
(2) MPS E-1 LO 2 PREVALVE CLOSE CMD B
(3) MPS E-1 LO_{2} PREVALVE CLOSE CMD C
(4) MPS E-1 LO 2 PREVALVE CLOSE CMD D
and terminate the following outputs:
(5) MPS E- $1 \mathrm{LO}_{2}$ PREVALVE OPEN CMD A
(6) MPS E-1 LO_{2} PREVALVE OPEN CMD B

V41K1136X
(7) MPS E- $1 \mathrm{LO}_{2}$ PREVALVE OPEN CMD C

V41K1137X
(8) MPS E-1 LO_{2} PREVALVE OPEN CMD D

V41K1138X
and then monitor the following:
(a) ME1_LH2_PREVLV_CLSE_T_DELAY

V97U9727C
If (a) seconds have not elapsed, proceed to Step 31.
If (a) seconds have elapsed, issue the following outputs:

(9)	MPS E1 LH_{2} PREVALVE CLOSE CMD A	V41K1122X
(10)	MPS E1 LH_{2} PREVALVE CLOSE CMD B	V41K1123X
(11)	MPS E1 LH2 PREVALVE CLOSE CMD C	V41K1124X

and terminate the following outputs:
(12) MPS E1 LH_{2} PREVALVE OPEN CMD A V41K1119X
(13) MPS E1 LH2 PREVALVE OPEN CMD B V41K1120X
(14) MPS E1 LH2 PREVALVE OPEN CMD C
and then set the following flag = true:
(15) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 31.
Step 30B - Prevalve Closure for ME-1 If Unstarted During Pad Abort. If this engine has not been started prior to initiation of a pad abort, prevalve close delays are bypassed.

Monitor the following:
(a) E1 START COMMAND ISSUED FLAG
(INTERNAL)
If (a) is true, proceed to Step 31.
If (a) is false, set V97U9727 ME_LH $\mathbf{2}_{2}$ PREVLV_CLS_T_DELAY equal to zero and proceed to Step 30A.

Step 31 -ME-2 Status Check. This step monitors the ME-2 status word via SSME SOP flags, and when ME-2 enters shutdown, appropriate time delays are provided before closing the prevalves.

Monitor the following:
(a) MPS E-2 SHUTDOWN PHASE V95X1156X
(b) MPS E-2 POST-SHUTDOWN PHASE V95X1161X

If (a) and (b) both = false, proceed to Step 32.
If either (a) or (b) = true, monitor the following:
(c) ME2_LOX_PREVLV_CLSE_DELAY

If (c) seconds have not elapsed, proceed to Step 31B.
If (c) seconds have elapsed, proceed to Step 31A.
Step 31A - Issuance of ME-2 Prevalve Close Commands. This step provides a time delay between issuance of the $\mathrm{ME}-2 \mathrm{LO}_{2}$ prevalve close commands and the $\mathrm{ME}-2 \mathrm{LH}_{2}$ prevalve close commands.

Issue the following outputs:
(1) MPS E-2 LO_{2} PREVALVE CLOSE CMD A

V41K1239X
(2) MPS E-2 LO 2 PREVALVE CLOSE CMD B V41K1240X
(3) MPS E-2 LO_{2} PREVALVE CLOSE CMD C V41K1241X
(4) MPS E-2 LO_{2} PREVALVE CLOSE CMD D V41K1242X
and terminate the following outputs:
(5) MPS E-2 LO_{2} PREVALVE OPEN CMD A V41K1236X
(6) MPS E-2 LO_{2} PREVALVE OPEN CMD B V41K1237X
(7) MPS E-2 LO_{2} PREVALVE OPEN CMD C V41K1238X
(8) MPS E-2 LO_{2} PREVALVE OPEN CMD D V41K1243X
and then monitor the following:
(a) ME2_LH2_PREVLV_CLSE_T_DELAY

V97U9728C

If (a) seconds have not elapsed, proceed to Step 32.
If (a) seconds have elapsed, issue the following outputs:
$\begin{array}{lll}\text { (9) } & \text { MPS E2 } \mathrm{LH}_{2} \text { PREVALVE CLOSE CMD A } & \text { V41K1222X } \\ \text { (10) } & \text { MPS E2 } \mathrm{LH}_{2} \text { PREVALVE CLOSE CMD B } & \text { V41K1223X } \\ \text { (11) } & \text { MPS E2 LH } \mathrm{LR} \text { PREVALVE CLOSE CMD C } & \text { V41K1224X }\end{array}$
and terminate the following outputs:
(12) MPS E2 LH 2 PREVALVE OPEN CMD A

V41K1219X
(13) MPS E2 LH_{2} PREVALVE OPEN CMD B

V41K1220X
(14) MPS E2 LH2 PREVALVE OPEN CMD C

V41K1221X
and then set the following flag = true:
(15) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 32.
Step 31 B - Prevalve Closure for ME-2 If Unstarted During Pad Abort. If this engine has not been started prior to initiation of a pad abort, prevalve close delays are bypassed.

Monitor the following:
(a) E2 START COMMAND ISSUED FLAG
(INTERNAL)

If (a) is true, proceed to Step 32.
If (a) is false, set V97U9728 ME2_LH2_PREVLV_CLS_T_DELAY equal to zero and proceed to Step 31A.

Step 32 - ME-3 Status Check. This step monitors the ME-3 status word via SSME SOP flags, and when $\overline{\mathrm{ME}-3}$ enters shutdown, appropriate time delays are provided before closing the prevalves.

Monitor the following:
(a) MPS E-3 SHUTDOWN PHASE V95X1157X
(b) MPS E-3 POST-SHUTDOWN PHASE

If (a) and (b) both $=$ false, proceed to Step 33.
If either (a) or $(b)=$ true, monitor the following:
(c) ME3_LOX_PREVLV_CLSE_DELAY V97U9722C

If (c) seconds have not elapsed, proceed to Step 33.
If (c) seconds have elapsed, proceed to Step 32A.
Step 32A - Issuance of ME-3 Prevalve Close Commands. This step provides a time delay between issuance of the $\mathrm{ME}-3 \mathrm{LO}_{2}$ prevalve close commands and the $\mathrm{ME}-3 \mathrm{LH}_{2}$ prevalve close commands.

Issue the following outputs:
(1) MPS E-3 LO 2 PREVALVE CLOSE CMD A

V41K1339X
(2) MPS E-3 LO 2 PREVALVE CLOSE CMD B V41K1340X
(3) MPS E-3 LO 2 PREVALVE CLOSE CMD C

V41K1341X
(4) MPS E-3 LO 2 PREVALVE CLOSE CMD D

V41K1342X
and terminate the following outputs:
(5) MPS E-3 LO 2 PREVALVE OPEN CMD A

V41K1336X
(6) MPS E-3 LO 2 PREVALVE OPEN CMD B

V41K1337X
(7) MPS E-3 LO 2 PREVALVE OPEN CMD C

V41K1338X
(8) MPS E-3 LO 2 PREVALVE OPEN CMD D

V41K1343X
and then monitor the following:
(a) ME3_LH2_PREVLV_CLSE_T_DELAY

V97U9729C

If (a) seconds have not elapsed, proceed to Step 33.
If (a) seconds have elapsed, issue the following outputs:
(9) MPS E3 LH ${ }_{2}$ PREVALVE CLOSE CMD A

V41K1322X
(10) MPS E3 LH2 PREVALVE CLOSE CMD B

V41K1323X
and terminate the following outputs:
(12) MPS E3 LH 2 PREVALVE OPEN CMD A

V41K1319X
(13) MPS E3 LH ${ }_{2}$ PREVALVE OPEN CMD B
(14) MPS E3 LH L_{2} PREVALVE OPEN CMD C

V41K1320X
V41K1321X
and then set the following flag = true:
(15) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 33.
Step 33 - Second and Third Engine Staggered Shutdown Priority Selection. This step establishes a priority for the second and third engine to be shut down in a staggered sequence. The engine priority is selected after a time delay has elapsed since the first engine was detected in shutdown phase or was commanded to shutdown.

Monitor the following:
(a) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(b) TIMER_G_SHTDN_TIME_DELAY $1.12(-0,+0.08$ SEC $)$ (INTERNAL)
(c) TIMER_J_SHTDN_TIME_DELAY $2.40(-0,+0.08$ SEC $)$
(INTERNAL)
On the first pass through this step, start (b) Timer " G " and (c) Timer " J " and return to Step A.
On subsequent passes:
If (b) seconds have not elapsed since starting timers " G " and "J," then return to Step A.
If (c) seconds have elapsed since Timer "J" (c) started, set (1), (2), and (3) true and proceed to Step 34.

If (c) seconds have not elapsed since Timer " J " (c) started, monitor Timer " G " (b).
If (b) seconds have elapsed since Timer " G " (b) started and (a) = true on first pass, then set (3) true and return to Step A.

If (b) seconds have elapsed since Timer " G " (b) started and (a) = false on first pass, then set (2) true and return to Step A.
(1) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(2) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(3) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
Step 34 - Initiation of Engine Shutdown Verification Timer. This step initiates the timer, which is checked in Step 35 to alert the LPS that all engines have not entered shutdown within the required time period after shutdown commands were issued.
On the first pass through this step, start the following timer and return to Step A.
(1) VERIFY_ALL_ENG_SHTDN_TIMER

V97U9719C

On all successive passes proceed to Step 35.
Step 35 - All SSME's in Shutdown. This step monitors the phase of each engine via flags from the SSME SOP, and determines when all engines have entered the shutdown phase. If this does not occur within the proper time after shutdown commands for all engines were issued in Step 33, then a countdown hold flag is set.

Monitor the following:
(a) MPS E-1 SHUTDOWN PHASE

V95X1155X
(b) MPS E-1 POST-SHUTDOWN PHASE V95X1160X
(c) MPS E-2 SHUTDOWN PHASE V95X1156X
(d) MPS E-2 POST-SHUTDOWN PHASE V95X1161X
(e) MPS E-3 SHUTDOWN PHASE V95X1157X
(f) MPS E-3 POST-SHUTDOWN PHASE V95X1162X
(g) VERIFY_ALL_ENG_SHTDN_TIMER V97U9719C

If either (a) or $(\mathrm{b})=$ true, and either (c) or $(\mathrm{d})=$ true, and either (e) or $(\mathrm{f})=$ true, then proceed to Step 36.

If both (a) and $(b)=$ false, or both (c) and $(d)=$ false, or both (e) and $(f)=$ false, and (g) seconds have not elapsed, then return to Step A.

If both (a) and $(b)=$ false, or both (c) and $(d)=$ false, or both (e) and $(f)=$ false, and (g) seconds have elapsed, then issue the following outputs and terminate the RS launch sequence.
(1) ENGINE SHUTDOWN VERIFICATION HOLD V90X8389X
(2) RS COUNTDOWN HOLD FLAG V90X8667X

Step 36 - Prevalves Commanded Closed Check. This step checks to see that all prevalves have been commanded closed before terminating the launch sequence. This assures that the time delays of Steps 30, 31 , and 32 can occur and that all prevalves will be commanded closed before termination of the RS launch sequence.

Monitor the following:
(a) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(b) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(c) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)

If either (a), (b), or (c) = false, return to Step A.
If (a), (b), and (c) all = true, set output (1) true and then terminate the redundant set launch sequence.
(1) ASCENT DAP RECYCLE FLAG

V90X8669X

Step 37 - LPS Countdown Hold Check. This step monitors the LPS countdown hold flag and, if set after the main engine start commands have been issued, will set the LAUNCH SEQUENCE ABORT FLAG and initiate the shutdown of ME-1, which will be followed after a time delay by shutdown of ME-2 and ME-3.

Monitor the following:
(a) LPS COUNTDOWN HOLD FLAG

V99X8829X
If $(a)=$ false, proceed to Step 37A.
If $(a)=$ true, terminate the following outputs:

(1) PREP SSME's FOR LIFT-OFF FLAG	V90X8373X
(2) SRM IGN ARM FLAG	V90X8404X
(3) TO UMB RELEASE ARM FLAG	V90X8407X

and issue the following outputs:
(4) CMD SSME's to PRE-START POS FLAG V90X8412X
(5) ENG 1 SHUTDOWN FLAG C (INTERNAL)
(6) MPS E-1 SHUTDOWN ENABLE CMD V90X8367X
(7) MPS SLEW COMP FLAG
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) LPS COUNTDOWN HOLD V90X8768X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then return to Step A.
Step 37A - All Engines at Required Percent Thrust. This step monitors the percent chamber pressure for all engines via the SSME SOP. When all engines reach the required chamber pressure, then flags are set for the MPS TVC CMD SOP, the SRB TVC CMD SOP, and the ASC DAP.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS

V95U1186C
(b) MPS E-2 PERCENT CH PRESS

V95U1187C
(c) MPS E-3 PERCENT CH PRESS

V95U1188C
(d) ALL_ENG_PERCENT_CHB_PRS_CHK

V97U9713C
If either (a) or (b) or (c) \leq (d) percent, then proceed to Step 38.
If (a), (b), and (c) all > (d) percent, then terminate the following output:
(1) MPS TVC SERVO OVRD CMD

V90X8374X
and issue the following output:
(2) PREP SSME's FOR LIFT-OFF FLAG

V90X8373X
and proceed to Step 37B.
Steps 37B - MPS Actuator Port Commfault Checks. This step checks for any commfault indications relative to the actuator port checks to be made in Steps 42,43 , and 44 . The first time that a commfault occurs the actuator port checks in Steps 42, 43, and 44 are bypassed. If a commfault indication is present on two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and ME-1 is commanded to shut down.

Monitor the following:
(a) FA1 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2845X
(b) FA2 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2846X
(c) FA3 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2847X
(d) FA4 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2848X
(e) COMMFAULT FIRST PASS FLAG "E"
(INTERNAL)
If (a), (b), (c), and (d) all = false, then set $(\mathrm{e})=$ true and proceed to Step 42.
If either $(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$, or $(\mathrm{d})=$ true , and $(\mathrm{e})=$ true, then set $(\mathrm{e})=$ false and proceed to Step 38.
If either $(a),(b),(c)$, or $(d)=$ true and $(e)=$ false, then terminate the following outputs:
(1) PREP SSME'S FOR LIFT-OFF FLAG
V90X8373X
(2) SRM IGN ARM FLAG
V90X8404X
(3) TO UMB RELEASE ARM FLAG V90X8407X
and issue the following outputs:

(4)	CMD SSME'S TO PRE-START POS FLAG	V90X8412X
(5)	ENG 1 SHUTDOWN FLAG C	(INTERNAL)
(6)	MPS E-1 SHUTDOWN ENABLE CMD	V90X8367X
(7)	MPS SLEW COMP FLAG	V90X8400X
(8)	MPS TVC SERVO OVRD CMD	V90X8374X
(9)	MPS ACT PORT COMMFAULT ABORT	V90X8772X
(10)	LAUNCH SEQUENCE ABORT FLAG	V90X8382X

and then return to Step A.
Step 38-ME-1 at Required Percent Thrust. This step monitors the ME-1 chamber pressure via the SSME SOP. If the chamber pressure does not reach the required level within the required number of seconds from the time the start commands were issued in Step 28, then the launch sequence abort flag is set and ME-1 is commanded to shut down.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS
(b) ENG_PERCENT_CH_PRS_FOR_GO
(c) ENG_TIMER_FOR_THRUST_OK V97U9716C
(d) ENG START CMDS ISSUED FLAG
(INTERNAL)
If (a) \geq (b) percent, proceed to Step 39 .
If (a) < (b) percent, but (c) seconds have not elapsed since (d) was set $=$ true in Step 28, then return to Step A.

If (a) < (b) percent, and (c) seconds have elapsed since (d) was set = true in Step 28, then terminate the following outputs:
(1) PREP SSME's FOR LIFT-OFF FLAG

V90X8373X

| (2) SRM IGN ARM FLAG | V90X8404X |
| :--- | :--- | :--- |
| (3) TO UMB RELEASE ARM FLAG | V90X8407X |

and issue the following outputs:
(4) CMD SSME'S TO PRE-START POS FLAG V90X8412X
(5) ENG 1 SHUTDOWN FLAG C
(6) MPS E-1 SHUTDOWN ENABLE CMD
(7) MPS SLEW COMP FLAG
(8) MPS TVC SERVO OVRD CMD
(9) ME-1 LOW CHAMBER PRESSURE ABORT
(INTERNAL)
V90X8367X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8400X
V90X8374X
V90X8773X
V90X8382X
and then return to Step A.
Step $39-$ ME-2 at Required Percent Thrust. This step monitors the ME-2 percent chamber pressure via the SSME SOP. If the chamber pressure does not reach the required level within the required number of seconds from the time the start commands were issued in Step 28, then the launch sequence abort flag is set and ME-2 is commanded to shut down.

Monitor the following:
(a) MPS E-2 PERCENT CH PRESS V95U1187X
(b) ENG_PERCENT_CH_PRS_FOR_GO V97U9714C
(c) ENG_TIMER_FOR_THRUST_OK V97U9716C
(d) ENG START CMDS ISSUED FLAG
(INTERNAL)

If $(a) \geq(b)$ percent, proceed to Step 40.
If (a) $<$ (b) percent, but (c) seconds have not elapsed since (d) was set $=$ true in Step 28 , then return to Step A.

If (a) < (b) percent, and (c) seconds have elapsed since (d) was set $=$ true in Step 28 , then terminate the following outputs:

(1)	PREP SSME's FOR LIFT-OFF FLAG	V90X8373X
(2) SRM IGN ARM FLAG	V90X8404X	
(3) TO UMB RELEASE ARMFLAG	V90X8407X	

and issue the following outputs:
(4) ENG 2 SHUTDOWN FLAG B
(5) CMD SSME's TO PRE-START POS FLAG V90X8412X
(6) MPS E2 SHUTDOWN ENABLE CMD V90X8368X
(7) MPS SLEW COMP FLAG V90X8400X
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) ME-2 LOW CHAMBER PRESSURE ABORT V90X8774X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then return to Step A.

Step $40-$ ME-3 at Required Percent Thrust. This step monitors the ME-3 percent chamber pressure via the SSME SOP. If the chamber pressure does not reach the required level within the required number of seconds from the time the start commands were issued in Step 28, then the launch sequence abort flag is set and ME-3 is commanded to shut down.

Monitor the following:

(a)	MPS E-3 PERCENT CH PRESS	V95U1188X
(b)	ENG_PERCENT_CH_PRS_FOR_GO	V97U9714C
(c)	ENG_TIMER_FOR_THRUST_OK	V97U9716C
(d)	ENG START CMDS ISSUED FLAG	(INTERNAL)

If (a) \geq (b) percent, proceed to Step 41 .
If (a) < (b) percent, but (c) seconds have not elapsed since (d) was set = true in Step 28, then return to Step A.

If (a) < (b) percent, and (c) seconds have elapsed since (d) was set $=$ true in Step 28, then terminate the following outputs:
(1) PREP SSME'S FOR LIFT-OFF FLAG
V90X8373X
(2) SRM IGN ARM FLAG
V90X8404X
(3) TO UMB RELEASE ARM FLAG
V90X8407X
and issue the following outputs:
(4) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(5) CMD SSME's TO PRE-START POS FLAG V90X8412X
(6) MPS E-3 SHUTDOWN ENABLE CMD V90X8369X
(7) MPS SLEW COMP FLAG V90X8400X
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) ME-3 LOW CHAMBER PRESSURE ABORT V90X8775X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then return to Step A.
Step 41 - Go for SRB Ignition Check. This step provides a time delay to permit critical SSME actuator checks after all engines have reached the required thrust level for re-enabling MPS TVC FDIR. The time delay is initiated on the first pass through Step 28. If any engine actuator has a port failure after all engines have reached 90 percent thrust, that engine will be shut down first followed by the other two engines after a time delay. This step also monitors the GROUND CHECKOUT ENABLE FLAG to determine if an actual flight firing of the engines should occur, or if a ground checkout test is being performed. If a ground checkout test is being performed, SRB ignition will not be commanded.

Monitor the following:
(a) SRB_IGN_TIME_DELAY

V97U9726C
(b) GNC GROUND CHECKOUT ENABLE V93X5538X

If (a) seconds have not elapsed, return to Step A

If (a) seconds have elapsed and (b) is false, proceed to Step 41B.
If (a) seconds have elapsed, and (b) is true, return to Step A.
Step 41A - Deleted.
Step 41B - SRB Ignition. This step commands SRB ignition based on all previous checks having been passed.

Issue the following outputs:

(1)	SRM IGN FIRE 1 FLAG	V90X8405X
(2)	SRM IGN FIRE 2/3 FLAG	V90X8699X
(3)	TERMINATE LPS POLLING FLAG	V90X8378X
(4)	MODE CONTROL MET RESET CMD	V90X8401X
(5)	READ GMT \& STORE FLAG	V90X8402X
(6)	EVENT TIMER START FLAG	V90X8403X
(7)	SRB IGNITION CMD FLAG	V90X8377X

and then return to Step A.
Steps 41C Through 41E - Deleted.
Step $42-\mathrm{ME}-1$ Actuator Port Checks. This step provides a check of the actuator ports for ME-1. If any actuator port failure is present for two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and a shutdown of ME-1 is initiated.

Monitor the following:
(a) MPS ENG 1 P ACTR A FAIL

V79X1170X
(b) MPS ENG 1 Y ACTR A FAIL V79X1171X
(c) MPS ENG 1 P ACTR B FAIL
(d) MPS ENG 1 Y ACTR B FAIL V79X1173X V79X1174X
(e) MPS ENG 1 P ACTR C FAIL V79X1176X
(f) MPS ENG 1 Y ACTR C FAIL V79X1177X
(g) MPS ENG 1 P ACTR D FAIL V79X1178X
(h) MPS ENG 1 Y ACTR D FAIL V79X1179X
(i) ME-1 ACTR PORT FAIL FIRST PASS FLAG "F"
(INTERNAL)
If $(\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d}),(\mathrm{e}),(\mathrm{f}),(\mathrm{g})$, and (h) all $=$ false, then set $(\mathrm{i})=$ true and proceed to Step 43.
If either (a) or (b) or (c) or (d) or (e) or (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{i})=$ true, then set $(\mathrm{i})=$ false and proceed to Step 43.

If either (a) or (b) or (c) or (d) or (e) or (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{i})=$ false, then terminate the following outputs:

(1)	PREP SSME's FOR LIFT-OFF FLAG	V90X8373X
(2) SRM IGN ARM FLAG	V90X8404X	
(3) TO UMB RELEASE ARMFLAG	V90X8407X	

and issue the following outputs:
(4) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(5) CMD SSME's TO PRE-START POS FLAG

V90X8412X
(6) MPS E-1 SHUTDOWN ENABLE CMD

V90X8367X
(7) MPS SLEW COMP FLAG V90X8400X
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) ME-1 ACT PORT FAIL ABORT V90X8776X
(10) LAUNCH SEQUENCE ABORT FLAG

V90X8382X
and then return to Step A.
Step 43-ME-2 Actuator Port Checks. This step provides a check of the actuator ports for ME-2. If any actuator port failure is present for two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and a shutdown of ME-2 is initiated.

Monitor the following:
(a) MPS ENG 2 P ACTR A FALL V79X1270X
(b) MPS ENG 2 Y ACTR AFAIL V79X1271X
(c) MPS ENG 2 P ACTR B FAIL
(d) MPS ENG 2 Y ACTR B FAIL

V79X1273X
(e) MPS ENG 2 P ACTR C FAIL
(f) MPS ENG 2 Y ACTR C FAIL

V79X1274X V79X1276X
(g) MPS ENG 2 P ACTR D FAIL V79X1277X
(h) MPS ENG 2 Y ACTR D FAIL V79X1278X
(i) ME-2 ACTR PORT FAIL FIRST PASS FLAG "G"

V79X1279X
(INTERNAL)

If $(\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d}),(\mathrm{e}),(\mathrm{f}),(\mathrm{g})$, and (h) all $=$ false, then set $(\mathrm{i})=$ true and proceed to Step 44.
If either (a) or (b) or (c) or (d) or (e) or (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{i})=$ true, then set $(\mathrm{i})=$ false and proceed to Step 44.

If either (a) or (b) or (c) or (d) or (e) or (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{i})=$ false, then terminate the following outputs:

| (1) PREP SSME'S FOR LIFT-OFF FLAG | V90X8373X |
| :--- | :--- | :--- |
| (2) SRM IGN ARMFLAG | V90X8404X |
| (3) TO UMB RELEASE ARM FLAG | V90X8407X |

and issue the following outputs:

(4)	ENG 2 SHUTDOWN FLAG B	(INTERNAL)
(5)	CMD SSME'S TO PRE-START POS FLAG	V90X8412X
(6) MPS E-2 SHUTDOWN ENABLE CMD	V90X8368X	
(7)	MPS SLEW COMP FLAG	V90X8400X
(8)	MPS TVC SERVO OVRD CMD	V90X8374X
(9)	ME-2 ACT PORT FAIL ABORT	V90X8777X
(10) LAUNCH SEQUENCE ABORT FLAG	V90X8382X	

and then return to Step A.

Step $44-$ ME-3 Actuator Port Checks. This step provides a check of the actuator ports for ME-3. If any actuator port failure is present for two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and a shutdown of ME-3 is initiated.

Monitor the following:
(a) MPS ENG 3 P ACTR A FAIL V79X1370X
(b) MPS ENG 3 Y ACTR A FAIL V79X1371X
(c) MPS ENG 3 P ACTR B FAIL V79X1373X
(d) MPS ENG 3 Y ACTR B FAIL V79X1374X
(e) MPS ENG 3 P ACTR C FAIL V79X1376X
(f) MPS ENG 3 Y ACTR C FAIL

V79X1377X
(g) MPS ENG 3 P ACTR D FAIL V79X1378X
(h) MPS ENG 3 Y ACTR D FAIL V79X1379X
(i) ME-3 ACTR PORT FAIL FIRST PASS FLAG "H"
(INTERNAL)

If $(\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d}),(\mathrm{e}),(\mathrm{f}),(\mathrm{g})$, and (h) all $=$ false, then set $(\mathrm{i})=$ true and proceed to Step 38.
If either (a) or (b) or (c) or (d) or (e) or (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{i})=$ true, then set $(\mathrm{i})=$ false and proceed to Step 38.

If either (a) or (b) or (c) or (d) or (e) or (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{i})=$ false, then terminate the following outputs:

(1)	PREP SSME's FOR LIFT-OFF FLAG	V90X8373X
(2)	SRM IGN ARM FLAG	V90X8404X
(3) TO UMB RELEASE ARM FLAG	V90X8407X	

and issue the following outputs:
(4) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(5) CMD SSME's TO PRE-START POS FLAG

V90X8412X
(6) MPS E3 SHUTDOWN ENABLE CMD

V90X8369X
(7) MPS SLEW COMP FLAG

V90X8400X
(8) MPS TVC SERVO OVRD CMD

V90X8374X
(9) ME-3 ACT PORT FAIL ABORT

V90X8778X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X.
and then return to Step A.

Figure 4.114. Redundant Set Launch Sequence (Sheet 2 of 13)

Figure 4.114. Redundant Set Launch Sequence (Sheet 3 of 13)

STS 83-0026D
OI-21
January 25,1991

Figure 4.11-4. Redundant Set Launch Sequence (Sheet 4 of 13)

Figure 4.114. Redundant Set Launch Sequence (Sheet 5 of 13)

Figure 4.11-4. Redundant Set Launch Sequence (Sheet 6 of 13)

Figure 4.114. Redundant Set Launch Sequence (Sheet 10 of 13)

Figure 4.114 Redundant Set Launch Sequence (11 of 13)

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS

ะ ะ ํ

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS

0
0
0
E
E
3
3

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS

DBEN: D3B027-F	PN: VP701100049P00L INPUT FUNCTIONAL PARAMETERS FOR R/S LCH SEQ					
					TYPE C	LAST CRS
FSSR NAME	M/S ID	NOMENCLATURE	SOURCE	UNITS		
	V95x1231X	ME-2 MAJor component fail flag	SSME SOP			
	V95x1232x	ME-3 MAJOR COMPONENT FAIL FLAG	SSME SOP			
	V95x1236x	ME-1 Channel fail flag	SSME SOP			
	v95x1237x	me-2 Channel fail flag	SSME SOP			
	V95x1238x	me-3 Channel fail flag	SSME SOP			
	V99W8801CA	PREDICTED GMT OF LIFTOFF	LPS			
	V99x8804x	LPS GO FOR ENGINE START FLAG	LPS			
	V99x8827x	GMTLO SET COMMAND	LPS			
	v99x8829x	LPS COUNTDOWN HOLD FLAG	LPS			
	v99x8833x V99.J8836CA	lps bypass lo2 accum rectrc vlv op IPS ORBITER VENT DOORS OVRD WORD	${ }_{\text {LPS }}^{\text {LPS }}$			
	V9958836CA	LPS ORBITER VENT DOORS OVRD WORD	LPS		BSU	89981A

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS

00049P00L OUTPUT FUNCTIONAL PARAMETERS FROM R／S LCH SEQ M／S ID NOMENCLATURE DESTINATION

 $\begin{array}{llllllllll} \\ V 41 K 1141 X C & M P S & \text { E1 } & \text { LO2 } & \text { PREVLV（PV1）} & \text { CL CMD } & \text { C } & \text { LCA A2 } \\ \text { V41K1142XB MPS E1 } & \text { LO2 } & \text { PREVLV（PV1）} & \text { CL } & \text { CMD } & D & \text { HDWR }\end{array}$ $\begin{array}{lllllllll}V 41 K 1141 X C & \text { LPS E1 LO2 PREVLV（PVI）} & \text { CL CMD C } & \text { C } & \text { LCA } \\ \text { V41K1142XB MPS E1 LO2 PREVLV（PV1）} & \text { CL CMD D } & \text { HDWR }\end{array}$ V41K1143XB MPS E1 LO2 PREVLV（PV1）OP CMD D HD HDRV41K1168XC MPS E1 HE INTCN OUT（LV60）OP CMD A HDWR

会

品品

[^0]
D 2 미 U
DBEN：D3B027－F

V41K1263XC MPS E2 HE INTCN IN（LV61）OP CMD B HDWR

[^1]
0
0
0
E－
W
W
H

	\triangle
	$\infty \bigcirc$
un in at in in in	Or
in in oin in in in	（1）∞
o o o o o o a	or or
$\infty \infty-\infty \infty \infty$	$\cdots \infty$

U U 号 N_{n} ∞ ∞

TABLE 4．1．1．4－1．REDUNDANT SET LAUNCH SEQUENCE（G4．114）INPUT／OUTPUT FUNCTIONAL PARAMETERS

帋鬼置	㽞皿皿皿		
4 4		v	

100049P00L	OUTPUT FUNCTIONAL PARAMETERS	FROM R／S LCH SEQ
M／S ID	NOMENCLATURE	destination
V41K1586KA	MPS LO2 OVBD b／V（PV19）CL CMD	LCA A2
V41K1613xD	MPS REG HE XOVER VLV（LV10）op CMD	HDWR
V41K1815x	MPS LO2 POGO RECRC 1 （PV20）CL CMD	LCA A1
V41K1816x	MPS LO2 POGO RECRC 1 （PV20）CL CMD B	LCA A1
V41K1825x	MPS LO2 POGO RECRC 2 （PV21）CL CMD A	LCA A2
V41K1826x	MPS LO2 POGO RECRC 2 （PV21）CL CMD	LCA
v90x8378x	TERMINATE LPS POLLING FLAG	SYS S／W
v90w8380c	COUNTDOWN TIME	tLM
v90x8382x	Launch sequence abort flag	tLM
v90x8383x	LH IGN PIC CAP A HOLD	TL
v90x8384x	Lh IGN PIC CAP B HOLD	TLM
V90x8385x	RH IGN PIC CAP A Hold	TLM
V90x8386X	RH IGN PIC CAP B HOLD	TLM
v90x8389x	ENGINE SHUTDOWN VERIFICATION HOLD	TLM
v90x8390x	MPS LH2 OUTBD FILL VLV hold	TLM
v90x8391x	MPS LOX OUTBD FILL VLV Hold	tLm
V90x8392x	MPS LOX ACC RECIRC VLV HOLD	TLM
v90x8393x	LPS GO FOR AUTO SEQ START HOLD	TLM
v90x8394x	LPS GO FOR ENGINE START HOLD	TLM
v90x8395x	R／S SEQ SSME GO FOR LAUNCH HOLD	TLM
v90x8396x	MPS E－1 LH2 PREVLV OPEN HOLD	TLM
v90x8397x	MPS E－2 LH2 PREVLV OPEN HOLD	TLM
v90x8398x	MPS E－3 LH2 PREVLV OPEN HOLD	TLM
v90x8401x	mode Control met reset Cmd	SYS S／w
v90x8402x	READ GMT \＆STORE FLAG	SYS S／W
v90x8403xA	EVENT TIMER START FLAG	SYS S／w
v90x8668x	SSME SOP RECYCLE Flag	SSME SOP
v90x8670x	ME－1 PAD DATA PATH FAIL HOLD	TLM
V90x8671x	me－2 Pad data path fail hold	TLM
V90x8672x	me－3 Pad data path fail hold	TLM
V90x8679x	me－1 CONTROL FAIL HOLD	TLM
V90x8680x	Me－2 CONTROL FAIL hold	TLM
v90x8681x	Me－3 CONTROL FAIL HOLD	TLM
V90x8767x	FLIGHT CRITICAL MDM HOLD／ABORT	TLM
v90x8768x	LPS COUNTDOWN HOLD	TLM
v90x8769x	mps valve pos commfault hold	TLM
v90x8770x	VENT DOOR POSITION HOLD	TLM
v90x8771x	UnCOMMANDED ENGINE Shutdown abort	TLM
v90x8772x	MPS ACT PORT COMMFAULT ABORT	LM
v90x8773x	ME－1 LOW CHAMBER PRESSURE ABORT	TLM
v90x8774x	ME－2 LOW Chamber pressure abort	TLM
v90x8775x	me－3 Low Chamber pressure abort	TLM

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS

00 L OUTPUT functional parameters from r/s LCH SEQ						
FSSR NAME						
					DATA	
	M/S ID	NOMENCLATURE	DESTINATION	UNITS	TYPE	L.AST CRS
	v90x8776x	ME-1 ACT PORT FAIL ABORT	tLM		BD	
	V90x8777x	ME-2 ACT PORT FAIL ABORT	TLM		BD	
	v90x8778X	ME-3 ACT PORT EAIL ABORT	TLM		BD	
	V99W8801CB V99J8836CB	PREDICTED GMT OF LIFTOFF LPS ORBITER VENT DOORS OVRD WORD	TLLM		BSU	89981A

Rockwell international
Space Systems Division

TABLE 4.1.1.4-2. REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114)I-LOADS

DBE'N: 0484
TABLE 4.1.1.4-2. REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) I-LOADS

[^2]Rockwell international Space Systems Division
TABLE 4.1.1.4-3. REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) K-LOADS
DBFN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS
DBFN: 0558
FSSR NAME
DESCRIPTION TIMER G SHTDN TIME DELAY
TIMER " ${ }^{-}$" SHTDN TIME DELAY TIMER J SHTDN TIME DELAY
TIMER" "J" SHTDN TIME DELAY

4.1.2 MPS Dedicated Drive Sequence (4.222)

4.1.2.1 Introduction

The main propulsion system (MPS) dedicated display drive sequence is used during prelaunch and ascent to monitor certain MPS data and drive the appropriate MPS dedicated displays. The sequence is initiated at the transition to OPS 1 and runs continuously until structural separation of the external tank (ET). The sequence provides outputs for driving the MPS chamber pressure (Pc) meter and the MPS status lights for each SSME. In addition, the sequence issues the prevalve close inhibit commands when the chamber pressure for each engine reaches the appropriate level during engine start. Likewise, these commands are removed at the proper level during shutdown of each main engine. The prevalve close inhibit commands are issued through flight-critical MDM's to load control assemblies, which prevent closure of the prevalves any time the chamber pressure is above a certain level.

4.1.2.2 Overview

The MPS dedicated display drive sequence monitors the SSME status via SSME SOP flags for each engine; and, if an engine limit is exceeded or an engine enters the shutdown phase, it will turn on the red status light for that engine. It also monitors for indication of an electronic lockup, hydraulic lockup, flight data path fail, or the command path fail. Any one of these will turn on the amber status light for that engine. After main engine cutoff and ET separation, the red and amber status lights for all engines are commanded off.

The sequence also monitors the averaged chamber pressure data from each SSME via the SSME SOP and drives the dedicated meters. In addition, the sequence issues the prevalve close inhibit Commands A, B, C for each SSME prevalve when that engine reaches a particular percent thrust. Likewise, these commands are removed when the pressure decreases below that level during SSME shutdown and tail-off, or after MECO COMMAND. When the loss of valid data from an engine occurs, the SSME SOP sets the flight data path fail flag, and the prevalve close inhibit commands are removed. The chamber pressure (Pc) meter is also driven to zero if the flight data path fail flag is set.

4.1.2.3 Detailed Requirements

Step 1 -ET Structural Separation Command Check. This step monitors for a flag from the ET separation sequence, which indicates that structural separation commands have been issued. When the flag is set, all of the MPS red and amber status lights are commanded off.

Monitor the following
(a) ET SEPARATION CMD FLAG V90X8250X

If $(\mathrm{a})=$ false, proceed to Step 2.
If $(a)=$ true, terminate the following commands and then terminate this sequence:
(1) MPS E-1 STATUS/RED LITE ON V72X0030X
(2) MPS E-1 STATUS/AMBER LITE ON V72X0035X
(3) MPS E-2 STATUS/RED LITE ON V72X0031X
(4) MPS E-2 STATUS/AMBER LITE ON V72X0036X
(5) MPS E-3 STATUS/RED LITE ON V72X0032X
(6) MPS E-3 STATUS/AMBER LITE ON V72X0037X

Step 2-ME-1 Red Status Light Control. This step monitors the ME-1 engine status; and if the engine limit is exceeded or if the engine enters shutdown, then the red status light is commanded on.

Monitor the following:
(a) ME-1 ENGINE LIMIT EXCEEDED FLAG

V95X1190X
(b) MPS E-1 SHUTDOWN PHASE V95X1155X
(c) MPS E-1 POSTSHUTDOWN PHASE V95X1160X

If neither (a) nor (b) nor $(\mathrm{c})=$ true, then terminate output (1) below and proceed to Step 3. If either (a) or (b) or $(\mathrm{c})=$ true, then issue the following output and proceed to Step 3.
(1) MPS E-1 STATUS/RED LITE ON

V72X0030X
Step 3-ME-1 Amber Status Light Control. This step monitors the ME-1 engine status via flags from the SSME SOP; and if either electronic lockup or hydraulic lockup mode is indicated or if the engine data path or command path is lost, then the amber status light is turned on.

Monitor the following:
(a) ME-1 ELECTRONIC LOCKUP MODE FLAG V95X1194X
(b) ME-1 HYDRAULIC LOCKUP MODE FLAG V95X1198X
(c) ME-1 FLIGHT DATA PATH FAIL FLAG V95X1150X
(d) ME-1 CMD PATH FAIL FLAG V95X1202X

If neither (a) nor (b) nor (c) nor (d) = true, terminate output (1) below and proceed to Step 4. If either (a) or (b) or (c) or $(\mathrm{d})=$ true, then issue the following output and proceed to Step 4.
(1) MPS E-1 STATUS/AMBER LITE ON

V72X0035X
Step 4-ME-2 Red Status Light Control. This step monitors the ME-2 engine status, and if the engine limit is exceeded or if the engine enters shutdown, then the red status light is commanded on.

Monitor the following:
(a) ME-2 ENGINE LIMIT EXCEEDED FLAG

V95X1191X
(b) MPS E-2 SHUTDOWN PHASE V95X1156X
(c) MPS E-2 POST-SHUTDOWN PHASE

V95X1161X
If neither (a) nor (b) nor (c) a true, terminate output (1) below and then proceed to Step 5. If either (a) or (b) or $(\mathrm{c})=$ true, then issue the following output and proceed to Step 5.

(1) MPS E-2 STATUS/RED LITE ON

V72X0031X
Step 5-ME-2 Amber Status Light Control. This step monitors the ME-2 engine status via flags from the SSME SOP; and if either electronic lockup or hydraulic lockup mode is indicated or if the engine data path or command path is lost, then the amber status light is turned on.
Monitor the following:
(a) ME-2 ELECTRONIC LOCKUP MODE FLAG

V95X1195X
(b) ME-2 HYDRAULIC LOCKUP MODE FLAG V95X1199X
(c) ME-2 FLIGHT DATA PATH FAIL FLAG V95X1151X
(d) ME-2 CMD PATH FAIL FLAG

If neither (a) nor (b) nor (c) nor (d) =true, terminate output (1) below and proceed to Step 6.
If either (a) or (b) or (c) or $(\mathrm{d})=$ true, then issue the following output and proceed to Step 6.

(1) MPS E-2 STATUS/AMBER LITE ON

V72X0036X

Step 6 - ME-3 Red Status Light Control. This step monitors the ME-3 engine status, and if the engine limit is exceeded or if the engine enters shutdown, then the red status light is commanded on.

Monitor the following:
(a) ME-3 ENGINE LIMIT EXCEEDED FLAG

V95X1192X
(b) MPS E-3 SHUTDOWN PHASE V95X1157X
(c) MPS E-3 POST-SHUTDOWN PHASE

V95X1162X

If neither (a) nor (b) nor (c) =true, terminate output (1) below and then proceed to Step 7.
If either (a) or (b) or $(c)=$ true, then issue the following output and proceed to Step 7.
(1) MPS E-3 STATUS/RED LITE ON

V72X0032X

Step 7 - ME-3 Amber Status Light Control. This step monitors the ME-3 engine status via flags from the SSME SOP; and if either electronic lockup or hydraulic lockup mode is indicated or if the engine data path or command path is lost, then the amber status light is turned on.

Monitor the following:
(a) ME-3 ELECTRONIC LOCKUP MODE FLAG

V95X1196X
(b) ME-3 HYDRAULIC LOCKUP MODE FLAG

V95X1200X
(c) ME-3 FLIGHT DATA PATH FAIL FLAG

V95X1152X
(d) ME-3 CMD PATH FAIL FLAG

V95X1204X

If neither (a) nor (b) nor (c) nor (d) = true, terminate output (1) below and proceed to Step 8.
If either (a) or (b) or (c) or $(d)=$ true, then issue the following output and proceed to Step 8.

(1) MPS E-3 STATUS/AMBER LITE ON

V72X0037X

Step 8 - ME-1 Data Path Fail Check. This step monitors the ME-1 FLT DATA PATH FAIL FLAG from the SSME SOP, and if set, the ME-1 prevalve close inhibit commands are removed and the ME-1 chamber pressure (Pc) meter is driven to zero scale.

Monitor the following:
(a) ME-1 FLIGHT DATA PATH FAIL FLAG

V95X1150X

If $(a)=$ false, then proceed to Step 9.
If $(a)=$ true, then terminate the following commands:

(I)	MPS E-1 PVLV CLOSE INH CMD A	V41K1125X
(2)	MPS E-1 PVLV CLOSE INH CMD B	V41K1126X
(3) MPS E-1 PVLV CLOSE INH CMD C	V41K1127X	

and drive the Pc meter to zero scale (0 Vdc) with the following output:
(4) MPS E-1 MAIN CHAMBER-PR/CMPT

V72P0040C

Then proceed to Step 11.
Step 9 - Normal Control of ME-1 Prevalve Close Inhibit Commands. This step monitors ME-1 main chamber pressure in percent via the SSME SOP and at the appropriate level will either issue or remove the prevalve close inhibit commands for Engine 1.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS

V95U1186C

If (a) is equal to or greater than 30 percent, then issue the following outputs and proceed to Step 10.
(1) MPS E-1 PVLV CLOSE INH CMD A V41K1125X
(2) MPS E-1 PVLV CLOSE INH CMD B V41K1126X
(3) MPS E-1 PVLV CLOSE INH CMD C V41K1127X

If (a) is less than 30 percent, then terminate outputs (1), (2), and (3), and proceed to Step 10.
Step 10-ME-1 Chamber Pressure Meter Drive. This step provides the output to the ME-1 chamber pressure (Pc) meter. The SSME SOP converts ME-1 main chamber pressure to percent and provides this as an input to this sequence. This step scales the percent input to 0 to 5 Vdc and outputs to the Pc meter.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS

V95U1186C

Output (a) in volts (0 to 115 percent scaled to 0 to 5 Vdc) as follows:
(1) MPS E-1 MAIN CHAMBER-PR/CMPT

V72P0040C

Proceed to Step 11.
Step 11 - ME-2 Data Path Fail Check. This step monitors the ME -2 data path fail flag from the SSME $\overline{S O P}$, and if set, the ME - 2 prevalve close inhibit commands are removed and the ME-2 chamber pressure (Pc) meter is driven to zero scale.

Monitor the following:
(a) ME-2 FLT DATA PATH FAIL FLAG

V95X1151X

If $(\mathrm{a})=$ false, then proceed to Step 12.
If $(a)=$ true, then terminate the following commands:

| (1) MPS E-2 PVLV CLOSE INH CMD A | V41K1225X |
| :--- | :--- | :--- |
| (2) MPS E-2 PVLV CLOSE INH CMD B | V41K1226X |
| (3) MPS E-2 PLVL CLOSE INH CMD C | V41K1227X |

and drive the Pc meter to zero scale (0 Vdc) with the following output:
(4) MPS E-2 MAIN CHAMBER-PR/CMPT

V72P0041C
Then proceed to Step 14.
Step 12 - Normal Control of ME-2 Main Stage Commands. This step monitors ME-2 main chamber pressure in percent via the SSME SOP and at the appropriate Level will either issue or remove the prevalve close inhibit commands for Engine 2.

Monitor the following:
(a) MPS E-2 PERCENT CH PRESS

V95U1187C
If (a) is equal to or greater than 30 percent, then issue the following outputs and proceed to Step 13.

(1)	MPS E-2 PVLV CLOSE INH CMD A	V41K1225X
(2)	MPS E-2 PVLV CLOSE INH CMD B	V41K1226X
(3) MPS E-2 PVLV CLOSE INH CMD C	V41K1227X	

If (a) is less than 30 percent, then terminate outputs (I), (2), and (3) and proceed to Step 13.
Step 13 - ME-2 Chamber Pressure Meter Drive. This step provides the output to the ME-2 chamber pressure (Pc) meter. The SSME SOP converts ME-2 main chamber pressure to percent and provides this as an input to this sequence. This step scales the percent input to 0 to 5 Vdc and outputs to the Pc meter.

Monitor the following:
(a) MPS E-2 PERCENT CH PRESS

V95U1187C
Output (a) in volts (0 to 115 percent scales to 0 to 5 Vdc) as follows:
(1) MPS E-2 MAIN CHAMBER-PR/CMPT

V72P0041C
Proceed to Step 14.
Step 14 - ME-3 Data Path Fail Check. This step monitors the ME-3 data path fail flag from the SSME SOP, and if set, the ME-3 prevalve close inhibit commands are removed, and the ME-3 chamber pressure (Pc) meter is driven to zero scale.

Monitor the following:
(a) ME-3 FLT DATA PATH FAll FLAG

If $(\mathrm{a})=$ false, then proceed to Step 15 .
If $(\mathrm{a})=$ true, then terminate the following commands:
$\begin{array}{lll}\text { (1) } & \text { MPS E-3 PVLV CLOSE INH CMD A } & \text { V41K1325X } \\ \text { (2) MPS E-3 PVLV CLOSE INH CMD B } & \text { V41K1326X } \\ \text { (3) MPS E-3 PVLV CLOSE INH CMD C } & \text { V41K1327X }\end{array}$
and drive the Pc meter to zero scale $(0 \mathrm{Vdc})$ with the following output:
(4) MPS E-3 MAIN CHAMBER-PR/CMPT

V72P0042C

Then proceed to Step 17.
Step 15 - Normal Control of ME-3 Main Stage Commands. This step monitors ME-3 main chamber pressure in percent via the SSME SOP and at the appropriate level will either issue or remove the prevalve close inhibit commands for Engine 3.

Monitor the following:
(a) MPS E-3 PERCENT CH PRESS

V95U1188C
If (a) is equal to or greater than 30 percent, then issue the following outputs and proceed to Step 16.
(1) MPS E-3 PVLV CLOSE INH CMD A
V41K1325X
(2) MPS E-3 PVLV CLOSE INH CMD B
V41K1326X
(3) MPS E-3 PVLV CLOSE INH CMD C
V41K1327X

If (a) is less than 30 percent, then terminate outputs (1), (2), and (3) and proceed to Step 16.
Step 16-ME-3 Chamber Pressure Meter Drive. This step provides the output to the ME-3 chamber pressure (Pc) meter. The SSME SOP converts ME-3 main chamber pressure to percent and provides this as an input to this sequence. This step scales the percent input to 0 to 5 Vdc and outputs to the Pc meter.

Monitor the following:
(a) MPS E-3 PERCENT CH PRESS

V95U1188C
Output (a) in volts (0 to 115 percent scaled to 0 to 5 Vdc) as follows:
(1) MPS E-3 MAIN CHAMBER-PR/CMPT

V72P0042C
Proceed to Step 17.
Step 17 - MECO Command Monitor. This step monitors for the issuance of the MECO COMMAND FLAG and terminates the prevalve close inhibit commands after the appropriate time delay if flag is set true.

Monitor the following:
(a) MECO COMMAND FLAG V90X8569X
(b) MECO_PREVLV_CLOSE_DELAY V96U9761C

If (a) is true and (b) seconds have elapsed after detecting (a) true, terminate outputs (1) through (9) below and return to Step 1.

(1)	MPS E-1 PVLV CLOSE INH CMD A	V41K 1125 X
(2)	MPS E-1 PVLV CLOSE INH CMD B	V41K 1126 X
(3)	MPS E-2 PVLV CLOSE INH CMD A	V41K 1225 X
(4)	MPS E-2 PVLV CLOSE INH CMD B	V41K 1226 X
(5)	MPS E-3 PVLV CLOSE INH CMD A	V41K1325X
(6)	MPS E-3 PVLV CLOSE INH CMD B	V41K1326X
(7)	MPS E-1 PVLV CLOSE INH CMD C	V41K1127X
(8)	MPS E-2 PVLV CLOSE INH CMD C	V41K1227X
(9)	MPS E-3 PVLV CLOSE INH CMD C	V41K1327X

Otherwise, return to Step 1.

Figure 4.222. MPS D/D Drive Sequence (Sheet 1 of 6)

Figure 4.222. MPS D/D Drive Sequence (Sheet 2 of 6)

Figure 4.222. MPS D/D Drive Sequence (Sheet 3 of 6)

Figure 4.222. MPS D/D Drive Sequence (Sheet 4 of 6)

Figure 4.222. MPS D/D Drive Sequence (Sheet 5 of 6)

Figure 4.222. MPS D/D Drive Sequence (Sheet 6 of 6)
TABLE 4.1.2.4-1. MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVE SEQ (G4.222) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.1.2.4-1. MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVE SEQ (G4.222) INPUT/OUTPUT FUNCTIONAL PARAMETERS

STS 83-0026D
OI-21
January 25, 1991

DBFN: 0484

NO REQUIREMENTS
TABLE 4.1.2.4-3. MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) K-LOADS

DBFN: 0.558
NO REQUIREMENTS

4.1.3 SRB MDM Data Acquisition (4.203)

4.1.3.1 Introduction

SRB MDM data must be obtained form the SRB's during prelaunch operations and during SRB-powered flight portions of the mission. Data are used for two purposes.

1. Prelaunch Control of the SRB's
2. Downlist operations to place the data on Telemetry and on-board recorders

4.1.3.2 Overview

The GPC shall contain provisions to acquire data from all four (two each SRB) MDM's. This data shall be periodically updated in COMPOOL and thereby made available to system software for downlist processing. The acquisition of the SRB MDM data shall be initiated with the transition to OPS 1 approximately 20 minutes prior to launch and shall be terminated by the SRB Separation Sequence.

NOTE: Before the transition to GNC OPS 1, the SRB MDM data acquisition is accomplished by the V.U. function (GNC-9 and/or SM-9).

4.1.3.3 Detailed Requirements

Step 1. The IDD table contains the SRB MDM data listed by the principle function (4.203) to be acquired for use in GNC MM 101 and 102. Acquire the signals listed in the table and place them in main memory.
or ar
DATA
TYPE UNITS

DBEN：D3P127－E EN

LH PRESS N2H4／GN2 BOTTLE OUT SYS A
LH PRESS N2H4／GN2 BOTTLE OUT SYS
LH R RATE APU A TURBINE SPEED SNSR 1
LH RATE APU B TURBINE SPEED SNSR
I
LH RATE APU A TURBINE SPEED SNSR 2
LH RATE APU B TURBINE SPEED SNSR 2
LH TEMP GAS N2H4／GN2 BOTTLE SYS A
LH TEMP GAS N2H4／GN2 BOTTLE SYS B
LH TEMP GAS GENERATOR BED SYS A
LH TEMP GAS GENERATOR BED SYS B
LH EVENT APU A ISLN VALVE OPEN
LH EVENT APU B ISLN VALVE OPEN
LH EVENT APU A ISLN VALVE CLOSED
LH EVENT APU B ISLN VALVE CLOSED
LH EV APU SEC SP CON VLV CLD，SYS A
$L H$ EV APU SEC SP CON VLV CLD，SYS A
LH EV APU PRI SP CON VLV OP SYS A
g SXs＇qID Λ TA NOD dS DHS Ω dV $\Lambda \exists$

$\begin{array}{ll}L H & E V E N T \\ \text { APU－A GG HEATER } 2 \text { ON CMD } \\ \text { LH EVENT APU－B GG HEATER } 1 \text { ON CMD }\end{array}$

4
4
4
4 Nasoro
Nado
G SXS
Y SXS 9
2
0
0
 툴

$$
\begin{aligned}
& \text { かががが }
\end{aligned}
$$

TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

FSSR NAME
TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

FSSR NAME
PN: VP707100049P00L
SRB DATA ACQ
SOURCE
NOMENCLATURE

$$
\begin{aligned}
& \text { ID } \\
& \text { M/S }
\end{aligned}
$$

TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

UUUUUUUUUUUUU	$\cup \cup \cup \cup \cup U$
त-1	H-rrnrer
in in in in th in in th in th in wn un	in in) in in in in
	の\% 0000
$\infty \infty \infty \infty \infty \infty \infty \infty \infty$	$\infty \infty \infty \infty \times \infty$

RH	TEMPERATURE RECOVERY BATTERY
RH	VOLTAGE OPERATIONAL BUS A
RH	VOLTAGE OPERATIONAL BUS B
RH	VOLTAGE RECOVERY BATTERY
LH	CURRENT DEVELOPMENT FLT BATTERY
LH	TEMP DEVELOPMENT FLT BATTERY
LH	VOLTAGE DEVELOPMENT FLT BATTERY
RH	CURRENT DEVELOPMENT FLT BATTERY
RH	TEMP DEVELOPMENT ELT BATTERY
RH	VOLTAGE DEVELOPMENT FLT BATTERY
LH	TEMP, FLT RECORDER
LH	EVENT ELT RCDR MALFUNCTION
LH	EVENT FLT RCDR RECORD IND
LH	EVENT TIME CODE GENERATOR OK
LH	EV FDM 1 MUXR 1 OUT-ORB RCDR OK
LH	EVENT ELT RCDR REVERSE CMD
LH	EVENT EDM AUTO CALIBRATION CMD
LH	EV PCM MASTER OK
LH	EV PCM REMOTE 1 OK
LH	EV PCM REMOTE 2 OK
LH	EV PCM SUBSET $1 . O K$
LH	EV PCM SUBSET 2 OK
LH	EV PCM SUBSET 3 OK.
LH	EV EDM 1 MUX 1 OK
LH	EV FDM 1 MUX 2 OK
LH	EV FDM 2 MUX 1 OK
L.H	EV EDM 2 MUX 2 OK
LH	EV WBSC 1 OK
LH	EV WBSC 2 OK
LH	EV PCM REMOTE 3 OK
RH	TEMP, FLT RCDR
RH	EVENT FLT RCDR MALFUNCTION
RH	EVENT FLT RCDR RECORD IND
RH	EVENT TIME CODE GENERATOR OK
RH	EV FDM 1 MUXR 1 OUT-ORB RCDR OK
RH	EVENT ELT RCDR REVERSE CMD
RH	EVENT EDM AUTO CALIBRATION CMD
RH	EV PCM MASTER OK
RH	EV PCM REMOTE 1 OK
RH	EV PCM REMOTE 2 OK
RH	EV PCM SUBSET 1 OK
RH	EV PCM SUBSET 2 OK
RH	EV PCM SUBSET 3 OK

TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

DBEN:0484
TABLE 4.1.3.4-2. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) L-LOADS

Rockwell International

4.2 ASCENT

4.2.1 SSME Operations Sequence (4.165)

4.2.1.1 Introduction

The SSME operations sequence is initiated at TO/SRB IGNITION, and is used during the ascent phase to:

1. Monitor the operating phase of each main engine
2. Issue inhibit commands to prevent a second engine from automatically shuting down if one shutdown has already occurred
3. Monitor the state of cockpit switches via flags from the switch processor and issue appropriate commands
4. Monitor a flag from GNC software for proper time to check the LO_{2} and LH_{2} low-level sensors and provide a single pass health check of these sensors.
5. Monitor a cut-off timing request flag from GNC software for proper time for MECO, to meet the desired time for start of thrust tailoff with accuracy requirements of $\pm 40 \mathrm{msec}$
6. Issue main engine shutdown commands when required
7. Close LO_{2} and LH_{2} prevalves for each engine after shutdown has occurred
8. Restart the event timer at MECO

In addition, an SSME data path fail flag from the SSME SOP is checked and if set and shutdown commands have been issued for that engine, then its prevalves are closed after a time delay. A MECO confirmed flag is set by the SSME operations sequence after it has been confirmed that all engines have shut down. Also a flag is set for the external tank (ET) separation sequence after the prevalves for all engines are commanded closed. This is necessary since shutdown times may differ.

4.2.1.2 Overview

The SSME operations sequence is initiated when the RS launch sequence fires the SRB's and sets the TO flag. At this point, the main engines are at or above the required thrust, and the engine controllers will have entered the main stage phase 5.0 seconds after receipt of the start commands. The SSME OPS sequence operates cyclically at 25 Hz from initiation at TO until MECO is verified and a few seconds after the prevalves are commanded closed. Under normal operation through ascent, there are no commands to issue until the end of second stage when the engines must be shut down and certain main propulsion system (MPS) valves are closed.

Continuous monitoring of certain inputs is required in the event that an automatic shutdown by one engine occurs, the crew operates any of the manual switches, data from any of the main engines is lost, or, near the end of boost, either the LH_{2} or LO_{2} level sensors indicate fuel or oxidizer depletion.

If shutdown of an engine occurs for any reason, the LO_{2} and LH_{2} prevalves for that engine must be closed after appropriate time delays, and the remaining two engines are inhibited from performing an automatic shutdown.

The switch processor software monitors the position of several crew station switches for the MPS and sets flags which are monitored by SSME OPS. The MPS switches being monitored are the three shutdown push-button switches and the limit shutdown switch, which can override the automatic inhibit logic and inhibit or enable engine automatic shutdown.

The SSME OPS sequence monitors the main engine chamber pressure and manual shutdown switches. If shutdown is confirmed, the appropriate MPS valves are closed. The operating phase and mode within a phase are determined from the engine status word by the SSME SOP, which gathers the engine data from the EIU, decodes it, and sets applicable flags for the various user software packages. If valid data is not available from the engine, the SSME SOP sets a data path fail flag. If this flag is set and shutdown commands have been issued, SSME OPS proceeds, after a time delay, to close the engine prevalves.

SSME OPS, upon receiving a flag from guidance, begins monitoring the fuel and oxidizer low-level sensors. A first pass health check will be made to protect against premature SSME shutdown resulting from failed dry sensors. If any two LO_{2} low-level sensors, which have been disabled, indicate a dry condition, the logic will issue the MECO commands. Likewise, two LH_{2} low-level sensors, which indicate dry and have not been previously disabled, will cause the issuance of MECO commands.

Normal engine shutdown, MECO, is triggered by the vehicle achieving the desired velocity and a flag being set by guidance software. The MECO commands issued include shutdown enable and shutdown commands through the EIU's to each of the three main engine controllers. The MECO commands are issued until it is determined that each engine has shutdown. At this point a MECO confirmed flag is set for GNC applications and to initiate the external tank separation sequence. After MECO confirmed, a command is sent to restart the event timer.

SSME OPS continues to operate until the required time after prevalves for each engine are commanded closed and the close commands are removed. Nominal MECO and shutdown during " G " conditions require different time delays for prevalve closure. When LO_{2} and LH_{2} prevalves for all engines have been commanded closed a flag is set for the ET separation sequence. This is required to prevent initiation of ET disconnect valve closure prior to initiation of all prevalves closures. When the prevalves' close commands have been removed and the flag set, the SSME OPS sequence is terminated.

4.2.1.3 Detailed Requirements.

Step 1 - Main Engine (ME) 1 Prevalves Closed Check. This step provides a bypass of the logic in Steps 2 and 3 if ME- 1 is in either shutdown or post shutdown phase and the prevalves have been commanded closed.

Monitor the following:
(a) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)

$$
\begin{aligned}
& \text { If }(a)=\text { false proceed to Step } 2 \\
& \text { If }(a)=\text { true proceed to Step } 4 .
\end{aligned}
$$

Step 2 - ME-1 Data Path Fail Flag Check. This step monitors for an ME-1 DATA PATH FAIL FLAG which is set by the SSME SOP when valid engine data is not available. If the ME-1 DATA PATH FAIL FLAG is set and ME- 1 safing or shutdown commands have been issued, then the LH_{2} recirculation disconnect valve is commanded closed and the prevalves are commanded closed after appropriate time delays. If safing or shutdown commands have not been issued, then no action is taken.

Monitor the following:
(a) ME-1 FLIGHT DATA PATH FALL FLAG V95X1150X
(b) ME-1 SAFING CMD V90X3443X
(c) ME-1 SHUTDOWN CMD ISSUED FLAG (INTERNAL)
(d) MECO COMMAND FLAG V90X8569X
(e) MPS_E1_T_DELAY_A V97U9738C

If $(\mathrm{a})=$ false, proceed to Step 3 .
If $(\mathrm{a})=$ true and (b) and $(\mathrm{c})=$ false, then proceed to Step 5 .
If $(\mathrm{a})=$ true and (b) or $(\mathrm{c})=$ true and $(\mathrm{d})=$ true, issue output (2), terminate output (3), and monitor (e).

If $(a)=$ true and (b) or $(c)=$ true and $(d)=$ false, then issue outputs (1) and (2), and terminate output (3).
(1) MPS E-1 FAIL FLAG V95X1207X
(2) MPS LH $_{2}$ RECIRC DISC VLV CLOSE CMD V41K1422X
(3) MPS LH2 RECIRC DISC VLV OPEN CMD V41K1421X
and then monitor (e).
If (e) seconds have not elapsed, proceed to Step 5.
If (e) seconds have elapsed, proceed to Step 3A.
Step 3-ME-1 Status Check. This step monitors the ME-1 status word via SSME SOP flags and, if shutdown occurs, issues a fail flag for flight control and guidance functions. The LH_{2} recirculation and disconnect valve is commanded closed and provides appropriate time delays before prevalve closure.

Monitor the following:
(a) MPS E1 SHUTDOWN PHASE

V95X1155X
(b) MPS E1 POST-SHUTDOWN PHASE V95X1160X
(c) MECO COMMAND FLAG V90X8569X
(d) MPS_E1_T_DELAY_A V97U9738C

If (a) and (b) both $=$ false, then proceed to Step 5.
If either (a) or (b) = true and (c) = true, issue output (2), terminate output (3), and monitor (d).
If either (a) or $(\mathrm{b})=$ true and $(\mathrm{c})=$ false, then issue outputs (1) and (2), terminate output (3), and monitor (d).
(1) MPS E1 FAIL FLAG V95X1207X
(2) MPS LH $_{2}$ RECIRC DISC VLV CLOSE CMD V41K1422X
(3) MPS LH2 RECIRC DISC VLV OPEN CMD V41K1421X

If (d) seconds have not elapsed, proceed to Step 5.
If (d) seconds have elapsed, proceed to Step 3A.

Step 3A - Issuance of ME-1 Prevalve Close Commands. This step provides a time delay between issuance of the ME-1 LO L_{2} PREVALVE CLOSE COMMANDS and the ME-1 LH2 PREVALVE CLOSE COMMANDS.

Issue the following outputs:
(1) MPS E-1 LO 2 PREVALVE CLOSE CMD A
(2) MPS E-1 LO 2 PREVALVE CLOSE CMD B V41K1140X
(3) MPS E-1 LO 2 PREVALVE CLOSE CMD C V41K1141X
(4) MPS E-1 LO 2 PREVALVE CLOSE CMD D
and terminate the following outputs:
(5) MPS E-1 LO 2 PREVALVE OPEN CMD A
(6) MPS E-1 LO_{2} PREVALVE OPEN CMD B
(7) MPS E-1 LO 2 PREVALVE OPEN CMD C

V41K1136X
(8) MPS E-1 LO 2 PREVALVE OPEN CMD D

V41K1138X
V41K1143X
and then monitor the following:
(a)

ME1 _LH2 PREVLV_CLSE_T_DELAY

V97U9741C

If (a) seconds have not elapsed, proceed to Step 5.
If (a) seconds have elapsed, issue the following outputs:
(9) MPS E1 LH2 PREVALVE CLOSE CMD A
V41K1122X
(10) MPS E1 LH2 PREVALVE CLOSE CMD B
V41K1123X
(11) MPS E1 LH2 PREVALVE CLOSE CMD C
V41K1124X
and terminate the following outputs:

| (12) MPS E-1 LH H_{2} PREVALVE OPEN CMD A | V41K 1119 X |
| :--- | :--- | :--- |
| (13) MPS E-1 LH2 PREVALVE OPEN CMD B | V41K 1120 X |
| (14) MPS E-1 LH2 PREVALVE OPEN CMD C | V41K 1121 X |

and then set the following flag = true:
(15) ME1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)

Step 4-Removal of ME-1 Prevalve Close Commands. This step provides for the termination of the ME-1 PREVALVE CLOSE COMMANDS after an appropriate time delay.

Monitor the following:
(a) ME1 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)

If $(a)=$ true, proceed to Step 5.
If $(a)=$ false, monitor the following:

If (b) seconds have not elapsed, proceed to Step 5.
If (b) seconds have elapsed, then terminate the following outputs:

(1)	MPS E-1 LH_{2} PREVALVE CLOSE CMD A	V41K1122X
(2)	MPS E-1 LH 2 PREVALVE CLOSE CMD B	V41K1123X
(3)	MPS E-1 LH ${ }_{2}$ PREVALVE CLOSE CMD C	V41K1124X
(4)	MPS E-1 LO_{2} PREVALVE CLOSE CMD A	V41K1139X
(5)	MPS E-1 LO	
(6)	MPS EVALVE CLOSE CMD B	V41K1140X
(7)	MPS E-1 LO_{2} PREVALVE CLOSE CMD C	V41K1141X

and then set the following flag = true:
(8) ME-1 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)
Proceed to Step 5.
Step 5-ME-2 Prevalves Closed Check. This step provides a bypass of the logic in Steps 6 and 7 if $\overline{\mathrm{ME}-2}$ is in either the shutdown or post-shutdown phase and the prevalves have been commanded closed.

Monitor the following:
(a) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
If $(\mathrm{a})=$ false, proceed to Step 6.
If $(\mathrm{a})=$ true, proceed to Step 8.
Step 6 - ME-2 Data Path Fail Flag Check. This step monitors for an ME-2 DATA PATH FAll FLAG, which is set by the SSME SOP when valid engine data is not available. If the ME-2 DATA PATH FAIL FLAG is set and ME-2 safing or shutdown commands have been issued, then the LH_{2} recirculation disconnect valve is commanded closed and the prevalves are commanded closed after appropriate time delays. If safing or shutdown commands have not been issued, then no action is taken.

Monitor the following:
(a) ME-2 FLIGHT DATA PATH FAIL FLAG V95X1151X
(b) ME-2 SAFING CMD V90X3444X
(c) ME-2 SHUTDOWN CMD ISSUED FLAG (INTERNAL)
(d) MECO COMMAND FLAG V90X8569X
(e) MPS_E2_T_DELAY_D V97U9742C

If $(a)=$ false, proceed to Step 7 .
If $(\mathrm{a})=$ true and (b) and $(\mathrm{c})=$ false, then proceed to Step 9.
If (a) = true and (b) or $(\mathrm{c})=$ true and $(\mathrm{d})=$ true, issue output (2), terminate output (3) and monitor (e).

If $(\mathrm{a})=$ true and (b) or $(\mathrm{c})=$ true and $(\mathrm{d})=$ false, then issue outputs (1) and (2), and terminate output (3):

(1)	MPS E2 FAIL FLAG	V95X1208X
(2)	MPS LH	
(3) RECIRC DISC VLV CLOSE CMD	MPS LH 2 RECIR C DISC VLV OPEN CMD	V41K1422X

and then monitor (e).
If (e) seconds have not elapsed, proceed to Step 9.
If (e) seconds have elapsed, proceed to Step 7A.
Step 7 -ME-2 Status Check. This step monitors the ME-2 status word via SSME SOP flags and, if shutdown occurs, issues a fail flag for flight control and guidance functions. The LH_{2} recirculation and disconnect valve is commanded closed and provides appropriate time delays before prevalve closure.

Monitor the following:

| (a) MPS E2 SHUTDOWN PHASE | V95X1156X |
| :--- | :--- | :--- |
| (b) MPS E2 POST-SHUTDOWN PHASE | V95X1161X |
| (c) MECO COMMAND FLAG | V90X8569X |
| (d) MPS_E2_T_DELAY_D | V97U9742C |

If (a) and (b) both $=$ false, then proceed to Step 9.
If either (a) or (b) = true and (c) = true, issue output (2), terminate output (3), and monitor (d).
If either (a) or $(\mathrm{b})=$ true and $(\mathrm{c})=$ false, then issue outputs (1) and (2), terminate output (3), and monitor (d).
(1) MPS E2 FAIL FLAG

V95X1208X
(2) MPS LH $_{2}$ RECIRC DISC VLV CLOSE CMD

V41K1422X
(3) MPS LH ${ }_{2}$ RECIRC DISC VLV OPEN CMD V41K1421X

If (d) seconds have not elapsed, proceed to Step 9.
If (d) seconds have elapsed, proceed to Step 7A.
Step 7A - Issuance of ME-2 Prevalve Close Commands. This step provides a time delay between issuance of the ME-2 LO_{2} PREVALVE CLOSE COMMANDS and the ME- $2 \mathrm{LH}_{2}$ PREVALVE CLOSE COMMANDS.

Issue the following outputs:

(1)	MPS E-2 LO_{2} PREVALVE CLOSE CMD A	V41K1239X
(2)	MPS E-2 LO_{2} PREVALVE CLOSE CMD B	V41K1240X
(3)	MPS E-2 LO_{2} PREVALVE CLOSE CMD C	V41K1241X
(4)	MPS E-2 LO_{2} PREVALVE CLOSE CMD D	V41K1242X

and terminate the following outputs:

(5)	MPS E-2 LO_{2} PREVALVE OPEN CMD A	V41K1236X
(6)	MPS E-2 LO_{2} PREVALVE OPEN CMD B	V41K1237X
(7)	MPS E-2 LO_{2} PREVALVE OPEN CMD C	V41K1238X
(8)	MPS E-2 LO_{2} PREVALVE OPEN CMD D	V41K1243X

and then monitor the following:
(a) ME2_LH2_PREVLV_CLSE_T_DELAY

V97U9745C

If (a) seconds have not elapsed, proceed to Step 9.
If (a) seconds have elapsed, issue the following outputs:
(9) MPS E-2 LH_{2} PREVALVE CLOSE CMD A

V41K1222X
(10) MPS E-2 LH_{2} PREVALVE CLOSE CMD B

V41K1223X
(11) MPS E-2 LH_{2} PREVALVE CLOSE CMD C V41K1224X
and terminate the following outputs:

(12)	MPS E-2 LH_{2} PREVALVE OPEN CMD A	V41K1219X
(13)	MPS E-2 LH_{2} PREVALVE OPEN CMD B	V41K1220X
(14) MPS E-2 LH_{2} PREVALVE OPEN CMD C	V41K1221X	

and set the following flag = true:
(15) MPS E-2 LH $_{2}$ PREVALVE CLOSE CMDS REMOVED FLAG
(INTERNAL)
and proceed to Step 9.
Step 8-Removal of ME-2 Prevalve Close Commands. This step provides for the termination of the ME-2 PREVALVE CLOSE COMMANDS after an appropriate time delay.

Monitor the following:
(a) ME-2 PREVALVE CLOSE CMDS REMOVED FLAG
(INTERNAL)

If $(\mathrm{a})=$ true, proceed to Step 9 .
If $(\mathrm{a})=$ false, monitor the following:
(b) MPS_E2_T_DELAY_F

V97U9744C

If (b) seconds have not elapsed, proceed to Step 9.
If (b) seconds have elapsed, then terminate the following outputs:
(1) MPS E-2 LH H_{2} PREVALVE CLOSE CMD A

V41K1222X
(2) MPS E-2 LH_{2} PREVALVE CLOSE CMD B

V41K1223X
(3) MPS E-2 LH_{2} PREVALVE CLOSE CMD C
(4) MPS E-2 LO_{2} PREVALVE CLOSE CMD A
(5) MPS E-2 LO_{2} PREVALVE CLOSE CMD B
(6) MPS E-2 LO_{2} PREVALVE CLOSE CMD C

V41K1241X
(7) MPS E-2 LO_{2} PREVALVE CLOSE CMD D
and then set the following flag = true:
(8) ME-2 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)
Proceed to Step 9.
Step 9-ME-3 Prevalves Closed Check. This step provides a bypass of the logic in Steps 10 and 11 if $\overline{\mathrm{ME}}-3$ is in either shutdown or post-shutdown phase and the prevalves have been commanded closed.

Monitor the following:
(a) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
If $(\mathrm{a})=$ false, proceed to Step 10 .
If $(a)=$ true, proceed to Step 12.
Step 10-ME-3 Data Path Fail Flag Check. This step monitors for an ME-3 DATA PATH FAIL FLAG. which is set by the SSME SOP when valid engine data is not available. If the ME-3 DATA PATH FAIL FLAG is set and ME-3 safing or shutdown commands have been issued, then the LH_{2} recirculation disconnect valve is commanded closed and the prevalves are commanded closed after appropriate time delays. If safing or shutdown commands have not been issued, then no action is taken.

Monitor the following:
(a) ME-3 FLIGHT DATA PATH FAIL FLAG

V95X1152X
(b) ME-3 SAFING CMD

V90X3445X
(c) ME-3 SHUTDOWN CMD ISSUED FLAG
(INTERNAL)
(d) MECO COMMAND FLAG

V90X8569X
(e) MPS_E3_T_DELAY_G

V97U9746C
If $(a)=$ false, proceed to Step 11.
If $(\mathrm{a})=$ true and (b) and $(\mathrm{c})=$ false, then proceed to Step 13.
If $(\mathrm{a})=$ true and (b) or $(\mathrm{c})=$ true and $(\mathrm{d})=$ true, issue output (2), terminate output (3), and monitor (e).

If $(\mathrm{a})=$ true and (b) or $(\mathrm{c})=$ true and $(\mathrm{d})=$ false, then issue outputs (1) and (2), terminate output (3), and monitor (e).
$\begin{array}{lll}\text { (1) MPS E3 FAIL FLAG } & \text { V95X1209X } \\ \text { (2) MPS LH2 RECIRC DISC VLV CLOSE CMD } & \text { V41K1422X }\end{array}$
(3) MPS LH_{2} RECIRC DISC VLV OPEN CMD V41K1421X

If (e) seconds have not elapsed, proceed to Step 13.
If (e) seconds have elapsed, proceed to Step 11A.

Step 11 - ME-3 Status Check. This step monitors the ME-3 status word via SSME SOP flags and, if shutdown occurs, issues a fail flag for flight control and guidance functions, the LH_{2} recirculation disconnect valve is commanded closed, and provides appropriate time delays before prevalve closure.

Monitor the following:
(a) MPS E3 SHUTDOWN PHASE V95X1157X
(b) MPS E3 POST-SHUTDOWN PHASE V95X1162X
(c) MECO COMMAND FLAG V90X8569X
(d) MPS_E3_T_DELAY_G V97U9746C

If either (a) and (b) both = false, proceed to Step 13.
If either (a) or $(b)=$ true and $(c)=$ true, issue output (2), terminate output (3), monitor (d).
If either (a) or $(b)=$ true and $(c)=$ false, then issue outputs (1) and (2), terminate output (3) and then monitor (d).

(1)	MPS E3 FALL FLAG	V95X1209X
(2)	MPS LH2 RECIRC DISC VLV CLOSE CMD	V41K1422X
(3)	MPS LH2 RECIRC DISC VLV OPEN CMD	V41K1421X

If (d) seconds have not elapsed, proceed to Step 13.
If (d) seconds have elapsed, proceed to Step 11A.
Step 11A - Issuance of ME-3 Prevalve Close Commands. This step provides a time delay between issuance of the ME- $3 \mathrm{LO}_{2}$ PREVALVE CLOSE COMMANDS and the ME-3 LH ${ }_{2}$ PREVALVE CLOSE COMMANDS.

Issue the following outputs:
(1) MPS E-3 LO 2 PREVALVE CLOSE CMD A

V41K1339X
(2) MPS E-3 LO 2 PREVALVE CLOSE CMD B V41K1340X
(3) MPS E-3 LO_{2} PREVALVE CLOSE CMD C
(4) MPS E-3 LO 2 PREVALVE CLOSE CMD D
and terminate the following outputs:
(5) MPS E-3 LO_{2} PREVALVE OPEN CMD A

V41K1336X
(6) MPS E-3 LO 2 PREVALVE OPEN CMD B

V41K1337X
(7) MPS E-3 LO 2 PREVALVE OPEN CMD C

V41K1338X
(8) MPS E-3 LO 2 PREVALVE OPEN CMD D V41K1343X
and then monitor the following:
(a) ME3_LH2 PREVLV_CLSE_T_DELAY

V97U9749C

If (a) seconds have not elapsed, proceed to Step 13.
If (a) seconds have elapsed, issue the following outputs:


```
V41K1322X
```

V41K1323X
V41K1324X
and terminate the following outputs:

(12)	MPS E- $3 \mathrm{LH}_{2}$ PREVALVE OPEN CMD A	V41K1319X
(13)	MPS E-3 LH2 PREVALVE OPEN CMD B	V41K1320X
(14)	MPS E-3 LH2 PREVALVE OPEN CMD C	V41K1321X

and then set the following flag = true:
(15) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 13.
Step 12 - Removal of ME-3 Prevalve Close Commands. This step provides for the termination of the ME-3 PREVALVE CLOSE COMMANDS after an appropriate time delay.

Monitor the following:
(a) ME-3 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)

If $(a)=$ true, proceed to Step 13.
If $(\mathrm{a})=$ false, monitor the following:
(b) MPS_E3_T_DELAY_I

V97U9748C

If (b) seconds have not elapsed, proceed to Step 13.
If (b) seconds have elapsed, then terminate the following outputs:

(1)	MPS E-3 LH2 PREVALVE CLOSE CMD A	V41K1322X
(2)	MPS E-3 LH ${ }_{2}$ PREVALVE CLOSE CMD B	V41K1323X
(3)	MPS E-3 LH2 PREVALVE CLOSE CMD C	V41K1324X
(4)	MPS E-3 LO_{2} PREVALVE CLOSE CMD A	V41K1339X
(5)	MPS E-3 LO_{2} PREVALVE CLOSE CMD B	V41K1340X
(6)	MPS E-3 LO_{2} PREVALVE CLOSE CMD C	V41K1341X
(7)	MPS E-3 LO_{2} PREVALVE CLOSE CMD D	V41K1342X

and then set the following flag = true:
(8) ME-3 PREVLVS CLOSE CMDS REMOVED FLAG
(INTERNAL)

Proceed to Step 13.
Step 13 - ME-1,2, and 3 Manual Shutdown Switch Checks. This step provides and monitors for a manually initiated shutdown of any engine by the crew. If any one of the three MPS engine shutdown switches is depressed, the GN\&C switch processor sets a flag for SSME OPS indicating shutdown is required for that engine. SSME OPS then sets an internal flag, which is checked in later steps in the logic, for initiating the shutdown.

Monitor the following:
(a) SEL MPS ME-1 SHUTDOWN CMD V90X7551X
(b) SEL MPS ME-2 SHUTDOWN CMD V90X7552X
(c) SEL MPS ME-3 SHUTDOWN CMD V90X7553X

If $(\mathrm{a}),(\mathrm{b})$, and (c) all $=$ false, proceed to Step 14.
If $(a)=$ true, set internal flag (1) below $=$ true.
If $(b)=$ true, set internal flag (2) below $=$ true.
If $(c)=$ true, set internal flag (3) below $=$ true.
(1) ME-1 MANUAL SHUTDOWN FLAG
(INTERNAL)
(2) ME-2 MANUAL SHUTDOWN FLAG
(INTERNAL)
(3) ME-3 MANUAL SHUTDOWN FLAG

Proceed to Step 14.
Step 14 - Main Engine Safing Cmd Check. This step monitors for main engine safing commands from the GN\&C switch processor and latches the applicable safing commands in the on state.

Monitor the following:
(a) ME-1 SAFING CMD

V90X3443X
(b) ME-2 SAFING CMD

V90X3444X
(c) ME-3 SAFING CMD

V90X3445X

If (a) is detected true, latch $(a)=$ true for all subsequent passes.
If (b) is detected true, latch $(b)=$ true for all subsequent passes.
If (c) is detected true, latch (c) = true for all subsequent passes.
Proceed to Step 17.
Step 15. Deleted.
Step 16. Deleted.
Step 17 - MECO Commanded Check. This step provides a bypass of the automatic and manual limit control logic in Step 18 through Step 22 and the guidance cutoff logic and low-level sensor cutoff logic of Steps 23 through 26 inclusive, if main engine cutoff (MECO) has been commanded. It also provides for a change in the LO_{2} prevalve close time delays after MECO has been commanded to improve shutdown safety.

Monitor the following:
(a) MECO COMMAND FLAG

If (a) is false, proceed to Step 18.

If (a) is true, issue output (1) below one time only and perform the following functions:
Set V97U9738C MPS_E1_T_DELAY_A to the value contained in input (A) below.
Set V97U9742C MPS_E2_T_DELAY_D to the value contained in input (B) below.
Set V97U9746C MPS_E3_T_DELAY_G to the value contained in input (C) below.

Proceed to Step 17A.

INPUTS

(A) MPS_MECO_E1_T_DELAY_A
V96U9769C
(B) MPS_MECO_E2_T_DELAY_D
V97U9771C
(C) MPS_MECO_E3_T_DELAY_G
V96U9773C

OUTPUTS

(1) MPS PNEU CROSSOVER NO. 2 OPEN CMD

V41K1613X

Step 17A - MPS Helium Interconnect. This step initiates a 20 -second timer and branches to the helium interconnect logic. On expiration of the time delay, the interconnect valve commands are terminated.

On the first pass, start a 20-second timer and proceed to Step 17B.
On the second and subsequent passes, monitor the 20 -second time delay. If 20 seconds have not elapsed, proceed to Step 24A. When 20 seconds have elapsed, terminate outputs (1) through (6) and set output (7) $=$ false. Then proceed to Step 24A.

(1)	MPS E1 HE INTCON IN/OPEN CMD A	V41K1162X
(2)	MPS E1 HE INTCON IN/OPEN CMD B	V41K1163X
(3)	MPS E2 HE INTCON IN/OPEN CMD A	V41K1262X
(4)	MPS E2 HE INTCON IN/OPEN CMD B	V41K1263X
(5)	MPS E3 HE INTCON IN/OPEN CMD A	V41K1362X
(6)	MPS E3 HE INTCON IN/OPEN CMD B	V41K1363X
(7)	HELIUM INTERCONNECT FLAG	(INTERNAL)

Step 17B - Issue of ME-1 Helium Interconnect Commands. This step is processed one time only and interconnects the pneumatic system helium supply to ME-1 during shutdown if the ME-1 FAIL FLAG has not previously been set true and either the confirmed ME-1 helium supply pressure is lower than or equal to the level that is required to support SSME shutdown helium usage or the pressure is commfaulted.

Monitor the following:
(a) MPS E1 FAIL FLAG

V95X1207X
(b) MPS E1 HE SUPPLY BOTTLE PRESSURE
(c) MPS_HELIUM_SYSTEM_LOW_PRESSURE V97U9735C
(d) FA1 INPUT PROM SEG 1, 2 STATUS (MFE) V91X2845X

If $(a)=$ true, proceed to Step 17 C . Otherwise, proceed to monitor (b), (c), and (d).

If $(\mathrm{d})=$ false, and $(\mathrm{b})>(\mathrm{c})$, proceed to Step 17 C ; otherwise, issue the following inputs (1) and (2) one time only and proceed to Step 17C.
$\begin{array}{lll}\text { (1) MPS E1 HE INTCON IN/OPEN CMD A } & \text { V41K1162X } \\ \text { (2) MPS E1 HE INTCON IN/OPEN CMD B } & \text { V41K1163X }\end{array}$
Step 17C - Issue of ME-2 Helium Interconnect Commands. This step is processed one time only and interconnects the pneumatic system helium supply to $\mathrm{ME}-2$ helium supply during shutdown if the ME-2 FAIL FLAG has not previously been set true and either the confirmed ME-1 helium supply pressure is lower than or equal to the level that is required to support SSME shutdown helium usage or the pressure input is commfaulted.

Monitor the following:

(a)	MPS E2 FAIL FLAG	V95X1208X
(b)	MPS E2 HE SUPPLY BOTTLE PRESSURE	V41P1250C
(c)	MPS_HELIUM_SYSTEM_LOW_PRESSURE	V97U9735C
(d)	FA2 INPUT PROM SEG 1,2 STATUS (MFE)	V91X2842X

If $(\mathrm{a})=$ true, or $(\mathrm{b})>\mathrm{c}$, proceed to Step 17D. Otherwise, issue the following outputs (1) and (2) one time only and proceed to Step 17D.
$\begin{array}{lll}\text { (1) MPS E2 HE INTCON IN/OPEN CMD A } & \text { V41K1262X } \\ \text { (2) MPS E2 HE INTCON IN/OPEN CMD B } & \text { V41K1263X }\end{array}$
Step 17D - Issue of ME-3 Helium Interconnect Commands. This step is processed one time only and interconnects the pneumatic system helium supply to ME-3 during shutdown if the ME-3 FAIL FLAG has not previously been set true and either the confirmed ME-3 helium supply pressure is lower than or equal to the level that is required to support SSME shutdown helium usage or the pressure input is commfaulted.

Monitor the following:

(a)	MPS E3 FAIL FLAG	V95X1209X
(b)	MPS E3 HE SUPPLY BOTTLE PRESSURE	V41P1350C
(c)	MPS_HELIUM_SYSTEM_LOW_PRESSURE	V97U9735C
(d) FA3 INPUT PROM SEG 1, 2 STATUS (MFE)	V91X2843X	

If $(\mathrm{a})=$ true, set output $(3)=$ true and proceed to Step 24A. Otherwise, proceed to monitor (b), (c) and (d).

If $(\mathrm{d})=$ false and (b) $>$ (c), set output (3) true and proceed to Step 24A. Otherwise, issue the following outputs (1) and (2) one time only, set output (3) true and proceed to Step 24A.

| (1) MPS E3 HE INTCON IN/OPEN CMD A | V41K1362X |
| :--- | :--- | ---: |
| (2) MPS E3 HE INTCON IN/OPEN CMD B | V41K1363X |
| (3) HELIUM INTERCONNECT FLAG | (INTERNAL) |

Step 18 - Limit Shutdown Switch Auto/Manual Check. This step permits a manual override of the automatic limit control logic by the crew. If the switch is in AUTO, the automatic limit control logic is active; and if one engine shuts down, the remaining two are inhibited from automatic shutdown. If the switch is
in one of the manual positions, the crew overrides the automatic limit control logic and either enables or inhibits automatic shutdown by all engines.

Monitor the following:
(a) SEL MPS ENG LIMIT CONTROL AUTO

V90X7548X
If $(\mathrm{a})=$ true, set internal counters A and B to zero and proceed to Step 19.
If $(\mathrm{a})=$ false, set internal counters $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$, and H to zero and proceed to Step 22.
Step 19 - Automatic Limit Shutdown Inhibit Control for ME-1. This step monitors the operating phase of ME-1 and the validity of ME-1 data via the FLIGHT DATA PATH FAIL FLAG from the SSME SOP. If ME-1 enters the shutdown phase or the ME-1 FLIGHT DATA PATH FAIL FLAG is set, the other two engines will be inhibited from performing an automatic shutdown.

Monitor the following:
(a) MPS E1 SHUTDOWN PHASE V95X1155X
(b) MPS E1 POST-SHUTDOWN PHASE V95X1160X
(c) ME-1 FLIGHT DATA PATH FAIL FLAG V95X1150X

If (a), (b), and (c) all = false, check internal counter C. If internal counter C is less than three counts, then issue the following output:

(1) MPS E1 LIMIT CNTL ENA

V90X8573X
and increment counter C by one count and proceed to Step 20.
If (a), (b), and (c) all = false and internal counter C is greater than two counts, proceed to Step 20.

If either (a), (b), or (c) = true, check internal counter D. If internal counter D is less than three counts then issue the following outputs:

```
(2) MPS E2 LIMIT CNTL INH
V90X8571X
(3) MPS E3 LIMIT CNTL INH
V90X8572X
```

and increment counter D by one count and proceed to Step 20.
If either (a), (b), or (c) = true and internal counter D is greater than two counts, proceed to Step 20.
Step 20 - Automatic Limit Shutdown Inhibit Control for ME-2. This siep monitors the operating phase of ME-2 and the validity of ME-2 data via the FLIGHT DATA PATH FAIL FLAG from the SSME SOP. If ME-2 enters the shutdown phase or the ME-2 FLIGHT DATA PATH FAIL FLAG is set, the other two engines will be inhibited from performing an automatic shutdown.

Monitor the following:
(a) MPS E2 SHUTDOWN PHASE

If (a), (b), and (c) all = false, check internal counter E. If internal counter E is less than three counts, then issue the following output:

(1) MPS E2 LIMIT CNTL ENA

V90X8574X
and increment counter E by one count and proceed to Step 21.
If (a), (b), and (c) all = false and internal counter E is greater than two counts, proceed to Step 21.

If either (a), (b), or $(c)=$ true, check internal counter F. If internal counter F is less than three counts, then issue the following outputs:
$\begin{array}{lll}\text { (2) MPS E1 LIMIT CNTL INH } & \text { V90X8570X } \\ \text { (3) MPS E3 LIMIT CNTL INH } & \text { V90X8572X }\end{array}$
and increment counter F by one count and proceed to Step 21.
If either (a), (b), or (c) = true and internal counter F is greater than two counts, proceed to Step 21.

Step 21 - Automatic Limit Shutdown Inhibit Control for ME-3. This step monitors the operating phase of ME-3 and the validity of ME-3 data via the FLIGHT DATA PATH FAIL FLAG from the SSME SOP. If ME-3 enters the shutdown phase or the ME-3 FLIGHT DATA PATH FAIL FLAG is set, the other two engines will be inhibited from performing an automatic shutdown.

Monitor the following:
(a) MPS E3 SHUTDOWN PHASE V95X1157X
(b) MPS E3 POST-SHUTDOWN PHASE V95X1162X
(c) ME-3 FLIGHT DATA PATH FAIL FLAG V95X1152X

If (a), (b), and (c) all = false, check internal counter G. If internal counter G is less than three counts, then issue the following output:
(1) MPS E3 LIMIT CNTL ENA

V90X8575X
and increment counter G by one count and proceed to Step 23.
If (a), (b), and (c) all = false and internal counter G is greater than two counts, proceed to Step 23.

If either (a), (b), or (c) = true, check internal counter H . If internal counter H is less than three counts, then issue the following outputs:
(2) MPS E1 LIMIT CNTL INH
(3) MPS E2 LIMIT CNTL INH
and increment counter H by one count and proceed to Step 23.

If either (a), (b), or $(\mathrm{c})=$ true and internal counter H is greater than two counts, proceed to Step 23.

Steps 21A Through 21E - Deleted.
Step 22 - Limit Shutdown Switch Inhibit/Enable Check. This step monitors the manual positions of the limit shutdown switch via switch processor flags and permits the crew to enable automatic shutdown by all engines or inhibit automatic shutdown by any engine.

Monitor the following:
$\begin{array}{lll}\text { (a) SEL MPS ENG LIMIT CONTROL ENABLE } & \text { V90X7549X } \\ \text { (b) SEL MPS ENG LIMIT CONTROL INHIBIT } & \text { V90X7550X }\end{array}$
If (a) is true and counter A is less than 3 , increment counter A by one count, set counter B to zero, issue outputs (1) through (3) below, and proceed to Step 23.

If (a) is true and counter A is greater than 2, proceed to Step 23.
If (b) is true and counter B is less than 3 , increment counter B by one count, set counter A to zero, issue outputs (4) through (6) below, and proceed to Step 23.

If (b) is true and counter B is greater than 2, proceed to Step 23.

(1)	MPS E1 LIMIT CNTL ENA	V90X8573X
(2)	MPS E2 LIMTT CNTL ENA	V90X8574X
(3)	MPS E3 LIMIT CNTL ENA	V90X8575X
(4)	MPS E1 LIMIT CNTL INH	V90X8570X
(5)	MPS E2 LIMIT CNTL INH	V90X8571X
(6)	MPS E3 LIMIT CNTL INH	V90X8572X

Steps 22A Through 22F - Deleted.
Step 23 - SSME Cutoff Request Check. This step monitors for a flag from guidance indicating it is time to read the desired SSME cutoff time and initiate MECO at the desired time. The shutdown commands sent as a result of the MECO command flag must be sent at the proper time to ensure a MECO accuracy of $\pm 40 \mathrm{~ms}$. Proper issuance of the shutdown commands is controlled by the MECO LEAD TIME I-load. The first shutdown command will be sent no sooner than 30 ms before desired cutoff time and no later than +30 ms from the desired cutoff time. Changes in software design, timing, will change the value of MECO LEAD TME.

Monitor the following:
(a) SSME C/O TIMING REOUEST FLAG

V90X1944X
(b) DESIRED SSME C/O TIME V90W1945C
(c) GMT V91W5000C
(d) MECO_LEAD_TIME V97U9829C

If $(\mathrm{a})=$ false, proceed to Step 24.
If $(a)=$ true, read (b) and subtract (c) from (b). When (b) - (c) is greater than (d), proceed to Step 24.

When (b) - (c) is less than or equal to (d), issue the following output and proceed to Step 24A.
(1) MECO COMMAND FLAG

V90X8569X

Step 24 - Low-Level Sensor Monitor Check. This step monitors for a flag set by guidance indicating time to monitor the LO_{2} and LH_{2} low-level sensors.

Monitor the following conditions:
(a) ET LEVEL SENSOR ARM CMD

V90X1942X
If $(a)=$ false, proceed to Step 24A.
If $(a)=$ true, proceed to Step 25 .
Step 24A-ET Fast Separation Check. This step determines if a fast ET separation has been requested and, if so, sets the proper flags and delays to provide the proper engine shutdown sequence for a fast separation.

Monitor the following signals:
(a) MM102 FLAG

V90X8158X
(b) ET MAN SEP INITIATE

V90X7564X
(c) ET SEP MAN INITIATE FLAG V90X8584X
(d) MM601 FLAG

V90X8194X
(e) MM103 FLAG

V90X8156X
(f) SECOND SSME FAIL CONFIRM

V90X1721X
If ((a) or (d) or [(e) and (f)]) and (b) are true or (c) is true, latch (c) true and perform the following functions; otherwise proceed to Step 27.

Set the following parameters to the value contained in input 2 below:

```
MPS_E1_T_DELAY_A
MPS_E2_T_DELAY_D
V97U9738C
V97U9742C
MPS_E3_T_DELAY_G
V97U9746C
```

Set the following parameters to the value contained in input 3 below:

```
ME1_LH2_PREVALVE_CLSE_T_DELAY
V97U9741C
ME2_LH2_PREVALVE_CLSE_T_DELAY
V97U9745C
ME3_LH2_PREVALVE_CLSE_T_DELAY V97U9749C
```

Set the following times to the value contained in 1 below:
ME-1 SHUTDOWN DELAY TIMER ME-2 SHUTDOWN DELAY TIMER

Set the following flag true:
ME-1 MANUAL SHUTDOWN FLAG
(INTERNAL)

Initiate ME-1 shutdown delay timer and proceed to Step 27 . On subsequent passes, proceed to Step 27 until ME- 1 shutdown delay timer expires.

Then set the following flag = true:
ME-2 MANUAL SHUTDOWN FLAG
(INTERNAL)

Initiate ME-2 shutdown delay timer and proceed to Step 27 . On subsequent passes, proceed to Step 27 until ME-2 shutdown timer expires.

Then set the following flags = true:

MECO COMMAND FLAG	V90X8569X
MECO CONFIRMED FLAG	V90X8561X

and set the following parameter to the value contained in input 4 below and proceed to Step 27.
TIME_TO_ZERO_THRUST
V97U9655C

INPUTS

1. ME_SHTDN_DLY

V97U9830C
2. FAST_SEP_LOX_PRVLV_DLY V97U9831C
3. FAST_SEP_LH2_PRVLV_DLY V97U9832C
4. FAST_SEP_ZERO_THRUST_DLY V97U9833C

Step 25- LO_{2} Low-Level Sensor Dry Check. This step monitors for dry indications from four LO_{2} lowlevel sensors, commfault indications for each sensor, and for a disable flag for each sensor. On the first pass that ET level sensor arm command is true, if a sensor indicates dry and the respective sensor commfault is false, and no previous LO_{2} sensor has been disabled, then the associated sensor disable flag is latched true. On subsequent passes, if a sensor indicates dry, the respective commfault for that sensor is false, and the sensor has not been disabled, then an internal flag is latched true indicating that sensor is dry.

Monitor the following conditions:
(a) MPS LO 2 LEFTNO. 1 ECO SENSOR
(a) MPS LO 2 LEET NO. 1 ECO SENSOR
(b) MPS LO 2 LEFT NO. 2 ECO SENSOR
(c) MPS LO 2 RIGHT NO. 2 ECO SENSOR
(d) $\mathrm{MPS} \mathrm{LO}_{2}$ RIGHT NO. 1 ECO SENSOR
(e) MPS_LOX_LO_LVL_LIQ_SES1_DSBL_FLG
(f) MPS_LOX_LO_LVL_LIQ_SES2_DSBL_FLG
(g) MPS_LOK_LO_LUL_LQSES3_DSBL_FLG
(h) MPS LOX_LO_LVL LIO SESA DSBL_FLG
(i) FA 3 INPUT PROM SEG 3, 10 STATUS (HIFE)
(j) FA 2 INPUT PROM SEG 3, 10 STATUS (HFE)
(k) FA 4 INPUT PROM SEG 3, 10 STATUS (HFE)
(1) FA 1 INPUT PROM SEG 3, 10 STATUS (HFE)
(m) ARM CMD FIRST PASS FLAG

V41X1555X V41X1556X V41X1557X
V41X1558X
V99X8814X
V99X8815X
V99X8816X
V99X8817X
V91X2847X
V91X2846X
V91X2848X
V91X2845X
(INTERNAL)
(INTERNAL)

If (m) is true, check the following:
If (a) is true and (i) is false, then set outputs (1) and (5) true.
If (b) is true and (j) and (n) are false, then set outputs (2) and (5) true.
If (c) is true and (k) and (n) are false, then set outputs (3) and (5) true.
If (d) is true and (1) and (n) are false, then set output (4) true.
Else, check the following:
If (a) is true and (e) and (i) are both false, then set output (6) true.
If (b) is true and (f) and (j) are both false, then set output (7) true.
If (c) is true and (g) and (k) are both false, then set output (8) true.
If (d) is true and (h) and (1) are both false, then set output (9) true.

(1)	MPS_LOX_LO_LVL_LIQ_SES1_DSBL_FLG	V99X8814X
(2)	MPS_LOX_LO_LVL_LIQ_SES2_DSBL_FLG	V99X8815X
(3)	MPS_LOX_LO_LVL_LIQ-SES3_DSBL_FLG	V99X8816X
(4)	MPS _LOX_LO_LVL_LIQ_SES4_DSBL_FLG	V99X8817X
(5)	LO_{2} DSBLLIMIT FLAG	(INTERNAL)
(6)	LO_{2} SENSOR 1 DRY FLAG	(INTERNAL)
(7)	LO_{2} SENSOR 2 DRY FLAG	(INTERNAL)
(8)	LO_{2} SENSOR 3 DRYFLAG	(INTERNAL)
(9)	LO_{2} SENSOR 4 DRY FLAG	(INTERNAL)

Proceed to Step 25A.
Step 25A - Check of LO_{2} Sensor Dry Flags. This step monitors for any two LO_{2} sensor flags latched true in Step 25. If any two flags are true and the required time delay has elapsed since two flags were first detected true, then MECO is initiated.

Monitor the following:
(a) LO_{2} SENSOR 1 DRY FLAG
(INTERNAL)
(b) LO_{2} SENSOR 2 DRY FLAG
(INTERNAL)
(c) LO_{2} SENSOR 3 DRY FLAG
(INTERNAL)
(d) LO_{2} SENSOR 4 DRY FLAG
(INTERNAL)
(e) RTLS ABORT DECLARED
(f) MPS E1 FAIL FLAG

V90X8637X
(g) MPS E2 FAIL FLAG

V95X1207X
(h) MPS E3 FAIL FLAG

V95X1208X
(i) $\mathrm{NOM}_{1} \mathrm{LO}_{2}$ LL_T_DELAY_L

V95X1209X
(j) RTLS_LO $\mathrm{L}_{2} \mathrm{LL} _\mathrm{T}$-DELAY_M

V97U9863C
V97U9864C
(k) PTM_LO ${ }_{2} L L _T _D E L A Y _N$

V97U9865C

On the first pass that $[(\mathrm{a})$ and (b)] or $[(\mathrm{a})$ and (c)] or $[(\mathrm{a})$ and (d)] or $[(\mathrm{b})$ and (c)] or [(b) and (d)] or [(c) and (d)] are detected true, establish the appropriate time delay for setting the MECO COMMAND FLAG true as follows:

If $(\mathrm{f}),(\mathrm{g})$, and (h) all $=$ false, set (i) as the time delay and proceed to Step 26.
If either (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{e})=$ true, set (j) as the time delay and proceed to Step 26.
If (f) or (g) or $(\mathrm{h})=$ true and $(\mathrm{e})=$ false, set (k) as the time delay and proceed to Step 26.
On the second and subsequent passes since two or more LO_{2} sensor dry flags were detected true, monitor the time delay established above. When the selected time delay has elapsed, set output (1) true and proceed to Step 24A.

(1) MECO COMMAND FLAG

V90X8569X

Otherwise, proceed to Step 26.
Step $26-\mathrm{LH}_{2}$ Low-Level Sensor Dry Check. This step monitors for dry indications from four LH_{2} lowlevel sensors, commfault indications for each sensor, and for a disable flag for each sensor. On the first pass that ET level sensor arm command is true, if a sensor indicates dry and the respective sensor commfault is false, and no previous LH_{2} sensor has been disabled, then the associated sensor disable flag is latched true. On subsequent passes, if a sensor indicates dry, the respective commfault for that sensor is false, and the sensor has not been disabled, then an internal flag is latched true indicating that sensor is dry.

Monitor the following conditions:

(a)	ET LH_{2} LOW LEVEL LIQ SENSOR NO. 1	T41X1730X
(b)	ET LH2 LOW LEVEL LIQ SENSOR NO. 2	T41X1731X
(c)	ET LH_{2} LOW LEVEL LIQ SENSOR NO. 3	T41X1732X
(d)	ET LH2 LOW LEVEL LIQ SENSOR NO. 4	T41X1733X
(e)	ET_LH2_LO_LVL_LIQ_SES1_DSBL_FLG	V99X8806X
(f)	ET_LH2_LO_LVL_LIQ_SES2_DSBL_FLG	V99X8807X
(g)	ET_LH2_LO_LVL_LIQ_SES3_DSBL_FLG	V99X8808X
(h)	ET_LH2_LO_LVL_LIQ_SES4_DSBL_FLG	V99X8809X
(i)	FA3 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2847X
(j)	FA2 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2846X
(k)	FA 4 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2848X
(l)	FA1 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2845X
(m)	ARM CMD FIRST PASS FLAG	(INTERNAL)
(I)	$\mathrm{LH}_{2} \mathrm{DSBL}$ LIMIT FLAG	(INTERNAL)

If (m) is true, check the following:
If (a) is true and (i) is false, then set outputs (1) and (5) true.
If (b) is true and (j) and (i) are false, then set outputs (2) and (5) true.
If (c) is true and (k) and (\mathbb{n}) are false, then set outputs (3) and (5) true.
If (d) is true and (l) and (n) are false, then set output (4) true.
Else, check the following:
If (a) is true and (e) and (i) are both false, then set output (6) true.

If (b) is true and (f) and (j) are both false, then set output (7) true.
If (c) is true and (g) and (k) are both false, then set output (8) true.
If (d) is true and (h) and (l) are both false, then set output (9) true.

(1)	ET_LH2 LO_LVL_LIQ_SES1_DSBL_FLG	V99X8806X
(2)	ET_LH2_LO_LVL_LIQ_SES2_DSBL_FLG	V99X8807X
(3)	ET_LH2_LO_LVL_LIQ_SES3_DSBL_FLG	V99X8808X
(4)	ET_LH2 LO_LVL_LIQ_SES4_DSBL_FLG	V99X8809X
(5)	LH_{2} DSBL LIMIT FLAG	(INTERNAL)
(6)	LH_{2} SENSOR \#1 DRY FLAG	(INTERNAL)
(7)	LH2 SENSOR \#2 DRY FLAG	(INTERNAL)
(8)	LH2 SENSOR \# 3 DRY FLAG	(INTERNAL)
(9)	LH2 SENSOR \#4 DRY FLAG	(INTERNAL)

Proceed to Step 26A.
Step 26A - Check of LH_{2} Sensor Dry Flags. This step monitors for any two LH_{2} sensor dry flags latched true in Step 26. If any two flags are true and the required time delay has elapsed since two flags were first detected true, then MECO is initiated.

Monitor the following:
(a) LH_{2} SENSOR \#1 DRY FLAG
(b) LH_{2} SENSOR \#2 DRY FLAG
(c) LH_{2} SENSOR \#3 DRY FLAG
(d) LH_{2} SENSOR \#4 DRY FLAG
(e) RTLS ABORT DECLARED
(INTERNAL)
(f) MPS E1 FAIL FLAG V95X1207X
(g) MPS E2 FAIL FLAG V95X1208X
(h) MPS E3 FAIL FLAG
(i) L_{2} LL_TIME_DELAY_Q (INTERNAL) (INTERNAL)
(INTERNAL)
V90X8637X

V95X1209X
(j) RTLS_LH ${ }_{2}$ LL_TIME_DELAY_P

V96U9535C
(k) ARM CMD FIRST PASS FLAG

V96U9536C
(INTERNAL)

If (k) is true, then set (2) false.
On the first pass that $[(\mathrm{a})$ and (b)] or $[(\mathrm{a})$ and (c)] or $[(\mathrm{a})$ and (d)] or [(b) and (c)] or $[(\mathrm{b})$ and (d)] or [(c) and (d)] are detected true, establish the appropriate time delay for setting the MECO COMMAND FLAG true as follows:

If $(\mathrm{e})=$ true and either (f) or (g) or $(\mathrm{h})=$ true, then set (j) as the time delay and proceed to Step 24A.

Otherwise set (i) as the time delay and proceed to Step 24A.
On the second and subsequent passes since two or more LH_{2} sensor dry flags were detected true, monitor the time delay established above. When the selected time delay has elapsed, set output (1) true and proceed to Step 24A.

Otherwise, proceed to Step 24A.
Step 27-ME-1 Shutdown Initiation. This step monitors for either an ME-1 MANUAL SHUTDOWN FLAG or a MECO COMMAND FLAG. If either flag is set true, this step will alternately issue the shutdown enable and shutdown commands until ME-1 is detected to be in the shutdown or post--shutdown phase.

Monitor the following:
$\begin{array}{llr}\text { (a) ME-1 MANUAL SHUTDOWN FLAG } & \text { (INTERNAL) } \\ \text { (b) MECO COMMAND FLAG } & \text { V90X8569X } \\ \text { (c) MPS E1 SHUTDOWN PHASE } & \text { V95X1155X } \\ \text { (d) MPS E1 POST-SHUTDOWN PHASE } & \text { V95X1160X }\end{array}$
If (a) and (b) both $=$ false, proceed to Step 28.
If either (a) or $(\mathrm{b})=$ true and either (c) or $(\mathrm{d})=$ true, then terminate outputs (1) and (2), set output (3) = true, and proceed to Step 28.
(1) MPS E1 SHUTDOWN ENABLE CMD V90X8367X
(2) MPS E1 SHUTDOWN CMD V90X8370X
(3) ME-1 SHUTDOWN CMD ISSUED FLAG (INTERNAL)

If either (a) or $(\mathrm{b})=$ true and both (c) and $(\mathrm{d})=$ false, then proceed to Step 27A.
Step 27A - Issuance of ME-1 Shutdown Commands. This step provides for alternately issuing the shutdown enable and shutdown commands for ME-1.

Monitor the following:
(a) ME-1 SHUTDOWN FLAG "A"
(INTERNAL)
If $(a)=$ false, then terminate the following output:
(1) MPS E1 SHUTDOWN CMD

V90X8370X.
and issue the following output:
(2) MPS E1 SHUTDOWN ENABLE CMD

V90X8367X
and then set internal flag (3) below $=$ true
(3) ME-1 SHUTDOWN FLAG "A"
(INTERNAL)
(4) ME-1 SHUTDOWN CMD ISSUED FLAG
(INTERNAL)
Proceed to Step 28.
If (a) = true, terminate output (2) above and issue output (1) above; and then set output (3) above $=$ false and $(4)=$ true.

Proceed to Step 28.

Step 28 - ME-2 Shutdown Initiation. This step monitors for either an ME-2 MANUAL SHUTDOWN FLAG or a MECO COMMAND FLAG. If either flag is set true, this step will alternately issue the shutdown enable and shutdown commands until ME-2 is detected to be in the shutdown or post-shutdown phase.

Monitor the following:
(a) ME-2 MANUAL SHUTDOWN FLAG
(INTERNAL)
(b) MECO COMMAND FLAG
(c) MPS E2 SHUTDOWN PHASE V95X1156X
(d) MPS E2 POST-SHUTDOWN PHASE V95X1161X

If (a) and (b) both $=$ false, proceed to Step 29.
If either (a) or (b) = true and either (c) or (d) = true, then terminate outputs (1) and (2) and set output (3) = true and proceed to Step 29.
$\begin{array}{llr}\text { (1) MPS E2 SHUTDOWN ENABLE CMD } & \text { V90X8368X } \\ \text { (2) MPS E2 SHUTDOWN CMD } & \text { V90X8371X } \\ \text { (3) ME-2 SHUTDOWN CMD ISSUED FLAG } & \text { (INTERNAL) }\end{array}$
If either (a) or $(\mathrm{b})=$ true and both (c) and $(\mathrm{d})=$ false, then proceed to Step 28A.
Step 28A - Issuance of ME-2 Shutdown Commands. This step provides for alternately issuing the shutdown enable and shutdown commands for ME-2.

Monitor the following:
(a) ME-2 SHUTDOWN FLAG "B"
(INTERNAL)

If (a) = false, then terminate the following output:
(1) MPS E2 SHUTDOWN CMD

V90X8371X
and issue the following output:
(2) MPS E2 SHUTDOWN ENABLE CMD

V90X8368X
and then set internal flag (3) below = true
(3) ME-2 SHUTDOWN FLAG "B"
(INTERNAL)
(4) ME-2 SHUTDOWN CMD ISSUED FLAG

Proceed to Step 29.
If (a) = true, terminate output (2) above and issue output (1) above; and then set output (3) above $=$ false, and output (4) $=$ true.

Proceed to Step 29.

Step 29 - ME-3 Shutdown Initiation. This step monitors for either an ME-3 MANUAL SHUTDOWN FLAG or a MECO COMMAND FLAG. If either flag is set true, this step will alternately issue the shutdown enable and shutdown commands until ME-3 is detected to be in the shutdown or post-shutdown phase.

Monitor the following:
(a) ME-3 MANUAL SHUTDOWN FLAG
(b) MECO COMMAND FLAG

V90X8569X
(c) MPS E3 SHUTDOWN PHASE

V95X1157X
(d) MPS E3 POST-SHUTDOWN PHASE

V95X1162X

If (a) and (b) both $=$ false, proceed to Step 30.
If either (a) or (b) = true and either (c) or $(d)=$ true, then terminate outputs (1) and (2) and set output $(3)=$ true and proceed to Step 30.
$\begin{array}{llr}\text { (1) MPS E3 SHUTDOWN ENABLE CMD } & \text { V90X8369X } \\ \text { (2) MPS E3 SHUTDOWN CMD } & \text { V90X8372X } \\ \text { (3) ME-3 SHUTDOWN CMD ISSUED FLAG } & \text { (INTERNAL) }\end{array}$
If either (a) or $(\mathrm{b})=$ true and both (c) and $(\mathrm{d})=$ false, then proceed to Step 29A.
Step 29A - Issuance of ME-3 Shutdown Commands. This step provides for alternately issuing the shutdown enable and shutdown commands for ME-3.

Monitor the following:
(a) ME--3 SHUTDOWN FLAG "C"
(INTERNAL)

If (a) = false, then terminate the following output:
(1) MPS E3 SHUTDOWN CMD

V90X8372X
and issue the following output:
(2) MPS E3 SHUTDOWN ENABLE CMD

V90X8369X
and then set intemal flag (3) below = tue
(3) ME-3 SHUTDOWN FLAG "C"
(4) ME-3 SHUTDOWN CMD ISSUED FLAG

Proceed to Step 30.
If $(a)=$ true, terminate output (2) above and issue output (1) above; and then set output (3) above $=$ false and output $(4)=$ true.

Proceed to Step 30.
Step 30 - All Engines Manual Shutdown Check. This step monitors for a crew-initiated manual shutdown of all engines. If all three of the internal manual shutdown flags are set true, then the MECO COMMAND FLAG is set true.

Monitor the following:
(a) ME-1 MANUAL SHUTDOWN FLAG
(b) ME-2 MANUAL SHUTDOWN FLAG
(c) ME-3 MANUAL SHUTDOWN FLAG

If (a), (b), and (c) all = true, then issue the following output and proceed to Step 31.

(1) MECO COMMAND FLAG

V90X8569X

If either (a) or (b) or $(c)=$ false, then proceed to Step 31.

Step 31 - All Engines Pc ≤ 30-Percent Check. This step monitors the thrust level of all engines via chamber pressure from the SSME SOP. Also monitored is whether the data from each engine is valid. If no engine remains above 30 percent chamber pressure, or MAJOR MODE 104 FLAG is true, or ME-1, ME-2, and ME-3 safing commands are all true, or an engine has a DATA PATH FAIL and the other two engines are less than or equal to 30 percent chamber pressure, the MECO COMMAND FLAG, the MECO CONFIRMED FLAG, and the EVENT TIMER START FLAG are all set true.Monitor the following:
(a) MPS E1 PERCENT CH PRESS

V95U1186C
(b) MPS E2 PERCENT CH PRESS V95U1187C
(c) MPS E3 PERCENT CH PRESS

V95U1188C
(d) ME-1 FLIGHT DATA PATH FAIL FLAG

V95X1150X
(e) ME-2 FLIGHT DATA PATH FAIL FLAG

V95X1151X
(f) ME-3 FLIGHT DATA PATH FAIL FLAG

V95X1152X
(g) MAJOR MODE 104 FLAG

V90X8152X
(h) ME-1 SAFING CMD

V90X3443X
(i) ME-2 SAFING CMD

V90X3444X
(j) ME-3 SAFING CMD V90X3445X

If (a), (b), and (c) are all ≤ 30 percent, then issue the following outputs and proceed to Step 32.

| (1) MECO COMMAND FLAG | V90X8569X |
| :--- | :--- | :--- |
| (2) MECO CONFIRMED FLAG | V90X8561X |
| (3) EVENT TIMER START FLAG | V90X8403X |

If $(\mathrm{g})=$ true, then issue outputs $(1),(2)$, and (3) above and proceed to Step 32.
If (h) and (i) and (j) = true, then issue outputs (1), (2), and (3) above and proceed to Step 32.
If $(\mathrm{d})=$ true and (b) and (c) are both ≤ 30 percent, then issue outputs (1), (2), and (3) above and proceed to Step 32.

If (e) = true and (a) and (c) are both ≤ 30 percent, then issue outputs (1), (2), and (3) above and proceed to Step 32.

If $(\mathrm{f})=$ true and (a) and (b) are both ≤ 30 percent, then issue outputs (1), (2), and (3) above and proceed to Step 32.

Otherwise, return to Step 1.
Step 32 - All Prevalves Commanded Closed Check. This step checks that all prevalves have been commanded closed before setting a flag for the ET separation sequence and proceeding with the ET disconnect valve closure. The prevalves are closed by Steps 3A, 7A, and 11A after appropriate time delays.

Monitor the following:
(a) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(b) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(c) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
If either (a), (b), or $(c)=$ false, return to Step 1.
If (a), (b), and (c) all = true, issue the following output and proceed to Step 33.
(1) ALL PREVLVS COMMANDED CLOSE IND V90X8568X

Step 33 - Termination of SSME OPS Sequence. This step keeps the SSME OPS sequence active until all PREVALVE CLOSE COMMANDS have been removed and the HELIUM INTERCONNECT FLAG is set to false. The PREVALVE CLOSE COMMANDS are removed in Steps 4, 8, and 12. The HELIUM INTERCONNECT FLAG is set to false, when appropriate, by Step 17A.

Monitor the following:
(a) ME-1 PREVLVS CLOSE CMDS REMOVED FLAG
(b) ME-2 PREVLVS CLOSE CMDS REMOVED FLAG
(c) ME-3 PREVLVS CLOSE CMDS REMOVED FLAG
(d) HELIUM INTERCONNECT FLAG

If either $(a),(b)$,or $(c)=$ false, return to Step 1.
If (a), (b), and (c) all = true, then set output (1) = false and monitor (d).
If $(\mathrm{d})=$ true, return to Step 1.
If $(\mathrm{d})=$ false, terminate the SSME OPS sequence.
(1) EVENT TIMER START FLAG V90X8403X

Figure 4.165 SSME Operations Sequence (Sheet 3 of 11)

Figure 4.165 SSME Operations Sequence (Sheet 4 of 11)

Figure 4.165. SSME Operations Sequence (Sheet 5 of 11)

Figure 4.165. SSME Operations Sequence (Sheet 6 of 11)

Figure 4.165 SSME Operations Sequence (Sheet 7 of 11)

INFORMATION ONLY

Figure 4.165 SSME Operations Sequence (Sheet 8 of 11)

INFORMATION ONLY

Figure 4.165 SSME Operations Sequence (Sheet 9 of 11)

Figure 4.165 SSME Operations Sequence (Sheet 10 of 11)

INFORMATION ONLY

Figure 4.165. SSME Operations Sequence (Sheet 11 of 11)

[^3]TABLE 4.2.1.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.1.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.1.4 1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

合品㽞㽞㽞㽞

TABLE 4.2.1.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

00049P00L	OUTPUT FUNCTIONAL PARAMETERS	FROM SSME
M/S ID	NOMENCLATURE	destination
V41K1613xB	MPS REG HE XOVER VLV (LV10) OP CMD	HDWR
v90x8403xB	EVENT TIMER StART FLAG	SYS S/w
v90x8568x	all prevlvs Commanded close ind	ET SEP SEQ
V90x8577x	zero thrust delay	MSC

TABLE 4．2．1．4－2．SPACE SHUTTLE MAIN ENGINE（SSME）OPERATIONS SEQ（G4．165）I－LOADS

$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	思	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	N N	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	웅	橧	邁	웅
$\underset{-1}{\stackrel{n}{0}}$	$\begin{aligned} & L_{0}^{0} \\ & \sim-1 \end{aligned}$	$\stackrel{\text { 皆 }}{\substack{2}}$	$\stackrel{n}{\sim}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \end{aligned}$	$\underset{\sim}{\text { n }}$	$\stackrel{i n}{\square}$	$\begin{aligned} & n \\ & \stackrel{n}{+} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{+} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{+}{2} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \stackrel{+}{1} \end{aligned}$	$\begin{aligned} & \boxed{0} \\ & \stackrel{0}{!} \end{aligned}$	$\begin{aligned} & \Omega \\ & \stackrel{0}{\square} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{\bullet}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{4}{0}$
¢	¢	\％	¢	（ु）	¢	ชु	\％	\％	\％	\％	\％゙	＋	¢	\％	－	サi
0	0	0	0	\bigcirc	0	\bigcirc	0	0	0	0	0	\bigcirc	a	0	\bigcirc	0
－	－	－	\cdots	－	\rightarrow	－	Σ	－	Σ	－	Σ	－	－	－	－	a
－	－	－	－	\square	－	－	－	－	－	－	－	0	－	－	－	0
山	${ }^{\text {w }}$	5	㛧	四	\＆	\square^{4}	场	的	${ }^{4}$	［4	［v	岳	的	山	的	［4

TABLE 4.2.1.4-3. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) K-LOADS
DBEN: 0558
FSSR NAME
DESCRIFTION

ET LH2 LO LVL LIQ SESI_DSBL_FLG	V99x8806X	$B^{\prime} 0000000000000000^{\prime}$	ND
ET LH2 LO LVL LIQ SES2_DSBL_FLG	V99x8807x	$B^{\prime} 0000000000000000^{\prime}$	ND
ET_LH2 LO_LVL_LIQ SES3_DSBL_FLG	V99x8808X	$B^{\prime \prime} 0000000000000000^{\prime}$	ND
ET_LH2_LO_LVL_LIQ SES4_DSBL_FLG	V99x8809x	$B^{\prime} 0000000000000000^{\prime}$	ND
EAST_SEP LH2 PREVLV_DLY	V97U9832C	+2.342 E+00	SEC
FAST_SEP_LOX_PREVLV_DLY	V97U9831C	+1.5 E+00	SEC
ME_SHTDN_DLY	V97U9830C	+0.0 E+00	SEC
MPS LOX_LO_LVL_LIQ SES1_DSBL_FLG	V99x8814X	$B^{\prime} 0000000000000000^{\prime}$	ND
MPS_LOX_LO_LVL_LIQ_SES2_DSBL_FLG	V99x8815x	$B^{\prime} 0000000000000000^{\prime}$	ND
MPS_LOX_LO_LVL__LIQ_SES3_DSBL_ELG	V99X8816X	$\mathrm{B}^{\prime} 0000000000000000^{\prime}$	ND
MPS_LOX_LO_LVL_LIQ_SES4_-_DSEL_ELG	V99x8817x	$\mathrm{B}^{\prime} 0000000000000000^{\prime}$	ND
MPS_MECO_E1_T_DELAY_A	V9609769C	+1.078 $\mathrm{E}+00$	SEC
MPS_MECO_E2_T_DELAY D	V96U9771C	+1.078 E+00	SEC
MPS_MECO_E3_T_DELAY_G	V96U9773C	+1.078 E+00	SEC

DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS

Rockwell International
Space Systems Division

4.2.2 SRB Separation Sequence (4.115)

4.2.2.1 Introduction

The solid rocket booster (SRB) separation sequence (SEP SEQ) is used during the ascent phase to separate the expended boosters from the orbiter/external tank. The SRB separation sequence performs the functions of monitoring SRB thrust tailoff, via chamber pressure; controlling the $S R B$ separation process; and generating indicators for proper GN\&C moding. The separation process is normally automatic, but in the event of an automatic separation inhibit, the crew is given the capability to manually override the inhibit and to initiate separation.

4.2.2.2 Overview

The SRB separation sequence is initiated at SRB SEP SEQ INITIATION TIME; it is initiated only if MECO has not yet occurred. Upon initiation, the sequence monitors the selected left and right SRB chamber pressure measurements to determine if the primary separation cue has been reached; that is, to determine if both the left and right SRB chamber pressures have decayed to 50 psia. The backup separation cue is reached when the mission elapsed time (MET) exceeds the latest possible time (SRB SEP BACKUP CUE TIME) at which a chamber pressure of 50 psia could occur.

Protection is provided for dual failure in the flight aft MDM's A/D converters or COMMFAULTS in conjunction with MDM failures which would result in premature indication of both left and right SRB chamber pressure at or below 50 psia.

In the event of multiple chamber pressure sensor failures on one SRB to the high state, SRB SEP BACKUP CUE TIME serves as the separation cue. Protection against multiple sensor failures to the low state requires marking the times at which the selected left and right SRB chamber pressure measurements drop below 50 psia and calculating the resultant time differential. If this differential exceeds the predicted maximum (MAX SRB SEP CUE DIFFERENTIAL), the separation cue becomes SRB SEP BACKUP CUE TIME to prevent a separation attempt with excessive SRB thrust.

The separation process begins once either the primary or backup separation cue has been reached. PIC arm and GN\&C moding indicators are then issued at appropriate times. Following delays to allow the SRM nozzle actuators time to null and SRB thrust time to decay to an acceptable level, the vehicle's dynamic state is compared with criteria which define the capability of the vehicle to perform a safe separation. If the criteria are met, separation is commanded automatically. If the state criteria are exceeded, automatic separation is inhibited. The crew may override this inhibit via the SRB separation mode switch and the SRB separation initiate push button.

4.2.2.3 Detailed Requirements

Step 1 - Monitor Separation Cues. The SRB separation sequence is initiated when mission elapsed time (MET) is \geq SRB SEP SEQ INITIATION TIME, I-loaded, and MECO has not yet occurred. The initiation time is selected to be less than the earliest possible time that the sensed chamber pressure of a fastburning SRB will be at 50 psia, minus MAX SRB SEP CUE DIFFERENTIAL seconds. This step monitors the selected chamber pressure of each SRB, from select filter, for the primary separation cue and monitors MET for the backup cue. This monitoring occurs only if the cue has not previously been established.

Monitor the following:
(a) SRB SEPARATION COMMAND FLAG

V90X8331X

If (a) is true, proceed to Step 4. If (a) is not true, monitor the following:
(b) SRB SEPARATION INITIATION FLAG

V90X8333X

If (b) is true, proceed to Step 2. If (b) is not true, monitor the following:
(c) SELECTED LEFT PRESS SRB CHAMBER

V90P2535C
(d) SELECTED RIGHT PRESS SRB CHAMBER V90P2536C
(e) MAX SRB SEP CUE DIFRNTL (I-loaded)

V97U9761C

If both (c) and (d) are ≤ 50 psia, each for four successive passes, subtract the time the first left or right SRB chamber pressure was first detected to be less than or equal to 50 psia in the set of four passes from the time that the second, left or right, SRB chamber pressure was first less than or equal to 50 psia in a set of four passes. If this differential is \geq (e), set (1) true and proceed to Step 2. If this time differential is $>$ (e), or either (c) or (d) $>\overline{5} 0$ psia, monitor the following:
(f) SRB SEP BACKUP CUE T (I-loaded)

V97U9751C

If mission elapsed time $<(\mathrm{f})$, return to the beginning of Step 1.
If mission elapsed time \geq (f), proceed to Step 2.
(1) LH/RH SRB PC 50 PSI FLAG

V90X8332X
Step 2 - Prepare for Separation. The separation cue having been reached, this step prepares the vehicle for separation by issuing flags which arm the appropriate PIC's, safe the SRB range safety system, null the SRM nozzle actuators, and transition the flight control system configuration. Time delays are incorporated to assure that SRM actuators have adequate time to nullify and that SRM thrust has decayed to an acceptable level before commanding separation in a subsequent step.

Set (1), (2), (3), and (4) true and monitor the following:
(a) SRB_SEP_MODING_T_DELAY (I-loaded)

V97U9752C

If ($2-0.48$) seconds have not elapsed since (1) became true, return to Step 1.
If (a-0.48) seconds have elapsed since (1) became true, set (5) and (6) tue and monitor the following:
(b) SRB_SEP_COMMAND_T_DELAY (I-loaded)

V97U9753C
(c) SRB_SEP_CMD_T_DLX_ABORT (I-loaded) V99U7589C
(d) MPS E1 FAIL FLAG V95X1207X
(e) MPS E2 FAIL FLAG V95X1208X
(f) MPS E3 FAIL FLAG V95X1209X

If (d), (e), and (f) are false and (b-0.48) seconds have not elapsed since (1) became true or if (d), (e), or (f) is true and ($c-0.48$) seconds have not elapsed since (1) became true, return to Step 1.

If (d), (e), and (f) are false and (b-0.48) seconds have elapsed since (1) became true or if (d), (e), or (f) is true and (c-0.48) seconds have elapsed since (1) became true, set (7) true, set (8) false, and proceed to Step 3.

(1)	SRB SEPARATION INITIATION FLAG	V90X8333X
(2)	SRB RSS SAFE FLAG	V90X8337X
(3)	SRB RSS PWR OFF FLAG	V90X8336X
(4)	ET/ORB SEP CAMERAS ON CMD	V56K9000X
(5)	SRB SEP PICS ARM FLAG	V90X8335X
(6)	SRB SEP FUNCTION MODING FLAG	V90X8330X
(7)	ATVC SRB 26V AC DEADFACE FLAG	V90X8339X
(8)	ATVC SRB IVD PWR ON	V90X8338X

Step 3-Check Separation Inhibits. The vehicle is now configured to separate the SRB's. This step compares the vehicle's dynamic state with criteria which define the capability of the vehicle to perform a safe separation. If these criteria are exceeded, an inhibit is imposed which is automatically released once the criteria have been met but which can also be overridden manually by the crew. The separation criteria are defined in terms of vehicle body rate and dynamic pressure limits.

Set (1) false and monitor the following:
(a) SEL SRB SEP MNL/AUTO ENABLE CMD

V90X7571X
(b) SEL SRB SEPARATION INITIATE CMD

V90X7572X

If (a) and (b) are both true, proceed to Step 4. Otherwise, monitor the following:

P:	SELECTED RGA ROLL RATE		V90R5301C
Q:	SELECTED RGA PITCH RATE		V90R5321C
R:	SELECTED RGA YAW RATE	V90R5341C	
QBAR:	DERIVED ASCENT DYNAMIC PRESS	V95P0500C	
AP-	ROLL_RATE_LMT SLOPE	(I-loaded)	V97U9754C
AQ-	PITCH_RATE_LMT SLOPE	(I-loaded)	V97U9755C
AR-	YAW_RATE_LMT SLOPE	(I-loaded)	V97U9756C
BP-	ROLL_RATE_LMT CONSTANT	(I-loaded)	V97U9757C
BQ-	PITCH_RATE_LMT CONSTANT	(I-loaded)	V97U9758C
BR-	YAW_RATE_LMT CONSTANT	(I-loaded)	V97U9759C
DPL:	DYNAMIC_PRS LIMIT	(I-loaded)	V97U9760C

If $\mathrm{QBAR}>\mathrm{DPL}$
or if $\mathrm{P}>\mathrm{AP}(\mathrm{QBAR})+\mathrm{BP}$
or if $Q>A Q(Q B A R)+B Q$
or if $R>A R(Q B A R)+B R$, set (1) true and return to Step 1. Otherwise, proceed to Step 4.
(1) SRB AUTO SEP INHIBIT CREW ALERT

V90X8340X

Step 4 - Command Separation. This step sets the separation fire flags which, through the MEC SOP, instruct the MEC's to issue fire commands to the separation PIC's. Before the sequence is descheduled, MEC SOP flags are terminated. The MEC SOP is then instructed to issue a MASTER RESET to the MEC's to complete the sequence.

Set (1), (2), and (3) true.
If 4 seconds have elapsed since (2) became true, set (1), (2), and (4) through (11) false. One pass later, set (12) true one time only. The sequence is now complete and ready to be descheduled.

(1)	SRB SEP FIRE 1 FLAG	V90X8341X
(2)	SRB SEP FIRE 2/3 FLAG	V90X8354X
(3)	SRB SEPARATION COMMAND FLAG	V90X8331X
(4)	L SRB PWR BUS C RPC A ON CMD	V76K6941X
(5)	R SRB PWR BUS C RPC A ON CMD	V76K6942X
(6)	L SRB PWR BUS C RPC C ON CMD	V76K6945X
(7)	R SRB PWR BUS C RPC C ON CMD	V76K6946X
(8)	SRB RSS PWR OFF FLAG	V90X8336X
(9)	SRB RSS SAFE FLAG	V90X8337X
(10)	SRB SEP PICS ARM FLAG	V90X8335X
(11)	ET/ORB SEP CAMERAS ON COMMAND	V56K9000X
(12)	MEC 1 \& 2 MASTER RESET FLAG	V90X8258X

Figure 4.115. SRB SEP SEQ (Sheet 1 of 2)

Figure 4.115. SRB SEP SEQ (Sheet 2 of 2)
TABLE 4.2.2.4-1. SOLID ROCKET BOOSTER(SRB) SEP SEQUENCER (G4.115) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.2.4-1. SOLID ROCKET BOOSTER(SRB) SEP SEQUENCER (G4.115) INPUT/OUTPUT FUNCTIONAL PARAMETERS $\begin{array}{lll}00049 \mathrm{P} 00 \mathrm{~L} & \text { OUTPUT FUNCTIONAL PARAMETERS FROM SRB SEP SEQ } \\ \text { M/S ID } & \\ \text { V90X8338KA ATVC SRB IVD PWR ON FLAG } & \text { DESTINATION }\end{array}$

100049P00L	OUTPUT FUNCTIONAL PARAMETERS FROM SRB SEP SEQ			$\begin{aligned} & \text { DATA } \\ & \text { TYPE } \end{aligned}$
M/S ID	NOMENCLATURE	DESTINATION	UNITS	
V90x8338XA	ATVC SRB IVD PWR ON FLAG	MEC SOP		
V90x8339XA	ATVC SRB 26 V AC DEADEACE FLAG	MEC SOP		
V90x8258xB	MEC 1\&2 MASter Reset flag	MEC SOP		
V90x8330xA	SRB SEP FUNCTION MODING FLAG	ASC DAP, MSC, TLM		
V90x8336\%	SRB RSS PWR OFF FLAG	MEC SOP		
V90x8337x	SRB RSS SAFE FLAG	MEC SOP		
V90x8335x	SRB SEP PICS ARM FLAG	MEC SOP		
V90x8331KA	SRB SEPARATION COMMAND FLAG	AERO ACT SOP, ASC DAP,ASC UPP SEQ, RTLS UPP SEQ,MSC,TLM		
V90x83418	SRB SEP FIRE 1 FLAG	MEC SOP		
V90x8354X	SRB SEP FIRE 2/3 FLAG	MEC SOP		
V90x8333x	SRB SEPARATION INITIATION FLAG	ASC UPP SEQ, TLM		BD
V56K9000xC	ET/ORB SEP CAMERAS ON CMD	HDWR		
V76K6941XA	L SRB BUS C RPC A ON CMD	HDWR		
V76K6942XA	R SRB BUS C RPC A ON CMD	HDWR		
V76K6945XA	I SRB BUS C PRPC C ON CMD	HDWR		
V76K6946XA	R SRB BUS C RPC C ON CMD	HDWR		
V90x8332X	LH/RH SRB PC 50 PSI FLAG	XXXXXX TRAJ DISP, TLM		BD
V90x8340x	SRB AUTO SEP INHIBIT CREW ALERT	XXXXXX TRAJ DISP, TLM		BD

$$
\text { DBEN: } 0484
$$

ESSR NAME:

$$
\begin{aligned}
& \begin{array}{ll}
\text { V97U9754C } & \text { DEG*FT**2/SEC*LB } \\
\text { V97U9755C } & \text { DEG*FT**2/SEC*LB }
\end{array} \\
& \text { V9749756C DEG*FT**2/SEC*LB } \\
& \text { v97U9757C DEG/SEC } \\
& \text { V9709758C DEG/SEC } \\
& \text { V97U9759C DEG/SEC } \\
& \text { V97U9760C LB/ET**2 } \\
& \text { v97U9761C SEC } \\
& \text { V99U7589C SEC } \\
& \text { V97U9753C SEC } \\
& \text { V9709752C SEC } \\
& \begin{array}{lll}
\text { V97U9754C } & \text { DEG*FT**2/SEC*LB } & \text { F } \\
\text { V97U9755C } & \mathrm{DEG*FT**} 2 / \mathrm{SEC} * \mathrm{LB} & \mathrm{~F}
\end{array}
\end{aligned}
$$

DT PR D S PR ECTN CAT

MSID ENG UNIT

AP_ROLL_RATE_LMT_SLOPE
AQ_PITCH_RATE_LMT_SLOPE
AR_YAW_RATE_LMT_SLOPE
BE_ROLL_RATE_LMT_CONSTANT
BQ_PITCH_RATE_LMT_CONSTANT
BR_YAW_RATE_LMT_CONSTANT
DYNAMIC_PRS_LMT
MAX_SRB_SEP_CUE_DIERNTL
SRB_SEP_BACKUP_CUE_T
SRB_SEP_CMD_T_DLY_ABORT
SRB_SEP_COMMAND_T_DELAY
SRB_SEP_MODING_T_DELAY
DBEN: 0558 FSSR NAME
DESCRIPTION
NO REQUIREMENTS

4.2.3 ET Separation Sequence (4.116)

4.2.3.1 Introduction

The external tank (ET) separation sequence is used during the ascent phase to separate the expended fuel tank from the orbiter vehicle. The separation normally occurs automatically, but the crew has the capability to manually inhibit the separation sequence at any point or to manually initiate the separation in the presence of automatic separation inhibits.

4.2.3.2 Overview

The ET separation sequence is initiated by the GN\&C moding, sequencing, and control (MSC) function when the SSME OPS sequence has determined that all of the main engines (ME) are in the shutdown or post shutdown phase. It then sets the MECO confirmed flag. The sequence then operates cyclically until just after the ET structural separation fire commands are issued in a nominal/TAL/AOA/ATO mission or until the umbilical doors are closed and latched in an RTLS abort mode.

The sequence accomplishes several major functions. It determines the mode of separation or if the separation is to be manually inhibited, arms the umbilical plate to unlatch PIC's, arms and fires the tumble system after all of the main propulsion (MPS) prevalves have been commanded closed, closes the feed-line disconnect valves, gimbals the SSME nozzles to the proper position; deadfaces the ET-orbiter interface, and unlatches and retracts the umbilical plates.

The sequence arms the structural separation PIC's, performs some limit tests on certain body rates and/or angles, and tests for feed line disconnect valve closure before continuing with an automatic separation. If any of the tests are not satisfied, the separation is inhibited and can occur only if the out-of-tolerance parameter comes back within tolerance or if the crew elects to continue the separation by manually overriding the inhibit. When either of these conditions is satisfied, the structural separation PIC's are fired. If an RTLS abort mode has been requested, the ET SEP sequence performs the umbilical closeout door function and is then complete.

The ET SEP sequence also provides a fast separation mode which is activated only when manual separation is enabled and the ET SEP initiate push button is depressed. The fast separation mode bypasses delays for PIC arm and fire times, feed line disconnect close times, and ET/UMB door retract times. The SRB SEP CMD FLAG and RTLS ABORT DECLARED FLAG are set to initiate the proper software moding. The fast separation function also provides for deadfacing the SRB electrical interfaces.

4.2.3.3 Detailed Requirements

Step 1 - Initiation. When the ET SEP sequence is initiated by the MSC function, the ET SEPARATION $\overline{\mathrm{CMD}}$ flag is monitored. If it has not yet been set, the sequence monitors the separation mode via the GN\&C switch processor. If the automatic ET separation mode is selected, the sequence proceeds normally. If the manual enable mode is selected, the sequence will not proceed until the ET SEP INITIATE push button is depressed and latched in software or the automatic mode is selected. If the ET SEPARATION CMD flag has been set, the sequence sets the MEC 1 and 2 MASTER RESET flag, terminates L_{2} RTLS dump valve open command and the MEC critical command flags, and terminates the feed line disconnect valve close commands. If an RTLS abort has been requested or if a manual request is made, the sequence must also perform the ET umbilical well door-closing function. If a fast separation has been requested, additional moding flags are set and the sequence terminated.

Monitor the following signals:

(a)	ET SEPARATION CMD FLAG	V90X8250X
(b)	FAST SEP FLAG	V90X8267X
(c)	SEL ET SEP AUTO	V90X7554X
(d)	SEL ET SEP MNL ENABLE	V90X7556X
(e)	SEL ET SEP INITIATE	V90X7564X
(f)	ET SEP MAN INITIATE FLAG	V90X8584X
(g)	BACKUP ET MAN SEP CMD	V93X5341X
(h)	MAJOR MODE 102 FLAG	V90X8158X
(i)	RTLS ABORT DECLARED	V90X8637X
(j)	BACKUPET UMB DOOR CLOSE	V93X5342X

If (a) and (b) are both false and (f) is false and (c) and (h) are true, return to Step 1.
If (a) and (b) are both false and (f) and (g) and (h) are false and (c) is true, proceed to Step 2.
If (a) and (b) are both false and (d) and (e) are true or if (f) or (g) is true, latch (f) true and proceed to Step 1A.

If (a) and (b) are both false and (d) is true and (e) and (f) and (g) are false, set output (11) false and return to the beginning of Step 1.

If (a), (b), and (h) are true, set outputs (10) and (12) true and deactivate the sequence.
If (a) and (b) are true and (h) is false, proceed to Step 8.
If (a) is false and (b) is true, proceed to Step 2.
If (a) is true and (b) is false, set outputs (1) through (9) false and return to the beginning of Step 1. On any subsequent passes through this logic, monitor (i) and (j).

If (i) is true, proceed to Step 8.
If (i) and (j) are false, issue output (10) one time only, wait 73 seconds, and terminate outputs (13) through (18) and proceed to Step 9.

If (j) is true, on the first pass through the logic, restart the timer from the ET/ORB STR SEPN FIRE 2 FLAG in Step 7. On subsequent passes, proceed to Step 8.

(1)	ET/ORB STR SEPN PICS ARM FLAG	V90X8265X
(2)	ET/ORB STR SEPN FIRE 1 FLAG	V90X8244X
(3)	ET/ORB STR SEPN FIRE $2 / 3$ FLAG	V90X8241X
(4)	MPS LH2 FEED DISC VALVE CL CMD A	V41K1416X
(5)	MPS LH 2 FEED DISC VALVE CL CMD B	V41K1417X
(6)	MPS LH H_{2} FEED DISC VALVE CL CMD C	V41K1418X
(7)	MPS LO2 F_{2} FED DISC VALVE CL CMD A	V41K1524X
(8)	MPS LO O_{2} FEED DISC VALVE CL CMD B	V41K1525X
(9)	MPS LO_{2} FEED DISC VALVE CL CMD C	V41K1526X
(10)	MEC 182 MASTER RESET FLAG	V90X8258X
(11)	ET/ORB SEP CAMERAS ON CMD	V56K9000X

(12)	SRB SEP CMD FLAG	V90X8331X
(13)	MPS LH 2 RTLS INBD D/V OPEN COMMAND A	V41K1923X
(14)	MPS LH 2 RTLS INBD D/V OPEN COMMAND B	V41K1924X
(15)	MPS LH ${ }_{2}$ RTLS INBD D/V OPEN COMMAND C	V41K1925X
(16)	MPS LH LH_{2} RTLS OTBD D/V OPEN COMMAND A	V41K1913X
(17)	MPS LH LH_{2} RTLS OTBD D/V OPEN COMMAND B	V41K1914X
(18)	MPS LH2 RTLS OTBD D/V OPEN COMMAND C	V41K1915X

Step 1a - Fast Separation Initiation. This step determines a fast separation has been requested, and, if so, sets the flags required to initiate the FAST SEP mode.

Monitor the following signal:

(a) MM102 FLAG	V90X8158X	
(b) MM602 FLAG	V90X8194X	
(c)	MM103 FLAG	V90X8156X
(d) SECOND SSME FAIL CONFIRM	V90X1721X	

If (c) and (d) are true, set Flags (1), (3), and (4) true and proceed to Step 2.
If (a) or (b) is true, set Flags (1), (2), (3), and (4) true and proceed to Step 2.
(1) FAST SEP FLAG V90X8267X
(2) RTLS ABORT DECLARED V90X8637X
(3) ET/ORB STR SEPN PICS ARM FLAG V90X8265X
(4) ET UMB UNLATCH PIC ARM FLLAG V90X8247X

Proceed to Step 2.
Step 2 - Preparation and Umbilical Unlatch and Retract. The feed line relief shutoff valve close commands are terminated and the LH_{2} RTLS inboard and outboard D / V are commanded open so that these valves can relieve any pressure buildup caused by trapped propellants in the feed line when the ME valves and feed line disconnect valves are closed. Also, the umbilical door centerline latch lock commands are terminated to allow subsequent closure of the umbilical closeout doors.

Monitor (a) and (b) below:
(a) FLAG A
(INTERNAL)
(b) FAST SEP FLAG V90X8267X
(c) RTLS ABORT DECLARED V90X8637X

If (a) is false, set outputs (1) through (14) false and proceed to Step 3.
If (a) is true and (b) is false, set output (19) false and outputs (15) through (18) and (21) through (26) true on the first pass through this logic and return to Step 1. On the next pass, set outputs (15) through (18) false and return to Step 1. On all subsequent passes through the logic, proceed to Step 5.

If (a) and (b) are true, and it has been less than 1 second since (b) became true, return to Step 1.

If (a) and (b) are true, and it has been more than 1 second since (b) became true, on the first pass set output (19) false and outputs (15) and (17) true and proceed to monitor (c). If (c) is true, return to Step 1. Otherwise, set (27) true and return to Step 1. On subsequent passes, set outputs (15), (17), and (20) false, set outputs (16) and (18) true and proceed to Step 7.

(1)	MPS LH2 $\mathrm{FDLN}^{\text {RLF }}$ / O VLV CL CMD A	V41K1447X
(2)	MPS LH2 FDLN RLF S/O VLV CL CMD B	V41K1448X
(3)	MPS $L^{2} \mathrm{H}_{2}$ FDLN RLF S/O VLV CL CMD C	V41K1450X
(4)	MPS LO O_{2} FDLN RLF S/O VLV CL CMD A	V41K1547X
(5)	MPS LO O_{2} FDLN RLF S/O VLV CL CMD B	V41K1548X
(6)	MPS LO 2_{2} FDLN RLF S/O VLV CL CMD C	V41K1550X
(7)	ET DR C/L LCH 1B1/2B2 FA1 LOCK CMD	V56K1275X
(8)	ET DR C/L LCH 1B2/2B1 FA1 LOCK CMD	V56K1276X
(9)	ET DR C/L LCH 1B1/2B2 FA2 LOCK CMD	V56K1277X
(10)	ET DR C/L LCH 1B2/2B1 FA2 LOCK CMD	V56K1278X
(11)	ET DR C/L LCH 1B1/2B2 FA4 LOCK CMD	V56K1375X
(12)	ET DR C/L LCH 1B2/2B1 FA4 LOCK CMD	V56K1376X
(13)	ET DR C/L LCH 1B1/2B2 FA3 LOCK CMD	V56K1377X
(14)	ET DR C/L LCH 1B2/2B1 FA3 LOCK CMD	V56K1378X
(15)	ET/UMB UNLATCH FIRE 1 FLAG	V90X8256X
(16)	ET/UMB RETRACT FIRE 1 FLAG	V90X8263X
(17)	ET/UMB UNLATCH FIRE 2/3 FLAG	V90X8242X
(18)	ET/UMB RETRACT FIRE 2/3 FLAG	V90X8243X
(19)	ET/UMB UNLATCH PIC ARM FLAG	V90X8247X
(20)	ET/ORB STR SEPN PICS ARM FLAG	V90X8265X
(21)	MPS LH ${ }_{2}$ RTLS INBD D/V OPEN COMMAND A	V41K1923X
(22)	MPS LH ${ }_{2}$ RTLS INBD D/V OPEN COMMAND B	V41K1924X
(23)	MPS LH2 RTLS INBD D/V OPEN COMMAND C	V41K1925X
(24)	MPS LH ${ }_{2}$ RTLS OUTBD D/V OPEN COMMAND A	V41K1913X
(25)	MPS LH2 RTLS OUTBD D/V OPEN COMMAND B	V41K1914X
(26)	MPS LH ${ }_{2}$ RTLS OUTBD D/V OPEN COMMAND C	V41K1915X
(27)	SEP MINUS Z CMD	V90X8268X

Step 3 - Tumble System Arm/Fire and MPS Feed Line Valve Latch Unlock. This step monitors for a flag from the SSME-OPS sequence indicating that all MPS prevalves have been commanded closed. Upon receipt of this flag, the ET tumble system is armed, the MPS feed line disconnect latches are commanded to the unlock position, and one second delay is allowed for the LH_{2} prevalves to close and the latches to unlock. After a one-second delay, the ET tumble system is fired, the ET/ORB SEP cameras are turned on, and the step is exited to perform voting on the latch position switches.

For ground checkout, ET TUMBLE SYSTEM ARM and ET TUMBLE SYSTEM FIRE flags are bypassed when GNC GROUND CHECKOUT ENABLE flag is set.

For FAST SEP missions, commanding of MPS feed line disconnect latches to the unlock position and voting on latch position switches are bypassed, feed line disconnect closure commands are not issued, and
the feed line disconnect closure will be accomplished by the backup mechanical feature at ET structural separation.

Monitor the following signals:

| (a) ALL PRE VLVS COMMANDED CLOSE IND | V90X8568X |
| :--- | :--- | :--- |
| (b) FAST SEP FLAG | V90X8267X |
| (c) GNC GROUND CHECKOUT ENABLE | V93X5538X |

If (a) is false, return to Step 1.
If (a) is true, and (b) is faise, set outputs (1) through (6) false and outputs (7) through (12) true and monitor time elapsed since (a) first became true. Otherwise, monitor time elapsed since (a) first became true.

If at least one second has not elapsed since (a) first became true and (c) is false, set output (13) true and return to Step 1.

If at least one second has not elapsed since (a) first became true and (c) is true, return to Step 1.

If at least one second has elapsed since (a) first became true and (c) is false, on first pass set outputs (14) and (15) true and monitor (b).

IF at least one second has elapsed since (a) first became true and (c) is true, on first pass set output (15) true and monitor (b).

If (b) is true, proceed to Step 3f. On subsequent passes proceed to Step 3f.
If (b) is false, proceed to Step 3b. On subsequent passes proceed to Step $3 f$.

(1)	MPS $\mathrm{LO}_{2} \mathrm{FDLN}$ DISC LATCH LOCK CMD A	V41K1881X
(2)	MPS LO 2_{2} FDLN DISC LATCH LOCK CMD B	V41K1882X
(3)	MPS LO_{2} FDLN DISC LATCH LOCK CMD C	V41K1883X
(4)	MPS LH_{2} FDLN DISC LATCH LOCK CMD A	V41K1981X
(5)	MPS LH_{2} FDLN DISC LATCH LOCK CMD B	V41K1982X
(6)	MPS LH ${ }_{2}$ FDLN DISC LATCH LOCK CMD C	V41K1983X
(7)	LO_{2} FDLN DISC LATCH UNLOCK CMD A	V41K1884X
(8)	$\mathrm{LO}_{2} \mathrm{FDLN}$ DISC LATCH UNLOCK CMD B	V41K1885X
(9)	LO_{2} FDLN DISC LATCH UNLOCK CMD C	V41K1886X
(10)	$\mathrm{LH}_{2} \mathrm{FDLN}$ DISC LATCH UNLOCK CMD A	V41K1984X
(11)	LH2 FDLN DISC LATCH UNLOCK CMD B	V41K1985X
(12)	LH_{2} FDLN DISC LATCH UNLOCK CMD C	V41K1986X
(13)	ET TUMBLE SYSTEM ARM FLAG	V90X8251X
(14)	ET TUMBLE SYSTEM FIRE FLAG	V90X8252X
(15)	ET/ORB SEP CAMERAS ON CMD	V56K9000X

Step 3a-ET/UMB PIC ARM. The sequence next sets the ET/UMB UNLATCH PICS ARM FLAG for the MEC SOP, which then issues the proper four-digit hexadecimal code for the command data word arm commands.

Monitor (a) and (b) below:
(a) FAST SEP FLAG
(b) ALL PRE VLVS COMMANDED CLOSE IND V90X8568X

If (a) is false and at least 3.3 seconds have not elapsed since (b) first became true, return to Step 1; otherwise, set output (1) below true and proceed to Step 4.

(1) ET/UMB UNLATCH PIC ARM FLAG
 V90X8247X

Step $3 b-\mathrm{LO}_{2}$, Feed Line Disconnect Latch Position Switch Voting. This step monitors the LO_{2} latch position switches and their commfault indications.
Monitor the following signals:

(a)	MPS LO ${ }_{2}$ FDLN DISC LATCH LOCKED A	V41X1891X
(b)	MPS LO 2 FDLN DISC LATCH LOCKED B	V41X1892X
(c)	MPS LO 2 FDLN DISC LATCH UNLOCKED A	V41X1893X
(d)	MPS LO 2 FDLN DISC LATCH UNLOCKED B	V41X1894X
(e)	FA1 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2845X
(f)	FA2 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2846X
(g)	FA3 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2847X
(h)	FA4 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2848X

If (a) and (e) are false, set output (1) true and monitor (b) and (f). Otherwise, monitor (b) and (f).

If (b) and (f) are false, set output (2) true and monitor (c) and (g). Otherwise, monitor (c) and (g).

If (c) is true and (g) is false, set output (3) true and monitor (d) and (h). Otherwise, monitor (d) and (h).

If (d) is true and (h) is false, set output (4) true and proceed to Step 3c. Otherwise, proceed to Step 3c.
$\begin{array}{ll}\text { (1) } \mathrm{LO}_{2} \text { LATCH LOCKED A OK FLAG } & \text { (INTERNAL) } \\ \text { (2) } \mathrm{LO}_{2} \text { LATCH LOCKED B OK FLAG } & \text { (INTERNAL) } \\ \text { (3) } \mathrm{LO}_{2} \text { LATCH UNLOCKED A OK FLAG } & \text { (INTERNAL) } \\ \text { (4) } \mathrm{LO}_{2} \text { LATCH UNLOCKED B OK FLAG } & \text { (INTERNAL) }\end{array}$
Step $3 \mathrm{c}-\mathrm{LO}_{2}$, Feed Line Disconnect Valve Closure. This step closes the LO_{2} feed line disconnect if 3 or more of the latch position switches indicate that the latch is unlocked or if an I-load indicates that the latch hardware has not been installed.

Monitor the following signals:
(a) LO_{2} LATCH LOCKED A OK FLAG
(INTERNAL)
(b) LO_{2} LATCH LOCKED B OK FLAG
(c) LO_{2} LATCH UNLOCKED A OK FLAG
(d) LO_{2} LATCH UNLOCKED B OK FLAG
(e) FDLN_DISC_LATCH_INSTALLED_FLAG

If flag (e) is false or 3 or more of inputs (a) through (d) are true, set outputs (1) through (3) false and outputs (4) through (6) true and proceed to Step 3d. Otherwise, proceed to Step 3d.
(1) MPS LO 22 FEED DISC VALVE OP CMD A V41K1521X
(2) MPS LO O_{2} FEED DISC VALVE OP CMD B V41K1522X
(3) MPS LO 22 FEED DISC VALVE OP CMD C V41K1523X
(4) MPS LO 2 FEED DISC VALVE CL CMD A V41K1524X
(5) $\mathrm{MPS} \mathrm{LO}_{2}$ FEED DISC VALVE CL CMD B V41K1525X
(6) MPS LO 2 FEED DISC VALVE CL CMDC V41K1526X

Step $3 \mathrm{~d}-\mathrm{LH}_{2}$ Feed Line Disconnect Latch Position Switch Voting. This step monitors the LH_{2} latch position switches and their commfault indications.

Monitor the following signals:

(a)	MPS LH2 FDLN DISC LATCH LOCKED A	V41X1991X
(b)	MPS LH2 FDLN DISC LATCH LOCKED B	V41X1992X
(c)	MPS LH2 FDLN DISC LATCH UNLOCKED A	V41X1993X
(d)	MPS LH2 FDLN DISC LATCH UNLOCKED B	V41X1994X
(e)	FA1 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2845X
(f)	FA2 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2846X
(g)	FA3 INPUT PROM SEG 3,10 STATUS (HFE)	V91X2847X
(h)	FA4 INPUT PROM SEG 3,10 STATUS (HFE)	V91X2848X

If (a) and (e) are false, set output (1) true and monitor (b) and (f). Otherwise, monitor (b) and (f).

If (b) and (f) are false, set output (2) true and monitor (c) and (g). Otherwise, monitor (c) and (g).

If (c) is true and (g) is false, set output (3) true and monitor (d) and (h). Otherwise, monitor (d) and (h).

If (d) is true and (h) is false, set output (4) true and proceed to Step 3e. Otherwise, proceed to Step 3 e.
(1) LH_{2} LATCH LOCKED A OK FLAG
(INTERNAL)
(2) LH_{2} LATCH LOCKED B OK FLAG (INTERNAL)
(3) LH_{2} LATCH UNLOCKED A OK FLAG (INTERNAL)
(4) LH_{2} LATCH UNLOCKED B OK FLAG

Step $3 e-\mathrm{LH}_{2}$ Feed Line Disconnect Valve Closure. This step closes the LH_{2} feed line disconnect if three or more of the latch position switches indicate that the latch is unlocked or if an I-load indicates that the latch hardware has not been installed.

Monitor the following signals:
(a) LH_{2} LATCH LOCKED A OK FLAG
(INTERNAL)
(b) LH_{2} LATCH LOCKED B OK FLAG
(INTERNAL)
(c) LH_{2} LATCH UNLOCKED A OK FLAG
(INTERNAL)
(d) LH_{2} LATCH UNLOCKED B OK FLAG
(INTERNAL)
(e) FDLN_DISC_LATCH_INSTALLED_FLAG

If flag (e) is false or three or more of inputs (a) through (d) are true, set outputs (1) through (3) false and outputs (4) through (6) true and proceed to Step 3f. Otherwise, proceed to Step 3f.

(1)	MPS LH2 FEED DISC VALVE OP CMD A	V41K1413X
(2)	MPS LH2 FEED DISC VALVE OP CMD B	V41K1414X
(3)	MPS LH ${ }_{2}$ FEED DISC VALVE OP CMD C	V41K1415X
(4)	MPS LH2 FEED DISC VALVE CL CMD A	V41K1416X
(5)	MPS LH ${ }_{2}$ FEED DISC VALVE CL CMD B	V41K1417X
(6)	MPS LH2 FEED DISC VALVE CL CMD C	V41K1418X

Step $3 f$ - SRB Deadfacing and SSME Gimbal Position. This step deadfaces the SRB electrical interfaces if a FAST SEP is in progress and sends a flag to MPS TVC CMD SOP to position the SSME nozzles.

Monitor the following signals:
$\begin{array}{lll}\text { (a) } & \text { FAST SEP FLAG } & \text { V90X8267X } \\ \text { (b) RTLS ABORT DECLARED } & \text { V90X8637X } \\ \text { (c) } & \text { TAL ABORT DECLARED } & \text { V90X8658X }\end{array}$
If (a) is true, set outputs (1) through (4), (8), and (9) false and output (7) true and monitor (a), (b), and (c). Otherwise, monitor (a), (b), and (c).

If (a), (b), or (c) is true, set output (6) true and output (5) false and proceed to Step 3a. Otherwise, set output (5) true and output (6) false and proceed to Step 3a.
(1) LH SRB PWR BUS C - RPC-A ON V76K6941X
(2) RH SRB PWR BUS C - RPC-A ON V76K6942X
(3) LH SRB PWR BUS C - RPC-C ON V76K6945X
(4) RH SRB PWR BUS C - RPC-C ON V76K6946X
(5) MPS DUMP GIMBAL POS FLAG V90X8253X
(6) ENTRY STOW GIMBAL POS FLAG V90X8254X
(7) SRB SEP FUNCTION MODING FLAG
(8) ATVC SRB IVD PWR ON V90X8330X
(9) SRB PWR ON VOM833
(9) SRB PWR ON V90X8343X

Step 4 -Deadfacing. The sequence next looks for 3.8 seconds to elapse since the feed line disconnect valves were commanded closed to allow them time to fully close before continuing. If a FAST SEP has been requested, the sequence bypasses the feed line valve closure delays. The sequence then resets the ET tumble system arm and fire flags, resets the ET DFI PWR ON command, and terminates the MPS signal conditioner's power-on commands to deadface the power interface before plate separation.

Monitor signal (a) below:
(a) FAST SEP FLAG

V90X8267X
If (a) is false and at least 1.5 seconds have not elapsed since the ET/UMB UNLATCH PIC ARM FLAG was set in Step 3a, return to Step 1.

If (a) is true or at least 1.5 seconds have elapsed since the ET/UMB UNLATCH PIC ARM FLAG was set, set outputs (1) through (6) false, set output (7) true, and return to Step 1.

(1)	ET TUMBLE SYS ARM FLAG	V90X8251X
(2)	ET TUMBLE SYS FIRE FLAG	V90X8252X
(3)	MPS SIG COND PWR 1 ON	V41K0075X
(4)	MPS SIG COND PWR 2 ON	V41K0076X
(5)	MPS SIG COND PWR 3 ON	V41K0077X
(6)	ET DFIPWR ONFLAG	V90X8255X
(7)	FLAGA	(INTERNAL)

Step 5 -- Automatic Separation Inhibit Checks. This step arms the ET/orbiter structural separation PIC's after a 5.5 -second time delay has elapsed, since the umbilical retract fire commands were issued to allow time for the LO_{2} and LH_{2} umbilical plates to retract and latch. If an RTLS abort has been requested, this time delay is reduced to 1.2 seconds as the separation cannot be delayed longer due to the buildup of dynamic pressure caused by entry. After an additional 1.5 -second delay for PIC charging, tests are made on some specific parameters to determine if separation can be performed safely with the automatic sequence. Parameters checked include roll, pitch, and yaw body rates and MPS feed line disconnect valve closed status. During RTLS aborts, angle of attack and sideslip angle are checked in addition to the other parameters. If any of these parameters fail to satisfy the predefined limits or if the MPS feed line disconnect valve is not closed, the crew is alerted and the sequence inhibits automatic separation from occurring. The crew may then elect to initiate the separation manually.

Monitor the following signal:
(a) RTLS ABORT DECLARED

V90X8637X
If (a) is true and at least 1.2 seconds have not elapsed since the ET/umbilical retract fire 1 and fire $2 / 3$ flags were set true, return to Step 1.

If (a) is true and 1.2 seconds have elapsed since the ET/umbilical retract fire 1 and fire $2 / 3$ flags were set true, set output (1) below true and proceed.

If (a) is true and at least 1.5 seconds have not elapsed since output (1) was set true, return to Step 1.

If (a) is true and at least 1.5 seconds have elapsed since output (1) was set true, set output (2) false and then monitor signals (b) through (j) and (bb) through (dd) listed below.

If $[(\mathrm{g})<(\mathrm{q})$ and $(\mathrm{g})>(\mathrm{r})]$ and $[(\mathrm{f})<(\mathrm{s})$ and $(\mathrm{f})>(\mathrm{t})]$ and $[(\mathrm{h})<(\mathrm{u})$ and $(\mathrm{h})>(\mathrm{v})]$ and $[(\mathrm{i})<(\mathrm{w})$ and (i) $>(\mathrm{x})]$ and $[(\mathrm{j})<(\mathrm{y})$ and $(\mathrm{j})>(\mathrm{z})]$ and [[(b) is true and (bb) is false] or [(c) is true
and (cc) is false]] and [[(d) is true and (bb) is false] or [(e) is true and (dd) is false]], proceed to Step 6. Otherwise set output (2) true to generate a CRT message line and a Class 3 alert light and tone, set output (3) false one time only, and proceed to Step 6.

If (a) is false and at least 5.5 seconds have not elapsed since the ET/umbilical retract fire $2 / 3$ flag was set true, return to Step 1.

If (a) is false and 5.5 seconds have elapsed since the ET/umbilical retract fire $2 / 3$ flag was set true, set output (1) below true and monitor flag (aa).

If (aa) is true, proceed to Step 7.
If (aa) is false and at least 1.5 seconds have not elapsed since ET/ORB STR SEPN PICS ARM FLAG was set true, return to Step 1; otherwise set output (2) false and then monitor signals (b) through (h), (k) through (p), and (bb) through (dd) listed below.

If [[(b) is true and (bb) is false] or [(c) is true and (cc) is false]] and [[(d) is true and (bb) is false] or [(e) is true and (dd) is false]] and if $[(\mathrm{g})<(\mathrm{k})$ and $(\mathrm{g})>(\mathrm{l})]$ and $[(\mathrm{f})<(\mathrm{m})$ and (f) $>$ $(\mathrm{n})]$ and $[(\mathrm{h})<(\mathrm{o})$ and $(\mathrm{h})>(\mathrm{p})]$, proceed to Step 6. Otherwise set output (2) true to generate a CRT message line and a Class 3 alert light and tone, set output (3) false one time only, and proceed to Step 6.

(b)	MPS LH ${ }_{2}$ FEED DISC VLV CLOSED A	V41X1430X
(c)	MPS LH ${ }_{2}$ FEED DISC VLV CLOSED B	V41X1434X
(d)	MPS LO2 2 FEED DISC VLV CLOSED A	V41X1530X
(e)	MPS LO 2 FEED DISC VLV CLOSED B	V41X1534X
(f)	SELECTED RGA ROLL RATE	V90R5301C
(g)	SELECTED RGA PITCH RATE	V90R5321C
(h)	SELECTED RGA YAW RATE	V90R5341C
(i)	NAV DERIVED ANGLE OF ATTACK	V90H2246C
(j)	INERTIAL SIDESLIP ANGLE	V90H2249C
(k)	NOM_BODY_PLUS_PITCH_RATE_LMT	V97U9762C
(1)	NOM_BODY_NEG_PITCH_RATE_LMT	V97U9763C
(m)	NOM_BODY_PLUS_ROLI_RATE_LMT	V97U9764C
(i)	NOM_BODY_NEG_ROLL_RATE_LMT	V97U9765C
(0)	NOM_BODY_PLUS_YAW_RATE_LMT	V97U9766C
(p)	NOM_BODY_NEG_YAW_RATE_LMT	V97U9767C
(q)	RTLS_BODY_PLUS_PITCH_RATE_LMT	V97U9768C
(r)	RTLS_BODY_NEG_PITCH_RATE_LMT	V97U9769C
(s)	RTLS_BODY_PLUS_ROLL_RATE_LMT	V97U9770C
(t)	RTLS_BODY_NEG_ROLL_RATE_LMT	V97U9771C
(u)	RTLS_BODY_PLUS_YAW_RATE_LMT	V97U9772C
(v)	RTLS_BODY_NEG_YAW_RATE_LMT	V97U9773C
(w)	RTLS_PLUS_ANGLE_OF_ATTK_LMT	V97U9774C
(x)	RTLS_NEG_ANGLE_OF_ATIK LMTT	V97U9775C
(y)	RTLS_PLUS_SIDESLIP_ANGLE_LMT	V97U9776C
(z)	RTLS_NEG_SIDESLIP_ANGLE_LMT	V97U9777C
(bb)	FA2 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2846X
(cc)	FA4 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2848X
(dd)	FA3 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2847X

(1)	ET/ORB STR SEPN PICS ARM FLAG	V90X8265X
(2) ET AUTO SEP INHIBIT CREW ALERT	V90X8259X	
(3) ET/ORB SEP CAMERAS ON CMD	V56K 9000 X	

Step 6 - Auto/Manual Separation Mode. The sequence now monitors the position of the auto/manual ET separation switch, via the GN\&C switch SOP, to determine what separation mode is to be employed. If the automatic mode is selected and none of the ET SEP inhibit test conditions failed, the sequence
proceeds with the structural separation. If any of the inhibit test conditions failed and an RTLS abort has not been requested, the sequence turns off the ET/ORB separation cameras to conserve film, but will not proceed until the test condition is satisfied or is manually overridden by the crew.

If an RTLS abort has been requested, the ET/ORB separation cameras are turned off and the sequence continues to test the automatic separation inhibits and monitor the SEP switches for 6 seconds. If the inhibit becomes satisfied within this time or the crew manually overrides, the separation is performed. If the separation inhibit is still present after 6 seconds, the sequence automatically bypasses the inhibit and performs the separation. The separation cannot be delayed longer due to the pressure buildup caused by entry.

In the manual separation mode, the sequence looks for the ET SEP MAN INITIATE FLAG, latched in software. If true, the structural separation is accomplished, bypassing the conditions that caused the automatic separation to be inhibited. If the ET SEP MAN INITIATE FLAG is false, the separation will not occur.

Monitor the following signals:

(a)	SEL ET SEP AUTO	V90X7554X
(b)	SEL ET SEP MNL ENABLE	V90X7556X
(c)	ET SEP MAN INITIATE FLAG	V90X8584X
(d)	RTLS ABORT DECLARED	V90X8637X
(e)	ET AUTO SEP INHIBIT CREW ALERT	V90X8259X

If (c) is true, proceed to Step 7.
If (c) is false and (a) is true and (e) is false, proceed to Step 7.
If (a) is true and (e) is true and (d) is false, or if (a) is true and (e) is true and (d) is true and 6 seconds have not elapsed since (e) first became true, set output (1) false, listed below, and return to Step 1.

If (a) is true and (e) is true and (d) is true and 6 seconds have elapsed since (e) first became true, proceed to Step 7.

If (b) is true and (c) is false, set output (1) false and return to Step 1.

(1) ET/ORB SEP CAMERAS ON CMD

V56K9000X
Step 7-ET Structural Separation. In this step, the sequence commands the ET/ORB separation cameras on to make certain they are on in the event that an automatic separation inhibit had caused them to be turned off previously. If an RTLS abort is not requested, a command is set for the Transition DAP to fire during structural separation to prevent possible recontact between the orbiter and ET.

The sequence then sets the ET/ORB structural separation fire 1 and $2 / 3$ flags for the MEC SOP and the ET separation command flag. This flag is a cue to other functions that the ET separation has occurred.

Monitor the following:
(a) RTLS ABORT DECLARED V90X8637X
(b) FAST SEP FLAG V90X8267X

If (a) or (b) is true, set outputs (2) through (5) true and return to Step 1.
If (a) and (b) are false, set outputs (1) and (6) listed below true and return to Step 1. On next pass through this logic set flags (2) through (5) true and return to Step 1.

(1)	SEP MINUS Z CMD	V90X8268X
(2)	ET/ORB SEP CAMERAS ON CMD	V56K9000X
(3)	ET/ORB STR SEPN FIRE 1 FLAG	V90X8244X
(4)	ET/ORB STR SEPN FIRE 2/3 FLAG	V90X8241X
(5)	ET SEPARATION CMD FLAG	V90X8250X
(6)	FIRE SEQUENCE FL	(INTERNAL)

Step 8 - ET Umbilical Doors Closure. This function is accomplished when either a manual ET umbilical door closure is required or an RTLS abort has been requested. In this mode, the umbilical door centerline latches are stowed, the umbilical doors are closed, and the umbilical doors are latched, all with the proper timing constraints.

If less than 2 seconds have elapsed since the structural separation fire $2 / 3$ flag was set true, return to Step 1.

If at least 2 seconds have elapsed since the structural separation fire $2 / 3$ flag was set true, set output commands (1) through (8) to true (STOW). Six seconds later:

Set output commands (9) through (16) true (ARM/CLOSE).
If 12 seconds have elapsed since the stow commands, (1) through (8), were set true, set output commands (1) through (8) false.

If 48 seconds have elapsed since output commands (9) through (16) were set true, set output commands (12) through (16) false, and set output commands (17) through (24) true (LATCH).

If 12 seconds have elapsed since output commands (17) through (24) were set true, set output commands (9) through (11) and (17) through (24) false and (25) true.

Proceed to Step 9.
$\begin{array}{lll}\text { (1) } & \text { ET DR CL LCH 1B1/2B2 FA1 STOW CMD } & \text { V56K1271X } \\ \text { (2) } & \text { ET DR CL LCH 1B2/2B1 FA1 STOW CMD } & \text { V56K1272X } \\ \text { (3) } & \text { ET DR CL LCH 1B1/2B2 FA2 STOW CMD } & \text { V56K1273X } \\ \text { (4) } & \text { ET DR CL LCH 1B2/2B1 FA2 STOW CMD } & \text { V56K1274X } \\ \text { (5) } & \text { ET DR CL LCH 1B1/2B2 FA4 STOW CMD } & \text { V56K1371X } \\ \text { (6) } & \text { ET DR CL LCH 1B2/2B1 FA4 STOW CMD } & \text { V56K1372X } \\ \text { (7) } & \text { ET DR CL LCH 1B1/2B2 FA3 STOW CMD } & \text { V56K1373X } \\ \text { (8) } & \text { ET DR CL LCH 1B2/2B1 FA3 STOW CMD } & \text { V56K1374X } \\ \text { (9) } & \text { ET DR DRV \& CL LCH DC ARM AMCA 1/2 } & \text { V56K0141X } \\ \text { (10) } & \text { ET DR DRV \& CL LCH DC ARM AMCA 1/3 } & \text { V56K0142X } \\ \text { (11) } & \text { ET DR DRV \& CL LCH DC ARM AMCA 2/3 } & \text { V56K0143X } \\ \text { (12) } & \text { ET UMB DR L-B2/R-B1 CLOSE CMD } & \text { V56K3111X } \\ \text { (13) } & \text { ET UMB DR R-B2 CLOSE CMD } & \text { V56K3112X } \\ \text { (14) } & \text { ET UMB DR R-B1/B2 CLOSE CMD } & \text { V56K4121X } \\ \text { (15) } & \text { ET UMB DR L-B1 CLOSE CMD } & \text { V56K4122X }\end{array}$

STS 83-0026D
OI-21
January 25, 1991

(16)	ET UMB DR L-B1/B2 CLOSE CMD	V56K0140X
(17)	ET L UMB COUT DOOR LATCH FA1 CMD	V56K3531X
(18)	ET R UMB COUT DOOR LATCH FA1 CMD	V56K3532X
(19)	ET L UMB COUT DOOR LATCH FA4 CMD	V56K3533X
(20)	ET R UMB COUT DOOR LATCH FA4 CMD	V56K3534X
(21)	ET L UMB COUT DOOR LATCH FA3 CMD	V56K4531X
(22)	ET R UMB COUT DOOR LATCH FA3 CMD	V56K4532X
(23)	ET L UMB COUT DOOR LATCH FA2 CMD	V56K4533X
(24) ET R UMB COUT DOOR LATCH FA2 CMD	V56K4534X	
(25)	MEC 1 \& 2 MASTER RESET FLAG	V90X8258X

Step 9 - MPS Feed Line Disconnect Valve Command Cleanup. This step terminates unneeded feed line disconnect latch unlock commands. The ET SEP sequence is then terminated.

Set outputs (1) through (6) false and deschedule the ET SEP sequence.
(1) LO_{2} FDLN DISC LATCH UNLOCK CMD A

V41K1884X
(2) LO_{2} FDLN DISC LATCH UNLOCK CMD B

V41K1885X
(3) LO_{2} FDLN DISC LATCH UNLOCK CMD C

V41K1886X
(4) LH_{2} FDLN DISC LATCH UNLOCK CMD A

V41K1984X
(5) LH_{2} FDLN DISC LATCH UNLOCK CMD B

V41K1985X
(6) LH_{2} FDLN DISC LATCH UNLOCK CMD C

V41K1986X

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 1 of 8)

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 2 of 8)

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 3 of 8)

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 4 of 8)

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 5 of 8)

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 6 of 8)

Figure 4.116 External Tank Separation Sequence Logic Flow Diagram (Sheet 7 of 8)

INFORMATION ONLY

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 8 of 8)

THIS PAGE INTENTIONALLY LEFT BLANK
TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

 MSC

MSC
SE
DEG/S
DEG/S
DEG/S

TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4．2．3．4－1．EXTERNAL TANK（ET）SEPARATION SEQUENCER（G4．116）INPUT／OUTPUT FUNCTIONAL PARAMETERS
的的国 0

㽞

 ${ }^{\text {閣㫨 }}$

NOMENCLATURE
00049P00L
M／S ID

 V5 6 K
V5 4121 X
ET UMB
V5 5 K 4122 DR R－B1／B2 CLOSE
ET UMB DR LI－B1 CLOSE CMD

暤

DBEN：D3B027－E

TABLE 4.2.3.4-2. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) I-LOADS
FDLN_DISC_LATCH_INSTALLED_FLAG V99U9951C ND D D C G4.116 MES2

Rockwell International
Space Systems Division
TABLE 4.2.3.4-3. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) K-LOADS DBEN: 0558 FSSR NAME
DESCRIPTION NOM_BODY_NEG_PITCH_RATE_LMT
NOM_BODY_NEG_ROLL_RATE_LMT
NOM_BODY_NEG_YAW_RATE_LMT
NOM_BODY_PLUS_PITCH_RATE_LMT
NOM_BODY_PLUS_ROLL_RATE_LMT
NOM_BODY_PLUS_YAW_RATE_LMT
RTLS_BODY_NEG_PITCH_RATE_LMT
RTLS_BODY_NEG_ROLL_RATE_LMT
RTLS_BODY_NEG_YAW_RATE_LMT
RTLS_BODY_PLUS_PITCH_RATE_LMT
RTLS_BODY_PLUS_ROLL_RATE_LMT
RTLS_BODY_PLUS_YAW_RATE_LMT
RTLS_NEG_ANGLE_OF_ATTK_LMT
RTLS_NEG_SIDESLTP_ANGLE_LMT
RTLS_PLUS_ANGLE_OF_ATTK_LMT
RTLS_PLUS_SIDESLIP_ANGLE_LMT
TABLE 4.2.3.4-4. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) CONSTANTS

rSSR NAME DESCRIPTION	MSID	MC	CONSTANT	VALUE	ENG	UNIT	DT	PR	S	PR FCTN	LAST	

4.2.4 MPS Dump Sequence (4.70)

4.2.4.1 Introduction

The MPS dump sequence performs the function of expelling the LO_{2} and LH_{2} contained in the orbiter and SSME LO_{2} and LH_{2} main feed lines.

For the nominal mission, this sequence commences automatically at the initiation of OMS-1 burn. The crew, however, has the capability to manually initiate, through the GPC, and control dump intervals for both the LO_{2} and LH_{2} propellants after MECO confirmed +20 seconds. If the sequence is activated manually during a transatlantic abort landing (TAL) mode, the LH_{2} dump time I-load is set to 30 seconds.
For RTLS, the MPS dump sequence will automatically initiate and control LO_{2} and LH_{2} line propellant dump after the transition to Major Mode 602. During a TAL abort mode, the LO_{2} and LH_{2} dump will be terminated after expiration of the TAL abort $\mathrm{LH}_{2} 30$-second dump time.

4.2.4.2 Overview

The MPS dump sequence is initiated by the GNC moding, sequencing, and control (MSC) function. For non-RTLS modes, the sequence is scheduled when MECO confirmed +20 seconds has occurred. In an RTLS abort mode, the sequence is initiated by the transition to Major Mode 602.

The OMS-1 burn is the normal cue to start actual MPS dumping. This burn produces the required ullage for the predefined dump time intervals needed to expel the residual LH_{2} and LO_{2} in the engine supply lines. Manual activation of this sequence may occur after MECO confirmed plus a 20 -second time interval required for engine cool-down prior to actual LO_{2} dump.

Regardless of sequence entry, i.e., automatically (nominal or RTLS) or manually, the following seven subfunctions occur:

1. Start LO_{2} dump. The automatic LO_{2} dump start is a GPC command initiated at OMS insertion burn or RTLS mode activation.

Manual LO_{2} dump start may be initiated by placing the MPS propellant dump sequence switch on the $D \& C$ panel, R2, to the START position. In either the automatic or manual position, the GPC command requests the engine controllers to open the $S S M E L O_{2}$ valves, open the LO_{2} manifold repressurization valves, and open the LO_{2} prevalves. During an RTLS abort, the LO_{2} prevalves and SSME LO_{2} valves are opened at MM 602 transition. During these aborts, the LO_{2} manifold is not pressurized and LO_{2} is allowed to boil out. The LO_{2} inboard and outboard fill/ drain valves are opened at a dynamic pressure of 20 lb per ft^{2}.
2. Stop LO_{2} dump. The LO_{2} dump stop command is initiated by either time or panel switch position. For the non-RTLS automatic dump sequence, the expiration of a preset time delay initiates dump stop. This time delay will be I-loadable.
The RTLS LO_{2} and LH_{2} dump will be terminated at a ground relative velocity of $3,800 \mathrm{ft} / \mathrm{sec}$. At this time, the LO_{2} outboard fill/drain valves and LO_{2} prevalves are closed and the LO_{2} manifold is pressurized.

During a TAL abort, the LO_{2} and LH_{2} dump will be terminated after expiration of the TAL abort 30 -second dump time.

The manual initiation of the dump stop is via the MPS propellant dump sequence switch on $\mathrm{D} \& \mathrm{C}$ Panel R2. Placing the switch in the STOP position will initiate the LO_{2} dump stop command 32 seconds after expiration of LH_{2} dump timer. In the automatic non-RTLS mode or manual mode, the GPC dump stop command closes the LO_{2} manifold repressurization valves, allows 20 seconds for manifold pressure to decay, and terminates the LO_{2} prevalve open commands, leaving the LO_{2} prevalves open. During a TAL abort, the 20 -second pressure-decay timer is bypassed.
3. Start LH_{2} dump. The non-RTLS LH_{2} dump starts concurrently with the LO_{2} at OMS insertion burn or at manual mode LO_{2} dump initiation. In the manual mode, the dump is initiated by the MPS propellant dump sequence switch on Panel R 2 . The LH_{2} dump consists of opening the LH_{2} manifold repressurization valves and the LH_{2} inboard and outboard fill and drain valves. LH_{2} is forced out of the LH_{2} inboard and outboard fill and drain valves by the helium pressure in the manifold. At a pre-established time, the LH_{2} inboard fill and drain valve is closed, and the LH_{2} topping valve and prevalves are opened. LH_{2} is forced out of the LH_{2} outboard fill and drain valve via the SSME bleed valves, prevalves, and topping valve by the helium pressure in the manifold.

The LH_{2} may be vented through the RTLS dump valves and is controlled by the MPS propellant dump backup LH_{2} valve switch on Panel $\mathbb{R} 2$. This causes the LH_{2} to be vented overboard through an opening on the left side between the wing and OMS pod.

The LH_{2} dump start for the RTLS mode commences concurrently with the LO_{2} dump, automatically at MM 602 transition. The LH_{2} dump consists of opening RTLS dump valves and RTLS manifold repressurization valves. This causes the LH_{2} to be dumped overboard through an opening on the left side between the wing and OMS pod. The LH_{2} RTLS dump occurs while the LO_{2} is being dumped through the SSME 's and the LO_{2} inboard and outboard fill/ drain valves. At MM 602 plus 80 seconds, the LH_{2} RTLS manifold is depressurized. The LH_{2} topping valve and inboard and outboard fill/drain valves are opened.
4. Stop LH_{2} dump. For the automatic non-RTLS mode, the LH_{2} dump command is initiated by the GPC at a preset time delay from the start of LH_{2} dump. The manual MPS propellant dump backup LH_{2} valve switch on $\mathrm{D} \& \mathrm{C}$ Panel R 2 terminates the RTLS inboard and outboard dump valve commands. The GPC command closes the LH_{2} manifold repressurization valves, and allows 32 seconds for LO_{2} to vent, then issues the LH_{2} outboard fill/drain valve close command. During a TAL abort, the 32 -second LH_{2} vent timer is bypassed. The GPC then commands the LH_{2} prevalves de-energized, leaving the LH_{2} prevalves open.

The LH_{2} RTLS dump stop is automatically initiated upon reaching a ground relative velocity of $3,800 \mathrm{ft} / \mathrm{sec}$. At this velocity, the LH_{2} outboard fill/drain valve is closed and the LH_{2} manifold is pressurized.
5. Gimbal SSME's. The SSME's are GPC commanded to the stow position at the conclusion of the MPS propellant dump sequence. In the RTLS mode, the SSME's are left in the stow position throughout the sequence.
6. MPS deactivation. The MPS deactivation is initiated after the SSME nozzles have been commanded to the stow position via setting of the entry stow gimbal position flag.
7. Vacuum inerting and repressurization. The vacuum inerting is manually initiated and manually controlled requiring no GPC commands. The vacuum inerting is initiated anytime
post-MPS dump to vent the MPS manifolds and feed lines. This allows any residual H 2 and O 2 gases to disperse in space. The MPS manifolds and feed lines are automatically repressurized, prior to entry, to avoid ingress of contaminants.
8. During an RTLS contingency abort (invoked by taking the dump sequence switch to the START position), the LO_{2} dump is inhibited and a 20 second unpressurized LH_{2} venting is performed via the LH_{2} RTLS dump valves and the LH_{2} inboard and outboard fill/drain valves.

4.2.4.3 Detailed Requirements

Step 1. This step controls initial branching within the MPS dump sequence. On first entry, set outputs (4) through (7) true.

Monitor the following signal:
(a) RTLS ABORT DECLARED

V90X8637X
If (a) is true, proceed to Step 2.
If (a) is false, monitor signals (f) and (g) below.
If (g) is false and (f) is true, set outputs (9) through (14) below true and monitor signals (b) and (h) below.

If (f) is false and (g) is true, set outputs (9) through (14) below false and monitor signals (b) and (h) below.

If (f) and (g) are false, monitor signals (b) and (h) below.
(b) NOMLO_{2} DUMP COMPLETE FLAG
(INTERNAL)
If (b) is true, set outputs (1) and (2) false; and if (h) is true proceed to Step 6.
If (b) is true, set outputs (1) and (2) false; and if (h) is false, repeat the logic in Step 1 until a 20 -second time delay elapses. This 20 -second time delay is to allow the LO_{2} manifold to bleed down. Upon expiration of the time delay, proceed to Step 6. During a TAL abort, the 20 -second LO_{2} manifold bleed-down time is bypassed.

If (b) is false, monitor signals (c), (d), and (e) below:
(c) SEL MPS PRPLT DUMP SEQUENCE STOP V90X7567X
(d) SEL MPS PRPLT DUMP SEQUENCE START V90X7559X
(e) MPS LO 2 DUMP START V90X8301X
(f) SEL MPS PRPLT DUMP BKUP LH ${ }_{2}$ VLV OPEN V90X7557X
(g) SEL MPS PRPLT DUMP BKUP LH ${ }_{2}$ VLV CLOSE V90X7558X
(h) TAL ABORT DECLARED V90X8658X

If (c) is true and (e) has ever been set true, set output (3) true and return to Step 1.
If (c) is true and (e) has never been set true, the crew has elected to inhibit the sequence. The logic in Step 1 is repeated.

If (c) is false and (d) is false, the GPC mode has been selected. Proceed to Step 3.
If (d) is true and (h) is false, proceed to Step 4.
If (d) and (h) are both true, then on first pass, set (8) below to 30 seconds and return to Step 1. On subsequent passes, proceed to Step 4.

(1)	MPS LO 2_{2} MANF REPRESS NO. 1 OPEN CMD	V41K1535X
(2)	MPS LO_{2} MANF REPRESS NO. 2 OPEN CMD	V41K1537X
(3)	NOM LO ${ }_{2}$ DUMP COMPLETE FLAG	(INTERNAL)
(4)	MPS E1 HE INTCON OUT/OPEN CMDS A	V41K1168X
(5)	MPS E2 HE INTCON OUT/OPEN CMDS A	V41K1268X
(6)	MPS E3 HE INTCON OUT/OPEN CMDS A	V41K1368X
(7)	MPS PNEU CROSSOVER NO. 2 OPEN CMD	V41K1613X
(8)	LH2_DUMP_TIME	V97U9779 C
(9)	MPS LH2 2 RTLS INBD D/V OPEN CMD A	V41K1923X
(10)	MPS LH2 L_{2} RTLS INBD D/V OPEN CMD B	V41K1924X
(11)	MPS LH ${ }_{2}$ RTLS INBD D/V OPEN CMD C	V41K1925X
(12)	MPS LH ${ }_{2}$ RTLS OTBD D/V OPEN CMD A	V41K1913X
(13)	MPS LH2 RTLS OTBD D/V OPEN CMD B	V41K1914X
(14)	MPS LH ${ }_{2}$ RTLS OTBD D/V OPEN CMD C	V41K1915X

Step 2. This step controls entry into the RTLS abort LO_{2} and LH_{2} dump mode. GPC or manual, control logic is bypassed.
On the first pass through the logic in this step, set outputs (3) and (4) false and set outputs (5) through (16) true, start timer (b), and then monitor signal (a). On subsequent passes through the logic monitor signal (a).
(a) GN\&C DYNAMIC PRESSURE

V95P3011C
(b) LH ${ }_{2}$ FILL_DRAIN_VALVE_OP_TIME_DLY (80 seconds)
(INTERNAL)
(c) GND REL VEL MAGNITUDE IN M50 SYS V95L0151C
(d) SEL MPS PRPLT DUMP SEQUENCE START V90X7559X
(e) LH2_CONTINGENCY_DUMP_TIME (20 seconds)
(INTERNAL)
If (a) $\geq 20 \mathrm{lb} / \mathrm{ft}^{2}$, and (d) is false on first pass, set outputs (1) and (2) false, set outputs (17) through (19) true, then proceed to monitor (b) and (d); otherwise monitor (b) and (d).
If (b) seconds have elapsed since starting timer (b) or (d) is true, on first pass, set outputs (11) through (16) false, set outputs (20) through (23) true, then monitor signal (c); otherwise monitor signal (c).
If (c) $\leq 4,500 \mathrm{ft} / \mathrm{sec}$, on first pass, proceed to Step 12A; otherwise monitor (c), (d) and (e).
If $((\mathrm{c}) \leq 3,800 \mathrm{ft} / \mathrm{sec}$ and (d) is false) or ((d) is true and (e) seconds have elapsed since starting timer (e)), set outputs (5) through (10), (17), and (20) false; set outputs (2), (4), and (24) through (27) true; and proceed to Step 6. Otherwise monitor (d).
If (d) is true, proceed to Step 11. If (d) is false, proceed to Step 4.
(1) $\mathrm{MPS} \mathrm{LO}_{2}$ INBD FILL VALVE CLOSE CMD

V41K1512X
(2) MPS LO_{2} OTBD FILL VALVE CLOSE CMD

V41K1515X
(3) $\mathrm{MPS} \mathrm{LH}_{2}$ INBD FILL VALVE CLOSE CMD

V41K1412X

(4)	MPS LH2 OTBD FILL VALVE CLOSE CMD	V41K1393X
(5)	MPS LH2 ${ }_{2}$ RTLS INBD D/V OPEN CMD A	V41K1923X
(6)	MPS LH 2 RTLS INBD D/V OPEN CMD B	V41K1924X
(7)	MPS LH2 RTLS INBD D/V OPEN CMD C	V41K1925X
(8)	MPS LH ${ }_{2}$ RTLS OTBD D/V OPEN CMD A	V41K1913X
(9)	MPS LH 2 RTLS OTBD D/V OPEN CMD B	V41K1914X
(10)	MPS LH ${ }_{2}$ RTLS OTBD D/V OPEN CMD C	V41K1915X
(11)	LH_{2} RTLS MANF REPRESS 1 OPEN CMD A	V41K1905X
(12)	LH2 RTLS MANF REPRESS 2 OPEN CMD A	V41K1906X
(13)	LH_{2} RTLS MANF REPRESS 1 OPEN CMD B	V41K1907X
(14)	LH2 RTLS MANF REPRESS 2 OPEN CMD B	V41K1908X
(15)	LH ${ }_{2}$ RTLS MANF REPRESS 1 OPEN CMD C	V41K1909X
(16)	LH2 RTLS MANF REPRESS 2 OPEN CMD C	V41K1910X
(17)	MPS LO_{2} OTBD FILL VALVE OPEN CMD	V41K1518X
(18)	MPS LO_{2} INBD FILL VALVE OPEN CMD A	V41K1501X
(19)	MPS LO_{2} INBD FILL VALVE OPEN CMD B	V41K1502X
(20)	MPS LH_{2} OUTBD FILL VALVE OPEN CMD	V41K1391X
(21)	MPS LH2 INBD FILL VALVE OPEN CMD A	V41K1401X
(22)	MPS LH_{2} INBD FILL VALVE OPEN CMD B	V41K1402X
(23)	MPS LH_{2} TOPPING VALVE OPEN CMD	V41K1411X
(24)	MPS LH ${ }_{2}$ MANF REPRESS NO. 1 OPEN CMD	V41K1435X
(25)	MPS LH ${ }_{2}$ MANF REPRESS NO. 2 OPEN CMD	V41K1437X
(26)	MPS LO ${ }_{2}$ MANF REPRESS NO. 1 OPEN CMD	V41K1535X
(27)	MPS LO 2 MANF REPRESS NO. 2 OPEN CMD	V41K1537X

Step 3. This step monitors for the start of the OMS burn. The OMS burn provides the propellant settling for the nominal MPS dump. The automatic LO_{2} dump continues for LO_{2} DUMP TIME seconds (K -load). This time interval controls the LO_{2} dump duration as long as the cockpit switch remains in the GPC position. If the switch is placed in the START position, the LO_{2} dump continues until the switch is placed in the STOP position, per Step 1. If the LO_{2} dump is initiated in the START position, but the switch is moved to the GPC position before LO_{2} DUMP TIME seconds have elapsed, then the LO_{2} dump will be terminated at the expiration of the LO_{2} DUMP TIME.

Monitor the following signal:
(a) OMS IGNITION COMMAND FLAG V90X8190X

If (a) is false, monitor signals (b) and (c) listed below:
(b) OMS 1 BURN FLAG
(INTERNAL)
(c) LO_{2} DUMP_TIME

V97U9778C
If (b) is false, return to Step 1.
If (b) is true and (c) seconds have not elapsed since output (3) below became true, proceed to Step 4.

If (b) is true and (c) seconds have elapsed since output (3) below became true, set output (2) true and return to Step 1.
(1) OMS 1 BURN FLAG
(INTERNAL)

Step 4. This step opens the LO_{2} prevalves for the three main engines and issues the LO_{2} dump start command to the engine controllers.

Issue the following outputs (1) through (12), then set (13) true and proceed to Step 5.
(1) MPS E-1 LO 2 PREVALVE OPEN CMD A

V41K1136X
(2) MPS E-1 LO L_{2} PREVALVE OPEN CMD B V41K1137X
(3) MPS E-1 LO 2 PREVALVE OPEN CMD C V41K.1138X
(4) MPS E-1 LO 2 PREVALVE OPEN CMD D V41K1143X
(5) MPS E-2 LO 2 PREVALVE OPEN CMD A V41K1236X
(6) MPS E-2 LO 2 PREVALVE OPEN CMD B V41K1237X
(7) MPS E-2 LO_{2} PREVALVE OPEN CMD C V41K1238X
(8) MPS E-2 LO 2 PREVALVE OPEN CMD D V41K1243X
(9) MPS E-3 LO 2 PREVALVE OPEN CMD A V41K1336X
(10) MPS E-3 LO O_{2} PREVALVE OPEN CMD B V41K1337X
(11) MPS E-3 LO 2 PREVALVE OPEN CMD C V41K1338X
(12) MPS E-3 LO ${ }_{2}$ PREVALVE OPEN CMD D V41K1343X
(13) MPS LO L_{2} DUMP START

V90X8301X

Step 5. This step turns on the LO_{2} manifold helium pressure for the LO_{2} dump if an RTLS abort has not been requested, and the sequence proceeds to the LH_{2} dump start logic. If an RTLS abort has been requested, the sequence proceeds to the LH_{2} prevalve control logic.
(a) RTLS ABORT DECLARED

V90X8637X

If (a) is true, proceed to Step 11.
If (a) is false, set outputs (1) and (2) below true and proceed to Step 8.
(1) MPS-LO O_{2} MANF REPRESS NO. 1 OPEN CMD V41K1535X
(2) MPS-LO 2 MANF REPRESS NO. 2 OPEN CMD V41K1537X

Step 6. This step controls the termination of the LO_{2} dump.
Set outputs (1) through (13), listed below, false and proceed to Step 7.
(1) MPS E-1 LO 2 PREVALVE OPEN CMD A

V41K1136X
(2) MPS E-1 LO 2 PREVALVE OPEN CMD B
(3) MPS E-1 LO L_{2} PREVALVE OPEN CMD C

V41K1137X
(4) MPS E-1 LO 2 PREVALVE OPEN CMD D
(5) MPS E-2 LO O_{2} PREVALVE OPEN CMD A
(6) MPS E-2 LO 2 PREVALVE OPEN CMD B
(7) MPS E-2 LO_{2} PREVALVE OPEN CMD C
(8) MPS E-2 LO 2 PREVALVE OPEN CMD D
(9) MPS E-3 LO 2 PREVALVE OPEN CMD A
(10) MPS E-3 LO 2 PREVALVE OPEN CMD B
(11) MPS E-3 LO 2 PREVALVE OPEN CMD C
(12) MPS E-3 LO 2 PREVALVE OPEN CMD D

V41K1138X
V41K1143X
V41K1236X
V41K1237X
V41K1338K
V41K1243X
V41K1336X
V41K1337X
V41K1338X
V41K1343X

Step 7. This step controls termination of the $\mathrm{RTLS} \mathrm{LH}_{2}$ dump mode and closes the LO_{2} prevalves during an RTLS abort. If RTLS is not declared, the sequence proceeds to monitoring of the LH_{2} dump timer logic.

Monitor the following signal:
(a) RTLS ABORT DECLARED

V90X8637X
If (a) is false, proceed to Step 8.
If (a) is true, on first pass, set outputs (1) through (12) true and monitor for a 2 -second time delay to elapse since setting outputs (1) through (12) true.

If the 2 -second time delay has not elapsed, proceed to Step 12a.
If the 2 -second time delay has elapsed, set outputs (1) through (12) false and proceed to Step 12.

(1)	MPS E-1 LO_{2} PREVALVE CLOSE CMD A	V41K1139X
(2)	MPS E-1 LO_{2} PREVALVE CLOSE CMD B	V41K1140X
(3)	MPS E- LO_{2} PREVALVE CLOSE CMD C	V41K1141X
(4)	MPS E-1 LO_{2} PREVALVE CLOSE CMD D	V41K1142X
(5)	MPS E-2 LO_{2} PREVALVE CLOSE CMD A	V41K1239X
(6)	MPS E-2 LO_{2} PREVALVE CLOSE CMD B	V41K1240X
(7)	MPS E-2 LO_{2} PREVALVE CLOSE CMD C	V41K1241X
(8)	MPS E-2 LO_{2} PREVALVE CLOSE CMD D	V41K1242X
(9)	MPS E-3 LO_{2} PREVALVE CLOSE CMD A	V41K1339X
(10)	MPS E-3 LO_{2} PREVALVE CLOSE CMD B	V41K1340X
(11)	MPS E- LO_{2} PREVALVE CLOSE CMD C	V41K1341X
(12)	MPS E-3 LO_{2} PREVALVE CLOSE CMD D	V41K1342X

Step 8. This step controls the initiation and termination of the LH_{2} dump. The nominal time interval for the dump, LH_{2} dump time (K -load). This step pressurizes the LH_{2} feed lines and opens the LH_{2} inboard and outboard fill and drain valves.

Monitor the following:
(a) LH_{2} DUMP_TIME

V97U9779C
If (a) seconds have not elapsed since output (1) below was first set true, on first pass set outputs (7) and (8) false, set outputs (1) through (6) true, and return to Step 1.

If (a) seconds have elapsed since output (1) below was first set true, set outputs (2) and (3) false and proceed to Step 10.

If (a) seconds have not elapsed since output (1) below was first set true, proceed to Step 9.
(1) MPS-LH2 FILL_{2} DRAIN DUMP START
(INTERNAL)
(2) MPS- LH_{2} MANF REPRESS NO. 1 OPEN CMD
(3) MPS-LH H_{2} MANF REPRESS NO. 2 OPEN CMD
(4) MPS-LH2 OTBD FILL VALVE OPEN CMD
(5) MPS-LH2 INBD FILL VALVE OPEN CMD A
(6) MPS-LH2 INBD FILL VALVE OPEN CMD B
(7) MPS-LH ${ }_{2}$ OTBD FILL VALVE CLOSE CMD

V41K1437X
V41K1391X
V41K1401X
V41K1402X
V41K1393X
V41K1412X

Step 9. This step allows 6 seconds for the LH_{2} to be dumped through the LH_{2} inboard and outboard fill and drain valves. After 6 seconds, the LH_{2} inboard fill and drain valve is closed and the LH_{2} topping valve is opened. LH_{2} continues to be dumped through the LH_{2} outboard fill and drain valve via the LH_{2} topping valve and SSME bleed valves.
Monitor for a 6 -second time delay to elapse since output (5) below was set true.
If the 6 -second time delay has not elapsed, return to Step 1.
If the 6 -second time delay has elapsed, set outputs (1) and (2) false, set outputs (3) and (4) true, and proceed to Step 11.

(1)	MPS-LH2 ${ }^{\text {INBD }}$ FILL VALVE OPEN CMD A	V41K1401X
(2)	MPS-LH2 ${ }_{2}$ INBD FILL VALVE OPEN CMD B	V41K1402X
(3)	MPS-LH2 ${ }_{2}$ INBD FILL VALVE CLOSE CMD	V41K1412X
(4)	MPS-LH2 ${ }_{2}$ TOPPING VALVE OPEN CMD	V41K1411X
(5)	MPS-LH2 ${ }_{2}$ FILL/DRAIN DUMP START	(INTERNAL)

Step 10. This step allows 32 seconds for the LH_{2} feed line to become depressurized and LH_{2} to vent after the LH_{2} dump time has elapsed. The LH_{2} topping valve and outboard fill and drain valve are closed after expiration of the 32 -second timer. During a TAL abort, the 32 -second LH_{2} vent timer is bypassed.

If (a) below is false and if 32 seconds have not elapsed since the LH_{2} DUMP TIME time delay in Step 8 elapsed, return to Step 1.
If (a) below is true or if 32 seconds have elapsed since the LH_{2} DUMP TIME time delay in Step 8 elapsed and if first pass, set (4) below true and return to Step 1; if not first pass, set outputs (1) and (2) below false, set outputs (3) below true, and proceed to Step 12.
(a) TAL ABORT DECLARED
(1) MPS-LH ${ }_{2}$ OUTBD FILL VALVE OPEN CMD
(2) MPS-LH ${ }_{2}$ TOPPING VLV OPEN CMD

V90X8658X
(3) MPS-LH2 OUTBD FILL VALVE CLOSE CMD

V41K1391X
V41K1411X
(4) $\mathrm{NOM} \mathrm{LO}_{2}$ DUMIP COMPLETE FLAG $^{\text {P }}$

Step 11. This step opens the LH_{2} prevalves for the three raain engines.
Issue the following outputs (1) through (9), then return to Step 1.
(1) MPS E-1 LH_{2} PREVALVE OPEN CMD A
(2) MPS E-1 LH2 PREVALVE OPEN CMD B
(3) MPS E-1 LH_{2} PREVALVE OPEN CMD C
(4) MPS E-2 LH_{2} PREVALVE OPEN CMD A
(5) MPS E-2 LH_{2} PREVALVE OPEN CMD B

V41K1119X
V41K1120X
V41K1121X
V41K1219X
V41K1220X

(6)	MPS E-2 LH 2 PREVALVE OPEN CMD C	V41K 1221 X
(7)	MPS E-3 LH2 PREVALVE OPEN CMD A	V41K1319X
(8)	MPS E-3 LH2 PREVALVE OPEN CMD B	V41K 1320 X
(9)	MPS E-3 LH2 PREVALVE OPEN CMD C	V41K 1321 X

Step 12. This step de-energizes a portion of the MPS.
Set outputs (1) and (51) true, set outputs (2) through (18), (20), and (22) through (50) false. Ten seconds later, set outputs (19) and (21) false and proceed to Step 12A. If 10 seconds have not elapsed since output (1) set true, proceed to Step 12A.
(1) ENTRY STOW GIMBAL POS FLAG
(2) MPS E-1 LH2 PREVALVE OPEN CMD A
(3) MPS E- $1 \mathrm{LH}_{2}$ PREVALVE OPEN CMD B
(4) MPS E-1 LH_{2} PREVALVE OPEN CMD C
(5) MPS E-2 LH2 PREVALVE OPEN CMD A
(6) MPS E-2 LH_{2} PREVALVE OPEN CMD B
(7) MPS E-2 LH_{2} PREVALVE OPEN CMD C
(8) MPS E-3 LH_{2} PREVALVE OPEN CMD A
(9) MPS E-3 LH_{2} PREVALVE OPEN CMD B
(10) MPS E-3 LH_{2} PREVALVE OPEN CMD C
(11) MPS LO 2 FEED DISC VALVE CL CMD A
(12) $\mathrm{MPS}_{2} \mathrm{LO}_{2}$ FEED DISC VALVE CL CMD B
(13) $\mathrm{MPS} \mathrm{LO}_{2}$ FEED DISC VALVE CL CMD C
(14) MPS LH2 FEED DISC VALVE CL CMD A
(15) MPS LH H_{2} FEED DISC VALVE CL CMD B
(16) MPS LH ${ }_{2}$ FEED DISC VALVE CL CMD C
(17) MPS LH_{2} RECIRC DISC VLV CLOSE CMD
(18) $\mathrm{MPS}_{\mathrm{LO}}^{2}$ INBD FILL VALVE CLOSE CMD

V90X8254X
V41K1119X
V41K1120X
V41K1121X
V41K1219X
V41K1220X
V41K1221X
V41K1319X
V41K1320X
V41K1321X
V41K1524X
V41K1525X
V41K1526X
V41K1416X
V41K1417X
V41K1418X
V41K1422X
V41K1512X
(19) MPS LO_{2} OTBD FILL VALVE CLOSE CMD
(20) $\mathrm{MPS}^{\mathrm{LH}} \mathrm{H}_{2}$ INBD FILL VALVE CLOSE CMD
(21) MPS LH_{2} OTBD FILL VALVE CLOSE CMD
(22) REPLACE LH H_{2} ULLAGE PRESS 1 XDCR
(23) REPLACE LH H_{2} ULLAGE PRESS 2 XDCR
(24) REPLACE LH H_{2} ULLAGE PRESS 3 XDCR

V41K1515X
V41K1412X
V41K1393X
V41K1700X
V41K1701X
V41K1702X
(25) REPLACE LO_{2} ULLAGE PRESS 1 XDCR
(26) REPLACE LO_{2} ULLAGE PRESS 2 XDCR
(27) REPLACE LO 2_{2} ULLAGE PRESS 3 XDCR
(28) ET/ORB SEP CAMERAS ON CMD
(29) ET/ORB SEP CAMERAS HTRS ON CMD
(30) MPS LO ${ }_{2}$ OVERBOARD B/V CLOSE CMD A

V41K1750X
V41K1751X
V41K1752X
V56K9000X
V56K9010X
(31) MPS LO

V41K1584X
(31) MPS LO ${ }_{2}$ OVERBOARD B/V CLOSE CMD B V41K1585X
(32) MPS LO 2_{2} OVERBOARD B/V CLOSE CMD C V41K1586X
(33) MPS E-1 LH_{2} PREVALVE CLOSE CMD A
(34) MPS E-1 LH2 PREVALVE CLOSE CMD B

V41K1123X

NOTE: There are two sets of four transducers that are utilized for ullage pressure sensing; one set for LO_{2} and one set for LH_{2}. Operationally, only three in each set are energized. If one of the three operational transducers fails, the fourth transducer can be switched in via the energization of a relay. For example, if ullage pressure 2 XDCR fails, issuance of the replace ullage pressure 2 XDCR command will cause energization of a relay, causing ullage pressure 4 XDCR to replace ullage pressure 2 XDCR . The termination of the replace commands causes the de-energization of a relay in the event a failure had occurred.

Step 12A - RTLS Helium Purge and MPS Dump Sequence Termination. This step provides for a helium purge of the aft compartment, OMS pod and ET UMb cavity for an RTLS abort after the MPS dump is complete. It also de-energizes the remainder of the MPS and terminates the sequence.

Monitor the following:

(a) RTLS ABORT DECLARED

V90X8637X
(b) GND REL VEL MAGNITUDE IN M50 SYS

V95L0151C
(c) HE_PURGE_VEL
(d) HE_PURGE_TIME

If (a) is false, set outputs (3) through (17) false and return to Step 1.
If (a) is true and $(\mathrm{b})>(\mathrm{c})(\mathrm{ft} / \mathrm{sec})$, return to Step 1.
On the first pass that (a) is true and (b) \leq (c) ($\mathrm{ft} / \mathrm{sec}$), set outputs (1) and (2) true, start the timer for (d), and return to Step 1.

On subsequent passes, if (d) seconds have not elapsed since outputs (1) and (2) were set true, return to Step 1.

When (d) seconds have elapsed since outputs (1) and (2) were set true, then set outputs (1) through (17) false and deschedule the MPS dump sequence.
(1) MPS HE SPLY BLOWDOWN NO. 1 OPEN CMD V41K1631X
(2) MPS HE SPLY BLOWDOWN NO. 2 OPEN CMD V41K1633X
(3) MPS E1 HE INTCON OUT/OPEN CMD A
(4) MPS E2 HE INTCON OUT/OPEN CMD A
(5) MPS E3 HE INTCON OUT/OPEN CMD A
(6) MPS PNEU CROSSOVER NO. 2 OPEN CMD
(7) MPS PNEU VLV HE ISLN NO. 1 OP CMD
(8) MPS PNEU VLV HE ISLN NO. 2 OP CMD

V41K1168X
V41K1268X
V41K1368X
V41K1613X
(8) V41K1608X
(9) MPS E-2 HELIUM SUPPLY B OPEN CMD A V41K1256X
(10) MPS E-2 HELIUM SUPPLY B OPEN CMD B V41K1257X
(11) MPS E-2 HELIUM SUPPLY A OPEN CMD V41K1255X
(12) MPS E-1 HELIUM SUPPLY B OPEN CMD A V41K1156X
(13) MPS E-1 HELIUM SUPPLY B OPEN CMD B V41K1157X
(14) MPS E-1 HELIUM SUPPLY A OPEN CMD V41K1155X
(15) MPS E-3 HELIUM SUPPLY B OPEN CMD A V41K1356X
(16) MPS E-3 HELIUM SUPPLY B OPEN CMD B V41K1357X
(17) MPS E-3 HELIUM SUPPLY A OPEN CMD V41K1355X

Figure 4.70. MPS Dump Sequence (1 of 5)

Figure 4.70 MPS Dump Sequence (2 of 5)

Figure 4.70 MPS Dump Sequence (4 of 5)

Figure 4.70 MPS Dump Sequence (5 of 5)
TABLE 4.2.4.4-1. MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4．2．4．4－1．MAIN PROPULSION SYSTEM（MPS）DUMP SEQUENCER（G4．70）INPUT／OUTPUT FUNCTIONAL PARAMETERS

$$
\infty_{1} x_{1} \text { 以 } U
$$

DBFN：D3B027－F PN：VP707100049P00L OUTPUT FUNCTIONAL PARAMETERS FROM MPS DUMP

艮思思思

FSSR NAME

Rockwell International
Space Systems Division
TABLE 4.2.4.4-3. MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) K-LOADS

TABLE 4.2.4.4-4. MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) CONSTANTS
DBFN: 0558
64.70
∞
∞
∞
90374

Rockwell International
Space Systems Division

January 25, 1991

THIS PAGE INTENTIONALLY LEFT BLANK

4.3 ABORT

4.3.1 Abort Control Sequence (4.192)

4.3.1.1 Introduction

It may be necessary to burn OMS/RCS propellants for systems management or when an abort has been selected by the crew, to maintain the necessary c.g. control and/or landing weight conditions to successfully abort. The amount of OMS/RCS propellant loaded and the vehicle center of gravity are mission dependent. The quantity of OMS or RCS propellant which will be burned is controlled by burn timers used in the Abort Control Sequence. The OMS burn time is based on the time required to burn the desired quantity using two OMS engines, and the RCS timer is based on a $4+\mathrm{X}$ jet burn. Premission-determined parameters are provided for the OMS/RCS burn control. For abort to orbit (ATO), only the OMS burn time is provided and that initial value is modified to provide improved mission capability as a function of the velocity at the time of failure. Both OMS and RCS values are provided for the return to landing site (RTLS) or transatlantic landing (TAL) aborts. In addition to the values determined by the abort selection, there is a capability for the crew to manually initiate the burns and modify an initial value of the OMS and/or RCS timers through keyboard entry. If OMS propellant loading quantities require a higher bum rate than available through the OMS engines, an OMS/RCS interconnect can provide for burning OMS propellant through the RCS jets. This interconnected capability will be selected premission for each abort by an I-load. The crew has the capability to manually select or inhibit this interconnect.

For an ATO abort downmode to a TAL abort in MM103, the initially selected ATO abort OMS propellant burn time will be replaced automatically with the TAL abort OMS propellant burn time. The dump method can be changed from OMS only to an interconnected dump through the OMS and RCS by means of the manual inputs via the Override Display.

4.3.1.2 Overview

Pre-MECO. For situations where the quantity of OMS propellants required to be burned cannot be accomplished in the allowable time using the OMS engines only, the RCS jets can be employed to assist in burning the OMS propellants through a crew selectable interconnect mode (toggle capability). When RCS jets are to be employed in this manner, the RCS propellant tank isolation valves are closed in both pods, and the OMS propellants are interconnected to the RCS jets. If the attempt to interconnect the OMS propellant tanks to either or both sets of RCS manifolds ($1 / 2$ and/or $3 / 4 / 5$) is unsuccessful, those manifolds will be returned to feed from the RCS tanks and the resulting OMS propellant burn rate will be adjusted accordingly to provide an accurate value of propellant burned. After the necessary burn has been accomplished, all propellant feed paths are returned to the normal configuration.

Post-MECO. It may be necessary to burn OMS propellants post-MECO for systems management or to maintain the necessary c.g. control. For situations where the quantity of OMS propellants required to be burned cannot be accomplished in the allowable time using the OMS engines only, the RCS jets can be employed to assist in burning the OMS propellants through a crew selectable interconnect mode. When RCS jets are to be employed in this manner, the RCS propellant tank isolation valves are closed in both pods, and the OMS propellants are interconnected to the RCS jets. If the attempt to interconnect the OMS propellant tanks to either or both sets of RCS manifolds ($1 / 2$ and/or $3 / 4 / 5$) is unsuccessful, those manifolds will be returned to feed from the RCS tanks. After the necessary burn has been accomplished, all propellant feed paths are returned to the normal configuration.

For an ATO abort selected post-MECO, no propellant dumping is required. If an RTLS abort has been selected, a dump of RCS propellants through the $4 \mathrm{RCS}+\mathrm{X}$ jets is initiated after 20 seconds has elapsed
in MM602. The crew has the capability to control the aft RCS dump via the Override display. Capability is provided for the crew to manually request and/or modify the premission selected dump time for RCS propellants.
RCS roll control. For RCS roll control (selected automatically at SRB tailoff for two or three SSME failures in MM102 or a second SSME failure prior to MECO-Prep or Contingency MECO-Prep or by crew request of CONTINGENCY SE ROLL CONTROL FLAG via the XXXXXXTRAJ display), and OMS to RCS interconnect is initiated. This allows the use of OMS propellants by the RCS for vehicle control unless MECO-Prep or Contingency MECO-Prep has occurred. If the attempt to interconnect the OMS propellant tanks to either or both sets of manifolds ($1 / 2$ and/or $3 / 4 / 5$) is unsuccessful, those manifolds will be returned to feed from the RCS tanks.

For pre-MECO the OMS propellants remain interconnected to the RCS jets until MECO commanded occurs and then are reconnected to normal by a Mode 2 return to normal process which provides a continuous propellant path to the RCS jets.
MM 304 OMS Propellant Burn. During MM 304, an OMS propellant-wasting burn will be initiated manually by crew request via the override display or automatically by guidance after the pitch-up maneuver has been completed to reduce the orbiter's landing weight and provide extra orbiter delta V after ET separation.

At the initiation of this sequence, the OMS engines will be commanded to the c.g. trim position and both sets of OMS helium/vapor isolation values will be commanded open. The selection to interconnect the OMS propellants to the RCS jets will then be determined by the crew's manual item entry or automatically when the OMS equivalent on time is less than or equal to a predefined interconnect initiation fuel time (I-load). When an interconnected dump has been selected, the OMS/RCS interconnect is requested and a c.g. trim delay is started. if an interconnect dump is not selected, a RCS $4+\mathrm{X}$ setling burn is initiated, a settling burn timer is started, and a flag for dumping through the OMS engines only is set.

The OMS propellant burn via the OMS engines and 24 aft $\mathbb{R C S}$ jets ($4+\mathrm{X}$ and 20 nulls), will occur as follows: The OMS ignition will be initiated after the expiration of the c.g. trim delay and the OMS/RCS interconnect sequence has completed its processing. The dump through the 24 aft RCS jets will be initiated after the expiration of an ignition press delay which starts at the ignition of the OMS engines.

The OMS propellant burn via the OMS engines only will occur after 15 seconds of the $4+\mathrm{X}$ settling burn. The $4+X$ settling burm will be terminated after 20 seconds.

The OMS propellant-wasting burn via the 24 aft RCS jets will be terminated automatically when, (1) the OMS equivalent on time is greater than or equal to a predefined interconnect termination fuel time (Iload), (2) the normal acceleration exceeds a predefined limit (I-load) for more than one second period of contimuous processing, or (3) manually by crew item entry.

The entry OMS fuel burn time I-load represents the time required to burn available OMS fuel at a pre-MECO two-OMS-engine flow rate. The OMS equivalent on time used during pre-MECO operations will be transferred to OPS 3 to support a MM1304 OMS propellant burn. This timer is incremented during each cycle that an OMS burn is active to reflect the OMS fuel flow at a two-OMS-engine rate and also the delta fuel flow rate between 2 OMS engines and 10 or $24 \mathbb{R C S}$ jets when the null jets are active. The 10 or 24 RCS jets delta fuel flow rate will be determined by the state of the aft manifold inhibit flags from the $O M S / R C S$ interconnect sequence.

MM304 AFT RCS PROPELLANT BURN. When the ground relative velocity reaches a predefined threshold (I-load), a dump of RCS propellants through the RCS $4+\mathrm{X}$ jets is initiated if enabled by the
crew via item entry. Capability is provided for the crew to manually request and/or modify the premission selected dump time for RCS propellants.

4.3.1.3 Detail Requirements-Abort Control Sequence

Step 1. This step sets the scale factor for the OMS burn time display and provides the appropriate branching for the MM304 or OPS $1 / 6$ abort functions.

The following signals are monitored:
(a) MAJOR MODE 304 FLAG V90X8161X
(b) SECOND SSME FAIL CONFIRM V90X1721X
(c) CONT_SERC V93X6682X
(d) SERC FLAG V90X8913X

Set (1) equal to 1.0 and monitor (a).
If (a) is true, proceed to Step 24. Otherwise, if (a) is false, proceed to monitor (b), (c), and (d).
If (b) or (c) or (d) is true, set (2) true and proceed to Step 1A. Otherwise, if (b) and (c) and (d) are all false, proceed to Step 18.
(1) OMS TIME SCALE FACTOR
V94J3755C
(2) SERC FLAG
V90X8913X

Step 1A. This step initiates the abort OMS/RCS interconnect command and the OMS Helium and Vapor isolation valve open commands to support single engine roll control when a second SSME fails prior to contingency MECO PREP and terminates the 24 AFT RCS jet commands.

The following signals are monitored:
(a) MECO CONFIRMED FLAG V90X8561X
(b) OMS TO RCS INTERCONNECT CMD V90X8312X
(c) MECO PREPARATION DISCRETE V90X1989X
(d) CONTINGENCY MECO PREP DISCRETE V90X8480X

If (a) is true, set (14) true and proceed to Step 1B. Otherwise, if (a) is false, proceed to monitor (b).
If (b) is true, issue (6) through (13), and proceed to monitor (c) and (d). Otherwise, if (b) is false, proceed to monitor (c) and (d).

If (c) and (d) are both false, on first pass, terminate (1) through (3), set (4) true (ENABLE), issue (5), and proceed to Step 1B. On subsequent passes, proceed to Step 1B. Otherwise, if either (c) or (d) is true, set (14) true, and proceed to Step 1B.

(1)	ABORT RCS + X ON CMD	V90X8314X
(2)	20 RCS NULL JETS ON CMD	V90X8317X
(3)	OMS TO RCS RTRN TO NORMAL CONFIG CMD	V90X8313X
(4)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(5)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(6)	OMS L POD HE ISLN VLV A OP	V43K4180X
(7)	OMS L POD VAPOR ISLN VLV 1 OP	V43K4182X
(8) OMS R POD HE ISLN VLV A OP	V43K5180X	
(9) OMS R POD VAPOR ISLN VLV 1 OP	V43K5182X	
(10)	OMS L POD HE ISLN VLV B OP	V43K4181X

(8)	OMS R POD HE ISLN VLV A OP	V43K5180X
(9)	OMS R POD VAPOR ISLN VLV 1 OP	V43K5182X
(10)	OMS L POD HE ISLN VLV B OP	V43K4181X
(11)	OMS L POD VAPOR ISLN VLV 2 OP	V43K4183X
(12)	OMS R POD HE ISLN VLV B OP	V43K5181X
(13)	OMS R POD VAPOR ISLN VLV 2 OP	V43K5183X
(14)	PRE MECO ICNCT COMPLETE FLAG	(INTERNAL)

Step 1B. This step controls selection of the OMS burn time for a manually initiated OMS propellant dump and for an abort which has been down-moded from an ATO abort to a TAL abort.

The following signals are monitored:

(a) ORBITER DUMP ENABLE	V93X6980X
(b) ATO ABORT SELECTED	(INTERNAL)
(c) TAL ABORT DECLARED	V90X8658X

If (a) is true, on first pass, set (1) true, set (2) equal to (3), and proceed to Step 2. On subsequent passes, proceed to Step 2. Otherwise, if (a) is false, proceed to monitor (b).
If (b) is true, proceed to monitor (c). Otherwise, if (b) is false, proceed to Step 2.
If (c) is true, on first pass, set (2) equal to (4), and proceed to Step 2. On subsequent passes, proceed to Step 2. Otherwise, if (c) is false, proceed to Step 2.
(1) BURN TIME SEL COMPLETE FLAG
(INTERNAL)
(2) OMS DELTA T COMPUTED V90W8325C
(3) MANUAL_OMS_DT V99U9717C
(4) TAL_OMS_DT

V97U9786C
Step 2. This step determines if the abort burn table selection has been completed or pre-MECO interconnect operation is completed for second SSME failure situations.
The following signals are monitored:
(a) BURN TIME SEL COMPLETE FLAG
(b) PRE-MECO ICNCT COMPLETE FLAG

If (a) or (b) is true, proceed to Step 7.
If (a) and (b) are false, proceed to Step 3.
Step 3. This step controls the selection of the appropriate table values to be used in the control of the OMS and RCS abort burns.

The following signals are monitored:
(a) RTLS ABORT DECLARED
(b) TAL ABORT DECLARED V90X8658X
(c) TGT COMPLETE FLAG

If (a) is true, proceed to Step 4.
If (a) is false, and (b) is true, proceed to Step 5.

If (a) and (b) are both false, and (c) is true, proceed to Step 6.
If (a) and (b) and (c) are all false, return to Step 1.
Step 4. This step selects the RTLS I-load value for use in control of the OMS propellant abort burn during an RTLS abort.

The computed burn value and OMS/RCS interconnect initial selection are set equal to RTLS I-load table values as follows:

(a)	RTLS_OMS_DT	V97U9780C
(b)	RTLS_ICNCT_SEL	V99U9991C
(c)	SERC FLAG	V90X8913X

Set (1) below equal to (a), set (2) true, and proceed to the next if statement.
If (b) is true (ENABLE), or (c) is true, return to Step 1. Otherwise, set (3) false (INHIBIT), and return to Step 1.

(1)	OMS DELTA T COMPUTED	V90W8325C
(2)	BURN TIME SEL COMPLETE FLAG	(INTERNAL)
(3) OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X	

Step 5. This step selects the TAL I-load values for use in control of the OMS propellant abort burn during TAL abort.

The computed burn value and OMS/RCS interconnect initial selection are set equal to the TAL I-load values as follows:

| (a) TAL_OMS_DT | V97U9786C |
| :--- | :--- | :--- |
| (b) TAL_ICNCT_SEL | V99U9992C |
| (c) SERC FLAG | V90X8913X |

Set (1) below equal to (a), (2) true, and proceed to the next if statement.
If (b) is true (ENABLE), or (c) is true, return to Step 1. Otherwise, set (3) false (INHIBIT), and return to Step 1.

(1)	OMS DELTA T COMPUTED	V90W3825C
(2)	BURN TIME SEL COMPLETE FLAG	(INTERNAL)
(3) OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X	

Step 6. This step selects the ATO I-load table values for use in control of the OMS propellant abort burn during ATO abort.

(a) SCALE FACTOR 2	V90J8517C	
(b) ATO_OMS_DT	V97U9798C	
(c)	ATO_ICNCT_SEL	V99U9993C
(d) SERC FLAG	V90X8913X	

The computed burn value and OMS/RCS interconnect initial selection are set equal to the ATO I-load value as follows:

Set (1) below equal to the product of (a) and (b), set (3) and (4) equal to true, and proceed to the next if statement.

If (c) is true (ENABLE), or (d) is true, return to Step 1. Otherwise, set (2) false (INHIBIT), and return to Step 1.

(1)	OMS DELTA T COMPUTED	V90W8325C
(2)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(3) BURN TIME SEL COMPLETE FLAG	(INTERNAL)	
(4) ATO ABORT SELECTED	(INTERNAL)	

Step 7. All abort functions are suspended during the ET separation maneuver.
The following signals are monitored:
(a) MECO PREPARATION DISCRETE
V90X1989X
(b) MECO CONFIRMED FLAG
V90X8561X

If (a) and (b) are both false, proceed to Step 8.
If (a) or (b) is true, proceed to Step 12.
Step 8. This step controls the abort OMS burn.
The following parameters are monitored:
(a) ORBITER DUMP INHIBIT

V93X6981X
(b) OMS DELTA T COMPUTED
(c) OMS EQUIVALENT ON TIME
(d) OMS-L ON CMD IND
(e) OMS-R ON CMD IND
(f) SERC FLAG
(g) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90W8325C
V90W8320C
V90X8271X
V90X8272X
V90X8913X
V90X8282X

If (a) is false and (b) $>$ (c), proceed to Step 9.
If (a) is true or (b) \leq (c) proceed to monitor (d) and (e).
If (d) or (e) is true, terminate (1), (3), and (4), issue (2), set (8) false, and proceed to monitor (f). Otherwise, proceed to monitor (f).

If (f) is true, return to Step 1. Otherwise, proceed to monitor (g).
If (g) is true, terminate (5), issue (6), set (7) false (INHIBIT), and return Step 1. Otherwise, return to Step 1.

(1)	ABORT OMS IGN CMD	V90X8319X
(2)	OMS CUTOFF CMD	V90X8318X
(3)	ABORT RCS +X ON CMD	V90X8314X
(4)	20 RCS NULL JETS ON CMD	V90X8317X
(5)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(6) OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X	

(7) OMS/RCS INTERCONNECT INH/ENA CMD

V93X5348X
(8) ORBITER DUMP ENABLE V93X6980X

Step 9. This step increments the OMS dump timer and determines if OMS propellants are to be dumped with RCS jets.

The following signals are monitored:
(a) OMS-L ON CMD IND
V90X8271X
(b) OMS-R ON CMD IND
V90X8272X
(c) SERC FLAG V90X8913X
(d) ORBITER DUMP ENABLE V93X6980X
(e) OMS/RCS INTERCONNECT INH/ENA CMD
V93X5348X
(f) OMS TO RCS INTERCONNECT COMPLETE FLAG
V90X8282X

If (a) and (b) are both false, issue (1), terminate (2), and proceed to monitor (c) and (d). Otherwise, if (a) or (b) is true, increment (3) by 80 msec and proceed to monitor (c) and (d).

If (c) is true and (d) is false, return to Step 1. Otherwise, proceed to monitor (e).
If (e) is true (ENABLE), proceed to Step 10. Otherwise, proceed to monitor (f).
If (f) is true, terminate (4) through (6) below, issue (7), and return to Step 1. Otherwise, return to Step 1.

(1)	ABORT OMS IGN CMD	V90X8319X
(2)	OMS CUTOFF CMD	V90X8318X
(3)	OMS EQUIVALENT ON TIME	V90W8320X
(4)	ABORT RCS +X ON CMD	V90X8314X
(5)	20 RCS NULL JETS ON CMD	V90X8317X
(6)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(7) OMS TO RCS RTRN TO NORMAL CONFIG CMD	V90X8313X	

Step 10. This step assures that the OMS propellants are connected to the RCS jets.
The following signal is monitored:
(a) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90X8282X
If (a) is false, issue (1) below, terminate (2), and return to Step 1.
If (a) is true and at least [(5) below] seconds have elapsed since (a) was last set true, issue (3) and (4) below, and proceed to Step 11. Otherwise return to Step 1.

(1)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(2)	OMS TO RCS RTRN TO NORMAL CONFIG CMD	V90X8313X
(3)	ABORT RCS +X ON CMD	V90X8314X
(4)	20 RCS NULL JETS ON CMD	V90X8317X
(5) ICNCT_DELAY	V99U9786C	

Step 11. This step controls the OMS propellant burn timer and scale factors when using RCS null jets.

The following signals are monitored:
(a) AFT MANIFOLD $1 / 2$ JET INH FLAG
V90X8285X
(b) AFT MANIFOLD 3/4/5 JET INH FLAG
(c) OMS EQUIVALENT ON TIME

V90X8286X
V90W8320C

If (a) and (b) are both false, increment (c) by (2), set (1) equal to (3), and return to Step 1.
If (a) or (b) is true, increment (c) by (4), set (1) equal to (5), and return to Step 1.
(1) OMS TIME SCALE FACTOR

V94J3755C
(2) RCS_24_JET_FU_BIAS

V99U9772C
V99U9773C
V99U9775C
(4) RCS_10_JET_FU_BLAS

V99U9776C
Step 12. This step controls the MM102 interconnected OMS dump and terminates the abort functions in preparation for ET separation in MM103 or MM601.

The following signal is monitored:
(a) MAJOR MODE 102 FLAG

V90X8158X
If (a) is true, on first pass, terminate (3), issue (4), set (5) true (ENABLE), and proceed to Step 13; on subsequent passes, proceed to Step 13. Otherwise, on first pass, terminate (1), (6), and (7), issue (2) and proceed to Step 14. On subsequent passes, proceed to Step 14.

(1)	ABORT OMS IGN CMD	V90X8319X
(2)	OMS CUTOFF CMD	V90X8318X
(3)	OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X
(4)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(5)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(6)	ABORT RCS + X ON CMD	V90X8314X
(7)	20 RCS NULL JETS ON CMD	V90X8317X

Step 13. This step determines whether to initiate or terminate contingency rapid dump in MM102. At termination for fast separation, a Mode 2 type interconnect return to normal is commanded.

The following signals are monitored:
(a) FAST SEPARATION FLAG

V90X8267X
(b) ORBITER DUMP INHIBIT
(c) OMS DELTA T COMPUTED
(d) OMS EQUIVALENT ON TIME
(e) ORBITER DUMP ENABLE

V93X6981X
V90W8325X
V90W8320C
V93X6980X

If (a) is true, on first pass, set (1) true and proceed to Step 20. On subsequent passes, proceed to Step 20. Otherwise, proceed to monitor (b), (c), and (d).

If (b) is true or (c) \leq (d), proceed to Step 20; otherwise, proceed to monitor (e).

If (e) is true proceed to Step 17. Otherwise, return to Step 1.
(1) MODE 2 INDICATOR

V90X8308X

Step 14. This step selects a Mode 2 OMS/RCS Return-to-Normal to be initiated at MECO Command and terminates the Orbiter Dump Enable and Orbiter Dump Inhibit commands. The OMS He/Vaport Isolation Op commands are terminated at the completion of the interconnect return-to-normal sequence.

The following signals are monitored:
(a) MECO COMMAND FLAG

V90X8569X
(b) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90X8282X

If (a) is false, return to Step 1.
If (a) is true, one time only, terminate (3), issue (4), set (13) true, set (1), (2), and (14) false (INHIBIT), and proceed to Step 15. On subsequent passes, proceed to monitor (b).

If (b) is false, one time only, terminate (5) through (12), set (13) false, and proceed to Step 15 . On subsequent passes, proceed to Step 15 . Otherwise, proceed to Step 15.

(1)	ORBITER DUMP ENABLE	V93X6980X
(2)	ORBITER DUMP INHIBIT	V93X6981X
(3)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(4)	OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X
(5)	OMS L POD HE ISLN VLV A OP	V43K 4180X
(6)	OMS L POD VAPOR ISLN VLV 1 OP	V43K4182X
(7)	OMS R POD HE ISLN VLV A OP	V43K5180X
(8)	OMS R POD VAPOR ISLN VLV 1 OP	V43K5182X
(9)	OMS L POD HE ISLN VLV B OP	V43K4181X
(10)	OMS L POD VAPOR ISLN VLV 2 OP	V43K4183X
(11)	OMS R POD HE ISLN VLV B OP	V43K5181X
(12)	OMS R POD VAPOR ISLN VLV 2 OP	V43K5183X
(13)	MODE 2 INDICATOR	V90X8308X
(14)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X

Step 15. This step determines if a post-MECO dump has been manually inhibited, or terminated by completion.

The following signals are monitored:
(a) ORBITER DUMP ENABLE V93X6980X
(b) ORBITER DUMP INHIBIT V93X6981X
(c) OMS DELTA T COMPUTED V90W8325C
(d) OMS EQUIVALENT ON TIME V90W8320C

If (a) is true and $(\mathrm{c})>(\mathrm{d})$, proceed to Step 16.
If (a) is true and (c) \leq (d), proceed to Step 20.
If (a) is false and (b) is true, proceed to Step 20.

If (a) and (b) are false, proceed to Step 23.
Step 16. This step assures the flight control system constraints and OMS system Nz constraints are satisfied in MM 602 prior to interconnecting OMS propellants to the RCS jets.
The following signals are monitored:

(a)	MM 602 DUMP INIT FLAG	(INTERNAL)
(b)	MAJOR MODE 602 FLAG	V90X8174X
(c)	NZ	V90A5381C
(d)	OMS_NZ_LIM	V99U9697C
(e)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(f)	FCS_ACCEPT_ICNCT	V90X8296X

If (a) is false, proceed to monitor (b). Otherwise, if (a) is true, proceed to Step 16A.
If (b) is true, proceed to monitor (c). Otherwise, if (b) is false, return to Step 1.
If \mid (c) $\mid \leq$ (d), issue (1) below, set (2) true, start timer (3), and proceed to monitor (e). Otherwise, if \mid (c) $\mid>$ (d), set (4) false, set (5) true, and return to Step 1.
If (e) is true (ENABLE), proceed to monitor (f). Otherwise, if (e) is false (INHIBIT), set (6) true, and return to Step 1.
If (f) is true, issue (8), terminate (9) and (10), and return to Step 1. If (f) is false, set (6) true and (7) false (INHIBIT), and return to Step 1.

(1)	CG TRIM CMD	V90X8309X
(2)	MM 602 DUMP INIT FLAG	(INTERNAL)
(3)	CG TRIM DELAY TIMER	(INTERNAL)
(4)	ORBITER DUMP ENABLE	V93X6980X
(5)	ORBITER DUMP INHIBIT	V93X6981X
(6)	OME ONLY FLAG	V90X8051X
(7)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(8)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(9)	OMS TO RCS RTRN TO NORM CONFIG CMD	V90X8313X
(10)	ABORT RCS + X ON CMD	V90X8314X

Step 16A. This step insures the OMS/RCS interconnect sequence has completed before continuing the execution of an OMS propellant dump if an interconnect is requested. This step also issues the $4+\mathrm{X}$ jet command to provide propellant settling, and insures the OMS system NZ constraints are satisfied prior to OMS ignition.

The following signals are monitored:
(a) $O M S / R C S$ INTERCONNECT INH/ENA CMD
(b) OMS TO RCS INTERCONNECT COMPLETE FLAG
(c) CG_TRIM_DELAY
(d) CG TRIM DELAY TIMER
(INTERNAL)
(e) NZ
(f) OMS_NZ_LIM

If (a) is true (ENABLE), proceed to monitor (b). Otherwise, if (a) is false (INHIBIT), issue (1) and proceed to monitor (c).

If (b) is true, issue (1) and proceed to monitor (c). Otherwise, if (b) is false, return to Step 1.
If (c) is $\leq(d)$, on first pass, proceed to monitor (e) and (f). On subsequent passes, proceed to Step 17. Otherwise, if (c) $>$ (d), return to Step 1.

If (e) is $\leq(\mathrm{f})$, proceed to Step 17. Otherwise, if (e) is $>(\mathrm{f})$, set (2) true and proceed to Step 18.
(1) ABORT RCS + X ON CMD

V90X8314X
(2) OMS NZ DUMP INHIBIT FLAG
(INTERNAL)
Step 17. This step initiates the contingency dumping on OMS propellant through the OMS engines in OPS 1 and OPS 6 and increments the OMS dump timer.

The following signals are monitored:
(a) IGN PRESS DELAY INIT FLAG
(INTERNAL)
(b) OMS-L ON CMD IND V90X8271X
(c) OMS-R ON CMD IND V90X8272X
(d) IGN_PRESS_DELAY V97U9838C
(e) IGN PRESS DELAY TIMER (INTERNAL)
(f) 20 RCS NULL JETS ON CMD V90X8317X
(g) MAJOR MODE 102 FLAG V90X8158X

If (a) is true, proceed to monitor (b) and (c). Otherwise, start timer (e), set (4) true, and proceed to monitor (b) and (c).

If (b) and (c) are both false, terminate (2), issue (3), and return to Step 1.
If either (b) or (c) is true, increment (1) by 80 msec and proceed to monitor (d).
If $(\mathrm{d}) \leq(\mathrm{e})$ or (f) is true, proceed to monitor (g). Otherwise, return to Step 1.
If (g) is true, proceed to Step 19. Otherwise, proceed to Step 18.

```
(1) OMS EQUIVALENT ON TIME
V90W8320C
(2) OMS CUTOFF CMD V90X8318X
(3) ABORT OMS IGN CMD V90X8319X
(4) IGN PRESS DELAY INIT FLAG
(INTERNAL)
```

Step 18. This step controls the termination of the contingency dumping of OMS propellants based on OMS and/or RCS system constraints in MM602.

The following signals are monitored:
(a) NZ
(b) OMS_NZ_LIMIT
(c) OME ONLY FLAG
(d) OMS/RCS INTERCONNECT INH/ENA CMD
(e) CONTINGENCY_NZ_LIMIT
(f) OMS EQUIVALENT ON TIME
(g) CONT_OMS_RCS_ICNCT_TERM_FU_TIME
(h) OMS NZ DUMP INHHBIT FLAG

V97U9837C
V90W8320C V99U9718C (INTERNAL)

If \mid (a) $\mid>$ (b) for three consecutive passes, or (h) is true, terminate (1), (3), (4), (5), and (13). Issue (2) and (6), set (7), (11), and (12) false, set (8) and (9) true, set (10) false (INHIBIT), reset (14) and (15), and proceed to Step 22. Otherwise go to the next if statement.

If (c) is true or (d) is false ($\mathbb{N} H \mathbb{I} I B I T$) or $[\mid$ (a) $\mid>(\mathrm{e})$ for three consecutive passes] or $(f) \geq(\mathrm{g})$, terminate (3) through (5), issue (6), set (9) true and (10) false (INHIBIT), and proceed to Step 22. Otherwise, proceed to Step 19.

(1)	ABORT OMS IGN CMD	V90X8319X
(2)	OMS CUTOFF CMD	V90X8318X
(3)	ABORT RCS +X ON CMD	V90X8314X
(4)	20 RCS NULL JETS ON CMD	V90X8317X
(5)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(6)	OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X
(7)	ORBITER DUMP ENABLE	V93X6980X
(8)	ORBITER DUMP INHIBIT	V93X6981X
(9)	OME ONLY FLAG	V90X8051X
(10)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(11)	MM60 DUMP INIT FLAG	(INTERNAL)
(12)	IGN PRESS DELAY INIT FLAG	(INTERNAL)
(13)	C.G. TRIM CMD	V90X8309X
(14)	IGN PRESS DELAY TIMIER	(INTERNAL)
(15)	C.G. TRIM DELAY TTMER	(INTERNAL)

Step 19. This step issues the abort dump commands and determines the proper bias and scale factor to be used based on the Manifold Jet Inhibit flags from the OMS/RCS Interconnect Sequence.

Monitor the following signals:

| (a) AFT MANIFOLD 1/2 JET INH FLAG | V90X8285X |
| :--- | :--- | ---: |
| (b) AFT MANIFOLD 3/4/5 JET INH FLAG | V90X8286X |
| (c) OMS EQUIVALENT ON TIME | V90W8320C |
| (d) OMS TIME SCALE FACTOR | V94J3755C |
| (e) OMS TO RCS INTERCONNECT COMPLETE FLAG | V90X8282X |

If (e) is true, issue (5) and (6), and proceed to monitor (a) and (b). Otherwise, return to Step 1.
If (a) and (b) are both false, increment (c) by (1), set (d) equal to (2), and return to Step 1.
If (a) or (b) is true, increment (c) by (3), set (d) equal to (4), and return to Step 1.

```
(1) RCS_24_JET_FU_BIAS
(2) RCS_24_JET_FU_SCALE
(3) RCS_10_JET_FU_BIAS
(4) RCS_10_JET_FU_SCALE
(6) 20 RCS NULL JETS ON CMD V90X8317X

Step 20. This step is the first step of a common routine ending at Step 22 which performs those functions associated with completion or termination of the manually selected dump for post-MECO (MM102 and 602).

The following signals are monitored:
(a) OMS-L ON CMD IND
V90X8271X
(b) OMS-R ON CMD IND V90X8272X

If (a) or (b) is true, terminate (1) through (4) and (6), issue (7) and (8), set (9) true, set (5), (11), and (12) false, set (10) false (INHIBIT), reset (13) and (14), and proceed to Step 21.

If (a) and (b) are both false, proceed to Step 21.
\begin{tabular}{llr} 
(1) & C.G. TRIM CMD & V90X8309X \\
(2) & ABORT OMS IGN CMD & V90X8319X \\
(3) & ABORT RCS + X ON CMD & V90X8314X \\
(4) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(5) & ORBITER DUMP ENABLE & V93X6980X \\
(6) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(7) & OMS CUTOFF CMD & V90X8318X \\
(8) & OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
(9) & ORBITER DUMP INHIBIT & V93X6981X \\
(10) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(11) & MM602 DUMP INTT FLAG & (INTERNAL) \\
(12) & IGN PRESS DELAY INIT FLAG & (INTERNAL) \\
(13) & IGN PRESS DELAY TIMER & (INTERNAL) \\
(14) & C.G. TRIM DELAY TIMER & (INTERNAL)
\end{tabular}

Step 21. This step determines if post-MECO functions are to be performed.
The following signals are monitored:
(a) MAJOR MODE 602 FLAG
V90X8174X
(b) NZ
V90A5381C
(c) CONTINGENCY_NZ_LIM

If (a) is true, and \(\mid\) (b) \(\mid>\) (c), proceed to Step 22. Otherwise, if (a) is false or \(|(b)| \leq\) (c), return to Step 1.

Step 22. This step selects the manual post-MECO RCS propellant burn timer.
The following signals are monitored:
(a) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90X8282X
If (a) is false, then one time only, set (1) equal to (2), and proceed to Step 23.

If (a) is true, return to Step 1.
(1) AFT RCS DUMP DURATION
V93W6958C
(2) \(T_{-}\)RCS_REF
V97U9828C

Step 23. This step controls the RTLS post-MECO RCS propellant burn. The crew has the capability to terminate RCS propellant burn via override display.

The following signals are monitored:
\begin{tabular}{lll} 
(a) MM 602 FLAG & V90X8174X \\
(b) MM 603 FLAG & V93X0013X \\
(c) AFT RCS DUMP COUNTER & V90W8229C \\
(d) AFT RCS DUMP DURATION & V93W6958C \\
(e) AFT RCS DUMP ENABLE & V93X6949X
\end{tabular}

If (a) is true and 20 seconds have elapsed since (a) was true, or (b) is true, proceed to the next if statement; otherwise, return to Step 1.

If \((\mathrm{d}) \leq(\mathrm{c})\), terminate output (1), reset output (2) and return to Step 1.
If \((\mathrm{d})>(\mathrm{c})\) and (e) is true, issue output (1), increment (c) by 80 msec and return to Step 1.
If \((\mathrm{d})>(\mathrm{c})\) and \((\mathrm{e})\) is false, terminate output (1) and return to Step 1.
(1) \(\mathrm{ABORT} R C S+X\) ON CMD
V90X8314X
(2) AFT RCS DUMP ENABLE
V93X6949X

Step 24. This step initializes the ENTRY OMS FUEL BURN TIME, and determines if an OMS/RCS Interconnect is required. This step will also initiate an automatic OMS dump in a TAL abort, or a manual OMS dump by the crew via the Override display (if all constraints are satisfied), and pressurizes the OMS tanks.

The following signals are monitored:
(a) START_DUMP_VELOCITY

V99U9573C V95L0151C
(b) GND REL VEL MAGNITUDE IN M50 SYS
(c) ORBITER DUMP ENABLE
(d) OMS/RCS INTERCONNECT INH/ENA CMD
(e) OMS_RCS_INTERCON_INIT_FU_TIME
(f) OMS EQUIVALENT ON TTME
(g) OMS DELTA T COMPUTED
(h) ENTRY_OMS_FUEL_BURN_TTME
(i) FCS_ACCEPT_ICNCT
(j) ORBITER DUMP INHIBIT
(k) DUMP ENA INIT FLAG

If \((\) a \() \geq\) (b) proceed to Step 29. Otherwise, if \((\) a \()<\) (b), proceed to the next if statement.
If first pass, set \((\mathrm{g})\) equal to \((\mathrm{h})\) and if \((\mathrm{e})>(\mathrm{f})\), set (15) equal to true (ENABLE), and proceed to monitor (i) and (j). Otherwise, if first pass and (e) \(\leq\) ( \(f\) ), proceed to monitor (i) and (j). On subsequent passes, proceed to monitor (i) and (j).

If (i) is true and (j) is false, on first pass, set (c) true and proceed to monitor (c). On subsequent passes, proceed to monitor (c). Otherwise, proceed to monitor (c).

If (c) is false, proceed to Step 28. Otherwise, if (c) is true, proceed to monitor (k).
If ( k ) is false, issue outputs (1) through (9), set (17) true, and proceed to monitor (d) and (i). Otherwise, if \((\mathrm{k})\) is true, proceed to Step 25.

If (d) is true (ENABLE) and (i) is true, issue (13), terminate (14), start timer (16), and proceed to Step 28. Otherwise, issue (10), set (11) and (18) true, set (15) false (INHIBIT), start timer (12), and proceed to Step 28.
\begin{tabular}{llr} 
(1) & C.G. TRIM CMD & V90X8309X \\
(2) & OMS L POD HE ISLN VLV A OP & V43K4180X \\
(3) & OMS L POD VAPOR ISLN VLV 1 OP & V43K4182X \\
(4) & OMS R POD HE ISLN VLV A OP & V43K5180X \\
(5) & OMS R POD VAPOR ISLN VLV 1 OP & V43K5182X \\
(6) & OMS L POD HE ISLN VLV B OP & V43K4181X \\
(7) & OMS L POD VAPOR ISLN VLV 2 OP & V43K4183X \\
(8) & OMS R POD HE ISLN VLV B OP & V43K5181X \\
(9) & OMS R POD VAPOR ISLN VLV 2 OP & V43K5183X \\
(10) & ABORT RCS + X ON CMD & V90X8314X \\
(11) & OME ONLY FLAG & V90X8051X \\
(12) & RCS 4 + X ON TIME & (INTERNAL) \\
(13) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(14) OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
(15) OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(16) & C.G. TRIM DELAY TIMER & (INTERNAL) \\
(17) DUMP ENA INIT FLAG & (INTERNAL) \\
(18) & TWO OME DUMP FLAG & (INTERNAL)
\end{tabular}

Step 25. This step monitors the TWO OME DUMP FLAG to determine if an OMS only dump is to be processed and will monitor the RCS \(4+\mathrm{X}\) ON TIME and issue the dump commands at the proper intervals.

The following signals are monitored:
(a) TWO OME DUMP FLAG
(INTERNAL)
(b) RCS \(4+\mathrm{X}\) ON TIMER
(INTERNAL)

If (a) is false, proceed to Step 26.
If (a) is true and (b) \(\geq 15\) seconds, one time only, issue (1), terminate (2), and proceed to the next if statement. Otherwise, proceed to the next if statement.

If (a) is true and (b) \(\geq 20\) seconds, one time only, terminate (3), and proceed to Step 28. Otherwise, proceed to Step 28.
\begin{tabular}{lll} 
(1) ABORT OMS IGN CMD & V90X8319X \\
(2) OMS CUTOFF CMD & V90X8318X \\
(3) ABORT RCS + X ON CMD & V90X8314X
\end{tabular}

Step 26. This monitors the OMS/RCS I/C ENA/INH flag to determine if the interconnect is to terminated either by crew selection or upon burn completion or for exceedance of systems constraints in OPS 3.

The following signals are monitored:
\begin{tabular}{llr} 
(a) OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(b) & NZ & V90A5381C \\
(c) CONTINGENCY_NZ_LIM & V97U9837C \\
(d) OMS EQUIVALENT ON TIME & V90W8320C \\
(e) OMS_RCS_INTERCON_TERM_FU_TIME & V99U9952C \\
(f) OMS TO RCS INTERCONNECT COMPLETE FLAG & V90X8282X
\end{tabular}

If \([\) (a) is false ( \(\mathbb{N} H\) HIBIT) or \(\mid\) (b) \(\mid>\) (c) continuously for more than 1 second or (d) is \(\geq\) (e)], terminate (1), (2), and (4), issue (3), set (5) false (INHIBIT), set (6) true, and proceed to Step 27. Otherwise, proceed to monitor (f).

If \((f)\) is true, proceed to Step 27. Otherwise, proceed to Step 28.
\begin{tabular}{lll} 
(1) & ABORT RCS + X ON CMD & V90X8314X \\
(2) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(3) & OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
(4) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(5) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(6) OME ONLY FLAG & V90X8051X
\end{tabular}

Step 27. This step initiates the OMS plus 24 RCS jet dump after the designed time delays.
The following signals are monitored:
(a) CG_TRIM_DELAY

V97U9836C
(b) CG TRIM DELAY TIMER
(c) OMS/RCS INTERCONNECT INH/ENA CMD
(INTERNAL)
(d) IGN_PRESS_DELAY
(e) IGN PRESS DELAY TIMER

V97U9838C
(f) AFT MANIFOLD \(1 / 2\) JET INH FLAG
(INTERNAL)
V90X8285X
(g) AFT MANIFOLD 3/4/5 JET INH FLAG

V90X8286X
(h) OMS EQUIVALENT ON TIME V90W8320C
(i) OMS TIME SCALE FACTOR V94J3755C
(j) OMS-L ON CMD IND V90X8271X
(k) OMS-R ON CMD \(\mathbb{I N D}\)

V90X8272X
If (a) \(\leq(b)\), proceed to monitor \((\mathbf{j})\) and (k). Otherwise, proceed to Step 28.
If both (j) and (k) are false, issue (1), terminate (2), start timer (e), and proceed to monitor (c), (d), and (e). Otherwise, proceed to monitor (c), (d), and (e).

If (c) is true (ENABLE) and (d) \(\leq\) (e), issue (3) and (4), and proceed to monitor ( f ) and (g). Otherwise, proceed to Step 28.
If (f) or ( g ) is true, increment (h) by (7), set (i) equal to (8), and proceed to Step 28. Otherwise, increment (h) by (5), set (i) equal to (6), and proceed to Step 28.
(1) ABORT OMS IGN CMD

V90X8319X
(2) OMS CUTOFF CMD
(3) ABORT RCS + X OM CMD
(4) 20 RCS NULL JETS ON CMD
(5) RCS_24_JET_FU_BIAS
(6) RCS_24_JET_FU_SCALE
(7) RCS_10_JET_FU_BIAS
(8) RCS_10_JET_FU_SCALE

V90X8318X V90X8314X V90X8317X V99U9772C V99U9773C V99U9775C V99U9776C

Step 28. This step increments the OMS dump timer and terminates the OMS propellant dump by crew input, dump completion or OMS system constraints in OPS 3.

The following signals are monitored:
(a) ORBITER DUMP INHIBIT V93X6981X
(b) OMS EQUIVALENT ON TIME V90W8320C
(c) OMS DELTA T COMPUTED V90W8325C
(d) NZ
(e) OMS_NZ_LIM V90A5381C
V99U9697C
(f) OMS-L ON CMD IND V90X8271X
(g) OMS-R ON CMD IND V90X8272X

If [ (a) is true ] or [ (b) is \(\geq\) (c)] or [ \(\mid\) (d) \(\mid>\) (e) continuously for more than 1.0 sec ], terminate outputs (1) through (13), issue (14) and (15) set (21) true, set (16) and (18) false and (17) false (INHIBIT), set (22) true, reset (19), (20), and (23), and return to Step 1. Otherwise, go to the next if statement.

If \((f)\) or \((\mathrm{g})\) is true, increment (b) by 80 msec , and return to Step 1. Otherwise, return to Step 1.
\begin{tabular}{llr} 
(1) & C.G. TRIM CMD & V90X8309X \\
(2) & ABORT OMS IGN CMD & V90X8319X \\
(3) & ABORT RCS + X ON CMD & V90X8314X \\
(4) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(5) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(6) & OMS L POD HE ISLN VLV A OP & V43K4180X \\
(7) & OMS L POD VAPOR ISLN VLV 1 OP & V43K4182X \\
(8) & OMS R POD HE ISLN VLV A OP & V43K5180X \\
(9) & OMS R POD VAPOR ISLN VLV 1 OP & V43K5182X \\
(10) & OMS L POD HE ISLN VLV B OP & V43K4181X \\
(11) & OMS L POD VAPOR ISLN VLV 2 OP & V43K4183X \\
(12) & OMS R POD HE ISLN VLV B OP & V43K5181X \\
(13) & OMS R POD VAPOR ISLN VLV 2 OP & V43K5183X \\
(14) & OMS CUTOFF CMD & V90X8318X \\
(15) & OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
(16) & ORBITER DUMP ENABLE & V93X6980X \\
(17) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(18) & DUMP ENA INIT FLAG & (INTERNAL) \\
(19) & IGN PRESS DELAY TIMER & (INTERNAL) \\
(20) & RCS 4 + X ON TIMER & (INTERNAL) \\
(21) & ORBITER DUMP INHIBIT & V93X6981X \\
(22) & OME ONLY FLAG
\end{tabular}

Step 29. This step controls the MM304 RCS propellant dump via the \(\mathrm{RCS} 4+\mathrm{X}\) jets.
The following signals are monitored:
(a) AFT RCS DUMP ENABLE

V93X6849X
(b) AFT RCS DUMP DURATION

V93W6958C
(c) AFT RCS DUMP COUNTER

V90W8229C
(d) AFT RCS TTG SF

V94J3757C
If (a) is true, proceed to the next if statement. Otherwise, terminate (1), and return to Step 1.
If (b) \(>\) (c), issue (1) below, increment (c) by the product of (d) and 80 msec , and return to Step 1 .
If \((b) \leq(c)\), terminate \((1)\), set \((a)=\) false, and return to Step 1.
(1) \(\mathrm{ABORT} R \mathrm{CS}+\mathrm{X}\) ON CMD

V90X8314C

\section*{ABORT CONTROL SEQUENCE INITIALIZATION}
\begin{tabular}{lll} 
NOMENCLATURE & INITIAL VALUE & UNITS \\
\hline BURN TIME SEL COMPLETE FLAG & FALSE & \\
ATO ABORT SELECTED & FALSE & \\
MM602 DUMP INIT FLAG & FALSE & SEC \\
CG TRIM DELAY TIMER & 0.0 & SEC \\
IGN PRESS DELAY TIMER & 0.0 & SEC \\
DUMP ENA INIT FLAG & FALSE & \\
RCS 4 + X ON TIMER & 0.0 & \\
OME ONLY FLAG & FALSE & \\
PREMECO ICNCT COMPLETE FLAG & FALSE & \\
IGN PRESS DELAY INIT & FALSE & \\
2 OME DUMP FLAG & FALSE & \\
OMS NZ DUMP INHIBIT FLAG & FALSE & \\
SERC FLAG & FALSE &
\end{tabular}

INFORMATION ONLY

INFORMATION ONLY

Figure 4.192. Abort Control Sequence (Sheet 3 of 7)
INFORMATION ONLY
MAJOR MODE 304 - OMS OR OMS/RCS BURN AND AFT RCS PROP BURN



Figure 4.192. Abort Control Sequence (Sheet 5 of 7)
INFORMATION ONLY
CONTINUATION OF MM304 BURN CONTROL

Figure 4.192. Abort Control Sequence (Sheet 6 of 7)

TABLE 4．3．1．4－1．ABORT CONTROL SEQUENCER（G4．192）INPUT／OUTPUT FUNCTIONAL PARAMETERS

DBFN: D3B027-F
FSSR NAME
TABLE 4.3.1.4-1. ABORT CONTROL SEQUENCER (G4.192) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4．3．1．4－2．ABORT CONTROL SEQUENCER（G4．192）I－LOADS
MSID ENG UNIT DT PR DS PR FCTN CAT ＂－
 N
哭
品
学

\(\begin{array}{ll}\text { v99U9993C } & \text { ND } \\ \text { v97U9798C } & \text { SEC }\end{array}\)
V99U971.8C SEC
                    V9709837C G v9909571C \(\operatorname{SEC}\)
v9909786C
SEC V9909717C SEC 0
0
0
6
0
0
0
0 V9909716C SEC \(\begin{array}{ll}\text { V99U9952C } & \text { SEC } \\ \text { V9909775C } & \text { SEC } \\ \text { v9909776C } & \text { ND．}\end{array}\) V9909772C SEC v9909773C ND v9909991C ND V9709780C SEC V9909573C FT／SEC V97U9828C SEC v99u9992C ND v97u9786C SEC
DBEN ： 0484
FSSR NAME

TABLE 4.3.1.4-3. ABORT CONTROL SEQUENCER (G4.192) K-LOADS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\underset{\text { FSSR NAME }}{\text { DESCRIPTION }}\) & MSID & mC kload value & eng unit & dt pr s pr fctn & Last CR eqtw msid \\
\hline CG_trim_delay & v9709836C & +4.5 & E+00 SEC & F S C G4.192 & 29551B \\
\hline IGN_press_delay & v9709838C & +2.0 & E+00 SEC & F S C G4.192 & 29551B \\
\hline
\end{tabular}
DBEN: 0558 FSSR NAME
NO REQUIREMENTS

\subsection*{4.3.2 Abort OMS/RCS Interconnect (4.184)}

\subsection*{4.3.2.1 Introduction}

The OMS/RCS interconnect function provides the control necessary to feed OMS propellants to RCS jets when required by an abort. In addition, after completion of the burn, controls are provided for reconfiguration to the normal RCS and OMS propellant feed from their respective tanks.

\subsection*{4.3.2.2 Overview}

When the abort control sequence has issued a request for an interconnect, the OMS/RCS interconnect sequence performs the following functions. On the first pass, the AFT MANIFOLD JET INHIBIT \(1 / 2\) and 3/4/5 FLAGS are set false, and all affected OMS/ RCS propellant valve commands are removed to establish a known condition. The RCS \(1 / 2\) and \(3 / 4 / 5\) ALL JET INHIBIT FLAGS are set to true to inhibit all AFT RCS jet firings during the interconnect process. Then the RCS propellant tank isolation valves are commanded closed.

Prior to opening the RCS crossfeed valves, the status of the RCS tank isolation valves is monitored. If any of the tank isolation valves do not indicate closed, or the associated COMMFAULT status indicates true, the corresponding AFT MANIFOLD JET INHIBIT FLAG is set true to inhibit the use of jets on those manifolds for dumping OMS propellants. The RCS crossfeed valves are commanded closed and a set of RCS tank isolation valves are commanded open for those manifolds whose jets are inhibited. If any of the RCS aft crossfeed valves have been commanded opened, the OMS pod crossfeed " \(B\) " valves are commanded open.

If all the jets have been inhibited in the above process, the RCS tank isolation valves are opened, the OMS TO RCS INTERCONNECT CMD set false, the OMS TO RCS RTRN TO NORM CONFIG CMD set true, the OMS TO RCS INTERCONNECT COMPLETE FLAG is set false to allow proper sequencing of the Abort Control Sequence, and the OMS/RCS INTERCONNECT INH/ENA CMD set false (INHIBIT), and the sequence is terminated.

The sequence monitors the RCS crossfeed valves which have been commanded open. If all of the valves which were commanded open indicate open, and none of the associated COMMFAULT status indicates true, the OMS pod crossfeed valves "B" are checked and the OMS pod crossfeed "A" valves commanded open if any " \(B\) " valve fails to open. If any of the OMS pod crossfeed "A" valves do not indicate open, the OMS TO RCS INTERCONNECT CMD is set false, the OMS TO RCS RTRN TO NORM CONFIG CMD is set true, and the OMS TO RCS INTERCONNECT COMPLETE FLAG is set true to allow for the proper sequencing of the ABT CNTL sequence and the OMS/RCS INH/ENA CMD is set false (INHIBIT) and the interconnect sequence returns to begin the return to normal process. If all OMS pod crossfeed " \(B\) " or " \(A\) " valves indicate open, then the OMS TO RCS INTERCONNECT COMPLETE FLAG is set true. If any of the jets have been inhibited, the RCS crossfeed valves for that manifold are closed and after a delay of 1.5 seconds the RCS tank isolation valves are opened. Then, after another 1.5 second delay, the OMS TO RCS INTERCONNECT COMPLETE FLAG is set true, and the sequence is terminated.

When the OMS/RCS interconnect is complete and if none of the jets have been inhibited, the sequence monitors the status of the RCS tank isolation valves. If any RCS tank isolation valve closed indication is lost for three consecutive passes, an internal flag is set to indicate which manifold requires reconfiguration and the RCS crossfeed valves for the affected manifolds are commanded closed. After a delay of 1.5 seconds the RCS tank isolation valves for those manifolds are commanded open. While the valves are
being reconfigured, a flag is set to inhibit all jet firings from that manifold until the propellant feed from the RCS tanks can be established. The sequence will then be terminated. If a COMMFAULT status for the RCS tank isolation valves indicates true for three consecutive cycles, the manifold jet inhibit flag for those manifolds is set true for those manifolds, and the monitor function is terminated.

When the abort control sequence requests a return to normal configuration the following functions are performed. All affected OMS/RCS propellant valve commands are set false to establish a known condition. If a Mode 2 return to normal has not been requested, then the ALL JET INHIBIT FLAGS are set true to inhibit all aft jet firings during the return to normal process if the respective AFT MANIFOLD JET INHIBIT FLAGS are false. Then, sequentially, the OMS pod crossfeed valves are commanded closed, and the RCS tank isolation valves are commanded open. Prior to closing the RCS crossfeed valves, the \(1 / 2\) manifold RCS tank isolation valves are monitored. If any of the \(1 / 2\) tank isolation valves does not indicate open, or the associated COMMFAULT status indicates true, the RCS crossfeed valves between that manifold and the companion 3/4/5 manifold will not be closed, providing RCS propellants to the affected \(1 / 2\) manifold. Finally, as determined by the above check, those RCS crossfeed valves to be closed are commanded closed and the OMS/RCS INTERCONNECT COMPLETE FLAG, AFT MANIFOLD JET INHIBIT FLAGS, and the ALL JET INHIBIT FLAGS are set false, and the sequence is terminated.

During a Mode 2 return to normal sequence, continuous propellant flow is provided to the RCS for flight control and the ALL JET INHIBIT FLAGS remain false. The sequential order of the valve commands. begins with the opening of all RCS tank isolation valves. Prior to closing the RCS crossfeed valves, the \(1 / 2\) manifold RCS tank isolation valves are monitored. If any of the \(1 / 2\) tank isolation valves do not indicate open, or the associated COMMFAULT status indicates true, the RCS crossfeed valves between that manifold and the companion 3/4/5 manifold will be commanded open providing RCS propellants to the affected \(1 / 2\) manifold. Finally, as determined by the above check, those RCS crossfeed valves are commanded closed, OMS crossfeed valves are commanded closed and the OMS/RCS INTERCONNECT COMPLETE FLAG and AFT MANIFOLD INHIBIT FLAGS are set false and the sequence is terminated.

When either an OMS/RCS interconnect or return to normal configuration has been requested by the Abort Control Sequence, the Abort OMS/RCS Interconnect Sequence will perform the requested function to completion prior to recognizing another request. RCS jet firing commands will be inhibited during an interconnect and a non-Mode 2 return to normal while the sequence is providing the requested function. This is controlled by the sequence setting RCS \(1 / 2(3 / 4 / 5)\) ALL JET INHIBIT FLAGS true to be used by the Ascent and Entry/Landing RCS Command SOP.

\subsection*{4.3.2.3 DETALL REQUIREMENTS}

Step 1. This step determines if the OMS-to-RCS interconnect or return-to-normal process is required.
When either an OMS/RCS interconnect or return to normal configuration has been requested by the Abort Control Sequence, the Abort OMS/RCS Interconnect Sequence will perform the requested function to completion prior to recognizing another request. In this step, use is made of two internal flags to control the process, these are the OMS/RCS I/C IN PROGRESS FLAG and the OMS/RCS RTRN TO NORM IN PROGRESS FLAG. Both of these flags are initialized to the false state.

The following signals are monitored:
(a) OMS TO RCS INTERCONNECT CMD V90X8312X
(b) OMS TO RCS RTRN TO NORM CONFIG CMD V90X8313X
(c) OMS TO RCS INTERCONNECT COMPLETE FLAG
V90X8282X
(d) INTERCONNECT MONITOR FLAG INTERNAL
(e) OMS/RCS I/C IN PROGRESS FLAG INTERNAL
(f) OMS/RCS RTRN TO NORM IN PROGRESS FLAG INTERNAL
(g) MODE 2 INDICATOR V90X8308X

If (e) is true, proceed to the next steps as required to complete the interconnect sequence, otherwise, go to the next if statement.

If ( \(f\) ) is true, proceed to the next steps as required to complete the return to normal configuration sequence, otherwise, go to the next if statement.

If (a) is true, and (c) is false, terminate (1) thru (76) below, upon completion of termination of all commands, change set and reset discretes for commands (63) thru (76) to false, set (77), (78), (79), and (82) false, set (80), (81), and (83) true, set (85) through (101) equal to zero, and go to Step 2. Otherwise go to the next if statement.

If (b) is true, and (c) is true, terminate (1) thru (76) below, set (79) and (82) false, set (84) true, and proceed to monitor (g). Otherwise, proceed to monitor (c) and (d).

If \((\mathrm{g})\) is true, proceed to Step 12. Otherwise, set (80) and (81) true and proceed to Step 9.
If (c) and (d) are both true, proceed to Step 7. Otherwise, terminate the sequence.
(1) OMS-L POD XFD VLVS A CMD 1 CL V43K4283X
(2) OMS-L POD OXDZR XFD VLV A CMD 2 CL V43K4285X
(3) OMS-L POD FUEL XFD VLV A CMD 2 CL
(4) OMS-L POD XFD VLVS B CMD 1 CL
(5) OMS-L POD OXDZR XFD VLV B CMD 2 CL
(6) OMS-L POD FUEL XFD VLV B CMD 2 CL
(7) OMS-R POD XFD VLVS A CMD 1 CL
(8) OMS-R POD OXDZR XFD VLV A CMD 2 CL
(9) OMS-R POD FUEL XFD VLV A CMD 2 CL
(10) OMS-R POD XFD VLVS B CMD 1 CL
(11) OMS-R POD OXDZR XFD VLV B CMD 2 C
(12) OMS-R POD FUEL XFD VLV B CMD 2 CL
(13) RCS-L AFT XFD VLV-1/2 GPC CL A
(14) RCS-L AFT OX XFD VLV-1/2 GPC CL B
(15) RCS-L AFT FU XFD VLV-1/2 GPC CL B V42K2422X
(16) RCS-L AFT XFD VLV-3/4/5 GPC CL A V42K2428X
(17) RCS-L AFT OX XFD V-3/4/5 GPC CL B V42K2430X
(18) RCS-L AFT FU XFD V-3/4/5 GPC CL B

V42K2434X
(19) RCS-R AFT XFD VLV-1/2 GPC CLOSE A

V42K3416X
(20) RCS-R AFT OX XFD V-1/2 GPC CLOSE B
(21) RCS-R AFT FU XFD V-1/2 GPC CLOSE B
(22) RCS-R AFT XFD VLV-3/4/5 GPC CL A
(23) RCS-R AFT OX XFD V-3/4/5 GPC CL B
(24) RCS-R AFT FU XFD V-3/4/5 GPC CL B
(25) RCS-L AFT TK ISLN V-1/2 GPC CL A
(26) RCS-L AFT OX TK ISLN V1/2 GPC CL B
(27) RCS-L AFT FU TK ISLN V1/2 GPC CL B
(28) RCS-L AFT OX TK ISLN V3/4/5 A GPC CL
(29) RCS-L AFT FU TK ISLN V3/4/5 A GPC CL
(30) RCS-L AFT OX TK ISLN V3/4/5 B GPC CL
(31) RCS-L AFT FU TK ISLN V3/4/5 B GPC CL
(32) RCS-R AFT TK ISLN V-1/2 GPC CL A
(33) RCS-R AFT OX TK ISLN V-1/2 GPC CL B
(34) RCS-R AFT FU TK ISLN V-1/2 GPC CL B
(35) RCS-R AFT OX TK ISLN V3/4/5 A GPC CL
(36) RCS-R AFT FU TK ISLN V3/4/5 A GPC CL
(37) RCS-R AFT OX TK ISLN V3/4/5 B GPC CL
(38) RCS-R AFT FU TK ISLN V3/4/5 B GPC CL
(39) OMS-L POD XFD VLVS A CMD 1 OP
(40) OMS-L POD OXDZR XFD VLV A CMD 2 OP
(41) OMS-L POD FUEL XFD VLV A CMD 2 OP
(42) OMS-L POD XFD VLVS B CMD 1 OP
(43) OMS-L POD OXDZR XFD VLV B CMD 2 OP
(44) OMS-L POD FUEL XFD VLV B CMD 2 OP
(45) OMS-R POD XFD VLVS A CMD 1 OP
(46) OMS-R POD OXDZR XFD VLV A CMD 2 OP
(47) OMS-R POD FUEL XFD VLV A CMD 2 OP
(48) OMS-R POD XFD VLVS B CMD 1 OP
(49) OMS-R POD OXDZR XFD VLV B CMD 20 P
(50) OMS-R POD FUEL XFD VLV B CMD 2 OP
(51) RCS-L AFT XFD VLV-1/2 GPC OP A
(52) RCS-L AFT OX XFD VLV-1/2 GPC OP B
(53) RCS-L AFT FU XFD VLV-1/2 GPC OP B
(54) RCS-L AFT XFD VLV3/4/5 GPC OP A
(55) RCS-L AFT OX XFD V-3/4/5 GPC OP B
(56) RCS-L AFT FU XFD V-3/4/5 GPC OP B
(57) RCS-R AFT XFD VLV-1/2 GPC OPEN A
(58) RCS-R AFT OX XFD V-1/2 GPC OPEN B
(59) RCS-R AFT FU XFD V-1/2 GPC OPEN B
(60) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A
(61) RCS-R AFT OX XFD V-3/4/5 GPC OP B
(62) RCS-R AFT FU XFD V-3/4/5 GPC OP B
(63) RCS-L AFT TK ISLN V-1/2 GPC OP A
(64) RCS-L AFT OX TK ISLN V1/2 GPC OP B
(65) RCS-L AFT FU TK ISLN V1/2 GPC OP B

V42K3434X

V42K2353X
V42K2354X
V42K2355X
V42K2357X
V42K2358X
V42K2360X
V42K2361X
V42K3353X
V42K3354X
V42K3355X
V42K3357X
V42K3358X
V42K3360X
V42K3361X

V43K4282X
V43K4284X
V43K4384X
V43K4286X
V43K4288X
V43K4388X
V43K5282X
V43K5284X
V43K5384X
V43K5286X
V43K5288X
V43K5388X
V42K2402X
V42K2403X
V42K2404X
V42K2408X
V42K2409X
V42K2410X

V42K3402X
V42K3403X
V42K3404X
V42K3408X
V42K3409X
V42K3410X
V42K2342X
V42K2343X
V42K2344X
(66) RCS-L AFT OX TK ISLN V3/4/5 A GPC OP
(67) RCS-L AFT FU TK ISLN V3/4/5 A GPC OP
(68) RCS-L AFT OX TK ISLN V3/4/5 B GPC OP
(69) RCS-L AFT FU TK ISLN V3/4/5 B GPC OP
(70) RCS-R AFT TK ISLN V-1/2 GPC OP A
(71) RCS-R AFT OX TK ISLN V-1/2 GPC OP B
(72) RCS-R AFT FU TK ISLN V-1/2 GPC OP B
(73) RCS-R AFT OX TK ISLN V3/4/5 A GPC OP
(74) RCS-R AFT FU TK ISLN V3/4/5 A GPC OP
(75) RCS-R AFT OX TK ISLN V3/4/5 B GPC OP
(76) RCS-R AFT FU TK ISLN V3/4/5 B GPC OP
(77) AFT MANIFOLD \(1 / 2\) JET INH FLAG
(78) AFT MANIFOLD 3/4/5 JET INH FLAG
(79) INTERCONNECT MONITOR FLAG
(80) RCS \(1 / 2\) ALL JET INHIBIT FLAG
(81) RCS 3/4/5 ALL JET INHIBIT FLAG
(82) \(1 / 2\) XFD/ISO FAIL FLAG
(83) OMS/RCS I/C IN PROGRESS FLAG
(84) OMS/RCS RTRN TO NORM IN PROGRESS FLAG
(85) I/C FAll COUNTER
(86) FA 1 COMMFAULT CYC COUNTER
(87) RCS L OX TK POSN CYC COUNTER
(88) RCS L FU TK POSN CYC COUNTER
(89) FA3 COMMFAULT CYC COUNTER
(90) RCS R OX TK POSN CYC COUNTER
(91) RCS R FU TK POSN CYC COUNTER
(92) FA 2 COMMFAULT CYC COUNTER
(93) RCS L A OX TK POSN CYC COUNTER
(94) RCS L B OX TK POSN CYC COUNTER
(95) RCS L A FU TK POSN CYC COUNTER
(96) RCS L B FU TK POSN CYC COUNTER
(97) FA 4 COMMFAULT CYC COUNTER
(98) RCS R A OX TK POSN CYC COUNTER
(99) RCS R B OX TK POSN CYC COUNTER
(100) RCS R A FU TK POSN CYC COUNTER
(101) RCS R B FU TK POSN CYC COUNTER

V42K2346X
V42K2347X
V42K2349X
V42K2350X
V42K3342X
V42K3343X
V42K3344X
V42K3346X
V42K3347X
V42K3349X
V42K3350X
V90X8285X
V90X8286X
INTERNAL
V90X8290X
V90X8291X
INTERNAL

Step 2. This step commands RCS propellant tank isolation valves closed on initiation of the interconnect sequence.
Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 3.

RCS-L AFT TK ISLN V-1/2 GPC CL A V42K2353X
RCS-L AFT OX TK ISLN V1/2 GPC CL B V42K2354X
RCS-L AFT FU TK ISLN V1/2 GPC CL B V42K2355X
RCS-L AFT OX TK ISLN V3/4/5 A GPC CL V42K2357X
RCS-L AFT FU TK ISLN V3/4/5 A GPC CL V42K2358X

RCS-L AFT OX TK ISLN V3/4/5 B GPC CL V42K2360X
RCS-L AFT FU TK ISLN V3/4/5 B GPC CL
RCS-R AFT TK ISLN V-1/2 GPC CL A
V42K3353X
RCS-R AFT OX TK ISLN V-1/2 GPC CL B
RCS-R AFT FU TK ISLN V-1/2 GPC CL B V42K3354X
V42K3355X
RCS-R AFT OX TK ISLN V3/4/5 A GPC CL
V42K3357X
RCS-R AFT FU TK ISLN V3/4/5 A GPC CL
V42K3358X
RCS-R AFT OX TK ISLN V3/4/5 B GPC CL V42K3360X
RCS-R AFT FU TK ISLN V3/4/5 B GPC CL V42K3361X
Step 3. This step monitors the position of the RCS tank isolation valves, opening the RCS crossfeed \(\overline{\text { valves for those manifolds with all tank isolation valves configured correctly. If any tank isolation valve }}\) ( \(1 / 2\) or \(3 / 4 / 5\) ) indicates not closed, an I/C fail counter will be incremented for processing in Step 5 and Step 6. If any RCS crossfeed valve is commanded open, the OMS pod crossfeed valves " \(B\) " are also commanded open.

The following signals are monitored:
(a) RCS L AFT OX TANK ISLN VLV \(1 / 2\) CL V42X2221X
(b) RCS L AFT FU TANK ISLN VLV 1/2 CL V42X2321X
(c) RCS R AFT OX TANK ISLN VLV \(1 / 2\) CL

V42X3221X
(d) RCS R AFT FU TANK ISLN VLV \(1 / 2 \mathrm{CL}\)

V42X3321X
(e) RCS L AFT OX TANK ISLN VLV \(1 / 2\) OP

V42X2220X
(f) RCS L AFT FU TANK ISLN VLV \(1 / 2\) OP V42X2320X
(g) RCS R AFT OX TANK ISLN VLV \(1 / 2\) OP V42X3220X
(h) RCS R AFT FU TANK ISLN VLV 1/2 OP V42X3320X
(i) RCS L AFT OX TANK ISLN VLV 3/4/5 A CL V42X2223X
(j) RCS L AFT OX TANK ISLN VLV 3/4/5 B CL V42X2225X
(k) RCS L AFT FU TANK ISLN VLV 3/4/5 A CL V42X2323X
(1) RCS L AFT FU TANK ISLN VLV 3/4/5 B CL V42X2325X
(m) RCS R AFT OX TANK ISLN VLV \(3 / 4 / 5 \mathrm{~A}\) CL
(n) RCS R AFT OX TANK ISLN VLV \(3 / 4 / 5 \mathrm{~B}\) CL
(o) RCS R AFT FU TANK ISLN VLV \(3 / 4 / 5 \mathrm{~A}\) CL
(p) RCS R AFT FU TANK ISLN VLV \(3 / 4 / 5 \mathrm{~B} \mathrm{CL}\)

V42X3223X
V42X3225X
V42X3323X
(q) FA 1 INPUT PROM SEG 3, 10 STATUS

V42X3325X
(r) FA 3 INPUT PROM SEG 3, 10 STATUS
(s) FA 2 INPUT PROM SEG 3, 10 STATUS

V91X2845X
V91X2847X
V91X2846X
(t) FA 4 INPUT PROM SEG 3, 10 STATUS V91X2848X
(u) I/C FAIL COUNTER INTERNAL

If (a) thru (d) are not all true, or (e) thru (h) are not all false, or (q) or (r) is true, set (1) true, increment (3) by 1 , and go to the next if statement. Otherwise, issue (4) thru (9) and go to the next if statement.

If (i) thru (p) are not all true, or if (s) or (t) is true, set (2) true, increment (3) by 1 , and go to the next if statement. Otherwise, issue (10) thru (15) and go to the next if statement.

If (u) \(>1\) proceed to Step 6. Otherwise, Issue (16) thru (21) and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 4.
(1) APT MANIFOLD \(1 / 2\) JET INH FLAG
(2) AFT MANIFOLD \(3 / 4 / 5\) JET INH FLAG
(3) I/C FAIL COUNTER
(4) RCS-L AFT XFD VLV-1/2 GPC OP A
(5) RCS-L AFT OX XFD VLV- \(1 / 2\) GPC OP B
(6) RCS-L AFT FU XFD VLV-1/2 GPC OP B

V90X8285X
V90X8286X
INTERNAL
V42K 2402 X
V42K2403X
(7) RCS-R AFT XFD VLV-1/2 GPC OP A V42K2404X
(8) RCS-R AFT OX XFD VLV-1/2 GPC OP B
(9) RCS-R AFT FU XFD VLV-1/2 GPC OP B

V42K3402X
V42K3403X
V42K3404X
(10) RCS-L AFT XFD VLV-3/4/5 GPC OP A
(11) RCS-L AFT OX XFD VLV-3/4/5 GPC OP B
(12) RCS-L AFT FU XIFD VLV-3/4/5 GPC OP B

V42K2408X
V42K2409X
V42K2410X
(13) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A

V42K3408X
(14) RCS-R AFT OX XFD V-3/4/5 GPC OP B

V42K3409X
(15) RCS-R AFT FU XFD V-3/4/5 GPC OP B

V42K3410X
(16) OMS-L POD XFD VLVS B CMD 1 OP

V43K4286X
(17) OMS-L POD OXDZR XFD VLV B CMD 2 OP V43K4288X
(18) OMS-L POD FUEL XFD VLV B CMD 2 OP V43K4388X
(19) OMS-R POD XFD VLVS B CMD 1 OP V43K5286X
(20) OMS-R POD OXDZR XFD VLV B CMD 2 OP V43K5288X
(21) OMS-R POD FUEL XFD VLV B CMD 2 OP V43K5388X

Step 4. This step checks the response of the RCS crossfeed valves which have been commanded open during the interconnect sequence. If any RCS crossfeed valve ( \(1 / 2\) or \(3 / 4 / 5\) ) failed to open, the sequence is directed to the step which will reconfigure the system to furnish propellants to those manifolds ( \(1 / 2\) or \(3 / 4 / 5\) ) from the RCS tanks.

The following signals are monitored:
\begin{tabular}{lll} 
(a) & RCS-L AFT OX XFD VLV \(1 / 2\) OP & V42X2236X \\
(b) & RCS-L AFT FU XFD VLV \(1 / 2\) OP & V42X2336X \\
(c) & RCS-R AFT OX XFD VLV 1/2 OP & V42X3236X \\
(d) RCS-R AFT FU XFD VLV \(1 / 2\) OP & V42X3336X \\
& & \\
(e) & RCS-L OX/FU XFD VLV \(1 / 2\) OP & V42X2251X \\
(f) & RCS-R OX/FU XFD VLV \(1 / 2\) OP & V42X2252X
\end{tabular}
(g) RCS L AFT OX XFD VLV 3/4/5 OP

V42X2238X
(h) RCS L AFT FU XFD VLV \(3 / 4 / 5\) OP
(i) RCS R AFT OX XFD VLV \(3 / 4 / 5\) OP
(j) RCS R AFT FU XFD VLV \(3 / 4 / 5\) OP
(k) RCS L OX/FU XFD VLV \(3 / 4 / 5 \mathrm{OP}\)
(l) RCS R OX/FU XFD VLV \(3 / 4 / 5 \mathrm{OP}\)
(m) AFT MANIFOLD \(1 / 2\) JET INH FLAG
(n) AFT MANIFOLD 3/4/5 JET INH FLAG
(o) FA 3 INPUT PROM SEG 3, 10 STATUS
(p) FA 4 INPUT PROM SEG 3, 10 STATUS
(q) I/C FAIL COUNTER

V42X2253X

V90X8285X V90X8286X
V42X2338X
V42X3238X
V42X3338X

V42X2254X

V91X2847X
V91X2848X
INTERNAL

If \([(\mathrm{m})\) is false] and [(a) or (b) or (f) is false, or (o) is true] and [(c) or (d) or (e) is false, or (p) is true], increment (2) by 1 , set (1) true, and go to the next if statement. Otherwise, go to the next if statement.

If \([(\mathrm{n})\) is false] and [(g) or (h) or (1) is false, or (p) is true] and [(i) or \((\mathrm{j})\) or \((\mathrm{k})\) is false, or \((0)\) is true], increment (2) by 1 , and go to the next if statement. Otherwise, go to the next if statement.

If \((\mathrm{q})=0\), proceed to Step 11, otherwise go to Step 5 .
(1) \(1 / 2\) XFD/ISO FAIL FLAG
(2) I/C FAIL COUNTER

INTERNAL
INTERNAL
Step 5. This step controls the reconfiguration process for returning propellant feed from the RCS tanks for those manifolds ( \(1 / 2\) and/or \(3 / 4 / 5\) ) whose interconnect to the OMS tanks was unsuccessful, or those manifolds for which the monitor function had lost the indication of RCS tank isolation valve closed.

The following signals are monitored:
(a) AFT MANIFOLD \(1 / 2\) JET INH FLAG

V90X8285X
(b) AFT MANIFOLD \(3 / 4 / 5\) JET INH FLAG V90X8286X
(c) I/C FAIL COUNTER INTERNAL
(d) \(1 / 2 \mathrm{XFD} / \mathrm{ISO}\) FAIL FLAG INTERNAL

If \((\mathrm{c})>1\), terminate (1) thru (18) below, issue (19) thru (36), then return to Step 1 until 1.5 seconds have elapsed. Then proceed to Step 6. Otherwise go to the next if statement.

If (a) or (b) is true, proceed to Step 6. Otherwise, go to the next if statement.
If \((d)=\) true, terminate (1) thru (6) below, issue (19) thru (24), set (37) equal true, and return to Step 1 until at least 1.5 seconds has elapsed. Then proceed to Step 6. Otherwise, proceed to the next if statement.

If (d) is false, terminate (7) thru (12) below, issue (25) thru (30), set (38) equal true, and return to Step 1 until at least 1.5 seconds has elapsed. Then proceed to Step 6.
(1) RCS-L AFT XFD VLV-1/2 GPC OP A
(2) RCS-L AFT OX XFD VLV-1/2 GPC OP B
(3) RCS-L AFT FU XFD VLV-1/2 GPC OP B
(4) RCS-R AFT XFD VLV-1/2 GPC OPEN A
(5) RCS-R AFT OX XFD V-1/2 GPC OPEN B
(6) RCS-R AFT FU XFD V-1/2 GPC OPEN B
(7) RCS-L AFT XFD VLV-3/4/5 GPC OP A
(8) RCS-L AFT OX XFD V-3/4/5 GPC OP B
(9) RCS-L AFT FU XFD V-3/4/5 GPC OP B
(10) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A
(11) RCS-R AFT OX XFD V-3/4/5 GPC OP B
(12) RCS-R AFT FU XFD V-3/4/5 GPC OP B
(13) OMS-L POD XFD VLVS B CMD 1 OP
(14) OMS-L POD OXDZR XFD VLV B CMD 2 OP
(15) OMS-L POD FUEL XFD VLV B CMD 2 OP
(16) OMS-R POD XFD VLVS B CMD 1 OP
(17) OMS-R POD OXDZR XFD VLV B CMD 2 OP
(18) OMS-R POD FUEL XFD VLV B CMD 2 OP
(19) RCS-L AFT XFD VLV-1/2 GPC CL A
(20) RCS-L AFT OX XFD VLV-1/2 GPC CL B
(21) RCS-L AFT FU XFD VLV-1/2 GPC CL B
(22) RCS-R AFT XFD VLV- \(1 / 2\) GPC CLOSE A
(23) RCS-R AFT OX XFD V-1/2 GPC CLOSE B
(24) RCS-R AFT FU XFD V-1/2 GPC CLOSE B
(25) RCS-L AFT XFD VLV-3/4/5 GPC CL A
(26) RCS-L AFT OX XFD V-3/4/5 GPC CL B
(27) RCS-L AFT FU XFD V-3/4/5 GPC CL B
(28) RCS-R AFT XFD VLV-3/4/5 GPC CL A
(29) RCS-R AFT OX XFD V-3/4/5 GPC CL B
(30) RCS-R AFT FU XFD V-3/4/5 GPC CL B
(31) OMS-L POD XFD VLVS B CMD 1 CL
(32) OMS-L POD OXDZR XFD VLV B CMD 2 CL
(33) OMS-L POD FUEL XFD VLV B CMD 2 CL
(34) OMS-R POD XFD VLVS B CMD 1 CL
(35) OMS-R POD OXDZR XFD VLV B CMD 2 CL
(36) OMS-R POD FUEL XFD VLV B CMD 2 CL

V42K2402X
V42K2403X
V42K2404X

V42K3402X
V42K3403X
V42K3404X
V42K2408X
V42K2409X
V42K2410X
V42K3408X
V42K3409X
V42K3410X
V43K4286X
V43K4288X
V43K4388X
V43K5286X
V43K5288X
V43K5388X
V42K2416X
V42K2418X
V42K2422X
V42K3416X
V42K3418X
V42K3422X
V42K2428X
V42K2430X
V42K2434X
V42K3428X
V42K3430X
V42K3434X
V43K4287X
V43K4289X
V43K4389X
V43K5287X
V43K5289X
V43K5389X

Step 6. This step commands the RCS tank isolation valves open in the OMS TO RCS return to normal configuration and as part of an unsuccessful attempt to accomplish the OMS/RCS interconnect sequence. If both \(1 / 2\) and \(3 / 4 / 5\) manifold tank isolation valves have been commanded open, the OMS/RCS interconnect is inhibited and OMS propellant burn via RCS jets will not occur.

The following signals are monitored:
(a) OMS TO RCS RTRN TO NORM IN PROGRESS FLAG
(b) I/C FAIL COUNTER
(c) AFT MANIFOLD \(1 / 2\) JET INH FLAG V90X8285X

If (a) is true, issue (15) thru (28) below, and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 10. Otherwise, go to the next if statement.

If (b) \(>1\), terminate (1) thru (14), issue (15) thru (28) below, and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 11. Otherwise go to the next if statement.

If (c) is true, terminate (1) thru (6), issue (15) thru (20) below and return to Step 1 until at least 1.5 sec onds have elapsed. Then proceed to Step 11. Otherwise, terminate (7) thru (14), issue (21) thru (28) below and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 11.
(1) RCS-L AFT TK 1 SLN V-1/2 GPC CL A

V42K2353X
(2) RCS-L AFT OX TK ISLN V1/2 GPC CL B

V42K2354X
(3) RCS-L AFT FU TK ISLN V1/2 GPC CL B V42K2355X
(4) RCS-R AFT TK ISLN V-1/2 GPC CL A

> V42K3353X
(5) RCS-R AFT OX TK ISLN V-1/2 GPC CL B V42K3354X
(6) RCS-R AFT FU TK ISLN V-1/2 GPC CL B V42K3355X
(7) RCS-L AFT OX TK ISLN V3/4/5 A GPC CL

> V42K2357X
(8) RCS-L AFT FU TK ISLN V3/4/5 A GPC CL
V42K2358X
(9) RCS--R AFT OX TK ISLN V3/4/5 A GPC CL

V42K3357X
(10) RCS-R AFT FU TK ISLN V3/4/5 A GPC CL V42K3358X
(11) RCS-L AFT OX TK ISLN V3/4/5 B GPC CL V42K2360X
(12) RCS-L AFT FU TK ISLN V3/4/5 B GPC CL V42K2361X
(13) RCS-R AFT OX TK ISLN V3/4/5 B GPC CL V42K3360X
(14) RCS-R AFT FU TK ISLN V3/4/5 B GPC CL V42K3361X
(15) RCS-L AFT TK ISLN V-1/2 GPC OP A V42K2342X
(16) RCS-L AFT OX TK ISLN V1/2 GPC OP B V42K2343X
(17) RCS-L AFT FU TK ISLN V1/2 GPC OP B V42K2344X
(18) RCS-R AFT TK ISLN V-1/2 GPC OP A V42K3342X
(19) RCS-R AFT OX TK ISLN V-1/2 GPC OP B V42K3343X

V42K3344X
(21)
(23) RCS-R AFT OX TK ISLN V3/4/5 A GPC OP
(24) RCS-R AFT FU TK ISLN V3/4/5 A GPC OP
(25) RCS-L AFT OX TK ISLN V3/4/5 B GPC OP
(26) RCS-L AFT FU TK ISLN V3/4/5 B GPC OP
(27) RCS-R AFT OX TK ISLN V3/4/5 B GPC OP
(28) RCS-R AFT FU TX ISLN V3/4/5 B GPC OP

V42K2346X
V42K2347X

V42K3346X
V42K3347X

V42K2349X V42X2350X

V42K3349X
V42K3350X

Step 7. This step monitors the status of the left RCS tank isolation valves \(1 / 2\) when the OMS to RCS interconnect has been successfully completed. If any RCS left tank isolation valve \(1 / 2\) closed status becomes false for three consecutive cycles, the RCS \(1 / 2\) ALL JET INHIBIT FLAG is set true to inhibit all \(1 / 2\) jet firings and the \(1 / 2\) XFD/ISO FAIL FLAG is set true for use in the RCS crossfeed reconfiguration process. If the COMMFAULT status for the left \(1 / 2\) tank isolation valves indicates true for three consecutive cycles, the AFT MANIFOLD \(1 / 2\) JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:
(a) FA 1 INPUT PROM SEG 3, 10 STATUS

\section*{V91X2845X}
(b) FA 1 COMMFAULT CYC COUNTER (INTERNAL)
(c) RCS L AFT OX TANK ISLN VLV 1/2 CL V42X2221X
(d) RCS L AFT FU TANK ISLN VLV 1/2 CL V42X2321X
(e) RCS L OX TK POSN CYC COUNTER
(INTERNAL)
(f) RCS L FU TK POSN CYC COUNTER
(INTERNAL)

If (a) is true, increment (b) by 1 , set (e) and (f) to zero, and proceed to monitor (b). Otherwise, if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and return to Step 1. Otherwise, proceed to Step 7A.
If (c) is false, increment (e) by 1, and proceed to monitor (e). Otherwise, set (e) to zero, and proceed to monitor (d).

If (e) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5. Otherwise, proceed to monitor (d).

If (d) is false, increment (f) by 1, and proceed to monitor (f). Otherwise, set (f) to zero, and proceed to Step 7A.

If ( \(f\) ) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5. Otherwise, proceed to Step 7A.
(1) AFT MANIFOLD \(1 / 2\) JET INH FLAG

V90X8285X
(2) INTERCONNECT MONITOR FLAG
(INTERNAL)
(3) \(1 / 2 \times F D / I S O\) FAIL FLAG
(INTERNAL)
(4) RCS \(1 / 2\) ALL JET INHHBIT FLAG V90X8290X
(5) OMS/RCS I/C IN PROGRESS FLAG
(6) I/C FAIL COUNTER

Step 7A. This step monitors the status of the right RCS tank isolation valves \(1 / 2\) when the OMS to RCS interconnect has been successfully completed. If any \(\mathbb{R C S}\) right tank isolation valve \(1 / 2\) closed status becomes false for three consecutive cycles, the RCS \(1 / 2\) ALL JET INHIBIT FLAG is set true to inhibit all \(1 / 2\) jet firings and the \(1 / 2\) XFD/ISO FAIL FLAG is set true for use in the RCS crossfeed reconfiguration process. If the COMMFAULT status for the right \(1 / 2\) tank isolation valves indicates true for three consecutive cycles, the AFT MANIFOLD \(1 / 2\) JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:


If (a) is true, increment (b) by 1 , set (e) and (f) to zero, and proceed to monitor (b). Otherwise, if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and return to Step 1. Otherwise, proceed to Step 8.
If (c) is false, increment (e) by 1 , and proceed to monitor (e). Otherwise, set (e) to zero, and proceed to monitor (d).
If (e) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (d).
If (d) is false, increment ( \(f\) ) by 1 , and proceed to monitor ( \(f\) ). Otherwise, set ( \(f\) ) to zero, and proceed to Step 8.
If (f) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5 . Otherwise, proceed to Step 8.
\begin{tabular}{llr} 
(1) & AFT MANIFOLD \(1 / 2\) JET INH FLAG & V90X8285X \\
(2) & INTERCONNECT MONITOR FLAG & (INTERNAL) \\
(3) & \(1 / 2\) XFD/ISO FAIL FLAG & (INTERNAL) \\
(4) & RCS 1/2 ALL JET INHIBIT FLAG & V90X8290X \\
(5) & OMS/RCS I/C IN PROGRESS FLAG & (INTERNAL) \\
(6) I/C FAIL COUNTER & (INTERNAL)
\end{tabular}

Step 8. This step monitors the status of the 3/4/5A RCS tank isolation valves when the OMS to RCS interconnect has been successfully completed. If any \(3 / 4 / 5 \mathrm{~A}\) RCS tank isolation valve closed status be-
comes false for three consecutive cycles, the RCS 3/4/5 ALL JET INHIBIT FLAG is set true to inhibit all \(3 / 4 / 5\) jet firings. If the COMMFAULT status for the \(3 / 4 / 5 \mathrm{~A}\) tank isolation valves indicates true for three consecutive cycles the AFT MANIFOLD \(3 / 4 / 5\) JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:
(a) FA 2 INPUT PROM SEG 3, 10 STATUS V91X2846X
(b) FA 2 COMMFAULT CYC COUNTER (INTERNAL)
(c) RCS L AFT OX TANK ISLN VLV 3/4/5 A CL V42X2223X
(d) RCS R AFT OX TANK ISLN VLV \(3 / 4 / 5 \mathrm{~A}\) CL V42X3223X
(e) RCS L AFT FU TANK ISLN VLV \(3 / 4 / 5 \mathrm{~A}\) CL V42X2323X
(f) RCS R AFT FU TANK ISLN VLV 3/4/5 A CL V42X3323X
(g) RCS L A OX TK POSN CYC COUNTER
(INTERNAL)
(h) RCS RA OX TK POSN CYC COUNTER
(i) RCS L A FU TK POSN CYC COUNTER
(j) RCS R A FU TK POSN CYC COUNTER

If (a) is true, increment (b) by 1 , set (g), (h), (i), and j) to zero, and proceed to monitor (b). Otherwise, if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and return to Step 1. Otherwise, proceed to Step 8A.
If (c) is false, increment \((\mathrm{g})\) by 1 , and proceed to monitor \((\mathrm{g})\). Otherwise, set \((\mathrm{g})\) to zero, and proceed to monitor (d).

If \((\mathrm{g})\) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (d).

If (d) is false, increment (h) by 1, and proceed to monitor (h). Otherwise, set (h) to zero, and proceed to monitor (e).

If (h) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5. Otherwise, proceed to monitor (e).

If (e) is false, increment (i) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and proceed to monitor (f).

If (i) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5. Otherwise proceed to monitor ( f ).

If ( \(f\) ) is false, increment ( j ) by 1 , and proceed to monitor ( i ). Otherwise, set (i) to zero, and proceed to Step 8A.

If \((\mathrm{j})\) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to Step 8A.
\begin{tabular}{llr} 
(1) & AFT MANIFOLD 3/4/5 JET INH FLAG & V90X8286X \\
(2) & \\
(3) & RCS \(3 / 4 / 5\) ALL JET INHIBIT FLAG & (INTERNAL) \\
V90X8291X
\end{tabular}
(4) OMS/RCS I/C IN PROGRESS FLAG
(INTERNAL)
(5) 1/C FAIL COUNTER

Step 8A. This step monitors the status of the \(3 / 4 / 5 \mathrm{~B}\) RCS tank isolation valves when the OMS to RCS interconnect has been successfully completed. If any \(3 / 4 / 5 \mathrm{BRCS}\) tank isolation valve closed status becomes false for three consecutive cycles, the RCS \(3 / 4 / 5\) ALL JET INHIBIT FLAG is set true to inhibit all \(3 / 4 / 5\) jet firings. If the COMMIFAULT status for the \(3 / / 4 / 5 B\) tank isolation valves indicates true for three consecutive cycles, the AFT MANIFOLD 3/4/5 JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:
(a) FA 4 INPUT PROM SEQ 3, 10 STATUS

V91X2848X
(b) FA 4 COMMFAULT CYC COUNTER
(INTERNAL)
(c) RCS L AFT OX TANK ISLN VLV \(3 / 4 / 5 \mathrm{~B}\) CL
(d) RCS R AFT OX TANK ISLN VLV \(3 / 4 / 5 \mathrm{~B}\) CL

V42X2225X
(e) RCS L AFT FU TANK ISLN VLV 3/4/5 B CL

V42X3225X
(f) RCS R AFT FU TANK ISLN VLV \(3 / 4 / 5 \mathrm{~B}\) CL

V42X2325X
V42X3325X
(g) RCS L B OX TK POSN CYC COUNTER
(INTERNAL)
(h) RCS R B OX TK POSN CYC COUNTER (INTERNAL)
(i) RCS L B FU TK POSN CYC COUNTER (INTERNAL)
(j) RCSRBFUTK POSN CYC COUNTER
(INTERNAL)
If (a) is true, increment (b) by 1 , set (g), (h), (i), and (j) to zero, and proceed to monitor (b). Otherwise. if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and retum to Step 1. Otherwise, return to Step 1.
If (c) is false, increment \((\mathrm{g})\) by 1 , and proceed to monitor \((\mathrm{g})\). Otherwise, set \((\mathrm{g})\) to zero, and proceed to monitor (d).

If \((g)\) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (d).
*If (d) is false, increment \((\mathrm{h})\) by 1 , and proceed to monitor \((\mathrm{h})\). Otherwise, set ( h ) to zero, and proceed to monitor (e).

If (h) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (e).

If (e) is false, increment (i) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and proceed to monitor (f).

If (i) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5. Otherwise, proceed to monitor (f).

If (f) is false, increment (j) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and return to Step 1.

If (j) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, return to Step 1.
(1) AFT MANIFOLD \(3 / 4 / 5\) JET INH FLAG

V90X8286X
(2) INTERCONNECT MONITOR FLAG
(INTERNAL)
(3) RCS 3/4/5 ALL JET INHIBIT FLAG V90X8291X
(4) OMS/RCS I/C IN PROGRESS FLAG
(INTERNAL)
(5) I/C FAIL COUNTER

Step 9. This step commands the OMS pod crossfeed valves closed on initiation of the return to normal configuration sequence.

Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 6.
\begin{tabular}{|c|c|c|}
\hline (1) & OMS-L POD XFD VLVS A CMD 1 CL & V43K4283X \\
\hline (2) & OMS-L POD OXDZR XFD VLV A CMD 2 CL & V43K4285X \\
\hline (3) & OMS-L POD FUEL XFD VLV A CMD 2 CL & V43K4385X \\
\hline (4) & OMS-L POD XFD VLVS B CMD 1 CL & V43K4287X \\
\hline (5) & OMS-L POD OXDZR XFD VLV B CMD 2 CL & V43K4289X \\
\hline (6) & OMS-L POD FUEL XFD VLV B CMD 2 CL & V43K4389X \\
\hline (7) & OMS-R POD XFD VLVS A CMD 1 CL & V43K5283X \\
\hline (8) & OMS-R POD OXDZR XFD VLV A CMD 2 CL & V43K5285X \\
\hline (9) & OMS-R POD FUEL XFD VLV A CMD 2 CL & V43K5385X \\
\hline (10) & OMS-R POD XFD VLVS B CMD 1 CL & V43K5287X \\
\hline (11) & OMS-R POD OXDZR XFD VLV B CMD 2 CL & V43K5289X \\
\hline (12) & OMS-R POD FUEL XFD VLV B CMD 2 CL & V43K5389X \\
\hline
\end{tabular}

Step 10. This step monitors the response of the RCS left and right tank isolation valves on the \(1 / 2\) manifolds in the OMS/RCS return to normal configuration sequence. If any left or right \(1 / 2\) tank isolation valve fails to open, the RCS crossfeed valves between that manifold pair (OX and FU) and the corresponding \(3 / 4 / 5\) manifold will be left open to provide RCS propellant through the crossfeed valve.

The following signals are monitored:
(a) RCS L AFT OX TANK ISLN VLV \(1 / 2\) OP V42X2220X
(b) RCS L AFT FU TANK ISLN VLV 1/2 OP V42X2320X
(c) RCS R AFT OX TANK ISLN VLV 1/2 OP V42X3220X
(d) RCS R AFT FU TANK ISLN VLV \(1 / 2\) OP V42X3320X
(e) RCS L AFT OX TANK ISLN VLV 1/2 CL V42X2221X
(f) RCS L AFT FU TANK ISLN VLV \(1 / 2 \mathrm{CL}\)

V42X2321X
(g) RCS R AFT OX TANK ISLN VLV \(1 / 2 \mathrm{CL}\) V42X3221X
(h) RCS R AFT FU TANK ISLN VLV \(1 / 2 \mathrm{CL}\) V42X3321X
(i) FA 1 INPUT PROM SEG 3, 10 STATUS

V91X2845X
(j) FA 3 INPUT PROM SEG 3, 10 STATUS

V91X2847X

If (a) and (b) are true, and (e), (f) and (i) are false, issue (1) thru (6) below, and go to the next if statement. Otherwise, issue (13) through (18) and go to the next if statement,

If (c) and (d) are true, and (g), (h) and (j) are false, issue (7) thru (12) below, and go to the next statement, otherwise, issue (19) through (24) and go to the next statement.

Set (25) ad (26) false and return to Step 1 until at least 1.5 seconds have elapsed and then proceed to Step 16.
(1) RCS-L AFT XFD VLV-1/2 GPC CL A

V42K2416X
(2) RCS-L AFT OX XFD VLV-1/2 GPC CL B
(3) RCS-L AFT FU XFD VLV-1/2 GPC CL B
(4) RCS-L AFT XFD VLV-3/4/5 GPC CL A
(5) RCS-L AFT OX XFD V-3/4/5 GPC CL B
(6) RCS-L AFT FU XFD V-3/4/5 GPC CL B
(7) RCS-R AFT XFD VLV-1/2 GPC CLOSE A
(8) RCS-R AFT OX XFD V-1/2 GPC CLOSE B
(9) RCS-R AFT FU XFD V-1/2 GPC CLOSE B
(10) RCS-R AFT XFD VLV-3/4/5 GPC CL A
(11) RCS-R AFT OX XFD V-3/4/5 GPC CL B
(12) RCS-R AFT FU XFD V-3/4/5 GPC CL B

V42K2418X
V42K2422X
V42K2428X
(5) RCS-LAFT V42K2430X

V42K2434X
(13) RCS-L AFT XFD VLV-1/2 GPC OP A
(14) RCS-L AFT OX XFD VLV-1/2 GPC OP B
(15) RCS-L AFT FU XFD VLV-1/2 GPC OP B
(16) RCS-L AFT XFD VLV-3/4/5 GPC OP A
(17) RCS-L AFT OX XFD V-3/4/5 GPC OP B
(18) RCS-L AFT FU XFD V-3/4/5 GPC OP B
(19) RCS-R AFT XFD VLV-1/2 GPC OPEN A
(20) RCS-R AFT OX XFD V-1/2 GPC OPEN B
(21) RCS-R AFT FU XFD V-1/2 GPC OPEN B
(22) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A
(23) RCS-R AFT OX XFD V-3/4/5 GPC OPEN B

V42K3416X
V42K3418X
V42K3422X
V42K3428X
V42K3430X
V42K3434X
(24) RCS-R AFT FU XFD V-3/4/5 GPC OPEN B

V42K 2402 X
V42K2403X
V42K2404X
V42K2408X
V42K2409X
V42K2410X
V42K3402X
V42K3403X
V42K3404X
(25) RCS \(1 R\) ALL
(25) RCS \(1 / 2\) ALL JET INHIBIT FLAG V90X8290X
(26) RCS 3/4/5 ALL JET INHIIBIT FLAG

V90X8291X
Step 11. This step completes the interconnect sequence. In addition, the interconnect monitor is requested for those interconnects which were completed with no commfaults or RCS isolation valves open or crossfeed valves closed.

The following signals are monitored:
(a) OMS L POD OX XFD VLV B POSN OP

V43X4258X
(b) OMS L POD FU XFD VLV B POSN OP

V43X4358X
(c) OMS R POD OX XFD VLV B POSN OP

V43X5258X
(d) OMS R POD FU XFD VLV B POSN OP

V43X5358X
(e) OMS L POD OX XFD VLV A POSN OP

V43X4256X
(f) OMS L POD FU XFD VLV A POSN OP V43X4356X
(g) OMS R POD OX XFD VLV A POSN OP

V43X5256X
(h) OMS R POD FU XFD VLV A POSN OP V43X5356X
(i) FÁ 1 INPUT PROM SEG 3, 10 STATUS V91X2845X
(j) FA 2 INPUT PROM SEG 3, 10 STATUS V91X2846X
(k) OMS/RCS I/C IN PROGRESS FLAG
(l) I/C FAIL COUNTER

INTERNAL
(m) OMS TO RCS INTERCONNECT COMPLETE FLAG

If \((1)>1\), set \((8)=\) false \((\) INHIBIT \()\), set \((9)\) and \((11)=\) false, set (12) true and proceed to Step 16. Otherwise, go to the next if statement.

If [(k) is true and (m) is false], and [(a) or (b) or (c) or (d) is false, or (j) is true], issue (1) through (6), and return to Step 1 until at least 1.5 seconds have elapsed, then proceed to the next if statement. Otherwise proceed to monitor (l).

If [(e) or (f) or (g) or \((\mathrm{h})\) is false] or (i) is true, set \((8)=\) false (INHIBIT), set \((9)\) and (11) \(=\) false, set (7) and \((12)=\) true, and return to Step 1. Otherwise, go to the next if statement.

If \((1)=0\) and \((k)\) is true, set \((7)\) and \((10)=\) true, set \((9),(13)\), and \((14)=\) false and go to Step 7 . Otherwise, go to the next statement.

Set \((7)=\) true, set \((9),{ }^{\circ}(13)\), and \((14)=\) false and return to Step 1.
(1) OMS-L POD XFD VLVS A CMD 1 OP V43K4282X
(2) OMS-L POD OXDZR XFD VLV A CMD 2 OP V43K4284X
(3) OMS-L POD FUEL XFD VLV A CMD 2 OP V43K4384X
(4) OMS-R POD XFD VLVS A CMD 1 OP V43K5282X
(5) OMS-R POD OXDZR XFD VLV A CMD 2 OP V43K5284X
(6) OMS-R POD FUEL XFD VLV A CMD 2 OP V43K5384X
(7) OMS TO RCS INTERCONNECT COMPLETE FLAG V90X8282X
(8) OMS/RCS INTERCONNECT INH/ENA CMD V93X5348X
(9) OMS/RCS I/C IN PROGRESS FLAG

INTERNAL
(10) INTERCONNECT MONITOR FLAG

INTERNAL
(11) OMS TO RCS INTERCONNECT CMD V90X8312X
(12) OMS TO RCS RTRN TO NORM CONFIG CMD V90X8313X
(13) RCS \(1 / 2\) ALL JET INHIBIT FLAG V90X8290X

Step 12. This step is the first procedure in the execution of the Mode 2 return-to-normal for a contingency situation. The RCS tank isolation valves are commanded to the open position and then 1.5 seconds delay is satisfied before proceeding to the next step.

Issue commands (1) through (14) below and return to Step 1 until 1.5 seconds have expired, then proceed to Step 13.
\begin{tabular}{lll} 
(1) & RCS-L AFT TK ISLN V-1/2 GPC OP A & V42K2342X \\
(2) & RCS-L AFT OX TK ISLN V1/2 GPC OP B & V42K2343X \\
(3) & RCS-L AFT FU TK ISLN V1/2 GPC OP B & V42K2344X \\
& & \\
(4) & RCS-R AFT TK ISLN V-1/2 GPC OP A & V42K3342X \\
(5) & RCS-R AFT OX TK ISLN V-1/2 GPC OP B & V42K3343X \\
(6) & RCS-R AFT FU TK ISLN V-1/2 GPC OP B & V42K3344X \\
(7) & RCS-L AFT OX TK ISLN V3/4/5 A GPC OP & \\
(8) & RCS-L AFT FU TK ISLN V3/4/5 A GPC OP & V42K2346X \\
& & V42K2347X \\
(9) & RCS-R AFT OX TK ISLN V3/4/5 A GPC OP & V42K3346X \\
(10) & RCS-R AFT FU TK ISLN V3/4/5 A GPC OP & V42K3347X \\
(11) & RCS-L AFT OX TK ISLN V3/4/5 B GPC OP & V42K2349X \\
(12) & RCS-L AFT FU TK ISLN V3/4/5 B GPC OP & V42K2350X \\
(13) & RCS-R AFT OX TK ISLN V3/4/5 B GPC OP & V42K3349X \\
(14) & RCS-R AFT FU TK ISLN V3/4/5 B GPC OP & V42K
\end{tabular}

Step 13. This step monitors the response of the left RCS tank isolation valves on the \(1 / 2\) manifolds during the Mode 2 OMS/RCS return-to-normal configuration sequence. If any left \(1 / 2\) tank isolation valve fails to open or it's associated commfault is true, the left \(1 / 2\) RCS crossfeed valves between that manifold pair (OX and FU) and the left \(3 / 4 / 5\) manifold will be commanded open to provide RCS propellant through the crossfeed valves. If the left \(1 / 2 \mathrm{RCS}\) tank isolation valves are open, the left \(1 / 2\) and \(3 / 4 / 5 \mathrm{RCS}\) crossfeed valves will be commanded closed.

Monitor the following signals:
(a) RCS L AFT OX TANK ISLN VLV \(1 / 2\) OP

V42X2220X
(b) RCS L AFT FU TANK ISLN VLV \(1 / 2\) OP V42X2320X
(c) RCS L AFT OX TANK ISLN VLV \(1 / 2 \mathrm{CL}\) V42X2221X
(d) RCS L AFT FU TANK ISLN VLV \(1 / 2 \mathrm{CL}\)

V42X2321X
(e) FA 1 INPUT PROM SEG 3, 10 STATUS

V91X2845X

If [(a) and (b) are both true] and [(c), (d), and (e) are all false], issue (7) through (12) and proceed to Step 14.

If [(a) or (b) is false) or [(c) or (d) or (e) is true], issue (1) through (6) and proceed to Step 14.
\begin{tabular}{lll} 
(1) & RCS-L AFT XFD VLV-1/2 GPC OP A & V42K2402X \\
(2) & RCS-L AFT OX XFD VLV-1/2 GPC OP B & V42K2403X \\
(3) & RCS-L AFT FU XFD VLV-1/2 GPC OP B & V42K2404X \\
& & \\
(4) & RCS-L AFT XFD VLV-3/4/5 GPC OP A & V42K2408X \\
(5) & RCS-L AFT OX XFD V-3/4/5 GPC OP B & V42K2409X \\
(6) & RCS-L AFT FU XFD V-3/4/5 GPC OP B & V42K2410X \\
& & \\
(7) & RCS-L AFT XFD VLV-1/2 GPC CL A & V42K2416X \\
(8) & RCS-L AFT OX XFD VLV-1/2 GPC CL B & V42K2418X \\
(9) & RCS-L AFT FU XFD VLV-1/2 GPC CL B & V42K2422X \\
& & \\
(10) & RCS-L AFT XFD VLV-3/4/5 GPC CL A & V42K2428X \\
(11) & RCS-L AFT OX XFD V-3/4/5 GPC CL B & V42K2430X \\
(12) & RCS-L AFT FU XFD V-3/4/5 GPC CL B & V42K2434X
\end{tabular}

Step 14. This step monitors the response of the right RCS tank isolation valves on the \(1 / 2\) manifolds during the Mode 2 OMS/RCS return-to-normal configuration sequence. If any right \(1 / 2\) tank isolation valve fails to open or it's associated commfault is true, the right \(1 / 2\) RCS crossfeed valves between that manifold pair (OX and FU) and the right \(3 / 4 / 5\) manifold will be commanded open to provide RCS propellant through the crossfeed valves. If the right \(1 / 2\) RCS tank isolation valves are open, the right \(1 / 2\) and \(3 / 4 / 5\) RCS crossfeed valves will be commanded closed.

Monitor the following signals:
(a) RCS R AFT OX TANK ISLN VLV \(1 / 2\) OP V42X3220X
(b) RCS R AFT FU TANK ISLN VLV 1/2 OP V42X3320X
(c) RCS R AFT OX TANK ISLN VLV \(1 / 2\) CL V42X3221X
(d) RCS R AFT FU TANK ISLN VLV \(1 / 2\) CL V42X3321X
(e) FA 3 INPUT PROM SEG 3, 10 STATUS V91X2847X

If [(a) and (b) are both true] and [(c), (d), and (e) are all false], issue (7) through (12) and return to Step 1 until 1.5 seconds has expired, then proceed to Step 15.

If [(a) or (b) is false] or [(c) or (d) or (e) is true], issue (1) through (6) and return to Step 1 until 1.5 seconds has expired, then proceed to Step 15.
(1) RCS-R AFT XFD VLV-1/2 GPC OPEN A V42K3402X
(2) RCS-R AFT OX XFD VLV-1/2 GPC OPEN B V42K3403X
(3) RCS-R AFT FU XFD VLV-1/2 GPC OPEN B V42K3404X
(4) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A V42K3408X
(5) RCS-R AFT OX XFD V-3/4/5 GPC OP B V42K3409X
(6) RCS-R AFT FU XFD V-3/4/5 GPC OP B V42K3410X
(7) RCS-R AFT XFD VLV-1/2 GPC CLOSE A V42K3416X
(8) RCS-R AFT OX XFD V-1/2 GPC CLOSE B V42K3418X
(9) RCS-R AFT FU XFD V-1/2 GPC CLOSE B V42K3422X
(10) RCS-R AFT XFD VLV-3/4/5 GPC CL A

V42K3428X
(11) RCS-R AFT OX XFD V-3/4/5 GPC CL B

V42K3430X
V42K3434X
Step 15. This step commands the OMS propellant crossfeed valves closed.
Issue commands (1) through (12), and return to Step 1 until 1.5 seconds have elapsed, then proceed to Step 16.
(1) OMS-L POD XFD VLVS A CMD 1 CL V43K4283X
(2) OMS-L POD OXDZR XFD VLV A CMD 2 CL V43K4285X
(3) OMS-L POD FUEL XFD VLV A CMD 2 CL

V43K4385X
V43K 4287 X
V43K4289X
(5) OMS-L POD OXDZR XFD VLV B CMD 2 CL

V43K4389X
(6) OMS-L POD FUEL XFD VLV B CMD 2 CL
\(\begin{array}{lll}\text { (7) OMS-R POD XFD VLVS A CMD } 1 \mathrm{CL} & \text { V43K5283X } \\ \text { (8) OMS-R POD OXDZR XFD VLV A CMD } 2 \mathrm{CL} & \text { V43K5285X }\end{array}\)
(9) OMS-R ROD FUEL XFD VLV A CMD 2 CL V43K5385X
(10) OMS-R POD XFD VLVS B CMD 1 CL
(11) OMS-R POD OXDZR XFD VLV B CMD 2 CL

V43K5287X
V43K5289X
(12) OMS-R POD FUEL XFD VLV B CMD 2 CL

V43K5389X
Step 16. This step completes the intact abort and Mode 2 return to normal sequence.
Set (1) through (6) false and return to Step 1.
\(\begin{array}{llr}\text { (1) } & \text { RCS 1/2 ALL JET INHIBIT FLAG } & \text { V90X8290X } \\ \text { (2) } & \text { RCS 3/4/5 ALL JET INHIBIT FLAG } & \text { V90X8291X } \\ \text { (3) } & \text { AFT MANIFOLD 1/2 JET INH FLAG } & \\ \text { (4) } & \text { AFT MANIFOLD 3/4/5 JET INH FLAG } & \text { V90X8285X } \\ & & \\ \text { (5) } & \text { OMS TO RCS INTERCONNECT COMPLETE FLAG } & \text { V90X8282X } \\ \text { (6) } & \text { OMS/RCS RTRN TO NORM IN PROGRESS FLAG } & \text { (INTERNAL) }\end{array}\)





STEP 7
(PAGE 7)
(PAGE 7

Figure 4.184. Abort OMS/RCS Interconnect Sequence (Sheet 5 of 7)



Figure 4.184. Abort OMS/RCS Interconnect Sequence (Sheet 6 of 7)

\section*{MONITOR MODE}
 TANK ISLN VLV B POSITION COUNTERS

Figure 4.184. Abort OMS/RCS Interconnect Sequence (Sheet 7 of 7)
TABLE 4．3．2．4－1．ABORT OMS／RCS INTERCONNECT FUNCTION（G4．184）INPUT／OUTPUT FUNCTIONAL PARAMETERS
ABT OMS／RCS CONN
SOURCE


\begin{tabular}{|c|c|c|c|c|}
\hline  & & & & \\
\hline  & 品 \(0_{0}\) & 号品 & 응ㅆㅇㅇ & \(\stackrel{\square}{\circ}\) \\
\hline 和的吅 & 苭気 & 云玄 & 云品 & 瓷县 \\
\hline  & － & － & \％\({ }_{\text {O }}\) & \(\stackrel{\circ}{\circ}\) \\
\hline  & ¢ & M \({ }^{\text {d }}\) & 04 & \(\infty\) ¢ \\
\hline  & 公兮 & 号号 & 号分 & 号 \\
\hline \begin{tabular}{l}
光尝 \\

\end{tabular} & 易易 & 易気 & 曷気 &  \\
\hline  & 成品 & 品咸 & 如易 & \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & 웅융 & － & 会品 & \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & － & Hy &  &  \\
\hline & & & & \\
\hline N－NNN & \({ }_{\sim}^{\infty}\) & \({ }_{0}^{\infty}\) & \({ }^{\infty}\) & \\
\hline  & त & \({ }^{\text {¢ }}\) & \(\sim_{0}^{n}\) & \％ \\
\hline  & 凩成 & 成尔 & 成成 & \\
\hline  & ジロ & \(\stackrel{\text { S }}{5}\) & －\({ }^{\text {a }}\) & ，\({ }^{\circ}\) \\
\hline
\end{tabular}
LAST CRS


FSSR NAME -



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{\[
-10
\]}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}




TABLE 4.3.2.4-1. ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) INPUT/OUTPUT FUNCTIONAL PARAMETERS


STS 83-0026D
OI-21
January 25, 1991
DBEN : 0484
NO REQUIREMENTS
TABLE 4.3.2.4-3. ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) K-LOADS
DBEN : 0558
ESSR NAME
NO REQUIREMENTS

Rockwell International
Space Systems Division
TABLE 4.3.2.4-4. ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) CONSTANTS
DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS

\subsection*{4.4 MECHANICAL SYSTEMS}

\subsection*{4.4.1 Vent Doors (4.161)}

\subsection*{4.4.1.1 Introduction}

The orbiter's vent and purge system is made up of 18 active doors and is divided into the following six groups: left and right doors 1 and 2, left and right doors 3, left and right doors 5, left and right doors 4 and 7 , left and right doors 6 , and left and right doors 8 and 9 .

All vent doors have a purge position with the exception of left and right vents \(3,4,5\), and 7.
The purge position is required to maintain a positive pressure in the orbiter's payload bay area to prevent contamination and to vent any residue gases in the orbiter and for overall vehicle thermal control during ground turnaround phase. During the ascent and entry phases, the active vent doors are open to vent/ repressurize the orbiter to preclude damaging pressures across the structure. On orbit, the vent doors remain open to permit molecular venting of the vehicle cavities and insulation blankets to achieve the required low internal blanket pressure.

Operation of the vent system is controlled exclusively through software.

\subsection*{4.4.1.2 Overview}

The sequencing of the active doors is by the software program in the redundant set computer. The doors are cycled to the open, close, or purge position as required in each mission phase. Positioning of the active doors is performed by the software based on mission times or mission events during ascent, entry, and aborts and by keyboard entry during nominal and abort entry phases. The ALL VENTS CLOSE CMD will be used for the open/close status of the vent doors on SPEC 51.

Upon receipt of a cue from the RS launch sequence, this sequence will configure the vent doors for launch. The launch configuration will be all doors in the open position. The status of the vent doors position will be all outputs to the RS launch sequence to determine that the vent doors have achieved the desired open positions. If during the pre-SRB ignition phase a launch abort has occurred, the vent door system will be reconfigured to the prelaunch configuration by LPS.

In an RTLS abort mode upon entering MM 602 or in a TAL abort at ET SEP, the vent doors are commanded to the closed position to prevent ingestion of propellant during propellant dump. In the entry phase, the vent doors are in the closed position and will be commanded to the open position when a predetermined ground relative velocity value has been attained. (This is also true for entry in abort cases.)

Upon entering MM 304, the main propulsion system \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) prevalves, \(\mathrm{LH}_{2}\) inboard and outboard fill/drain valves, \(\mathrm{LH}_{2}\) topping valve, \(\mathrm{LH}_{2}\) RTLS inboard and outboard dump valves, helium interconnect and crossover valves, and main engine oxidizer valves are commanded open to vacuum inert residual propellants. The main engine oxidizer valves will only be open during those mission phases when the EIU and main engine controllers are activated. The \(\mathrm{LO}_{2}\) inboard and outboard fill/drain valves are opened in MM 304 at a ground relative velocity of \(20,000 \mathrm{ft} / \mathrm{sec}\) (Mach 20). The sequence will also perform an automatic closure of the ET umbilical doors upon entering MM 304 if a TAL abort has been declared.

Termination of commands after performing any specific vent door activity will place both \(A\) and \(B\) SET commands equal to false. For open commands, the A and B RESET command will be set equal to true,
and then the A RESET command will be set equal to false and the B RESET command will remain equal to true. For termination following closure, the A and B RESET commands will be set first to true, then to the values specified in Table 4.4-1. These configurations define the dormant state of the active vent system functional software sequence. RTC mode can only be used to control individual vent doors on orbit.

When the ground relative velocity becomes less than a predetermined velocity ( K -load), a helium purge of the aft compartment, OMS pod, and ET umbilical cavity is initiated to dilute the hydrogen concentrations in these areas. The purge function is terminated upon the expiration of a purge timer ( K -load).

The \(\mathrm{LH}_{2} / \mathrm{LO}_{2}\) outboard fill/drain valves, \(\mathrm{LO}_{2}\) prevalves, \(\mathrm{LH}_{2}\) RTLS inboard and outboard dump valves, and main engine oxidizer valves are commanded closed, and the \(\mathrm{LH}_{2} / \mathrm{LO}_{2}\) manifolds are pressurized.

\subsection*{4.4.1.3 Detail Requirements}

This sequence controls the operation of the doors based on mission times and mission events.
Tables 4.4-1 and 4.4-2 list the commands to position the vent doors to a closed and open position.
Table 4.4-3 lists the purge 1 and 2 commands for vent group 5 .
Tables 4.4-4 and 4.4-5 list the feedback signals of the vent doors closed and open configurations. Although the vent control sequence was deleted from OPS-2 after OFT-1, the parameters listed in Tables 4.4-4 and 4.4-5 are required to support telemetry requirements in MC 1,2, and 3 for all missions.

For times that are greater than six times the process execution time (reciprocal of the execution cycle), the accuracy shall be \(\pm 1\) execution time; otherwise, the accuracy shall be \(+1,-0\) execution times.

Main engine oxidizer dump and terminate sequence output commands with corresponding binary/BCH command words will be generated in two 16 -bit words for output to the EIU, in accordance with the main engine command requirements specified in Section 4.8.2.3.8 and Table 4.8.2-1 of the SSME SOP (4.181).

The following logic steps, once started, must be completed prior to starting another.
Step 1. This step determines if the vent doors are to be configured for launch.
The following signals are monitored:
(a) CONFIGURE VENT DOOR FOR LAUNCH CMD V90X8375X
(b) MISSION ELAPSED TIME

V91W1990C
If (b) \(<0.00 \mathrm{sec}\), monitor (a) above; otherwise proceed to Step 2.
If (a) is true, set the group 5 (vent 6) purge 1 and purge 2 A RESET CMDS equal to false (see Table 4.4-3), and proceed to Step 9; otherwise, return to Step 1.

Step 2. This step determines if the vent doors are to be automatically closed for an RTLS or TAL abort.
The following signals are monitored:
\(\begin{array}{lll}\text { (a) MISSION ELAPSED TIME } & \text { V91W1990C } \\ \text { (b) MAJOR MODE 602 FLAG } & \text { V90X8174X } \\ \text { (c) ET SEPARATION CMD FLAG } & \text { V90X8250X }\end{array}\)

If (a) \(>100 \mathrm{sec}\) and [(b) is true, or if (c) and (d) are both true], one time only set (1) equal to 0.48 sec and proceed to Step 8; otherwise proceed to Step 2a.
(1) VENT_CMDS_TIME_DELAY

V97U9859C

Step 2a. This step checks for MM 304 and upon entry, if a TAL abort has been declared, provides for the automatic closure of the ET umbilical doors.

Monitor the following signals:
(a) MAJOR MODE 304 FLAG V90X8161X
(b) TAL ABORT DECLARED V90X8652X

If (a) or (b) is false, proceed to Step 3.
If (a) and (b) are both true, on first pass, start an ET umbilical door timer and set (1) through (8) below true, and proceed to Step 3. On subsequent passes, proceed to the next if statement.

If 66 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (9) through (11) and (17) though (24) false, and proceed to Step 3. On subsequent passes, proceed to Step 3. Otherwise, proceed to the next if statement.

If 54 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (12) through (16) false, (17) through (24) true, and proceed to Step 3. On subsequent passes, proceed to Step 3. Otherwise, proceed to the next if statement.

If 12 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (1) through (8) false and proceed to Step 3. Otherwise, proceed to the next if statement.

If 6 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (9) through (16) true and proceed to Step 3. On subsequent passes, proceed to Step 3. Otherwise, proceed to Step 3.
\begin{tabular}{|c|c|c|}
\hline (1) & ET DR CL LCH 1B1/2B2 FA1 STOW CMD & V56K1271X \\
\hline (2) & ET DR CL LCH 1B2/2B1 FAI STOW CMD & V56K1272X \\
\hline (3) & ET DR CL LCH 1B1/2B2 FA2 STOW CMD & V56K1273X \\
\hline (4) & ET DR CL LCH 1B2/2B1 FA2 STOW CMD & V56K1274X \\
\hline (5) & ET DR CL LCH 1B1/2B2 FA4 STOW CMD & V56K1371X \\
\hline (6) & ET DR CL LCH 1B2/2B1 FA4 STOW CMD & V56K1343X \\
\hline (7) & ET DR CL LCH 1B1/2B2 FA3 STOW CMD & V56K1373X \\
\hline (8) & ET DR CL LCH 1B2/2B1 FA3 STOW CMD & V56K1374X \\
\hline (9) & ET DR DRV \& CL LCH DC ARM AMCA \(1 / 2\) & V56K0141X \\
\hline (10) & ET DR DRV \& CL LCH DC ARM AMCA \(1 / 3\) & V56K0142X \\
\hline (11) & ET DR DRV \& CL LCH DC ARM AMCA \(2 / 3\) & V56K0143X \\
\hline (12) & ET UMB DR L-B2/R-B1 CLOSE CMD & V56K3111X \\
\hline (13) & ET UMB DR R-B2 CLOSE CMD & V56K3112X \\
\hline (14) & ET UMB DR R-B1/B2 CLOSE CMD & V56K4121X \\
\hline (15) & ET UMB DR L-B1 CLOSE CMD & V56K4122X \\
\hline (16) & ET UMB DR L-B1/B2 CLOSE CMD & V56K0140X \\
\hline
\end{tabular}
\begin{tabular}{lll} 
(17) ET L UMB COUT DOOR LATCH FA1 CMD & V56K3531X \\
(18) ET R UMB COUT DOOR LATCH FA1 CMD & V56K3532X \\
(19) ET L UMB COUT DOOR LATCH FA4 CMD & V56K3533X \\
(20) ET R UMB COUT DOOR LATCH FA4 CMD & V56K3534X \\
(21) ET L UMB COUT DOOR LATCH FA3 CMD & V56K4531X \\
(22) ET R UMB COUT DOOR LATCH FA3 CMD & V56K4532X \\
(23) ET L UMB COUT DOOR LATCH FA2 CMD & V56K4533X \\
(24) ET R UMB COUT DOOR LATCH FA2 CMD & V56K4534X
\end{tabular}

Step 3. This step provides for automatic opening of the \(\mathrm{LH}_{2}\) and \(\mathrm{LO}_{2}\) prevalves, the \(\mathrm{LH}_{2}\) inboard and outboard fill and drain valves, \(\mathrm{LH}_{2}\) topping valve, \(\mathrm{LH}_{2}\) RTLS inboard and outboard dump valves, helium interconnect and crossover valves, and the main engine oxidizer valves if the EIU and main engine controllers are active, to vacuum inert residual propeliant upon entry into MM 304. At Mach 20, the \(\mathrm{LO}_{2}\) inboard and outboard fill/drain valves are opened in MM 304.

The following signals are monitored:
(a) MAJOR MODE 304 FLAG
V90X8161X
(b) GND REL VEL MAGNITUDE IN M50 SYS
V95L0151C

If (a) is false, proceed to Step 4.
If (a) is true, on first pass, set outputs (1) through (4), (7) through (10), (14) through (18), and (34) through (60) true; generate (61) through (63); set outputs (5), (19) through (30), (32), and (33) false; and proceed to Step 4. On subsequent passes, monitor (b).

If (b) \(\leq 20,000 \mathrm{ft} / \mathrm{sec}\), on first pass, set outputs (11) through (13) true, set outputs (6) and (31) false, and proceed to Step 4. Otherwise proceed to Step 4.
(1) MPS PNEU VLV HE ISLN NO. 1 OPEN CMD V41K1607X
(2) MPS PNEU VLV HE ISLN NO. 2 OPEN CMD V41K1608X
(3) MPS L HE ISOV B OP CMD A V41K1256X
(4) MPS L HE ISOV B OP CMD B V41K1257X
(5) MPS LH \({ }_{2}\) OTBD FILL VALVE CLOSE CMD V41K1393X
(6) \(\mathrm{MPS} \mathrm{LO}_{2}\) OTBD FILL VALVE CLOSE CMD V41K1515X
(7) MPS LH \({ }_{2}\) OTBD FILL VALVE OPEN CMD V41K1391X
(8) MPS LH \({ }_{2}\) INBD FILL VALVE OPEN CMD A V41K1401X
(9) \(\mathrm{MPS}_{\mathrm{LH}}^{2}\) INBD FILL VALVE OPEN CMD B V41K1402X
(10) MPS LH2 TOPPING VALVE OPEN CMD V41K1411X
(11) MPS \(\mathrm{LO}_{2}\) OTBD FILL VALVE OPEN CMD V41K1518X
(12) MPS LO \(2_{2}\) INBD FILL VALVE OPEN CMD A V41K1501X
(13) MPS LH \({ }_{2}\) INBD FILL VALVE OPEN CMD B V41K1502X
(14) MPS E1 HE INTCON OUT/OPEN CMD A V41K1168X
(15) MPS E3 HE INTCON OUT/OPEN CMD A V41K1368X
(16) MPS PNEU CROSSOVER NO. 2 OPEN CMD V41K1613X
(17) MPS E2 HE INTCON IN/OPEN CMD A V41K1262X
(18) MPS E2 HE INTCON IN/OPEN CMD B V41K1263X
(19) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A V41K1139X
(20) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B V41K1140X
(21) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C

V41K1141X
\begin{tabular}{|c|c|c|}
\hline (22) & MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1142X \\
\hline (23) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1239X \\
\hline (24) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1240X \\
\hline (25) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1241X \\
\hline (26) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1242X \\
\hline (27) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1339X \\
\hline (28) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1340X \\
\hline (29) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1341X \\
\hline (30) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1342X \\
\hline (31) & MPS \(\mathrm{LO}_{2}\) INBD FILL VALVE CLOSE CMD & V41K1512X \\
\hline (32) & MPS \(\mathrm{LH}_{2}\) INBD FILL VALVE CLOSE CMD & V41K1412X \\
\hline (33) & MPS E2 HE INTCON OUT/OPEN CMD A & V41K1268X \\
\hline (34) & MPS E- \(1 \mathrm{LH}_{2}\) PREVALVE OPEN CMD A & V41K1119X \\
\hline (35) & MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B & V41K1120X \\
\hline (36) & MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C & V41K1121X \\
\hline (37) & MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A & V41K1219X \\
\hline (38) & MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B & V41K1220X \\
\hline (39) & MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C & V41K1221X \\
\hline (40) & MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A & V41K1319X \\
\hline (41) & MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B & V41K1320X \\
\hline (42) & MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C & V41K1321X \\
\hline (43) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A & V41K1136X \\
\hline (44) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B & V41K1137X \\
\hline (45) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1138X \\
\hline (46) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D & V41K1143X \\
\hline (47) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A & V41K1236X \\
\hline (48) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B & V41K1237X \\
\hline (49) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1238X \\
\hline (50) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D & V41K1243X \\
\hline (51) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A & V41K1336X \\
\hline (52) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B & V41K1337X \\
\hline (53) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1338X \\
\hline (54) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D & V41K1343X \\
\hline (55) & MPS LH \({ }_{2}\) RTLS INBD D/V OPEN CMD A & V41K1923X \\
\hline (56) & MPS LH \(\mathrm{H}_{2}\) RTLS INBD D/V OPEN CMD B & V41K1924X \\
\hline (57) & MPS LH \(_{2}\) RTLS INBD D/V OPEN CMD C & V41K1925X \\
\hline (58) & MPS \(L H_{2}\) RTLS OTBD D/V OPEN CMD A & V41K1913X \\
\hline (59) & MPS LH 2 RTLS OTBD D/V OPEN CMD B & V41K1914X \\
\hline (60) & MPS LH 2 RTLS OTBD D/V OPEN CMD C & V41K1915X \\
\hline (61) & ME-1 OXIDIZER DUMP CMD & E41K1219B \\
\hline (62) & ME-2 OXIDIZER DUMP CMD & E41K2219B \\
\hline (63) & ME-3 OXIDIZER DUMP CMD & E41K3219B \\
\hline
\end{tabular}

Step 4. This step provides an automatic He purge of the aft compartment OMS pod and ET umbilical \(\overline{\text { cavity }}\) during MM 304 or MM 305. The \(\mathrm{LH}_{2} / \mathrm{LO}_{2}\) outboard fill/drain valves, \(\mathrm{LO}_{2}\) prevalves, \(\mathrm{LH}_{2}\) RTLS inboard and outboard dump valves, and main engine oxidizer valves are commanded closed; and the \(\mathrm{LH}_{2} / \mathrm{LO}_{2}\) manifolds are pressurized.

The following signals are monitored:
\begin{tabular}{llr} 
(a) & GND REL VEL MAGNITUDE IN M50 SYS & V95L0151C \\
(b) & HE_PURGE_VEL & V96U8958C \\
(c) MAJOR MODE 304 FLAG & V90X8161X \\
(d) MAJOR MODE 305 FLAG & V90X8162X \\
(e) & HE_PURGE_TIME & V96U8959C \\
(f) HEPURGE TIMER & (INTERNAL)
\end{tabular}

If \((\mathrm{a})>(\mathrm{b})\) or if (c) and (d) are both false, proceed to Step 5.
If (a) \(\leq\) (b) and (c) or (d) is true, on first pass, set outputs (1) through (8) and (11) through (22) below true; set (9), (10), and (23) through (40) false; terminate (41) through (43); generate (44) through (46); start timer (f); and proceed to Step 5. On subsequent passes, monitor (e).

If (e) seconds have not elapsed since (f) started, proceed. Otherwise proceed to Step 5.
If (e) seconds have elapsed since (f) started, set outputs (1) and (2) false and proceed to Step 5.
\begin{tabular}{|c|c|c|}
\hline (1) & MPS HE SPLY BLOWDOWN NO. 1 OPEN CMD & V41K1631X \\
\hline (2) & MPS HE SPLY BLOWDOWN NO. 2 OPEN CMD & V41K1633X \\
\hline (3) & MPS LH \({ }_{2}\) OTBD FILL VALVE CLOSE CMD & V41K1393X \\
\hline (4) & MPS LH2 MANF REPRESS NO. 1 OPEN CMD & V41K1435X \\
\hline (5) & MPS LH2 MANF REPRESS NO. 2 OPEN CMD & V41K1437X \\
\hline (6) & MPS \(\mathrm{LO}_{2}\) OTBD FILL VALVE CLOSE CMD & V41K1515X \\
\hline (7) & MPS LO2 \({ }_{2}\) MANF REPRESS NO. 1 OPEN CMD & V41K1535X \\
\hline (8) & MPS \(\mathrm{LO}_{2}\) MANF REPRESS NO. 2 OPEN CMD & V41K1537X \\
\hline (9) & MPS LH \({ }_{2}\) OTBD FILL VALVE OPEN CMD & V41K1391X \\
\hline (10) & MPS \(\mathrm{LO}_{2}\) OTBD FILL VALVE OPEN CMD & V41K1518X \\
\hline (11) & MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1139X \\
\hline (12) & MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1140X \\
\hline (13) & MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1141X \\
\hline (14) & MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1142X \\
\hline (15) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1239X \\
\hline (16) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1240X \\
\hline (17) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1241X \\
\hline (18) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1242X \\
\hline (19) & MPS E- \(3 \mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1339X \\
\hline (20) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1340X \\
\hline (21) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1341X \\
\hline (22) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1342X \\
\hline (23) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A & V41K1136X \\
\hline (24) & MPS E-1 LO2 PREVALVE OPEN CMD B & V41K1137X \\
\hline (25) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1138X \\
\hline (26) & MPS E-1 LO2 PREVALVE OPEN CMD D & V41K1143X \\
\hline (27) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A & V41K1236X \\
\hline (28) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B & V41K1237X \\
\hline (29) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1238X \\
\hline (30) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D & V41K1243X \\
\hline (31) & MPS E-3 LO2 PREVALVE OPEN CMD A & V41K1336X \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (32) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B & V41K1337X \\
\hline (33) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1338X \\
\hline (34) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D & V41K1343X \\
\hline (35) & MPS LH2 RTLS INBD D/V OPEN CMD A & V41K1923X \\
\hline (36) & MPS LH2 RTLS INBD D/V OPEN CMD B & V41K1924X \\
\hline (37) & MPS LH 2 RTLS INBD D/V OPEN CMD C & V41K1925X \\
\hline (38) & MPS LH \(\mathrm{H}_{2}\) RTLS OTBD D/V OPEN CMD A & V41K1913X \\
\hline (39) & MPS LH \({ }_{2}\) RTLS OTBD D/V OPEN CMD B & V41K1914X \\
\hline (40) & MPS LH2 RTLS OTBD D/V OPEN CMD C & V41K1915X \\
\hline (41) & ME-1 OXIDIZER DUMP CMD & E41K1219B \\
\hline (42) & ME-2 OXIDIZER DUMP CMD & E41K2219B \\
\hline (43) & ME-3 OXIDIZER DUMP CMD & E41K3219B \\
\hline (44) & ME-1 TERMINATE SEQUENCE CMD & E41K1218B \\
\hline (45) & ME-2 TERMINATE SEQUENCE CMD & E41K2218B \\
\hline (46) & ME-3 TERMINATE SEQUENCE CMD & E41K3218B \\
\hline
\end{tabular}

Step 5. This step determines if left vent groups 1 and 6 are to be opened in response to an open command during MM 304 and provides auto closure capability for all vent doors upon transition into MM 304.

The following signals are monitored:
(a) ALL VENT CLOSE CMD V93X7201X
(b) MAJOR MODE 304 FLAG V90X8161X
(c) VENT DOOR SEQUENCE INIT V95X0235X
(d) LEFT VENTS 1 AND 6 OPEN FLAG (INTERNAL)

If (b) is true and (c) and (d) are false, proceed to Step 8.
If (b) and (c) are true and (a) is false, issue the following groups of commands, maintaining the commands to each group for 10 seconds. Then set A and B OPEN SET CMDS \(=\) false and \(A\) and \(B\) OPEN RESET CMDS = true. Then, three minor cycles later, set A OPEN RESET \(\mathrm{CMDS}=\) false. Set \((\mathrm{d})=\) true and proceed to Step 6.

Table 4.4-2, Group 1 left vents
Table 4.4-2, Group 6 left vents
If none of the above conditions are met, proceed to Step 6.
Step 6. This step initiates the automatic vent door opening in MM 304, MM 305, MM 602, or MM 603 when the vehicle reaches a predetermined velocity.

The following signals are monitored:
(a) ALL VENT CLOSE CMD V93X7201X
(b) GND REL VEL MAGNITUDE IN M50 SYS V95L0151C
(c) MAJOR MODE 304 FLAG

V90X8161X
(d) MAJOR MODE 602 FLAG

V90X8174X
(e) MAJOR MODE 305 FLAG

V90X8162X
(f) MAJOR MODE 603 FLAG V90X0013X
(g) GROUND_REL_VEL_THRESHOLD V97U9806C
(h) VENT DOOR SEQ INIT V95X0235X

If \((\mathrm{b}) \leq(\mathrm{g})\) and \([(\mathrm{c})\) or \((\mathrm{d})\) or (e) or (f)] is true and (h) is false, proceed to Step 9 ; otherwise proceed to Step 7.

Step 7. This step provides manual control of vent door operations during OPS 3.
The following signals are monitored:
(a) ALL VENT CLOSE CMD

V93X7201X
(b) MAJOR MODE 304 FLAG
(c) VENT DOOR SEQ INIT V90X8161X V95X0235X

If (c) is true and (a) and (b) are false, proceed to Step 9.
If (a) and (c) are true, proceed to Step 8. Otherwise return to Step 1.
Step 8. This step initiates the vent door close activities. On first entry into this step, using (a) below, do the following:
(a) VENT CMDS TIME DELAY

V97U9859C

Issue the following groups of commands at intervals of (a) seconds, maintaining the commands to each group for 10 seconds. Then set the \(A\) and \(B\) CLOSE SET CMDS equal to false, and \(A\) and B CLOSE RESET CMDS equal to true. Then, three minor cycles later, set the \(A\) CLOSE RESET CMD equal to Table 4.4-1 DORMANT STATE before proceeding.

Table 4.4-1, Group 1
Table 4.4-1, Group 2
Table 4.4-1, Group 3
Table 4.4-1, Group 4
Table 4.4-1, Group 5
Table 4.4-1, Group 6
Then monitor for (b) below:
(b) MM 301 FLAG

V90X8183X

If (b) is true, then issue open commands to the following groups of doors, maintaining commands to each group for 10 seconds. Then set A and B OPEN SET CMDS equal to false and \(A\) and \(B\) OPEN RESET CMDS equal to true. Then, three minor cycles later, set A OPEN RESET CMDS equal to false and return to Step 1.

Table 4.4-2, Group 1 left vents
Table 4.4-2, Group 6 left vents
If (b) is false, set ALL VENT CLOSE CMD to true and return to Step 1.
Step 9. This step initiates the vent door open activities. On first entry into this step, using (a) below, do the following:
(a) VENT CMDS TIME DELAY

Issue the following groups of commands at intervals of (a) seconds, maintaining the commands to each group for 10 seconds. Then set the A and B OPEN SET CMDS equal to false
and \(A\) and \(B\) OPEN RESET CMDS equal to true. Then, three minor cycles later, set A OPEN RESET CMDS equal to false before proceeding.

Table 4.4-2, Group 4
Table 4.4-2, Group 2
Table 4.4-2, Group 5
Table 4.4-2, Group 3
Table 4.4-2, Group 1
Table 4.4-2, Group 6
On the first pass, initialize the status word (b) below to all zeros, and for 5 seconds after issuing the Group 6 command above, monitor the corresponding parameters in Table 4.4-5 for status word updates. For each vent door ( \(L, R\) ), the status shall be set true if either one of the dual redundant status discretes is true; otherwise, the status shall be set false. If any of the commfaults (c) through (j) below occur, use the latest noncommfaulted values for subsequent status word update.
(b) ORBITER VENT DOOR STATUS WORD 1
(c) FF1 INPUT PROM SEG 2,6 STATUS (HFE)
(b) ORBITER VENT DOOR STATUS WORD 1
(c) FF1 INPUT PROM SEG 2,6 STATUS (HFE)
(d) FF2 INPUT PROM SEG 2, 6 STATUS (HFE)
(e) FF3 INPUT PROM SEG 2, 6 STATUS (HFE)
(f) FF4 INPUT PROM SEG 2, 6 STATUS (HFE)
(g) FA1 INPUT PROM SEG 3, 10 STATUS (HFE)
(h) FA2 INPUT PROM SEG 3, 10 STATUS (HFE)
(i) FA3 INPUT PROM SEG 3, 10 STATUS (HFE)

V90J8201C
V91X2288X
V91X2289X
V91X2290X
(j) FA4 INPUT PROM SEG 3, 10 STATUS (HFE)

When all commands have been issued, set the ALL VENT CLOSE CMD to false and return to step 1.

Table 4.4-1. Vent Group Close Commands
\(\left.\begin{array}{llllll|}\hline & & & \text { RESET } \\ & & & \text { LORMANT } \\ \text { STATE }\end{array}\right]\)
\(\left.\begin{array}{|lccc|}\hline & \text { Table 4.4-1. Vent Group Close Commands } \\ & & & \text { RESET } \\ \text { DORMANT } \\ \text { STATE }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table 4.4-2. Vent Group Open Commands} \\
\hline Vent Group 1 & a & V59K3050X & L FWD VENTS 1\&2 OPEN CMD 1A \\
\hline Left \& Right & b & V59K3051X & L FWD VENTS 1\&2 OPEN CMD 1B \\
\hline Fwd Vent & c & V59K3060X & LFWD VENTS 182 OPEN CMD 2A \\
\hline Port \(1 \& 2\) & d & V59K3061X & L FWD VENTS 1\&2 OPEN CMD 2B \\
\hline & e & V59K4050X & R FWD VENTS \(1 \& 2\) OPEN CMD 1A \\
\hline & f & V59K4051X & R FWD VENTS 1\&2 OPEN CMD 1B \\
\hline & g & V59K4060X & R FWD VENTS 1\&2 OPEN CMD 2A \\
\hline & h & V59K4061X & R FWD VENTS \(1 \& 2\) OPEN CMD 2B \\
\hline Vent Group 2 & a & V59K3250X & L PB VENT 3 OPEN CMD 1A \\
\hline Left \& Right & b & V59K3251X & L PB VENT 3 OPEN CMD 1B \\
\hline Mid Fus Vent & c & V59K3260X & LPB VENT 3 OPEN CMD 2A \\
\hline Port 3 & d & V59K3261X & LPB VENT 3 OPEN CMD 2B \\
\hline & e & V59K4250X & R PB VENT 3 OPEN CMD 1A \\
\hline & f & V59K4251X & R PB VENT 3 OPEN CMD 1B \\
\hline & g & V59K4260X & R PB VENT 3 OPEN CMD 2A \\
\hline & h & V59K4261X & R PB VENT 3 OPEN CMD 2B \\
\hline Vent Group 3 & a & V59K3450X & L PB VENT 5 OPEN CMD 1A. \\
\hline Left \& Right & b & V59K3451X & L PB VENT 5 OPEN CMD 1B \\
\hline Mid Fus Vent & c & V59K3460X & LPB VENT 5 OPEN CMD 2A \\
\hline Port 5 & d & V59K3461X & LPB VENT 5 OPEN CMD 2B \\
\hline & e & V59K4450X & R PB VENT 5 OPEN CMD 1A \\
\hline & f. & V59K4451X & R PB VENT 5 OPEN CMD 1B \\
\hline & g & V59K4460X & R PB VENT 5 OPEN CMD 2A \\
\hline & h & V59K4461X & R PB VENT 5 OPEN CMD 2B \\
\hline Vent Group 4 & a & V59K3350X & L PB/W VENTS 487 OPEN CMD 1A \\
\hline Left \& Right & b & V59K3351X & L PB/W VENTS 4\&7 OPEN CMD 1B \\
\hline Mid Fus Vent & c & V59K3360X & L PB/W VENTS 487 OPEN CMD 2A \\
\hline Port 4\&7 & d & V59K3361X & L PB/W VENTS 4\&7 OPEN CMD 2B \\
\hline & e & V59K4350X & R PB/W VENTS 482 OPEN CMD 1A \\
\hline & \(f\) & V59K4351X & R PB/W VENTS 4\&7 OPEN CMD 1B \\
\hline & g & V59K4360X & R PB/W VENTS 4\&7 OPEN CMD 2A \\
\hline & h & V59K4361X & R PB/W VENTS 4\&7 OPEN CMD 2B \\
\hline Vent Group 5 & a & V59K3550X & L PB VENT 6 OPEN CMD 1A \\
\hline Left \& Right & b & V59K3551X & L PB VENT 6 OPEN CMD 1B \\
\hline Aft Pld Vent & c & V59K3560X & LPB VENT 6 OPEN CMD 2A \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline & & Table 4.4-2. Vent Group Open Commands \\
Port 6 & d & V59K3561X & L PB VENT 6 OPEN CMD 2B \\
& e & V59K4550X & R PB VENT 6 OPEN CMD 1A \\
& f & V59K4551X & R PB VENT 6 OPEN CMD 1B \\
& g & V59K4560X & R PB VENT 6 OPEN CMD 2A \\
& h & V59K4561X & R PB VENT 6 OPEN CMD 2B \\
& & & \\
Vent Group 6 & a & V59K3850X & L AFT VENTS 8\&9 OPEN CMD 1A \\
Left \& Right & b & V59K3851X & L AFT VENTS 8\&9 OPEN CMD 1B \\
Aft Vent & c & V59K3860X & L AFT VENTS 8\&9 OPEN CMD 2A \\
Port 8 \& 9 & d & V59K3861X & L AFT VENTS 8\&9 OPEN CMD 2B \\
& e & V59K4850X & R AFT VENTS 8\&9 OPEN CMD 1A \\
& f & V59K4851X & R AFT VENTS 8\&9 OPEN CMD 1B \\
& g & V59K4860X & R AFT VENTS 8\&9 OPEN CMD 2A \\
& h & V59K4861X & R AFT VENTS 8\&9 OPEN CMD 2B \\
& & \\
\hline
\end{tabular}

Table 4.4-3. Vent Group Purge Configuration Commands
\begin{tabular}{|llll|}
\hline Vent Group 5 & a & V59K3600X & LPB VENT 6 PURGE 1 CMD 1A \\
Left \& Right & b & V59K3700X & LPB VENT 6 PURGE 2 CMD 1A \\
Purge 1 and 2 & c & V59K4610X & RPB VENT 6 PURGE 1 CMD 2A \\
Port 6 & d & V59K4710X & RPB VENT 6 PURGE 2 CMD 2A \\
& e & V59K4600X & RPB VENT 6 PURGE 1 CMD 1A \\
& f & V59K4700X & RPB VENT 6 PURGE 2 CMD 1A \\
& g & V59K3610X & LPB VENT 6 PURGE 1 CMD 2A \\
& h & V59K3710X & LPB VENT 6 PURGE 2 CMD 2A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Table 4.4-4. Vent Group Close Measurements} \\
\hline Vent Group 1 & a & V59X3005X & L FWD VENTS 1\&2 CLOSED 1 \\
\hline Left \& Right & b & V59X3015X & L FWD VENTS \(1 \& 2\) CLOSED 2 \\
\hline Fwd Vent & c & V59X4005X & R FWD VENTS 1\&2 CLOSED 1 \\
\hline Port 1 \& 2 & d & V59X4015X & R FWD VENTS 1\&2 CLOSED 2 \\
\hline Vent Group 2 & a & V59X3205X & L PB VENT 3 CLOSED 1 \\
\hline Left \& Right & b & V59X3215X & L PB VENT 3 CLOSED 2 \\
\hline Mid Fus Vent & c & V59X4205X & R PB VENT 3 CLOSED 1 \\
\hline Port 3 & d & V59X4215X & R PB VENT 3 CLOSED 2 \\
\hline Vent Group 3 & a & V59X3405X & L PB VENT 5 CLOSED 1 \\
\hline Left \& Right & b & V59X3415X & L PB VENT 5 CLOSED 2 \\
\hline Mid Fus Vent & c & V59X4405X & R PB VENT 5 CLOSED 1 \\
\hline Port 5 & d & V59X4415X & R PB VENT 5 CLOSED 2 \\
\hline Vent Group 4 & a & V59X3305X & L PB/W VENT 4\&7 CLOSED 1 \\
\hline Left \& Right & b & V59X3315X & L PB/W VENT 4\&7 CLOSED 2 \\
\hline Mid Fus Vent & c & V59X4305X & R PB/W VENT 487 CLOSED 1 \\
\hline Port 4 \& 7 & d & V59X4315X & R PB/W VENT 4\&7 CLOSED 2 \\
\hline Vent Group 5 & a & V59X3505X & L PB VENT 6 CLOSED 1 \\
\hline Left \& Right & b & V59X3515X & L PB VENT 6 CLOSED 2 \\
\hline Aft Pld Vent & c & V59X4505X & R PB VENT 6 CLOSED 1 \\
\hline Port 6 & d & V59X4515X & R PB VENT 6 CLOSED 2 \\
\hline Vent Group 6 & a & V59X3805X & L AFT VENTS 8899 CLOSED 1 \\
\hline Left \& Right & b & V59X3815X & L AFT VENTS 889 CLOSED 2 \\
\hline Aft Vent & c & V59X4805X & R AFT VENTS 889 CLOSED 1 \\
\hline Port 8 \& 9 & d & V59X4815X & R AFT VENTS 889 CLOSED 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Table 4.4-5. Vent Group Open Measurements} \\
\hline Vent Group 1 & a & V59X3055X & L FWD VENTS 1\&2 OPEN 1 \\
\hline Left and Right & b & V59X3065X & L FWD VENTS 182 OPEN 2 \\
\hline Forward Vent & c & V59X4055X & L FWD VENTS 1\&2 OPEN 1 \\
\hline Ports 1 and 2 & d & V59X4065X & L FWD VENTS \(1 \& 2\) OPEN 2 \\
\hline Vent Group 2 & a & V59X3255X & L PB VENT 3 OPEN 1 \\
\hline Left and Right & b & V59X3265X & L PB VENT 3 OPEN 2 \\
\hline Mid Fuselage Vent & c & V59X4255X & R PB VENT 3 OPEN 1 \\
\hline Port 3 & d & V59X4265X & R PB VENT 3 OPEN 2 \\
\hline Vent Group 3 & a & V59X3455X & LPB VENT 5 OPEN 1 \\
\hline Left and Right & b & V59X3465X & LPB VENT 5 OPEN 2 \\
\hline Mid Fuselage Vent & c & V59X4455X & R PB VENT 5 OPEN 1 \\
\hline Port 5 & d & V59X4465X & R PB VENT 5 OPEN 2 \\
\hline Vent Group 4 & a & V59X3355X & L PB/W VENTS 4\&7 OPEN 1 \\
\hline Left and Right & b & V59X3365X & L PB/W VENTS 487 OPEN 2 \\
\hline Mid Fuselage Vent & c & V59X4355X & R PB/W VENTS 487 OPEN 1 \\
\hline Ports 4 and 7 & d & V59X4365X & R PB/W VENTS \(4 \& 7\) OPEN 2 \\
\hline Vent Group 5 & a & V59X3555X & L PB VENT 6 OPEN 1 \\
\hline Left and Right & b & V59X3565X & LPB VENT 6 OPEN 2 \\
\hline Aft Payload Vent & c & V59X4555X & LPB VENT 6 OPEN 1 \\
\hline Port 6 & d & V59X4565X & LPB VENT 6 OPEN 2 \\
\hline Vent Group 6 & a & V59X3855X & L AFT VENTS 8\&9 OPEN 1 \\
\hline Left and Right & b & V59X3865X & L AFT VENTS 8\&9 OPEN 2 \\
\hline Aft Vent & c & V59X4855X & R AFT VENTS 8\&9 OPEN 1 \\
\hline Ports 8 and 9 & d & V59X4865X & R AFT VENTS 889 OPEN 2 \\
\hline
\end{tabular}


Figure 4.161. Vent Door Sequence (Sheet 1 of 7 )


Figure 4.161. Vent Door Sequence (Sheet 2 of 7)


FIGURE 4.161 Vent Door Sequence (Sheet 3 of 7)


Figure 4.161. Vent Door Sequence (Sheet 4 of 7)


Figure 4.161. Vent Door Sequence (Sheet 5 of 7)


Figure 4.161. Vent Door Sequence (Sheet 6 of 7 )

Figure 4.161. Vent Door Sequence (Sheel 7 of 7 )
TABLE 4．4．1．4－1．VENT DOOR CONTROL SEQUENCER（G4．161）INPUT／OUTPUT FUNCTIONAL PARAMETERS
号 号
品


TABLE 4．4．1．4－1．VENT DOOR CONTROL SEQUENCER（G4．161）INPUT／OUTPUT FUNCTIONAL PARAMETERS
吅吅田

合

UNITS


\footnotetext{
SEQ
}
OR VENT CNT
INPUT FUNCTIONAL PARAMETERS FOR
UNITS DATA
0
0
0
0
04
04
DBFN：D3B027－E
ESSR NAME
TABLE 4.4.1.4-1. VENT DOOR CONTROL SEQUENCER (G4.161) INPUT/OUTPUT FUNCTIONAL PARAMETERS



空

氙运





```

myn

```

a) 里四













Rockwell International
Space Systems Division

TABLE 4.4.1.4-3. VENT DOOR CONTROL SEQUENCER (G4.161) K-LOADS

TABLE 4.4.1.4-4. VENT DOOR CONTROL SEQUENCER (G4.161) CONSTANTS
DBFI: 0558
FSSR NAME
DESCRIRTION
NO PEQUIREMENTS

\subsection*{4.5 HYDRAULICS}

\subsection*{4.5.1 LDG VLV CNTL (4.215)}

\subsection*{4.5.1.1 Introduction}

This sequence is used during entry to provide automatic control of the three hydraulic system brake isolation valves, a hydraulic system landing gear extend isolation valve, and the three hydraulic system MPS thrust vector control valves. These valves are latching valves.

The hydraulic system 1 landing gear isolation valve is opened by the sequence at a specified ground relative velocity cue to provide hydraulic pressure to deploy the landing gear. The hydraulic system landing brake isolation valves are commanded open upon receiving a Brake Isolation Valve Open Flag from the Landing SOP. A momentary switch is provided for manual control of each hydraulic system landing brake isolation valve and hydraulic system landing gear isolation valve. The center position of the manual switch is nonfunctional but is designated GPC to remind the crew that the valves will be automatically opened during entry.

During MM 304, the sequence opens the three hydraulic system MPS thrust vector control isolation valves to allow repositioning of the SSMEs to enable deployment of the drag chute without path interference from the SSMEs. The automatic control of the three hydraulic system MPS thrust vector control isolation valves can be bypassed by a crew SSME reposition inhibit item 19 entry on the Override Spec 051.

\subsection*{4.5.1.2 Overview}

In Nominal Entry, the sequence is initiated when the Orbiter ground relative velocity is 8000 fps . During a RTLS Entry, the sequence is initiated upon transition into MM 603.

During MM 304, the automatic control of the three MPS thrust vector control (TVC) valves is initiated when the Orbiter ground relative velocity is between \(3,500 \mathrm{fps}\) and \(8,000 \mathrm{fps}\) and the crew has not inbibited the sequence via Override Spec 051. The Auxiliary Power Units (APU's) are checked when the orbiter relative velocity has diminished to \(8,000 \mathrm{fps}\). If at least two out of three APU's are operational, the sequence proceeds to command the three hydraulic system MPS thrust vector control isolation valves open simultaneously. The valves will not be opened below a orbiter relative velocity of 3500 fps . The sequence will command the MPS thrust vector control valves closed upon: completion of SSME repositioning for chute deploy; or when less than two operational APU's are available; or if less than two valves are opened when commanded open. In the event of halted repositioning, a CRT message line and a Class 3 alert light and tone is provided.

During either MM 305 or MM 603 , when the Orbiter ground relative velocity has decreased to 800 fps , the hydraulic system landing gear valve is commanded open. The hydraulic system brake isolation valves are then commanded open upon receiving a Brake Isolation Valve Open Flag from the Landing SOP.

The sequence terminates the open and close commands 5 or more seconds after each isolation valve is commanded and the valve will remain latched in its commanded position.

\subsection*{4.5.1.3 Detailed Requirements}

Step 1. In MM 304 this step opens hydraulic system 1, 2, and 3 MPS TVC isolation vaives during a predefined ground relative velocity if the crew has not inhibited this function. This step also indicates a crew alert if the crew has inhibited the SSME reposition while it was in progress.

Monitor the following signals:
(a) MAJOR MODE 304 FLAG V90X8161X
(b) CREW SSME REPOSITION V93X5480X
(c) SSME REPOSITION START FLAG
(INTERNAL)
(d) GROUND REL VEL MAGNITUDE IN M50 SYS

V95L0151C
(e) SSME REPOSITION STOP FLAG

V95X1623X
(f) SSME CHUTE DEPLOY POSITION CMPLT

If (a) is true, proceed to monitor (b). Otherwise, proceed to Step 8.
If (b) is true, proceed to monitor (c) and (d). Otherwise, proceed to monitor (c), (e), and (f).
If (c) is true or \(8000 \mathrm{fps} \geq\) (d) \(\geq 3500 \mathrm{fps}\), on first pass, set (1) through (9) true, start (12), and proceed to Step 2. On subsequent passes, proceed to Step 2. Otherwise, return to Step 1.

If (c) is true and both (e) and (f) are false, set (10) true to generate a CRT message line and Class 3 alert light and tone, set (11) false, and proceed to Step 5. Otherwise, proceed to Step 5.
\begin{tabular}{llr} 
(1) & HYD SYS 1 ME/TVC ISLN V OP/CL ENA A & V58K 1129X \\
(2) & HYD SYS 1 ME/TVC ISLN V OP/CL ENA B & V58K1132X \\
(3) & HYD SYS 1 ME/TVC ISLN V OP & V58K1134X \\
(4) & HYD SYS 2 ME/TVC ISLN V OP/CL ENA A & V58K1229X \\
(5) & HYD SYS 2 ME/TVC ISLN V OP/CL ENA B & V58K 1232X \\
(6) & HYD SYS 2 ME/TVC ISLN V OP & V58K1234X \\
(7) HYD SYS 3 ME/TVC ISLN V OP/CL ENA & V58K1332X \\
(8) & HYD SYS 3 ME/TVC ISLN V OP & V58K1334X \\
(9) & SSME REPOSITION START FLAG & (INTERNAL) \\
(10) SSME REPOSITION STOP FLAG & V95X1623X \\
(11) DRAG CHUTE GIMBAL POSITION FLAG & V90X5521X \\
(12) MPS TVC VLV OPEN TIMER & (INTERNAL)
\end{tabular}

Step 2. This step terminates the open commands to the hydraulic system 1,2 , and 3 MPS TVC isolation valves.

Monitor the following signals:
(a) SSME REPOSITION STOP FLAG

V95X1623X
(b) MPS TVC VLV OPEN TIMER
(INTERNAL)
If (a) is true or less than 5 seconds have elapsed since (b) started, proceed to Step 4.
If (a) is false and 5 or more seconds have elapsed since (b) started, on first pass, set (1) through (8) false and proceed to Step 3. On subsequent passes, proceed to Step 4.
(1) HYD SYS 1 ME/TVC ISLN V OP/CL ENA A V58K1129X
(2) HYD SYS 1 ME/TVC ISLN V OP/CL ENA B V58K1132X
(3) HYD SYS 1 ME/TVC ISLN V OP
(4) HYD SYS 2 ME/TVC ISLN V OP/CL ENA A V58K1134X
(4) HMD SYS 2 MEA V58K1229X
(5) HYD SYS 2 ME/TVC ISLN V OP/CL ENA B V58K1232X
(6) HYD SYS 2 ME/TVC ISLN V OP V58K1234X

Step 3. This step provides a crew alert if at least two MPS TVC isolation valves fail to open, and pro-
 opened within 5 seconds of being commanded.

Monitor the following signals:
\begin{tabular}{llr} 
(a) & HYD SYS 1 ME/TVC ISLN V OP IND & V58X1136X \\
(b) HYD SYS 2 ME/TVC ISLN V OP IND & V58X1236X \\
(c) & HYD SYS 3 ME/TVC ISLN V OP IND & V58X1336X \\
(d) FA1 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2845X \\
(e) FA2 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2846X \\
(f) & FA3 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2847X \\
(g) & MPS TVC ISO VLV CLOSE COUNTER & (INTERNAL)
\end{tabular}

If (a) is false or (d) is true, increment (g) by one and proceed to monitor (b) and (e). Otherwise, proceed to monitor (b) and (e).

If (b) is false or (e) is true, increment (g) by one and proceed to monitor (c) and (f). Otherwise, proceed to monitor (c) and ( \(f\) ).

If (c) is false or \((\mathrm{f})\) is true, increment \((\mathrm{g})\) by one and proceed to monitor \((\mathrm{g})\). Otherwise, proceed to monitor (g).

If \((g)>1\), set (1) true to generate a CRT message line and Class 3 alert light and tone, and proceed to Step 4. Otherwise, set (2) and (3) true and proceed to Step 4.
\begin{tabular}{lll} 
(1) SSME REPOSITION STOP FLAG & V95X1623X \\
(2) DRAG CHUTE GIMBAL POSITION FLAG & V90X5521X \\
(3) PRL TVC ISO VLV OPEN FLAG & V90X5522X
\end{tabular}

Step 4. This step monitors the hydraulic good status to ensure that at least two APU's remain good. A flag will be set to initiate MPS TVC isolation valve closure and a crew alert when less than two APU's are good and the SSME repositioning has not been completed.

Monitor the following signals:
(a) HYDR SYS GOOD STATUS V96Q3001C
(b) SSME CHUTE DEPLOY POSITION CMPLT
V95X1624X

If (a) \(<2\) and (b) is false, set (1) true to generate a CRT message line and Class 3 alert light and tone and proceed to Step 5. Otherwise, proceed to Step 5.
(1) SSME REPOSITION STOP FLAG

V95X1623X

Step 5. This step commands MPS TVC isolation valves closed if SSME repositioning will not occur or if \(\overline{\text { SSME }}\) repositioning for drag chute deploy is complete.

Monitor the following signals:
(a) SSME CHUTE DEPLOY POSITTION CMPLT
V95X1624X
(b) SSME REPOSITION STOP FLAG
V95X1623X

If (a) or (b) is true, on first pass, set (1) through (8) true, set (9) through (11) false, start (12) and proceed to Step 6. On subsequent passes, proceed to Step 6. Otherwise, return to Step 1.
\begin{tabular}{|c|c|c|}
\hline (1) & HYD SYS 1 ME/TVC ISLN V OP/CL ENA A & V58K1129X \\
\hline (2) & HYD SYS 1 ME/TVC ISLN V OP/CL ENA B & V58K1132X \\
\hline (3) & HYD SYS 1 ME /TVC ISLN V CL & V58K1135X \\
\hline (4) & HYD SYS 2 ME /TVC ISLN V OP/CL ENA A & V58K1229X \\
\hline (5) & HYD SYS \(2 \mathrm{ME} / \mathrm{TVC}\) ISLN V OP/CL ENA B & V58K1232X \\
\hline (6) & HYD SYS 2 ME/TVCISLN V CL & V58K1235X \\
\hline (7) & HYD SYS 3 ME/TVC ISLN V OP/CL ENA & V58K1332X \\
\hline (8) & HYD SYS 3 ME/TVCISLN V CL & V58K1335X \\
\hline (9) & HYD SYS 1 ME/TVC ISLN V OP & V58K1134X \\
\hline (10) & HYD SYS 2 ME/TVC ISLN V OP & V58K1234X \\
\hline (11) & HYD SYS 3 ME/TVC ISLN V OP & V58K1334X \\
\hline (12) & MPS TVS ISO VLV CLOSE TIMER & (INTERNAL) \\
\hline
\end{tabular}

Step 6. This step terminates the close commands to the hydraulic system MPS TVC isolation valves.
Monitor the following signal:
(a) MPS TVC ISO VLV CLOSE TIMER
(INTERNAL)

If less than 5 seconds have elapsed since (a) started, return to Step 1.
If 5 or more seconds have elapsed since (a) started, on first pass, set (1) through (8) false and proceed to Step 7. On subsequent passes, return to Step 1.
(1) HYD SYS 1 ME/TVC ISLN V OP/CL ENA. A
V58K1129X
(2) HYD SYS 1 ME/TVCISLN V OP/CL ENA B V58K1132X
(3) HYD SYS 1 ME/TVCISLN VCL V58K1135X
(4) HYD SYS 2 ME/TVC ISLN V OP/CLENA A V58K1229X
(5) HYD SYS 1 ME/TVC ISLN V OP/CL ENA B V58K1232X
(6) HYD SYS 1 ME/TVC ISLN V CL
(7) HYD SYS \(1 \mathrm{ME} / T V C\) ISLN V OP/CL ENA B V58K1235X
(8) HYD SYS 1 ME/TVCISLN V CL
V58K1332X
V58K1335X

Step 7. This step provides a flag for priority rate limiting if all three MPS TVC isolation valves are not closed after being commanded closed.

Monitor the following signals:
\begin{tabular}{llr} 
(a) HYD SYS 1 ME/TVC ISLN V OP IND & V58X1136X \\
(b) HYD SYS 2 ME/TVC ISLN V OP IND & V58X1236X \\
(c) HYD SYS 3 ME/TVC ISLN V OP IND & V58X1336X \\
(d) FA1 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2845X \\
(e) FA2 INPUT PROM SEG 3, 10 STATUS (HIFE) & V91X2846X \\
(f) FA3 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2847X \\
(g) MPS TVC ISO VLV OPEN COUNTER & (INTERNAL)
\end{tabular}

If (a) or (d) is true, increment (g) by 1 and proceed to monitor (b) and (e). Otherwise proceed to monitor (b) and (e).

If (b) or (e) is true, increment (g) by 1 and proceed to monitor (c) and (f). Otherwise proceed to monitor (c) and (f).

If (c) or (f) is true, increment \((\mathrm{g})\) by 1 and proceed to monitor \((\mathrm{g})\). Otherwise proceed to monitor (g).
If \((\mathrm{g})<1\), then set (1) and (2) false and proceed to Step 1. Otherwise set (1) true, set (2) false, and return to Step 1.
(1) PRL TVC ISO VLV OPEN FLAG

V90X5522X
(2) SSME REPOSITION START FLAG
(INTERNAL)
Step 8. This step opens the hydraulic system 1 isolation valve for extension of the landing gear in MM 603 and MM 305.

Monitor the following signals:
(a) MAJOR MODE 603 FLAG V93X0013X
(b) MAJOR MODE 305 FLAG V90X8162X
(c) GROUND REL VELOCITY MAGNITUDE IN M50 SYS V95L0151C

If (a) or (b) is true, and (c) is \(\leq 800 \mathrm{fps}\), on first pass, set (1) true, start (2), and return to Step 1. On subsequent passes, proceed to Step 9. Otherwise, return to Step 1.
(1) HYDR SYS 1 LDG GR ISLN VLV OPEN V58K0195X
(2) LND GEAR ISO VLV OP CMD TIMER (INTERNAL)

Step 9. This step terminates the hydraulic system 1 landing gear isolation valve open command.
Monitor the following signal:
(a) LND GEAR ISO VLV OP CMD TIMER
(INTERNAL)
If less than 5 seconds have elapsed since (a) started, proceed to Step 10.
If 5 or more seconds have elapsed since (a) started, set (1) false, and proceed to Step 10.
(1) HYDR SYS 1 LDG GR ISLN VLV OPEN

V58K0195X

Step 10. This step opens the hydraulic system brake isolation valves.
Monitor the following signal:
(a) BRAKE ISO VLV OPEN FLAG

V96X0060X
If (a) is true, on first pass, set (1), (2), and (3) true, start (4) and return to Step 1. On subsequent passes, proceed to Step 11. Otherwise, return to Step 1.
(1) HYD SYS 1 BRAKE ISLN VLV OPEN
(2) HYD SYS 2 BRAKE ISLN VLV OPEN

V58K0295X
(3) HYD SYS 3 BRAKE ISLN VLV OPEN

V58K0395X
(4) BRAKE ISO VLV OP CMD TIMER
(INTERNAL)
Step 11. This step terminates the hydraulic system brake isolation valves open commands.
Monitor the following signal:
(a) BRAKE ISO VLV OP CMD TIMER
(INTERNAL)
If less than 5 seconds have elapsed since (a) started, return to Step 1.
If 5 or more seconds have elapsed since (a) started, terminate (1), (2), and (3), and return to Step 1.
(1) HYD SYS 1 BRAKE ISLN VLV OPEN

V58K0197X
(2) HYD SYS 2 BRAKE ISLN VLV OPEN
(3) HYD SYS 3 BRAIKE ISLN VLV OPEN

\section*{LANDING GEAR VALVE CONTROL INITIATION}
\begin{tabular}{llll} 
NOMENCLATURE & INTTLAL VALUE & UNITS \\
\hline SSME REPOSITION START FLAG & OFF & \\
MPS TVC VLV OPEN TIMER & 0.0 & SEC \\
MPS TVC ISO VLV CLOSE COUNTER & 0 & \\
MPS TVC ISO VLV CLOSE TIMER & 0.0 & SEC \\
MPS TVC ISO VLV OPEN COUNTER & 0 & SEC \\
LND GEAR ISO VLV OP CMD TIMER & 0.0 & SEC \\
BRAKE ISO VLV OP CMD TIMER & 0.0 & \\
SSME REPOSITION STOP FLAG & OFF & OFF & \\
DRAG CHUTE GIMBAL POSITION FLAG & OFF & \\
PRL TVC ISO VLV OPEN FLAG & &
\end{tabular}

Figure 4.215. Hydraulic Systems Landing Gear Isolation Valve Control Logic (Sheet 1 of 2)


THIS PAGE INTENTIONALLY LEFT BLANK
TABLE 4．5．1．4－1．HYD SYS LANDING GEAR ISLN VLV CNTL SEQ（G4．215）INPUT／OUTPUT FUNCTIONAL PARAMETERS

ロ必い


\begin{tabular}{|c|c|c|}
\hline \％ & －四口喵 &  \\
\hline & लनल0－1 &  \\
\hline E & －orung &  \\
\hline 宸 &  & \begin{tabular}{l}
のの○のののののののののののの \\
\(\infty \infty \sigma \infty )
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DBEN：D3B027－E & PN：VP707100049P00L & INPUT FUNCTIONAL PARANETERS F & ldg gear vlv cntl \\
\hline FSSR NAME & M／S ID & NOMENCLATURE & SOURCE \\
\hline Brk VLV OP & V96x0060x & BRAKE ISO VLV OPEN FLAG & LANDING SOP \\
\hline MM Code \(304 / \mathrm{MM} 304\) & \(4 \mathrm{~V} 90 \times 8161 \mathrm{x}\) & MAJOR MODE 304 FLAG & MSC \\
\hline  & \(5 \mathrm{~V} 90 \times 8162 \mathrm{x}\) & MAJOR MODE 305 FLAG & MSC \\
\hline MM \({ }^{-1005-603 / M^{-1}} 603\) & \(3 \mathrm{~V} 90 \times 8122 \mathrm{x}\) & MAJOR MODE 603 FLAG & MSC \\
\hline N＿HYYDRAÜLIC＿GOÖD & V9603001C & HYDR SYS GOOD Status & HYD SYS SOP \\
\hline REL＿VEL MAG & V95L0151CD & GND REL VEL MAGNITUDE IN M50 SYS & TAEM UPP \\
\hline REL＿VEL＿MAG／V & V95L0151CA & GND REL VEL MAGNItUde in m50 sys & RTLS UPP \\
\hline REL＿VEL＿MAG／V & v95L0151CC & GND Rel vel magnitude in m50 sys & ent upp \\
\hline SSME＿PEPOS & v93x5480x & CREW SSME REPOSITITON & OVERRIDE DISP \\
\hline SSME＿REPOS＿CMPLT & V95x1624x & SSME CHUTE DEPLOY POSITTION CMPLT & MPS TVC CMD SOP \\
\hline & V58x1136x & HYD SYS 1 ME／TVC ISLN V OP IND & HDWR \\
\hline & V58x1236X & HYD SYS \(2 \mathrm{ME} / \mathrm{TVC}\) ISLN V OR IND & HDWR \\
\hline & v58x1336x & HYD SYS \(3 \mathrm{ME} / \mathrm{TVC}\) ISLN V OP IND & HDWR \\
\hline & v91x2845x & FA1 INPUT PROM SEG3， 10 Status（hFE） & ecos \\
\hline & v91x2846x & fal 2 InPut Prom seg3，10 status（hfe） & fcos \\
\hline & v91x2847x & fa3 input prom seg3， 10 Status（hfe） & fcos \\
\hline
\end{tabular}
TABLE 4.5.1.4-1. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) INPUT/OUTPUT FUNCTIONAL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{DBFN: D3B027-F PN:} & VP707100049P00L & \multicolumn{4}{|l|}{OUTPUT FUNCTIONAL PARAMETERS FROM LDG GEAR VLV CNTL} & \multicolumn{2}{|l|}{P} \\
\hline & & & & & & R & \\
\hline & & & & & DATA & E & \\
\hline & M/S ID & NOMENCLATURE & DESTINATION & UNITS & TYPE & C & LAST CRS \\
\hline & V90x5522X & PRL TVC ISO VLV OPEN FLAG & AEROJET DAP & & & & 89991 E \\
\hline PRL TVC ISOL VLV_OR & V90x5521x & DRAG CHUTE GIMBAL POSITION FLAG & MPS TVC CMD SOP & & & & 89991E \\
\hline SSME GMBL FOS & V90x51623x & SSME REPOSITION STOP ELAG & GAX & & & & 89991E \\
\hline \multirow[t]{15}{*}{SSME_REPOS_STOP} & V58K0195X & HYDR SYS 1 LDG GR ISLN VLV OPEN & HYDR SYS 1 & & BD & & \\
\hline & V58K0197x & HYDR SYS 1 BRAKE ISLN VLV OREN & HYDR SYS 1 & & BD & & 90102D \\
\hline & V58K0295 & HYDR SYS 2 BRAKE ISLN VLV OPEN & HYDR SYS 2 & & BD & & 90102 D \\
\hline & V58K0395X & HYDR SYS 3 BRAKE ISLN VLV OPEN & HYDR SYS 3 & & BD & & 90102 D \\
\hline & V58K1129x & HYD SYS1 ME/TVC ISLN V OP/CL ENA A & HYDR SYS 1 & & & & 89991 E \\
\hline & V58K1132 & HYD SYS1 ME/TVC ISLN V OP/CL ENA \(B\) & HYDR SYS 1 & & & & 89991 E \\
\hline & V58K1134 \({ }^{\text {x }}\) & HYD SYS1 ME/TVC ISLN \(V\) OP & HYDR SYS 1 & & & & 89991 E \\
\hline & V58K1135 x & HYD SYS1 ME/TVC ISLN V CL & HYDR SYS 1 & & & & 89991 E \\
\hline & V58K1229 & HYD SYS2 ME/TVC ISLN V OP/CL ENA \(\mathbb{A}\) & HYDR SYS 2 & & & & 89991 E \\
\hline & V58K1232\% & HYD SYS2 ME/TVC ISLN \(V\) OP/CL ENA \(B\) & HYDR SYS 2 & . & & & 89991 E \\
\hline & V58K1234 & HYD SYS2 ME/TVC ISLN \(V\) OP & HYDR SYS 2 & & & & 89991 E \\
\hline & V58K1235 & HYD SYS2 ME/TVC ISLN V CL & HYDR SXS 2 & & & & 89991 E \\
\hline & V58K1332 & HYD SYS3 ME/TVC ISLN V OP/CL ENA & HYDR SYS 3 & & & & 89991 E \\
\hline & V58K1334X & HYD SYS3 ME/TVC ISLN \(V\) OP & HYDR SYS 3 & & & & 89991 E \\
\hline & V58K1335x & HYD SYS3 ME/TVC ISLN V OP & HYDR SYS 3 & & & & 89991 E \\
\hline
\end{tabular}
TABLE 4.5.1.4-2. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) I-LOADS
TABLE 4.5.1.4-3. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) K-LOADS
DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS

LEVEL C
FUNCTIONAL SUBSYSTEM SOFTWARE REQUIREMENTS SEQUENCE REQUIREMENTS

January 25, 1991

Contract NAS9-18500
IRD SE-694D1
WBS 39


Flight Systems and Performance

Rockwell International
Space Systems Division

\section*{FOREWORD}

The primary avionics software system (PASS) requirements for the computer programs that execute in the Shuttle general-purpose computers (GPC's) are specified in the Computer Program Development Specifications (CPDS's) and the Functional Subsystem Software Requirements (FSSR) documents. The requirements are specified at three levels:
- Level A CPDS - System-level constraints and capabilities
- Level B CPDS - Functional requirements
- Level C FSSR - Detailed-level requirements

The Level A CPDS specifies system-level constraints and capabilities that are not oriented toward any particular program end item. The Level B CPDS specifies system-level requirements for guidance, navigation, and control (GN\&C) and detailed requirements for systems management (SM) and vehicle utility (VU). The Level C FSSR's specify the detailed requirements for GN\&C and display/controls. The Level \(C\) reconfigurable requirements are specified in the systems management and payload documents. The Level A, Level B, and Level C requirements documents are listed in Section 2, Applicable Documents.

\section*{DOCUMENT CHANGE RECORD}

The following tabulation summarizes the change activity to Revision D dated January 25, 1991.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Issue and Date } & \multicolumn{1}{c|}{ Change Surmmary/Effectivity } \\
\hline & \\
Revision D & This baseline release for effectivity OI-21 and subs includes CR's \\
January 25,1991 & 89319C, 8990E, 90102D and 90114B. \\
& \\
\hline
\end{tabular}

\section*{CHANGE REQUEST SUMMARY}

The following tabulation lists the paragraphs, figures \((\mathrm{F})\), and tables \((\mathrm{T})\) that have been changed as a result of approved change requests commencing with OI-8A. Changes incorporated prior to OI-8A are listed in the Historical Change Request Summary.
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline 4.1.1.3 & & & \\
\hline Step 1C & 89313A & OI-8C & CLOSE LH2 RECIRC DISC VLV FOR PAD ABORT \\
\hline Step 1D & 79997A & OI-8A & INTCON MPS HELIUM PAD ABORT \\
\hline Step 1E & 79997A & OI-8A & INTCON MPS HELIUM PAD ABORT \\
\hline Step 1F & 79997A & OI-8A & INTCON MPS HELIUM PAD ABORT \\
\hline Step 2A & 89157A & OI-8B & SSME LIMIT EXCEEDANCE PAD ABORT \\
\hline Step 3A & 89157A & OI-8B & SSME LIMIT EXCEEDANCE PAD ABORT \\
\hline Step 4A & 89157A & OI-8B & SSME LIMIT EXCEEDANCE PAD ABORT \\
\hline Step 13 & 89355B & OI-8D & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS \\
\hline Step 14 & 89355B & OI-8D & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS \\
\hline Step 17 & 89355B & OI-8D & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS \\
\hline Step 17A & 89355B & OI-8D & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS \\
\hline Step 18 & 89355B & OI-8D & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS \\
\hline Step 28A & 89348B & OI-8C & MM103 FAST SEP CORRECTION \\
\hline & 90188 & OI-8D & CHANGE ENGINE START TIME COMPUTATION \\
\hline Step 30 & 89349A & OI-8C & PREVLV CLOSEURE FOR PAD ABORT \\
\hline Step 30B & 89349A & OI-8C & PREVLV CLOSEURE FOR PAD ABORT \\
\hline Step 31 & 89349A & OI-8C & PREVLV CLOSEURE FOR PAD ABORT \\
\hline Step 31B & 89349A & OI-8C & PREVLV CLOSEURE FOR PAD ABORT \\
\hline 4.114(F) & 79997A & OI-8A & INTCON MPS HELIUM PAD ABORT \\
\hline \multirow{7}{*}{4.1.1.4 (T)} & 89157A & OI-8B & SSME LIMIT EXCEEDANCE PAD ABORT \\
\hline & 89313A & OI-8C & CLOSE LH2 RECIRC DISC VLV FOR PAD ABORT \\
\hline & 89348B & OI-8C & MM103 FAST SEP CORRECTION \\
\hline & 89349A & OI-8C & PREVLV CLOSEURE FOR PAD ABORT \\
\hline & 89355B & OI-8D & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS \\
\hline & 89875A & OI-8B & CLEANUP TO CR 89819 \\
\hline & 90054A & OI-8D & ENTRY FCS ERRATA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline 4.1.2.2 & 89875A & OI-8B & CLEANUP TO CR 89819 \\
\hline 4.1.2.3 & & & \\
\hline Step 17 & 89819 & OI-8B & QD FAILURE PROTECTION FOR RSLS ABORT \\
\hline Step 17 & 89875A & OI-8B & CLEANUP TO CR 89819 \\
\hline 4.222 (F) & 89819 & OI-8B & QD FAILURE PROTECTION FOR RSLS ABORT \\
\hline 4.1.2.4 (T) & 89875A & OI-8B & CLEANUP TO CR 89819 \\
\hline 4.2.1.1 & 89325B & OI-8B & LOW LVL SNSR MOW SGL SNSR DIS \\
\hline 4.2.1.2 & 89325B & OI-8B & LOW LVL SNSR MOW SGL SNSR DIS \\
\hline \multicolumn{4}{|l|}{4.2.1.3} \\
\hline Step 2 & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 3 & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 3A & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 6 & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 7 & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 7A & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 10 & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 11 & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 11A & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline Step 17 & 89108A & OI-8A & ERRONEOUS ENG PHASE FLAG FIX \\
\hline \multirow[t]{3}{*}{Step 17B} & 89505B & OI-8D & MODIFY MPS MECO HELIUM INTERCONNECT \\
\hline & 89809B & OI-8D & CR 89505B CLEANUP \\
\hline & 89846B & OI-8D & CR 89809B CLEANUP \\
\hline \multirow[t]{3}{*}{Step 17C} & 89505B & OI-8D & MODIFY MPS MECO HELIUM INTERCONNECT \\
\hline & 89809B & OI-8D & CR 89505B CLEANUP \\
\hline & 89846B & OI-8D & CR 89809B CLEANUP \\
\hline \multirow[t]{3}{*}{Step 17D} & 89505B & OI-8D & MODIFY MPS MECO HELIUM INTERCONNECT \\
\hline & 89809B & OI-8D & CR 89505B CLEANUP \\
\hline & 89846B & OI-8D & CR 89809B CLEANUP \\
\hline Step 22 & 89287 & Or-8A & SSME OPS SCRUB \\
\hline Step 22A & 89287 & OI-8A & SSME OPS SCRUB \\
\hline Step 22B & 89287 & OI-8A & SSME OPS SCRUB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline Step 22C & 89287 & OI-8A & SSME OPS SCRUB \\
\hline Step 22D & 89287 & OI-8A & SSME OPS SCRUB \\
\hline Step 22E & 89287 & OI-8A & SSME OPS SCRUB \\
\hline Step 22F & 89287 & OI-8A & SSME OPS SCRUB \\
\hline \multirow[t]{2}{*}{Step 24A} & 89278A & OI-8B & LH2 PREVALVE TIMER FOR FAST SEP \\
\hline & 89325B & OI-8B & LOW LVL SNSR MON SGL SNSR DIS \\
\hline Step 25 & 89325B & \(\mathrm{OI}-8 \mathrm{~B}\) & LOW LVL SNSR MON SGL SNSR DIS \\
\hline Step 25A & 89325B & OI-8B & LOW LVL SNSR MON SGL SNSR DIS \\
\hline Step 26 & 89325B & OI-8B & LOW LVL SNSR MON SGL SNSR DIS \\
\hline Step 26A & 89325B & \(\mathrm{OI}-8 \mathrm{~B}\) & LOW LVL SNSR MON SGL SNSR DIS \\
\hline 4.2.1.4-1(T) & 89990E & OI-21 & SINGLE ENGINE AUTO CONTINGENCY ABORT \\
\hline \multirow[t]{5}{*}{4.165(F)} & 89278A & OI-8B & LH2 PREVALVE TIMER FOR FAST SEP \\
\hline & 89325B & \(\mathrm{OI}-8 \mathrm{~B}\) & LOW LVL SNSR MON SGL SNSR DIS \\
\hline & 89369B & OI-8C & PD3 SAFING FOR INFLT SHUTDOWN \\
\hline & 89505B & OI-8D & MODIFY MPS MECO HELIUM INTERCONNECT \\
\hline & 89809B & OI-8D & CR 89505B CLEANUP \\
\hline 4.2.2.2 & & & \\
\hline Step 1 & 79987D & OI-8A & SRB SEQ-MDM FAILURES \\
\hline Step 2 & 79987D & OI-8A & SRB SEQ-MDM FAILURES \\
\hline Step 4 & 79935H & OI-8A & SRB RGA \(\dot{R} E C H A N N E L I Z A T I O N\) \\
\hline 4.115 (F) & 79987D & OI-8A & SRB SEQ-MDM FAILURES \\
\hline \multicolumn{4}{|l|}{4.2.3.3} \\
\hline \multirow[t]{2}{*}{Step 1} & 89165H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline & 89399B & OI-8C & POST MECO LH2 VENT \\
\hline Step 2 & 89348B & Oİ-8C & MM103 FAST SEP CORRECTION \\
\hline Step 3 & 89165H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline Step 3a & 89165H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline Step 3b & 89165 H & \(\mathrm{OI}-8 \mathrm{~B}\) & MPS FEED DISC LATCH LOGIC \\
\hline Step 3c & 89165 H & \(\mathrm{OI}-8 \mathrm{~B}\) & MPS FEED DISC LATCH LOGIC \\
\hline Step 3d & 89165H & \(\mathrm{OI}-8 \mathrm{~B}\) & MPS FEED DISC LATCH LOGIC \\
\hline Step 3e & 89165 H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow[t]{2}{*}{Step 3f} & 79935M & OI-8A & SRB RGA RECHANNELIZATION \\
\hline & 89165 H & \(\mathrm{OI}-8 \mathrm{~B}\) & MPS FEED DISC LATCH LOGIC \\
\hline Step 5/5a & 90277A & OI-8D & ET SEP SEQUENCE CLEANUP \\
\hline \multirow[t]{3}{*}{Step 5a} & 79928 & OI-8B & AUTHORIZED SEQUENCER K-LOAD CHANGES \\
\hline & 79935H & OI-8B & SRB RGA RECHANNELIZATION \\
\hline & 89165H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline Step 7 & 89348B & OI-8C & MM103 FAST SEP CORRECTION \\
\hline Step 8 & 89165 H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline Step 9 & 89165H & OI-8B & MPS FEED DISC LATCH LOGIC \\
\hline \multirow[t]{4}{*}{4.116(F)} & 89165H & \(\mathrm{OI}-8 \mathrm{~B}\) & MPS FEED DISC LATCH LOGIC \\
\hline & 89348B & OI-8C & MM103 FAST SEP CORRECTION \\
\hline & 89399B & OI-8C & POST MECO LH2 VENT \\
\hline & 90277A & OI-8D & ET SEP SEQUENCE CLEANUP \\
\hline 4.2.3.4(T) & 89465C & OI-8C & MPS LH2 DUMP RTLS CONTINGENCY \\
\hline 4.2.3 & 89319E & OI-21 & ORBITER SOFTWARE CHANGE REQUEST \\
\hline 4.2.3.4-1(T) & 89990E & OI-21 & SINGLE ENGINE AUTO CONTINGENCY ABORT \\
\hline 4.2.3.4-2(T) & 89319E & OI-21 & ORBITER SOFTWARE CHANGE REQUEST \\
\hline 4.2.3.4-1(T) & 90114 B & OI-21 & ABORT SEQUENCING REDESIGN \\
\hline 4.2.4.1 & 89465C & OI-8C & MPS LHZ DUMP RTLS CONTINGENCY \\
\hline Step 2 & 89465C & OI-8C & MPS LH2 DUMP RTLS CONTINGENCY \\
\hline 4.2.4.4(T) & 90120 B & \(\mathrm{OI}-8 \mathrm{D}\) & UPDATE GUIDANCE DOWNMODE RQMTS \\
\hline 4.70(F) & 89465C & OI-8C & MPS LH2 DUMP RTLS CONTINGENCY \\
\hline \multirow[t]{2}{*}{4.3.1.1} & 89140 E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{3}{*}{4.3.1.2} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multicolumn{4}{|l|}{4.3.1.3} \\
\hline \multirow[t]{3}{*}{Step 1} & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline & 89154B & OI-8A & DUMP ITEM DISPLAY CLEANUP \\
\hline & 89193D & OI-8A & ABT CNTR SEQ/OVERRIDE LASHUP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow{4}{*}{Step 1A} & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 89956 & OI-8D & ABORT CONTROL SEQ CORRECTIONS \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 3 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 4} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 4A} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 5} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 6} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 7 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 7A & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{4}{*}{Step 7B} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89154B & OI-8A & DUMP ITEM DISPLAY CLEANUP \\
\hline & 89193D & OI-8A & ABT CNTL SEQ/OVERRIDE LASHUP \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 7C & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{5}{*}{Step 8} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89154B & OI-8A & DUMP ITEM DISPLAY CLEANUP \\
\hline & 89193D & OI-8A & ABT CNTL SEQ/OVERRIDE LASHUP \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 89956 & OI-8D & ABORT CONTROL SEQ CORRECTIONS \\
\hline \multirow[t]{3}{*}{Step 9} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971 D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 9A} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 10 & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow{3}{*}{Step 10A} & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 11} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 12} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 13} & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 89956 & OI-8D & ABORT CONTROL SEQ CORRECTIONS \\
\hline Step 14 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 15 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 16 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 17 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 18 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 19} & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 89810 & OI-8D & CORRECTION FOR 89150H \\
\hline \multirow[t]{4}{*}{Step 20} & 89149B & OI-8A & OI-8A VERSION OF CR 79596C \\
\hline & 89193D & OI-8A & ABT CNTL SEQ/OVERRIDE LASHUP \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 89956 & OI-8D & ABORT CONTROL SEQ CORRECTIONS \\
\hline Step 21 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 22 & 79643A & OI-8A & OMS DUMP WITH 3 SSME'S FAILED \\
\hline Step 23 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 24 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{3}{*}{Step 25} & 89238 & OI-8B & ZERO THRUST AUTO DUMP START \\
\hline & 89479 & OI-8C & CONTINGENCY DUMP POST-MECO MANUAL START \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 26 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{2}{*}{Step 27} & 89705 & OI-8C & POST MECO NZ TERMINATION CORRECTION \\
\hline & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 28 & 89150 H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow[t]{2}{*}{Step 29} & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline & 89810 & OI-8D & CORRECTION FOR 89150H \\
\hline Step 30 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 31 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{5}{*}{Step 32} & 79643A & OI-8A & OMS DUMP WITH 3 SSME'S FAILED \\
\hline & 89154B & OI-8A & DUMP ITEM DISPLAY CLEANUP \\
\hline & 89193D & OI-8A & ABT CNTL SEQ/OVERRIDE LASHUP \\
\hline & 89229G & OI-8C & TERMINATE OMS-DUMP POST-MECO \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{6}{*}{Step 33} & 89142B & OI-8A & NZ LIMIT FOR MM304 OMS DUMP \\
\hline & 89154B & OI-8A & DUMP ITEM DISPLAY CLEANUP \\
\hline & 89193D & OI-8A & ABT CNTL SEQ/OVERRIDE LASHUP \\
\hline & 89229G & OI-8C & TERMINATE OMS-DUMP POST-MECO \\
\hline & 89705 & OI-8C & POST MECO NZ TERMINATION CORRECTION \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 34 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 35 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline Step 36 & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline \multirow[t]{13}{*}{4.192(F)} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79643A & OI-8A & OMS DUMP WITH 3 SSME'S FAILED \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline & 89142B & OI-8A & NZ LIMIT FOR MM304 OMS DUMP \\
\hline & 89149B & OI-8A & OI-8A VERSION OF CR 79596C \\
\hline & 89154B & OI-8A & DUMP ITEM DISPLAY CLEANUP \\
\hline & 89193D & OI-8A & ABT CNTL SEQ/OVERRIDE LASHUP \\
\hline & 89229G & OI-8C & TERMINATE OMS-DUMP POST-MECO \\
\hline & 89238 & OI-8B & ZERO THRUST AUTO DUMP START \\
\hline & 89479 & OI-8C & CONTINGENCY DUMP POST-MECO MANUAL START \\
\hline & 89705 & OI-8C & POST MECO NZ TERMINATION CORRECTION \\
\hline & 89150H & OI-8D & ABORT CONTROL SEQ SCRUB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow{5}{*}{4.3.2.2} & 89956 & OI-8D & ABORT CONTROL SEQ CORRECTIONS \\
\hline & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 89237 & OI-8B & OMS/RCS I/C DOC CHANGE \\
\hline & 89239B & OI-8B & CLEANUP OF CR 89210B \\
\hline & 89352C & OI-8B & AFT MANIFOLD JET INH RESET DELAY \\
\hline \multicolumn{4}{|l|}{4.3.2.3} \\
\hline \multirow[t]{4}{*}{Step 1} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89185A & OI-8A & ABT OMS/RCS INTRCNT MODE TRANS \\
\hline & 89237 & OI-8B & OMS/RCS I/C DOC CHANGE \\
\hline Step 1A & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline Step 1B & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline \multirow[t]{2}{*}{Step 2} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline Step 4 & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline \multirow[t]{2}{*}{Step 6} & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89320 & OI-8B & OMS/RCS I/C DOC CHANGE \\
\hline \multirow[t]{3}{*}{Step 7} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89352C & OI-8B & AFT MANIFOLD JET INH RESET DELAY \\
\hline Step 11 & 89352C & OI-8B & AFT MANIFOLD JET INH RESET DELAY \\
\hline Step 13 & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline \multirow[t]{3}{*}{Step 14} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89210B & OI-8B & SMART INTERCONNECT \\
\hline \multirow[t]{2}{*}{Step 14A} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline \multirow[t]{4}{*}{Step 17} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89210B & OI-8B & SMART INTERCONNECT \\
\hline & 89239B & OI-8B & CLEANUP OF CR 89210B \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow[t]{4}{*}{Step 19} & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971 D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89210B & OI-8B & SMART INTERCONNECT \\
\hline & 89239B & OI-8B & CLEANUP OF CR 89210B \\
\hline \multirow[t]{4}{*}{Step 20} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79972 & OI-8A & INTERCONNECT TIMER FIX \\
\hline & 89210B & \(\mathrm{OI}-8 \mathrm{~B}\) & SMART INTERCONNECT \\
\hline & 89239B & OI-8B & CLEANUP OF CR 89210B \\
\hline Step 21 & 59126 H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline \multirow[t]{3}{*}{Step 22} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89352C & OI-8B & AFT MANIFOLD JET INH RESET DELAY \\
\hline \multirow[t]{5}{*}{4.181(F)} & 59126H & OI-8A & RCS XFEED MCA OPTIMIZATION \\
\hline & 79971 D & OI-8A & ABORT/INTERCONNECT FLAG FIX \\
\hline & 89210B & OI-8B & SMART INTERCONNECT \\
\hline & 89239B & \(\mathrm{OI}-8 \mathrm{~B}\) & CLEANUP OF CR 89210B \\
\hline & 89352C & OI-8B & AFT MANIFOLD JET INH RESET DELAY \\
\hline 4.3 & 90114B & OI-21 & ABORT SEQUENCING REDESIGN \\
\hline \multicolumn{4}{|l|}{4.3.1.4-1(T)} \\
\hline \multicolumn{4}{|l|}{4.3.1.4-2(T)} \\
\hline \multicolumn{4}{|l|}{4.3.1.4-3(T)} \\
\hline 4.3.2 & 90114B & OI-21 & ABORT SEQUENCING REDESIGN \\
\hline \multicolumn{4}{|l|}{4.3.2.4-1(T)} \\
\hline \multirow[t]{2}{*}{4.4.1.2} & 79933F & OI-8A & VENT DOOR SEQ SCRUB CR \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline \multirow[t]{2}{*}{4.4.1.3} & 79933F & OL-8A & VENT DOOR SEQ SCRUB CR \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline Step 1 & 79933F & OI-8A & VENT DOOR SEQ SCRUB CR \\
\hline \multirow[t]{2}{*}{Step 2} & 79933F & OI-8A & VENT DOOR SEQ SCRUB CR \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline Step 9 & 79933F & OI-8A & VENT DOOR SEQ SCRUB CR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Paragraph & CR No. & OI- & Title \\
\hline \multirow[t]{2}{*}{4.161(F)} & 79933F & OI-8A & VENT DOOR SEQ SCRUB CR \\
\hline & 89140E & OI-8A & CENTAUR REQUIREMENTS DELETION \\
\hline 4.4.1.4(T) & 90054 A & OI-8D & ENTRY FCS ERRATA \\
\hline 4.5.1.2 & 89436A & OI-8C & LG HYD ISOL VLV OPEN CMD TIME \\
\hline 4.5.1.3 & & & \\
\hline 4.5 & 90102 & OI-21 & LDG GEAR EXTENSION ISOLATION VALVE \\
\hline 4.5.1 & & & \\
\hline 4.5.1.3 & & & \\
\hline 4.5.1.4-1(T) & & & \\
\hline Step 2 & 89436A & \(\mathrm{OI}-8 \mathrm{C}\) & LG HYD ISOL VLV OPEN CMD TIME \\
\hline Step 6 & 89436A & \(\mathrm{OI}-8 \mathrm{C}\) & LG HYD ISOL VLV OPEN CMD TIME \\
\hline Step 8 & 89436A & \(\mathrm{OI}-8 \mathrm{C}\) & LG HYD ISOL VLV OPEN CMD TIME \\
\hline Step 9 & 89436A & \(\mathrm{OI}-8 \mathrm{C}\) & LG HYD ISOL VLV OPEN CMD TIME \\
\hline 4.215(F) & 89436A & OI-8C & LG HYD ISOL VLV OPEN CMD TIME \\
\hline 4.6.1.1 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline \multirow[t]{2}{*}{4.6.1.2} & \(79964 F\) & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline & 89246A & OI-8A & CLEANUP FOR CR 79964F \\
\hline 4.6.1.3 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Step 1 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Step 2 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Step 3 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Step 4 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Step 5 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Sub A & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Sub B & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Sub B1 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline Sub B2 & 79964F & \(\mathrm{OI}-8 \mathrm{~A}\) & RCS REG FAIL PROTECT SEQ \\
\hline Sub C & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline 4.185(F) & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline 4.6.4.1 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline 4.6.4.2 & 79964F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Paragraph & CR No. & OI- & \\
\hline & 89246 A & OI-8A & CLEANUP FOR CR 79964F \\
4.6 .4 .3 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
& 89246 A & OI-8A & CLEANUP FOR CR 79964F \\
Step 1 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step 2 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step 3 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step 4 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Sub A & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A1 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A2 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A3 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A4 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A5 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A6 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A7 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A8 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step A9 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Sub B & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step B1 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step B2 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step B3 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
Step B4 & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
4.189 (F) & 79964 F & OI-8A & RCS REG FAIL PROTECT SEQ \\
\(4.7 .6 .4(T)\) & 90120 B & OI-8D & UPDATE GUIDANCE DOWNMODE RQMTS \\
\(4.8 .1 .1 ~\) & 89968 A & OI-8C & 25 MS TIMING REQ FOR MEC NON-CRIT CMDS \\
4.8 .1 .2 & 89968 A & OI-8C & 25 MS TIMING REQ FOR MEC NON-CRIT CMDS \\
4.8 .1 .4 & 89968 A & OI-8C & 25 MS TIMING REQ FOR MEC NON-CRIT CMDS \\
4.8 .2 .3 .4 & 79973 A & OI-8A & PAD DATA PATH FAIL CRITERIA \\
4.8 .2 .3 .5 & 89389 B & OI-8C & SSME CONTINUOUS COMMANDS \\
4.8 .2 .3 .6 & 89108 A & OI-8A & ERRONEOUS ENG PHASE FLAG FIX \\
\hline & 89201 A & OI-8A & MAIN ENG SHUTDOWN INDICATION \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|l|}
\hline Paragraph & CR No. & OI- & \multicolumn{1}{c|}{ Title } \\
\hline & 89456 A & OI-8B & FSSR 26 ERRATA/DOC CLEANUP \\
4.8 .2 .3 .8 & 89389 B & OI-8C & SSME CONTINUOUS COMMANDS \\
& 89201 A & OI-8A & MAIN ENG SHUTDOWN INDICATION \\
& 89456 A & OI-8B & FSSR 26 ERRATA/DOC CLEANUP \\
\(4.8 .2 .4-1\) (T) & 89990 E & OI-21 & SINGLE ENGINE AUTO CONTINGENCY ABORT \\
4.1 .1 & 90023 A & 20 & GN\&C CHECKOUT CONFIGURATION \\
Step 41 & & & \\
\(4.114(\mathrm{~F})\) & & & \\
4.2 .3 & & & \\
Step 3 & & & \\
\(4.116(\mathrm{~F})\) & & & \\
4.6 .3 & 90271 & 20 & CLOSE RCS HELIUM VALVES BASED ON HIGH TANK \\
OUTLET PRESSURE \\
Step 6 & & & \\
\(4.1 .1 .4-1\) & 89981 & 20 & ADD DOWNLIST REQ FOR LPS ORBITER DOORS \\
\(4.116(\mathrm{~F})\) & 90114 B & OI-21 & ABORT SEQUENCING REDESIGN \\
\(4.184(\mathrm{~F})\) & 90114 B & OI-21 & ABORT SEQUENCING REDESIGN \\
\(4.192(\mathrm{~F})\) & 90114 B & OI-21 & ABORT SEQUENCING REDESIGN \\
\(4.215(\mathrm{~F})\) & 90102 D & OI-21 & LDG GEAR EXTENSION ISOLATION VALUE \\
\hline
\end{tabular}

\section*{HISTORICAL CHANGE REQUEST SUMMARY}

The following tabulation is a historical record of the approved software change requests incorporated in this document by software release.
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 02166 & OFT GNC ENTRY FUNCTIONS UPDATE & 16 \\
\hline 02173A & ABORT MODE RESELECTION (G021) & 16 \\
\hline 02.313A & SRB MON FCN/SEL FILTER/SRB SEP SEQ & 16 \\
\hline 02340D & ATTITUDE DATA, IMU DATA & 16 \\
\hline 02449D & ADD OFT CONTINGENCY ABORT RQT & 16 \\
\hline 02486B & SRB TVD FDIR ACTIVATION/DEACTIVATION & 16 \\
\hline 02607A & UPDATE TO D\&C BOOK II & 16 \\
\hline 12008 & REDUCE SSME RATE & 16 \\
\hline 12019 & STAND FSSR PRINCIPAL FUNCT & 16 \\
\hline 12028B & SSME OPERATIONS SEQUENCE & 16 \\
\hline 12033A & ABORT CONTROL SEQ & 16 \\
\hline 12034 & OMS ENGINE FIRING SEQ REV & 16 \\
\hline 12037A & ABORT OMS/RCS INTERCONNECT & 16 \\
\hline 12045 & OMS TO RCS GAGING REVISIONS & 16 \\
\hline 12046A & OMS TO OMS CROSSFEED SEQ & 16 \\
\hline 12047 & VENT DOOR SEQUENCE & 16 \\
\hline 12071A & MNVR EXECUTE (6.35 AND 6.46) DISPLAY CHANGES & 16 \\
\hline 12073A & O. OMS/RCS CONN & 16 \\
\hline 12074A & ET SEPARATION SEQUENCE REVISION & 16 \\
\hline 12075 & HYD SYS LND GEAR ISOL VLV & 16 \\
\hline 12076A & RCS PROPELLANT CROSSFEED & 16 \\
\hline 12077A & MPS DUMP SEQUENCE REVISION & 16 \\
\hline 12078A & SRB MDM DATA ACQUISITION & 16 \\
\hline 12119 & ON ORB I/O UPDT & 16 \\
\hline 12112 & GAX-ANNUNCIATION REWRITE & 16 \\
\hline 12137 & OMS/OMS CONN, RCS/RCS XFEED RATE CHG & 16 \\
\hline 12160A & RS LAUNCH SEQ REV (4.114) & 16 \\
\hline 12161 & SRB SEP SEQUENCE REVISION & 16 \\
\hline
\end{tabular}

January 25, 1991
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 12162 & RCS QUANTITY MONITOR & 16 \\
\hline 12190D & ASC/RTLS GUID, PFG MODE TEAM & 16 \\
\hline 12217 & SRB AND ET SEP SEQ RATE REDUCTION & 16 \\
\hline 12218 C & AERO ACTUATOR COMMAND SOP & 16 \\
\hline 12239 & GPC/SSME DATA FETCH & 16 \\
\hline 12240 & MEC SOP DOCUMENTATION CHG & 16 \\
\hline 12241 & SSME SOP DOCUMENTATION CHG & 16 \\
\hline 12248 & GAX-RATE TABLE UPDATE & 16 \\
\hline 12270A & BLOCK UPDT TO OPS 3 & 16 \\
\hline 12313C & ADDITION OF TLM REQMTS & 16 \\
\hline 12316 & GNC SWITCH RM PROC RATE RED & 16 \\
\hline 12336 & I-LD OFT MISS AND LRU DEP & 16 \\
\hline 12337 & I-LD OFT DES DEP PARM & 16 \\
\hline 12411B & OMS ENGINE FDI SIMPLIFICATION & 16 \\
\hline 12414C & R/S LCH SEQ AND SSME SOP REV & 16 \\
\hline 12442A & INTEGRATED ENT NAV, ASC NAV, AND ORB & 16 \\
\hline 12443 & I-LOAD FOR ENTRY FACI & 16 \\
\hline 12449B & VENT DOOR CONTROL SEQ & 16 \\
\hline 12455 & SSME SOP SWITCH OF EIU 60 KBPS OUTPUT & 18 \\
\hline 12473B & RCS QUAN MONITOR & 16 \\
\hline 12480B & SSME OPERATIONS SEQ & 16 \\
\hline 12481A & MPS DUMP SEQ & 16 \\
\hline 12482A & ET SEPARATION SEQ & 16 \\
\hline 12483B & SRB SEPARATION SEQ & 16 \\
\hline 12484A & MPS DEDICATED DISPLAY DRIVE SEQ & 16 \\
\hline 12491 & OMS FIRE SEQ & 16 \\
\hline 12494 & OMS TO RCS GAGING & 16 \\
\hline 12495 & OMS TO OMS XFEED AND RECONFIGURATION & 16 \\
\hline 12496 & RCS & 16 \\
\hline 12497 & OMS/RCS CONNECT SEQ & 16 \\
\hline 12508 & HYDRAULICS & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 12510 & PEG TIME-TO-GO AND THRUST INTEGRAL & 16 \\
\hline 12523 & SRB SEPARATION INHIBIT & 16 \\
\hline 12586 & INTEGRATED SIGNAL INTERFACES & 18 \\
\hline 12639 & BACKUP SRB PWR ADDITIONS TO MEC & 16 \\
\hline 12644C & LAUNCH SEQ COMMAND CODE UPDATE & 16 \\
\hline 12658A & ASCENT DISPLAYS UPDT & 16 \\
\hline 12672C & JAN SEQ MODE TEAM MAKE WORK & 16 \\
\hline 12673A & REDUNDANT SET LAUNCH SEQ & 16 \\
\hline 12691A & MPS HELIUM REDESIGN & 16 \\
\hline 12699A & ADDITION OF FAST SEP MODE & 16 \\
\hline 12704B & RELOCATION OF MPS ACTUATOR PORT CH & 16 \\
\hline 12716A & MNVR EXEC DISPLAY REFORMAT & 18 \\
\hline 12722 & MANUAL OPEN VENT DOORS DURING ENTRY & 16 \\
\hline 12745 & DELETION OF OMS/OMS INTERCONNECT SEQ & 16 \\
\hline 12771A & PRINCIPAL FUNCTION DELETIONS & 18 \\
\hline 12826A & VENT DOOR CONTROL UPDATE & 16 \\
\hline 12836 & RCS RCS XFEED AND RECONFIGURATION & 16 \\
\hline 12868A & I-LOAD CHG TO REFLECT MODE TEAM & 16 \\
\hline 12881A & ABORT VENT DOOR & 16 \\
\hline 12896A & ET SEP SEQ CLEANUP & 16 \\
\hline 12897A & MPS DUMP SEQ LOX AND LH2 INLET PRESS & 16 \\
\hline 12901 & ORBIT OMS/RCS INTERCONNECT SEQ & 18 \\
\hline 12928A & SSME OPS SEQ & 16 \\
\hline 12938A & XXXXXX TRAJ IDD & 16 \\
\hline 12942A & MPS TVC ACTUATOR BYPASS/OVERRIDE & 16 \\
\hline 12977 & OMS FIRE SEQ CORRECTIONS & 18 \\
\hline 12981D & ON ORBIT FLIGHT CONTROL & 18 \\
\hline 12993 & I-LOAD FACI & 16 \\
\hline 12994 & I-LOADS OFT-1 FACI U/D & 16 \\
\hline 12997 & ET FAST SEP (MEC SOP IMPACTS) & 16 \\
\hline 19016 & SEQ INTERFACE CLEANUP & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 19039C & ASCENT/ENTRY STRUCTURAL PTI'S & 17 \\
\hline 19040 & MANEUV EXEC DOC CLEANUP & 16 \\
\hline 19048 & SRB TVC RST/OVRD SCHEDULING & 16 \\
\hline 19053A & SRB SEPARATION SEQ LASH UP & 16 \\
\hline 19060C & VENT DOOR SEQ & 16 \\
\hline 19061A & FAST SEP CHG TO GRTLS FSSR & 16 \\
\hline 19066B & CORRECT AND DEFINE MECO ACCURACY RQMT & 16 \\
\hline 19068A & MAIN ENGINE SHUT DOWN SWITCH RM & 17 \\
\hline 19081 & MPS DED DIS DRIVE SEQ MOD & 16 \\
\hline 19091B & O. OMS/RCS CONN FAULT.CHECKS & 16 \\
\hline 19092 & OMS FIRE SEQ COMMFAULT CHECKS & 18 \\
\hline 19097A & ADDITION TO M PAD (I-LOAD) & 16 \\
\hline 19100 & FSSR UPDATE & 16 \\
\hline 19103A & ABORT CONT SEQ MAKE WORK CHANGES (CONTINGENCY ABORT) & 16 \\
\hline 19107C & MM 102 3 ENGINE OUT MODING PREVENTION & 16 \\
\hline 19108A & OMS TO RCS GAGING CONSTANTS & 16 \\
\hline 19142A & BACKUP TO MECO CONFIRMED & 16 \\
\hline 19147 & ET SEP SEQ COMMFAULT PROCESSING & 16 \\
\hline 19148 & SSME SOP COMMFAULT PROCESSING & 16 \\
\hline 19149 & SSME OPS COMMFAULT PROCESSING & 16 \\
\hline 19163A & RSLS CLEANUP & 16 \\
\hline 19165 & RCS QTY MON (4.102) & 16 \\
\hline 19173 & RS LCH SEQ I-LOAD CHG & 16 \\
\hline 19176 & RTLS ABORT MPS DUMP TERM SOFTWARE & 16 \\
\hline 19208A & OMS/RCS ADDITIONS TO D/L & 16 \\
\hline 19222 & ET SEP SWITCH DEFAULT AND OVERRIDE POS & 16 \\
\hline 19224B & SSME OPS PREVALVE I-LOAD & 16 \\
\hline 19232 & R/S LAUNCH SEQUENCE ADDITIONS FOR FRF & 16 \\
\hline 19237 & FLT ACCEL SAFETY CUTOFF SYSTEM (FASCOS) & 16 \\
\hline 19238 & R/S LCH ACTUATOR PORT CHECKS MOD & 16 \\
\hline 19239 & FAST SEP FOR MM 601 & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 19240 & FAST SEP I-LOADS & 16 \\
\hline 19300 & FSSR UPDATE II & 16 \\
\hline 19358 & DELETE ET SEP IDD & 16 \\
\hline 19371A & FSSR SD 76-SH-0026A I-LOAD & 16 \\
\hline 19404A & VENT DOOR SEQ & 16 \\
\hline 19412 & SRB IGN DELAY I-LOAD & 16 \\
\hline 19416A & OMS/RCS I/C REPRESS FUNCTION MOD STS-2 & 18 \\
\hline 19420 & ET SEP DOC CHANGE & 16 \\
\hline 19440 & MPS FUEL DUMP LOGIC CORRECTION & 16 \\
\hline 19455 & MEASUREMENT ATTRIBUTE CORRECTIONS & 16 \\
\hline 19464 & INCORRECT BCH CODE & 16 \\
\hline 19475 & SSME SOP DOCUMENTATION CHG & 16 \\
\hline 19476 & R/S LCH SEQ CLARIFICATION & 16 \\
\hline 19496 & GPC CMD PRIORITY TO SSME & 16 \\
\hline 19500 & FSSR UPDATE 3 & 16 \\
\hline 19507 & VENT DOOR SEQ ON ORBIT/ENTRY I-LOAD & 16 \\
\hline 19532A & ET SRB SEQ/UMB RETRACT TIME-DELAY CHG & 16 \\
\hline 19533A & ADDITION OF "C" CMD TO LO2 AND LH2 FEEDLINE RELIEF S/O VALVE CLOSE COMMANDS & 16 \\
\hline 19534A & ADDITION OF "C" CMD TO LH2 RTLS MAN REPRESS OPEN CMDS MEC NON-CRITICAL COMM & 16 \\
\hline 19541 & MEC NON-CRITICAL COMMAND CONSTRAINTS & 16 \\
\hline 19553C & CREW OVERRIDE OF OMS TARGETS VIA ITEM ENTRY (STS-2) & 18 \\
\hline 19558 & SSME SOP FASCOS CHANGE & 17 \\
\hline 19598A & ATVC DEADFACE REQUIREMENTS IN SRB SEP SEQ & 16 \\
\hline 19623B & REMOVAL OF \(30 \%\) CHAMBER PRESSURE INTERLOCK ON PREVALVE CLOSE COMMANDS & 16 \\
\hline 19626 & I-LOAD CORRECTION & 16 \\
\hline 19632 & INCORRECT BCH CODE SPECIFIED FOR GPC TO EIU COMMAND WORDS & 16 \\
\hline 19651 & R/S LCH SEQ RECYCLE I-LOAD & 16 \\
\hline 19657 & OMS BURN AFTER RCS ROLL CONTROL & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 19659 & VENT DOOR SEQUENCE & 16 \\
\hline 19664 & ABORT CONTROL SEQ CONTINUATION OF INTACT OMS DUMP & 18 \\
\hline 19665 & ABORT CONTROL SEQ CONTINUATION OF INTACT OMS DUMP & 17 \\
\hline 19681A & SOFTWARE CHANGES TO ACCOMMODATE LO2 LOW LEVEL SENSOR RELOCATION & 16 \\
\hline 19686A & FRF I-LOAD & 16 \\
\hline 19698A & RCS QUANTITY MONITOR (STS-2 \& SUBS) & 17 \\
\hline 19713 & MAKE WORK CORRECTION CR 19280 AND CR 12899A & 16 \\
\hline 19736 & MAKE WORK LASHUP OF GRTLS DAP REQMTS TO CR 19239 (MM 601 FAST SEP) & 16 \\
\hline 19738A & RCS QUANTITY MONITOR SEQUENCE ALGORITHM CONSTANTS AND I-LOAD VALUES & 17 \\
\hline 19770A & ET SEP SEQ CHANGES FOR FAST SEP AFTER RTLS MECO & 16 \\
\hline 19800 & UPDATE OMS/RCS GAGING SCALE FACTOR & 19 \\
\hline 19823A & VENT DOOR SEQUENCE COMMANDS TERMINATION & 16 \\
\hline 19824A & ET UMBILICAL DOORS COMMAND ON CHANGE ONLY SEQUENCE TERMINATION & 16 \\
\hline 19827A & -Z MANEUVER INITIATION MODIFICATION & 16 \\
\hline 19836 & CLOSE OMS TK ISO VALVES FOR RTLS (OPS SINGLE POINT FAILURE) & 16 \\
\hline 19837A & AFT COMPT RTLS HELIUM PURGE & 16 \\
\hline 19844 & STS-1 RTLS PROPELLANT BURN TIME I-LOAD CHANGES & 16 \\
\hline 19853A & FAST SEP I-LOAD FOR ME LH2 PREVALVE & 16 \\
\hline 19857B & UPP I-LOAD REQ CHANGE AGREE WITH IMPLEMENTATION & 16 \\
\hline 19893A & SEQ FSSR I-LOAD SYMBOLIC NAME CHANGE & 16 \\
\hline 19900 & FSSR UPDATE NO. 5 & 16 \\
\hline 19922 & R/S LAUNCH SEQ 90\% CHECK I-LOAD CHANGE & 16 \\
\hline 19923 & MOD TO CR 19664 - ABORT SEQUENCE, STS-2 OMS FUEL QUANTITY COMMFAULT MONITORING & 18 \\
\hline 19946A & STS-1 VENT DOOR I-LOADS & 16 \\
\hline 19958A & ASCENT FLIGHT CONTROL DOCUMENTATION CLEAN UP & 16 \\
\hline 19964 & SSME COMMAND PATH FAILURE (STS-1) & 17 \\
\hline 19970 & DELETION OF KI-SCALE FACTOR 1 FLAG & 17 \\
\hline 19973 & OMS LEFT/RIGHT AND OMS/RCS VALVE MISCOMPARE RESET & 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 19998A & SSME STAGGER START & 16 \\
\hline 29022 & REDUCTION OF LOX RESIDUALS FOR ENGINE OUT LOW LEVEL SHUTDOWN & 17 \\
\hline 29025B & PRE-SRB IGNITION MONITORING OF FASCOS & 16 \\
\hline 29037 & RELOCATE LO2 LOW LEVEL SENSOR & 16 \\
\hline 29049 & FRF' I-LOAD CHANGES & 16 \\
\hline 29081 & VENT DOOR SEQUENCE, CORRECTION TO CR 19823A & 17 \\
\hline 29095 & SSME SOP COMMAND CHANGE & 16 \\
\hline 29099B & POST MECO RCS DUMP DURING RTLS & 18 \\
\hline 29106B & EIU 60 KBPS OUTPUT SWITCH & 16 \\
\hline 29119B & SRB SEQUENCE I-LOAD UPDATE & 16 \\
\hline 29142B & MPAD I-LOAD UPDATE NO. 4 FOR STS-1 CYCLE 3 & 16 \\
\hline 29154B & STS-1 RTLS-PROPELLANT BURN TIME I-LOAD CHANGE & 16 \\
\hline 29162A & I-LOAD CHANGES 'OWNER AUDIT' & 16 \\
\hline 29192 & VENT DOOR COMMAND STAGGER TIME FOR & 16 \\
\hline 29207 & MODIFICATION OF CR 19998A & 16 \\
\hline 29211 & SSME LIMIT CONTROL INHIBIT/ENABLE (STS-2) & 18 \\
\hline 29216 & OMS/RCS DOWNLIST REQUIREMENTS UPDATE & 16 \\
\hline 29323A & COMPUTER CG TRIM AND IGN PRESS & 16 \\
\hline 29328A & FAST SEP LW LVL SEN ARM 601 & 16 \\
\hline 29333B & I-LOAD CHANGES RESULTING FROM OWNERS AUDIT & 16 \\
\hline 29343 & RESET EVENT TIME START FLAG & 16 \\
\hline 29377 & VENT DOOR STATUS AND OVERRIDE WORDS & 16 \\
\hline 29378A & OMS VALVE MISCOMPARE MESSAGE CLEANUP & OI-4 \\
\hline 29405A & MPS PREVALVE OPER TO PRECLUDE POSSIBLE HARDWARE DAMAGE & 16 \\
\hline 29429 & MPS LH2 FEEDLINE PRESS RELIEF & 18 \\
\hline 29433 & RCS QUANTITY MONITOR UPDATE & 18 \\
\hline 29457 & SSME STAGGER START TOLERANCE & 16 \\
\hline 29471B & HFE OVERRUN DEFINITION & 16 \\
\hline 29480B & MEC SOP NON-CRITICAL CMDS INIT & 18 \\
\hline 29481 A & SSME CHAMBER PRESSURE & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 29503A & RTLS ET SEP & 16 \\
\hline 29548B & ENG TIMER FOR THRUST OK (I-LOAD) & 16 \\
\hline 29551B & I-LOAD SCRUB - SEQ & 19 \\
\hline 29552B & SRB IGN TIME DELAY & 18 \\
\hline 29562 & MPS TVC OVRD FOR PRE SRB FTS & 18 \\
\hline 29574A & LAUNCH SEQ ABORT LOGIC STS-1 & 16 \\
\hline 29582 & RTLS HELIUM PURGE I-LOAD & 16 \\
\hline 29597A & DELETE I-LOADS: ET SEP & 19 \\
\hline 29603A & SSME DOWNLIST DATA & 18 \\
\hline 29607A & MPS LH2 LOW LEVEL DELAYS & 19 \\
\hline 29619A & CALCULATION OF COUNTDOWN TIME & 16 \\
\hline 29664 & LATCH ME-X TVC SERVO OVRD CMD & 16 \\
\hline 29668A & CMD PATH FAIL & 16 \\
\hline 29675 & SSME STAGGER START TOL & 16 \\
\hline 29720 & FAST SEP/MM103/TWO SSME FAIL & 18 \\
\hline 29725 & AOA I-LOAD TITLE CORRECTION & 16 \\
\hline 29737A & AFT COMP/OMS POD AOA HELIUM PURGE & 16 \\
\hline 29749B & LPS COMMAND PROCESSING & 19 \\
\hline 29762A & ATT PROC IDD CLEAN UP & 16 \\
\hline 29775 & SELECTIVE INHIBIT OF SSME S/D FOR DATA FAIL & OI-4 \\
\hline 29783 & SRB SEP BACK-UP CUE TIME I-LOAD & 16 \\
\hline 29793 & ET UMBILICAL DOOR CLOSURE & 18 \\
\hline 29797C & LH2 DUMP VIA FILL/DRAIN VALVE & 16 \\
\hline 29800 & FSSR UPDATE 8 & 16 \\
\hline 29851 & DELETE CR 29211 C - SSME LIM CNTL & 18 \\
\hline 29855B & HPOTP OVERSPEED AT MECO & 16 \\
\hline 29870C & ADD GMTLO TO DOWNLIST & 19 \\
\hline 29872 & CLEAN-UP OF CR 29552B & 18 \\
\hline 29877B & MPS ENTRY HELIUM PURGE & 18 \\
\hline 29879 & TRANS DAP RATE AND ATT D/B I-LOAD & 16 \\
\hline 29880 & ET FAST SEP I-LOAD CHANGE & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 29883 & MPS LO2 LOW LVL CUTOFF DELAY & 16 \\
\hline 29891A & RTLS OMS PROP DUMP I-LOAD CHANGES & 16 \\
\hline 29943A & CRT TIME TO GO TO SRB IGN (SUPERSEDES 29421) & 19 \\
\hline 29970C & VENT DOOR PURGE COMMAND TERM & 18 \\
\hline 29987 & POST MECO RCS DUMP-RTLS & 18 \\
\hline 29996A & CORRECT CR 29720 - FAST SEP/MM103 & 18 \\
\hline 39000 & FSSR UPDATE 9 & 16 \\
\hline 39022 & LPS - RESUME COUNT COMMAND & 19 \\
\hline 39065A & LOX LOW LEVEL CUTOFF DELAY & 16 \\
\hline 39079 & LO2 PREVALVE MECO I/L CHANGE & 16 \\
\hline 39080 & FRF THROTTLE CMD & 16 \\
\hline 39091E & BACKUP MECO CONFIRMED & 18 \\
\hline 39103A & OMS RTLS PROP DUMP & 16 \\
\hline 39110A & ADD LO2 PREVALVE CLOSE CMDS & 19 \\
\hline 39137D & SSME FAIL MESSAGES & OI-2 \\
\hline 39220A & OMS RTLS PROP DUMP & 16 \\
\hline 39244A & MEC SOP ET TUMBLE & 18 \\
\hline 39253A & SSME CMD PATH FAIL CHECK & 18 \\
\hline 39261 & RTLS PURGE INITIATION & 19 \\
\hline 39265 & RCS QTY MONITOR DOCUMENTATION & 16 \\
\hline 39323A & STS-2 CYCLE 1 MPAD ABORT I/L & 18 \\
\hline 39326 & ET DOOR LATCH CMD RESET & 18 \\
\hline 39328B & DELETE FRF REQUIREMENTS & 18 \\
\hline 39358A & RCS QTY MONITOR UPDATE I/L & 18 \\
\hline 39370 & RCS QTY MONITOR UPDATE & 18 \\
\hline 39394 & MPS LO2 PREVALVE CMDS TO RSLS & OI-2 \\
\hline 39400 & FSSR UDATE NO. 10/R18 AND R19 & 18 \\
\hline 39401 & TRANSATLANTIC ABORT LANDING & 18 \\
\hline 39430 & LATCH MAIN ENGINE SAFING CMDS & OI-3 \\
\hline 39447C & SINGLE SSME OMS PRESS & 19 \\
\hline 39452D & LPS CONTROL-SRB RSC SAFE COND & 18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 39470A & SRB SEP SEQ AND MEC SOP DOC & 18 \\
\hline 39475A & DELETE MECO HE INJECTION CMDS & OI-6 \\
\hline 39477 & LAUNCH VENT DOOR SEQUENCE & 19 \\
\hline 39478 & OMS/RCS CONNECT PRIOR TO RRA & 18 \\
\hline 39492A & DELETE FASCOS LOGIC & OI-6 \\
\hline 39503 & SSME \& SB POSN-ABORTED LAUNCH & OI-4 \\
\hline 39520 & DELETE HE VLV CK-OMS FIRE SEQ & OI-4 \\
\hline 39530F & STS CYCLE 2 I-LOADS & 18 \\
\hline 39564 & THIRD LO2 LL CUTOFF TIMER & 18 \\
\hline 39575 & LO2 LOW LEVEL CUTOFF MOD & 18 \\
\hline 39579A & CLARIFY RCS/RCS XFEED AND RECON & 18 \\
\hline 39585 & STS-2 CYCLES 2 RTLS DUMP I/L & 18 \\
\hline 39612 & ELIM OF SRP-SEP-MODE FLAG & 19 \\
\hline 39614 & SRB STAGGER START CONSTANT & 19 \\
\hline 39624 & PREVENT EARLY GEAR DEPLOY & 18 \\
\hline 39630 & OMS DUMP TIME FOR UPDATED CG & 18 \\
\hline 39651 & TAL ABORT PRE MECO BURN & 18 \\
\hline 39681 A & FAST SEP IN MM 103/I-LOAD CHANGE & 18 \\
\hline 39694 & ORB OMS/RCS CONN REPRESS FLAG & OI-4 \\
\hline 39718A & SRB IGNTION/SEPARATION CMD & 18 \\
\hline 39721B & ENABLE GEAR DEPLOY AT 800 FPS & 18 \\
\hline 39732B & ABORT DOWNMODE IN MM 103 & 18 \\
\hline 39846 & RTLS OMS PROP DUMP DELAY & 18 \\
\hline 39848A & DELETE AUTO RECYCLE-SSME SOP & OI-4 \\
\hline 39850 & DECEMBER BASELINE & 18 \\
\hline 39851A & SRB TVC FDIR AT ME START & OI-4 \\
\hline 39863C & COUNTDOWN HOLD/ABORT IND & OI-4 \\
\hline 39877 & LH2 LL CUTOFF DOCUMENTATION & 19 \\
\hline 39964 & ABORT CONTROL OMS ON TIME & OI-3 \\
\hline 39965 & RTLS POST MECO \(4+\mathrm{X}\) CONTROL & 19 \\
\hline 39968A & LO2/LH2 DUMP TIME REDUCTION & 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 39977 & MECO DOCUMENTATION CLEANUP & 18 \\
\hline 59019A & HE ISO VLV OPEN CMD TERMINATE & OI-6 \\
\hline 59077 & PAD DATA PATH FAIL & OI-6 \\
\hline 59112B & ET UMB DOOR/RCS XFEED CNTL & OI-3 \\
\hline 59126 H & RCS XFEED MCA OPTIMIZATION & OI-8A \\
\hline 59216 & RTLS LO2 LOW LEVEL-SSME \(=104 \%\) & 19 \\
\hline 59217 C & VENT DOOR ENTRY CONFIG & OI-5 \\
\hline 59224 & DATA PATH FAIL FLAG CHECK & OI-2 \\
\hline 59273C & ABT CONT SEQ-SELECT INTERCNCT & OI-7 \\
\hline 59274 & LO2 BLEED VLVE CLOSE TIME I/L & 19 \\
\hline 59276 & MPS DUMP SW NOMENCLATURE & 19 \\
\hline 59329A & VENT DOOR CMD AND FDBK MONITOR & 19 \\
\hline 59335A & OV-099 RCS QTY MON UPDATE & OI-2 \\
\hline 59337 & RCS QTY MON I-LOADS UPDATE & 19 \\
\hline 59368 & VENT DOOR SEQUENCE COMMAND & OI-1 \\
\hline 59384 & SRB SEP TIME DELAY FOR ABORT & OI-6 \\
\hline 59397 & BIAS COMPUTATION RCS QTY MON & OI-6 \\
\hline 59414A & EVENT TIMES RESET AT MECO & OI-5 \\
\hline 59418 & POST MECO NZ RCS CONTROL & OI-4 \\
\hline 59432A & INHIBIT FDI FOR SSME TVC ACT & OI-6 \\
\hline 59442B & MEC REDESIGN & \(\mathrm{OI}-3\) \\
\hline 59470 & BYPASS LO2 OVBD BLEED VLV CK & OI-2 \\
\hline 59610 & PTM LO2 LOW LEVEL I/L & OI-2 \\
\hline 59631 & STS-9 CY 1 ASC ABORT I-LOADS & OI-2 \\
\hline 59654 & CORRECT CR 28378A-OMS VLV MSG & OI-4 \\
\hline 59689A & CORRECT CR 39863-D/L VENT DOOR & OI-4 \\
\hline 59722 & EVENT TIMER FLAG POST MECO & OI-5 \\
\hline 59753A & MEC REDESIGN MSID CHANGES & OI-3 \\
\hline 59754C & MCA OPTIMIZATION MSID CHANGES & OI-3 \\
\hline 59765 & LATCH RCS QTY DOWN ARROW & OI-6 \\
\hline 59824 & CLARIFY NZ LIMIT PROCESSING & OI-1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 59935 & DELETE FLAG FROM ET SEP SEQ & OI-2 \\
\hline 59957 & I-LOAD SCRUB: VENT DOOR & OI-7 \\
\hline 59973 & I-LOAD SCRUB: MPS & OI-7 \\
\hline 59996E & LO2 ECO SENSOR & OI-3 \\
\hline 69063 & SSME SOP CRIT PAIR EXCEPTION & \(\mathrm{OI}-2\) \\
\hline 69074 & SRB_SEP_ARM_BUFFER ASSIGNMENT & Ol-3 \\
\hline 69159A & CORRECT CR 59217C IN MM 304 & OI-5 \\
\hline 69177 & CR 59077 CLEANUP & OI-6 \\
\hline 69184A & MPS LOW LEVEL TIME DELAYS & Ol-3 \\
\hline 69220F & CENTAUR ABORT DUMP & OI-7C \\
\hline 69482A & DELETE PREVALVE ANTI-SLAM SW & OI-7 \\
\hline 69555A & TAL/RTLS WEATHER ALTERNATE & OI-7 \\
\hline 69600D & OMS GUIDANCE IMPROVEMENTS & OI-6 \\
\hline 69635B & CORRECT CR 59273C & OI-7 \\
\hline 69684B & ZFE CATEGORY CHANGE & OI-6 \\
\hline 69780B & DELAYS OV-102 UNIQUE RCS I/LS & OI-6 \\
\hline 69919 & LH2 DUMP FOR RTLS & OI-4 \\
\hline 69931B & STAGGERED SSME SHTDN PRIORITY (SUPERSEDED 69525) & OI-6 \\
\hline 69951 & DEL SRB PWR OFF AFTER SRB SEP & OI-4 \\
\hline 69995D & DUMP LOX/LH2 RESIDUALS & OI-7 \\
\hline 79010 & DUMP LO2 RESIDUALS & OI-5 \\
\hline 79028 & RCS QTY MON-DOC ONLY FIX & OI-4 \\
\hline 79067 & MODIFIED RTLS LO2 DUMP & OI-5 \\
\hline 79079B & MODIFIED OI-7 DUMP & OI-7 \\
\hline 79134E & OMS BURN IN MM 304 & OI-7C \\
\hline 79157 & S/W FIX FOR HYD BRAKE LOCKUP & OI-4 \\
\hline 79190D & OVERRIDE DISPLAY UPDATE & OI-7C \\
\hline 79209B & FWC SRB TIMING & OI-7 \\
\hline 79302 & CR \(69635 B\) CORRECTIONS & OI-7 \\
\hline 79304B & OPS 3 DUMP CLEAN UP & OI-7C \\
\hline 79335D & OMS/RCS OPS DOWNLIST CHGS & OI-8A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 79406A & OVERRIDE DISPLAY CLEAN UP & OI-7C \\
\hline 79465A & VENT DOOR SEQ SOFTWARE RQMTS (SUPERSEDED 79291) & OI-5 \\
\hline 79469 & DOCUMENTATION CLEANUP FOR CR 69995D & OL-7 \\
\hline 79497 & OMS BURNTIME BIAS/SF & OI-7C \\
\hline 79498 & OMS BURN TIME BIAS & OI-7 \\
\hline 79499 & FSSR UPDATE NO. 5 STS 83-0026A & OI-7 \\
\hline 79562 & CHECKSUM SOP SCRUB & OI-8A \\
\hline 79584 C & MPS DUMP SSME IN STOW POSN & OI-8A \\
\hline 79643A & OMS DUMP WITH 3 SSME'S FAILED & OI-8A \\
\hline 79701A & CONT ME SHUTDN CMD FOR PAD ABT & OI-7C \\
\hline 79721 & OMS BURN TIME BIAS FACTOR & OI-7C \\
\hline 79796 & OI-11 OMS/RCS TIMER FIX & OI-8A \\
\hline 79797A & OMS/RCS INTCT TIMER FIX & OI-7C \\
\hline 79928 & LASH-UP REQT'S FOR CR'S 59273C AND 69635B & OL-7 \\
\hline 79928 & AUTHORIZE SEQUENCER K-LOAD CHANGES & OI-8A \\
\hline 79931 & BASELINE PCR'S 56951 AND 56060A FOR OI-8A & OI-8A \\
\hline 79933F & VENT DOOR SEQ SCRUB CR & OI-8A \\
\hline 79935H & SRB RGA RECHANNELIZATION & OI-8A \\
\hline 79964F & RCS REG FAIL PROTECT SEQ & OI-8A \\
\hline 79969A & GSOVEN SCRUB & OI-8A \\
\hline 79971D & ABORT/INTERCONNECT FLAG FIX & OI-8A \\
\hline 79972 & INTERCONNECT TIMER FIX & OI-8A \\
\hline 79973 & PAD DATA PATH FAIL CRITERIA & OI-8A \\
\hline 79980 & I-LOAD UPDATE FOR 59126H & OI-8A \\
\hline 79987D & SRB SWQ-MDM FAILURES & OI-8A \\
\hline 79992B & STS 83-0026A LEVEL C FSSR SEQUENCING REQUIREMENT & OI-7C \\
\hline 79997A & INTCON MPS HELIUM PAD ABORT & OI-8A \\
\hline 89108A & ERRONEOUS ENG PHASE FLAG FIX & OI-8A \\
\hline 89140 E & CENTAUR REQUIREMENTS DELETION & OI-8A \\
\hline 89142B & NZ LIMIT FOR MM 304 OMS DUMP & OI-8A \\
\hline 89149B & OI-8A VERSION OF CR 79596C & OI-8A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CR No. & Title & Release \\
\hline 89150H & ABORT CONTROL SEQ SCRUB & 0I-8D \\
\hline 89154B & DUMP ITEM DISPLAY CLEANUP & OI-8A \\
\hline 89157A & SSME LIMIT EXCEEDANCE PAD ABORT & OI-8B \\
\hline 89165H & MPS FEED DISC LATCH LOGIC & OI-8B \\
\hline 89185A & ABT OMS/RCS INTRCNT MOD TRANS & Ol-8A \\
\hline 89193D & ABT CNTL SEQ/OVERRIDE LASHUP & OI-8A \\
\hline 89201A & MAIN ENG SHUTDOWN INDICATION & OI-8A \\
\hline 89210B & SMART INTERCONNECT & OI-8B \\
\hline 89229G & TERMINATE OMS DUMP POST MECO & OI-8C \\
\hline 89237 & OMS/RCS I/C DOC CHANGE & OI-8A \\
\hline 89238 & ZERO THRUST AUTO DUMP START & OI-8B \\
\hline 89239B & CLEANUP OF CR 89210B & OI-8B \\
\hline 89246A & CLEANUP FOR CR 79946F & OI-8A \\
\hline 89278A & LH2 PREVALVE TIMER FOR FAST SEP & OI-8B \\
\hline 89287A & SSME OPS SCRUB & OI-8A \\
\hline 89313 & CLOSE LH2 RECIRC DISC VLV FOR PAD ABORT & OI-8C \\
\hline 89320 & OMS/RCS I/C DOC CHANGE & OI-8B \\
\hline 89325B & LOW LVL SNSR MON SGL SNSR DIS & OI-8B \\
\hline 89348B & MM 103 FAST SEY CORRECTION & OI-8C \\
\hline 89349A & PREVLV CLOSURE FOR PAD ABORT & \(\mathrm{OI}-8 \mathrm{C}\) \\
\hline 89352C & AFT MANIFOLD JET INH RESET DELAY & OI-8B \\
\hline 89355C & SCRUB OUTBOARD FILL/DRAIN LCC FROM RSLS & OI-8D \\
\hline 89369B & PD 3 SAFING FOR INFLT SHUTDOWN & \(\mathrm{OH}-8 \mathrm{C}\) \\
\hline 89389B & SSME CONTINUOUS COMMANDS & OI-8C \\
\hline 89392 & RESTRUCTURE LOCAL DATA IN GSR & OI-8D \\
\hline 89399B & POST MECO LH2 VENT & OI-8C \\
\hline 89430 & OI-8C IMPLEMENTATION OF CR 89313B & OI-8C \\
\hline 89436A & LG HYD ISOL VLV OPEN CMD TIME & OI-8C \\
\hline 89451C & ADDITION OF SRB IEA MEASUREMENTS & OI-8B \\
\hline 89454A & DELETE 3RD HPFTT DISCHRG TEMP & OI-8B \\
\hline 89456A & FSSR 26 ERRATA/DOC CLEANUP & OI-8B \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ CR No. } & \multicolumn{1}{|c|}{ Title } & Release \\
\hline 89465 C & MPS LH2 DUMP RTLS CONTINGENCY & OI-8C \\
89479 & CONTINGENCY DUMP POST-MECO MANUAL START & OI-8C \\
89487 & ADDITION OF SRB IEA MEASUREMENTS & OI-8C \\
\(89505 B\) & MODIFY MPS MECO HELIUM INTERCONNECT & OI-8D \\
89561 A & RCS/RCS XFEED AFTER INCT RTN & OI-8B \\
89598 A & OI-8B SEQUENCING FSSR ERRATA & OI-8B \\
89705 & POST MECO OMS NZ TERMINATION CORRECTION & OI-8C \\
\(89809 B\) & CR 89505B CLEANUP & OI-8D \\
89810 & CORRECTION FOR 89150H & OI-8D \\
89819 & QD FAILURE PROTECTION FOR RSLS ABORT & OI-8B \\
89835 & PREVALVE CLOSE DELAY CHNGS STS 26 & OI-8B \\
89846 B & CR 89809B CLEANUP & OI-8D \\
89875 & CLEANUP TO CR 89819 & OI-8B \\
\(89956 A\) & ABORT CONTROL SEQ CORRECTIONS & OI-8D \\
89968 A & 25 MICROSECOND TIMING REQ FOR MEC & OI-8D \\
90054 A & ENTRY FCS ERRATA & OI-8D \\
90120 & UPD GUIDANCE DOWNMODE REQUIREMENTS & OI-8D \\
90188 & CHANGE ENGINE START TIME COMPUTATION & OI-8D \\
90277 A & ET SEP SEQUENCE CLEANUP & OI-8D \\
\hline
\end{tabular}

THIS PAGE INTENTIONALLY LEFT BLANK

\section*{TABLE OF CONTENTS}
Section Page
1.0 INTRODUCTION ..... 1-1
1.1 PURPOSE ..... \(1-1\)
1.2 SCOPE ..... 1-1
1.3 ORGANIZATION ..... 1-1
2.0 APPLICABLE DOCUMENTS ..... 2-1
2.1 LEVEL A DOCUMENTS ..... 2-1
2.2 LEVEL B DOCUMENTS ..... 2-1
2.3 LEVEL C DOCUMENTS ..... 2-1
2.4 INTERFACE CONTROL DOCUMENTS ..... 2-2
3.0 OVERVIEW ..... 3-1
3.1 DEFINITION ..... 3-1
3.2 DOCUMENT DESCRIPTION ..... 3-1
3.2.1 Introduction ..... 3-1
3.2.2 Overview ..... 3-1
3.2.3 Detailed Requirements ..... 3-1
3.2.4 Logic Flow Diagrams ..... 3-1
3.2.5 Parameter Tables ..... 3-1
3.3 TIMING ..... 3-3
3.4 DOCUMENTED REQUIREMENTS PRECEDENCE ..... 3-4
4.0 DETAIL LEVEL REQUIREMENTS ..... 4-1
4.1 PRELAUNCH ..... 4-1
4.1.1 Redundant Set Launch Sequence (4.114) ..... 4-1
4.1.2 MPS Dedicated Drive Sequence (4.222) ..... 4-63
4.1.3 SRB MDM Data Acquisition (4.203) ..... 4-83
4.2 ASCENT ..... 4-95
4.2.1 SSME Operations Sequence (4.165) ..... 4-95

\section*{TABLE OF CONTENTS (Continued)}
Section


\section*{ILLUSTRATIONS}
Figure Page
4.114 Redundant Set Launch Sequence (Sheet 1 of 13) ..... 4-38
4.222 MPS D/D Drive Sequence (Sheet 1 of 6) ..... 4-70
4.165 SSME Operations Sequence (Sheet 1 of 11) ..... 4-121
4.115 SRB SEP SEQ (Sheet 1 of 2) ..... 4-145
4.116 External Tank Separation Sequence Logic Flow Diagram (Sheet 1 of 8 ) ..... 4-166
4.70 MPS Dump Sequence (1 of 5) ..... 4-194
4.192 Abort Control Sequence (Sheet 1 of 7) ..... 4-2264.1844.1614.2154.185
4.102
4.1894. 212
Abort OMS/RCS Interconnect Sequence (Sheet 1 of 7) ..... 4-259
Vent Door Sequence (Sheet 1 of 7) ..... 4-290
Hydraulic Systems Landing Gear Isolation Valve Control Logic (Sheet 1 of 2)4-314
RCS/RCS XFEED (Sheet 1 of 5) ..... 4-333
RCS Qty Mon (Sheet 1 of 2 ) ..... 4-357
RCS He Regulator Failure Protection Sequence (Sheet 1 of 3) ..... 4-376
. 212 Orbit OMS/RCS Connect (Sheet 1 of 2) ..... 4-391
4.182 OMS Fire Sequence (Sheet 1 of 2) ..... 4-405
4.101 OMS to RCS Gaging ..... 4-416
4.8.1-1 MEC SOP Functional Block Diagram ..... 4-424
4.181 .1 SSME SOP Functional Block Diagram ..... 4-462

\section*{THIS PAGE INTENTIONALLY LEFT BLANK}

\section*{TABLES}
Table Page
4.1-1 Orbiter Vent Doors Status Word - V90J8201 ..... 4-21
4.1-2 LPS Orbiter Vent Doors Override Word -V99J8836C ..... 4-22
4.1.1.4-1 REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-51
4.1.1.4-2 REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) I-LOADS ..... 4-58
4.1.1.4-3 REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) K-LOADS ..... 4-60
4.1.1.4-4 REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) CONSTANTS ..... 4-61
4.1.2.4-1 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVE SEQ (G4.222) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-77
4.1.24-2 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) I-LOADS ..... 4-79
4.1.2.4-3 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) K-LOADS ..... \(4-80\)
4.1.2.4-4 MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) CONSTANTS ..... 4-81
4.1.3.4-1 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-85
4.1.3.4-2 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) I-LOADS ..... 4-92
4.1.3.4-3 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) K-LOADS ..... 4-93
4.1.3.4-4 SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) CONSTANTS ..... 4-94
4.2.14-1 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-133
4.2.1.4-2 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) I-LOADS ..... 4-138
4.2.1.4-3 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) K-LOADS ..... 4-139

\section*{TABLES (Continued)}
Table Page
4.2.1.4-4 SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) CONSTANTS ..... 4-140
4.2.2.4-1 SOLID ROCKET BOOSTER(SRB) SEP SEQUENCER (G4.115) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-147
4.2.2.4-2 SOLID ROCKET BOOSTER SEP (SRB) SEQUENCER (G4.115) I-LOADS ..... 4-149
4.2.2.4-3 SOLID ROCKET BOOSTER SEP (SRB) SEQUENCER (G4.115) K-LOADS ..... 4-150
4.2.2.4-4 SOLID ROCKET BOOSTER SEP (SRB) SEQUENCER (G4.115) CONSTANTS ..... 4-151
4.2.3.4-1 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-175
4.2.3.4-2 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) I-LOADS ..... 4-180
4.2.3.4-3 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) K-LOADS ..... 4-181
4.2.3.4-4 EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) CONSTANTS ..... 4-182
4.2.4.4-1 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-199
4.2.4.4-2 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) I-LOADS ..... 4-203
4.2.4.4-3 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) K-LOADS ..... 4-204
4.2.4.4-4 MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) CONSTANTS ..... 4-205
4.3.1.4-1 ABORT CONTROL SEQUENCER (G4.192) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-233
4.3.1.4-2 ABORT CONTROL SEQUENCER (G4.192) I-LOADS ..... 4-236
4.3.1.4-3 ABORT CONTROL SEQUENCER (G4.192) K-LOADS ..... 4-237
4.3.1.4-4 ABORT CONTROL SEQUENCER (G4.192) CONSTANTS ..... 4-238
4.3.2.4-1 ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) INPUT/OUTPUT FUNCTIONAL PARAMETERS ..... 4-267

\section*{TABLES (Continued)}
\begin{tabular}{|c|c|c|}
\hline Table & , & Page \\
\hline 4.3.2.4-2 & ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) L-LOADS & 4-272 \\
\hline 4.3.2.4-3 & ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) K-LOADS & 4-273 \\
\hline 4.3.2.4.4 & ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) CONSTANTS & 4-274 \\
\hline 44-1 & Vent Group Close Commands & 4-284 \\
\hline 4.4-2 & Vent Group Open Commands & 4-286 \\
\hline 4.43 & Vent Group Purge Configuration Commands & 4-287 \\
\hline 4.44 & Vent Group Close Measurements & 4-288 \\
\hline \(4.4-5\) & Vent Group Open Measurements & 4-289 \\
\hline 4.4.1.4-1 & VENT DOOR CONTROL SEQUENCER (G4.161) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-297 \\
\hline 4.4.1.4-2 & VENT DOOR CONTROL SEQUENCER (G4.161) I-LOADS & 4-304 \\
\hline 4.4.1.4-3 & VENT DOOR CONTROL SEQUENCER (G4.161) K-LOADS & 4-305 \\
\hline 4.4.1.4-4 & VENT DOOR CONTROL SEQUENCER (G4.161) CONSTANTS & 4-306 \\
\hline 4.5.1.4-1 & HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-317 \\
\hline 4.5.1.4-2 & HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) I-LOADS & 4-319 \\
\hline 4.5.1.4-3 & HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) K-LOADS & 4-320 \\
\hline 4.5.1.4.4 & HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) CONSTANTS & 4-321 \\
\hline \(4.0 .1 .4-1\) & RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-339 \\
\hline 4.6.1.4-2 & RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) I-LOADS & 4-342 \\
\hline 4.6.1.4-3 & RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) K-LOADS & 4-343 \\
\hline 4.6.1.4.4 & RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) CONSTANTS & 4-344 \\
\hline 4.6.3-1 & RCS Propellant Transducer Limits & 4-352 \\
\hline
\end{tabular}

\section*{TABLES (Continued)}
\begin{tabular}{|c|c|c|}
\hline Table & & Page \\
\hline 4.6.3-2 & Forward RCS Propellant Quantity Primary/Substitute Parameters & 4-353 \\
\hline 4.6.3-3 & Aft Left RCS Propellant Quantity Primary/Substitute Parameters & 4-353 \\
\hline 4.6.3-4 & Aft Right RCS Propellant Quantity Primary/Substitute Parameters & 4-354 \\
\hline 4.6.3-5 & RCS Propellant Quantity Constants & 4-355 \\
\hline 4.6.3-6 & RCS Propellant Quantity I-Loads & 4-356 \\
\hline 4.6.3.4-1 & RCS QUANTITY MONITOR (G4.102) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-359 \\
\hline 4.6.3.4-2 & RCS QUANTITY MONITOR (G4.102) I-LOADS & 4-362 \\
\hline 4.6.3.4-3 & RCS QUANTITY MONITOR (G4.102) K-LOADS & 4-363 \\
\hline 4.6.3.4-4 & RCS QUANTITY MONITOR (G4.102) CONSTANTS & 4-364 \\
\hline 4.6.4.4-1 & RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) INPUT/OUTPUT FUNCTIONAL PARAMETERS . & 4-379 \\
\hline 4.6.4.4-2 & RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) I-LOADS & 4-381 \\
\hline 4.6.4.4-3 & RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) K-LOADS & 4-382 \\
\hline 4.6.4.4-4 & RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) CONSTANTS & 4-383 \\
\hline 4.7.2.4-1 & ORBIT OMS/RCS INTERCONNECT (G4.212) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-393 \\
\hline 4.7.2.4-2 & ORBIT OMS/RCS INTERCONNECT (G4.212) I-LOADS & 4-397 \\
\hline 4.7.2.4-3 & ORBIT OMS/RCS INTERCONNECT (G4.212) K-LOADS & 4-398 \\
\hline 4.7.2.4-4 & ORBIT OMS/RCS INTERCONNECT (G4.212) CONSTANTS & 4-399 \\
\hline 4.7.6.4-1 & OMS FIRE SEQUENCER (G4.182) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-407 \\
\hline 4.7.6.4-2 & OMS FIRING SEQUENCER (G4.182) I-LOADS & 4-409 \\
\hline 4.7.6.4-3 & OMS FIRING SEQUENCER (G4.182) K-LOADS & 4-410 \\
\hline 4.7.6.4-4 & OMS FIRING SEQUENCER (G4.182) CONSTANTS & 4-411 \\
\hline
\end{tabular}

\section*{TABLES (Continued)}
\begin{tabular}{|c|c|c|}
\hline Table & & Page \\
\hline 4.7.9.4-1 & OMS TO RCS QTY GAUGING (G4.101) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-417 \\
\hline 4.7.9.4-2 & OMS TO RCS QTY GAUGING (G4.101) I-LOADS & 4-419 \\
\hline 4.7.9.4-3 & OMS TO RCS QTY GAUGING (G4.101) K-LOADS & 4-420 \\
\hline 4.7.9.4-4 & OMS TO RCS QTY GAUGING (G4.101) CONSTANTS & 4-421 \\
\hline 4.8.1-1 & MEC Critical Command Processing & 4-425 \\
\hline 4.8.1-2 & MEC Noncritical Command Processing & 4-428 \\
\hline 4.8.1-3 & MEC SOP Input Parameters & 4-431 \\
\hline 4.8.1-4 & MEC SOP Output Parameters & 4-434 \\
\hline 4.8.1-5 & MEC SOP Output Requirements & 4-437 \\
\hline 4.8.1.4-1 & MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-439 \\
\hline 4.8.1.4-2 & MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) I-LOADS & 4-442 \\
\hline 4.8.1.4-3 & MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) K-LOADS & 4-443 \\
\hline 4.8.1.4-4 & MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) CONSTANTS & 4-444 \\
\hline 4.8.2-1 & SSME SOP Command Processing & 4-446 \\
\hline 4.8.2-2 & GPC Engine Status Word & 4-453 \\
\hline 4.8.2-3 & Phase Mode Processing & 4-461 \\
\hline 4.8.2.4-1 & SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) INPUT/OUTPUT FUNCTIONAL PARAMETERS & 4-463 \\
\hline 4.8.2.4-2 & SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) I-LOADS & 4-471 \\
\hline 48.2.4-3 & SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) K-LOADS & 4-472 \\
\hline 4.8.2.4.4 & SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) CONSTANTS & 4-473 \\
\hline
\end{tabular}

\subsection*{1.0 INTRODUCTION}

\subsection*{1.1 PURPOSE}

The purpose of this document is to specify the requirement details and formulations of Sequence Level B functional requirements for orbiter GN\&C flight software.

\subsection*{1.2 SCOPE}

This document contains requirement details and formulations for sequencing functions that are operative during operational flight. The sequences described in this document are processed by the redundant computer set. They can be classified into the following two categories:
1. Mission events that are nonrepeating, but predictable occurrences and require software to initiate and/or control the subsystem hardware functions. The requirement to use software for this process can be the result of time- or mission-critical events, hardware mechanization complexity, or effective reduction of the crew's workload.
2. Special computations, such as consumables monitoring (quantity gaging).

\subsection*{1.3 ORGANIZATION}

This document is organized into the following sections:
1. Introduction
2. Applicable Documents
3. Overview
4. Detail Level Requirements

Section 1 defines the purpose, scope, and organization of this document. Section 2 lists applicable documents. Section 3 describes the contents of Section 4 . Section 4 specifies the requirement details for each sequence, and includes the associated input/output functional parameters (IDD), I-loads, K-loads, and constants.

\section*{THIS PAGE INTENTIONALLY LEFT BLANK}

\subsection*{2.0 APPLICABLE DOCUMENTS}

\subsection*{2.1 LEVEL A DOCUMENTS}

\author{
SS-P-0002-140 Shuttle Downlist/Uplink Software Requirements \\ SS-P-0002-150 Shuttle Launch Data Bus Software Interface Requirements \\ SS-P-0002-170 Shuttle Systems Level Requirements, Software
}

\subsection*{2.2 LEVEL B DOCUMENTS}
\begin{tabular}{ll} 
SS-P-0002-510 & Shuttle Functional Level Requirements, GN\&C \\
SS-P-0002-550 & Shuttle Functional Level Requirements, Vehicle Utility -02 \\
SS-P-0002-580 & Shuttle Functional Level Requirements, System Management
\end{tabular}

\subsection*{2.3 LEVEL C DOCUMENTS}

STS 83-0001 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part A, Entry Through Landing Guidance

STS 83-0002 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part A, Guidance Ascent/RTLS

STS 83-0003 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part A, Guidance On-Orbit/Deorbit

STS 83-0004 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part B, Entry Through Landing Navigation

STS 83-0005 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part B, Navigation Ascent/RTLS

STS 83-0006 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part B, On-Orbit Navigation

STS 83-0007 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part C, Flight Control Entry GRTLS

STS 83-0008 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part C, Flight Control Volume 1, Ascent Flight Phase, Volume 2, Ascent

STS 83-0009 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part C, Flight Control Orbit DAP

STS 83-0010 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part D, Redundancy Management

STS 83-0013 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Inertial Measurement Unit Subsystem Operating Program

STS 83-0014 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Volume 1, Navigation Aids Subsystem Operating Program, Volume 2, Star Tracker Subsystem Operating Program

STS 83-0015 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Subsystem Operating Programs, FC Sensor/Controller

STS 83-0016 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Part E, Subsystem Operating Programs, FC Effector

STS 87-0017 Operational Flight Level C, Functional Subsystem Software Requirements; Remote Manipulator System

STS 83-0020 Operational Flight Level C, Functional Subsystem Software Requirements; Displays and Controls

STS 83-0026 Operational Flight Level C, Functional Subsystem Software Requirements; Guidance, Navigation, and Control, Sequencing

JSC-19350 Shuttle Flight Software Initialization Load

JSC-19478 Payload Management, Level C Flight Software Requirements
JSC-19590 Systems Management, Level C Flight Software Requirements

\subsection*{2.4 INTERFACE CONTROL DOCUMENTS}

ICD 3-1011-02 GPC/DEU ICD
ICD 3-0068-03 PASS/BFS ICD
In the event of a conflict between the documents referenced herein and the contents of this specification, the precedence shall be determined as defined in paragraph 1.3 of CPDS SS-P-0002-170, Volume 1 , System Level Requirements, Software.

\subsection*{3.0 OVERVIEW}

\subsection*{3.1 DEFINITION}

Subsystem sequencing is defined to be application processing in the avionics GPC's that is not a standard or self-contained portion of GN\&C or SM application programs. Examples: IMU sequencing is a standard portion of GN\&C; fault detection and annunciation (FDA) is a standard portion of SM; master timing unit (MTU) time management is contained in system software and, therefore, is not an application program. None of the examples is included in subsystem sequencing. Subsystem sequences are detailed in Section 4.

\subsection*{3.2 DOCUMENT DESCRIPTION}

The detailed requirements described in Section 4 are organized according to subsystem disciplines; however, certain large sequences, e.g., launch, do not lend themselves to an individual subsystem approach and are defined as integrated sequences.

Each sequence contains the following five elements:
1. Introduction
2. Overview
3. Detailed requirements
4. Logic flow diagrams
5. Parameter tables

\subsection*{3.2.1 Introduction}

This paragraph (4.X.X.1) contains a brief description of the sequence, when it is used, and how it interfaces with the crew, subsystem, and/or integrated mission event or events.

\subsection*{3.2.2 Overview}

This paragraph (4.X.X.2) scopes the software requirements for the sequence. It expands the introduction to state when and how the sequence is initiated, how the sequence is controlled, and how it interfaces with the subsystem and mission events.

\subsection*{3.2.3 Detailed Requirements}

This paragraph (4.X.X.3) contains the detailed step-by-step requirements for each principal function.

\subsection*{3.2.4 Logic Flow Diagrams}

The logic diagrams show the logic flow of each principal function and are included for information only.

\subsection*{32.5 Parameter Tables}

This section contains the following tables:
Input/output functional parameters (4.X.X.4-1)

This tabie contains a list of all input parameters from the GN\&C Interface Definition Document (IDD) for each principal function. The table, in alphabetical order by FSSR parameter name, contains the following:
\begin{tabular}{|c|c|}
\hline FSSR Name & - Parameter name as defined by the source principal function \\
\hline MSID & - As defined by the Shuttle Data Integration Plan (SDIP)/measurement and stimulus system \\
\hline Nomenclature & - As provided by the principal function owner \\
\hline Source/Destination & - Source of input function, destination of output function \\
\hline Units & - The units of the parameter \\
\hline Data Type & - Designation of parameter as bit string, discrete, floating, or integer \\
\hline Precision & - Designation of parameter as single or double precision \\
\hline Last CR(s) & - Lists last of CR Number(s) \\
\hline
\end{tabular}

\section*{Signal Interfaces}

The automated IDD tables provided herein define signal (parameter) interface requirements either between hardware (LRU) and software elements or between software elements and other software elements \({ }^{1}\). In the event of a conflict between the IDD tables and other internal text input/output tables, the SASCB data base controlled IDD tables take precedence.
***NOTE***
IDD output (destination) tables that reflect parameters going to "TLM" shall not be interpreted as a signal actually being downlisted. The parameter may only be available for downlist in COMPOOL and may not appear in a downlist format.
\({ }^{1}\) A GN\&C software element is either a sequenced principal function (PF), crew generated specialist/ display function, or an operations display functions.

\section*{I-Load Table (4.X.X.4-2)}

This table contains a list of all I-load parameters from JSC-19350, STS Flight Software Initialization Load, for each principal function. The table, in alphabetical order by FSSR name, contains the following:

FSSR Name - As defined by the source principal function
MSID - As defined by the Shuttle Data Integration Plan (SDIP)/measurement and stimulus system
Units - The units of the parameter
Data Type - Bit string, discrete, floating, or integer parameter
Precision -- Single or double-precision parameter
Dependency - Design, mission, or LRU dependent I-load
Software - Common, PASS, BFS, primary driver, or converted parameter
PR FCTN - Principal Function
Category - Occurance of I-load values

\section*{K-Load Table (4.X.X.4-3)}

This table contains a list of all K -load parameters for each principal function. The table is in alphabetical order by FSSR name. The table contains the following:
\begin{tabular}{|c|c|}
\hline FSSR Name & - As defined by the source principal function \\
\hline MSID & - As defined by the Shuttle Data Integration Plan (SDIP)/measurement and stimulus system \\
\hline Value & - The value of the K-load \\
\hline Units & - The units of the parameter \\
\hline Data Type & - Bit string, discrete, floating, or integer parameter \\
\hline Precision & - Single or double-precision parameter \\
\hline Software & - Common, PASS, BFS, primary driver, or converted parameter \\
\hline PR FCTN & - Principal Function \\
\hline Last CR & - The last CR against each load \\
\hline EQTN MSID & - Derived Equation \\
\hline
\end{tabular}

\section*{Constants (4.X.X.4-4)}

This table contains a list of all constants for each principal function. The table is in alphabetical order by FSSR name. The table contains the following:
\begin{tabular}{|c|c|}
\hline FSSR Name & - As defined by the source principal function \\
\hline MSID & - As defined by the Shuttle Data Integration Plan(SDIP)/measurement and stimulus system \\
\hline Value & - The value of the K-load \\
\hline Units & - The units of the parameter \\
\hline Data Type & - Bit string, discrete, floating, or integer parameter \\
\hline Precision & - Single or double-precision parameter \\
\hline Software & -- Common, PASS, BFS, primary driver, or converted parameter \\
\hline PR FCTN & - Principal Function \\
\hline Last CR & - The last CR against each load \\
\hline
\end{tabular}

\subsection*{3.3 TIMING}

Timing in this document is related to error free processing conditions. See Level A CPDS SS-P-0002-170 paragraph 4.4.2A for timing related to error processing conditions.

\subsection*{3.4 DOCUMENTED REQUIREMENTS PRECEDENCE}

Requirements precedence in this document shall be as follows:
1. If there is a conflict between the data in the function subtables and the standard principal function tables, the principal function tables shall have precedence.
2. If there is a conflict between the data in the flow diagrams and the written requirements, the written requirements shall have precedence.

\subsection*{4.0 DETAIL LEVEL REQUIREMENTS}

\subsection*{4.1 PRELAUNCH}

\subsection*{4.1.1 Redundant Set Launch Sequence (4.114)}

\subsection*{4.1.1.1 Introduction}

The redundant set (RS) launch sequence is used during the launch countdown in conjunction with the launch processing system (LPS) to perform the on-board automatic functions required in the last 28 seconds before SRB ignition. In addition, the RS launch sequence controls the on-board countdown clock from flight software initiation at the transition to OPS 1 until SRB ignition. The ability is also provided to call countdown holds; accept "hold" requests from LPS; and accept "resume count" or "recycle" commands from LPS. The SSME ignition commands are issued; and, after the required thrust level is reached and the required time delay has elapsed, the SRB's are ignited. Failure of the SSME's to reach the required thrust level will result in an inhibit of SRB ignition and a controlled SSME shutdown. The RS launch sequence terminates immediately after issuing SRB ignition and related commands.

\subsection*{4.1.1.2 Overview}

The launch countdown is controlled by the LPS until 28 seconds before launch, at which time the onboard automatic RS launch sequence is enabled by LPS command. From this point, the on-board computer will perform functions by the on-board clock, but will honor "hold," "resume count," and "recycle" commands from LPS within the constraints of the auto recycle time.

The RS launch sequence sets flags to command the arming of the SRB ignition and hold-down release system PIC's and the T0 umbilical release PIC's. After a time delay, the SRB ignition PIC voltages are monitored for acceptable levels. The hold-down release system PIC's and the T0 umbilical release system PIC's are monitored by the LPS. The RS launch sequence logic provides for initiating a countdown "hold" if the SRB ignition PIC voltages fall below an acceptable level at any time prior to issuance of the SSME start commands. After the SSME start commands are issued, if the SRB ignition PIC voltages are not acceptable, the SSME's are shut down.

The RS launch sequence also controls certain critical main propulsion system valves and monitors the engine ready indications from the SSME's. After the main engine start commands are issued, the sequence monitors the thrust buildup of each engine; and unless all engines reach the required level within the required time, an orderly shutdown is commanded, and safing functions are initiated.

Normal thrust buildup to the required level will result in the SSME's being commanded to the lift-off position, the SRB ignition and hold-down release commands being issued, termination of LPS polling, reset of the master timing unit, commanding of T0 umbilical release, and start of the event timer.

\subsection*{4.1.1.3 Detailed Requirements}

Step A - LPS Processing. This step addresses the LPS processing that is performed every minor cycle by the RS Launch Sequencer. It ensures that the LPS GMTLO, RECYCLE, and RESUME commands are accepted only during countdown holds.

Monitor the following:
(a) LPS Countdown Hold Flag V99X8829X
(b) RS Countdown Hold Flag V90X8667X
(c) GMTLO Set Command V99X8827X

If (a) and (b) are false, do not accept (1), (2), or (3).
If (a) or (b) is true and (c) has not been accepted since it last became true, do not accept (3).
\begin{tabular}{lll} 
(1) & GMTLO SET COMMAND & V99X8827X \\
(2) RECYCLE COUNT CMD FLAG & V99X8830X \\
(3) RESUME COUNT COMMAND FLAG & V99X8828X
\end{tabular}

Proceed to Step 1.
Step 1 - First Pass Check. This step provides a means of deactivating the FDI for MPS TVC CMD SOP and initializing the countdown clock on the first pass through the logic. The sequence is first called with OPS 101 PRO at T0-20 minutes in the count. The GMT of lift-off (GMTLO) is defined by the GMTLO_SET_COMMAND from LPS.

On the first pass through the logic issue (1) and (2) below, proceed to Step 9.
(1) RS COUNTDOWN HOLD FLAG
V90X8667X
(2) MPS TVC SERVO OVRD CMD
V90X8374X

On subsequent passes, if the countdown clock is being incremented, proceed to Step 1A, otherwise proceed to Step 9 .

Step 1A - Termination of MEC Command Flags. This step provides for the termination of MEC commands, the issuance of the MEC master reset command, and the termination of the RS launch sequence.

Monitor the following:
(a) TO UMB RELEASED FLAG
(INTERNAL)
If \((\mathrm{a})=\) false, proceed to Step 1B.
If \((a)=\) true, terminate the following outputs:
\begin{tabular}{lll} 
(1) & TO UMB RELEASE FIRE 1 FLAG & V90X8408X \\
(2) & T0 UMB RELEASE FIRE 2/3 FLAG & V90X8698X \\
(3) & SRM IGN ARM FLAG & V90X8404X \\
(4) & T0 UMB RELEASE ARM FLAG & V90X8407X \\
(5) & EVENT TIMER START FLAG & V90X8403X
\end{tabular}
and issue the following output:
(6) MEC 1 AND 2 MASTER RESET FLAG

V90X8258X
and then terminate the RS launch sequence.

Step 1B - Initiation of T0 Umbilical Release. This step provides for the issuance of the T0 umbilical release fire 1 and fire \(2 / 3\) commands on the next pass through the logic after the SRB ignition commands are sent.

Monitor the following:
(a) SRB IGNITION CMD FLAG

V90X8377X
If \((a)=\) false, proceed to Step 1C.
If \((a)=\) true, terminate the following outputs:
\(\begin{array}{lll}\text { (1) SRM IGN FIRE } 1 \text { FLAG } & \text { V90X8405X } \\ \text { (2) SRM IGN FIRE 2/3 FLAG } & \text { V90X8699X }\end{array}\)
and issue the following outputs:
(3) T0 UMB RELEASE FIRE 1 FLAG V90X8408X
(4) T0 UMB RELEASE FIRE 2/3 FLAG V90X8698X
(5) T0 UMBILICAL RELEASED FLAG (INTERNAL)
and then return to Step A.
Step 1C - Launch Sequence Abort Check. This step monitors the LAUNCH SEQUENCE ABORT FLAG, which is set, by (1) any engine failing to achieve the required percent chamber pressure within the required number of seconds after the start commands are issued, (2) any engine going into auto shutdown, (3) loss of data path or command path to any engine, (4) hydraulic or electronic lockup of any engine, or (5) an LPS countdown hold flag being set prior to issuance of SRB ignition commands. If the LAUNCH SEQUENCE ABORT FLAG is set, this step terminates the SRB ignition and T0 umbilical PIC arming flags and invokes the engine shutdown logic.

Monitor the following:
(a) LAUNCH SEQUENCE ABORT FLAG

V90X8382X
If \((a)=\) true, terminate the following:
(1) SRM IGN ARM FLAG V90X8404X
(2) TO UMB RELEASE ARM FLAG V90X8407X
issue the following one time only
(3) MEC 1 AND 2 MASTER RESET FLAG

V90X8258X
and terminate the following output:
(4) MPS-LH2 RECIRC DISC VALVE OPEN CMD

V41K1421X
and issue the following output:
(5) MPS-LH2 RECIRC DISC VALVE CLOSE CMD

V41K1422X
then proceed to Step 1D.
If \((\mathrm{a})=\) false, proceed to Step 2.

Step 1D - Main Engine 1 Shutdown. This step controls pad abort helium interconnect and shutdown command toggling for ME-1.

Monitor the following:
(a) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(b) MPS E-1 SHUTDOWN ENABLE CMD

V90X8367X
If (a) is false, proceed to Step 1E.
If (a) is true, issue output (1) and monitor (b).
If (b) is false, issue output (2), terminate output (3), and proceed to Step 1E.
If (b) is true, issue output (3), terminate output (2), and proceed to Step 1E.
(1) MPS E1 HE INTCON OUT/OPEN CMD A V41K1168X
(2) MPS E-1 SHUTDOWN ENABLE CMD V90X8367X
(3) MPS E-1 SHUTDOWN CMD V90X8370X

Step 1E - Main Engine 2 Shutdown. This step controls pad abort helium interconnect and shutdown command toggling for ME-2.

Monitor the following:
(a) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(b) MPS E-2 SHUTDOWN ENABLE CMD

If (a) is false, proceed to Step 1F.
If (a) is true, issue outputs (1) through (3) and monitor (b).
If (b) is false, issue output (4), terminate output (5), and proceed to Step 1F.
If (b) is true, issue output (5), terminate output (4), and proceed to Step 1F.
(1) MPS E2 HE INTCON IN/OPEN CMD A

V41K1262X
(2) MPS E2 HE INTCON IN/OPEN CMD B

V41K1263X
(3) MPS PNEU CROSSOVER NO. 2 OPEN CMD

V41K1613X
(4) MPS E-2 SHUTDOWN ENABLE CMD

V90X8368X
(5) MPS E-2 SHUTDOWN CMD

V90X8371X
Step 1F - Main Engine 3 Shutdown. This step controls pad abort helium interconnect and shutdown command toggling for ME-3.

Monitor the following:
(a) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(b) MPS E-3 SHUTDOWN ENABLE CMD

If (a) is false, proceed to Step 1G.

If (a) is true, issue output (1) and monitor (b).
If (b) is false, issue output (2), terminate output (3), and proceed to Step 1G.
If (b) is true, issue output (3), terminate output (2), and proceed to Step 1G.
\(\begin{array}{lll}\text { (1) MPS E-3 HE INTCON OUT/OPEN CMD A } & \text { V41K1368X } \\ \text { (2) MPS E-3 SHUTDOWN ENABLE CMD } & \text { V90X8369X } \\ \text { (3) MPS E-3 SHUTDOWN CMD } & \text { V90X8372X }\end{array}\)
Step 1G - Increment Previous Value of CRT Timer Base Time. This step increments the previous value of the CRT timer base time stored in User Interface compool to cause the displayed time-to-go to become static.

Add 0.04 second to the previous value of the CRT timer base time stored in User Interface compool.
Proceed to Step 30.
Step 2-ME-1 Pad Data Path Fail Check. This step monitors for a flag from the SSME SOP indicating invalid data from either the primary or secondary channel of the EIU. If the ME-1 PAD DATA PATH FAIL FLAG is set, the RS launch sequence will either call a countdown hold or initiate shutdown for ME-1.

Monitor the following:
(a) ME-1 PAD DATA PATH FAIL FLAG

V95X1217X
If \((\mathrm{a})=\) false, proceed to Step 2A.
If (a) = true, issue the following output:
(1) ME-1 PAD DATA PATH FAIL HOLD

V90X8670X
and proceed to Step 2D.
Step 2A - ME-1 Control Failure Check. This step monitors for the ME-1 controller indicating either an electronic lockup, a hydraulic lockup, a major component failure, or engine limit exceeded. If any of these indicators are present and the engine start flag has not been issued, then a countdown hold is called. If the engine start flag has been issued, then shutdown commands for ME-1 are initiated.

Monitor the following:
(a) ME-1 ELECTRONIC LOCKUP MODE FLAG

V95X1194X
(b) ME-1 HYDRAULIC LOCKUP MODE FLAG

V95X1198X
(c) ME-1 MAJOR COMPONENT FAIL FLAG

V95X1230X
(d) ME-1 ENGINE LIMIT EXCEEDED FLAG

V95X1190X

If (a), (b), (c), and (d) all = false, proceed to Step 2C.
If either (a), (b), (c), or (d) = true, issue the following output:
(1) ME-1 CONTROL FAIL HOLD

V90X8679X
and then proceed to Step 2D.

Step 2B - Deleted.
Step 2C-ME-1 Channel Fail Check. This step monitors for a flag from the SSME SOP indicating that the engine controller has declared a failure in one or more of the three command channels. If the fail flag is true, a countdown hold or engine shutdown is initiated. This step prevents lift-off with one channel failed on the pad.

Monitor the following:
(a) ME-1 CHANNEL FAIL FLAG

V95X1236X

If \((a)=\) false, proceed to Step 3.
If \((\mathrm{a})=\) true, issue the following output:
(1) ME-1 CONTROL FAIL HOLD

V90X8679X
and then proceed to Step 3D.
Step 2D - Initiation of Countdown Hold/ME-1 Shutdown. This step monitors the start flag for the main engines, and if the engines have not been started, it will call a countdown hold. If they have been started, it will initiate ME-1 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
If \((\mathrm{a})=\) false, then issue the following output and proceed to Step 9 :
(1) RS COUNTDOWN HOLD FLAG

V90X8667X

If \((a)=\) true, then terminate the following outputs:
\begin{tabular}{lll} 
(2) & PREP SSME'S FOR LIFTOFF FLAG & V90X8373X \\
(3) SRM IGN ARM FLAG & V90X8404X \\
(4) TO UMB RELEASE ARM FLAG & V90X8407X
\end{tabular}
and issue the following outputs:
\begin{tabular}{llr} 
(5) & ENG 1 SHUTDOWN FLAG C & (INTERNAL) \\
(6) & CMD SSME's TO PRE-START POS FLAG & V90X8412X \\
(7) & MPS E1 SHUTDOWN ENABLE FLAG & V90X8367X \\
(8) & MPS SLEW COMP FLAG & V90X8400X \\
(9) & MPS TVC SERVO OVRD CMD & V90X8374X \\
(10) & LAUNCH SEQUENCE ABORT FLAG & V90X8382X
\end{tabular}
and then return to Step A.
Step 3-ME-2 Pad Data Path Fail Check. This step monitors for a flag from the SSME SOP indicating invalid data from either the primary or secondary channel of the EIU. If the ME-2 PAD DATA PATH FAIL FLAG is set, the RS launch sequence will either call a countdown hold or initiate shutdown for ME-2.

Monitor the following:
(a)

ME-2 PAD DATA PATH FAIL FLAG
V95X1218X

If \((a)=\) false, proceed to Step 3A.
If \((\mathrm{a})=\) true, issue the following output:
(1) ME-2 PAD DATA PATH FAIL HOLD

V90X8671X
and proceed to Step 3D.
Step 3A-ME-2 Control Failure Check. This step monitors for the ME-2 controller indicating either an electronic lockup, a hydraulic lockup, a major component failure, or engine limit exceeded. If any of these indicators are present and the engine start flag has not been issued, then a countdown hold is called. If the engine start flag has been issued, then shutdown commands for ME-2 are initiated.

Monitor the following:
(a) ME-2 ELECTRONIC LOCKUP MODE FLAG V95X1195X
(b) ME-2 HYDRAULIC LOCKUP MODE FLAG V95X1199X
(c) ME-2 MAJOR COMPONENT FAIL FLAG V95X1231X
(d) ME-2 ENGINE LIMIT EXCEEDED FLAG V95X1191X

If (a), (b), (c), and (d) all = false, proceed to Step 3C.
If either \((\mathrm{a}),(\mathrm{b}),(\mathrm{c})\), or \((\mathrm{d})=\) true, issue the following output:
(1) ME-2 CONTROL FAIL HOLD

V90X8680X
and then proceed to Step 3D.
Step 3B-Deleted.
Step 3C-ME-2 Channel Fail Check. This step monitors for a flag from the SSME SOP indicating that the engine controller has declared a failure in one or more of the three command channels. If the fail flag is true, a countdown hold or engine shutdown is initiated. This step prevents lift-off with one channel failed on the pad.

Monitor the following:
(a) ME-2 CHANNEL FAIL FLAG

V95X1237X

If \((\mathrm{a})=\) false, proceed to Step 4.
If \((a)=\) true, issue the following output:
(1) ME-2 CONTROL FAIL HOLD

V90X8680X
and then proceed to Step 2D.
Step 3D - Initiation of Countdown Hold/ME-2 Shutdown. This step monitors the start flag for the main engines, and if the engines have not been started, it will call a countdown hold. If they have been started, it will initiate ME-2 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
If \((\mathrm{a})=\) false, then issue the following output and proceed to Step 9.

\section*{(1) RS COUNTDOWN HOLD FLAG}

V90X8667X

If \((a)=\) true, then terminate the following outputs:
(2) PREP SSME's FOR LIFTOFF FLAG

V90X8373X
(3) SRMIGN ARM FLAG

V90X8404X
(4) TO UMB RELEASE ARM FLAG

V90X8407X
and issue the following outputs:
(5) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(6) CMD SSME's TO PRE-START POS FLAG

V90X8412X
(7) MPS E2 SHUTDOWN ENABLE FLAG

V90X8368X
(8) MPS SLEW COMP FLAG V90X8400X
(9) MPS TVC SERVO OVRD CMD V90X8374X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then returm to Step A.
Step \(4-\) ME-3 Pad Data Path Fail Check. This step monitors for a flag from the SSME SOP indicating invalid data from either the primary or secondary channel of the EIU. If the ME-3 PAD DATA PATH FAIL FLAG is set, the RS launch sequence will either call a countdown hold or initiate shutdown for ME-3.

Monitor the following:
(a) ME-3 PAD DATA PATH FAIL FLAG

V95X1219X

If \((a)=\) false, proceed to Step 4A.
If \((\mathrm{a})=\) true, issue the following output:
(1) ME-3 PAD DATA PATH FAIL HOLD

V90X8672X
and proceed to Step 4D.
Step 4A - ME-3 Control Failure Check. This step monitors for the ME-3 controller indicating either an electronic lockup, a hydraulic lockup, a major component failure, or engine limit exceeded. If any of these indicators are present and the engine start flag has not been issued, then a countdown hold is called. If the engine start flag has been issued, then shutdown commands for \(\mathrm{ME}-3\) are initiated.

Monitor the following:
(a) ME-3 ELECTRONIC LOCKUP MODE FLAG
(b) ME-3 HYDRAULIC LOCKUP MODE FLAG

V95X1200X
(c) ME-3 MAJOR COMPONENT FAIL FLAG

V95X1232X
(d) ME-3 ENGINE LIMIT EXCEEDED FLAG

If (a), (b), (c), and (d) all = false, proceed to Step 4C.
If either (a), (b), (c), or (d) = true, issue the following output:
(1) ME-3 CONTROL FAIL HOLD

V90X8681X
and then proceed to Step 4D.
Srep 4B-Deleted.
Step 4C-ME-3 Channel Fail Check. This step monitors for a flag from the SSME SOP indicating that the engine controller has declared a failure in one or more of the three command channels. If the fail flag is true, a countdown hold or engine shutdown is initiated. This step prevents lift-off with one channel failed on the pad.

Monitor the following:
(a) ME-3 CHANNEL FAIL FLAG

V95X1238X

If \((a)=\) false, proceed to Step 5.
If \((a)=\) true, issue the following output:
(1) ME-3 CONTROL FAIL HOLD

V90X8681X
and then proceed to Step 2D.
Step 4D - Initiation of Countdown Hold/ME-3 Shutdown. This step monitors the start flag for the main engines, and if the engines have not been started, it will call a countdown hold. If they have been started, it will initiate ME- 3 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)

If \((a)=\) false, then issue the following output and proceed to Step 9.
(1) RS COUNTDOWN HOLD FLAG

V90X8667X

If \((a)=\) true, then terminate the following outputs:
(2) PREP SSME's FOR LIFTOFF FLAG V90X8373X
(3) SRM IGN ARM FLAG V90X8404X
(4) TO UMB RELEASE ARM FLAG V90X8407X
and issue the following outputs:
(5) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(6) CMD SSME'S TO PRE-START POS FLAG
(7) MPS E3 SHUTDOWN ENABLE FLAG

V90X8369X
(8) MPS SLEW COMP FLAG

V90X8400X
(9) MPS TVC SERVO OVRD CMD

V90X8374X
(10) LAUNCH SEQUENCE ABORT FLAG

V90X8382X
and then return to \(\operatorname{Step} \mathrm{A}\).
Step 5 - Time for Arming PIC's for SRB Ignition. This step monitors the countdown clock; and at the proper time before SRB ignition, sets flags for the MEC SOP to initiate arming of the SRM ignition PIC's, hold-down release PIC's, and the T0 umbilical-release PIC's. The arm flags will remain set until (1) SRB ignition, (2) the LAUNCH SEQUENCE ABORT FLAG is set, (3) a main engine control problem develops, or (4) a recycle is initiated.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) SRB_IGN_ARM_T V97U9701C

If (a) is less then (b) seconds, proceed to Step 9.
If (a) is greater than or equal to (b) seconds, issue the following output commands and proceed to Step 6.
(1) SRM IGN ARM FLAG
V90X8404X
(2) TO UMB RELEASE ARM FLAG
V90X8407X

Step 6 - SRM Ignition Arm Voltage Check. This step monitors the countdown clock, and at the selected time before SRB ignition, starts checking the ignition PIC voltages and their associated commfaults. The logic requires two successive passes wherein either one or more of the ignition PIC voltages are low or a commfault exists before a countdown hold is called. If a low voltage or a commfault occurs on the last pass through the logic leading to the issuance of the SRB ignition commands, then a launch sequence abort (SSME shutdown and launch scrub) will not be initiated.

Monitor the following:
\begin{tabular}{llr} 
(a) & COUNTDOWN TIME & V90W8380C \\
(b) & SRB_PIC_VOLTS_CHK_T & V97U9702C \\
(c) & LH VOLTAGE IGN PIC CAP A & B55V1603C \\
(d) & LH VOLTAGE IGN PIC CAP B & B55V1604C \\
(e) & RH VOLTAGE IGN PIC CAP A & B55V2603C \\
(f) & RH VOLTAGE IGN PIC CAP B & B55V2604C \\
(g) & FA 1 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2845X \\
(h) & FA 2 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2846X \\
(i) & IGN CHECK FIRST PASS FLAG "D" & (INTERNAL) \\
(j) & SRB_IGN_PIC_LEVEL & V97U9853C
\end{tabular}

If (a) is less than (b) seconds, proceed to Step 9.
If (a) is greater than or equal to (b) seconds and (c), (d), (e), and (f) all equal or exceed ( j ) counts (normal level of 35.7 volts equals 438 counts), and (g) and (h) both are false, then set (i) true and proceed to Step 6A.

If (a) is greater than or equal to (b) seconds and (i) is true and either (c), (d), (e), or (f) is less than \((\mathrm{j})\) counts, or if either \((\mathrm{g})\) or \((\mathrm{h})\) is true, then set \((\mathrm{i})=\) false and proceed to Step 6 A .

If \((a) \geq(b)\) seconds and \((i)=\) false and either \((c)<(j)\) counts or \((g)\) is true, then issue the following output for downlist:
(1) LHIGN PIC CAP A HOLD

V90X8383X

If \((a) \geq(b)\) seconds and \((i)=\) false and either \((d)<(j)\) counts or \((h)\) is true, then issue the following output for downlist:

\section*{(2) LH IGN PIC CAP B HOLD}

V90X8384X

If (a) \(\geq\) (b) seconds and (i) = faise and either \((\mathrm{e})<(\mathrm{j})\) counts or \((\mathrm{g})\) is true, then issue the following output for downlist:
(3) RHIGN PIC CAP A HOLD

V90X8385X

If \((a) \geq(b)\) seconds and \((i)=\) false and either \((f)<(j)\) counts or \((h)\) is true, then issue the following output for downlist:
(4) RHIGN PIC CAP B HOLD V90X8386X

Proceed to Step 7.
Step 6A - Critical Systems Parameter Check. This step monitors parameters related to flight-critical MDM's. Upon detection of a failure, a launch hold or a pad shutdown will be called.

Monitor the following:
(a) FF 1 MDM RETURN WORD BYPASS (HFE) V91X2904X
(b) FF 2 MDM RETURN WORD BYPASS (HFE)

V91X2905X
(c) FF 3 MDM RETURN WORD BYPASS (HFE)

V91X2906X
(d) FF 4 MDM RETURN WORD BYPASS (HFE)

V91X2907X
(e) FA 1 MDM RETURN WORD BYPASS (HFE)

V91X2920X
(f) FA 2 MDM RETURN WORD BYPASS (HFE)

V91X2921X
(g) FA 3 MDM RETURN WORD BYPASS (HFE)

V91X2922X
(h) FA 4 MDM RETURN WORD BYPASS (HFE)

V91X2923X

If (a) through (h) are all false, proceed to Step 8.
If any failure indication in (a) through ( h ) is true, then issue the outputs below and proceed to Step 7.
\begin{tabular}{ll} 
(1) RS COUNTDOWN HOLD FLAG & V90X8667X \\
(2) FLIGHT-CRITICAL MDM HOLD/ABORT & V90X8767X
\end{tabular}

Step 7 - Low PIC Voltage Initiation of Hold/ME-1 Shutdown. This step is entered if one or more of the ignition PIC voltages are low for two consecutive passes. This step monitors the start flag for the main engines and, if the engines have not been started, will call a countdown hold. If they have been started, it will initiate ME-1 shutdown and set the launch sequence abort flag.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
If \((\mathrm{a})=\) false, issue the following output and proceed to Step 9:
(1) RS COUNTDOWN HOLD FLAG

V90X8667X
If (a) = true, terminate the following outputs:
(2) PREP SSME's FOR LIFT-OFF FLAG

V90X8373X
(3) SRM IGN ARM FLAG V90X8404X
(4) TO UMB RELEASE ARM FLAG V90X8407X
and issue the following outputs:
(5) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(6) CMD SSME's TO PRE-START POS FLAG V90X8412X
(7) MPS E1 SHUTDOWN ENABLE FLAG V90X8367X
(8) MPS SLEW COMP FLAG
(9) MPS TVC SERVO OVRD CMD V90X8400X
(10) LAUNCH SEQUENCE ABORT FLAG
and then return to Step A.
Step 8 - Main Engines Started Check. This step provides a bypass of the logic of Steps 9 through 28 inclusive, after the Main Engine 3 start command flag is issued in Step 28. After Engine 2 and Engine 1 start command flags are set true in Step 28A, this step also provides a bypass of Step 28A.

Monitor the following:
(a) ENG START CMD ISSUED FLAG
(INTERNAL)
(b) EI START CMD ISSUED FLAG

If \((\mathrm{a})=\) false, proceed to Step 9.
If \((a)=\) true and \((b)=\) false, proceed to Step 28A.
If \((\mathrm{a})=\) true and \((\mathrm{b})=\) true, proceed to Step 29.
Step 9 - Monitor for Countdown Hold Requests. This step monitors for countdown hold requests from the launch processing system (LPS) as well as for countdown holds generated within the RS launch sequence. This provides a means of stopping the countdown clock and permits further checks for a resume count command or a recycle count command from the LPS. If a hold occurs later than the selected point in the count, an automatic recycle will occur.

Monitor the following:
\(\begin{array}{ll}\text { (a) LPS COUNTDOWN HOLD } & \text { V99X8829X } \\ \text { (b) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X } \\ \text { (c) COUNTDOWN TIME } & \text { V90W8380C }\end{array}\)

If both (a) and (b) = false, proceed to Step 12.

If (a) is true, issue output (5) and proceed.

If either (a) or (b) = true and (c) is \(\leq\) (d) seconds, stop the countdown clock and proceed to Step 10.

If either (a) or (b) = true and (c) is \(>\) (d) seconds, terminate outputs (1) and (2) and issue outputs (3) and (4).
\begin{tabular}{lll} 
(1) & SRM IGN ARM FLAG & V90X8404X \\
(2) & TO UMB RELEASE ARM FLAG & V90X8407X \\
(3) MEC 1 AND 2 MASTER RESET FLAG & V90X8258X \\
(4) & ASCENT DAP RECYCLE FLAG & V90X8669X \\
(5) LPS COUNTDOWN HOLD & V90X8768X
\end{tabular}
and perform the following functions:
(6) Reset the countdown clock to T0-540 seconds, and stop the clock.
(7) Re -initialize the RS launch sequence.

Proceed to Step 11A.

Step 10 - Monitor LPS Resume Count Command Flag. This step is made after a countdown hold has been called. The LPS has the sole authority to initiate resumption of the countdown. A resume count command will (1) cause a reset of the LPS and RS countdown hold flags of Step 9, (2) reset all downlist items generated by the RS LAUNCH SEQUENCE, (3) issue the SSME SOP recycle flag, and (4) cause the count to proceed.

Monitor the following:
(a) RESUME COUNT COMMAND FLAG

V99X8828X

If \((a)=\) false, proceed to Step 11.

If (a) = true, clear all RS launch sequence downlist items; set (1), (2), and (3) below = false; and set (4) true.
\begin{tabular}{lll} 
(1) & LPS COUNTDOWN HOLD FLAG & V99X8829X \\
(2) & RS COUNTDOWN HOLD FLAG & V90X8667X \\
(3) & RESUME COUNT CMD FLAG & V99X8828X \\
(4) & SSME SOP RECYCLE FLAG & V90X8668X
\end{tabular}

Proceed to Step 12.

Step 11 - LPS Recycle Count Check. This step monitors for a recycle count command from the LPS after a countdown hold has been called.

Monitor the following:
(a) RECYCLE COUNT CMD FLAG

V99X8830X
If \((a)=\) false , add 0.04 second to previous value of CRT timer base time in user interface compool and return to Step A.

If (a) = true, terminate outputs (1) and (2), and issue outputs (3) and (4).
\begin{tabular}{lll} 
(1) & SRM IGN ARM FLAG & V90X8404X \\
(2) T0 UMB RELEASE ARM FLAG & V90X8407X \\
(3) MEC 1 AND 2 MASTER RESET FLAG & V90X8258X \\
(4) ASC DAP RECYCLE FLAG & V90X8669X
\end{tabular}
and perform the following functions:
(5) Reset the countdown clock to T0-540 seconds, and stop the clock.
(6) Re -initialize the RS launch sequence.

Proceed to Step 11A.
Step 11A - Provide New CRT Timer Base Time for a Count Recycle.
Monitor the following:
(a) CLOCK-COMPUTER (GMT)
V91W5000C
(b) SRB_IGN_TIME_DELAY
V97U9726C
(c) START_SSMES_T
V97U9712C

Store \([(\mathrm{a})+540+(\mathrm{b})+(\mathrm{c})]\), where \((\mathrm{c})<0\), into CRT timer base time location in User Interface compool.

Return to Step A.
Step 12-Monitor Countdown Clock Control. This step monitors for a flag from LPS to read the new GMT of lift-off data and reset the countdown clock.

Monitor the following:
(a) GMTLO SET COMMAND V99X8827X
(b) PREDICTED GMT OF LIFT-OFF V99W8801C
(c) CLOCK-COMPUTER (GMT) V91W5000C

If (a) = false, subtract (b) from (c), convert to seconds. Set this value in the countdown clock and proceed to Step 16B.

If (a) = true, subtract (b) from (c), and convert to seconds. Set this value in the countdown clock and start counting. Reset the GMTLO SET COMMAND V99X8827X and output COUNTDOWN TIME V90W8380C and PREDICTED GMT OF LIFT-OFF V99W8801C for downlist.

Proceed to Step 16B.

Step 13 - LPS Go for Auto Sequence Start. This step monitors the countdown clock and at the proper time looks for a flag from LPS to start the automatic on-board functions. If this flag is not received, a countdown hold is called.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) LPS GO FOR AUTO SEQUENCE START V99X8803X
(c) LPS_GO_FOR_AUTO_SEQ_T V97U9700C

If (a) is \(\leq\) (c) seconds, return to Step A.
If (a) is \(>\) (c) seconds and (b) = false, then set outputs (1) and (2) true, and return to Step A.
On the first pass that (a) is \(>\) (c) seconds and (b) = true, set output (3) = true and output \((4)=\) false; then proceed to Step 15 . On subsequent passes, proceed to Step 15.
(1) LPS GO FOR AUTO SEQ START HOLD

V90X8393X
(2) RS COUNTDOWN HOLD FLAG
(3) INDICATOR EVENT 6 R/S AUTO SEQ START
(4) MPS TVC SERVO OVRD CMD V90X8374X

Step 14 - Deleted.
Step 15 - Command IMU to Inertial. This step monitors the countdown clock and, at the proper time, sets a flag for the IMU INT PROC.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) IMU_TO_INERTIAL_T V97U9704C

If \((a) \leq(b)\) seconds, proceed to Step 16.
If \((a)>(b)\) seconds, issue the following output and proceed to Step 16.
(1) CMD IMU TO INERTIAL FLAG

V90X8411X

Step 16 - Time to Open \(\mathrm{LO}_{2}\) Accumulator Recirculation Valves. This step monitors the countdown clock and, at the proper time, terminates the \(\mathrm{LO}_{2}\) accumulator recirculation valve close commands, which permits the springloaded valves to open.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) OPN_LO \({ }_{2}\) ACC_RECIRC_VLV_T V97U9706C

If (a) \(\leq\) (b) seconds, proceed to Step 16 A
If \((a)>\) (b) seconds, terminate the following commands and proceed to Step 16 A .
(1) MPS LO 2 ACC RECIRC VLV 1 CL CMD A

V41K1815X
(2) MPS LO \({ }_{2}\) ACC RECIRC VLV 1 CL CMD B

V41K1816X
(3) MPS LO 2 ACC RECIRC VLV 2 CL CMD A V41K1825X
(4) MPS LO 2 ACC RECIRC VLV 2 CL CMD B V41K1826X

Step 16A - Initialize the Navigation System. This step monitors the countdown clock and, at the proper time, sets a flag for the Ascent Nav Sequencer and the Ascent User Parameter Process Sequencer, and initializes the SSME throttle command.

Monitor the following:
\(\begin{array}{ll}\text { (a) COUNTDOWN TIME } & \text { V90W8380C } \\ \text { (b) NAV INIT T } & \text { V97U9707C }\end{array}\)
(b) NAV_INIT_T V97U9707C

If \((a) \leq(b)\) seconds, proceed to Step 17.
If \((a)>(b)\) seconds and it is first pass, issue the following outputs and proceed to Step 17. Otherwise, proceed to Step 17.
(1) NAV INIT FLAG
V90X8414X
(2) K_CMD (100\%)
V90U1948C

Step 16B - Update the CRT Timer Base Time and Configure Vent Doors for Launch. This step updates the CRT timer base time and then monitors the countdown clock and, at the proper time, sets a flag for the vent door sequence.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) CONFIG_VNT_DRS_FOR_LCH_T V97U9708C
(c) CLOCK-COMPUTER (GMT) V91W5000C
(d) SRB_IGN_TIME_DELAY V97U9726C
(e) START_SSMES_T V97U9712C

Store \([(c)-(a)+(d)+(e)]\), where \((a)\) and \((e)<0\), into the CRT timer base time location in User Interface compool. Then,

If \((a) \leq\) (b) seconds, proceed to Step 13.
If (a) \(>\) (b) seconds, issue the following output and proceed to Step 13.

\section*{(1) CONFIGURE VENT DOORS FOR LAUNCH CMD}

V90X8375X

Step 17 - Time to Verify MPS Ready. This step monitors the countdown clock and, at the proper time, checks for any commfault indications for the \(\mathrm{LO}_{2}\) accumulator recirculation valve inputs. If any commfaults are present, an internal counter is incremented; and, if the counter reaches a count of two, a countdown hold is called.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) FLAG A
(INTERNAL)
(c) DELETED
(d) FA3 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2847X
(e) FA4 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2848X
(f) CHECK_MPS_VLVS_POS_T

V97U9709C

If \((a)<(f)\) seconds, proceed to Step 20.
If \((\mathrm{a}) \geq(\mathrm{f})\) seconds, and (b) is true, proceed to Step 20.
If \((\mathrm{a}) \geq(\mathrm{f})\) seconds and (b), (d), and (e)are all false, then proceed to Step 19.
If (a) \(\geq\) (f) seconds and (b) is false, and either (d), or (e) is true, then increment internal counter \(A\) by one count. If counter \(A\) is less than 2 counts, return to Step \(A\). If counter \(A\) is equal to 2 counts, then issue the following outputs and return to Step A.
\(\begin{array}{lll}\text { (1) } & \text { RS COUNTDOWN HOLD FLAG } & \text { V90X8667X } \\ \text { (2) MPS VALVE POS COMMFAULT HOLD } & \text { V90X8769X }\end{array}\)
Step 17A - Deleted.
Step 18 -Deleted.
Step 19 - Check for Pogo Recirculation Valves Open. This step checks the two \(\mathrm{LO}_{2}\) Accum Recirc Valve positions and the appropriate LPS bypass flag. If either of the valves is not in the OPEN position and the LPS bypass flag is not set, then internal counter \(A\) is incremented by one count. If counter \(A\) is equal to 2 counts, a countdown hold is called.

Monitor the following:
(a) MPS LO 2 ACCUM RECIRC VLV 1 OPEN

V41X1811X
(b) MPS LO 2 ACCUM RECIRC VLV 2 OPEN

V41X1821X
(c) LPS BYPASS OF \(\mathrm{LO}_{2}\) ACCUM RECIRC VLV OP

V99X8833X
If (a) and (b) are true or if (c) is true, then proceed to Step 19A.
If either (a) or (b) is false and (c) is false, then increment internal counter \(A\) by one count. If counter \(A\) is less than 2 counts, return to Step \(A\). If counter \(A\) is equal to 2 counts, then issue the following outputs and return to Step A.

\section*{(1) MPS LOX ACC RECIRC VLV HOLD V90X8392X \\ (2) RS COUNTDOWN HOLD FLAG \\ V90X8667X}

Step 19A - Check SSME's READY INDICATION. This step checks for the engine ready mode of the siart preparation phase for each main engine as determined by flags from the SSME SOP. If all engine controllers indicate engine ready in the status words, the MPS start enable flag is issued, and the \(\mathrm{LH}_{2}\) prevalves are opened; if not, a countdown hold will be called.

Monitor the following:
(a) MPS E-1 ENG READY IND
(b) MPS E-2 ENG READY IND

If either (a), (b), or (c) is false, issue the following outputs and return to Step A.
(1) \(\mathrm{R} / \mathrm{S}\) SEQ SSME GO FOR LAUNCH HOLD
V90X8395X
(2) R/S COUNTDOWN HOLD FLAG
V90X8667X

If (a), (b), and (c) are all true, then issue the following outputs:
\begin{tabular}{|c|c|c|}
\hline (3) & MPS E-1 LH2 PREVALVE OPEN CMD A & V41K1119X \\
\hline (4) & MPS E-1 LH2 PREVALVE OPEN CMD B & V41K1120X \\
\hline (5) & MPS E-1 LH 2 PREVALVE OPEN CMD C & V41K1121X \\
\hline (6) & MPS E-2 LH2 PREVALVE OPEN CMD A & V41K1219X \\
\hline (7) & MPS E-2 LH 2 PREVALVE OPEN CMD B & V41K1220X \\
\hline (8) & MPS E-2 LH2 PREVALVE OPEN CMD C & V41K1221X \\
\hline (9) & MPS E-3 LH 2 PREVALVE OPEN CMD A & V41K1319X \\
\hline (10) & MPS E-3 LH 2 PREVALVE OPEN CMD B & V41K1320X \\
\hline (11) & MPS E-3 LH2 PREVALVE OPEN CMD C & V41K1321X \\
\hline
\end{tabular}
and issue, one time only
(12) MPS START ENABLE CMD FLAG

V90X8361X
and terminate the following:
\begin{tabular}{|c|c|c|}
\hline (13) & MPS E-1 LH 2 PREVALVE CLOSE CMD A & V41K1122X \\
\hline (14) & MPS E-1 LH \({ }_{2}\) PREVALVE CLOSE CMD B & V41K1123X \\
\hline (15) & MPS E-1 LH \({ }_{2}\) PREVALVE CLOSE CMD C & V41K1124X \\
\hline (16) & MPS E-2 LH \(\mathrm{L}_{2}\) PREVALVE CLOSE CMD A & V41K1222X \\
\hline (17) & MPS E-2 LH2 PREVALVE CLOSE CMD B & V41K1223X \\
\hline (18) & MPS E-2 LH2 PREVALVE CLOSE CMD C & V41K1224X \\
\hline (19) & MPS E-3 LH 2 PREVALVE CLOSE CMD A & V41K1322X \\
\hline (20) & MPS E-3 LH2 PREVALVE CLOSE CMD B & V41K1323X \\
\hline (21) & MPS E-3 LH \({ }_{2}\) PREVALVE CLOSE CMD C & V41K1324X \\
\hline
\end{tabular}
and set internal flag A true.
Proceed to Step 20.
Step 20 - Time to Close \(\mathrm{LO}_{2}\) Overboard Bleed Valve. This step monitors the countdown clock and, at the proper time, commands the \(\mathrm{LO}_{2}\) overboard bleed valve closed.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) CLSE_LO_OVBD_BV_T V97U9710C

If \((a) \leq\) (b) seconds, proceed to Step 21.
If \((a)>\) (b) seconds, issue the following outputs on each successive pass through Step 20 :
(1) MPS LO \(2_{2}\) OVERBOARD B/V CLOSE CMD A

V41K1584X
(2) MPS \(\mathrm{LO}_{2}\) OVERBOARD B/V CLOSE CMD B

V41K1585X
(3) MPS LO \(2_{2}\) OVERBOARD B/V CLOSE CMD C V41K1586X

Proceed to Step 21.
Step 21 - Time To Check \(\mathrm{LH}_{2}\) Prevalves. This step monitors the countdown clock, and at the proper time, proceeds to Step 22.

Monitor the following:
(a) COUNTDOWN TIME

V90W8380C
(b) CHK_PREVLVS_OP_T V97U9711C

If (a) \(\leq\) (b) seconds, return to Step A.
If (a) \(>\) (b) seconds, then proceed to Step 22.
Step \(22-\) ME-1 \(\mathrm{LH}_{2}\) Prevalve Check. This step monitors the ME-1 \(\mathrm{LH}_{2}\) prevalve position sensors and their associated commfaults. If either sensor indicates OPEN and is not commfaulted, then the sequence proceeds. If a valid OPEN indication is not obtained, then a countdown hold is called.

Monitor the following:
(a) MPS E-1 LH2 PREVALVE OPEN A V41X1104X
(b) MPS E- \(1 \mathrm{LH}_{2}\) PREVALVE OPEN B V41X1106X
(c) FA1 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2845X
(d) FA3 INPUT PROM SEG 3, 10 STATUS (HFE)

V91X2847X
If (a) is true and (c) is false, or if (b) is true and (d) is false, then proceed to Step 23; otherwise issue the following outputs and return to Step A.
(1) MPS E-1 LH \({ }_{2}\) PREVLV OPEN HOLD
V90X8396X
(2) RS COUNTDOWN HOLD FLAG
V90X8667X

Step 23-ME-2 \(\mathrm{LH}_{2}\) Prevalve Check. This step monitors the ME-2 \(\mathrm{LH}_{2}\) prevalve position sensors and their associated commfaults. If either sensor indicates OPEN and is not commfaulted, then the sequence proceeds. If a valid OPEN indication is not obtained, then a countdown hold is called.

Monitor the following:
(a) MPS E-2 LH \(_{2}\) PREVALVE OPEN A

V41X1204X
(b) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN B V41X1206X
(c) FA2 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2846X
(d) FA4 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2848X

If (a) is true and (c) is false, or if (b) is true and (d) is false, then proceed to Step 24; otherwise issue the following outputs and return to Step A.
(1) MPS E-2 LH2 PREVLV OPEN HOLD
(2) RS COUNTDOWN HOLD FLAG

V90X8667X

Step \(24-\) ME- \(3 \mathrm{LH}_{2}\) Prevalve Check. This step monitors the ME- \(3 \mathrm{LH}_{2}\) prevalve position sensors and their associated commfaults. If either sensor indicates OPEN and is not commfaulted, then the sequence proceeds. If a valid OPEN indication is not obtained, then a countdown hold is called.

Monitor the following:
\begin{tabular}{lll} 
(a) & MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN A & V41X1304X \\
(b) & MPS E-3 LH2 PREVALVE OPEN B & V41X1306X \\
(c) & FA4 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2848X \\
(d) & FA3 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2847X
\end{tabular}

If (a) is true and (c) is false, or if (b) is true and (d) is false, then proceed to Step 25; otherwise issue the following outputs and return to Step A.
\(\begin{array}{ll}\text { (1) MPS E-3 LH } 2 \text { PREVLV OPEN HOLD } & \text { V90X8398X } \\ \text { (2) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X }\end{array}\)
Step 25 - Orbiter Vent Doors Check. This step monitors for all vent doors achieving the desired position for launch within the required time period. The vent door sequence provides an indication of the status for each of the doors. If a door failure exists and an LPS override for that door has been previously set, then the RS launch sequence will proceed with the count. If an LPS override has not been previously set, then the RS launch sequence will call a countdown hold.

Monitor the following:
(a) ORBITER VENT DOORS STATUS WORD

V90J8201C
(b) LPS ORBITER VENT DOORS OVERRIDE WORD V99J8836C

If all the indicators of (a) (Table 4.1-1) = true (no failures of any doors), then proceed to Step 26.
If any indicator( \(s\) ) of \((a)=\) false (one or more door failures), then read (b) (Table 4.1-2). If the corresponding override indicator in (b) = true for each specific door failure of (a), then proceed to Step 26.

If any indicator of \((a)=\) false (door failure) and the corresponding override indicator in \((b)=\) false, then issue the following outputs and return to Step A.
(1) RS COUNTDOWN HOLD FLAG
V90X8667X
(2) VENT DOOR POSITION HOLD
V90X8770X
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Table 4.1-1. Orbiter Vent Doors Status Word--V90J8201} \\
\hline Vent Group & & Item \\
\hline Vent group 1 & a & L FWD VENTS \(1 \& 2\) \\
\hline Left and right & b & L FWD VENTS \(1 \& 2\) \\
\hline Forward vent & c & L FWD VENTS 1\&2 \\
\hline Ports 1 and 2 & d & L FWD VENTS \(1 \& 2\) \\
\hline Vent Group 2 & a & L PB VENT 3 \\
\hline Left and right & b & L PB VENT 3 \\
\hline Mid fuselage vent & c & R PB VENT 3 \\
\hline Port 3 & d & R PB VENT 3 \\
\hline Vent group 3 & a & L PB VENT 5 \\
\hline Left and right & b & L PB VENT 5 \\
\hline Mid fuselage & c & R PB VENT 5 \\
\hline Port 5 & d & R PB VENT 5 \\
\hline Vent group 4 & a & L PB/W VENTS 4\&7 \\
\hline Left and right & b & L PB/W VENTS 4\&7 \\
\hline Mid fuselage vent & c & R PB/W VENTS 4\&7 \\
\hline Ports 4 and 7 & d & R PB/W VENTS 4\&7 \\
\hline Vent group 5 & a & L PB VENT 6 \\
\hline Left and Right & b & L PB VENT 6 \\
\hline Aft payload vent & c & LPB VENT 6 \\
\hline Port 6 & d & L PB VENT 6 \\
\hline Vent group 6 & a & L AFT VENTS 8\&9 \\
\hline Left and right & b & L AFT VENTS \(8 \& 9\) \\
\hline Aft vent & c & R AFT VENTS 8\&9 \\
\hline Ports 8 and 9 & d & R AFT VENTS 8\&9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Table 4.1-2. LPS Orbiter Vent Doors Override Word-V99J8836C} \\
\hline Vent Group & & Item \\
\hline Vent group 1 & a & L FWD VENTS 1\&2 \\
\hline Left and right & b & L FWD VENTS \(1 \& 2\) \\
\hline Forward vent & c & L FWD VENTS \(1 \& 2\) \\
\hline Ports 1 and 2 & d & L FWD VENTS 1\&2 \\
\hline Vent Group 2 & a & L PB VENT 3 \\
\hline Left and right & b & L PB VENT 3 \\
\hline Mid fuselage vent & c & R PB VENT 3 \\
\hline Port 3 & d & R PB VENT 3 \\
\hline Vent group 3 & a & L PB VENT 5 \\
\hline Left and right & b & L PB VENT 5 \\
\hline Mid fuselage & c & R PB VENT 5 \\
\hline Port 5 & d & R PB VENT 5 \\
\hline Vent group 4 & a & L PB/W VENTS 4\&7 \\
\hline Left and right & b & L PB/W VENTS 4\&7 \\
\hline Mid fuselage vent & c & R PB/W VENTS 4\&7 \\
\hline Ports 4 and 7 & d & R PB/W VENTS 4\&7 \\
\hline Vent group 5 & a & L PB VENT 6 \\
\hline Left and Right & b & L PB VENT 6 \\
\hline Aft payload vent & c & LPB VENT 6 \\
\hline Port 6 & d & L PB VENT 6 \\
\hline Vent group 6 & a & L AFT VENTS 8\&9 \\
\hline Left and right & b & L AFT VENTS \(8 \& 9\) \\
\hline Aft vent & c & R AFT VENTS 8\&9 \\
\hline Ports 8 and 9 & d & R AFT VENTS 8\&9 \\
\hline
\end{tabular}

Step 26 - SSME's Ready for Start. This step monitors the engine ready mode of the start preparation phase for each main engine as determined by flags from the SSME SOP. If all engine controllers provide engine ready indications in the status words, then the sequence will proceed; if not, a countdown hold will be called.

Monitor the following conditions:
(a) MPS E-1 READY IND

V95X1182X
(b) MPS E-2 READY IND V95X1183X
(c) MPS E-3 READY IND V95X1184X

If (a) and (b) and (c) all = true, proceed to Step 27.
If either (a) or (b) or (c) = false, then issue the following outputs and return to Step A.
\(\begin{array}{lll}\text { (1) RS SEQ SSME GO FOR LAUNCH HOLD } & \text { V90X8395X } \\ \text { (2) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X }\end{array}\)
Step 27 - LPS Go for Main Engine Start. This step looks for a flag set by LPS indicating a positive "go" for start of the main engines. If this flag is not set, a countdown hold is called.

Monitor the following conditions:
(a) LPS GO FOR ENGINE START FLAG

V99X8804X

If \((\mathrm{a})=\) true, proceed to Step 28.
If \((a)=\) false, issue the following outputs and return to Step A.
\(\begin{array}{lll}\text { (1) LPS GO FOR ENGINE START HOLD } & \text { V90X8394X } \\ \text { (2) RS COUNTDOWN HOLD FLAG } & \text { V90X8667X }\end{array}\)
Step 28 - Time to Start Main Engines. This step monitors the countdown clock, and, at the proper time, issues the main engine start command flag for Engine 3 and the MPS TVC SERVO OVRD CMD flag. In addition, the timer for checking engine performance, and the start delay timers for Engine 2 and Engine 1 are started.

Monitor the following:
(a) COUNTDOWN TIME V90W8380C
(b) START_SSMES_T

V97U9712C

If (a) \(\leq\) (b) seconds, return to Step A.
If (a) \(>\) (b) seconds, issue the following outputs:
\(\begin{array}{ll}\text { (1) } & \text { MPS TVC SERVO OVRD CMD } \\ \text { (2) ENG START CMD ISSUED FLAG } & \text { V90X8374X } \\ \text { (INTERNAL) }\end{array}\)
then issue the following output one time only:
(3) MPS E-3 START CMD FLAG

V90X8360X
and start timers for the following:
\begin{tabular}{lll} 
(4) ENG_TIMER_FOR_THRUST_OK & V97U9716C \\
(5) SRB_IGN_TIME_DELAY & V97U9726C
\end{tabular}
(5) SRB_IGN_TIME_DELAY

V97U9726C
and then return to Step A.
Step 28A - Start of Engine 2 and Engine 1. This step provides for a time delay before setting the start flag for Engine 2 and a time delay before setting the start flag for Engine 1. The time delays before setting the start flags shall have an accuracy tolerance of \(\pm 1\) millisecond.

If \(120 \pm 1\) milliseconds have not elapsed since output (3) was issued in Step 28, proceed to Step 29.

If \(120 \pm 1\) milliseconds have elapsed since output (3) was issued in Step 28, set the following output true one time only:
(1) MPS E-2 START CMD FLAG

V90X8359X
and set the following output true:

\section*{(2) E2 START CMD ISSUED FLAG}
(INTERNAL)
and then monitor for a \(240 \pm 1\) millisecond time delay from issuance of output (3) in Step 28.
If \(240 \pm 1\) milliseconds have not elapsed since output (3) in Step 28 was issued, proceed to Step 29.

If \(240 \pm 1\) milliseconds have elapsed since output (3) in Step 28 was issued set the following output true one time only:
(3) E-1 START CMD FLAG

V90X8358X
(4) MPS E-1 START CMD FLAG
(INTERNAL)
and then proceed to Step 29.
Step 29 - Check for any Engine in Shutdown. This step monitors the operating phase of each main engine via flags from the SSME SOP. During the start phase, one or more of the engines could go into automatic shutdown. If this occurs, it is necessary to inhibit the SRB ignition and perform an orderly shutdown of the other two engines.

Monitor the following:
(a) MPS E-1 SHUTDOWN PHASE
(b) MPS E-1 POST-SHUTDOWN PHASE
(c) MPS E-2 SHUTDOWN PHASE
(d) MPS E-2 POST-SHUTDOWN PHASE
(e) MPS E-3 SHUTDOWN PHASE
(f) MPS E-3 POST-SHUTDOWN PHASE

If (a), (b), (c), (d), (e), and (f) are all false, then proceed to Step 37.
If (a) or (b) = true, set output (7) true.
If (c) or (d) \(=\) true, set output (8) true.
If (e) or (f) = true, set output (9) true.
If either (a), (b), (c), (d), (e), or ( \(f\) ) = true, then terminate the following output:
(1) PREP SSME's FOR LIFT-OFF FLAG V90X8373X
and issue outputs (2) through (6)
(2) LAUNCH SEQUENCE ABORT FLAG V90X8382X
(3) CMD SSME's TO PRE-START POS FLAG V90X8412X
(4) MPS SLEW COMP FLAG V90X8400X
(5) MPS TVC SERVO OVRD CMD V90X8374X
(6) UNCOMMANDED ENGINE SHUTDOWN ABORT V90X8771X
(7) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(8) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(9) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
Proceed to Step 30.
Step 30-ME-1 Status Check. This step monitors the ME-1 status word via SSME SOP flags; and when \(\overline{\text { ME-1 enters shutdown, appropriate time delays are provided before closing the prevalves. }}\)

Monitor the following:
(a) MPS E-1 SHUTDOWN PHASE V95X1155X
(b) MPS E-1 POST-SHUTDOWN PHASE V95X1160X

If (a) and (b) both \(=\) false, proceed to Step 31.
If either (a) or \((b)=\) true, monitor the following:
(c) ME1_LOX_PREVLV_CLSE_DELAY

V97U9720C
If (c) seconds have not elapsed, proceed to Step 30B.
If (c) seconds have elapsed, proceed to Step 30A.
Step 30A - Issuance of ME-1 Prevalve Close Commands. This step provides a time delay between issuance of the ME-1 \(\mathrm{LO}_{2}\) prevalve close commands and the \(\mathrm{ME}-1 \mathrm{LH}_{2}\) prevalve close commands.

Issue the following outputs:
(1) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A
(2) MPS E-1 LO 2 PREVALVE CLOSE CMD B
(3) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C
(4) MPS E-1 LO 2 PREVALVE CLOSE CMD D
and terminate the following outputs:
(5) MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE OPEN CMD A
(6) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B

V41K1136X
(7) MPS E- \(1 \mathrm{LO}_{2}\) PREVALVE OPEN CMD C

V41K1137X
(8) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D

V41K1138X
and then monitor the following:
(a) ME1_LH2_PREVLV_CLSE_T_DELAY

V97U9727C
If (a) seconds have not elapsed, proceed to Step 31.
If (a) seconds have elapsed, issue the following outputs:
\begin{tabular}{lll} 
(9) & MPS E1 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD A & V41K1122X \\
(10) & MPS E1 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD B & V41K1123X \\
(11) & MPS E1 LH2 PREVALVE CLOSE CMD C & V41K1124X
\end{tabular}
and terminate the following outputs:
(12) MPS E1 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A V41K1119X
(13) MPS E1 LH2 PREVALVE OPEN CMD B V41K1120X
(14) MPS E1 LH2 PREVALVE OPEN CMD C
and then set the following flag = true:
(15) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 31.
Step 30B - Prevalve Closure for ME-1 If Unstarted During Pad Abort. If this engine has not been started prior to initiation of a pad abort, prevalve close delays are bypassed.

Monitor the following:
(a) E1 START COMMAND ISSUED FLAG
(INTERNAL)
If (a) is true, proceed to Step 31.
If (a) is false, set V97U9727 ME_LH \(\mathbf{2}_{2}\) PREVLV_CLS_T_DELAY equal to zero and proceed to Step 30A.

Step 31 -ME-2 Status Check. This step monitors the ME-2 status word via SSME SOP flags, and when ME-2 enters shutdown, appropriate time delays are provided before closing the prevalves.

Monitor the following:
(a) MPS E-2 SHUTDOWN PHASE V95X1156X
(b) MPS E-2 POST-SHUTDOWN PHASE V95X1161X

If (a) and (b) both = false, proceed to Step 32.
If either (a) or (b) = true, monitor the following:
(c) ME2_LOX_PREVLV_CLSE_DELAY

If (c) seconds have not elapsed, proceed to Step 31B.
If (c) seconds have elapsed, proceed to Step 31A.
Step 31A - Issuance of ME-2 Prevalve Close Commands. This step provides a time delay between issuance of the \(\mathrm{ME}-2 \mathrm{LO}_{2}\) prevalve close commands and the \(\mathrm{ME}-2 \mathrm{LH}_{2}\) prevalve close commands.

Issue the following outputs:
(1) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A

V41K1239X
(2) MPS E-2 LO 2 PREVALVE CLOSE CMD B V41K1240X
(3) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C V41K1241X
(4) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D V41K1242X
and terminate the following outputs:
(5) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A V41K1236X
(6) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B V41K1237X
(7) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C V41K1238X
(8) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D V41K1243X
and then monitor the following:
(a) ME2_LH2_PREVLV_CLSE_T_DELAY

V97U9728C

If (a) seconds have not elapsed, proceed to Step 32.
If (a) seconds have elapsed, issue the following outputs:
\(\begin{array}{lll}\text { (9) } & \text { MPS E2 } \mathrm{LH}_{2} \text { PREVALVE CLOSE CMD A } & \text { V41K1222X } \\ \text { (10) } & \text { MPS E2 } \mathrm{LH}_{2} \text { PREVALVE CLOSE CMD B } & \text { V41K1223X } \\ \text { (11) } & \text { MPS E2 LH } \mathrm{LR} \text { PREVALVE CLOSE CMD C } & \text { V41K1224X }\end{array}\)
and terminate the following outputs:
(12) MPS E2 LH 2 PREVALVE OPEN CMD A

V41K1219X
(13) MPS E2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B

V41K1220X
(14) MPS E2 LH2 PREVALVE OPEN CMD C

V41K1221X
and then set the following flag = true:
(15) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 32.
Step 31 B - Prevalve Closure for ME-2 If Unstarted During Pad Abort. If this engine has not been started prior to initiation of a pad abort, prevalve close delays are bypassed.

Monitor the following:
(a) E2 START COMMAND ISSUED FLAG
(INTERNAL)

If (a) is true, proceed to Step 32.
If (a) is false, set V97U9728 ME2_LH2_PREVLV_CLS_T_DELAY equal to zero and proceed to Step 31A.

Step 32 - ME-3 Status Check. This step monitors the ME-3 status word via SSME SOP flags, and when \(\overline{\mathrm{ME}-3}\) enters shutdown, appropriate time delays are provided before closing the prevalves.

Monitor the following:
(a) MPS E-3 SHUTDOWN PHASE V95X1157X
(b) MPS E-3 POST-SHUTDOWN PHASE

If (a) and (b) both \(=\) false, proceed to Step 33.
If either (a) or \((b)=\) true, monitor the following:
(c) ME3_LOX_PREVLV_CLSE_DELAY V97U9722C

If (c) seconds have not elapsed, proceed to Step 33.
If (c) seconds have elapsed, proceed to Step 32A.
Step 32A - Issuance of ME-3 Prevalve Close Commands. This step provides a time delay between issuance of the \(\mathrm{ME}-3 \mathrm{LO}_{2}\) prevalve close commands and the \(\mathrm{ME}-3 \mathrm{LH}_{2}\) prevalve close commands.

Issue the following outputs:
(1) MPS E-3 LO 2 PREVALVE CLOSE CMD A

V41K1339X
(2) MPS E-3 LO 2 PREVALVE CLOSE CMD B V41K1340X
(3) MPS E-3 LO 2 PREVALVE CLOSE CMD C

V41K1341X
(4) MPS E-3 LO 2 PREVALVE CLOSE CMD D

V41K1342X
and terminate the following outputs:
(5) MPS E-3 LO 2 PREVALVE OPEN CMD A

V41K1336X
(6) MPS E-3 LO 2 PREVALVE OPEN CMD B

V41K1337X
(7) MPS E-3 LO 2 PREVALVE OPEN CMD C

V41K1338X
(8) MPS E-3 LO 2 PREVALVE OPEN CMD D

V41K1343X
and then monitor the following:
(a) ME3_LH2_PREVLV_CLSE_T_DELAY

V97U9729C

If (a) seconds have not elapsed, proceed to Step 33.
If (a) seconds have elapsed, issue the following outputs:
(9) MPS E3 LH \({ }_{2}\) PREVALVE CLOSE CMD A

V41K1322X
(10) MPS E3 LH2 PREVALVE CLOSE CMD B

V41K1323X
and terminate the following outputs:
(12) MPS E3 LH 2 PREVALVE OPEN CMD A

V41K1319X
(13) MPS E3 LH \({ }_{2}\) PREVALVE OPEN CMD B
(14) MPS E3 LH \(\mathrm{L}_{2}\) PREVALVE OPEN CMD C

V41K1320X
V41K1321X
and then set the following flag = true:
(15) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 33.
Step 33 - Second and Third Engine Staggered Shutdown Priority Selection. This step establishes a priority for the second and third engine to be shut down in a staggered sequence. The engine priority is selected after a time delay has elapsed since the first engine was detected in shutdown phase or was commanded to shutdown.

Monitor the following:
(a) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(b) TIMER_G_SHTDN_TIME_DELAY \(1.12(-0,+0.08\) SEC \()\) (INTERNAL)
(c) TIMER_J_SHTDN_TIME_DELAY \(2.40(-0,+0.08\) SEC \()\)
(INTERNAL)
On the first pass through this step, start (b) Timer " \(G\) " and (c) Timer " \(J\) " and return to Step A.
On subsequent passes:
If (b) seconds have not elapsed since starting timers " \(G\) " and "J," then return to Step A.
If (c) seconds have elapsed since Timer "J" (c) started, set (1), (2), and (3) true and proceed to Step 34.

If (c) seconds have not elapsed since Timer " \(J\) " (c) started, monitor Timer " \(G\) " (b).
If (b) seconds have elapsed since Timer " \(G\) " (b) started and (a) = true on first pass, then set (3) true and return to Step A.

If (b) seconds have elapsed since Timer " \(G\) " (b) started and (a) = false on first pass, then set (2) true and return to Step A.
(1) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(2) ENG 2 SHUTDOWN FLAG B
(INTERNAL)
(3) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
Step 34 - Initiation of Engine Shutdown Verification Timer. This step initiates the timer, which is checked in Step 35 to alert the LPS that all engines have not entered shutdown within the required time period after shutdown commands were issued.
On the first pass through this step, start the following timer and return to Step A.
(1) VERIFY_ALL_ENG_SHTDN_TIMER

V97U9719C

On all successive passes proceed to Step 35.
Step 35 - All SSME's in Shutdown. This step monitors the phase of each engine via flags from the SSME SOP, and determines when all engines have entered the shutdown phase. If this does not occur within the proper time after shutdown commands for all engines were issued in Step 33, then a countdown hold flag is set.

Monitor the following:
(a) MPS E-1 SHUTDOWN PHASE

V95X1155X
(b) MPS E-1 POST-SHUTDOWN PHASE V95X1160X
(c) MPS E-2 SHUTDOWN PHASE V95X1156X
(d) MPS E-2 POST-SHUTDOWN PHASE V95X1161X
(e) MPS E-3 SHUTDOWN PHASE V95X1157X
(f) MPS E-3 POST-SHUTDOWN PHASE V95X1162X
(g) VERIFY_ALL_ENG_SHTDN_TIMER V97U9719C

If either \((\mathrm{a})\) or \((\mathrm{b})=\) true, and either \((\mathrm{c})\) or \((\mathrm{d})=\) true, and either \((\mathrm{e})\) or \((\mathrm{f})=\) true, then proceed to Step 36.

If both (a) and \((b)=\) false, or both (c) and \((d)=\) false, or both \((e)\) and \((f)=\) false, and (g) seconds have not elapsed, then return to Step A.

If both \((a)\) and \((b)=\) false, or both \((c)\) and \((d)=\) false, or both \((e)\) and \((f)=\) false, and \((g)\) seconds have elapsed, then issue the following outputs and terminate the RS launch sequence.
(1) ENGINE SHUTDOWN VERIFICATION HOLD V90X8389X
(2) RS COUNTDOWN HOLD FLAG V90X8667X

Step 36 - Prevalves Commanded Closed Check. This step checks to see that all prevalves have been commanded closed before terminating the launch sequence. This assures that the time delays of Steps 30, 31 , and 32 can occur and that all prevalves will be commanded closed before termination of the RS launch sequence.

Monitor the following:
(a) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(b) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(c) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)

If either (a), (b), or (c) = false, return to Step A.
If (a), (b), and (c) all = true, set output (1) true and then terminate the redundant set launch sequence.
(1) ASCENT DAP RECYCLE FLAG

V90X8669X

Step 37 - LPS Countdown Hold Check. This step monitors the LPS countdown hold flag and, if set after the main engine start commands have been issued, will set the LAUNCH SEQUENCE ABORT FLAG and initiate the shutdown of ME-1, which will be followed after a time delay by shutdown of ME-2 and ME-3.

Monitor the following:
(a) LPS COUNTDOWN HOLD FLAG

V99X8829X
If \((a)=\) false, proceed to Step 37A.
If \((a)=\) true, terminate the following outputs:
\begin{tabular}{ll} 
(1) PREP SSME's FOR LIFT-OFF FLAG & V90X8373X \\
(2) SRM IGN ARM FLAG & V90X8404X \\
(3) TO UMB RELEASE ARM FLAG & V90X8407X
\end{tabular}
and issue the following outputs:
(4) CMD SSME's to PRE-START POS FLAG V90X8412X
(5) ENG 1 SHUTDOWN FLAG C (INTERNAL)
(6) MPS E-1 SHUTDOWN ENABLE CMD V90X8367X
(7) MPS SLEW COMP FLAG
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) LPS COUNTDOWN HOLD V90X8768X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then return to Step A.
Step 37A - All Engines at Required Percent Thrust. This step monitors the percent chamber pressure for all engines via the SSME SOP. When all engines reach the required chamber pressure, then flags are set for the MPS TVC CMD SOP, the SRB TVC CMD SOP, and the ASC DAP.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS

V95U1186C
(b) MPS E-2 PERCENT CH PRESS

V95U1187C
(c) MPS E-3 PERCENT CH PRESS

V95U1188C
(d) ALL_ENG_PERCENT_CHB_PRS_CHK

V97U9713C
If either (a) or (b) or (c) \(\leq\) (d) percent, then proceed to Step 38.
If (a), (b), and (c) all > (d) percent, then terminate the following output:
(1) MPS TVC SERVO OVRD CMD

V90X8374X
and issue the following output:
(2) PREP SSME's FOR LIFT-OFF FLAG

V90X8373X
and proceed to Step 37B.
Steps 37B - MPS Actuator Port Commfault Checks. This step checks for any commfault indications relative to the actuator port checks to be made in Steps 42,43 , and 44 . The first time that a commfault occurs the actuator port checks in Steps 42, 43, and 44 are bypassed. If a commfault indication is present on two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and ME-1 is commanded to shut down.

Monitor the following:
(a) FA1 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2845X
(b) FA2 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2846X
(c) FA3 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2847X
(d) FA4 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2848X
(e) COMMFAULT FIRST PASS FLAG "E"
(INTERNAL)
If (a), (b), (c), and (d) all = false, then set \((\mathrm{e})=\) true and proceed to Step 42.
If either \((\mathrm{a}),(\mathrm{b}),(\mathrm{c})\), or \((\mathrm{d})=\) true , and \((\mathrm{e})=\) true, then set \((\mathrm{e})=\) false and proceed to Step 38.
If either \((a),(b),(c)\), or \((d)=\) true and \((e)=\) false, then terminate the following outputs:
(1) PREP SSME'S FOR LIFT-OFF FLAG
V90X8373X
(2) SRM IGN ARM FLAG
V90X8404X
(3) TO UMB RELEASE ARM FLAG V90X8407X
and issue the following outputs:
\begin{tabular}{llr} 
(4) & CMD SSME'S TO PRE-START POS FLAG & V90X8412X \\
(5) & ENG 1 SHUTDOWN FLAG C & (INTERNAL) \\
(6) & MPS E-1 SHUTDOWN ENABLE CMD & V90X8367X \\
(7) & MPS SLEW COMP FLAG & V90X8400X \\
(8) & MPS TVC SERVO OVRD CMD & V90X8374X \\
(9) & MPS ACT PORT COMMFAULT ABORT & V90X8772X \\
(10) & LAUNCH SEQUENCE ABORT FLAG & V90X8382X
\end{tabular}
and then return to Step A.
Step 38-ME-1 at Required Percent Thrust. This step monitors the ME-1 chamber pressure via the SSME SOP. If the chamber pressure does not reach the required level within the required number of seconds from the time the start commands were issued in Step 28, then the launch sequence abort flag is set and ME-1 is commanded to shut down.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS
(b) ENG_PERCENT_CH_PRS_FOR_GO
(c) ENG_TIMER_FOR_THRUST_OK V97U9716C
(d) ENG START CMDS ISSUED FLAG
(INTERNAL)
If (a) \(\geq\) (b) percent, proceed to Step 39 .
If (a) < (b) percent, but (c) seconds have not elapsed since (d) was set \(=\) true in Step 28, then return to Step A.

If (a) < (b) percent, and (c) seconds have elapsed since (d) was set = true in Step 28, then terminate the following outputs:
(1) PREP SSME's FOR LIFT-OFF FLAG

V90X8373X
\begin{tabular}{lll} 
(2) SRM IGN ARM FLAG & V90X8404X \\
(3) TO UMB RELEASE ARM FLAG & V90X8407X
\end{tabular}
and issue the following outputs:
(4) CMD SSME'S TO PRE-START POS FLAG V90X8412X
(5) ENG 1 SHUTDOWN FLAG C
(6) MPS E-1 SHUTDOWN ENABLE CMD
(7) MPS SLEW COMP FLAG
(8) MPS TVC SERVO OVRD CMD
(9) ME-1 LOW CHAMBER PRESSURE ABORT
(INTERNAL)
V90X8367X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8400X
V90X8374X
V90X8773X
V90X8382X
and then return to Step A.
Step \(39-\) ME-2 at Required Percent Thrust. This step monitors the ME-2 percent chamber pressure via the SSME SOP. If the chamber pressure does not reach the required level within the required number of seconds from the time the start commands were issued in Step 28, then the launch sequence abort flag is set and ME-2 is commanded to shut down.

Monitor the following:
(a) MPS E-2 PERCENT CH PRESS V95U1187X
(b) ENG_PERCENT_CH_PRS_FOR_GO V97U9714C
(c) ENG_TIMER_FOR_THRUST_OK V97U9716C
(d) ENG START CMDS ISSUED FLAG
(INTERNAL)

If \((a) \geq(b)\) percent, proceed to Step 40.
If (a) \(<\) (b) percent, but (c) seconds have not elapsed since (d) was set \(=\) true in Step 28 , then return to Step A.

If (a) < (b) percent, and (c) seconds have elapsed since (d) was set \(=\) true in Step 28 , then terminate the following outputs:
\begin{tabular}{lll} 
(1) & PREP SSME's FOR LIFT-OFF FLAG & V90X8373X \\
(2) SRM IGN ARM FLAG & V90X8404X \\
(3) TO UMB RELEASE ARMFLAG & V90X8407X
\end{tabular}
and issue the following outputs:
(4) ENG 2 SHUTDOWN FLAG B
(5) CMD SSME's TO PRE-START POS FLAG V90X8412X
(6) MPS E2 SHUTDOWN ENABLE CMD V90X8368X
(7) MPS SLEW COMP FLAG V90X8400X
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) ME-2 LOW CHAMBER PRESSURE ABORT V90X8774X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then return to Step A.

Step \(40-\) ME-3 at Required Percent Thrust. This step monitors the ME-3 percent chamber pressure via the SSME SOP. If the chamber pressure does not reach the required level within the required number of seconds from the time the start commands were issued in Step 28, then the launch sequence abort flag is set and ME-3 is commanded to shut down.

Monitor the following:
\begin{tabular}{llr} 
(a) & MPS E-3 PERCENT CH PRESS & V95U1188X \\
(b) & ENG_PERCENT_CH_PRS_FOR_GO & V97U9714C \\
(c) & ENG_TIMER_FOR_THRUST_OK & V97U9716C \\
(d) & ENG START CMDS ISSUED FLAG & (INTERNAL)
\end{tabular}

If (a) \(\geq\) (b) percent, proceed to Step 41 .
If (a) < (b) percent, but (c) seconds have not elapsed since (d) was set = true in Step 28, then return to Step A.

If (a) < (b) percent, and (c) seconds have elapsed since (d) was set \(=\) true in Step 28, then terminate the following outputs:
(1) PREP SSME'S FOR LIFT-OFF FLAG
V90X8373X
(2) SRM IGN ARM FLAG
V90X8404X
(3) TO UMB RELEASE ARM FLAG
V90X8407X
and issue the following outputs:
(4) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(5) CMD SSME's TO PRE-START POS FLAG V90X8412X
(6) MPS E-3 SHUTDOWN ENABLE CMD V90X8369X
(7) MPS SLEW COMP FLAG V90X8400X
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) ME-3 LOW CHAMBER PRESSURE ABORT V90X8775X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X
and then return to Step A.
Step 41 - Go for SRB Ignition Check. This step provides a time delay to permit critical SSME actuator checks after all engines have reached the required thrust level for re-enabling MPS TVC FDIR. The time delay is initiated on the first pass through Step 28. If any engine actuator has a port failure after all engines have reached 90 percent thrust, that engine will be shut down first followed by the other two engines after a time delay. This step also monitors the GROUND CHECKOUT ENABLE FLAG to determine if an actual flight firing of the engines should occur, or if a ground checkout test is being performed. If a ground checkout test is being performed, SRB ignition will not be commanded.

Monitor the following:
(a) SRB_IGN_TIME_DELAY

V97U9726C
(b) GNC GROUND CHECKOUT ENABLE V93X5538X

If (a) seconds have not elapsed, return to Step A

If (a) seconds have elapsed and (b) is false, proceed to Step 41B.
If (a) seconds have elapsed, and (b) is true, return to Step A.
Step 41A - Deleted.
Step 41B - SRB Ignition. This step commands SRB ignition based on all previous checks having been passed.

Issue the following outputs:
\begin{tabular}{lll} 
(1) & SRM IGN FIRE 1 FLAG & V90X8405X \\
(2) & SRM IGN FIRE 2/3 FLAG & V90X8699X \\
(3) & TERMINATE LPS POLLING FLAG & V90X8378X \\
(4) & MODE CONTROL MET RESET CMD & V90X8401X \\
(5) & READ GMT \& STORE FLAG & V90X8402X \\
(6) & EVENT TIMER START FLAG & V90X8403X \\
(7) & SRB IGNITION CMD FLAG & V90X8377X
\end{tabular}
and then return to Step A.
Steps 41C Through 41E - Deleted.
Step \(42-\mathrm{ME}-1\) Actuator Port Checks. This step provides a check of the actuator ports for ME-1. If any actuator port failure is present for two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and a shutdown of ME-1 is initiated.

Monitor the following:
(a) MPS ENG 1 P ACTR A FAIL

V79X1170X
(b) MPS ENG 1 Y ACTR A FAIL V79X1171X
(c) MPS ENG 1 P ACTR B FAIL
(d) MPS ENG 1 Y ACTR B FAIL V79X1173X V79X1174X
(e) MPS ENG 1 P ACTR C FAIL V79X1176X
(f) MPS ENG 1 Y ACTR C FAIL V79X1177X
(g) MPS ENG 1 P ACTR D FAIL V79X1178X
(h) MPS ENG 1 Y ACTR D FAIL V79X1179X
(i) ME-1 ACTR PORT FAIL FIRST PASS FLAG "F"
(INTERNAL)
If \((\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d}),(\mathrm{e}),(\mathrm{f}),(\mathrm{g})\), and (h) all \(=\) false, then set \((\mathrm{i})=\) true and proceed to Step 43.
If either \((\mathrm{a})\) or \((\mathrm{b})\) or \((\mathrm{c})\) or \((\mathrm{d})\) or \((\mathrm{e})\) or \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{i})=\) true, then set \((\mathrm{i})=\) false and proceed to Step 43.

If either \((\mathrm{a})\) or \((\mathrm{b})\) or \((\mathrm{c})\) or \((\mathrm{d})\) or \((\mathrm{e})\) or \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{i})=\) false, then terminate the following outputs:
\begin{tabular}{lll} 
(1) & PREP SSME's FOR LIFT-OFF FLAG & V90X8373X \\
(2) SRM IGN ARM FLAG & V90X8404X \\
(3) TO UMB RELEASE ARMFLAG & V90X8407X
\end{tabular}
and issue the following outputs:
(4) ENG 1 SHUTDOWN FLAG C
(INTERNAL)
(5) CMD SSME's TO PRE-START POS FLAG

V90X8412X
(6) MPS E-1 SHUTDOWN ENABLE CMD

V90X8367X
(7) MPS SLEW COMP FLAG V90X8400X
(8) MPS TVC SERVO OVRD CMD V90X8374X
(9) ME-1 ACT PORT FAIL ABORT V90X8776X
(10) LAUNCH SEQUENCE ABORT FLAG

V90X8382X
and then return to Step A.
Step 43-ME-2 Actuator Port Checks. This step provides a check of the actuator ports for ME-2. If any actuator port failure is present for two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and a shutdown of ME-2 is initiated.

Monitor the following:
(a) MPS ENG 2 P ACTR A FALL V79X1270X
(b) MPS ENG 2 Y ACTR AFAIL V79X1271X
(c) MPS ENG 2 P ACTR B FAIL
(d) MPS ENG 2 Y ACTR B FAIL

V79X1273X
(e) MPS ENG 2 P ACTR C FAIL
(f) MPS ENG 2 Y ACTR C FAIL

V79X1274X V79X1276X
(g) MPS ENG 2 P ACTR D FAIL V79X1277X
(h) MPS ENG 2 Y ACTR D FAIL V79X1278X
(i) ME-2 ACTR PORT FAIL FIRST PASS FLAG "G"

V79X1279X
(INTERNAL)

If \((\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d}),(\mathrm{e}),(\mathrm{f}),(\mathrm{g})\), and \((\mathrm{h})\) all \(=\) false, then set \((\mathrm{i})=\) true and proceed to Step 44.
If either \((\mathrm{a})\) or \((\mathrm{b})\) or \((\mathrm{c})\) or \((\mathrm{d})\) or \((\mathrm{e})\) or \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{i})=\) true, then set \((\mathrm{i})=\) false and proceed to Step 44.

If either \((\mathrm{a})\) or \((\mathrm{b})\) or \((\mathrm{c})\) or \((\mathrm{d})\) or \((\mathrm{e})\) or \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{i})=\) false, then terminate the following outputs:
\begin{tabular}{lll} 
(1) PREP SSME'S FOR LIFT-OFF FLAG & V90X8373X \\
(2) SRM IGN ARMFLAG & V90X8404X \\
(3) TO UMB RELEASE ARM FLAG & V90X8407X
\end{tabular}
and issue the following outputs:
\begin{tabular}{llr} 
(4) & ENG 2 SHUTDOWN FLAG B & (INTERNAL) \\
(5) & CMD SSME'S TO PRE-START POS FLAG & V90X8412X \\
(6) MPS E-2 SHUTDOWN ENABLE CMD & V90X8368X \\
(7) & MPS SLEW COMP FLAG & V90X8400X \\
(8) & MPS TVC SERVO OVRD CMD & V90X8374X \\
(9) & ME-2 ACT PORT FAIL ABORT & V90X8777X \\
(10) LAUNCH SEQUENCE ABORT FLAG & V90X8382X
\end{tabular}
and then return to Step A.

Step \(44-\) ME-3 Actuator Port Checks. This step provides a check of the actuator ports for ME-3. If any actuator port failure is present for two successive cycles, then the LAUNCH SEQUENCE ABORT FLAG is set and a shutdown of ME-3 is initiated.

Monitor the following:
(a) MPS ENG 3 P ACTR A FAIL V79X1370X
(b) MPS ENG 3 Y ACTR A FAIL V79X1371X
(c) MPS ENG 3 P ACTR B FAIL V79X1373X
(d) MPS ENG 3 Y ACTR B FAIL V79X1374X
(e) MPS ENG 3 P ACTR C FAIL V79X1376X
(f) MPS ENG 3 Y ACTR C FAIL

V79X1377X
(g) MPS ENG 3 P ACTR D FAIL V79X1378X
(h) MPS ENG 3 Y ACTR D FAIL V79X1379X
(i) ME-3 ACTR PORT FAIL FIRST PASS FLAG "H"
(INTERNAL)

If \((\mathrm{a}),(\mathrm{b}),(\mathrm{c}),(\mathrm{d}),(\mathrm{e}),(\mathrm{f}),(\mathrm{g})\), and \((\mathrm{h})\) all \(=\) false, then set \((\mathrm{i})=\) true and proceed to Step 38.
If either \((\mathrm{a})\) or \((\mathrm{b})\) or \((\mathrm{c})\) or \((\mathrm{d})\) or \((\mathrm{e})\) or \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{i})=\) true, then set \((\mathrm{i})=\) false and proceed to Step 38.

If either (a) or (b) or (c) or (d) or \((\mathrm{e})\) or \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{i})=\) false, then terminate the following outputs:
\begin{tabular}{lll} 
(1) & PREP SSME's FOR LIFT-OFF FLAG & V90X8373X \\
(2) & SRM IGN ARM FLAG & V90X8404X \\
(3) TO UMB RELEASE ARM FLAG & V90X8407X
\end{tabular}
and issue the following outputs:
(4) ENG 3 SHUTDOWN FLAG D
(INTERNAL)
(5) CMD SSME's TO PRE-START POS FLAG

V90X8412X
(6) MPS E3 SHUTDOWN ENABLE CMD

V90X8369X
(7) MPS SLEW COMP FLAG

V90X8400X
(8) MPS TVC SERVO OVRD CMD

V90X8374X
(9) ME-3 ACT PORT FAIL ABORT

V90X8778X
(10) LAUNCH SEQUENCE ABORT FLAG V90X8382X.
and then return to Step A.



Figure 4.114. Redundant Set Launch Sequence (Sheet 2 of 13)


Figure 4.114. Redundant Set Launch Sequence (Sheet 3 of 13 )

STS 83-0026D
OI-21
January 25,1991


Figure 4.11-4. Redundant Set Launch Sequence (Sheet 4 of 13)


Figure 4.114. Redundant Set Launch Sequence (Sheet 5 of 13)


Figure 4.11-4. Redundant Set Launch Sequence (Sheet 6 of 13)




Figure 4.114. Redundant Set Launch Sequence (Sheet 10 of 13)


Figure 4.114 Redundant Set Launch Sequence (11 of 13)


TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS


ะ ะ ํ

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS



0
0
0
\(E\)
\(E\)
3
3

TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{DBEN: D3B027-F} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{PN: VP701100049P00L INPUT FUNCTIONAL PARAMETERS FOR R/S LCH SEQ}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & \multirow[t]{12}{*}{TYPE C} & \multirow[t]{12}{*}{LAST CRS} \\
\hline \multirow[t]{12}{*}{FSSR NAME} & M/S ID & NOMENCLATURE & SOURCE & \multirow[t]{12}{*}{UNITS} & & \\
\hline & V95x1231X & ME-2 MAJor component fail flag & SSME SOP & & & \\
\hline & V95x1232x & ME-3 MAJOR COMPONENT FAIL FLAG & SSME SOP & & & \\
\hline & V95x1236x & ME-1 Channel fail flag & SSME SOP & & & \\
\hline & v95x1237x & me-2 Channel fail flag & SSME SOP & & & \\
\hline & V95x1238x & me-3 Channel fail flag & SSME SOP & & & \\
\hline & V99W8801CA & PREDICTED GMT OF LIFTOFF & LPS & & & \\
\hline & V99x8804x & LPS GO FOR ENGINE START FLAG & LPS & & & \\
\hline & V99x8827x & GMTLO SET COMMAND & LPS & & & \\
\hline & v99x8829x & LPS COUNTDOWN HOLD FLAG & LPS & & & \\
\hline & \begin{tabular}{l}
v99x8833x \\
V99.J8836CA
\end{tabular} & lps bypass lo2 accum rectrc vlv op IPS ORBITER VENT DOORS OVRD WORD & \({ }_{\text {LPS }}^{\text {LPS }}\) & & & \\
\hline & V9958836CA & LPS ORBITER VENT DOORS OVRD WORD & LPS & & BSU & 89981A \\
\hline
\end{tabular}
TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS


\section*{00049P00L OUTPUT FUNCTIONAL PARAMETERS FROM R／S LCH SEQ
M／S ID NOMENCLATURE
DESTINATION} \(\begin{array}{llllllllll} \\ V 41 K 1141 X C & M P S & \text { E1 } & \text { LO2 } & \text { PREVLV（PV1）} & \text { CL CMD } & \text { C } & \text { LCA A2 } \\ \text { V41K1142XB MPS E1 } & \text { LO2 } & \text { PREVLV（PV1）} & \text { CL } & \text { CMD } & D & \text { HDWR }\end{array}\) \(\begin{array}{lllllllll}V 41 K 1141 X C & \text { LPS E1 LO2 PREVLV（PVI）} & \text { CL CMD C } & \text { C } & \text { LCA } \\ \text { V41K1142XB MPS E1 LO2 PREVLV（PV1）} & \text { CL CMD D } & \text { HDWR }\end{array}\) V41K1143XB MPS E1 LO2 PREVLV（PV1）OP CMD D HD HDR
V41K1168XC MPS E1 HE INTCN OUT（LV60）OP CMD A HDWR

会

品品

\footnotetext{
笑
管営
बig
ai
ni
V41K1421KB MPS LH2 RECIRC DISC VLV OPEN CMD
V41K1422XC MPS LH2 RECIRC DISC VLV CLOSE CMD
V41K1584KA MPS LO2 OVBD B／V（PV19）CL CMD A
V41K1585KA MPS LO2 OVBD B／V（PV19）CL CMD B
\(\gg\)
}

    D 2 미 U
DBEN：D3B027－F

V41K1263XC MPS E2 HE INTCN IN（LV61）OP CMD B HDWR


\footnotetext{
V41K1319xC MPS E3 LH2 PREVLV


}

0
0
0
E－
W
W
H
\begin{tabular}{|c|c|}
\hline  & \(\triangle\) \\
\hline  & \(\infty \bigcirc\) \\
\hline un in at in in in & Or \\
\hline in in oin in in in & （1）\(\infty\) \\
\hline o o o o o o a & or or \\
\hline \(\infty \infty-\infty \infty \infty\) & \(\cdots \infty\) \\
\hline
\end{tabular}

\section*{U U
号
\(N_{n}\)
\(\infty\)
\(\infty\)}

TABLE 4．1．1．4－1．REDUNDANT SET LAUNCH SEQUENCE（G4．114）INPUT／OUTPUT FUNCTIONAL PARAMETERS
\begin{tabular}{|c|c|c|c|}
\hline 帋鬼置 & 㽞皿皿皿 &  &  \\
\hline \begin{tabular}{l}
4 \\
4 \\
\hline
\end{tabular} & & v & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 100049P00L & OUTPUT FUNCTIONAL PARAMETERS & FROM R／S LCH SEQ \\
\hline M／S ID & NOMENCLATURE & destination \\
\hline V41K1586KA & MPS LO2 OVBD b／V（PV19）CL CMD & LCA A2 \\
\hline V41K1613xD & MPS REG HE XOVER VLV（LV10）op CMD & HDWR \\
\hline V41K1815x & MPS LO2 POGO RECRC 1 （PV20）CL CMD & LCA A1 \\
\hline V41K1816x & MPS LO2 POGO RECRC 1 （PV20）CL CMD B & LCA A1 \\
\hline V41K1825x & MPS LO2 POGO RECRC 2 （PV21）CL CMD A & LCA A2 \\
\hline V41K1826x & MPS LO2 POGO RECRC 2 （PV21）CL CMD & LCA \\
\hline v90x8378x & TERMINATE LPS POLLING FLAG & SYS S／W \\
\hline v90w8380c & COUNTDOWN TIME & tLM \\
\hline v90x8382x & Launch sequence abort flag & tLM \\
\hline v90x8383x & LH IGN PIC CAP A HOLD & TL \\
\hline v90x8384x & Lh IGN PIC CAP B HOLD & TLM \\
\hline V90x8385x & RH IGN PIC CAP A Hold & TLM \\
\hline V90x8386X & RH IGN PIC CAP B HOLD & TLM \\
\hline v90x8389x & ENGINE SHUTDOWN VERIFICATION HOLD & TLM \\
\hline v90x8390x & MPS LH2 OUTBD FILL VLV hold & TLM \\
\hline v90x8391x & MPS LOX OUTBD FILL VLV Hold & tLm \\
\hline V90x8392x & MPS LOX ACC RECIRC VLV HOLD & TLM \\
\hline v90x8393x & LPS GO FOR AUTO SEQ START HOLD & TLM \\
\hline v90x8394x & LPS GO FOR ENGINE START HOLD & TLM \\
\hline v90x8395x & R／S SEQ SSME GO FOR LAUNCH HOLD & TLM \\
\hline v90x8396x & MPS E－1 LH2 PREVLV OPEN HOLD & TLM \\
\hline v90x8397x & MPS E－2 LH2 PREVLV OPEN HOLD & TLM \\
\hline v90x8398x & MPS E－3 LH2 PREVLV OPEN HOLD & TLM \\
\hline v90x8401x & mode Control met reset Cmd & SYS S／w \\
\hline v90x8402x & READ GMT \＆STORE FLAG & SYS S／W \\
\hline v90x8403xA & EVENT TIMER START FLAG & SYS S／w \\
\hline v90x8668x & SSME SOP RECYCLE Flag & SSME SOP \\
\hline v90x8670x & ME－1 PAD DATA PATH FAIL HOLD & TLM \\
\hline V90x8671x & me－2 Pad data path fail hold & TLM \\
\hline V90x8672x & me－3 Pad data path fail hold & TLM \\
\hline V90x8679x & me－1 CONTROL FAIL HOLD & TLM \\
\hline V90x8680x & Me－2 CONTROL FAIL hold & TLM \\
\hline v90x8681x & Me－3 CONTROL FAIL HOLD & TLM \\
\hline V90x8767x & FLIGHT CRITICAL MDM HOLD／ABORT & TLM \\
\hline v90x8768x & LPS COUNTDOWN HOLD & TLM \\
\hline v90x8769x & mps valve pos commfault hold & TLM \\
\hline v90x8770x & VENT DOOR POSITION HOLD & TLM \\
\hline v90x8771x & UnCOMMANDED ENGINE Shutdown abort & TLM \\
\hline v90x8772x & MPS ACT PORT COMMFAULT ABORT & LM \\
\hline v90x8773x & ME－1 LOW CHAMBER PRESSURE ABORT & TLM \\
\hline v90x8774x & ME－2 LOW Chamber pressure abort & TLM \\
\hline v90x8775x & me－3 Low Chamber pressure abort & TLM \\
\hline
\end{tabular}
TABLE 4.1.1.4-1. REDUNDANT SET LAUNCH SEQUENCE (G4.114) INPUT/OUTPUT FUNCTIONAL PARAMETERS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{00 L OUTPUT functional parameters from r/s LCH SEQ} \\
\hline \multirow[t]{7}{*}{FSSR NAME} & & & & & & \\
\hline & & & & & DATA & \\
\hline & M/S ID & NOMENCLATURE & DESTINATION & UNITS & TYPE & L.AST CRS \\
\hline & v90x8776x & ME-1 ACT PORT FAIL ABORT & tLM & & BD & \\
\hline & V90x8777x & ME-2 ACT PORT FAIL ABORT & TLM & & BD & \\
\hline & v90x8778X & ME-3 ACT PORT EAIL ABORT & TLM & & BD & \\
\hline & V99W8801CB
V99J8836CB & PREDICTED GMT OF LIFTOFF
LPS ORBITER VENT
DOORS OVRD WORD & TLLM & & BSU & 89981A \\
\hline
\end{tabular}

Rockwell international
Space Systems Division

TABLE 4.1.1.4-2. REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114)I-LOADS

DBE'N: 0484
TABLE 4.1.1.4-2. REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) I-LOADS

\footnotetext{
E S DEG4.114 \(\mathrm{ZSZ7}\)

V97U9719C SEC

VERIEY_ALL_ENG SHTDN_TIMER
}

Rockwell international Space Systems Division
TABLE 4.1.1.4-3. REDUNDANT SET LAUNCH SEQUENCE PROCESSING (G4.114) K-LOADS
DBFN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS
DBFN: 0558
FSSR NAME
DESCRIPTION TIMER G SHTDN TIME DELAY
TIMER " \({ }^{-}\)" SHTDN TIME DELAY TIMER J SHTDN TIME DELAY
TIMER" "J" SHTDN TIME DELAY

\subsection*{4.1.2 MPS Dedicated Drive Sequence (4.222)}

\subsection*{4.1.2.1 Introduction}

The main propulsion system (MPS) dedicated display drive sequence is used during prelaunch and ascent to monitor certain MPS data and drive the appropriate MPS dedicated displays. The sequence is initiated at the transition to OPS 1 and runs continuously until structural separation of the external tank (ET). The sequence provides outputs for driving the MPS chamber pressure (Pc) meter and the MPS status lights for each SSME. In addition, the sequence issues the prevalve close inhibit commands when the chamber pressure for each engine reaches the appropriate level during engine start. Likewise, these commands are removed at the proper level during shutdown of each main engine. The prevalve close inhibit commands are issued through flight-critical MDM's to load control assemblies, which prevent closure of the prevalves any time the chamber pressure is above a certain level.

\subsection*{4.1.2.2 Overview}

The MPS dedicated display drive sequence monitors the SSME status via SSME SOP flags for each engine; and, if an engine limit is exceeded or an engine enters the shutdown phase, it will turn on the red status light for that engine. It also monitors for indication of an electronic lockup, hydraulic lockup, flight data path fail, or the command path fail. Any one of these will turn on the amber status light for that engine. After main engine cutoff and ET separation, the red and amber status lights for all engines are commanded off.

The sequence also monitors the averaged chamber pressure data from each SSME via the SSME SOP and drives the dedicated meters. In addition, the sequence issues the prevalve close inhibit Commands \(A, B, C\) for each SSME prevalve when that engine reaches a particular percent thrust. Likewise, these commands are removed when the pressure decreases below that level during SSME shutdown and tail-off, or after MECO COMMAND. When the loss of valid data from an engine occurs, the SSME SOP sets the flight data path fail flag, and the prevalve close inhibit commands are removed. The chamber pressure ( Pc ) meter is also driven to zero if the flight data path fail flag is set.

\subsection*{4.1.2.3 Detailed Requirements}

Step 1 -ET Structural Separation Command Check. This step monitors for a flag from the ET separation sequence, which indicates that structural separation commands have been issued. When the flag is set, all of the MPS red and amber status lights are commanded off.

Monitor the following
(a) ET SEPARATION CMD FLAG V90X8250X

If \((\mathrm{a})=\) false, proceed to Step 2.
If \((a)=\) true, terminate the following commands and then terminate this sequence:
(1) MPS E-1 STATUS/RED LITE ON V72X0030X
(2) MPS E-1 STATUS/AMBER LITE ON V72X0035X
(3) MPS E-2 STATUS/RED LITE ON V72X0031X
(4) MPS E-2 STATUS/AMBER LITE ON V72X0036X
(5) MPS E-3 STATUS/RED LITE ON V72X0032X
(6) MPS E-3 STATUS/AMBER LITE ON V72X0037X

Step 2-ME-1 Red Status Light Control. This step monitors the ME-1 engine status; and if the engine limit is exceeded or if the engine enters shutdown, then the red status light is commanded on.

Monitor the following:
(a) ME-1 ENGINE LIMIT EXCEEDED FLAG

V95X1190X
(b) MPS E-1 SHUTDOWN PHASE V95X1155X
(c) MPS E-1 POSTSHUTDOWN PHASE V95X1160X

If neither (a) nor (b) nor \((\mathrm{c})=\) true, then terminate output (1) below and proceed to Step 3. If either (a) or (b) or \((\mathrm{c})=\) true, then issue the following output and proceed to Step 3.
(1) MPS E-1 STATUS/RED LITE ON

V72X0030X
Step 3-ME-1 Amber Status Light Control. This step monitors the ME-1 engine status via flags from the SSME SOP; and if either electronic lockup or hydraulic lockup mode is indicated or if the engine data path or command path is lost, then the amber status light is turned on.

Monitor the following:
(a) ME-1 ELECTRONIC LOCKUP MODE FLAG V95X1194X
(b) ME-1 HYDRAULIC LOCKUP MODE FLAG V95X1198X
(c) ME-1 FLIGHT DATA PATH FAIL FLAG V95X1150X
(d) ME-1 CMD PATH FAIL FLAG V95X1202X

If neither (a) nor (b) nor (c) nor (d) = true, terminate output (1) below and proceed to Step 4. If either (a) or (b) or (c) or \((\mathrm{d})=\) true, then issue the following output and proceed to Step 4.
(1) MPS E-1 STATUS/AMBER LITE ON

V72X0035X
Step 4-ME-2 Red Status Light Control. This step monitors the ME-2 engine status, and if the engine limit is exceeded or if the engine enters shutdown, then the red status light is commanded on.

Monitor the following:
(a) ME-2 ENGINE LIMIT EXCEEDED FLAG

V95X1191X
(b) MPS E-2 SHUTDOWN PHASE V95X1156X
(c) MPS E-2 POST-SHUTDOWN PHASE

V95X1161X
If neither (a) nor (b) nor (c) a true, terminate output (1) below and then proceed to Step 5. If either (a) or (b) or \((\mathrm{c})=\) true, then issue the following output and proceed to Step 5.

\section*{(1) MPS E-2 STATUS/RED LITE ON}

V72X0031X
Step 5-ME-2 Amber Status Light Control. This step monitors the ME-2 engine status via flags from the SSME SOP; and if either electronic lockup or hydraulic lockup mode is indicated or if the engine data path or command path is lost, then the amber status light is turned on.
Monitor the following:
(a) ME-2 ELECTRONIC LOCKUP MODE FLAG

V95X1195X
(b) ME-2 HYDRAULIC LOCKUP MODE FLAG V95X1199X
(c) ME-2 FLIGHT DATA PATH FAIL FLAG V95X1151X
(d) ME-2 CMD PATH FAIL FLAG

If neither (a) nor (b) nor (c) nor (d) =true, terminate output (1) below and proceed to Step 6.
If either \((\mathrm{a})\) or \((\mathrm{b})\) or \((\mathrm{c})\) or \((\mathrm{d})=\) true, then issue the following output and proceed to Step 6.

\section*{(1) MPS E-2 STATUS/AMBER LITE ON}

V72X0036X

Step 6 - ME-3 Red Status Light Control. This step monitors the ME-3 engine status, and if the engine limit is exceeded or if the engine enters shutdown, then the red status light is commanded on.

Monitor the following:
(a) ME-3 ENGINE LIMIT EXCEEDED FLAG

V95X1192X
(b) MPS E-3 SHUTDOWN PHASE V95X1157X
(c) MPS E-3 POST-SHUTDOWN PHASE

V95X1162X

If neither (a) nor (b) nor (c) =true, terminate output (1) below and then proceed to Step 7.
If either \((a)\) or \((b)\) or \((c)=\) true, then issue the following output and proceed to Step 7.
(1) MPS E-3 STATUS/RED LITE ON

V72X0032X

Step 7 - ME-3 Amber Status Light Control. This step monitors the ME-3 engine status via flags from the SSME SOP; and if either electronic lockup or hydraulic lockup mode is indicated or if the engine data path or command path is lost, then the amber status light is turned on.

Monitor the following:
(a) ME-3 ELECTRONIC LOCKUP MODE FLAG

V95X1196X
(b) ME-3 HYDRAULIC LOCKUP MODE FLAG

V95X1200X
(c) ME-3 FLIGHT DATA PATH FAIL FLAG

V95X1152X
(d) ME-3 CMD PATH FAIL FLAG

V95X1204X

If neither (a) nor (b) nor (c) nor (d) = true, terminate output (1) below and proceed to Step 8.
If either \((a)\) or \((b)\) or \((c)\) or \((d)=\) true, then issue the following output and proceed to Step 8.

\section*{(1) MPS E-3 STATUS/AMBER LITE ON}

V72X0037X

Step 8 - ME-1 Data Path Fail Check. This step monitors the ME-1 FLT DATA PATH FAIL FLAG from the SSME SOP, and if set, the ME-1 prevalve close inhibit commands are removed and the ME-1 chamber pressure ( Pc ) meter is driven to zero scale.

Monitor the following:
(a) ME-1 FLIGHT DATA PATH FAIL FLAG

V95X1150X

If \((a)=\) false, then proceed to Step 9.
If \((a)=\) true, then terminate the following commands:
\begin{tabular}{lll} 
(I) & MPS E-1 PVLV CLOSE INH CMD A & V41K1125X \\
(2) & MPS E-1 PVLV CLOSE INH CMD B & V41K1126X \\
(3) MPS E-1 PVLV CLOSE INH CMD C & V41K1127X
\end{tabular}
and drive the Pc meter to zero scale ( 0 Vdc ) with the following output:
(4) MPS E-1 MAIN CHAMBER-PR/CMPT

V72P0040C

Then proceed to Step 11.
Step 9 - Normal Control of ME-1 Prevalve Close Inhibit Commands. This step monitors ME-1 main chamber pressure in percent via the SSME SOP and at the appropriate level will either issue or remove the prevalve close inhibit commands for Engine 1.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS

V95U1186C

If (a) is equal to or greater than 30 percent, then issue the following outputs and proceed to Step 10.
(1) MPS E-1 PVLV CLOSE INH CMD A V41K1125X
(2) MPS E-1 PVLV CLOSE INH CMD B V41K1126X
(3) MPS E-1 PVLV CLOSE INH CMD C V41K1127X

If (a) is less than 30 percent, then terminate outputs (1), (2), and (3), and proceed to Step 10.
Step 10-ME-1 Chamber Pressure Meter Drive. This step provides the output to the ME-1 chamber pressure ( Pc ) meter. The SSME SOP converts ME-1 main chamber pressure to percent and provides this as an input to this sequence. This step scales the percent input to 0 to 5 Vdc and outputs to the Pc meter.

Monitor the following:
(a) MPS E-1 PERCENT CH PRESS

V95U1186C

Output (a) in volts ( 0 to 115 percent scaled to 0 to 5 Vdc ) as follows:
(1) MPS E-1 MAIN CHAMBER-PR/CMPT

V72P0040C

Proceed to Step 11.
Step 11 - ME-2 Data Path Fail Check. This step monitors the ME -2 data path fail flag from the SSME \(\overline{S O P}\), and if set, the ME - 2 prevalve close inhibit commands are removed and the ME-2 chamber pressure \((\mathrm{Pc})\) meter is driven to zero scale.

Monitor the following:
(a) ME-2 FLT DATA PATH FAIL FLAG

V95X1151X

If \((\mathrm{a})=\) false, then proceed to Step 12.
If \((a)=\) true, then terminate the following commands:
\begin{tabular}{lll} 
(1) MPS E-2 PVLV CLOSE INH CMD A & V41K1225X \\
(2) MPS E-2 PVLV CLOSE INH CMD B & V41K1226X \\
(3) MPS E-2 PLVL CLOSE INH CMD C & V41K1227X
\end{tabular}
and drive the Pc meter to zero scale ( 0 Vdc ) with the following output:
(4) MPS E-2 MAIN CHAMBER-PR/CMPT

V72P0041C
Then proceed to Step 14.
Step 12 - Normal Control of ME-2 Main Stage Commands. This step monitors ME-2 main chamber pressure in percent via the SSME SOP and at the appropriate Level will either issue or remove the prevalve close inhibit commands for Engine 2.

Monitor the following:
(a) MPS E-2 PERCENT CH PRESS

V95U1187C
If (a) is equal to or greater than 30 percent, then issue the following outputs and proceed to Step 13.
\begin{tabular}{lll} 
(1) & MPS E-2 PVLV CLOSE INH CMD A & V41K1225X \\
(2) & MPS E-2 PVLV CLOSE INH CMD B & V41K1226X \\
(3) MPS E-2 PVLV CLOSE INH CMD C & V41K1227X
\end{tabular}

If (a) is less than 30 percent, then terminate outputs (I), (2), and (3) and proceed to Step 13.
Step 13 - ME-2 Chamber Pressure Meter Drive. This step provides the output to the ME-2 chamber pressure (Pc) meter. The SSME SOP converts ME-2 main chamber pressure to percent and provides this as an input to this sequence. This step scales the percent input to 0 to 5 Vdc and outputs to the Pc meter.

Monitor the following:
(a) MPS E-2 PERCENT CH PRESS

V95U1187C
Output (a) in volts ( 0 to 115 percent scales to 0 to 5 Vdc ) as follows:
(1) MPS E-2 MAIN CHAMBER-PR/CMPT

V72P0041C
Proceed to Step 14.
Step 14 - ME-3 Data Path Fail Check. This step monitors the ME-3 data path fail flag from the SSME SOP, and if set, the ME-3 prevalve close inhibit commands are removed, and the ME-3 chamber pressure \((\mathrm{Pc})\) meter is driven to zero scale.

Monitor the following:
(a) ME-3 FLT DATA PATH FAll FLAG

If \((\mathrm{a})=\) false, then proceed to Step 15 .
If \((\mathrm{a})=\) true, then terminate the following commands:
\(\begin{array}{lll}\text { (1) } & \text { MPS E-3 PVLV CLOSE INH CMD A } & \text { V41K1325X } \\ \text { (2) MPS E-3 PVLV CLOSE INH CMD B } & \text { V41K1326X } \\ \text { (3) MPS E-3 PVLV CLOSE INH CMD C } & \text { V41K1327X }\end{array}\)
and drive the Pc meter to zero scale \((0 \mathrm{Vdc})\) with the following output:
(4) MPS E-3 MAIN CHAMBER-PR/CMPT

V72P0042C

Then proceed to Step 17.
Step 15 - Normal Control of ME-3 Main Stage Commands. This step monitors ME-3 main chamber pressure in percent via the SSME SOP and at the appropriate level will either issue or remove the prevalve close inhibit commands for Engine 3.

Monitor the following:
(a) MPS E-3 PERCENT CH PRESS

V95U1188C
If (a) is equal to or greater than 30 percent, then issue the following outputs and proceed to Step 16.
(1) MPS E-3 PVLV CLOSE INH CMD A
V41K1325X
(2) MPS E-3 PVLV CLOSE INH CMD B
V41K1326X
(3) MPS E-3 PVLV CLOSE INH CMD C
V41K1327X

If (a) is less than 30 percent, then terminate outputs (1), (2), and (3) and proceed to Step 16.
Step 16-ME-3 Chamber Pressure Meter Drive. This step provides the output to the ME-3 chamber pressure (Pc) meter. The SSME SOP converts ME-3 main chamber pressure to percent and provides this as an input to this sequence. This step scales the percent input to 0 to 5 Vdc and outputs to the Pc meter.

Monitor the following:
(a) MPS E-3 PERCENT CH PRESS

V95U1188C
Output (a) in volts ( 0 to 115 percent scaled to 0 to 5 Vdc ) as follows:
(1) MPS E-3 MAIN CHAMBER-PR/CMPT

V72P0042C
Proceed to Step 17.
Step 17 - MECO Command Monitor. This step monitors for the issuance of the MECO COMMAND FLAG and terminates the prevalve close inhibit commands after the appropriate time delay if flag is set true.

Monitor the following:
(a) MECO COMMAND FLAG V90X8569X
(b) MECO_PREVLV_CLOSE_DELAY V96U9761C

If (a) is true and (b) seconds have elapsed after detecting (a) true, terminate outputs (1) through (9) below and return to Step 1.
\begin{tabular}{lll} 
(1) & MPS E-1 PVLV CLOSE INH CMD A & V41K 1125 X \\
(2) & MPS E-1 PVLV CLOSE INH CMD B & V41K 1126 X \\
(3) & MPS E-2 PVLV CLOSE INH CMD A & V41K 1225 X \\
(4) & MPS E-2 PVLV CLOSE INH CMD B & V41K 1226 X \\
(5) & MPS E-3 PVLV CLOSE INH CMD A & V41K1325X \\
(6) & MPS E-3 PVLV CLOSE INH CMD B & V41K1326X \\
(7) & MPS E-1 PVLV CLOSE INH CMD C & V41K1127X \\
(8) & MPS E-2 PVLV CLOSE INH CMD C & V41K1227X \\
(9) & MPS E-3 PVLV CLOSE INH CMD C & V41K1327X
\end{tabular}

Otherwise, return to Step 1.


Figure 4.222. MPS D/D Drive Sequence (Sheet 1 of 6 )


Figure 4.222. MPS D/D Drive Sequence (Sheet 2 of 6)


Figure 4.222. MPS D/D Drive Sequence (Sheet 3 of 6 )


Figure 4.222. MPS D/D Drive Sequence (Sheet 4 of 6)


Figure 4.222. MPS D/D Drive Sequence (Sheet 5 of 6)


Figure 4.222. MPS D/D Drive Sequence (Sheet 6 of 6 )
TABLE 4.1.2.4-1. MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVE SEQ (G4.222) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.1.2.4-1. MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVE SEQ (G4.222) INPUT/OUTPUT FUNCTIONAL PARAMETERS


STS 83-0026D
OI-21
January 25, 1991

\section*{DBFN: 0484}

NO REQUIREMENTS
TABLE 4.1.2.4-3. MAIN PROPULSION(MPS) DEDICATED DISPLAY DRIVESEQ (G4.222) K-LOADS

DBFN: 0.558
NO REQUIREMENTS

\subsection*{4.1.3 SRB MDM Data Acquisition (4.203)}

\subsection*{4.1.3.1 Introduction}

SRB MDM data must be obtained form the SRB's during prelaunch operations and during SRB-powered flight portions of the mission. Data are used for two purposes.
1. Prelaunch Control of the SRB's
2. Downlist operations to place the data on Telemetry and on-board recorders

\subsection*{4.1.3.2 Overview}

The GPC shall contain provisions to acquire data from all four (two each SRB) MDM's. This data shall be periodically updated in COMPOOL and thereby made available to system software for downlist processing. The acquisition of the SRB MDM data shall be initiated with the transition to OPS 1 approximately 20 minutes prior to launch and shall be terminated by the SRB Separation Sequence.

NOTE: Before the transition to GNC OPS 1, the SRB MDM data acquisition is accomplished by the V.U. function (GNC-9 and/or SM-9).

\subsection*{4.1.3.3 Detailed Requirements}

Step 1. The IDD table contains the SRB MDM data listed by the principle function (4.203) to be acquired for use in GNC MM 101 and 102. Acquire the signals listed in the table and place them in main memory.
or ar
DATA
TYPE UNITS

DBEN：D3P127－E EN



LH PRESS N2H4／GN2 BOTTLE OUT SYS A
LH PRESS N2H4／GN2 BOTTLE OUT SYS
LH R RATE APU A TURBINE SPEED SNSR 1
LH RATE APU B TURBINE SPEED SNSR
I
LH RATE APU A TURBINE SPEED SNSR 2
LH RATE APU B TURBINE SPEED SNSR 2
LH TEMP GAS N2H4／GN2 BOTTLE SYS A
LH TEMP GAS N2H4／GN2 BOTTLE SYS B
LH TEMP GAS GENERATOR BED SYS A
LH TEMP GAS GENERATOR BED SYS B
LH EVENT APU A ISLN VALVE OPEN
LH EVENT APU B ISLN VALVE OPEN
LH EVENT APU A ISLN VALVE CLOSED
LH EVENT APU B ISLN VALVE CLOSED
LH EV APU SEC SP CON VLV CLD，SYS A
\(L H\) EV APU SEC SP CON VLV CLD，SYS A
LH EV APU PRI SP CON VLV OP SYS A
g SXs＇qID \(\Lambda\) TA NOD dS DHS \(\Omega\) dV \(\Lambda \exists\)

\(\begin{array}{ll}L H & E V E N T \\ \text { APU－A GG HEATER } 2 \text { ON CMD } \\ \text { LH EVENT APU－B GG HEATER } 1 \text { ON CMD }\end{array}\)




4
4
4
4 Nasoro
Nado
G SXS
Y SXS 9
2
0
0
 툴

\[
\begin{aligned}
& \text { かががが }
\end{aligned}
\]

TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

FSSR NAME
TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS


FSSR NAME
PN: VP707100049P00L
SRB DATA ACQ
SOURCE
NOMENCLATURE
\[
\begin{aligned}
& \text { ID } \\
& \text { M/S }
\end{aligned}
\]
TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS


\author{

}

\begin{tabular}{|c|c|}
\hline UUUUUUUUUUUUU & \(\cup \cup \cup \cup \cup U\) \\
\hline त-1 & H-rrnrer \\
\hline in in in in th in in th in th in wn un & in in) in in in in \\
\hline  &  \\
\hline  & の\% 0000 \\
\hline \(\infty \infty \infty \infty \infty \infty \infty \infty \infty\) & \(\infty \infty \infty \infty \times \infty\) \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline RH & TEMPERATURE RECOVERY BATTERY \\
\hline RH & VOLTAGE OPERATIONAL BUS A \\
\hline RH & VOLTAGE OPERATIONAL BUS B \\
\hline RH & VOLTAGE RECOVERY BATTERY \\
\hline LH & CURRENT DEVELOPMENT FLT BATTERY \\
\hline LH & TEMP DEVELOPMENT FLT BATTERY \\
\hline LH & VOLTAGE DEVELOPMENT FLT BATTERY \\
\hline RH & CURRENT DEVELOPMENT FLT BATTERY \\
\hline RH & TEMP DEVELOPMENT ELT BATTERY \\
\hline RH & VOLTAGE DEVELOPMENT FLT BATTERY \\
\hline LH & TEMP, FLT RECORDER \\
\hline LH & EVENT ELT RCDR MALFUNCTION \\
\hline LH & EVENT FLT RCDR RECORD IND \\
\hline LH & EVENT TIME CODE GENERATOR OK \\
\hline LH & EV FDM 1 MUXR 1 OUT-ORB RCDR OK \\
\hline LH & EVENT ELT RCDR REVERSE CMD \\
\hline LH & EVENT EDM AUTO CALIBRATION CMD \\
\hline LH & EV PCM MASTER OK \\
\hline LH & EV PCM REMOTE 1 OK \\
\hline LH & EV PCM REMOTE 2 OK \\
\hline LH & EV PCM SUBSET \(1 . O K\) \\
\hline LH & EV PCM SUBSET 2 OK \\
\hline LH & EV PCM SUBSET 3 OK. \\
\hline LH & EV EDM 1 MUX 1 OK \\
\hline LH & EV FDM 1 MUX 2 OK \\
\hline LH & EV FDM 2 MUX 1 OK \\
\hline L.H & EV EDM 2 MUX 2 OK \\
\hline LH & EV WBSC 1 OK \\
\hline LH & EV WBSC 2 OK \\
\hline LH & EV PCM REMOTE 3 OK \\
\hline RH & TEMP, FLT RCDR \\
\hline RH & EVENT FLT RCDR MALFUNCTION \\
\hline RH & EVENT FLT RCDR RECORD IND \\
\hline RH & EVENT TIME CODE GENERATOR OK \\
\hline RH & EV FDM 1 MUXR 1 OUT-ORB RCDR OK \\
\hline RH & EVENT ELT RCDR REVERSE CMD \\
\hline RH & EVENT EDM AUTO CALIBRATION CMD \\
\hline RH & EV PCM MASTER OK \\
\hline RH & EV PCM REMOTE 1 OK \\
\hline RH & EV PCM REMOTE 2 OK \\
\hline RH & EV PCM SUBSET 1 OK \\
\hline RH & EV PCM SUBSET 2 OK \\
\hline RH & EV PCM SUBSET 3 OK \\
\hline
\end{tabular}
TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.1.3.4-1. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) INPUT/OUTPUT FUNCTIONAL PARAMETERS

DBEN:0484
TABLE 4.1.3.4-2. SOLID ROCKET BOOSTER(SRB) DATA ACQUISITION (G4.203) L-LOADS

Rockwell International

\subsection*{4.2 ASCENT}

\subsection*{4.2.1 SSME Operations Sequence (4.165)}

\subsection*{4.2.1.1 Introduction}

The SSME operations sequence is initiated at TO/SRB IGNITION, and is used during the ascent phase to:
1. Monitor the operating phase of each main engine
2. Issue inhibit commands to prevent a second engine from automatically shuting down if one shutdown has already occurred
3. Monitor the state of cockpit switches via flags from the switch processor and issue appropriate commands
4. Monitor a flag from GNC software for proper time to check the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) low-level sensors and provide a single pass health check of these sensors.
5. Monitor a cut-off timing request flag from GNC software for proper time for MECO, to meet the desired time for start of thrust tailoff with accuracy requirements of \(\pm 40 \mathrm{msec}\)
6. Issue main engine shutdown commands when required
7. Close \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) prevalves for each engine after shutdown has occurred
8. Restart the event timer at MECO

In addition, an SSME data path fail flag from the SSME SOP is checked and if set and shutdown commands have been issued for that engine, then its prevalves are closed after a time delay. A MECO confirmed flag is set by the SSME operations sequence after it has been confirmed that all engines have shut down. Also a flag is set for the external tank (ET) separation sequence after the prevalves for all engines are commanded closed. This is necessary since shutdown times may differ.

\subsection*{4.2.1.2 Overview}

The SSME operations sequence is initiated when the RS launch sequence fires the SRB's and sets the TO flag. At this point, the main engines are at or above the required thrust, and the engine controllers will have entered the main stage phase 5.0 seconds after receipt of the start commands. The SSME OPS sequence operates cyclically at 25 Hz from initiation at TO until MECO is verified and a few seconds after the prevalves are commanded closed. Under normal operation through ascent, there are no commands to issue until the end of second stage when the engines must be shut down and certain main propulsion system (MPS) valves are closed.

Continuous monitoring of certain inputs is required in the event that an automatic shutdown by one engine occurs, the crew operates any of the manual switches, data from any of the main engines is lost, or, near the end of boost, either the \(\mathrm{LH}_{2}\) or \(\mathrm{LO}_{2}\) level sensors indicate fuel or oxidizer depletion.

If shutdown of an engine occurs for any reason, the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) prevalves for that engine must be closed after appropriate time delays, and the remaining two engines are inhibited from performing an automatic shutdown.

The switch processor software monitors the position of several crew station switches for the MPS and sets flags which are monitored by SSME OPS. The MPS switches being monitored are the three shutdown push-button switches and the limit shutdown switch, which can override the automatic inhibit logic and inhibit or enable engine automatic shutdown.

The SSME OPS sequence monitors the main engine chamber pressure and manual shutdown switches. If shutdown is confirmed, the appropriate MPS valves are closed. The operating phase and mode within a phase are determined from the engine status word by the SSME SOP, which gathers the engine data from the EIU, decodes it, and sets applicable flags for the various user software packages. If valid data is not available from the engine, the SSME SOP sets a data path fail flag. If this flag is set and shutdown commands have been issued, SSME OPS proceeds, after a time delay, to close the engine prevalves.

SSME OPS, upon receiving a flag from guidance, begins monitoring the fuel and oxidizer low-level sensors. A first pass health check will be made to protect against premature SSME shutdown resulting from failed dry sensors. If any two \(\mathrm{LO}_{2}\) low-level sensors, which have been disabled, indicate a dry condition, the logic will issue the MECO commands. Likewise, two \(\mathrm{LH}_{2}\) low-level sensors, which indicate dry and have not been previously disabled, will cause the issuance of MECO commands.

Normal engine shutdown, MECO, is triggered by the vehicle achieving the desired velocity and a flag being set by guidance software. The MECO commands issued include shutdown enable and shutdown commands through the EIU's to each of the three main engine controllers. The MECO commands are issued until it is determined that each engine has shutdown. At this point a MECO confirmed flag is set for GNC applications and to initiate the external tank separation sequence. After MECO confirmed, a command is sent to restart the event timer.

SSME OPS continues to operate until the required time after prevalves for each engine are commanded closed and the close commands are removed. Nominal MECO and shutdown during " G " conditions require different time delays for prevalve closure. When \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) prevalves for all engines have been commanded closed a flag is set for the ET separation sequence. This is required to prevent initiation of ET disconnect valve closure prior to initiation of all prevalves closures. When the prevalves' close commands have been removed and the flag set, the SSME OPS sequence is terminated.

\subsection*{4.2.1.3 Detailed Requirements.}

Step 1 - Main Engine (ME) 1 Prevalves Closed Check. This step provides a bypass of the logic in Steps 2 and 3 if ME- 1 is in either shutdown or post shutdown phase and the prevalves have been commanded closed.

Monitor the following:
(a) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
\[
\begin{aligned}
& \text { If }(a)=\text { false proceed to Step } 2 \\
& \text { If }(a)=\text { true proceed to Step } 4 .
\end{aligned}
\]

Step 2 - ME-1 Data Path Fail Flag Check. This step monitors for an ME-1 DATA PATH FAIL FLAG which is set by the SSME SOP when valid engine data is not available. If the ME-1 DATA PATH FAIL FLAG is set and ME- 1 safing or shutdown commands have been issued, then the \(\mathrm{LH}_{2}\) recirculation disconnect valve is commanded closed and the prevalves are commanded closed after appropriate time delays. If safing or shutdown commands have not been issued, then no action is taken.

Monitor the following:
(a) ME-1 FLIGHT DATA PATH FALL FLAG V95X1150X
(b) ME-1 SAFING CMD V90X3443X
(c) ME-1 SHUTDOWN CMD ISSUED FLAG (INTERNAL)
(d) MECO COMMAND FLAG V90X8569X
(e) MPS_E1_T_DELAY_A V97U9738C

If \((\mathrm{a})=\) false, proceed to Step 3 .
If \((\mathrm{a})=\) true and \((\mathrm{b})\) and \((\mathrm{c})=\) false, then proceed to Step 5 .
If \((\mathrm{a})=\) true and \((\mathrm{b})\) or \((\mathrm{c})=\) true and \((\mathrm{d})=\) true, issue output (2), terminate output ( 3 ), and monitor (e).

If \((a)=\) true and \((b)\) or \((c)=\) true and \((d)=\) false, then issue outputs (1) and (2), and terminate output (3).
(1) MPS E-1 FAIL FLAG V95X1207X
(2) MPS LH \(_{2}\) RECIRC DISC VLV CLOSE CMD V41K1422X
(3) MPS LH2 RECIRC DISC VLV OPEN CMD V41K1421X
and then monitor (e).
If (e) seconds have not elapsed, proceed to Step 5.
If (e) seconds have elapsed, proceed to Step 3A.
Step 3-ME-1 Status Check. This step monitors the ME-1 status word via SSME SOP flags and, if shutdown occurs, issues a fail flag for flight control and guidance functions. The \(\mathrm{LH}_{2}\) recirculation and disconnect valve is commanded closed and provides appropriate time delays before prevalve closure.

Monitor the following:
(a) MPS E1 SHUTDOWN PHASE

V95X1155X
(b) MPS E1 POST-SHUTDOWN PHASE V95X1160X
(c) MECO COMMAND FLAG V90X8569X
(d) MPS_E1_T_DELAY_A V97U9738C

If (a) and (b) both \(=\) false, then proceed to Step 5.
If either (a) or (b) = true and (c) = true, issue output (2), terminate output (3), and monitor (d).
If either (a) or \((\mathrm{b})=\) true and \((\mathrm{c})=\) false, then issue outputs (1) and (2), terminate output (3), and monitor (d).
(1) MPS E1 FAIL FLAG V95X1207X
(2) MPS LH \(_{2}\) RECIRC DISC VLV CLOSE CMD V41K1422X
(3) MPS LH2 RECIRC DISC VLV OPEN CMD V41K1421X

If (d) seconds have not elapsed, proceed to Step 5.
If (d) seconds have elapsed, proceed to Step 3A.

Step 3A - Issuance of ME-1 Prevalve Close Commands. This step provides a time delay between issuance of the ME-1 LO \(\mathrm{L}_{2}\) PREVALVE CLOSE COMMANDS and the ME-1 LH2 PREVALVE CLOSE COMMANDS.

Issue the following outputs:
(1) MPS E-1 LO 2 PREVALVE CLOSE CMD A
(2) MPS E-1 LO 2 PREVALVE CLOSE CMD B V41K1140X
(3) MPS E-1 LO 2 PREVALVE CLOSE CMD C V41K1141X
(4) MPS E-1 LO 2 PREVALVE CLOSE CMD D
and terminate the following outputs:
(5) MPS E-1 LO 2 PREVALVE OPEN CMD A
(6) MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B
(7) MPS E-1 LO 2 PREVALVE OPEN CMD C

V41K1136X
(8) MPS E-1 LO 2 PREVALVE OPEN CMD D

V41K1138X
V41K1143X
and then monitor the following:
(a)

ME1 _LH2 PREVLV_CLSE_T_DELAY

V97U9741C

If (a) seconds have not elapsed, proceed to Step 5.
If (a) seconds have elapsed, issue the following outputs:
(9) MPS E1 LH2 PREVALVE CLOSE CMD A
V41K1122X
(10) MPS E1 LH2 PREVALVE CLOSE CMD B
V41K1123X
(11) MPS E1 LH2 PREVALVE CLOSE CMD C
V41K1124X
and terminate the following outputs:
\begin{tabular}{lll} 
(12) MPS E-1 LH \(H_{2}\) PREVALVE OPEN CMD A & V41K 1119 X \\
(13) MPS E-1 LH2 PREVALVE OPEN CMD B & V41K 1120 X \\
(14) MPS E-1 LH2 PREVALVE OPEN CMD C & V41K 1121 X
\end{tabular}
and then set the following flag = true:
(15) ME1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)

Step 4-Removal of ME-1 Prevalve Close Commands. This step provides for the termination of the ME-1 PREVALVE CLOSE COMMANDS after an appropriate time delay.

Monitor the following:
(a) ME1 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)

If \((a)=\) true, proceed to Step 5.
If \((a)=\) false, monitor the following:

If (b) seconds have not elapsed, proceed to Step 5.
If (b) seconds have elapsed, then terminate the following outputs:
\begin{tabular}{lll} 
(1) & MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD A & V41K1122X \\
(2) & MPS E-1 LH 2 PREVALVE CLOSE CMD B & V41K1123X \\
(3) & MPS E-1 LH \({ }_{2}\) PREVALVE CLOSE CMD C & V41K1124X \\
(4) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1139X \\
(5) & MPS E-1 LO \\
(6) & MPS EVALVE CLOSE CMD B & V41K1140X \\
(7) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1141X \\
\end{tabular}
and then set the following flag = true:
(8) ME-1 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)
Proceed to Step 5.
Step 5-ME-2 Prevalves Closed Check. This step provides a bypass of the logic in Steps 6 and 7 if \(\overline{\mathrm{ME}-2}\) is in either the shutdown or post-shutdown phase and the prevalves have been commanded closed.

Monitor the following:
(a) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
If \((\mathrm{a})=\) false, proceed to Step 6.
If \((\mathrm{a})=\) true, proceed to Step 8.
Step 6 - ME-2 Data Path Fail Flag Check. This step monitors for an ME-2 DATA PATH FAll FLAG, which is set by the SSME SOP when valid engine data is not available. If the ME-2 DATA PATH FAIL FLAG is set and ME-2 safing or shutdown commands have been issued, then the \(\mathrm{LH}_{2}\) recirculation disconnect valve is commanded closed and the prevalves are commanded closed after appropriate time delays. If safing or shutdown commands have not been issued, then no action is taken.

Monitor the following:
(a) ME-2 FLIGHT DATA PATH FAIL FLAG V95X1151X
(b) ME-2 SAFING CMD V90X3444X
(c) ME-2 SHUTDOWN CMD ISSUED FLAG (INTERNAL)
(d) MECO COMMAND FLAG V90X8569X
(e) MPS_E2_T_DELAY_D V97U9742C

If \((a)=\) false, proceed to Step 7 .
If \((\mathrm{a})=\) true and \((\mathrm{b})\) and \((\mathrm{c})=\) false, then proceed to Step 9.
If (a) = true and (b) or \((\mathrm{c})=\) true and \((\mathrm{d})=\) true, issue output (2), terminate output (3) and monitor (e).

If \((\mathrm{a})=\) true and \((\mathrm{b})\) or \((\mathrm{c})=\) true and \((\mathrm{d})=\) false, then issue outputs (1) and (2), and terminate output (3):
\begin{tabular}{lll} 
(1) & MPS E2 FAIL FLAG & V95X1208X \\
(2) & MPS LH \\
(3) RECIRC DISC VLV CLOSE CMD & MPS LH 2 RECIR C DISC VLV OPEN CMD & V41K1422X \\
\end{tabular}
and then monitor (e).
If (e) seconds have not elapsed, proceed to Step 9.
If (e) seconds have elapsed, proceed to Step 7A.
Step 7 -ME-2 Status Check. This step monitors the ME-2 status word via SSME SOP flags and, if shutdown occurs, issues a fail flag for flight control and guidance functions. The \(\mathrm{LH}_{2}\) recirculation and disconnect valve is commanded closed and provides appropriate time delays before prevalve closure.

Monitor the following:
\begin{tabular}{lll} 
(a) MPS E2 SHUTDOWN PHASE & V95X1156X \\
(b) MPS E2 POST-SHUTDOWN PHASE & V95X1161X \\
(c) MECO COMMAND FLAG & V90X8569X \\
(d) MPS_E2_T_DELAY_D & V97U9742C
\end{tabular}

If (a) and (b) both \(=\) false, then proceed to Step 9.
If either (a) or (b) = true and (c) = true, issue output (2), terminate output (3), and monitor (d).
If either (a) or \((\mathrm{b})=\) true and \((\mathrm{c})=\) false, then issue outputs (1) and (2), terminate output (3), and monitor (d).
(1) MPS E2 FAIL FLAG

V95X1208X
(2) MPS LH \(_{2}\) RECIRC DISC VLV CLOSE CMD

V41K1422X
(3) MPS LH \({ }_{2}\) RECIRC DISC VLV OPEN CMD V41K1421X

If (d) seconds have not elapsed, proceed to Step 9.
If (d) seconds have elapsed, proceed to Step 7A.
Step 7A - Issuance of ME-2 Prevalve Close Commands. This step provides a time delay between issuance of the ME-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE COMMANDS and the ME- \(2 \mathrm{LH}_{2}\) PREVALVE CLOSE COMMANDS.

Issue the following outputs:
\begin{tabular}{lll} 
(1) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1239X \\
(2) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1240X \\
(3) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1241X \\
(4) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1242X
\end{tabular}
and terminate the following outputs:
\begin{tabular}{lll} 
(5) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A & V41K1236X \\
(6) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD B & V41K1237X \\
(7) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C & V41K1238X \\
(8) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD D & V41K1243X
\end{tabular}
and then monitor the following:
(a) ME2_LH2_PREVLV_CLSE_T_DELAY

V97U9745C

If (a) seconds have not elapsed, proceed to Step 9.
If (a) seconds have elapsed, issue the following outputs:
(9) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD A

V41K1222X
(10) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD B

V41K1223X
(11) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD C V41K1224X
and terminate the following outputs:
\begin{tabular}{lll} 
(12) & MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A & V41K1219X \\
(13) & MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B & V41K1220X \\
(14) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C & V41K1221X
\end{tabular}
and set the following flag = true:
(15) MPS E-2 LH \(_{2}\) PREVALVE CLOSE CMDS REMOVED FLAG
(INTERNAL)
and proceed to Step 9.
Step 8-Removal of ME-2 Prevalve Close Commands. This step provides for the termination of the ME-2 PREVALVE CLOSE COMMANDS after an appropriate time delay.

Monitor the following:
(a) ME-2 PREVALVE CLOSE CMDS REMOVED FLAG
(INTERNAL)

If \((\mathrm{a})=\) true, proceed to Step 9 .
If \((\mathrm{a})=\) false, monitor the following:
(b) MPS_E2_T_DELAY_F

V97U9744C

If (b) seconds have not elapsed, proceed to Step 9.
If (b) seconds have elapsed, then terminate the following outputs:
(1) MPS E-2 LH \(\mathrm{H}_{2}\) PREVALVE CLOSE CMD A

V41K1222X
(2) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD B

V41K1223X
(3) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD C
(4) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A
(5) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B
(6) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C

V41K1241X
(7) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D
and then set the following flag = true:
(8) ME-2 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)
Proceed to Step 9.
Step 9-ME-3 Prevalves Closed Check. This step provides a bypass of the logic in Steps 10 and 11 if \(\overline{\mathrm{ME}}-3\) is in either shutdown or post-shutdown phase and the prevalves have been commanded closed.

Monitor the following:
(a) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
If \((\mathrm{a})=\) false, proceed to Step 10 .
If \((a)=\) true, proceed to Step 12.
Step 10-ME-3 Data Path Fail Flag Check. This step monitors for an ME-3 DATA PATH FAIL FLAG. which is set by the SSME SOP when valid engine data is not available. If the ME-3 DATA PATH FAIL FLAG is set and ME-3 safing or shutdown commands have been issued, then the \(\mathrm{LH}_{2}\) recirculation disconnect valve is commanded closed and the prevalves are commanded closed after appropriate time delays. If safing or shutdown commands have not been issued, then no action is taken.

Monitor the following:
(a) ME-3 FLIGHT DATA PATH FAIL FLAG

V95X1152X
(b) ME-3 SAFING CMD

V90X3445X
(c) ME-3 SHUTDOWN CMD ISSUED FLAG
(INTERNAL)
(d) MECO COMMAND FLAG

V90X8569X
(e) MPS_E3_T_DELAY_G

V97U9746C
If \((a)=\) false, proceed to Step 11.
If \((\mathrm{a})=\) true and \((\mathrm{b})\) and \((\mathrm{c})=\) false, then proceed to Step 13.
If \((\mathrm{a})=\) true and \((\mathrm{b})\) or \((\mathrm{c})=\) true and \((\mathrm{d})=\) true, issue output \((2)\), terminate output (3), and monitor (e).

If \((\mathrm{a})=\) true and \((\mathrm{b})\) or \((\mathrm{c})=\) true and \((\mathrm{d})=\) false, then issue outputs (1) and (2), terminate output (3), and monitor (e).
\(\begin{array}{lll}\text { (1) MPS E3 FAIL FLAG } & \text { V95X1209X } \\ \text { (2) MPS LH2 RECIRC DISC VLV CLOSE CMD } & \text { V41K1422X }\end{array}\)
(3) MPS \(\mathrm{LH}_{2}\) RECIRC DISC VLV OPEN CMD V41K1421X

If (e) seconds have not elapsed, proceed to Step 13.
If (e) seconds have elapsed, proceed to Step 11A.

Step 11 - ME-3 Status Check. This step monitors the ME-3 status word via SSME SOP flags and, if shutdown occurs, issues a fail flag for flight control and guidance functions, the \(\mathrm{LH}_{2}\) recirculation disconnect valve is commanded closed, and provides appropriate time delays before prevalve closure.

Monitor the following:
(a) MPS E3 SHUTDOWN PHASE V95X1157X
(b) MPS E3 POST-SHUTDOWN PHASE V95X1162X
(c) MECO COMMAND FLAG V90X8569X
(d) MPS_E3_T_DELAY_G V97U9746C

If either (a) and (b) both = false, proceed to Step 13.
If either \((a)\) or \((b)=\) true and \((c)=\) true, issue output (2), terminate output (3), monitor (d).
If either \((a)\) or \((b)=\) true and \((c)=\) false, then issue outputs (1) and (2), terminate output (3) and then monitor (d).
\begin{tabular}{lll} 
(1) & MPS E3 FALL FLAG & V95X1209X \\
(2) & MPS LH2 RECIRC DISC VLV CLOSE CMD & V41K1422X \\
(3) & MPS LH2 RECIRC DISC VLV OPEN CMD & V41K1421X
\end{tabular}

If (d) seconds have not elapsed, proceed to Step 13.
If (d) seconds have elapsed, proceed to Step 11A.
Step 11A - Issuance of ME-3 Prevalve Close Commands. This step provides a time delay between issuance of the ME- \(3 \mathrm{LO}_{2}\) PREVALVE CLOSE COMMANDS and the ME-3 LH \({ }_{2}\) PREVALVE CLOSE COMMANDS.

Issue the following outputs:
(1) MPS E-3 LO 2 PREVALVE CLOSE CMD A

V41K1339X
(2) MPS E-3 LO 2 PREVALVE CLOSE CMD B V41K1340X
(3) MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C
(4) MPS E-3 LO 2 PREVALVE CLOSE CMD D
and terminate the following outputs:
(5) MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD A

V41K1336X
(6) MPS E-3 LO 2 PREVALVE OPEN CMD B

V41K1337X
(7) MPS E-3 LO 2 PREVALVE OPEN CMD C

V41K1338X
(8) MPS E-3 LO 2 PREVALVE OPEN CMD D V41K1343X
and then monitor the following:
(a) ME3_LH2 PREVLV_CLSE_T_DELAY

V97U9749C

If (a) seconds have not elapsed, proceed to Step 13.
If (a) seconds have elapsed, issue the following outputs:

```

V41K1322X

```
V41K1323X
V41K1324X
and terminate the following outputs:
\begin{tabular}{|c|c|c|}
\hline (12) & MPS E- \(3 \mathrm{LH}_{2}\) PREVALVE OPEN CMD A & V41K1319X \\
\hline (13) & MPS E-3 LH2 PREVALVE OPEN CMD B & V41K1320X \\
\hline (14) & MPS E-3 LH2 PREVALVE OPEN CMD C & V41K1321X \\
\hline
\end{tabular}
and then set the following flag = true:
(15) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
and proceed to Step 13.
Step 12 - Removal of ME-3 Prevalve Close Commands. This step provides for the termination of the ME-3 PREVALVE CLOSE COMMANDS after an appropriate time delay.

Monitor the following:
(a) ME-3 PREVALVES CLOSE CMDS REMOVED FLAG
(INTERNAL)

If \((a)=\) true, proceed to Step 13.
If \((\mathrm{a})=\) false, monitor the following:
(b) MPS_E3_T_DELAY_I

V97U9748C

If (b) seconds have not elapsed, proceed to Step 13.
If (b) seconds have elapsed, then terminate the following outputs:
\begin{tabular}{|c|c|c|}
\hline (1) & MPS E-3 LH2 PREVALVE CLOSE CMD A & V41K1322X \\
\hline (2) & MPS E-3 LH \({ }_{2}\) PREVALVE CLOSE CMD B & V41K1323X \\
\hline (3) & MPS E-3 LH2 PREVALVE CLOSE CMD C & V41K1324X \\
\hline (4) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1339X \\
\hline (5) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1340X \\
\hline (6) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1341X \\
\hline (7) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1342X \\
\hline
\end{tabular}
and then set the following flag = true:
(8) ME-3 PREVLVS CLOSE CMDS REMOVED FLAG
(INTERNAL)

Proceed to Step 13.
Step 13 - ME-1,2, and 3 Manual Shutdown Switch Checks. This step provides and monitors for a manually initiated shutdown of any engine by the crew. If any one of the three MPS engine shutdown switches is depressed, the GN\&C switch processor sets a flag for SSME OPS indicating shutdown is required for that engine. SSME OPS then sets an internal flag, which is checked in later steps in the logic, for initiating the shutdown.

Monitor the following:
(a) SEL MPS ME-1 SHUTDOWN CMD V90X7551X
(b) SEL MPS ME-2 SHUTDOWN CMD V90X7552X
(c) SEL MPS ME-3 SHUTDOWN CMD V90X7553X

If \((\mathrm{a}),(\mathrm{b})\), and (c) all \(=\) false, proceed to Step 14.
If \((a)=\) true, set internal flag \((1)\) below \(=\) true.
If \((b)=\) true, set internal flag \((2)\) below \(=\) true.
If \((c)=\) true, set internal flag \((3)\) below \(=\) true.
(1) ME-1 MANUAL SHUTDOWN FLAG
(INTERNAL)
(2) ME-2 MANUAL SHUTDOWN FLAG
(INTERNAL)
(3) ME-3 MANUAL SHUTDOWN FLAG

Proceed to Step 14.
Step 14 - Main Engine Safing Cmd Check. This step monitors for main engine safing commands from the GN\&C switch processor and latches the applicable safing commands in the on state.

Monitor the following:
(a) ME-1 SAFING CMD

V90X3443X
(b) ME-2 SAFING CMD

V90X3444X
(c) ME-3 SAFING CMD

V90X3445X

If (a) is detected true, latch \((a)=\) true for all subsequent passes.
If \((b)\) is detected true, latch \((b)=\) true for all subsequent passes.
If (c) is detected true, latch (c) = true for all subsequent passes.
Proceed to Step 17.
Step 15. Deleted.
Step 16. Deleted.
Step 17 - MECO Commanded Check. This step provides a bypass of the automatic and manual limit control logic in Step 18 through Step 22 and the guidance cutoff logic and low-level sensor cutoff logic of Steps 23 through 26 inclusive, if main engine cutoff (MECO) has been commanded. It also provides for a change in the \(\mathrm{LO}_{2}\) prevalve close time delays after MECO has been commanded to improve shutdown safety.

Monitor the following:
(a) MECO COMMAND FLAG

If (a) is false, proceed to Step 18.

If (a) is true, issue output (1) below one time only and perform the following functions:
Set V97U9738C MPS_E1_T_DELAY_A to the value contained in input (A) below.
Set V97U9742C MPS_E2_T_DELAY_D to the value contained in input (B) below.
Set V97U9746C MPS_E3_T_DELAY_G to the value contained in input (C) below.

Proceed to Step 17A.

\section*{INPUTS}
(A) MPS_MECO_E1_T_DELAY_A
V96U9769C
(B) MPS_MECO_E2_T_DELAY_D
V97U9771C
(C) MPS_MECO_E3_T_DELAY_G
V96U9773C

\section*{OUTPUTS}
(1) MPS PNEU CROSSOVER NO. 2 OPEN CMD

V41K1613X

Step 17A - MPS Helium Interconnect. This step initiates a 20 -second timer and branches to the helium interconnect logic. On expiration of the time delay, the interconnect valve commands are terminated.

On the first pass, start a 20-second timer and proceed to Step 17B.
On the second and subsequent passes, monitor the 20 -second time delay. If 20 seconds have not elapsed, proceed to Step 24A. When 20 seconds have elapsed, terminate outputs (1) through (6) and set output (7) \(=\) false. Then proceed to Step 24A.
\begin{tabular}{llr} 
(1) & MPS E1 HE INTCON IN/OPEN CMD A & V41K1162X \\
(2) & MPS E1 HE INTCON IN/OPEN CMD B & V41K1163X \\
(3) & MPS E2 HE INTCON IN/OPEN CMD A & V41K1262X \\
(4) & MPS E2 HE INTCON IN/OPEN CMD B & V41K1263X \\
(5) & MPS E3 HE INTCON IN/OPEN CMD A & V41K1362X \\
(6) & MPS E3 HE INTCON IN/OPEN CMD B & V41K1363X \\
(7) & HELIUM INTERCONNECT FLAG & (INTERNAL)
\end{tabular}

Step 17B - Issue of ME-1 Helium Interconnect Commands. This step is processed one time only and interconnects the pneumatic system helium supply to ME-1 during shutdown if the ME-1 FAIL FLAG has not previously been set true and either the confirmed ME-1 helium supply pressure is lower than or equal to the level that is required to support SSME shutdown helium usage or the pressure is commfaulted.

Monitor the following:
(a) MPS E1 FAIL FLAG

V95X1207X
(b) MPS E1 HE SUPPLY BOTTLE PRESSURE
(c) MPS_HELIUM_SYSTEM_LOW_PRESSURE V97U9735C
(d) FA1 INPUT PROM SEG 1, 2 STATUS (MFE) V91X2845X

If \((a)=\) true, proceed to Step 17 C . Otherwise, proceed to monitor (b), (c), and (d).

If \((\mathrm{d})=\) false, and \((\mathrm{b})>(\mathrm{c})\), proceed to Step 17 C ; otherwise, issue the following inputs (1) and (2) one time only and proceed to Step 17C.
\(\begin{array}{lll}\text { (1) MPS E1 HE INTCON IN/OPEN CMD A } & \text { V41K1162X } \\ \text { (2) MPS E1 HE INTCON IN/OPEN CMD B } & \text { V41K1163X }\end{array}\)
Step 17C - Issue of ME-2 Helium Interconnect Commands. This step is processed one time only and interconnects the pneumatic system helium supply to \(\mathrm{ME}-2\) helium supply during shutdown if the ME-2 FAIL FLAG has not previously been set true and either the confirmed ME-1 helium supply pressure is lower than or equal to the level that is required to support SSME shutdown helium usage or the pressure input is commfaulted.

Monitor the following:
\begin{tabular}{llc} 
(a) & MPS E2 FAIL FLAG & V95X1208X \\
(b) & MPS E2 HE SUPPLY BOTTLE PRESSURE & V41P1250C \\
(c) & MPS_HELIUM_SYSTEM_LOW_PRESSURE & V97U9735C \\
(d) & FA2 INPUT PROM SEG 1,2 STATUS (MFE) & V91X2842X
\end{tabular}

If \((\mathrm{a})=\) true, or \((\mathrm{b})>\mathrm{c}\), proceed to Step 17D. Otherwise, issue the following outputs (1) and (2) one time only and proceed to Step 17D.
\(\begin{array}{lll}\text { (1) MPS E2 HE INTCON IN/OPEN CMD A } & \text { V41K1262X } \\ \text { (2) MPS E2 HE INTCON IN/OPEN CMD B } & \text { V41K1263X }\end{array}\)
Step 17D - Issue of ME-3 Helium Interconnect Commands. This step is processed one time only and interconnects the pneumatic system helium supply to ME-3 during shutdown if the ME-3 FAIL FLAG has not previously been set true and either the confirmed ME-3 helium supply pressure is lower than or equal to the level that is required to support SSME shutdown helium usage or the pressure input is commfaulted.

Monitor the following:
\begin{tabular}{llr} 
(a) & MPS E3 FAIL FLAG & V95X1209X \\
(b) & MPS E3 HE SUPPLY BOTTLE PRESSURE & V41P1350C \\
(c) & MPS_HELIUM_SYSTEM_LOW_PRESSURE & V97U9735C \\
(d) FA3 INPUT PROM SEG 1, 2 STATUS (MFE) & V91X2843X
\end{tabular}

If \((\mathrm{a})=\) true, set output \((3)=\) true and proceed to Step 24A. Otherwise, proceed to monitor (b), (c) and (d).

If \((\mathrm{d})=\) false and (b) \(>\) (c), set output (3) true and proceed to Step 24A. Otherwise, issue the following outputs (1) and (2) one time only, set output (3) true and proceed to Step 24A.
\begin{tabular}{llr} 
(1) MPS E3 HE INTCON IN/OPEN CMD A & V41K1362X \\
(2) MPS E3 HE INTCON IN/OPEN CMD B & V41K1363X \\
(3) HELIUM INTERCONNECT FLAG & (INTERNAL)
\end{tabular}

Step 18 - Limit Shutdown Switch Auto/Manual Check. This step permits a manual override of the automatic limit control logic by the crew. If the switch is in AUTO, the automatic limit control logic is active; and if one engine shuts down, the remaining two are inhibited from automatic shutdown. If the switch is
in one of the manual positions, the crew overrides the automatic limit control logic and either enables or inhibits automatic shutdown by all engines.

Monitor the following:
(a) SEL MPS ENG LIMIT CONTROL AUTO

V90X7548X
If \((\mathrm{a})=\) true, set internal counters A and B to zero and proceed to Step 19.
If \((\mathrm{a})=\) false, set internal counters \(\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\), and H to zero and proceed to Step 22.
Step 19 - Automatic Limit Shutdown Inhibit Control for ME-1. This step monitors the operating phase of ME-1 and the validity of ME-1 data via the FLIGHT DATA PATH FAIL FLAG from the SSME SOP. If ME-1 enters the shutdown phase or the ME-1 FLIGHT DATA PATH FAIL FLAG is set, the other two engines will be inhibited from performing an automatic shutdown.

Monitor the following:
(a) MPS E1 SHUTDOWN PHASE V95X1155X
(b) MPS E1 POST-SHUTDOWN PHASE V95X1160X
(c) ME-1 FLIGHT DATA PATH FAIL FLAG V95X1150X

If (a), (b), and (c) all = false, check internal counter \(C\). If internal counter \(C\) is less than three counts, then issue the following output:

\section*{(1) MPS E1 LIMIT CNTL ENA}

V90X8573X
and increment counter C by one count and proceed to Step 20.
If (a), (b), and (c) all = false and internal counter \(C\) is greater than two counts, proceed to Step 20.

If either (a), (b), or (c) = true, check internal counter \(D\). If internal counter \(D\) is less than three counts then issue the following outputs:
```

(2) MPS E2 LIMIT CNTL INH
V90X8571X
(3) MPS E3 LIMIT CNTL INH
V90X8572X

```
and increment counter \(D\) by one count and proceed to Step 20.
If either (a), (b), or (c) = true and internal counter \(D\) is greater than two counts, proceed to Step 20.
Step 20 - Automatic Limit Shutdown Inhibit Control for ME-2. This siep monitors the operating phase of ME-2 and the validity of ME-2 data via the FLIGHT DATA PATH FAIL FLAG from the SSME SOP. If ME-2 enters the shutdown phase or the ME-2 FLIGHT DATA PATH FAIL FLAG is set, the other two engines will be inhibited from performing an automatic shutdown.

Monitor the following:
(a) MPS E2 SHUTDOWN PHASE

If (a), (b), and (c) all = false, check internal counter \(E\). If internal counter \(E\) is less than three counts, then issue the following output:

\section*{(1) MPS E2 LIMIT CNTL ENA}

V90X8574X
and increment counter E by one count and proceed to Step 21.
If (a), (b), and (c) all = false and internal counter E is greater than two counts, proceed to Step 21.

If either (a), (b), or \((c)=\) true, check internal counter \(F\). If internal counter \(F\) is less than three counts, then issue the following outputs:
\(\begin{array}{lll}\text { (2) MPS E1 LIMIT CNTL INH } & \text { V90X8570X } \\ \text { (3) MPS E3 LIMIT CNTL INH } & \text { V90X8572X }\end{array}\)
and increment counter F by one count and proceed to Step 21.
If either (a), (b), or (c) = true and internal counter \(F\) is greater than two counts, proceed to Step 21.

Step 21 - Automatic Limit Shutdown Inhibit Control for ME-3. This step monitors the operating phase of ME-3 and the validity of ME-3 data via the FLIGHT DATA PATH FAIL FLAG from the SSME SOP. If ME-3 enters the shutdown phase or the ME-3 FLIGHT DATA PATH FAIL FLAG is set, the other two engines will be inhibited from performing an automatic shutdown.

Monitor the following:
(a) MPS E3 SHUTDOWN PHASE V95X1157X
(b) MPS E3 POST-SHUTDOWN PHASE V95X1162X
(c) ME-3 FLIGHT DATA PATH FAIL FLAG V95X1152X

If (a), (b), and (c) all = false, check internal counter G. If internal counter G is less than three counts, then issue the following output:
(1) MPS E3 LIMIT CNTL ENA

V90X8575X
and increment counter \(G\) by one count and proceed to Step 23.
If (a), (b), and (c) all = false and internal counter \(G\) is greater than two counts, proceed to Step 23.

If either (a), (b), or (c) = true, check internal counter H . If internal counter H is less than three counts, then issue the following outputs:
(2) MPS E1 LIMIT CNTL INH
(3) MPS E2 LIMIT CNTL INH
and increment counter H by one count and proceed to Step 23.

If either (a), (b), or \((\mathrm{c})=\) true and internal counter H is greater than two counts, proceed to Step 23.

Steps 21A Through 21E - Deleted.
Step 22 - Limit Shutdown Switch Inhibit/Enable Check. This step monitors the manual positions of the limit shutdown switch via switch processor flags and permits the crew to enable automatic shutdown by all engines or inhibit automatic shutdown by any engine.

Monitor the following:
\(\begin{array}{lll}\text { (a) SEL MPS ENG LIMIT CONTROL ENABLE } & \text { V90X7549X } \\ \text { (b) SEL MPS ENG LIMIT CONTROL INHIBIT } & \text { V90X7550X }\end{array}\)
If (a) is true and counter \(A\) is less than 3 , increment counter \(A\) by one count, set counter \(B\) to zero, issue outputs (1) through (3) below, and proceed to Step 23.

If (a) is true and counter A is greater than 2, proceed to Step 23.
If (b) is true and counter \(B\) is less than 3 , increment counter \(B\) by one count, set counter \(A\) to zero, issue outputs (4) through (6) below, and proceed to Step 23.

If (b) is true and counter B is greater than 2, proceed to Step 23.
\begin{tabular}{lll} 
(1) & MPS E1 LIMIT CNTL ENA & V90X8573X \\
(2) & MPS E2 LIMTT CNTL ENA & V90X8574X \\
(3) & MPS E3 LIMIT CNTL ENA & V90X8575X \\
(4) & MPS E1 LIMIT CNTL INH & V90X8570X \\
(5) & MPS E2 LIMIT CNTL INH & V90X8571X \\
(6) & MPS E3 LIMIT CNTL INH & V90X8572X
\end{tabular}

Steps 22A Through 22F - Deleted.
Step 23 - SSME Cutoff Request Check. This step monitors for a flag from guidance indicating it is time to read the desired SSME cutoff time and initiate MECO at the desired time. The shutdown commands sent as a result of the MECO command flag must be sent at the proper time to ensure a MECO accuracy of \(\pm 40 \mathrm{~ms}\). Proper issuance of the shutdown commands is controlled by the MECO LEAD TIME I-load. The first shutdown command will be sent no sooner than 30 ms before desired cutoff time and no later than +30 ms from the desired cutoff time. Changes in software design, timing, will change the value of MECO LEAD TME.

Monitor the following:
(a) SSME C/O TIMING REOUEST FLAG

V90X1944X
(b) DESIRED SSME C/O TIME V90W1945C
(c) GMT V91W5000C
(d) MECO_LEAD_TIME V97U9829C

If \((\mathrm{a})=\) false, proceed to Step 24.
If \((a)=\) true, read (b) and subtract (c) from (b). When (b) - (c) is greater than (d), proceed to Step 24.

When (b) - (c) is less than or equal to (d), issue the following output and proceed to Step 24A.
(1) MECO COMMAND FLAG

V90X8569X

Step 24 - Low-Level Sensor Monitor Check. This step monitors for a flag set by guidance indicating time to monitor the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) low-level sensors.

Monitor the following conditions:
(a) ET LEVEL SENSOR ARM CMD

V90X1942X
If \((a)=\) false, proceed to Step 24A.
If \((a)=\) true, proceed to Step 25 .
Step 24A-ET Fast Separation Check. This step determines if a fast ET separation has been requested and, if so, sets the proper flags and delays to provide the proper engine shutdown sequence for a fast separation.

Monitor the following signals:
(a) MM102 FLAG

V90X8158X
(b) ET MAN SEP INITIATE

V90X7564X
(c) ET SEP MAN INITIATE FLAG V90X8584X
(d) MM601 FLAG

V90X8194X
(e) MM103 FLAG

V90X8156X
(f) SECOND SSME FAIL CONFIRM

V90X1721X
If ((a) or (d) or [(e) and (f)]) and (b) are true or (c) is true, latch (c) true and perform the following functions; otherwise proceed to Step 27.

Set the following parameters to the value contained in input 2 below:
```

MPS_E1_T_DELAY_A
MPS_E2_T_DELAY_D
V97U9738C
V97U9742C
MPS_E3_T_DELAY_G
V97U9746C

```

Set the following parameters to the value contained in input 3 below:
```

ME1_LH2_PREVALVE_CLSE_T_DELAY
V97U9741C
ME2_LH2_PREVALVE_CLSE_T_DELAY
V97U9745C
ME3_LH2_PREVALVE_CLSE_T_DELAY V97U9749C

```

Set the following times to the value contained in 1 below:
ME-1 SHUTDOWN DELAY TIMER ME-2 SHUTDOWN DELAY TIMER

Set the following flag true:
ME-1 MANUAL SHUTDOWN FLAG
(INTERNAL)

Initiate ME-1 shutdown delay timer and proceed to Step 27 . On subsequent passes, proceed to Step 27 until ME- 1 shutdown delay timer expires.

Then set the following flag = true:
ME-2 MANUAL SHUTDOWN FLAG
(INTERNAL)

Initiate ME-2 shutdown delay timer and proceed to Step 27 . On subsequent passes, proceed to Step 27 until ME-2 shutdown timer expires.

Then set the following flags = true:
\begin{tabular}{ll} 
MECO COMMAND FLAG & V90X8569X \\
MECO CONFIRMED FLAG & V90X8561X
\end{tabular}
and set the following parameter to the value contained in input 4 below and proceed to Step 27.
TIME_TO_ZERO_THRUST
V97U9655C

\section*{INPUTS}
1. ME_SHTDN_DLY

V97U9830C
2. FAST_SEP_LOX_PRVLV_DLY V97U9831C
3. FAST_SEP_LH2_PRVLV_DLY V97U9832C
4. FAST_SEP_ZERO_THRUST_DLY V97U9833C

Step 25- \(\mathrm{LO}_{2}\) Low-Level Sensor Dry Check. This step monitors for dry indications from four \(\mathrm{LO}_{2}\) lowlevel sensors, commfault indications for each sensor, and for a disable flag for each sensor. On the first pass that ET level sensor arm command is true, if a sensor indicates dry and the respective sensor commfault is false, and no previous \(\mathrm{LO}_{2}\) sensor has been disabled, then the associated sensor disable flag is latched true. On subsequent passes, if a sensor indicates dry, the respective commfault for that sensor is false, and the sensor has not been disabled, then an internal flag is latched true indicating that sensor is dry.

Monitor the following conditions:
(a) MPS LO 2 LEFTNO. 1 ECO SENSOR
(a) MPS LO 2 LEET NO. 1 ECO SENSOR
(b) MPS LO 2 LEFT NO. 2 ECO SENSOR
(c) MPS LO 2 RIGHT NO. 2 ECO SENSOR
(d) \(\mathrm{MPS} \mathrm{LO}_{2}\) RIGHT NO. 1 ECO SENSOR
(e) MPS_LOX_LO_LVL_LIQ_SES1_DSBL_FLG
(f) MPS_LOX_LO_LVL_LIQ_SES2_DSBL_FLG
(g) MPS_LOK_LO_LUL_LQSES3_DSBL_FLG
(h) MPS LOX_LO_LVL LIO SESA DSBL_FLG
(i) FA 3 INPUT PROM SEG 3, 10 STATUS (HIFE)
(j) FA 2 INPUT PROM SEG 3, 10 STATUS (HFE)
(k) FA 4 INPUT PROM SEG 3, 10 STATUS (HFE)
(1) FA 1 INPUT PROM SEG 3, 10 STATUS (HFE)
(m) ARM CMD FIRST PASS FLAG

V41X1555X V41X1556X V41X1557X
V41X1558X
V99X8814X
V99X8815X
V99X8816X
V99X8817X
V91X2847X
V91X2846X
V91X2848X
V91X2845X
(INTERNAL)
(INTERNAL)

If ( m ) is true, check the following:
If (a) is true and (i) is false, then set outputs (1) and (5) true.
If (b) is true and (j) and (n) are false, then set outputs (2) and (5) true.
If \((\mathrm{c})\) is true and \((\mathrm{k})\) and ( n ) are false, then set outputs (3) and (5) true.
If (d) is true and (1) and ( n ) are false, then set output (4) true.
Else, check the following:
If (a) is true and (e) and (i) are both false, then set output (6) true.
If (b) is true and (f) and (j) are both false, then set output (7) true.
If (c) is true and \((\mathrm{g})\) and \((\mathrm{k})\) are both false, then set output (8) true.
If (d) is true and (h) and (1) are both false, then set output (9) true.
\begin{tabular}{llr} 
(1) & MPS_LOX_LO_LVL_LIQ_SES1_DSBL_FLG & V99X8814X \\
(2) & MPS_LOX_LO_LVL_LIQ_SES2_DSBL_FLG & V99X8815X \\
(3) & MPS_LOX_LO_LVL_LIQ-SES3_DSBL_FLG & V99X8816X \\
(4) & MPS _LOX_LO_LVL_LIQ_SES4_DSBL_FLG & V99X8817X \\
(5) & \(\mathrm{LO}_{2}\) DSBLLIMIT FLAG & (INTERNAL) \\
(6) & \(\mathrm{LO}_{2}\) SENSOR 1 DRY FLAG & (INTERNAL) \\
(7) & \(\mathrm{LO}_{2}\) SENSOR 2 DRY FLAG & (INTERNAL) \\
(8) & \(\mathrm{LO}_{2}\) SENSOR 3 DRYFLAG & (INTERNAL) \\
(9) & \(\mathrm{LO}_{2}\) SENSOR 4 DRY FLAG & (INTERNAL)
\end{tabular}

Proceed to Step 25A.
Step 25A - Check of \(\mathrm{LO}_{2}\) Sensor Dry Flags. This step monitors for any two \(\mathrm{LO}_{2}\) sensor flags latched true in Step 25. If any two flags are true and the required time delay has elapsed since two flags were first detected true, then MECO is initiated.

Monitor the following:
(a) \(\mathrm{LO}_{2}\) SENSOR 1 DRY FLAG
(INTERNAL)
(b) \(\mathrm{LO}_{2}\) SENSOR 2 DRY FLAG
(INTERNAL)
(c) \(\mathrm{LO}_{2}\) SENSOR 3 DRY FLAG
(INTERNAL)
(d) \(\mathrm{LO}_{2}\) SENSOR 4 DRY FLAG
(INTERNAL)
(e) RTLS ABORT DECLARED
(f) MPS E1 FAIL FLAG

V90X8637X
(g) MPS E2 FAIL FLAG

V95X1207X
(h) MPS E3 FAIL FLAG

V95X1208X
(i) \(\mathrm{NOM}_{1} \mathrm{LO}_{2}\) LL_T_DELAY_L

V95X1209X
(j) RTLS_LO \(\mathrm{L}_{2} \mathrm{LL} \_\mathrm{T}\)-DELAY_M

V97U9863C
V97U9864C
(k) PTM_LO \({ }_{2} L L \_T \_D E L A Y \_N\)

V97U9865C

On the first pass that \([(\mathrm{a})\) and (b)] or \([(\mathrm{a})\) and (c)] or \([(\mathrm{a})\) and (d)] or \([(\mathrm{b})\) and (c)] or [(b) and (d)] or [(c) and (d)] are detected true, establish the appropriate time delay for setting the MECO COMMAND FLAG true as follows:

If \((\mathrm{f}),(\mathrm{g})\), and (h) all \(=\) false, set (i) as the time delay and proceed to Step 26.
If either \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{e})=\) true, set \((\mathrm{j})\) as the time delay and proceed to Step 26.
If \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true and \((\mathrm{e})=\) false, set \((\mathrm{k})\) as the time delay and proceed to Step 26.
On the second and subsequent passes since two or more \(\mathrm{LO}_{2}\) sensor dry flags were detected true, monitor the time delay established above. When the selected time delay has elapsed, set output (1) true and proceed to Step 24A.

\section*{(1) MECO COMMAND FLAG}

V90X8569X

Otherwise, proceed to Step 26.
Step \(26-\mathrm{LH}_{2}\) Low-Level Sensor Dry Check. This step monitors for dry indications from four \(\mathrm{LH}_{2}\) lowlevel sensors, commfault indications for each sensor, and for a disable flag for each sensor. On the first pass that ET level sensor arm command is true, if a sensor indicates dry and the respective sensor commfault is false, and no previous \(\mathrm{LH}_{2}\) sensor has been disabled, then the associated sensor disable flag is latched true. On subsequent passes, if a sensor indicates dry, the respective commfault for that sensor is false, and the sensor has not been disabled, then an internal flag is latched true indicating that sensor is dry.

Monitor the following conditions:
\begin{tabular}{|c|c|c|}
\hline (a) & ET \(\mathrm{LH}_{2}\) LOW LEVEL LIQ SENSOR NO. 1 & T41X1730X \\
\hline (b) & ET LH2 LOW LEVEL LIQ SENSOR NO. 2 & T41X1731X \\
\hline (c) & ET \(\mathrm{LH}_{2}\) LOW LEVEL LIQ SENSOR NO. 3 & T41X1732X \\
\hline (d) & ET LH2 LOW LEVEL LIQ SENSOR NO. 4 & T41X1733X \\
\hline (e) & ET_LH2_LO_LVL_LIQ_SES1_DSBL_FLG & V99X8806X \\
\hline (f) & ET_LH2_LO_LVL_LIQ_SES2_DSBL_FLG & V99X8807X \\
\hline (g) & ET_LH2_LO_LVL_LIQ_SES3_DSBL_FLG & V99X8808X \\
\hline (h) & ET_LH2_LO_LVL_LIQ_SES4_DSBL_FLG & V99X8809X \\
\hline (i) & FA3 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2847X \\
\hline (j) & FA2 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2846X \\
\hline (k) & FA 4 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2848X \\
\hline (l) & FA1 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2845X \\
\hline (m) & ARM CMD FIRST PASS FLAG & (INTERNAL) \\
\hline (I) & \(\mathrm{LH}_{2} \mathrm{DSBL}\) LIMIT FLAG & (INTERNAL) \\
\hline
\end{tabular}

If ( m ) is true, check the following:
If (a) is true and (i) is false, then set outputs (1) and (5) true.
If (b) is true and (j) and (i) are false, then set outputs (2) and (5) true.
If \((\mathrm{c})\) is true and \((\mathrm{k})\) and \((\mathbb{n})\) are false, then set outputs (3) and (5) true.
If (d) is true and (l) and (n) are false, then set output (4) true.
Else, check the following:
If (a) is true and (e) and (i) are both false, then set output (6) true.

If (b) is true and (f) and (j) are both false, then set output (7) true.
If \((\mathrm{c})\) is true and \((\mathrm{g})\) and \((\mathrm{k})\) are both false, then set output (8) true.
If (d) is true and (h) and (l) are both false, then set output (9) true.
\begin{tabular}{|c|c|c|}
\hline (1) & ET_LH2 LO_LVL_LIQ_SES1_DSBL_FLG & V99X8806X \\
\hline (2) & ET_LH2_LO_LVL_LIQ_SES2_DSBL_FLG & V99X8807X \\
\hline (3) & ET_LH2_LO_LVL_LIQ_SES3_DSBL_FLG & V99X8808X \\
\hline (4) & ET_LH2 LO_LVL_LIQ_SES4_DSBL_FLG & V99X8809X \\
\hline (5) & \(\mathrm{LH}_{2}\) DSBL LIMIT FLAG & (INTERNAL) \\
\hline (6) & \(\mathrm{LH}_{2}\) SENSOR \#1 DRY FLAG & (INTERNAL) \\
\hline (7) & LH2 SENSOR \#2 DRY FLAG & (INTERNAL) \\
\hline (8) & LH2 SENSOR \# 3 DRY FLAG & (INTERNAL) \\
\hline (9) & LH2 SENSOR \#4 DRY FLAG & (INTERNAL) \\
\hline
\end{tabular}

Proceed to Step 26A.
Step 26A - Check of \(\mathrm{LH}_{2}\) Sensor Dry Flags. This step monitors for any two \(\mathrm{LH}_{2}\) sensor dry flags latched true in Step 26. If any two flags are true and the required time delay has elapsed since two flags were first detected true, then MECO is initiated.

Monitor the following:
(a) \(\mathrm{LH}_{2}\) SENSOR \#1 DRY FLAG
(b) \(\mathrm{LH}_{2}\) SENSOR \#2 DRY FLAG
(c) \(\mathrm{LH}_{2}\) SENSOR \#3 DRY FLAG
(d) \(\mathrm{LH}_{2}\) SENSOR \#4 DRY FLAG
(e) RTLS ABORT DECLARED
(INTERNAL)
(f) MPS E1 FAIL FLAG V95X1207X
(g) MPS E2 FAIL FLAG V95X1208X
(h) MPS E3 FAIL FLAG
(i) \(L_{2}\) LL_TIME_DELAY_Q (INTERNAL) (INTERNAL)
(INTERNAL)
V90X8637X

V95X1209X
(j) RTLS_LH \({ }_{2}\) LL_TIME_DELAY_P

V96U9535C
(k) ARM CMD FIRST PASS FLAG

V96U9536C
(INTERNAL)

If \((\mathrm{k})\) is true, then set (2) false.
On the first pass that \([(\mathrm{a})\) and (b)] or \([(\mathrm{a})\) and (c)] or \([(\mathrm{a})\) and (d)] or [(b) and (c)] or \([(\mathrm{b})\) and (d)] or [(c) and (d)] are detected true, establish the appropriate time delay for setting the MECO COMMAND FLAG true as follows:

If \((\mathrm{e})=\) true and either \((\mathrm{f})\) or \((\mathrm{g})\) or \((\mathrm{h})=\) true, then set \((\mathrm{j})\) as the time delay and proceed to Step 24A.

Otherwise set (i) as the time delay and proceed to Step 24A.
On the second and subsequent passes since two or more \(\mathrm{LH}_{2}\) sensor dry flags were detected true, monitor the time delay established above. When the selected time delay has elapsed, set output (1) true and proceed to Step 24A.

Otherwise, proceed to Step 24A.
Step 27-ME-1 Shutdown Initiation. This step monitors for either an ME-1 MANUAL SHUTDOWN FLAG or a MECO COMMAND FLAG. If either flag is set true, this step will alternately issue the shutdown enable and shutdown commands until ME-1 is detected to be in the shutdown or post--shutdown phase.

Monitor the following:
\(\begin{array}{llr}\text { (a) ME-1 MANUAL SHUTDOWN FLAG } & \text { (INTERNAL) } \\ \text { (b) MECO COMMAND FLAG } & \text { V90X8569X } \\ \text { (c) MPS E1 SHUTDOWN PHASE } & \text { V95X1155X } \\ \text { (d) MPS E1 POST-SHUTDOWN PHASE } & \text { V95X1160X }\end{array}\)
If (a) and (b) both \(=\) false, proceed to Step 28.
If either \((\mathrm{a})\) or \((\mathrm{b})=\) true and either \((\mathrm{c})\) or \((\mathrm{d})=\) true, then terminate outputs \((1)\) and (2), set output (3) = true, and proceed to Step 28.
(1) MPS E1 SHUTDOWN ENABLE CMD V90X8367X
(2) MPS E1 SHUTDOWN CMD V90X8370X
(3) ME-1 SHUTDOWN CMD ISSUED FLAG (INTERNAL)

If either \((\mathrm{a})\) or \((\mathrm{b})=\) true and both \((\mathrm{c})\) and \((\mathrm{d})=\) false, then proceed to Step 27A.
Step 27A - Issuance of ME-1 Shutdown Commands. This step provides for alternately issuing the shutdown enable and shutdown commands for ME-1.

Monitor the following:
(a) ME-1 SHUTDOWN FLAG "A"
(INTERNAL)
If \((a)=\) false, then terminate the following output:
(1) MPS E1 SHUTDOWN CMD

V90X8370X.
and issue the following output:
(2) MPS E1 SHUTDOWN ENABLE CMD

V90X8367X
and then set internal flag (3) below \(=\) true
(3) ME-1 SHUTDOWN FLAG "A"
(INTERNAL)
(4) ME-1 SHUTDOWN CMD ISSUED FLAG
(INTERNAL)
Proceed to Step 28.
If (a) = true, terminate output (2) above and issue output (1) above; and then set output (3) above \(=\) false and \((4)=\) true.

\section*{Proceed to Step 28.}

Step 28 - ME-2 Shutdown Initiation. This step monitors for either an ME-2 MANUAL SHUTDOWN FLAG or a MECO COMMAND FLAG. If either flag is set true, this step will alternately issue the shutdown enable and shutdown commands until ME-2 is detected to be in the shutdown or post-shutdown phase.

Monitor the following:
(a) ME-2 MANUAL SHUTDOWN FLAG
(INTERNAL)
(b) MECO COMMAND FLAG
(c) MPS E2 SHUTDOWN PHASE V95X1156X
(d) MPS E2 POST-SHUTDOWN PHASE V95X1161X

If (a) and (b) both \(=\) false, proceed to Step 29.
If either (a) or (b) = true and either (c) or (d) = true, then terminate outputs (1) and (2) and set output (3) = true and proceed to Step 29.
\(\begin{array}{llr}\text { (1) MPS E2 SHUTDOWN ENABLE CMD } & \text { V90X8368X } \\ \text { (2) MPS E2 SHUTDOWN CMD } & \text { V90X8371X } \\ \text { (3) ME-2 SHUTDOWN CMD ISSUED FLAG } & \text { (INTERNAL) }\end{array}\)
If either \((\mathrm{a})\) or \((\mathrm{b})=\) true and both \((\mathrm{c})\) and \((\mathrm{d})=\) false, then proceed to Step 28A.
Step 28A - Issuance of ME-2 Shutdown Commands. This step provides for alternately issuing the shutdown enable and shutdown commands for ME-2.

Monitor the following:
(a) ME-2 SHUTDOWN FLAG "B"
(INTERNAL)

If (a) = false, then terminate the following output:
(1) MPS E2 SHUTDOWN CMD

V90X8371X
and issue the following output:
(2) MPS E2 SHUTDOWN ENABLE CMD

V90X8368X
and then set internal flag (3) below = true
(3) ME-2 SHUTDOWN FLAG "B"
(INTERNAL)
(4) ME-2 SHUTDOWN CMD ISSUED FLAG

Proceed to Step 29.
If (a) = true, terminate output (2) above and issue output (1) above; and then set output (3) above \(=\) false, and output (4) \(=\) true.

Proceed to Step 29.

Step 29 - ME-3 Shutdown Initiation. This step monitors for either an ME-3 MANUAL SHUTDOWN FLAG or a MECO COMMAND FLAG. If either flag is set true, this step will alternately issue the shutdown enable and shutdown commands until ME-3 is detected to be in the shutdown or post-shutdown phase.

Monitor the following:
(a) ME-3 MANUAL SHUTDOWN FLAG
(b) MECO COMMAND FLAG

V90X8569X
(c) MPS E3 SHUTDOWN PHASE

V95X1157X
(d) MPS E3 POST-SHUTDOWN PHASE

V95X1162X

If (a) and (b) both \(=\) false, proceed to Step 30.
If either (a) or (b) = true and either (c) or \((d)=\) true, then terminate outputs (1) and (2) and set output \((3)=\) true and proceed to Step 30.
\(\begin{array}{llr}\text { (1) MPS E3 SHUTDOWN ENABLE CMD } & \text { V90X8369X } \\ \text { (2) MPS E3 SHUTDOWN CMD } & \text { V90X8372X } \\ \text { (3) ME-3 SHUTDOWN CMD ISSUED FLAG } & \text { (INTERNAL) }\end{array}\)
If either \((\mathrm{a})\) or \((\mathrm{b})=\) true and both \((\mathrm{c})\) and \((\mathrm{d})=\) false, then proceed to Step 29A.
Step 29A - Issuance of ME-3 Shutdown Commands. This step provides for alternately issuing the shutdown enable and shutdown commands for ME-3.

Monitor the following:
(a) ME--3 SHUTDOWN FLAG "C"
(INTERNAL)

If (a) = false, then terminate the following output:
(1) MPS E3 SHUTDOWN CMD

V90X8372X
and issue the following output:
(2) MPS E3 SHUTDOWN ENABLE CMD

V90X8369X
and then set intemal flag (3) below = tue
(3) ME-3 SHUTDOWN FLAG "C"
(4) ME-3 SHUTDOWN CMD ISSUED FLAG

Proceed to Step 30.
If \((a)=\) true, terminate output (2) above and issue output (1) above; and then set output (3) above \(=\) false and output \((4)=\) true.

Proceed to Step 30.
Step 30 - All Engines Manual Shutdown Check. This step monitors for a crew-initiated manual shutdown of all engines. If all three of the internal manual shutdown flags are set true, then the MECO COMMAND FLAG is set true.

Monitor the following:
(a) ME-1 MANUAL SHUTDOWN FLAG
(b) ME-2 MANUAL SHUTDOWN FLAG
(c) ME-3 MANUAL SHUTDOWN FLAG

If (a), (b), and (c) all = true, then issue the following output and proceed to Step 31.

\section*{(1) MECO COMMAND FLAG}

V90X8569X

If either \((a)\) or \((b)\) or \((c)=\) false, then proceed to Step 31.

Step 31 - All Engines Pc \(\leq 30\)-Percent Check. This step monitors the thrust level of all engines via chamber pressure from the SSME SOP. Also monitored is whether the data from each engine is valid. If no engine remains above 30 percent chamber pressure, or MAJOR MODE 104 FLAG is true, or ME-1, ME-2, and ME-3 safing commands are all true, or an engine has a DATA PATH FAIL and the other two engines are less than or equal to 30 percent chamber pressure, the MECO COMMAND FLAG, the MECO CONFIRMED FLAG, and the EVENT TIMER START FLAG are all set true.Monitor the following:
(a) MPS E1 PERCENT CH PRESS

V95U1186C
(b) MPS E2 PERCENT CH PRESS V95U1187C
(c) MPS E3 PERCENT CH PRESS

V95U1188C
(d) ME-1 FLIGHT DATA PATH FAIL FLAG

V95X1150X
(e) ME-2 FLIGHT DATA PATH FAIL FLAG

V95X1151X
(f) ME-3 FLIGHT DATA PATH FAIL FLAG

V95X1152X
(g) MAJOR MODE 104 FLAG

V90X8152X
(h) ME-1 SAFING CMD

V90X3443X
(i) ME-2 SAFING CMD

V90X3444X
(j) ME-3 SAFING CMD V90X3445X

If (a), (b), and (c) are all \(\leq 30\) percent, then issue the following outputs and proceed to Step 32.
\begin{tabular}{lll} 
(1) MECO COMMAND FLAG & V90X8569X \\
(2) MECO CONFIRMED FLAG & V90X8561X \\
(3) EVENT TIMER START FLAG & V90X8403X
\end{tabular}

If \((\mathrm{g})=\) true, then issue outputs \((1),(2)\), and (3) above and proceed to Step 32.
If \((\mathrm{h})\) and (i) and (j) = true, then issue outputs (1), (2), and (3) above and proceed to Step 32.
If \((\mathrm{d})=\) true and (b) and (c) are both \(\leq 30\) percent, then issue outputs (1), (2), and (3) above and proceed to Step 32.

If (e) = true and (a) and (c) are both \(\leq 30\) percent, then issue outputs (1), (2), and (3) above and proceed to Step 32.

If \((\mathrm{f})=\) true and (a) and (b) are both \(\leq 30\) percent, then issue outputs (1), (2), and (3) above and proceed to Step 32.

Otherwise, return to Step 1.
Step 32 - All Prevalves Commanded Closed Check. This step checks that all prevalves have been commanded closed before setting a flag for the ET separation sequence and proceeding with the ET disconnect valve closure. The prevalves are closed by Steps 3A, 7A, and 11A after appropriate time delays.

Monitor the following:
(a) ME-1 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(b) ME-2 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
(c) ME-3 PREVALVES CMD'D CLOSED FLAG
(INTERNAL)
If either (a), (b), or \((c)=\) false, return to Step 1.
If (a), (b), and (c) all = true, issue the following output and proceed to Step 33.
(1) ALL PREVLVS COMMANDED CLOSE IND V90X8568X

Step 33 - Termination of SSME OPS Sequence. This step keeps the SSME OPS sequence active until all PREVALVE CLOSE COMMANDS have been removed and the HELIUM INTERCONNECT FLAG is set to false. The PREVALVE CLOSE COMMANDS are removed in Steps 4, 8, and 12. The HELIUM INTERCONNECT FLAG is set to false, when appropriate, by Step 17A.

Monitor the following:
(a) ME-1 PREVLVS CLOSE CMDS REMOVED FLAG
(b) ME-2 PREVLVS CLOSE CMDS REMOVED FLAG
(c) ME-3 PREVLVS CLOSE CMDS REMOVED FLAG
(d) HELIUM INTERCONNECT FLAG

If either \((a),(b)\),or \((c)=\) false, return to Step 1.
If (a), (b), and (c) all = true, then set output (1) = false and monitor (d).
If \((\mathrm{d})=\) true, return to Step 1.
If \((\mathrm{d})=\) false, terminate the SSME OPS sequence.
(1) EVENT TIMER START FLAG V90X8403X



Figure 4.165 SSME Operations Sequence (Sheet 3 of 11)


Figure 4.165 SSME Operations Sequence (Sheet 4 of 11)


Figure 4.165. SSME Operations Sequence (Sheet 5 of 11)


Figure 4.165. SSME Operations Sequence (Sheet 6 of 11)


Figure 4.165 SSME Operations Sequence (Sheet 7 of 11)

\section*{INFORMATION ONLY}


Figure 4.165 SSME Operations Sequence (Sheet 8 of 11)

\section*{INFORMATION ONLY}


Figure 4.165 SSME Operations Sequence (Sheet 9 of 11)


Figure 4.165 SSME Operations Sequence (Sheet 10 of 11)

\section*{INFORMATION ONLY}


Figure 4.165. SSME Operations Sequence (Sheet 11 of 11)

\footnotetext{
THIS PAGE INTENTIONALLY LEFT BLANK
}
TABLE 4.2.1.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.1.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.1.4 1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS

合品㽞㽞㽞㽞

TABLE 4.2.1.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) INPUT/OUTPUT FUNCTIONAL PARAMETERS
\begin{tabular}{|c|c|c|}
\hline 00049P00L & OUTPUT FUNCTIONAL PARAMETERS & FROM SSME \\
\hline M/S ID & NOMENCLATURE & destination \\
\hline V41K1613xB & MPS REG HE XOVER VLV (LV10) OP CMD & HDWR \\
\hline v90x8403xB & EVENT TIMER StART FLAG & SYS S/w \\
\hline v90x8568x & all prevlvs Commanded close ind & ET SEP SEQ \\
\hline V90x8577x & zero thrust delay & MSC \\
\hline
\end{tabular}
TABLE 4．2．1．4－2．SPACE SHUTTLE MAIN ENGINE（SSME）OPERATIONS SEQ（G4．165）I－LOADS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & 思 & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & N
N & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { N } \\
& \text { N }
\end{aligned}
\] & 웅 & 橧 & 邁 & 웅 \\
\hline \[
\underset{-1}{\stackrel{n}{0}}
\] & \[
\begin{aligned}
& L_{0}^{0} \\
& \sim-1
\end{aligned}
\] & \[
\stackrel{\text { 皆 }}{\substack{2}}
\] & \[
\stackrel{n}{\sim}
\] & \[
\begin{aligned}
& \text { n } \\
& \stackrel{0}{n}
\end{aligned}
\] & \[
\begin{aligned}
& \text { n } \\
& \stackrel{0}{0}
\end{aligned}
\] & \[
\underset{\sim}{\text { n }}
\] & \[
\stackrel{i n}{\square}
\] & \[
\begin{aligned}
& n \\
& \stackrel{n}{+}
\end{aligned}
\] & \[
\begin{aligned}
& n \\
& \stackrel{n}{+}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{0}{0} \\
& \stackrel{+}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { n} \\
& \stackrel{0}{7}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{\sim}{\circ} \\
& \stackrel{+}{1}
\end{aligned}
\] & \[
\begin{aligned}
& \boxed{0} \\
& \stackrel{0}{!}
\end{aligned}
\] & \[
\begin{aligned}
& \Omega \\
& \stackrel{0}{\square}
\end{aligned}
\] & \[
\begin{aligned}
& \bullet \\
& \stackrel{\bullet}{0} \\
& \stackrel{1}{2}
\end{aligned}
\] & \(\stackrel{4}{0}\) \\
\hline ¢ & ¢ & \％ & ¢ & （ु） & ¢ & ชु & \％ & \％ & \％ & \％ & \％゙ & ＋ & ¢ & \％ & － & サi \\
\hline 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & \(\bigcirc\) & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & \(a\) & 0 & \(\bigcirc\) & 0 \\
\hline － & － & － & \(\cdots\) & － & \(\rightarrow\) & － & \(\Sigma\) & － & \(\Sigma\) & － & \(\Sigma\) & － & － & － & － & a \\
\hline － & － & － & － & \(\square\) & － & － & － & － & － & － & － & 0 & － & － & － & 0 \\
\hline 山 & \({ }^{\text {w }}\) & 5 & 㛧 & 四 & \＆ & \(\square^{4}\) & 场 & 的 & \({ }^{4}\) & ［4 & ［v & 岳 & 的 & 山 & 的 & ［4 \\
\hline
\end{tabular}
TABLE 4.2.1.4-3. SPACE SHUTTLE MAIN ENGINE(SSME) OPERATIONS SEQ (G4.165) K-LOADS
DBEN: 0558
FSSR NAME
DESCRIFTION
\begin{tabular}{|c|c|c|c|}
\hline ET LH2 LO LVL LIQ SESI_DSBL_FLG & V99x8806X & \(B^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline ET LH2 LO LVL LIQ SES2_DSBL_FLG & V99x8807x & \(B^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline ET_LH2 LO_LVL_LIQ SES3_DSBL_FLG & V99x8808X & \(B^{\prime \prime} 0000000000000000^{\prime}\) & ND \\
\hline ET_LH2_LO_LVL_LIQ SES4_DSBL_FLG & V99x8809x & \(B^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline EAST_SEP LH2 PREVLV_DLY & V97U9832C & +2.342 E+00 & SEC \\
\hline FAST_SEP_LOX_PREVLV_DLY & V97U9831C & +1.5 E+00 & SEC \\
\hline ME_SHTDN_DLY & V97U9830C & +0.0 E+00 & SEC \\
\hline MPS LOX_LO_LVL_LIQ SES1_DSBL_FLG & V99x8814X & \(B^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline MPS_LOX_LO_LVL_LIQ_SES2_DSBL_FLG & V99x8815x & \(B^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline MPS_LOX_LO_LVL__LIQ_SES3_DSBL_ELG & V99X8816X & \(\mathrm{B}^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline MPS_LOX_LO_LVL_LIQ_SES4_-_DSEL_ELG & V99x8817x & \(\mathrm{B}^{\prime} 0000000000000000^{\prime}\) & ND \\
\hline MPS_MECO_E1_T_DELAY_A & V9609769C & +1.078 \(\mathrm{E}+00\) & SEC \\
\hline MPS_MECO_E2_T_DELAY D & V96U9771C & +1.078 E+00 & SEC \\
\hline MPS_MECO_E3_T_DELAY_G & V96U9773C & +1.078 E+00 & SEC \\
\hline
\end{tabular}
DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS

Rockwell International
Space Systems Division

\subsection*{4.2.2 SRB Separation Sequence (4.115)}

\subsection*{4.2.2.1 Introduction}

The solid rocket booster (SRB) separation sequence (SEP SEQ) is used during the ascent phase to separate the expended boosters from the orbiter/external tank. The SRB separation sequence performs the functions of monitoring SRB thrust tailoff, via chamber pressure; controlling the \(S R B\) separation process; and generating indicators for proper GN\&C moding. The separation process is normally automatic, but in the event of an automatic separation inhibit, the crew is given the capability to manually override the inhibit and to initiate separation.

\subsection*{4.2.2.2 Overview}

The SRB separation sequence is initiated at SRB SEP SEQ INITIATION TIME; it is initiated only if MECO has not yet occurred. Upon initiation, the sequence monitors the selected left and right SRB chamber pressure measurements to determine if the primary separation cue has been reached; that is, to determine if both the left and right SRB chamber pressures have decayed to 50 psia. The backup separation cue is reached when the mission elapsed time (MET) exceeds the latest possible time (SRB SEP BACKUP CUE TIME) at which a chamber pressure of 50 psia could occur.

Protection is provided for dual failure in the flight aft MDM's A/D converters or COMMFAULTS in conjunction with MDM failures which would result in premature indication of both left and right SRB chamber pressure at or below 50 psia.

In the event of multiple chamber pressure sensor failures on one SRB to the high state, SRB SEP BACKUP CUE TIME serves as the separation cue. Protection against multiple sensor failures to the low state requires marking the times at which the selected left and right SRB chamber pressure measurements drop below 50 psia and calculating the resultant time differential. If this differential exceeds the predicted maximum (MAX SRB SEP CUE DIFFERENTIAL), the separation cue becomes SRB SEP BACKUP CUE TIME to prevent a separation attempt with excessive SRB thrust.

The separation process begins once either the primary or backup separation cue has been reached. PIC arm and GN\&C moding indicators are then issued at appropriate times. Following delays to allow the SRM nozzle actuators time to null and SRB thrust time to decay to an acceptable level, the vehicle's dynamic state is compared with criteria which define the capability of the vehicle to perform a safe separation. If the criteria are met, separation is commanded automatically. If the state criteria are exceeded, automatic separation is inhibited. The crew may override this inhibit via the SRB separation mode switch and the SRB separation initiate push button.

\subsection*{4.2.2.3 Detailed Requirements}

Step 1 - Monitor Separation Cues. The SRB separation sequence is initiated when mission elapsed time (MET) is \(\geq\) SRB SEP SEQ INITIATION TIME, I-loaded, and MECO has not yet occurred. The initiation time is selected to be less than the earliest possible time that the sensed chamber pressure of a fastburning SRB will be at 50 psia, minus MAX SRB SEP CUE DIFFERENTIAL seconds. This step monitors the selected chamber pressure of each SRB, from select filter, for the primary separation cue and monitors MET for the backup cue. This monitoring occurs only if the cue has not previously been established.

Monitor the following:
(a) SRB SEPARATION COMMAND FLAG

V90X8331X

If (a) is true, proceed to Step 4. If (a) is not true, monitor the following:
(b) SRB SEPARATION INITIATION FLAG

V90X8333X

If (b) is true, proceed to Step 2. If (b) is not true, monitor the following:
(c) SELECTED LEFT PRESS SRB CHAMBER

V90P2535C
(d) SELECTED RIGHT PRESS SRB CHAMBER V90P2536C
(e) MAX SRB SEP CUE DIFRNTL (I-loaded)

V97U9761C

If both (c) and (d) are \(\leq 50\) psia, each for four successive passes, subtract the time the first left or right SRB chamber pressure was first detected to be less than or equal to 50 psia in the set of four passes from the time that the second, left or right, SRB chamber pressure was first less than or equal to 50 psia in a set of four passes. If this differential is \(\geq\) (e), set (1) true and proceed to Step 2. If this time differential is \(>\) (e), or either (c) or (d) \(>\overline{5} 0\) psia, monitor the following:
(f) \(\operatorname{SRB}\) SEP BACKUP CUE T (I-loaded)

V97U9751C

If mission elapsed time \(<(\mathrm{f})\), return to the beginning of Step 1.
If mission elapsed time \(\geq\) (f), proceed to Step 2.
(1) LH/RH SRB PC 50 PSI FLAG

V90X8332X
Step 2 - Prepare for Separation. The separation cue having been reached, this step prepares the vehicle for separation by issuing flags which arm the appropriate PIC's, safe the SRB range safety system, null the SRM nozzle actuators, and transition the flight control system configuration. Time delays are incorporated to assure that SRM actuators have adequate time to nullify and that SRM thrust has decayed to an acceptable level before commanding separation in a subsequent step.

Set (1), (2), (3), and (4) true and monitor the following:
(a) SRB_SEP_MODING_T_DELAY (I-loaded)

V97U9752C

If ( \(2-0.48\) ) seconds have not elapsed since ( 1 ) became true, return to Step 1.
If (a-0.48) seconds have elapsed since (1) became true, set (5) and (6) tue and monitor the following:
(b) SRB_SEP_COMMAND_T_DELAY (I-loaded)

V97U9753C
(c) SRB_SEP_CMD_T_DLX_ABORT (I-loaded) V99U7589C
(d) MPS E1 FAIL FLAG V95X1207X
(e) MPS E2 FAIL FLAG V95X1208X
(f) MPS E3 FAIL FLAG V95X1209X

If (d), (e), and (f) are false and (b-0.48) seconds have not elapsed since (1) became true or if (d), (e), or ( \(f\) ) is true and ( \(c-0.48\) ) seconds have not elapsed since ( 1 ) became true, return to Step 1.

If (d), (e), and (f) are false and (b-0.48) seconds have elapsed since (1) became true or if (d), (e), or (f) is true and (c-0.48) seconds have elapsed since (1) became true, set (7) true, set (8) false, and proceed to Step 3.
\begin{tabular}{lll} 
(1) & SRB SEPARATION INITIATION FLAG & V90X8333X \\
(2) & SRB RSS SAFE FLAG & V90X8337X \\
(3) & SRB RSS PWR OFF FLAG & V90X8336X \\
(4) & ET/ORB SEP CAMERAS ON CMD & V56K9000X \\
(5) & SRB SEP PICS ARM FLAG & V90X8335X \\
(6) & SRB SEP FUNCTION MODING FLAG & V90X8330X \\
(7) & ATVC SRB 26V AC DEADFACE FLAG & V90X8339X \\
\((8)\) & ATVC SRB IVD PWR ON & V90X8338X
\end{tabular}

Step 3-Check Separation Inhibits. The vehicle is now configured to separate the SRB's. This step compares the vehicle's dynamic state with criteria which define the capability of the vehicle to perform a safe separation. If these criteria are exceeded, an inhibit is imposed which is automatically released once the criteria have been met but which can also be overridden manually by the crew. The separation criteria are defined in terms of vehicle body rate and dynamic pressure limits.

Set (1) false and monitor the following:
(a) SEL SRB SEP MNL/AUTO ENABLE CMD

V90X7571X
(b) SEL SRB SEPARATION INITIATE CMD

V90X7572X

If (a) and (b) are both true, proceed to Step 4. Otherwise, monitor the following:
\begin{tabular}{llll} 
P: & SELECTED RGA ROLL RATE & & V90R5301C \\
Q: & SELECTED RGA PITCH RATE & & V90R5321C \\
R: & SELECTED RGA YAW RATE & V90R5341C \\
QBAR: & DERIVED ASCENT DYNAMIC PRESS & V95P0500C \\
AP- & ROLL_RATE_LMT SLOPE & (I-loaded) & V97U9754C \\
AQ- & PITCH_RATE_LMT SLOPE & (I-loaded) & V97U9755C \\
AR- & YAW_RATE_LMT SLOPE & (I-loaded) & V97U9756C \\
BP- & ROLL_RATE_LMT CONSTANT & (I-loaded) & V97U9757C \\
BQ- & PITCH_RATE_LMT CONSTANT & (I-loaded) & V97U9758C \\
BR- & YAW_RATE_LMT CONSTANT & (I-loaded) & V97U9759C \\
DPL: & DYNAMIC_PRS LIMIT & (I-loaded) & V97U9760C
\end{tabular}

If \(\mathrm{QBAR}>\mathrm{DPL}\)
or if \(\mathrm{P}>\mathrm{AP}(\mathrm{QBAR})+\mathrm{BP}\)
or if \(Q>A Q(Q B A R)+B Q\)
or if \(R>A R(Q B A R)+B R\), set (1) true and return to Step 1. Otherwise, proceed to Step 4.
(1) SRB AUTO SEP INHIBIT CREW ALERT

V90X8340X

Step 4 - Command Separation. This step sets the separation fire flags which, through the MEC SOP, instruct the MEC's to issue fire commands to the separation PIC's. Before the sequence is descheduled, MEC SOP flags are terminated. The MEC SOP is then instructed to issue a MASTER RESET to the MEC's to complete the sequence.

Set (1), (2), and (3) true.
If 4 seconds have elapsed since (2) became true, set (1), (2), and (4) through (11) false. One pass later, set (12) true one time only. The sequence is now complete and ready to be descheduled.
\begin{tabular}{lll} 
(1) & SRB SEP FIRE 1 FLAG & V90X8341X \\
(2) & SRB SEP FIRE 2/3 FLAG & V90X8354X \\
(3) & SRB SEPARATION COMMAND FLAG & V90X8331X \\
(4) & L SRB PWR BUS C RPC A ON CMD & V76K6941X \\
(5) & R SRB PWR BUS C RPC A ON CMD & V76K6942X \\
(6) & L SRB PWR BUS C RPC C ON CMD & V76K6945X \\
(7) & R SRB PWR BUS C RPC C ON CMD & V76K6946X \\
(8) & SRB RSS PWR OFF FLAG & V90X8336X \\
(9) & SRB RSS SAFE FLAG & V90X8337X \\
(10) & SRB SEP PICS ARM FLAG & V90X8335X \\
(11) & ET/ORB SEP CAMERAS ON COMMAND & V56K9000X \\
(12) & MEC 1 \& 2 MASTER RESET FLAG & V90X8258X
\end{tabular}

Figure 4.115. SRB SEP SEQ (Sheet 1 of 2)


Figure 4.115. SRB SEP SEQ (Sheet 2 of 2)
TABLE 4.2.2.4-1. SOLID ROCKET BOOSTER(SRB) SEP SEQUENCER (G4.115) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.2.4-1. SOLID ROCKET BOOSTER(SRB) SEP SEQUENCER (G4.115) INPUT/OUTPUT FUNCTIONAL PARAMETERS \(\begin{array}{lll}00049 \mathrm{P} 00 \mathrm{~L} & \text { OUTPUT FUNCTIONAL PARAMETERS FROM SRB SEP SEQ } \\ \text { M/S ID } & \\ \text { V90X8338KA ATVC SRB IVD PWR ON FLAG } & \text { DESTINATION }\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{100049P00L} & \multicolumn{2}{|l|}{OUTPUT FUNCTIONAL PARAMETERS FROM SRB SEP SEQ} & & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { DATA } \\
& \text { TYPE }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline M/S ID & NOMENCLATURE & DESTINATION & UNITS & \\
\hline V90x8338XA & ATVC SRB IVD PWR ON FLAG & MEC SOP & & \\
\hline V90x8339XA & ATVC SRB 26 V AC DEADEACE FLAG & MEC SOP & & \\
\hline V90x8258xB & MEC 1\&2 MASter Reset flag & MEC SOP & & \\
\hline V90x8330xA & SRB SEP FUNCTION MODING FLAG & ASC DAP, MSC, TLM & & \\
\hline V90x8336\% & SRB RSS PWR OFF FLAG & MEC SOP & & \\
\hline V90x8337x & SRB RSS SAFE FLAG & MEC SOP & & \\
\hline V90x8335x & SRB SEP PICS ARM FLAG & MEC SOP & & \\
\hline V90x8331KA & SRB SEPARATION COMMAND FLAG & AERO ACT SOP, ASC DAP,ASC UPP SEQ, RTLS UPP SEQ,MSC,TLM & & \\
\hline V90x83418 & SRB SEP FIRE 1 FLAG & MEC SOP & & \\
\hline V90x8354X & SRB SEP FIRE 2/3 FLAG & MEC SOP & & \\
\hline V90x8333x & SRB SEPARATION INITIATION FLAG & ASC UPP SEQ, TLM & & BD \\
\hline V56K9000xC & ET/ORB SEP CAMERAS ON CMD & HDWR & & \\
\hline V76K6941XA & L SRB BUS C RPC A ON CMD & HDWR & & \\
\hline V76K6942XA & \(R\) SRB BUS \(C\) RPC \(A\) ON CMD & HDWR & & \\
\hline V76K6945XA & I SRB BUS \(C\) PRPC \(C\) ON CMD & HDWR & & \\
\hline V76K6946XA & \(R\) SRB BUS C RPC C ON CMD & HDWR & & \\
\hline V90x8332X & LH/RH SRB PC 50 PSI FLAG & XXXXXX TRAJ DISP, TLM & & BD \\
\hline V90x8340x & SRB AUTO SEP INHIBIT CREW ALERT & XXXXXX TRAJ DISP, TLM & & BD \\
\hline
\end{tabular}

\[
\text { DBEN: } 0484
\]

ESSR NAME:
\[
\begin{aligned}
& \begin{array}{ll}
\text { V97U9754C } & \text { DEG*FT**2/SEC*LB } \\
\text { V97U9755C } & \text { DEG*FT**2/SEC*LB }
\end{array} \\
& \text { V9749756C DEG*FT**2/SEC*LB } \\
& \text { v97U9757C DEG/SEC } \\
& \text { V9709758C DEG/SEC } \\
& \text { V97U9759C DEG/SEC } \\
& \text { V97U9760C LB/ET**2 } \\
& \text { v97U9761C SEC } \\
& \text { V99U7589C SEC } \\
& \text { V97U9753C SEC } \\
& \text { V9709752C SEC } \\
& \begin{array}{lll}
\text { V97U9754C } & \text { DEG*FT**2/SEC*LB } & \text { F } \\
\text { V97U9755C } & \mathrm{DEG*FT**} 2 / \mathrm{SEC} * \mathrm{LB} & \mathrm{~F}
\end{array}
\end{aligned}
\]

DT PR D S PR ECTN CAT

MSID ENG UNIT

AP_ROLL_RATE_LMT_SLOPE
AQ_PITCH_RATE_LMT_SLOPE
AR_YAW_RATE_LMT_SLOPE
BE_ROLL_RATE_LMT_CONSTANT
BQ_PITCH_RATE_LMT_CONSTANT
BR_YAW_RATE_LMT_CONSTANT
DYNAMIC_PRS_LMT
MAX_SRB_SEP_CUE_DIERNTL
SRB_SEP_BACKUP_CUE_T
SRB_SEP_CMD_T_DLY_ABORT
SRB_SEP_COMMAND_T_DELAY
SRB_SEP_MODING_T_DELAY
DBEN: 0558 FSSR NAME
DESCRIPTION
NO REQUIREMENTS

\subsection*{4.2.3 ET Separation Sequence (4.116)}

\subsection*{4.2.3.1 Introduction}

The external tank (ET) separation sequence is used during the ascent phase to separate the expended fuel tank from the orbiter vehicle. The separation normally occurs automatically, but the crew has the capability to manually inhibit the separation sequence at any point or to manually initiate the separation in the presence of automatic separation inhibits.

\subsection*{4.2.3.2 Overview}

The ET separation sequence is initiated by the GN\&C moding, sequencing, and control (MSC) function when the SSME OPS sequence has determined that all of the main engines (ME) are in the shutdown or post shutdown phase. It then sets the MECO confirmed flag. The sequence then operates cyclically until just after the ET structural separation fire commands are issued in a nominal/TAL/AOA/ATO mission or until the umbilical doors are closed and latched in an RTLS abort mode.

The sequence accomplishes several major functions. It determines the mode of separation or if the separation is to be manually inhibited, arms the umbilical plate to unlatch PIC's, arms and fires the tumble system after all of the main propulsion (MPS) prevalves have been commanded closed, closes the feed-line disconnect valves, gimbals the SSME nozzles to the proper position; deadfaces the ET-orbiter interface, and unlatches and retracts the umbilical plates.

The sequence arms the structural separation PIC's, performs some limit tests on certain body rates and/or angles, and tests for feed line disconnect valve closure before continuing with an automatic separation. If any of the tests are not satisfied, the separation is inhibited and can occur only if the out-of-tolerance parameter comes back within tolerance or if the crew elects to continue the separation by manually overriding the inhibit. When either of these conditions is satisfied, the structural separation PIC's are fired. If an RTLS abort mode has been requested, the ET SEP sequence performs the umbilical closeout door function and is then complete.

The ET SEP sequence also provides a fast separation mode which is activated only when manual separation is enabled and the ET SEP initiate push button is depressed. The fast separation mode bypasses delays for PIC arm and fire times, feed line disconnect close times, and ET/UMB door retract times. The SRB SEP CMD FLAG and RTLS ABORT DECLARED FLAG are set to initiate the proper software moding. The fast separation function also provides for deadfacing the SRB electrical interfaces.

\subsection*{4.2.3.3 Detailed Requirements}

Step 1 - Initiation. When the ET SEP sequence is initiated by the MSC function, the ET SEPARATION \(\overline{\mathrm{CMD}}\) flag is monitored. If it has not yet been set, the sequence monitors the separation mode via the GN\&C switch processor. If the automatic ET separation mode is selected, the sequence proceeds normally. If the manual enable mode is selected, the sequence will not proceed until the ET SEP INITIATE push button is depressed and latched in software or the automatic mode is selected. If the ET SEPARATION CMD flag has been set, the sequence sets the MEC 1 and 2 MASTER RESET flag, terminates \(L_{2}\) RTLS dump valve open command and the MEC critical command flags, and terminates the feed line disconnect valve close commands. If an RTLS abort has been requested or if a manual request is made, the sequence must also perform the ET umbilical well door-closing function. If a fast separation has been requested, additional moding flags are set and the sequence terminated.

Monitor the following signals:
\begin{tabular}{lll} 
(a) & ET SEPARATION CMD FLAG & V90X8250X \\
(b) & FAST SEP FLAG & V90X8267X \\
(c) & SEL ET SEP AUTO & V90X7554X \\
(d) & SEL ET SEP MNL ENABLE & V90X7556X \\
(e) & SEL ET SEP INITIATE & V90X7564X \\
(f) & ET SEP MAN INITIATE FLAG & V90X8584X \\
(g) & BACKUP ET MAN SEP CMD & V93X5341X \\
(h) & MAJOR MODE 102 FLAG & V90X8158X \\
(i) & RTLS ABORT DECLARED & V90X8637X \\
(j) & BACKUPET UMB DOOR CLOSE & V93X5342X
\end{tabular}

If (a) and (b) are both false and (f) is false and (c) and (h) are true, return to Step 1.
If (a) and (b) are both false and (f) and (g) and (h) are false and (c) is true, proceed to Step 2.
If (a) and (b) are both false and (d) and (e) are true or if (f) or \((\mathrm{g})\) is true, latch (f) true and proceed to Step 1A.

If (a) and (b) are both false and (d) is true and (e) and (f) and (g) are false, set output (11) false and return to the beginning of Step 1.

If (a), (b), and (h) are true, set outputs (10) and (12) true and deactivate the sequence.
If (a) and (b) are true and (h) is false, proceed to Step 8.
If (a) is false and (b) is true, proceed to Step 2.
If (a) is true and (b) is false, set outputs (1) through (9) false and return to the beginning of Step 1. On any subsequent passes through this logic, monitor (i) and (j).

If (i) is true, proceed to Step 8.
If (i) and (j) are false, issue output (10) one time only, wait 73 seconds, and terminate outputs (13) through (18) and proceed to Step 9.

If ( j ) is true, on the first pass through the logic, restart the timer from the ET/ORB STR SEPN FIRE 2 FLAG in Step 7. On subsequent passes, proceed to Step 8.
\begin{tabular}{|c|c|c|}
\hline (1) & ET/ORB STR SEPN PICS ARM FLAG & V90X8265X \\
\hline (2) & ET/ORB STR SEPN FIRE 1 FLAG & V90X8244X \\
\hline (3) & ET/ORB STR SEPN FIRE \(2 / 3\) FLAG & V90X8241X \\
\hline (4) & MPS LH2 FEED DISC VALVE CL CMD A & V41K1416X \\
\hline (5) & MPS LH 2 FEED DISC VALVE CL CMD B & V41K1417X \\
\hline (6) & MPS LH \(\mathrm{H}_{2}\) FEED DISC VALVE CL CMD C & V41K1418X \\
\hline (7) & MPS LO2 \(\mathrm{F}_{2}\) FED DISC VALVE CL CMD A & V41K1524X \\
\hline (8) & MPS LO \(\mathrm{O}_{2}\) FEED DISC VALVE CL CMD B & V41K1525X \\
\hline (9) & MPS \(\mathrm{LO}_{2}\) FEED DISC VALVE CL CMD C & V41K1526X \\
\hline (10) & MEC 182 MASTER RESET FLAG & V90X8258X \\
\hline (11) & ET/ORB SEP CAMERAS ON CMD & V56K9000X \\
\hline
\end{tabular}
\begin{tabular}{lll} 
(12) & SRB SEP CMD FLAG & V90X8331X \\
(13) & MPS LH 2 RTLS INBD D/V OPEN COMMAND A & V41K1923X \\
(14) & MPS LH 2 RTLS INBD D/V OPEN COMMAND B & V41K1924X \\
(15) & MPS LH \({ }_{2}\) RTLS INBD D/V OPEN COMMAND C & V41K1925X \\
(16) & MPS LH \(\mathrm{LH}_{2}\) RTLS OTBD D/V OPEN COMMAND A & V41K1913X \\
(17) & MPS LH \(\mathrm{LH}_{2}\) RTLS OTBD D/V OPEN COMMAND B & V41K1914X \\
(18) & MPS LH2 RTLS OTBD D/V OPEN COMMAND C & V41K1915X
\end{tabular}

Step 1a - Fast Separation Initiation. This step determines a fast separation has been requested, and, if so, sets the flags required to initiate the FAST SEP mode.

Monitor the following signal:
\begin{tabular}{lll} 
(a) MM102 FLAG & V90X8158X \\
(b) MM602 FLAG & V90X8194X \\
(c) & MM103 FLAG & V90X8156X \\
(d) SECOND SSME FAIL CONFIRM & V90X1721X
\end{tabular}

If (c) and (d) are true, set Flags (1), (3), and (4) true and proceed to Step 2.
If (a) or (b) is true, set Flags (1), (2), (3), and (4) true and proceed to Step 2.
(1) FAST SEP FLAG V90X8267X
(2) RTLS ABORT DECLARED V90X8637X
(3) ET/ORB STR SEPN PICS ARM FLAG V90X8265X
(4) ET UMB UNLATCH PIC ARM FLLAG V90X8247X

Proceed to Step 2.
Step 2 - Preparation and Umbilical Unlatch and Retract. The feed line relief shutoff valve close commands are terminated and the \(\mathrm{LH}_{2}\) RTLS inboard and outboard \(\mathrm{D} / \mathrm{V}\) are commanded open so that these valves can relieve any pressure buildup caused by trapped propellants in the feed line when the ME valves and feed line disconnect valves are closed. Also, the umbilical door centerline latch lock commands are terminated to allow subsequent closure of the umbilical closeout doors.

Monitor (a) and (b) below:
(a) FLAG A
(INTERNAL)
(b) FAST SEP FLAG V90X8267X
(c) RTLS ABORT DECLARED V90X8637X

If (a) is false, set outputs (1) through (14) false and proceed to Step 3.
If (a) is true and (b) is false, set output (19) false and outputs (15) through (18) and (21) through (26) true on the first pass through this logic and return to Step 1. On the next pass, set outputs (15) through (18) false and return to Step 1. On all subsequent passes through the logic, proceed to Step 5.

If (a) and (b) are true, and it has been less than 1 second since (b) became true, return to Step 1.

If (a) and (b) are true, and it has been more than 1 second since (b) became true, on the first pass set output (19) false and outputs (15) and (17) true and proceed to monitor (c). If (c) is true, return to Step 1. Otherwise, set (27) true and return to Step 1. On subsequent passes, set outputs (15), (17), and (20) false, set outputs (16) and (18) true and proceed to Step 7.
\begin{tabular}{|c|c|c|}
\hline (1) & MPS LH2 \(\mathrm{FDLN}^{\text {RLF }}\) / O VLV CL CMD A & V41K1447X \\
\hline (2) & MPS LH2 FDLN RLF S/O VLV CL CMD B & V41K1448X \\
\hline (3) & MPS \(L^{2} \mathrm{H}_{2}\) FDLN RLF S/O VLV CL CMD C & V41K1450X \\
\hline (4) & MPS LO \(\mathrm{O}_{2}\) FDLN RLF S/O VLV CL CMD A & V41K1547X \\
\hline (5) & MPS LO \(\mathrm{O}_{2}\) FDLN RLF S/O VLV CL CMD B & V41K1548X \\
\hline (6) & MPS LO \(2_{2}\) FDLN RLF S/O VLV CL CMD C & V41K1550X \\
\hline (7) & ET DR C/L LCH 1B1/2B2 FA1 LOCK CMD & V56K1275X \\
\hline (8) & ET DR C/L LCH 1B2/2B1 FA1 LOCK CMD & V56K1276X \\
\hline (9) & ET DR C/L LCH 1B1/2B2 FA2 LOCK CMD & V56K1277X \\
\hline (10) & ET DR C/L LCH 1B2/2B1 FA2 LOCK CMD & V56K1278X \\
\hline (11) & ET DR C/L LCH 1B1/2B2 FA4 LOCK CMD & V56K1375X \\
\hline (12) & ET DR C/L LCH 1B2/2B1 FA4 LOCK CMD & V56K1376X \\
\hline (13) & ET DR C/L LCH 1B1/2B2 FA3 LOCK CMD & V56K1377X \\
\hline (14) & ET DR C/L LCH 1B2/2B1 FA3 LOCK CMD & V56K1378X \\
\hline (15) & ET/UMB UNLATCH FIRE 1 FLAG & V90X8256X \\
\hline (16) & ET/UMB RETRACT FIRE 1 FLAG & V90X8263X \\
\hline (17) & ET/UMB UNLATCH FIRE 2/3 FLAG & V90X8242X \\
\hline (18) & ET/UMB RETRACT FIRE 2/3 FLAG & V90X8243X \\
\hline (19) & ET/UMB UNLATCH PIC ARM FLAG & V90X8247X \\
\hline (20) & ET/ORB STR SEPN PICS ARM FLAG & V90X8265X \\
\hline (21) & MPS LH \({ }_{2}\) RTLS \(\operatorname{INBD}\) D/V OPEN COMMAND A & V41K1923X \\
\hline (22) & MPS LH \({ }_{2}\) RTLS \(\operatorname{INBD}\) D/V OPEN COMMAND B & V41K1924X \\
\hline (23) & MPS LH2 RTLS INBD D/V OPEN COMMAND C & V41K1925X \\
\hline (24) & MPS LH \({ }_{2}\) RTLS OUTBD D/V OPEN COMMAND A & V41K1913X \\
\hline (25) & MPS LH2 RTLS OUTBD D/V OPEN COMMAND B & V41K1914X \\
\hline (26) & MPS LH \({ }_{2}\) RTLS OUTBD D/V OPEN COMMAND C & V41K1915X \\
\hline (27) & SEP MINUS Z CMD & V90X8268X \\
\hline
\end{tabular}

Step 3 - Tumble System Arm/Fire and MPS Feed Line Valve Latch Unlock. This step monitors for a flag from the SSME-OPS sequence indicating that all MPS prevalves have been commanded closed. Upon receipt of this flag, the ET tumble system is armed, the MPS feed line disconnect latches are commanded to the unlock position, and one second delay is allowed for the \(\mathrm{LH}_{2}\) prevalves to close and the latches to unlock. After a one-second delay, the ET tumble system is fired, the ET/ORB SEP cameras are turned on, and the step is exited to perform voting on the latch position switches.

For ground checkout, ET TUMBLE SYSTEM ARM and ET TUMBLE SYSTEM FIRE flags are bypassed when GNC GROUND CHECKOUT ENABLE flag is set.

For FAST SEP missions, commanding of MPS feed line disconnect latches to the unlock position and voting on latch position switches are bypassed, feed line disconnect closure commands are not issued, and
the feed line disconnect closure will be accomplished by the backup mechanical feature at ET structural separation.

Monitor the following signals:
\begin{tabular}{lll} 
(a) ALL PRE VLVS COMMANDED CLOSE IND & V90X8568X \\
(b) FAST SEP FLAG & V90X8267X \\
(c) GNC GROUND CHECKOUT ENABLE & V93X5538X
\end{tabular}

If (a) is false, return to Step 1.
If (a) is true, and (b) is faise, set outputs (1) through (6) false and outputs (7) through (12) true and monitor time elapsed since (a) first became true. Otherwise, monitor time elapsed since (a) first became true.

If at least one second has not elapsed since (a) first became true and (c) is false, set output (13) true and return to Step 1.

If at least one second has not elapsed since (a) first became true and (c) is true, return to Step 1.

If at least one second has elapsed since (a) first became true and (c) is false, on first pass set outputs (14) and (15) true and monitor (b).

IF at least one second has elapsed since (a) first became true and (c) is true, on first pass set output (15) true and monitor (b).

If (b) is true, proceed to Step 3f. On subsequent passes proceed to Step 3f.
If (b) is false, proceed to Step 3b. On subsequent passes proceed to Step \(3 f\).
\begin{tabular}{|c|c|c|}
\hline (1) & MPS \(\mathrm{LO}_{2} \mathrm{FDLN}\) DISC LATCH LOCK CMD A & V41K1881X \\
\hline (2) & MPS LO \(2_{2}\) FDLN DISC LATCH LOCK CMD B & V41K1882X \\
\hline (3) & MPS \(\mathrm{LO}_{2}\) FDLN DISC LATCH LOCK CMD C & V41K1883X \\
\hline (4) & MPS \(\mathrm{LH}_{2}\) FDLN DISC LATCH LOCK CMD A & V41K1981X \\
\hline (5) & MPS \(\mathrm{LH}_{2}\) FDLN DISC LATCH LOCK CMD B & V41K1982X \\
\hline (6) & MPS LH \({ }_{2}\) FDLN DISC LATCH LOCK CMD C & V41K1983X \\
\hline (7) & \(\mathrm{LO}_{2}\) FDLN DISC LATCH UNLOCK CMD A & V41K1884X \\
\hline (8) & \(\mathrm{LO}_{2} \mathrm{FDLN}\) DISC LATCH UNLOCK CMD B & V41K1885X \\
\hline (9) & \(\mathrm{LO}_{2}\) FDLN DISC LATCH UNLOCK CMD C & V41K1886X \\
\hline (10) & \(\mathrm{LH}_{2} \mathrm{FDLN}\) DISC LATCH UNLOCK CMD A & V41K1984X \\
\hline (11) & LH2 FDLN DISC LATCH UNLOCK CMD B & V41K1985X \\
\hline (12) & \(\mathrm{LH}_{2}\) FDLN DISC LATCH UNLOCK CMD C & V41K1986X \\
\hline (13) & ET TUMBLE SYSTEM ARM FLAG & V90X8251X \\
\hline (14) & ET TUMBLE SYSTEM FIRE FLAG & V90X8252X \\
\hline (15) & ET/ORB SEP CAMERAS ON CMD & V56K9000X \\
\hline
\end{tabular}

Step 3a-ET/UMB PIC ARM. The sequence next sets the ET/UMB UNLATCH PICS ARM FLAG for the MEC SOP, which then issues the proper four-digit hexadecimal code for the command data word arm commands.

Monitor (a) and (b) below:
(a) FAST SEP FLAG
(b) ALL PRE VLVS COMMANDED CLOSE IND V90X8568X

If (a) is false and at least 3.3 seconds have not elapsed since (b) first became true, return to Step 1; otherwise, set output (1) below true and proceed to Step 4.

\section*{(1) ET/UMB UNLATCH PIC ARM FLAG \\ V90X8247X}

Step \(3 b-\mathrm{LO}_{2}\), Feed Line Disconnect Latch Position Switch Voting. This step monitors the \(\mathrm{LO}_{2}\) latch position switches and their commfault indications.
Monitor the following signals:
\begin{tabular}{llc} 
(a) & MPS LO \({ }_{2}\) FDLN DISC LATCH LOCKED A & V41X1891X \\
(b) & MPS LO 2 FDLN DISC LATCH LOCKED B & V41X1892X \\
(c) & MPS LO 2 FDLN DISC LATCH UNLOCKED A & V41X1893X \\
(d) & MPS LO 2 FDLN DISC LATCH UNLOCKED B & V41X1894X \\
(e) & FA1 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2845X \\
(f) & FA2 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2846X \\
(g) & FA3 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2847X \\
(h) & FA4 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2848X
\end{tabular}

If (a) and (e) are false, set output (1) true and monitor (b) and (f). Otherwise, monitor (b) and (f).

If (b) and (f) are false, set output (2) true and monitor (c) and (g). Otherwise, monitor (c) and (g).

If (c) is true and (g) is false, set output (3) true and monitor (d) and (h). Otherwise, monitor (d) and (h).

If (d) is true and (h) is false, set output (4) true and proceed to Step 3c. Otherwise, proceed to Step 3c.
\(\begin{array}{ll}\text { (1) } \mathrm{LO}_{2} \text { LATCH LOCKED A OK FLAG } & \text { (INTERNAL) } \\ \text { (2) } \mathrm{LO}_{2} \text { LATCH LOCKED B OK FLAG } & \text { (INTERNAL) } \\ \text { (3) } \mathrm{LO}_{2} \text { LATCH UNLOCKED A OK FLAG } & \text { (INTERNAL) } \\ \text { (4) } \mathrm{LO}_{2} \text { LATCH UNLOCKED B OK FLAG } & \text { (INTERNAL) }\end{array}\)
Step \(3 \mathrm{c}-\mathrm{LO}_{2}\), Feed Line Disconnect Valve Closure. This step closes the \(\mathrm{LO}_{2}\) feed line disconnect if 3 or more of the latch position switches indicate that the latch is unlocked or if an I-load indicates that the latch hardware has not been installed.

Monitor the following signals:
(a) \(\mathrm{LO}_{2}\) LATCH LOCKED A OK FLAG
(INTERNAL)
(b) \(\mathrm{LO}_{2}\) LATCH LOCKED B OK FLAG
(c) \(\mathrm{LO}_{2}\) LATCH UNLOCKED A OK FLAG
(d) \(\mathrm{LO}_{2}\) LATCH UNLOCKED B OK FLAG
(e) FDLN_DISC_LATCH_INSTALLED_FLAG

If flag (e) is false or 3 or more of inputs (a) through (d) are true, set outputs (1) through (3) false and outputs (4) through (6) true and proceed to Step 3d. Otherwise, proceed to Step 3d.
(1) MPS LO 22 FEED DISC VALVE OP CMD A V41K1521X
(2) MPS LO \(\mathrm{O}_{2}\) FEED DISC VALVE OP CMD B V41K1522X
(3) MPS LO 22 FEED DISC VALVE OP CMD C V41K1523X
(4) MPS LO 2 FEED DISC VALVE CL CMD A V41K1524X
(5) \(\mathrm{MPS} \mathrm{LO}_{2}\) FEED DISC VALVE CL CMD B V41K1525X
(6) MPS LO 2 FEED DISC VALVE CL CMDC V41K1526X

Step \(3 \mathrm{~d}-\mathrm{LH}_{2}\) Feed Line Disconnect Latch Position Switch Voting. This step monitors the \(\mathrm{LH}_{2}\) latch position switches and their commfault indications.

Monitor the following signals:
\begin{tabular}{llc} 
(a) & MPS LH2 FDLN DISC LATCH LOCKED A & V41X1991X \\
(b) & MPS LH2 FDLN DISC LATCH LOCKED B & V41X1992X \\
(c) & MPS LH2 FDLN DISC LATCH UNLOCKED A & V41X1993X \\
(d) & MPS LH2 FDLN DISC LATCH UNLOCKED B & V41X1994X \\
(e) & FA1 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2845X \\
(f) & FA2 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2846X \\
(g) & FA3 INPUT PROM SEG 3,10 STATUS (HFE) & V91X2847X \\
(h) & FA4 INPUT PROM SEG 3,10 STATUS (HFE) & V91X2848X
\end{tabular}

If (a) and (e) are false, set output (1) true and monitor (b) and (f). Otherwise, monitor (b) and (f).

If (b) and (f) are false, set output (2) true and monitor (c) and (g). Otherwise, monitor (c) and (g).

If (c) is true and (g) is false, set output (3) true and monitor (d) and (h). Otherwise, monitor (d) and (h).

If (d) is true and (h) is false, set output (4) true and proceed to Step 3e. Otherwise, proceed to Step 3 e.
(1) \(\mathrm{LH}_{2}\) LATCH LOCKED A OK FLAG
(INTERNAL)
(2) \(\mathrm{LH}_{2}\) LATCH LOCKED B OK FLAG (INTERNAL)
(3) \(\mathrm{LH}_{2}\) LATCH UNLOCKED A OK FLAG (INTERNAL)
(4) \(\mathrm{LH}_{2}\) LATCH UNLOCKED B OK FLAG

Step \(3 e-\mathrm{LH}_{2}\) Feed Line Disconnect Valve Closure. This step closes the \(\mathrm{LH}_{2}\) feed line disconnect if three or more of the latch position switches indicate that the latch is unlocked or if an I-load indicates that the latch hardware has not been installed.

Monitor the following signals:
(a) \(\mathrm{LH}_{2}\) LATCH LOCKED A OK FLAG
(INTERNAL)
(b) \(\mathrm{LH}_{2}\) LATCH LOCKED B OK FLAG
(INTERNAL)
(c) \(\mathrm{LH}_{2}\) LATCH UNLOCKED A OK FLAG
(INTERNAL)
(d) \(\mathrm{LH}_{2}\) LATCH UNLOCKED B OK FLAG
(INTERNAL)
(e) FDLN_DISC_LATCH_INSTALLED_FLAG

If flag (e) is false or three or more of inputs (a) through (d) are true, set outputs (1) through (3) false and outputs (4) through (6) true and proceed to Step 3f. Otherwise, proceed to Step 3f.
\begin{tabular}{|c|c|c|}
\hline (1) & MPS LH2 FEED DISC VALVE OP CMD A & V41K1413X \\
\hline (2) & MPS LH2 FEED DISC VALVE OP CMD B & V41K1414X \\
\hline (3) & MPS LH \({ }_{2}\) FEED DISC VALVE OP CMD C & V41K1415X \\
\hline (4) & MPS LH2 FEED DISC VALVE CL CMD A & V41K1416X \\
\hline (5) & MPS LH \({ }_{2}\) FEED DISC VALVE CL CMD B & V41K1417X \\
\hline (6) & MPS LH2 FEED DISC VALVE CL CMD C & V41K1418X \\
\hline
\end{tabular}

Step \(3 f\) - SRB Deadfacing and SSME Gimbal Position. This step deadfaces the SRB electrical interfaces if a FAST SEP is in progress and sends a flag to MPS TVC CMD SOP to position the SSME nozzles.

Monitor the following signals:
\(\begin{array}{lll}\text { (a) } & \text { FAST SEP FLAG } & \text { V90X8267X } \\ \text { (b) RTLS ABORT DECLARED } & \text { V90X8637X } \\ \text { (c) } & \text { TAL ABORT DECLARED } & \text { V90X8658X }\end{array}\)
If (a) is true, set outputs (1) through (4), (8), and (9) false and output (7) true and monitor (a), (b), and (c). Otherwise, monitor (a), (b), and (c).

If (a), (b), or (c) is true, set output (6) true and output (5) false and proceed to Step 3a. Otherwise, set output (5) true and output (6) false and proceed to Step 3a.
(1) LH SRB PWR BUS C - RPC-A ON V76K6941X
(2) RH SRB PWR BUS C - RPC-A ON V76K6942X
(3) LH SRB PWR BUS C - RPC-C ON V76K6945X
(4) RH SRB PWR BUS C - RPC-C ON V76K6946X
(5) MPS DUMP GIMBAL POS FLAG V90X8253X
(6) ENTRY STOW GIMBAL POS FLAG V90X8254X
(7) SRB SEP FUNCTION MODING FLAG
(8) ATVC SRB IVD PWR ON V90X8330X
(9) SRB PWR ON VOM833
(9) SRB PWR ON V90X8343X

Step 4 -Deadfacing. The sequence next looks for 3.8 seconds to elapse since the feed line disconnect valves were commanded closed to allow them time to fully close before continuing. If a FAST SEP has been requested, the sequence bypasses the feed line valve closure delays. The sequence then resets the ET tumble system arm and fire flags, resets the ET DFI PWR ON command, and terminates the MPS signal conditioner's power-on commands to deadface the power interface before plate separation.

Monitor signal (a) below:
(a) FAST SEP FLAG

V90X8267X
If (a) is false and at least 1.5 seconds have not elapsed since the ET/UMB UNLATCH PIC ARM FLAG was set in Step 3a, return to Step 1.

If (a) is true or at least 1.5 seconds have elapsed since the ET/UMB UNLATCH PIC ARM FLAG was set, set outputs (1) through (6) false, set output (7) true, and return to Step 1.
\begin{tabular}{llr} 
(1) & ET TUMBLE SYS ARM FLAG & V90X8251X \\
(2) & ET TUMBLE SYS FIRE FLAG & V90X8252X \\
(3) & MPS SIG COND PWR 1 ON & V41K0075X \\
(4) & MPS SIG COND PWR 2 ON & V41K0076X \\
(5) & MPS SIG COND PWR 3 ON & V41K0077X \\
(6) & ET DFIPWR ONFLAG & V90X8255X \\
(7) & FLAGA & (INTERNAL)
\end{tabular}

Step 5 -- Automatic Separation Inhibit Checks. This step arms the ET/orbiter structural separation PIC's after a 5.5 -second time delay has elapsed, since the umbilical retract fire commands were issued to allow time for the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) umbilical plates to retract and latch. If an RTLS abort has been requested, this time delay is reduced to 1.2 seconds as the separation cannot be delayed longer due to the buildup of dynamic pressure caused by entry. After an additional 1.5 -second delay for PIC charging, tests are made on some specific parameters to determine if separation can be performed safely with the automatic sequence. Parameters checked include roll, pitch, and yaw body rates and MPS feed line disconnect valve closed status. During RTLS aborts, angle of attack and sideslip angle are checked in addition to the other parameters. If any of these parameters fail to satisfy the predefined limits or if the MPS feed line disconnect valve is not closed, the crew is alerted and the sequence inhibits automatic separation from occurring. The crew may then elect to initiate the separation manually.

Monitor the following signal:
(a) RTLS ABORT DECLARED

V90X8637X
If (a) is true and at least 1.2 seconds have not elapsed since the ET/umbilical retract fire 1 and fire \(2 / 3\) flags were set true, return to Step 1.

If (a) is true and 1.2 seconds have elapsed since the ET/umbilical retract fire 1 and fire \(2 / 3\) flags were set true, set output (1) below true and proceed.

If (a) is true and at least 1.5 seconds have not elapsed since output (1) was set true, return to Step 1.

If (a) is true and at least 1.5 seconds have elapsed since output (1) was set true, set output (2) false and then monitor signals (b) through (j) and (bb) through (dd) listed below.

If \([(\mathrm{g})<(\mathrm{q})\) and \((\mathrm{g})>(\mathrm{r})]\) and \([(\mathrm{f})<(\mathrm{s})\) and \((\mathrm{f})>(\mathrm{t})]\) and \([(\mathrm{h})<(\mathrm{u})\) and \((\mathrm{h})>(\mathrm{v})]\) and \([(\mathrm{i})<(\mathrm{w})\) and (i) \(>(\mathrm{x})]\) and \([(\mathrm{j})<(\mathrm{y})\) and \((\mathrm{j})>(\mathrm{z})]\) and [[(b) is true and (bb) is false] or [(c) is true
and (cc) is false]] and [[(d) is true and (bb) is false] or [(e) is true and (dd) is false]], proceed to Step 6. Otherwise set output (2) true to generate a CRT message line and a Class 3 alert light and tone, set output (3) false one time only, and proceed to Step 6.

If (a) is false and at least 5.5 seconds have not elapsed since the ET/umbilical retract fire \(2 / 3\) flag was set true, return to Step 1.

If (a) is false and 5.5 seconds have elapsed since the ET/umbilical retract fire \(2 / 3\) flag was set true, set output (1) below true and monitor flag (aa).

If (aa) is true, proceed to Step 7.
If (aa) is false and at least 1.5 seconds have not elapsed since ET/ORB STR SEPN PICS ARM FLAG was set true, return to Step 1; otherwise set output (2) false and then monitor signals (b) through (h), (k) through (p), and (bb) through (dd) listed below.

If [[(b) is true and (bb) is false] or [(c) is true and (cc) is false]] and [[(d) is true and (bb) is false] or [(e) is true and (dd) is false]] and if \([(\mathrm{g})<(\mathrm{k})\) and \((\mathrm{g})>(\mathrm{l})]\) and \([(\mathrm{f})<(\mathrm{m})\) and (f) \(>\) \((\mathrm{n})]\) and \([(\mathrm{h})<(\mathrm{o})\) and \((\mathrm{h})>(\mathrm{p})]\), proceed to Step 6. Otherwise set output (2) true to generate a CRT message line and a Class 3 alert light and tone, set output (3) false one time only, and proceed to Step 6.
\begin{tabular}{|c|c|c|}
\hline (b) & MPS LH \({ }_{2}\) FEED DISC VLV CLOSED A & V41X1430X \\
\hline (c) & MPS LH \({ }_{2}\) FEED DISC VLV CLOSED B & V41X1434X \\
\hline (d) & MPS LO2 2 FEED DISC VLV CLOSED A & V41X1530X \\
\hline (e) & MPS LO 2 FEED DISC VLV CLOSED B & V41X1534X \\
\hline (f) & SELECTED RGA ROLL RATE & V90R5301C \\
\hline (g) & SELECTED RGA PITCH RATE & V90R5321C \\
\hline (h) & SELECTED RGA YAW RATE & V90R5341C \\
\hline (i) & NAV DERIVED ANGLE OF ATTACK & V90H2246C \\
\hline (j) & INERTIAL SIDESLIP ANGLE & V90H2249C \\
\hline (k) & NOM_BODY_PLUS_PITCH_RATE_LMT & V97U9762C \\
\hline (1) & NOM_BODY_NEG_PITCH_RATE_LMT & V97U9763C \\
\hline (m) & NOM_BODY_PLUS_ROLI_RATE_LMT & V97U9764C \\
\hline (i) & NOM_BODY_NEG_ROLL_RATE_LMT & V97U9765C \\
\hline (0) & NOM_BODY_PLUS_YAW_RATE_LMT & V97U9766C \\
\hline (p) & NOM_BODY_NEG_YAW_RATE_LMT & V97U9767C \\
\hline (q) & RTLS_BODY_PLUS_PITCH_RATE_LMT & V97U9768C \\
\hline (r) & RTLS_BODY_NEG_PITCH_RATE_LMT & V97U9769C \\
\hline (s) & RTLS_BODY_PLUS_ROLL_RATE_LMT & V97U9770C \\
\hline (t) & RTLS_BODY_NEG_ROLL_RATE_LMT & V97U9771C \\
\hline (u) & RTLS_BODY_PLUS_YAW_RATE_LMT & V97U9772C \\
\hline (v) & RTLS_BODY_NEG_YAW_RATE_LMT & V97U9773C \\
\hline (w) & RTLS_PLUS_ANGLE_OF_ATTK_LMT & V97U9774C \\
\hline (x) & RTLS_NEG_ANGLE_OF_ATIK LMTT & V97U9775C \\
\hline (y) & RTLS_PLUS_SIDESLIP_ANGLE_LMT & V97U9776C \\
\hline (z) & RTLS_NEG_SIDESLIP_ANGLE_LMT & V97U9777C \\
\hline (bb) & FA2 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2846X \\
\hline (cc) & FA4 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2848X \\
\hline (dd) & FA3 INPUT PROM SEG 3, 10 STATUS (HFE) & V91X2847X \\
\hline
\end{tabular}
\begin{tabular}{lll} 
(1) & ET/ORB STR SEPN PICS ARM FLAG & V90X8265X \\
(2) ET AUTO SEP INHIBIT CREW ALERT & V90X8259X \\
(3) ET/ORB SEP CAMERAS ON CMD & V56K 9000 X
\end{tabular}

Step 6 - Auto/Manual Separation Mode. The sequence now monitors the position of the auto/manual ET separation switch, via the GN\&C switch SOP, to determine what separation mode is to be employed. If the automatic mode is selected and none of the ET SEP inhibit test conditions failed, the sequence
proceeds with the structural separation. If any of the inhibit test conditions failed and an RTLS abort has not been requested, the sequence turns off the ET/ORB separation cameras to conserve film, but will not proceed until the test condition is satisfied or is manually overridden by the crew.

If an RTLS abort has been requested, the ET/ORB separation cameras are turned off and the sequence continues to test the automatic separation inhibits and monitor the SEP switches for 6 seconds. If the inhibit becomes satisfied within this time or the crew manually overrides, the separation is performed. If the separation inhibit is still present after 6 seconds, the sequence automatically bypasses the inhibit and performs the separation. The separation cannot be delayed longer due to the pressure buildup caused by entry.

In the manual separation mode, the sequence looks for the ET SEP MAN INITIATE FLAG, latched in software. If true, the structural separation is accomplished, bypassing the conditions that caused the automatic separation to be inhibited. If the ET SEP MAN INITIATE FLAG is false, the separation will not occur.

Monitor the following signals:
\begin{tabular}{lll} 
(a) & SEL ET SEP AUTO & V90X7554X \\
(b) & SEL ET SEP MNL ENABLE & V90X7556X \\
(c) & ET SEP MAN INITIATE FLAG & V90X8584X \\
(d) & RTLS ABORT DECLARED & V90X8637X \\
(e) & ET AUTO SEP INHIBIT CREW ALERT & V90X8259X
\end{tabular}

If (c) is true, proceed to Step 7.
If (c) is false and (a) is true and (e) is false, proceed to Step 7.
If (a) is true and (e) is true and (d) is false, or if (a) is true and (e) is true and (d) is true and 6 seconds have not elapsed since (e) first became true, set output (1) false, listed below, and return to Step 1.

If (a) is true and (e) is true and (d) is true and 6 seconds have elapsed since (e) first became true, proceed to Step 7.

If (b) is true and (c) is false, set output (1) false and return to Step 1.

\section*{(1) ET/ORB SEP CAMERAS ON CMD}

V56K9000X
Step 7-ET Structural Separation. In this step, the sequence commands the ET/ORB separation cameras on to make certain they are on in the event that an automatic separation inhibit had caused them to be turned off previously. If an RTLS abort is not requested, a command is set for the Transition DAP to fire during structural separation to prevent possible recontact between the orbiter and ET.

The sequence then sets the ET/ORB structural separation fire 1 and \(2 / 3\) flags for the MEC SOP and the ET separation command flag. This flag is a cue to other functions that the ET separation has occurred.

Monitor the following:
(a) RTLS ABORT DECLARED V90X8637X
(b) FAST SEP FLAG V90X8267X

If (a) or (b) is true, set outputs (2) through (5) true and return to Step 1.
If (a) and (b) are false, set outputs (1) and (6) listed below true and return to Step 1. On next pass through this logic set flags (2) through (5) true and return to Step 1.
\begin{tabular}{llr} 
(1) & SEP MINUS Z CMD & V90X8268X \\
(2) & ET/ORB SEP CAMERAS ON CMD & V56K9000X \\
(3) & ET/ORB STR SEPN FIRE 1 FLAG & V90X8244X \\
(4) & ET/ORB STR SEPN FIRE 2/3 FLAG & V90X8241X \\
(5) & ET SEPARATION CMD FLAG & V90X8250X \\
(6) & FIRE SEQUENCE FL & (INTERNAL)
\end{tabular}

Step 8 - ET Umbilical Doors Closure. This function is accomplished when either a manual ET umbilical door closure is required or an RTLS abort has been requested. In this mode, the umbilical door centerline latches are stowed, the umbilical doors are closed, and the umbilical doors are latched, all with the proper timing constraints.

If less than 2 seconds have elapsed since the structural separation fire \(2 / 3\) flag was set true, return to Step 1.

If at least 2 seconds have elapsed since the structural separation fire \(2 / 3\) flag was set true, set output commands (1) through (8) to true (STOW). Six seconds later:

Set output commands (9) through (16) true (ARM/CLOSE).
If 12 seconds have elapsed since the stow commands, (1) through (8), were set true, set output commands (1) through (8) false.

If 48 seconds have elapsed since output commands (9) through (16) were set true, set output commands (12) through (16) false, and set output commands (17) through (24) true (LATCH).

If 12 seconds have elapsed since output commands (17) through (24) were set true, set output commands (9) through (11) and (17) through (24) false and (25) true.

Proceed to Step 9.
\(\begin{array}{lll}\text { (1) } & \text { ET DR CL LCH 1B1/2B2 FA1 STOW CMD } & \text { V56K1271X } \\ \text { (2) } & \text { ET DR CL LCH 1B2/2B1 FA1 STOW CMD } & \text { V56K1272X } \\ \text { (3) } & \text { ET DR CL LCH 1B1/2B2 FA2 STOW CMD } & \text { V56K1273X } \\ \text { (4) } & \text { ET DR CL LCH 1B2/2B1 FA2 STOW CMD } & \text { V56K1274X } \\ \text { (5) } & \text { ET DR CL LCH 1B1/2B2 FA4 STOW CMD } & \text { V56K1371X } \\ \text { (6) } & \text { ET DR CL LCH 1B2/2B1 FA4 STOW CMD } & \text { V56K1372X } \\ \text { (7) } & \text { ET DR CL LCH 1B1/2B2 FA3 STOW CMD } & \text { V56K1373X } \\ \text { (8) } & \text { ET DR CL LCH 1B2/2B1 FA3 STOW CMD } & \text { V56K1374X } \\ \text { (9) } & \text { ET DR DRV \& CL LCH DC ARM AMCA 1/2 } & \text { V56K0141X } \\ \text { (10) } & \text { ET DR DRV \& CL LCH DC ARM AMCA 1/3 } & \text { V56K0142X } \\ \text { (11) } & \text { ET DR DRV \& CL LCH DC ARM AMCA 2/3 } & \text { V56K0143X } \\ \text { (12) } & \text { ET UMB DR L-B2/R-B1 CLOSE CMD } & \text { V56K3111X } \\ \text { (13) } & \text { ET UMB DR R-B2 CLOSE CMD } & \text { V56K3112X } \\ \text { (14) } & \text { ET UMB DR R-B1/B2 CLOSE CMD } & \text { V56K4121X } \\ \text { (15) } & \text { ET UMB DR L-B1 CLOSE CMD } & \text { V56K4122X }\end{array}\)

STS 83-0026D
OI-21
January 25, 1991
\begin{tabular}{lll} 
(16) & ET UMB DR L-B1/B2 CLOSE CMD & V56K0140X \\
(17) & ET L UMB COUT DOOR LATCH FA1 CMD & V56K3531X \\
(18) & ET R UMB COUT DOOR LATCH FA1 CMD & V56K3532X \\
(19) & ET L UMB COUT DOOR LATCH FA4 CMD & V56K3533X \\
(20) & ET R UMB COUT DOOR LATCH FA4 CMD & V56K3534X \\
(21) & ET L UMB COUT DOOR LATCH FA3 CMD & V56K4531X \\
(22) & ET R UMB COUT DOOR LATCH FA3 CMD & V56K4532X \\
(23) & ET L UMB COUT DOOR LATCH FA2 CMD & V56K4533X \\
(24) ET R UMB COUT DOOR LATCH FA2 CMD & V56K4534X \\
(25) & MEC 1 \& 2 MASTER RESET FLAG & V90X8258X
\end{tabular}

Step 9 - MPS Feed Line Disconnect Valve Command Cleanup. This step terminates unneeded feed line disconnect latch unlock commands. The ET SEP sequence is then terminated.

Set outputs (1) through (6) false and deschedule the ET SEP sequence.
(1) \(\mathrm{LO}_{2}\) FDLN DISC LATCH UNLOCK CMD A

V41K1884X
(2) \(\mathrm{LO}_{2}\) FDLN DISC LATCH UNLOCK CMD B

V41K1885X
(3) \(\mathrm{LO}_{2}\) FDLN DISC LATCH UNLOCK CMD C

V41K1886X
(4) \(\mathrm{LH}_{2}\) FDLN DISC LATCH UNLOCK CMD A

V41K1984X
(5) \(\mathrm{LH}_{2}\) FDLN DISC LATCH UNLOCK CMD B

V41K1985X
(6) \(\mathrm{LH}_{2}\) FDLN DISC LATCH UNLOCK CMD C

V41K1986X


Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 1 of 8)


Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 2 of 8)


Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 3 of 8)


Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 4 of 8)


Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 5 of 8)


Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 6 of 8)


Figure 4.116 External Tank Separation Sequence Logic Flow Diagram (Sheet 7 of 8)


INFORMATION ONLY

Figure 4.116. External Tank Separation Sequence Logic Flow Diagram (Sheet 8 of 8 )

THIS PAGE INTENTIONALLY LEFT BLANK
TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

 MSC

MSC
SE
DEG/S
DEG/S
DEG/S

TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.2.3.4-1. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4．2．3．4－1．EXTERNAL TANK（ET）SEPARATION SEQUENCER（G4．116）INPUT／OUTPUT FUNCTIONAL PARAMETERS
的的国 0

㽞



 \({ }^{\text {閣㫨 }}\)







NOMENCLATURE
00049P00L
M／S ID






 V5 6 K
V5 4121 X
ET UMB
V5 5 K 4122 DR R－B1／B2 CLOSE
ET UMB DR LI－B1 CLOSE CMD

暤

DBEN：D3B027－E

TABLE 4.2.3.4-2. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) I-LOADS
FDLN_DISC_LATCH_INSTALLED_FLAG V99U9951C ND D D C G4.116 MES2

Rockwell International
Space Systems Division
TABLE 4.2.3.4-3. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) K-LOADS DBEN: 0558 FSSR NAME
DESCRIPTION NOM_BODY_NEG_PITCH_RATE_LMT
NOM_BODY_NEG_ROLL_RATE_LMT
NOM_BODY_NEG_YAW_RATE_LMT
NOM_BODY_PLUS_PITCH_RATE_LMT
NOM_BODY_PLUS_ROLL_RATE_LMT
NOM_BODY_PLUS_YAW_RATE_LMT
RTLS_BODY_NEG_PITCH_RATE_LMT
RTLS_BODY_NEG_ROLL_RATE_LMT
RTLS_BODY_NEG_YAW_RATE_LMT
RTLS_BODY_PLUS_PITCH_RATE_LMT
RTLS_BODY_PLUS_ROLL_RATE_LMT
RTLS_BODY_PLUS_YAW_RATE_LMT
RTLS_NEG_ANGLE_OF_ATTK_LMT
RTLS_NEG_SIDESLTP_ANGLE_LMT
RTLS_PLUS_ANGLE_OF_ATTK_LMT
RTLS_PLUS_SIDESLIP_ANGLE_LMT
TABLE 4.2.3.4-4. EXTERNAL TANK(ET) SEPARATION SEQUENCER (G4.116) CONSTANTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
rSSR NAME \\
DESCRIPTION
\end{tabular} & MSID & MC & CONSTANT & VALUE & ENG & UNIT & DT & PR & S & PR FCTN & LAST & \\
\hline
\end{tabular}

\subsection*{4.2.4 MPS Dump Sequence (4.70)}

\subsection*{4.2.4.1 Introduction}

The MPS dump sequence performs the function of expelling the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) contained in the orbiter and SSME \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) main feed lines.

For the nominal mission, this sequence commences automatically at the initiation of OMS-1 burn. The crew, however, has the capability to manually initiate, through the GPC, and control dump intervals for both the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) propellants after MECO confirmed +20 seconds. If the sequence is activated manually during a transatlantic abort landing (TAL) mode, the \(\mathrm{LH}_{2}\) dump time I-load is set to 30 seconds.
For RTLS, the MPS dump sequence will automatically initiate and control \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) line propellant dump after the transition to Major Mode 602. During a TAL abort mode, the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) dump will be terminated after expiration of the TAL abort \(\mathrm{LH}_{2} 30\)-second dump time.

\subsection*{4.2.4.2 Overview}

The MPS dump sequence is initiated by the GNC moding, sequencing, and control (MSC) function. For non-RTLS modes, the sequence is scheduled when MECO confirmed +20 seconds has occurred. In an RTLS abort mode, the sequence is initiated by the transition to Major Mode 602.

The OMS-1 burn is the normal cue to start actual MPS dumping. This burn produces the required ullage for the predefined dump time intervals needed to expel the residual \(\mathrm{LH}_{2}\) and \(\mathrm{LO}_{2}\) in the engine supply lines. Manual activation of this sequence may occur after MECO confirmed plus a 20 -second time interval required for engine cool-down prior to actual \(\mathrm{LO}_{2}\) dump.

Regardless of sequence entry, i.e., automatically (nominal or RTLS) or manually, the following seven subfunctions occur:
1. Start \(\mathrm{LO}_{2}\) dump. The automatic \(\mathrm{LO}_{2}\) dump start is a GPC command initiated at OMS insertion burn or RTLS mode activation.

Manual \(\mathrm{LO}_{2}\) dump start may be initiated by placing the MPS propellant dump sequence switch on the \(D \& C\) panel, R2, to the START position. In either the automatic or manual position, the GPC command requests the engine controllers to open the \(S S M E L O_{2}\) valves, open the \(\mathrm{LO}_{2}\) manifold repressurization valves, and open the \(\mathrm{LO}_{2}\) prevalves. During an RTLS abort, the \(\mathrm{LO}_{2}\) prevalves and SSME \(\mathrm{LO}_{2}\) valves are opened at MM 602 transition. During these aborts, the \(\mathrm{LO}_{2}\) manifold is not pressurized and \(\mathrm{LO}_{2}\) is allowed to boil out. The \(\mathrm{LO}_{2}\) inboard and outboard fill/ drain valves are opened at a dynamic pressure of 20 lb per \(\mathrm{ft}^{2}\).
2. Stop \(\mathrm{LO}_{2}\) dump. The \(\mathrm{LO}_{2}\) dump stop command is initiated by either time or panel switch position. For the non-RTLS automatic dump sequence, the expiration of a preset time delay initiates dump stop. This time delay will be I-loadable.
The RTLS \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) dump will be terminated at a ground relative velocity of \(3,800 \mathrm{ft} / \mathrm{sec}\). At this time, the \(\mathrm{LO}_{2}\) outboard fill/drain valves and \(\mathrm{LO}_{2}\) prevalves are closed and the \(\mathrm{LO}_{2}\) manifold is pressurized.

During a TAL abort, the \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) dump will be terminated after expiration of the TAL abort 30 -second dump time.

The manual initiation of the dump stop is via the MPS propellant dump sequence switch on \(\mathrm{D} \& \mathrm{C}\) Panel R2. Placing the switch in the STOP position will initiate the \(\mathrm{LO}_{2}\) dump stop command 32 seconds after expiration of \(\mathrm{LH}_{2}\) dump timer. In the automatic non-RTLS mode or manual mode, the GPC dump stop command closes the \(\mathrm{LO}_{2}\) manifold repressurization valves, allows 20 seconds for manifold pressure to decay, and terminates the \(\mathrm{LO}_{2}\) prevalve open commands, leaving the \(\mathrm{LO}_{2}\) prevalves open. During a TAL abort, the 20 -second pressure-decay timer is bypassed.
3. Start \(\mathrm{LH}_{2}\) dump. The non-RTLS \(\mathrm{LH}_{2}\) dump starts concurrently with the \(\mathrm{LO}_{2}\) at OMS insertion burn or at manual mode \(\mathrm{LO}_{2}\) dump initiation. In the manual mode, the dump is initiated by the MPS propellant dump sequence switch on Panel R 2 . The \(\mathrm{LH}_{2}\) dump consists of opening the \(\mathrm{LH}_{2}\) manifold repressurization valves and the \(\mathrm{LH}_{2}\) inboard and outboard fill and drain valves. \(\mathrm{LH}_{2}\) is forced out of the \(\mathrm{LH}_{2}\) inboard and outboard fill and drain valves by the helium pressure in the manifold. At a pre-established time, the \(\mathrm{LH}_{2}\) inboard fill and drain valve is closed, and the \(\mathrm{LH}_{2}\) topping valve and prevalves are opened. \(\mathrm{LH}_{2}\) is forced out of the \(\mathrm{LH}_{2}\) outboard fill and drain valve via the SSME bleed valves, prevalves, and topping valve by the helium pressure in the manifold.

The \(\mathrm{LH}_{2}\) may be vented through the RTLS dump valves and is controlled by the MPS propellant dump backup \(\mathrm{LH}_{2}\) valve switch on Panel \(\mathbb{R} 2\). This causes the \(\mathrm{LH}_{2}\) to be vented overboard through an opening on the left side between the wing and OMS pod.

The \(\mathrm{LH}_{2}\) dump start for the RTLS mode commences concurrently with the \(\mathrm{LO}_{2}\) dump, automatically at MM 602 transition. The \(\mathrm{LH}_{2}\) dump consists of opening RTLS dump valves and RTLS manifold repressurization valves. This causes the \(\mathrm{LH}_{2}\) to be dumped overboard through an opening on the left side between the wing and OMS pod. The \(\mathrm{LH}_{2}\) RTLS dump occurs while the \(\mathrm{LO}_{2}\) is being dumped through the SSME 's and the \(\mathrm{LO}_{2}\) inboard and outboard fill/ drain valves. At MM 602 plus 80 seconds, the \(\mathrm{LH}_{2}\) RTLS manifold is depressurized. The \(\mathrm{LH}_{2}\) topping valve and inboard and outboard fill/drain valves are opened.
4. Stop \(\mathrm{LH}_{2}\) dump. For the automatic non-RTLS mode, the \(\mathrm{LH}_{2}\) dump command is initiated by the GPC at a preset time delay from the start of \(\mathrm{LH}_{2}\) dump. The manual MPS propellant dump backup \(\mathrm{LH}_{2}\) valve switch on \(\mathrm{D} \& \mathrm{C}\) Panel R 2 terminates the RTLS inboard and outboard dump valve commands. The GPC command closes the \(\mathrm{LH}_{2}\) manifold repressurization valves, and allows 32 seconds for \(\mathrm{LO}_{2}\) to vent, then issues the \(\mathrm{LH}_{2}\) outboard fill/drain valve close command. During a TAL abort, the 32 -second \(\mathrm{LH}_{2}\) vent timer is bypassed. The GPC then commands the \(\mathrm{LH}_{2}\) prevalves de-energized, leaving the \(\mathrm{LH}_{2}\) prevalves open.

The \(\mathrm{LH}_{2}\) RTLS dump stop is automatically initiated upon reaching a ground relative velocity of \(3,800 \mathrm{ft} / \mathrm{sec}\). At this velocity, the \(\mathrm{LH}_{2}\) outboard fill/drain valve is closed and the \(\mathrm{LH}_{2}\) manifold is pressurized.
5. Gimbal SSME's. The SSME's are GPC commanded to the stow position at the conclusion of the MPS propellant dump sequence. In the RTLS mode, the SSME's are left in the stow position throughout the sequence.
6. MPS deactivation. The MPS deactivation is initiated after the SSME nozzles have been commanded to the stow position via setting of the entry stow gimbal position flag.
7. Vacuum inerting and repressurization. The vacuum inerting is manually initiated and manually controlled requiring no GPC commands. The vacuum inerting is initiated anytime
post-MPS dump to vent the MPS manifolds and feed lines. This allows any residual H 2 and O 2 gases to disperse in space. The MPS manifolds and feed lines are automatically repressurized, prior to entry, to avoid ingress of contaminants.
8. During an RTLS contingency abort (invoked by taking the dump sequence switch to the START position), the \(\mathrm{LO}_{2}\) dump is inhibited and a 20 second unpressurized \(\mathrm{LH}_{2}\) venting is performed via the \(\mathrm{LH}_{2}\) RTLS dump valves and the \(\mathrm{LH}_{2}\) inboard and outboard fill/drain valves.

\subsection*{4.2.4.3 Detailed Requirements}

Step 1. This step controls initial branching within the MPS dump sequence. On first entry, set outputs (4) through (7) true.

Monitor the following signal:
(a) RTLS ABORT DECLARED

V90X8637X
If (a) is true, proceed to Step 2.
If (a) is false, monitor signals (f) and (g) below.
If ( g ) is false and (f) is true, set outputs (9) through (14) below true and monitor signals (b) and (h) below.

If ( f ) is false and ( g ) is true, set outputs (9) through (14) below false and monitor signals (b) and (h) below.

If (f) and (g) are false, monitor signals (b) and (h) below.
(b) \(\mathrm{NOMLO}_{2}\) DUMP COMPLETE FLAG
(INTERNAL)
If (b) is true, set outputs (1) and (2) false; and if (h) is true proceed to Step 6.
If (b) is true, set outputs (1) and (2) false; and if (h) is false, repeat the logic in Step 1 until a 20 -second time delay elapses. This 20 -second time delay is to allow the \(\mathrm{LO}_{2}\) manifold to bleed down. Upon expiration of the time delay, proceed to Step 6. During a TAL abort, the 20 -second \(\mathrm{LO}_{2}\) manifold bleed-down time is bypassed.

If (b) is false, monitor signals (c), (d), and (e) below:
(c) SEL MPS PRPLT DUMP SEQUENCE STOP V90X7567X
(d) SEL MPS PRPLT DUMP SEQUENCE START V90X7559X
(e) MPS LO 2 DUMP START V90X8301X
(f) SEL MPS PRPLT DUMP BKUP LH \({ }_{2}\) VLV OPEN V90X7557X
(g) SEL MPS PRPLT DUMP BKUP LH \({ }_{2}\) VLV CLOSE V90X7558X
(h) TAL ABORT DECLARED V90X8658X

If (c) is true and (e) has ever been set true, set output (3) true and return to Step 1.
If (c) is true and (e) has never been set true, the crew has elected to inhibit the sequence. The logic in Step 1 is repeated.

If (c) is false and (d) is false, the GPC mode has been selected. Proceed to Step 3.
If (d) is true and (h) is false, proceed to Step 4.
If (d) and (h) are both true, then on first pass, set (8) below to 30 seconds and return to Step 1. On subsequent passes, proceed to Step 4.
\begin{tabular}{|c|c|c|}
\hline (1) & MPS LO \(2_{2}\) MANF REPRESS NO. 1 OPEN CMD & V41K1535X \\
\hline (2) & MPS \(\mathrm{LO}_{2}\) MANF REPRESS NO. 2 OPEN CMD & V41K1537X \\
\hline (3) & NOM LO \({ }_{2}\) DUMP COMPLETE FLAG & (INTERNAL) \\
\hline (4) & MPS E1 HE INTCON OUT/OPEN CMDS A & V41K1168X \\
\hline (5) & MPS E2 HE INTCON OUT/OPEN CMDS A & V41K1268X \\
\hline (6) & MPS E3 HE INTCON OUT/OPEN CMDS A & V41K1368X \\
\hline (7) & MPS PNEU CROSSOVER NO. 2 OPEN CMD & V41K1613X \\
\hline (8) & LH2_DUMP_TIME & V97U9779 C \\
\hline (9) & MPS LH2 2 RTLS INBD D/V OPEN CMD A & V41K1923X \\
\hline (10) & MPS LH2 \(\mathrm{L}_{2}\) RTLS INBD D/V OPEN CMD B & V41K1924X \\
\hline (11) & MPS LH \({ }_{2}\) RTLS INBD D/V OPEN CMD C & V41K1925X \\
\hline (12) & MPS LH \({ }_{2}\) RTLS OTBD D/V OPEN CMD A & V41K1913X \\
\hline (13) & MPS LH2 RTLS OTBD D/V OPEN CMD B & V41K1914X \\
\hline (14) & MPS LH \({ }_{2}\) RTLS OTBD D/V OPEN CMD C & V41K1915X \\
\hline
\end{tabular}

Step 2. This step controls entry into the RTLS abort \(\mathrm{LO}_{2}\) and \(\mathrm{LH}_{2}\) dump mode. GPC or manual, control logic is bypassed.
On the first pass through the logic in this step, set outputs (3) and (4) false and set outputs (5) through (16) true, start timer (b), and then monitor signal (a). On subsequent passes through the logic monitor signal (a).
(a) GN\&C DYNAMIC PRESSURE

V95P3011C
(b) LH \({ }_{2}\) FILL_DRAIN_VALVE_OP_TIME_DLY ( 80 seconds)
(INTERNAL)
(c) GND REL VEL MAGNITUDE IN M50 SYS V95L0151C
(d) SEL MPS PRPLT DUMP SEQUENCE START V90X7559X
(e) LH2_CONTINGENCY_DUMP_TIME ( 20 seconds)
(INTERNAL)
If (a) \(\geq 20 \mathrm{lb} / \mathrm{ft}^{2}\), and (d) is false on first pass, set outputs (1) and (2) false, set outputs (17) through (19) true, then proceed to monitor (b) and (d); otherwise monitor (b) and (d).
If (b) seconds have elapsed since starting timer (b) or (d) is true, on first pass, set outputs (11) through (16) false, set outputs (20) through (23) true, then monitor signal (c); otherwise monitor signal (c).
If (c) \(\leq 4,500 \mathrm{ft} / \mathrm{sec}\), on first pass, proceed to Step 12A; otherwise monitor (c), (d) and (e).
If \(((\mathrm{c}) \leq 3,800 \mathrm{ft} / \mathrm{sec}\) and (d) is false) or ((d) is true and (e) seconds have elapsed since starting timer (e)), set outputs (5) through (10), (17), and (20) false; set outputs (2), (4), and (24) through (27) true; and proceed to Step 6. Otherwise monitor (d).
If (d) is true, proceed to Step 11. If (d) is false, proceed to Step 4.
(1) \(\mathrm{MPS} \mathrm{LO}_{2}\) INBD FILL VALVE CLOSE CMD

V41K1512X
(2) MPS \(\mathrm{LO}_{2}\) OTBD FILL VALVE CLOSE CMD

V41K1515X
(3) \(\mathrm{MPS} \mathrm{LH}_{2}\) INBD FILL VALVE CLOSE CMD

V41K1412X
\begin{tabular}{|c|c|c|}
\hline (4) & MPS LH2 OTBD FILL VALVE CLOSE CMD & V41K1393X \\
\hline (5) & MPS LH2 \({ }_{2}\) RTLS INBD D/V OPEN CMD A & V41K1923X \\
\hline (6) & MPS LH 2 RTLS INBD D/V OPEN CMD B & V41K1924X \\
\hline (7) & MPS LH2 RTLS INBD D/V OPEN CMD C & V41K1925X \\
\hline (8) & MPS LH \({ }_{2}\) RTLS OTBD D/V OPEN CMD A & V41K1913X \\
\hline (9) & MPS LH 2 RTLS OTBD D/V OPEN CMD B & V41K1914X \\
\hline (10) & MPS LH \({ }_{2}\) RTLS OTBD D/V OPEN CMD C & V41K1915X \\
\hline (11) & \(\mathrm{LH}_{2}\) RTLS MANF REPRESS 1 OPEN CMD A & V41K1905X \\
\hline (12) & LH2 RTLS MANF REPRESS 2 OPEN CMD A & V41K1906X \\
\hline (13) & \(\mathrm{LH}_{2}\) RTLS MANF REPRESS 1 OPEN CMD B & V41K1907X \\
\hline (14) & LH2 RTLS MANF REPRESS 2 OPEN CMD B & V41K1908X \\
\hline (15) & LH \({ }_{2}\) RTLS MANF REPRESS 1 OPEN CMD C & V41K1909X \\
\hline (16) & LH2 RTLS MANF REPRESS 2 OPEN CMD C & V41K1910X \\
\hline (17) & MPS \(\mathrm{LO}_{2}\) OTBD FILL VALVE OPEN CMD & V41K1518X \\
\hline (18) & MPS \(\mathrm{LO}_{2}\) INBD FILL VALVE OPEN CMD A & V41K1501X \\
\hline (19) & MPS \(\mathrm{LO}_{2}\) INBD FILL VALVE OPEN CMD B & V41K1502X \\
\hline (20) & MPS \(\mathrm{LH}_{2}\) OUTBD FILL VALVE OPEN CMD & V41K1391X \\
\hline (21) & MPS LH2 INBD FILL VALVE OPEN CMD A & V41K1401X \\
\hline (22) & MPS \(\mathrm{LH}_{2}\) INBD FILL VALVE OPEN CMD B & V41K1402X \\
\hline (23) & MPS \(\mathrm{LH}_{2}\) TOPPING VALVE OPEN CMD & V41K1411X \\
\hline (24) & MPS LH \({ }_{2}\) MANF REPRESS NO. 1 OPEN CMD & V41K1435X \\
\hline (25) & MPS LH \({ }_{2}\) MANF REPRESS NO. 2 OPEN CMD & V41K1437X \\
\hline (26) & MPS LO \({ }_{2}\) MANF REPRESS NO. 1 OPEN CMD & V41K1535X \\
\hline (27) & MPS LO 2 MANF REPRESS NO. 2 OPEN CMD & V41K1537X \\
\hline
\end{tabular}

Step 3. This step monitors for the start of the OMS burn. The OMS burn provides the propellant settling for the nominal MPS dump. The automatic \(\mathrm{LO}_{2}\) dump continues for \(\mathrm{LO}_{2}\) DUMP TIME seconds ( K -load). This time interval controls the \(\mathrm{LO}_{2}\) dump duration as long as the cockpit switch remains in the GPC position. If the switch is placed in the START position, the \(\mathrm{LO}_{2}\) dump continues until the switch is placed in the STOP position, per Step 1. If the \(\mathrm{LO}_{2}\) dump is initiated in the START position, but the switch is moved to the GPC position before \(\mathrm{LO}_{2}\) DUMP TIME seconds have elapsed, then the \(\mathrm{LO}_{2}\) dump will be terminated at the expiration of the \(\mathrm{LO}_{2}\) DUMP TIME.

Monitor the following signal:
(a) OMS IGNITION COMMAND FLAG V90X8190X

If (a) is false, monitor signals (b) and (c) listed below:
(b) OMS 1 BURN FLAG
(INTERNAL)
(c) \(\mathrm{LO}_{2}\) DUMP_TIME

V97U9778C
If (b) is false, return to Step 1.
If (b) is true and (c) seconds have not elapsed since output (3) below became true, proceed to Step 4.

If (b) is true and (c) seconds have elapsed since output (3) below became true, set output (2) true and return to Step 1.
(1) OMS 1 BURN FLAG
(INTERNAL)

Step 4. This step opens the \(\mathrm{LO}_{2}\) prevalves for the three main engines and issues the \(\mathrm{LO}_{2}\) dump start command to the engine controllers.

Issue the following outputs (1) through (12), then set (13) true and proceed to Step 5.
(1) MPS E-1 LO 2 PREVALVE OPEN CMD A

V41K1136X
(2) MPS E-1 LO \(\mathrm{L}_{2}\) PREVALVE OPEN CMD B V41K1137X
(3) MPS E-1 LO 2 PREVALVE OPEN CMD C V41K.1138X
(4) MPS E-1 LO 2 PREVALVE OPEN CMD D V41K1143X
(5) MPS E-2 LO 2 PREVALVE OPEN CMD A V41K1236X
(6) MPS E-2 LO 2 PREVALVE OPEN CMD B V41K1237X
(7) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C V41K1238X
(8) MPS E-2 LO 2 PREVALVE OPEN CMD D V41K1243X
(9) MPS E-3 LO 2 PREVALVE OPEN CMD A V41K1336X
(10) MPS E-3 LO \(\mathrm{O}_{2}\) PREVALVE OPEN CMD B V41K1337X
(11) MPS E-3 LO 2 PREVALVE OPEN CMD C V41K1338X
(12) MPS E-3 LO \({ }_{2}\) PREVALVE OPEN CMD D V41K1343X
(13) MPS LO \(\mathrm{L}_{2}\) DUMP START

V90X8301X

Step 5. This step turns on the \(\mathrm{LO}_{2}\) manifold helium pressure for the \(\mathrm{LO}_{2}\) dump if an RTLS abort has not been requested, and the sequence proceeds to the \(\mathrm{LH}_{2}\) dump start logic. If an RTLS abort has been requested, the sequence proceeds to the \(\mathrm{LH}_{2}\) prevalve control logic.
(a) RTLS ABORT DECLARED

V90X8637X

If (a) is true, proceed to Step 11.
If (a) is false, set outputs (1) and (2) below true and proceed to Step 8.
(1) MPS-LO \(\mathrm{O}_{2}\) MANF REPRESS NO. 1 OPEN CMD V41K1535X
(2) MPS-LO 2 MANF REPRESS NO. 2 OPEN CMD V41K1537X

Step 6. This step controls the termination of the \(\mathrm{LO}_{2}\) dump.
Set outputs (1) through (13), listed below, false and proceed to Step 7.
(1) MPS E-1 LO 2 PREVALVE OPEN CMD A

V41K1136X
(2) MPS E-1 LO 2 PREVALVE OPEN CMD B
(3) MPS E-1 LO \(\mathrm{L}_{2}\) PREVALVE OPEN CMD C

V41K1137X
(4) MPS E-1 LO 2 PREVALVE OPEN CMD D
(5) MPS E-2 LO \(\mathrm{O}_{2}\) PREVALVE OPEN CMD A
(6) MPS E-2 LO 2 PREVALVE OPEN CMD B
(7) MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE OPEN CMD C
(8) MPS E-2 LO 2 PREVALVE OPEN CMD D
(9) MPS E-3 LO 2 PREVALVE OPEN CMD A
(10) MPS E-3 LO 2 PREVALVE OPEN CMD B
(11) MPS E-3 LO 2 PREVALVE OPEN CMD C
(12) MPS E-3 LO 2 PREVALVE OPEN CMD D

V41K1138X
V41K1143X
V41K1236X
V41K1237X
V41K1338K
V41K1243X
V41K1336X
V41K1337X
V41K1338X
V41K1343X

Step 7. This step controls termination of the \(\mathrm{RTLS} \mathrm{LH}_{2}\) dump mode and closes the \(\mathrm{LO}_{2}\) prevalves during an RTLS abort. If RTLS is not declared, the sequence proceeds to monitoring of the \(\mathrm{LH}_{2}\) dump timer logic.

Monitor the following signal:
(a) RTLS ABORT DECLARED

V90X8637X
If (a) is false, proceed to Step 8.
If (a) is true, on first pass, set outputs (1) through (12) true and monitor for a 2 -second time delay to elapse since setting outputs (1) through (12) true.

If the 2 -second time delay has not elapsed, proceed to Step 12a.
If the 2 -second time delay has elapsed, set outputs (1) through (12) false and proceed to Step 12.
\begin{tabular}{lll} 
(1) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1139X \\
(2) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1140X \\
(3) & MPS E- \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1141X \\
(4) & MPS E-1 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1142X \\
(5) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1239X \\
(6) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1240X \\
(7) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1241X \\
(8) & MPS E-2 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1242X \\
(9) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD A & V41K1339X \\
(10) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD B & V41K1340X \\
(11) & MPS E- \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD C & V41K1341X \\
(12) & MPS E-3 \(\mathrm{LO}_{2}\) PREVALVE CLOSE CMD D & V41K1342X
\end{tabular}

Step 8. This step controls the initiation and termination of the \(\mathrm{LH}_{2}\) dump. The nominal time interval for the dump, \(\mathrm{LH}_{2}\) dump time ( K -load). This step pressurizes the \(\mathrm{LH}_{2}\) feed lines and opens the \(\mathrm{LH}_{2}\) inboard and outboard fill and drain valves.

Monitor the following:
(a) \(\mathrm{LH}_{2}\) DUMP_TIME

V97U9779C
If (a) seconds have not elapsed since output (1) below was first set true, on first pass set outputs (7) and (8) false, set outputs (1) through (6) true, and return to Step 1.

If (a) seconds have elapsed since output (1) below was first set true, set outputs (2) and (3) false and proceed to Step 10.

If (a) seconds have not elapsed since output (1) below was first set true, proceed to Step 9.
(1) MPS-LH2 \(\mathrm{FILL}_{2}\) DRAIN DUMP START
(INTERNAL)
(2) MPS- \(\mathrm{LH}_{2}\) MANF REPRESS NO. 1 OPEN CMD
(3) MPS-LH \(\mathrm{H}_{2}\) MANF REPRESS NO. 2 OPEN CMD
(4) MPS-LH2 OTBD FILL VALVE OPEN CMD
(5) MPS-LH2 INBD FILL VALVE OPEN CMD A
(6) MPS-LH2 INBD FILL VALVE OPEN CMD B
(7) MPS-LH \({ }_{2}\) OTBD FILL VALVE CLOSE CMD

V41K1437X
V41K1391X
V41K1401X
V41K1402X
V41K1393X
V41K1412X

Step 9. This step allows 6 seconds for the \(\mathrm{LH}_{2}\) to be dumped through the \(\mathrm{LH}_{2}\) inboard and outboard fill and drain valves. After 6 seconds, the \(\mathrm{LH}_{2}\) inboard fill and drain valve is closed and the \(\mathrm{LH}_{2}\) topping valve is opened. \(\mathrm{LH}_{2}\) continues to be dumped through the \(\mathrm{LH}_{2}\) outboard fill and drain valve via the \(\mathrm{LH}_{2}\) topping valve and SSME bleed valves.
Monitor for a 6 -second time delay to elapse since output (5) below was set true.
If the 6 -second time delay has not elapsed, return to Step 1.
If the 6 -second time delay has elapsed, set outputs (1) and (2) false, set outputs (3) and (4) true, and proceed to Step 11.
\begin{tabular}{|c|c|c|}
\hline (1) & MPS-LH2 \({ }^{\text {INBD }}\) FILL VALVE OPEN CMD A & V41K1401X \\
\hline (2) & MPS-LH2 \({ }_{2}\) INBD FILL VALVE OPEN CMD B & V41K1402X \\
\hline (3) & MPS-LH2 \({ }_{2}\) INBD FILL VALVE CLOSE CMD & V41K1412X \\
\hline (4) & MPS-LH2 \({ }_{2}\) TOPPING VALVE OPEN CMD & V41K1411X \\
\hline (5) & MPS-LH2 \({ }_{2}\) FILL/DRAIN DUMP START & (INTERNAL) \\
\hline
\end{tabular}

Step 10. This step allows 32 seconds for the \(\mathrm{LH}_{2}\) feed line to become depressurized and \(\mathrm{LH}_{2}\) to vent after the \(\mathrm{LH}_{2}\) dump time has elapsed. The \(\mathrm{LH}_{2}\) topping valve and outboard fill and drain valve are closed after expiration of the 32 -second timer. During a TAL abort, the 32 -second \(\mathrm{LH}_{2}\) vent timer is bypassed.

If (a) below is false and if 32 seconds have not elapsed since the \(\mathrm{LH}_{2}\) DUMP TIME time delay in Step 8 elapsed, return to Step 1.
If (a) below is true or if 32 seconds have elapsed since the \(\mathrm{LH}_{2}\) DUMP TIME time delay in Step 8 elapsed and if first pass, set (4) below true and return to Step 1; if not first pass, set outputs (1) and (2) below false, set outputs (3) below true, and proceed to Step 12.
(a) TAL ABORT DECLARED
(1) MPS-LH \({ }_{2}\) OUTBD FILL VALVE OPEN CMD
(2) MPS-LH \({ }_{2}\) TOPPING VLV OPEN CMD

V90X8658X
(3) MPS-LH2 OUTBD FILL VALVE CLOSE CMD

V41K1391X
V41K1411X
(4) \(\mathrm{NOM} \mathrm{LO}_{2}\) DUMIP COMPLETE FLAG \(^{\text {P }}\)

Step 11. This step opens the \(\mathrm{LH}_{2}\) prevalves for the three raain engines.
Issue the following outputs (1) through (9), then return to Step 1.
(1) MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A
(2) MPS E-1 LH2 PREVALVE OPEN CMD B
(3) MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C
(4) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A
(5) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B

V41K1119X
V41K1120X
V41K1121X
V41K1219X
V41K1220X
\begin{tabular}{lll} 
(6) & MPS E-2 LH 2 PREVALVE OPEN CMD C & V41K 1221 X \\
(7) & MPS E-3 LH2 PREVALVE OPEN CMD A & V41K1319X \\
(8) & MPS E-3 LH2 PREVALVE OPEN CMD B & V41K 1320 X \\
(9) & MPS E-3 LH2 PREVALVE OPEN CMD C & V41K 1321 X
\end{tabular}

Step 12. This step de-energizes a portion of the MPS.
Set outputs (1) and (51) true, set outputs (2) through (18), (20), and (22) through (50) false. Ten seconds later, set outputs (19) and (21) false and proceed to Step 12A. If 10 seconds have not elapsed since output (1) set true, proceed to Step 12A.
(1) ENTRY STOW GIMBAL POS FLAG
(2) MPS E-1 LH2 PREVALVE OPEN CMD A
(3) MPS E- \(1 \mathrm{LH}_{2}\) PREVALVE OPEN CMD B
(4) MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C
(5) MPS E-2 LH2 PREVALVE OPEN CMD A
(6) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B
(7) MPS E-2 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C
(8) MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD A
(9) MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD B
(10) MPS E-3 \(\mathrm{LH}_{2}\) PREVALVE OPEN CMD C
(11) MPS LO 2 FEED DISC VALVE CL CMD A
(12) \(\mathrm{MPS}_{2} \mathrm{LO}_{2}\) FEED DISC VALVE CL CMD B
(13) \(\mathrm{MPS} \mathrm{LO}_{2}\) FEED DISC VALVE CL CMD C
(14) MPS LH2 FEED DISC VALVE CL CMD A
(15) MPS LH \(\mathrm{H}_{2}\) FEED DISC VALVE CL CMD B
(16) MPS LH \({ }_{2}\) FEED DISC VALVE CL CMD C
(17) MPS \(\mathrm{LH}_{2}\) RECIRC DISC VLV CLOSE CMD
(18) \(\mathrm{MPS}_{\mathrm{LO}}^{2}\) INBD FILL VALVE CLOSE CMD

V90X8254X
V41K1119X
V41K1120X
V41K1121X
V41K1219X
V41K1220X
V41K1221X
V41K1319X
V41K1320X
V41K1321X
V41K1524X
V41K1525X
V41K1526X
V41K1416X
V41K1417X
V41K1418X
V41K1422X
V41K1512X
(19) MPS \(\mathrm{LO}_{2}\) OTBD FILL VALVE CLOSE CMD
(20) \(\mathrm{MPS}^{\mathrm{LH}} \mathrm{H}_{2}\) INBD FILL VALVE CLOSE CMD
(21) MPS \(\mathrm{LH}_{2}\) OTBD FILL VALVE CLOSE CMD
(22) REPLACE LH \(\mathrm{H}_{2}\) ULLAGE PRESS 1 XDCR
(23) REPLACE LH \(H_{2}\) ULLAGE PRESS 2 XDCR
(24) REPLACE LH \(H_{2}\) ULLAGE PRESS 3 XDCR

V41K1515X
V41K1412X
V41K1393X
V41K1700X
V41K1701X
V41K1702X
(25) REPLACE \(\mathrm{LO}_{2}\) ULLAGE PRESS 1 XDCR
(26) REPLACE \(\mathrm{LO}_{2}\) ULLAGE PRESS 2 XDCR
(27) REPLACE LO \(2_{2}\) ULLAGE PRESS 3 XDCR
(28) ET/ORB SEP CAMERAS ON CMD
(29) ET/ORB SEP CAMERAS HTRS ON CMD
(30) MPS LO \({ }_{2}\) OVERBOARD B/V CLOSE CMD A

V41K1750X
V41K1751X
V41K1752X
V56K9000X
V56K9010X
(31) MPS LO

V41K1584X
(31) MPS LO \({ }_{2}\) OVERBOARD B/V CLOSE CMD B V41K1585X
(32) MPS LO \(2_{2}\) OVERBOARD B/V CLOSE CMD C V41K1586X
(33) MPS E-1 \(\mathrm{LH}_{2}\) PREVALVE CLOSE CMD A
(34) MPS E-1 LH2 PREVALVE CLOSE CMD B

V41K1123X


NOTE: There are two sets of four transducers that are utilized for ullage pressure sensing; one set for \(\mathrm{LO}_{2}\) and one set for \(\mathrm{LH}_{2}\). Operationally, only three in each set are energized. If one of the three operational transducers fails, the fourth transducer can be switched in via the energization of a relay. For example, if ullage pressure 2 XDCR fails, issuance of the replace ullage pressure 2 XDCR command will cause energization of a relay, causing ullage pressure 4 XDCR to replace ullage pressure 2 XDCR . The termination of the replace commands causes the de-energization of a relay in the event a failure had occurred.

Step 12A - RTLS Helium Purge and MPS Dump Sequence Termination. This step provides for a helium purge of the aft compartment, OMS pod and ET UMb cavity for an RTLS abort after the MPS dump is complete. It also de-energizes the remainder of the MPS and terminates the sequence.

\section*{Monitor the following:}
(a) RTLS ABORT DECLARED

V90X8637X
(b) GND REL VEL MAGNITUDE IN M50 SYS

V95L0151C
(c) HE_PURGE_VEL
(d) HE_PURGE_TIME

If (a) is false, set outputs (3) through (17) false and return to Step 1.
If (a) is true and \((\mathrm{b})>(\mathrm{c})(\mathrm{ft} / \mathrm{sec})\), return to Step 1.
On the first pass that (a) is true and (b) \(\leq\) (c) ( \(\mathrm{ft} / \mathrm{sec}\) ), set outputs (1) and (2) true, start the timer for (d), and return to Step 1.

On subsequent passes, if (d) seconds have not elapsed since outputs (1) and (2) were set true, return to Step 1.

When (d) seconds have elapsed since outputs (1) and (2) were set true, then set outputs (1) through (17) false and deschedule the MPS dump sequence.
(1) MPS HE SPLY BLOWDOWN NO. 1 OPEN CMD V41K1631X
(2) MPS HE SPLY BLOWDOWN NO. 2 OPEN CMD V41K1633X
(3) MPS E1 HE INTCON OUT/OPEN CMD A
(4) MPS E2 HE INTCON OUT/OPEN CMD A
(5) MPS E3 HE INTCON OUT/OPEN CMD A
(6) MPS PNEU CROSSOVER NO. 2 OPEN CMD
(7) MPS PNEU VLV HE ISLN NO. 1 OP CMD
(8) MPS PNEU VLV HE ISLN NO. 2 OP CMD

V41K1168X
V41K1268X
V41K1368X
V41K1613X
(8) V41K1608X
(9) MPS E-2 HELIUM SUPPLY B OPEN CMD A V41K1256X
(10) MPS E-2 HELIUM SUPPLY B OPEN CMD B V41K1257X
(11) MPS E-2 HELIUM SUPPLY A OPEN CMD V41K1255X
(12) MPS E-1 HELIUM SUPPLY B OPEN CMD A V41K1156X
(13) MPS E-1 HELIUM SUPPLY B OPEN CMD B V41K1157X
(14) MPS E-1 HELIUM SUPPLY A OPEN CMD V41K1155X
(15) MPS E-3 HELIUM SUPPLY B OPEN CMD A V41K1356X
(16) MPS E-3 HELIUM SUPPLY B OPEN CMD B V41K1357X
(17) MPS E-3 HELIUM SUPPLY A OPEN CMD V41K1355X


Figure 4.70. MPS Dump Sequence ( 1 of 5)


Figure 4.70 MPS Dump Sequence (2 of 5)


Figure 4.70 MPS Dump Sequence (4 of 5)

Figure 4.70 MPS Dump Sequence (5 of 5)
TABLE 4.2.4.4-1. MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) INPUT/OUTPUT FUNCTIONAL PARAMETERS




TABLE 4．2．4．4－1．MAIN PROPULSION SYSTEM（MPS）DUMP SEQUENCER（G4．70）INPUT／OUTPUT FUNCTIONAL PARAMETERS
\[
\infty_{1} x_{1} \text { 以 } U
\]

DBFN：D3B027－F PN：VP707100049P00L OUTPUT FUNCTIONAL PARAMETERS FROM MPS DUMP












艮思思思





FSSR NAME

Rockwell International
Space Systems Division
TABLE 4.2.4.4-3. MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) K-LOADS

TABLE 4.2.4.4-4. MAIN PROPULSION SYSTEM(MPS) DUMP SEQUENCER (G4.70) CONSTANTS
DBFN: 0558
64.70
\(\infty\)
\(\infty\)
\(\infty\)
90374


Rockwell International
Space Systems Division

January 25, 1991

\section*{THIS PAGE INTENTIONALLY LEFT BLANK}

\subsection*{4.3 ABORT}

\subsection*{4.3.1 Abort Control Sequence (4.192)}

\subsection*{4.3.1.1 Introduction}

It may be necessary to burn OMS/RCS propellants for systems management or when an abort has been selected by the crew, to maintain the necessary c.g. control and/or landing weight conditions to successfully abort. The amount of OMS/RCS propellant loaded and the vehicle center of gravity are mission dependent. The quantity of OMS or RCS propellant which will be burned is controlled by burn timers used in the Abort Control Sequence. The OMS burn time is based on the time required to burn the desired quantity using two OMS engines, and the RCS timer is based on a \(4+\mathrm{X}\) jet burn. Premission-determined parameters are provided for the OMS/RCS burn control. For abort to orbit (ATO), only the OMS burn time is provided and that initial value is modified to provide improved mission capability as a function of the velocity at the time of failure. Both OMS and RCS values are provided for the return to landing site (RTLS) or transatlantic landing (TAL) aborts. In addition to the values determined by the abort selection, there is a capability for the crew to manually initiate the burns and modify an initial value of the OMS and/or RCS timers through keyboard entry. If OMS propellant loading quantities require a higher bum rate than available through the OMS engines, an OMS/RCS interconnect can provide for burning OMS propellant through the RCS jets. This interconnected capability will be selected premission for each abort by an I-load. The crew has the capability to manually select or inhibit this interconnect.

For an ATO abort downmode to a TAL abort in MM103, the initially selected ATO abort OMS propellant burn time will be replaced automatically with the TAL abort OMS propellant burn time. The dump method can be changed from OMS only to an interconnected dump through the OMS and RCS by means of the manual inputs via the Override Display.

\subsection*{4.3.1.2 Overview}

Pre-MECO. For situations where the quantity of OMS propellants required to be burned cannot be accomplished in the allowable time using the OMS engines only, the RCS jets can be employed to assist in burning the OMS propellants through a crew selectable interconnect mode (toggle capability). When RCS jets are to be employed in this manner, the RCS propellant tank isolation valves are closed in both pods, and the OMS propellants are interconnected to the RCS jets. If the attempt to interconnect the OMS propellant tanks to either or both sets of RCS manifolds ( \(1 / 2\) and/or \(3 / 4 / 5\) ) is unsuccessful, those manifolds will be returned to feed from the RCS tanks and the resulting OMS propellant burn rate will be adjusted accordingly to provide an accurate value of propellant burned. After the necessary burn has been accomplished, all propellant feed paths are returned to the normal configuration.

Post-MECO. It may be necessary to burn OMS propellants post-MECO for systems management or to maintain the necessary c.g. control. For situations where the quantity of OMS propellants required to be burned cannot be accomplished in the allowable time using the OMS engines only, the RCS jets can be employed to assist in burning the OMS propellants through a crew selectable interconnect mode. When RCS jets are to be employed in this manner, the RCS propellant tank isolation valves are closed in both pods, and the OMS propellants are interconnected to the RCS jets. If the attempt to interconnect the OMS propellant tanks to either or both sets of RCS manifolds ( \(1 / 2\) and/or \(3 / 4 / 5\) ) is unsuccessful, those manifolds will be returned to feed from the RCS tanks. After the necessary burn has been accomplished, all propellant feed paths are returned to the normal configuration.

For an ATO abort selected post-MECO, no propellant dumping is required. If an RTLS abort has been selected, a dump of RCS propellants through the \(4 \mathrm{RCS}+\mathrm{X}\) jets is initiated after 20 seconds has elapsed
in MM602. The crew has the capability to control the aft RCS dump via the Override display. Capability is provided for the crew to manually request and/or modify the premission selected dump time for RCS propellants.
RCS roll control. For RCS roll control (selected automatically at SRB tailoff for two or three SSME failures in MM102 or a second SSME failure prior to MECO-Prep or Contingency MECO-Prep or by crew request of CONTINGENCY SE ROLL CONTROL FLAG via the XXXXXXTRAJ display), and OMS to RCS interconnect is initiated. This allows the use of OMS propellants by the RCS for vehicle control unless MECO-Prep or Contingency MECO-Prep has occurred. If the attempt to interconnect the OMS propellant tanks to either or both sets of manifolds ( \(1 / 2\) and/or \(3 / 4 / 5\) ) is unsuccessful, those manifolds will be returned to feed from the RCS tanks.

For pre-MECO the OMS propellants remain interconnected to the RCS jets until MECO commanded occurs and then are reconnected to normal by a Mode 2 return to normal process which provides a continuous propellant path to the RCS jets.
MM 304 OMS Propellant Burn. During MM 304, an OMS propellant-wasting burn will be initiated manually by crew request via the override display or automatically by guidance after the pitch-up maneuver has been completed to reduce the orbiter's landing weight and provide extra orbiter delta \(V\) after ET separation.

At the initiation of this sequence, the OMS engines will be commanded to the c.g. trim position and both sets of OMS helium/vapor isolation values will be commanded open. The selection to interconnect the OMS propellants to the RCS jets will then be determined by the crew's manual item entry or automatically when the OMS equivalent on time is less than or equal to a predefined interconnect initiation fuel time (I-load). When an interconnected dump has been selected, the OMS/RCS interconnect is requested and a c.g. trim delay is started. if an interconnect dump is not selected, a RCS \(4+\mathrm{X}\) setling burn is initiated, a settling burn timer is started, and a flag for dumping through the OMS engines only is set.

The OMS propellant burn via the OMS engines and 24 aft \(\mathbb{R C S}\) jets ( \(4+\mathrm{X}\) and 20 nulls), will occur as follows: The OMS ignition will be initiated after the expiration of the c.g. trim delay and the OMS/RCS interconnect sequence has completed its processing. The dump through the 24 aft RCS jets will be initiated after the expiration of an ignition press delay which starts at the ignition of the OMS engines.

The OMS propellant burn via the OMS engines only will occur after 15 seconds of the \(4+\mathrm{X}\) settling burn. The \(4+X\) settling burm will be terminated after 20 seconds.

The OMS propellant-wasting burn via the 24 aft \(\operatorname{RCS}\) jets will be terminated automatically when, (1) the OMS equivalent on time is greater than or equal to a predefined interconnect termination fuel time (Iload), (2) the normal acceleration exceeds a predefined limit (I-load) for more than one second period of contimuous processing, or (3) manually by crew item entry.

The entry OMS fuel burn time \(I\)-load represents the time required to burn available OMS fuel at a pre-MECO two-OMS-engine flow rate. The OMS equivalent on time used during pre-MECO operations will be transferred to OPS 3 to support a MM1304 OMS propellant burn. This timer is incremented during each cycle that an OMS burn is active to reflect the OMS fuel flow at a two-OMS-engine rate and also the delta fuel flow rate between 2 OMS engines and 10 or \(24 \mathbb{R C S}\) jets when the null jets are active. The 10 or 24 RCS jets delta fuel flow rate will be determined by the state of the aft manifold inhibit flags from the \(O M S / R C S\) interconnect sequence.

MM304 AFT RCS PROPELLANT BURN. When the ground relative velocity reaches a predefined threshold (I-load), a dump of RCS propellants through the RCS \(4+\mathrm{X}\) jets is initiated if enabled by the
crew via item entry. Capability is provided for the crew to manually request and/or modify the premission selected dump time for RCS propellants.

\subsection*{4.3.1.3 Detail Requirements-Abort Control Sequence}

Step 1. This step sets the scale factor for the OMS burn time display and provides the appropriate branching for the MM304 or OPS \(1 / 6\) abort functions.

The following signals are monitored:
(a) MAJOR MODE 304 FLAG V90X8161X
(b) SECOND SSME FAIL CONFIRM V90X1721X
(c) CONT_SERC V93X6682X
(d) SERC FLAG V90X8913X

Set (1) equal to 1.0 and monitor (a).
If (a) is true, proceed to Step 24. Otherwise, if (a) is false, proceed to monitor (b), (c), and (d).
If (b) or (c) or (d) is true, set (2) true and proceed to Step 1A. Otherwise, if (b) and (c) and (d) are all false, proceed to Step 18.
(1) OMS TIME SCALE FACTOR
V94J3755C
(2) SERC FLAG
V90X8913X

Step 1A. This step initiates the abort OMS/RCS interconnect command and the OMS Helium and Vapor isolation valve open commands to support single engine roll control when a second SSME fails prior to contingency MECO PREP and terminates the 24 AFT RCS jet commands.

The following signals are monitored:
(a) MECO CONFIRMED FLAG V90X8561X
(b) OMS TO RCS INTERCONNECT CMD V90X8312X
(c) MECO PREPARATION DISCRETE V90X1989X
(d) CONTINGENCY MECO PREP DISCRETE V90X8480X

If (a) is true, set (14) true and proceed to Step 1B. Otherwise, if (a) is false, proceed to monitor (b).
If (b) is true, issue (6) through (13), and proceed to monitor (c) and (d). Otherwise, if (b) is false, proceed to monitor (c) and (d).

If (c) and (d) are both false, on first pass, terminate (1) through (3), set (4) true (ENABLE), issue (5), and proceed to Step 1B. On subsequent passes, proceed to Step 1B. Otherwise, if either (c) or (d) is true, set (14) true, and proceed to Step 1B.
\begin{tabular}{lll} 
(1) & ABORT RCS + X ON CMD & V90X8314X \\
(2) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(3) & OMS TO RCS RTRN TO NORMAL CONFIG CMD & V90X8313X \\
(4) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(5) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(6) & OMS L POD HE ISLN VLV A OP & V43K4180X \\
(7) & OMS L POD VAPOR ISLN VLV 1 OP & V43K4182X \\
(8) OMS R POD HE ISLN VLV A OP & V43K5180X \\
(9) OMS R POD VAPOR ISLN VLV 1 OP & V43K5182X \\
(10) & OMS L POD HE ISLN VLV B OP & V43K4181X
\end{tabular}
\begin{tabular}{llc} 
(8) & OMS R POD HE ISLN VLV A OP & V43K5180X \\
(9) & OMS R POD VAPOR ISLN VLV 1 OP & V43K5182X \\
(10) & OMS L POD HE ISLN VLV B OP & V43K4181X \\
(11) & OMS L POD VAPOR ISLN VLV 2 OP & V43K4183X \\
(12) & OMS R POD HE ISLN VLV B OP & V43K5181X \\
(13) & OMS R POD VAPOR ISLN VLV 2 OP & V43K5183X \\
(14) & PRE MECO ICNCT COMPLETE FLAG & (INTERNAL)
\end{tabular}

Step 1B. This step controls selection of the OMS burn time for a manually initiated OMS propellant dump and for an abort which has been down-moded from an ATO abort to a TAL abort.

The following signals are monitored:
\begin{tabular}{lr} 
(a) ORBITER DUMP ENABLE & V93X6980X \\
(b) ATO ABORT SELECTED & (INTERNAL) \\
(c) TAL ABORT DECLARED & V90X8658X
\end{tabular}

If (a) is true, on first pass, set (1) true, set (2) equal to (3), and proceed to Step 2. On subsequent passes, proceed to Step 2. Otherwise, if (a) is false, proceed to monitor (b).
If (b) is true, proceed to monitor (c). Otherwise, if (b) is false, proceed to Step 2.
If (c) is true, on first pass, set (2) equal to (4), and proceed to Step 2. On subsequent passes, proceed to Step 2. Otherwise, if (c) is false, proceed to Step 2.
(1) BURN TIME SEL COMPLETE FLAG
(INTERNAL)
(2) OMS DELTA T COMPUTED V90W8325C
(3) MANUAL_OMS_DT V99U9717C
(4) TAL_OMS_DT

V97U9786C
Step 2. This step determines if the abort burn table selection has been completed or pre-MECO interconnect operation is completed for second SSME failure situations.
The following signals are monitored:
(a) BURN TIME SEL COMPLETE FLAG
(b) PRE-MECO ICNCT COMPLETE FLAG

If (a) or (b) is true, proceed to Step 7.
If (a) and (b) are false, proceed to Step 3.
Step 3. This step controls the selection of the appropriate table values to be used in the control of the OMS and RCS abort burns.

The following signals are monitored:
(a) RTLS ABORT DECLARED
(b) TAL ABORT DECLARED V90X8658X
(c) TGT COMPLETE FLAG

If (a) is true, proceed to Step 4.
If (a) is false, and (b) is true, proceed to Step 5.

If (a) and (b) are both false, and (c) is true, proceed to Step 6.
If (a) and (b) and (c) are all false, return to Step 1.
Step 4. This step selects the RTLS I-load value for use in control of the OMS propellant abort burn during an RTLS abort.

The computed burn value and OMS/RCS interconnect initial selection are set equal to RTLS I-load table values as follows:
\begin{tabular}{lll} 
(a) & RTLS_OMS_DT & V97U9780C \\
(b) & RTLS_ICNCT_SEL & V99U9991C \\
(c) & SERC FLAG & V90X8913X
\end{tabular}

Set (1) below equal to (a), set (2) true, and proceed to the next if statement.
If (b) is true (ENABLE), or (c) is true, return to Step 1. Otherwise, set (3) false (INHIBIT), and return to Step 1.
\begin{tabular}{llr} 
(1) & OMS DELTA T COMPUTED & V90W8325C \\
(2) & BURN TIME SEL COMPLETE FLAG & (INTERNAL) \\
(3) OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X
\end{tabular}

Step 5. This step selects the TAL I-load values for use in control of the OMS propellant abort burn during TAL abort.

The computed burn value and OMS/RCS interconnect initial selection are set equal to the TAL I-load values as follows:
\begin{tabular}{lll} 
(a) TAL_OMS_DT & V97U9786C \\
(b) TAL_ICNCT_SEL & V99U9992C \\
(c) SERC FLAG & V90X8913X
\end{tabular}

Set (1) below equal to (a), (2) true, and proceed to the next if statement.
If (b) is true (ENABLE), or (c) is true, return to Step 1. Otherwise, set (3) false (INHIBIT), and return to Step 1.
\begin{tabular}{llr} 
(1) & OMS DELTA T COMPUTED & V90W3825C \\
(2) & BURN TIME SEL COMPLETE FLAG & (INTERNAL) \\
(3) OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X
\end{tabular}

Step 6. This step selects the ATO I-load table values for use in control of the OMS propellant abort burn during ATO abort.
\begin{tabular}{llc} 
(a) SCALE FACTOR 2 & V90J8517C \\
(b) ATO_OMS_DT & V97U9798C \\
(c) & ATO_ICNCT_SEL & V99U9993C \\
(d) SERC FLAG & V90X8913X
\end{tabular}

The computed burn value and OMS/RCS interconnect initial selection are set equal to the ATO I-load value as follows:

Set (1) below equal to the product of (a) and (b), set (3) and (4) equal to true, and proceed to the next if statement.

If (c) is true (ENABLE), or (d) is true, return to Step 1. Otherwise, set (2) false (INHIBIT), and return to Step 1.
\begin{tabular}{llr} 
(1) & OMS DELTA T COMPUTED & V90W8325C \\
(2) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(3) BURN TIME SEL COMPLETE FLAG & (INTERNAL) \\
(4) ATO ABORT SELECTED & (INTERNAL)
\end{tabular}

Step 7. All abort functions are suspended during the ET separation maneuver.
The following signals are monitored:
(a) MECO PREPARATION DISCRETE
V90X1989X
(b) MECO CONFIRMED FLAG
V90X8561X

If (a) and (b) are both false, proceed to Step 8.
If (a) or (b) is true, proceed to Step 12.
Step 8. This step controls the abort OMS burn.
The following parameters are monitored:
(a) ORBITER DUMP INHIBIT

V93X6981X
(b) OMS DELTA T COMPUTED
(c) OMS EQUIVALENT ON TIME
(d) OMS-L ON CMD IND
(e) OMS-R ON CMD IND
(f) SERC FLAG
(g) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90W8325C
V90W8320C
V90X8271X
V90X8272X
V90X8913X
V90X8282X

If (a) is false and (b) \(>\) (c), proceed to Step 9.
If (a) is true or (b) \(\leq\) (c) proceed to monitor (d) and (e).
If (d) or (e) is true, terminate (1), (3), and (4), issue (2), set (8) false, and proceed to monitor (f). Otherwise, proceed to monitor ( \(f\) ).

If \((\mathrm{f})\) is true, return to Step 1. Otherwise, proceed to monitor (g).
If \((\mathrm{g})\) is true, terminate (5), issue (6), set (7) false (INHIBIT), and return Step 1. Otherwise, return to Step 1.
\begin{tabular}{lll} 
(1) & ABORT OMS IGN CMD & V90X8319X \\
(2) & OMS CUTOFF CMD & V90X8318X \\
(3) & ABORT RCS +X ON CMD & V90X8314X \\
(4) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(5) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(6) OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X
\end{tabular}
(7) OMS/RCS INTERCONNECT INH/ENA CMD

V93X5348X
(8) ORBITER DUMP ENABLE V93X6980X

Step 9. This step increments the OMS dump timer and determines if OMS propellants are to be dumped with RCS jets.

The following signals are monitored:
(a) OMS-L ON CMD IND
V90X8271X
(b) OMS-R ON CMD IND
V90X8272X
(c) SERC FLAG V90X8913X
(d) ORBITER DUMP ENABLE V93X6980X
(e) OMS/RCS INTERCONNECT INH/ENA CMD
V93X5348X
(f) OMS TO RCS INTERCONNECT COMPLETE FLAG
V90X8282X

If (a) and (b) are both false, issue (1), terminate (2), and proceed to monitor (c) and (d). Otherwise, if (a) or (b) is true, increment (3) by 80 msec and proceed to monitor (c) and (d).

If (c) is true and (d) is false, return to Step 1. Otherwise, proceed to monitor (e).
If (e) is true (ENABLE), proceed to Step 10. Otherwise, proceed to monitor (f).
If (f) is true, terminate (4) through (6) below, issue (7), and return to Step 1. Otherwise, return to Step 1.
\begin{tabular}{llr} 
(1) & ABORT OMS IGN CMD & V90X8319X \\
(2) & OMS CUTOFF CMD & V90X8318X \\
(3) & OMS EQUIVALENT ON TIME & V90W8320X \\
(4) & ABORT RCS +X ON CMD & V90X8314X \\
(5) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(6) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(7) OMS TO RCS RTRN TO NORMAL CONFIG CMD & V90X8313X
\end{tabular}

Step 10. This step assures that the OMS propellants are connected to the RCS jets.
The following signal is monitored:
(a) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90X8282X
If (a) is false, issue (1) below, terminate (2), and return to Step 1.
If (a) is true and at least [(5) below] seconds have elapsed since (a) was last set true, issue (3) and (4) below, and proceed to Step 11. Otherwise return to Step 1.
\begin{tabular}{lll} 
(1) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(2) & OMS TO RCS RTRN TO NORMAL CONFIG CMD & V90X8313X \\
(3) & ABORT RCS +X ON CMD & V90X8314X \\
(4) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(5) ICNCT_DELAY & V99U9786C
\end{tabular}

Step 11. This step controls the OMS propellant burn timer and scale factors when using RCS null jets.

The following signals are monitored:
(a) AFT MANIFOLD \(1 / 2\) JET INH FLAG
V90X8285X
(b) AFT MANIFOLD 3/4/5 JET INH FLAG
(c) OMS EQUIVALENT ON TIME

V90X8286X
V90W8320C

If (a) and (b) are both false, increment (c) by (2), set (1) equal to (3), and return to Step 1.
If (a) or (b) is true, increment (c) by (4), set (1) equal to (5), and return to Step 1.
(1) OMS TIME SCALE FACTOR

V94J3755C
(2) RCS_24_JET_FU_BIAS

V99U9772C
V99U9773C
V99U9775C
(4) RCS_10_JET_FU_BLAS

V99U9776C
Step 12. This step controls the MM102 interconnected OMS dump and terminates the abort functions in preparation for ET separation in MM103 or MM601.

The following signal is monitored:
(a) MAJOR MODE 102 FLAG

V90X8158X
If (a) is true, on first pass, terminate (3), issue (4), set (5) true (ENABLE), and proceed to Step 13; on subsequent passes, proceed to Step 13. Otherwise, on first pass, terminate (1), (6), and (7), issue (2) and proceed to Step 14. On subsequent passes, proceed to Step 14.
\begin{tabular}{lll} 
(1) & ABORT OMS IGN CMD & V90X8319X \\
(2) & OMS CUTOFF CMD & V90X8318X \\
(3) & OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
(4) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(5) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(6) & ABORT RCS + X ON CMD & V90X8314X \\
(7) & 20 RCS NULL JETS ON CMD & V90X8317X
\end{tabular}

Step 13. This step determines whether to initiate or terminate contingency rapid dump in MM102. At termination for fast separation, a Mode 2 type interconnect return to normal is commanded.

The following signals are monitored:
(a) FAST SEPARATION FLAG

V90X8267X
(b) ORBITER DUMP INHIBIT
(c) OMS DELTA T COMPUTED
(d) OMS EQUIVALENT ON TIME
(e) ORBITER DUMP ENABLE

V93X6981X
V90W8325X
V90W8320C
V93X6980X

If (a) is true, on first pass, set (1) true and proceed to Step 20. On subsequent passes, proceed to Step 20. Otherwise, proceed to monitor (b), (c), and (d).

If (b) is true or (c) \(\leq\) (d), proceed to Step 20; otherwise, proceed to monitor (e).

If (e) is true proceed to Step 17. Otherwise, return to Step 1.
(1) MODE 2 INDICATOR

V90X8308X

Step 14. This step selects a Mode 2 OMS/RCS Return-to-Normal to be initiated at MECO Command and terminates the Orbiter Dump Enable and Orbiter Dump Inhibit commands. The OMS He/Vaport Isolation Op commands are terminated at the completion of the interconnect return-to-normal sequence.

The following signals are monitored:
(a) MECO COMMAND FLAG

V90X8569X
(b) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90X8282X

If (a) is false, return to Step 1.
If (a) is true, one time only, terminate (3), issue (4), set (13) true, set (1), (2), and (14) false (INHIBIT), and proceed to Step 15. On subsequent passes, proceed to monitor (b).

If (b) is false, one time only, terminate (5) through (12), set (13) false, and proceed to Step 15 . On subsequent passes, proceed to Step 15 . Otherwise, proceed to Step 15.
\begin{tabular}{|c|c|c|}
\hline (1) & ORBITER DUMP ENABLE & V93X6980X \\
\hline (2) & ORBITER DUMP INHIBIT & V93X6981X \\
\hline (3) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
\hline (4) & OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
\hline (5) & OMS L POD HE ISLN VLV A OP & V43K 4180X \\
\hline (6) & OMS L POD VAPOR ISLN VLV 1 OP & V43K4182X \\
\hline (7) & OMS R POD HE ISLN VLV A OP & V43K5180X \\
\hline (8) & OMS R POD VAPOR ISLN VLV 1 OP & V43K5182X \\
\hline (9) & OMS L POD HE ISLN VLV B OP & V43K4181X \\
\hline (10) & OMS L POD VAPOR ISLN VLV 2 OP & V43K4183X \\
\hline (11) & OMS R POD HE ISLN VLV B OP & V43K5181X \\
\hline (12) & OMS R POD VAPOR ISLN VLV 2 OP & V43K5183X \\
\hline (13) & MODE 2 INDICATOR & V90X8308X \\
\hline (14) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
\hline
\end{tabular}

Step 15. This step determines if a post-MECO dump has been manually inhibited, or terminated by completion.

The following signals are monitored:
(a) ORBITER DUMP ENABLE V93X6980X
(b) ORBITER DUMP INHIBIT V93X6981X
(c) OMS DELTA T COMPUTED V90W8325C
(d) OMS EQUIVALENT ON TIME V90W8320C

If (a) is true and \((\mathrm{c})>(\mathrm{d})\), proceed to Step 16.
If (a) is true and (c) \(\leq\) (d), proceed to Step 20.
If (a) is false and (b) is true, proceed to Step 20.

If (a) and (b) are false, proceed to Step 23.
Step 16. This step assures the flight control system constraints and OMS system Nz constraints are satisfied in MM 602 prior to interconnecting OMS propellants to the RCS jets.
The following signals are monitored:
\begin{tabular}{llr} 
(a) & MM 602 DUMP INIT FLAG & (INTERNAL) \\
(b) & MAJOR MODE 602 FLAG & V90X8174X \\
(c) & NZ & V90A5381C \\
(d) & OMS_NZ_LIM & V99U9697C \\
(e) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(f) & FCS_ACCEPT_ICNCT & V90X8296X
\end{tabular}

If (a) is false, proceed to monitor (b). Otherwise, if (a) is true, proceed to Step 16A.
If (b) is true, proceed to monitor (c). Otherwise, if (b) is false, return to Step 1.
If \(\mid\) (c) \(\mid \leq\) (d), issue (1) below, set (2) true, start timer (3), and proceed to monitor (e). Otherwise, if \(\mid\) (c) \(\mid>\) (d), set (4) false, set (5) true, and return to Step 1.
If (e) is true (ENABLE), proceed to monitor (f). Otherwise, if (e) is false (INHIBIT), set (6) true, and return to Step 1.
If (f) is true, issue (8), terminate (9) and (10), and return to Step 1. If (f) is false, set (6) true and (7) false (INHIBIT), and return to Step 1.
\begin{tabular}{llr} 
(1) & CG TRIM CMD & V90X8309X \\
(2) & MM 602 DUMP INIT FLAG & (INTERNAL) \\
(3) & CG TRIM DELAY TIMER & (INTERNAL) \\
(4) & ORBITER DUMP ENABLE & V93X6980X \\
(5) & ORBITER DUMP INHIBIT & V93X6981X \\
(6) & OME ONLY FLAG & V90X8051X \\
(7) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(8) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(9) & OMS TO RCS RTRN TO NORM CONFIG CMD & V90X8313X \\
(10) & ABORT RCS + X ON CMD & V90X8314X
\end{tabular}

Step 16A. This step insures the OMS/RCS interconnect sequence has completed before continuing the execution of an OMS propellant dump if an interconnect is requested. This step also issues the \(4+\mathrm{X}\) jet command to provide propellant settling, and insures the OMS system NZ constraints are satisfied prior to OMS ignition.

The following signals are monitored:
(a) \(O M S / R C S\) INTERCONNECT INH/ENA CMD
(b) OMS TO RCS INTERCONNECT COMPLETE FLAG
(c) CG_TRIM_DELAY
(d) CG TRIM DELAY TIMER
(INTERNAL)
(e) NZ
(f) OMS_NZ_LIM

If (a) is true (ENABLE), proceed to monitor (b). Otherwise, if (a) is false (INHIBIT), issue (1) and proceed to monitor (c).

If (b) is true, issue (1) and proceed to monitor (c). Otherwise, if (b) is false, return to Step 1.
If (c) is \(\leq(d)\), on first pass, proceed to monitor (e) and ( f ). On subsequent passes, proceed to Step 17. Otherwise, if (c) \(>\) (d), return to Step 1.

If \((\mathrm{e})\) is \(\leq(\mathrm{f})\), proceed to Step 17. Otherwise, if (e) is \(>(\mathrm{f})\), set (2) true and proceed to Step 18.
(1) ABORT RCS + X ON CMD

V90X8314X
(2) OMS NZ DUMP INHIBIT FLAG
(INTERNAL)
Step 17. This step initiates the contingency dumping on OMS propellant through the OMS engines in OPS 1 and OPS 6 and increments the OMS dump timer.

The following signals are monitored:
(a) IGN PRESS DELAY INIT FLAG
(INTERNAL)
(b) OMS-L ON CMD IND V90X8271X
(c) OMS-R ON CMD IND V90X8272X
(d) IGN_PRESS_DELAY V97U9838C
(e) IGN PRESS DELAY TIMER (INTERNAL)
(f) 20 RCS NULL JETS ON CMD V90X8317X
(g) MAJOR MODE 102 FLAG V90X8158X

If (a) is true, proceed to monitor (b) and (c). Otherwise, start timer (e), set (4) true, and proceed to monitor (b) and (c).

If (b) and (c) are both false, terminate (2), issue (3), and return to Step 1.
If either (b) or (c) is true, increment (1) by 80 msec and proceed to monitor (d).
If \((\mathrm{d}) \leq(\mathrm{e})\) or \((\mathrm{f})\) is true, proceed to monitor \((\mathrm{g})\). Otherwise, return to Step 1.
If \((\mathrm{g})\) is true, proceed to Step 19. Otherwise, proceed to Step 18.
```

(1) OMS EQUIVALENT ON TIME
V90W8320C
(2) OMS CUTOFF CMD V90X8318X
(3) ABORT OMS IGN CMD V90X8319X
(4) IGN PRESS DELAY INIT FLAG
(INTERNAL)

```

Step 18. This step controls the termination of the contingency dumping of OMS propellants based on OMS and/or RCS system constraints in MM602.

The following signals are monitored:
(a) NZ
(b) OMS_NZ_LIMIT
(c) OME ONLY FLAG
(d) OMS/RCS INTERCONNECT INH/ENA CMD
(e) CONTINGENCY_NZ_LIMIT
(f) OMS EQUIVALENT ON TIME
(g) CONT_OMS_RCS_ICNCT_TERM_FU_TIME
(h) OMS NZ DUMP INHHBIT FLAG

V97U9837C
V90W8320C V99U9718C (INTERNAL)

If \(\mid\) (a) \(\mid>\) (b) for three consecutive passes, or (h) is true, terminate (1), (3), (4), (5), and (13). Issue (2) and (6), set (7), (11), and (12) false, set (8) and (9) true, set (10) false (INHIBIT), reset (14) and (15), and proceed to Step 22. Otherwise go to the next if statement.

If (c) is true or (d) is false ( \(\mathbb{N} H \mathbb{I} I B I T\) ) or \([\mid\) (a) \(\mid>(\mathrm{e})\) for three consecutive passes ] or \((f) \geq(\mathrm{g})\), terminate (3) through (5), issue (6), set (9) true and (10) false (INHIBIT), and proceed to Step 22. Otherwise, proceed to Step 19.
\begin{tabular}{llr} 
(1) & ABORT OMS IGN CMD & V90X8319X \\
(2) & OMS CUTOFF CMD & V90X8318X \\
(3) & ABORT RCS +X ON CMD & V90X8314X \\
(4) & 20 RCS NULL JETS ON CMD & V90X8317X \\
(5) & OMS TO RCS INTERCONNECT CMD & V90X8312X \\
(6) & OMS TO RCS RETURN TO NORMAL CONFIG CMD & V90X8313X \\
(7) & ORBITER DUMP ENABLE & V93X6980X \\
(8) & ORBITER DUMP INHIBIT & V93X6981X \\
(9) & OME ONLY FLAG & V90X8051X \\
(10) & OMS/RCS INTERCONNECT INH/ENA CMD & V93X5348X \\
(11) & MM60 DUMP INIT FLAG & (INTERNAL) \\
(12) & IGN PRESS DELAY INIT FLAG & (INTERNAL) \\
(13) & C.G. TRIM CMD & V90X8309X \\
(14) & IGN PRESS DELAY TIMIER & (INTERNAL) \\
(15) & C.G. TRIM DELAY TTMER & (INTERNAL)
\end{tabular}

Step 19. This step issues the abort dump commands and determines the proper bias and scale factor to be used based on the Manifold Jet Inhibit flags from the OMS/RCS Interconnect Sequence.

Monitor the following signals:
\begin{tabular}{llr} 
(a) AFT MANIFOLD 1/2 JET INH FLAG & V90X8285X \\
(b) AFT MANIFOLD 3/4/5 JET INH FLAG & V90X8286X \\
(c) OMS EQUIVALENT ON TIME & V90W8320C \\
(d) OMS TIME SCALE FACTOR & V94J3755C \\
(e) OMS TO RCS INTERCONNECT COMPLETE FLAG & V90X8282X
\end{tabular}

If (e) is true, issue (5) and (6), and proceed to monitor (a) and (b). Otherwise, return to Step 1.
If (a) and (b) are both false, increment (c) by (1), set (d) equal to (2), and return to Step 1.
If (a) or (b) is true, increment (c) by (3), set (d) equal to (4), and return to Step 1.
```

(1) RCS_24_JET_FU_BIAS
(2) RCS_24_JET_FU_SCALE
(3) RCS_10_JET_FU_BIAS
(4) RCS_10_JET_FU_SCALE
(6) 20 RCS NULL JETS ON CMD V90X8317X

Step 20. This step is the first step of a common routine ending at Step 22 which performs those functions associated with completion or termination of the manually selected dump for post-MECO (MM102 and 602).

The following signals are monitored:
(a) OMS-L ON CMD IND
V90X8271X
(b) OMS-R ON CMD IND V90X8272X

If (a) or (b) is true, terminate (1) through (4) and (6), issue (7) and (8), set (9) true, set (5), (11), and (12) false, set (10) false (INHIBIT), reset (13) and (14), and proceed to Step 21.

If (a) and (b) are both false, proceed to Step 21.

(1)	C.G. TRIM CMD	V90X8309X
(2)	ABORT OMS IGN CMD	V90X8319X
(3)	ABORT RCS + X ON CMD	V90X8314X
(4)	20 RCS NULL JETS ON CMD	V90X8317X
(5)	ORBITER DUMP ENABLE	V93X6980X
(6)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(7)	OMS CUTOFF CMD	V90X8318X
(8)	OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X
(9)	ORBITER DUMP INHIBIT	V93X6981X
(10)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(11)	MM602 DUMP INTT FLAG	(INTERNAL)
(12)	IGN PRESS DELAY INIT FLAG	(INTERNAL)
(13)	IGN PRESS DELAY TIMER	(INTERNAL)
(14)	C.G. TRIM DELAY TIMER	(INTERNAL)

Step 21. This step determines if post-MECO functions are to be performed.
The following signals are monitored:
(a) MAJOR MODE 602 FLAG
V90X8174X
(b) NZ
V90A5381C
(c) CONTINGENCY_NZ_LIM

If (a) is true, and \mid (b) $\mid>$ (c), proceed to Step 22. Otherwise, if (a) is false or $|(b)| \leq$ (c), return to Step 1.

Step 22. This step selects the manual post-MECO RCS propellant burn timer.
The following signals are monitored:
(a) OMS TO RCS INTERCONNECT COMPLETE FLAG

V90X8282X
If (a) is false, then one time only, set (1) equal to (2), and proceed to Step 23.

If (a) is true, return to Step 1.
(1) AFT RCS DUMP DURATION
V93W6958C
(2) T_{-}RCS_REF
V97U9828C

Step 23. This step controls the RTLS post-MECO RCS propellant burn. The crew has the capability to terminate RCS propellant burn via override display.

The following signals are monitored:

| (a) MM 602 FLAG | V90X8174X |
| :--- | :--- | :--- |
| (b) MM 603 FLAG | V93X0013X |
| (c) AFT RCS DUMP COUNTER | V90W8229C |
| (d) AFT RCS DUMP DURATION | V93W6958C |
| (e) AFT RCS DUMP ENABLE | V93X6949X |

If (a) is true and 20 seconds have elapsed since (a) was true, or (b) is true, proceed to the next if statement; otherwise, return to Step 1.

If $(\mathrm{d}) \leq(\mathrm{c})$, terminate output (1), reset output (2) and return to Step 1.
If $(\mathrm{d})>(\mathrm{c})$ and (e) is true, issue output (1), increment (c) by 80 msec and return to Step 1.
If $(\mathrm{d})>(\mathrm{c})$ and (e) is false, terminate output (1) and return to Step 1.
(1) $\mathrm{ABORT} R C S+X$ ON CMD
V90X8314X
(2) AFT RCS DUMP ENABLE
V93X6949X

Step 24. This step initializes the ENTRY OMS FUEL BURN TIME, and determines if an OMS/RCS Interconnect is required. This step will also initiate an automatic OMS dump in a TAL abort, or a manual OMS dump by the crew via the Override display (if all constraints are satisfied), and pressurizes the OMS tanks.

The following signals are monitored:
(a) START_DUMP_VELOCITY

V99U9573C V95L0151C
(b) GND REL VEL MAGNITUDE IN M50 SYS
(c) ORBITER DUMP ENABLE
(d) OMS/RCS INTERCONNECT INH/ENA CMD
(e) OMS_RCS_INTERCON_INIT_FU_TIME
(f) OMS EQUIVALENT ON TTME
(g) OMS DELTA T COMPUTED
(h) ENTRY_OMS_FUEL_BURN_TTME
(i) FCS_ACCEPT_ICNCT
(j) ORBITER DUMP INHIBIT
(k) DUMP ENA INIT FLAG

If $($ a $) \geq$ (b) proceed to Step 29. Otherwise, if $($ a $)<$ (b), proceed to the next if statement.
If first pass, set (g) equal to (h) and if $(\mathrm{e})>(\mathrm{f})$, set (15) equal to true (ENABLE), and proceed to monitor (i) and (j). Otherwise, if first pass and (e) \leq (f), proceed to monitor (i) and (j). On subsequent passes, proceed to monitor (i) and (j).

If (i) is true and (j) is false, on first pass, set (c) true and proceed to monitor (c). On subsequent passes, proceed to monitor (c). Otherwise, proceed to monitor (c).

If (c) is false, proceed to Step 28. Otherwise, if (c) is true, proceed to monitor (k).
If (k) is false, issue outputs (1) through (9), set (17) true, and proceed to monitor (d) and (i). Otherwise, if (k) is true, proceed to Step 25.

If (d) is true (ENABLE) and (i) is true, issue (13), terminate (14), start timer (16), and proceed to Step 28. Otherwise, issue (10), set (11) and (18) true, set (15) false (INHIBIT), start timer (12), and proceed to Step 28.

(1)	C.G. TRIM CMD	V90X8309X
(2)	OMS L POD HE ISLN VLV A OP	V43K4180X
(3)	OMS L POD VAPOR ISLN VLV 1 OP	V43K4182X
(4)	OMS R POD HE ISLN VLV A OP	V43K5180X
(5)	OMS R POD VAPOR ISLN VLV 1 OP	V43K5182X
(6)	OMS L POD HE ISLN VLV B OP	V43K4181X
(7)	OMS L POD VAPOR ISLN VLV 2 OP	V43K4183X
(8)	OMS R POD HE ISLN VLV B OP	V43K5181X
(9)	OMS R POD VAPOR ISLN VLV 2 OP	V43K5183X
(10)	ABORT RCS + X ON CMD	V90X8314X
(11)	OME ONLY FLAG	V90X8051X
(12)	RCS 4 + X ON TIME	(INTERNAL)
(13)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(14) OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X	
(15) OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X	
(16)	C.G. TRIM DELAY TIMER	(INTERNAL)
(17) DUMP ENA INIT FLAG	(INTERNAL)	
(18)	TWO OME DUMP FLAG	(INTERNAL)

Step 25. This step monitors the TWO OME DUMP FLAG to determine if an OMS only dump is to be processed and will monitor the RCS $4+\mathrm{X}$ ON TIME and issue the dump commands at the proper intervals.

The following signals are monitored:
(a) TWO OME DUMP FLAG
(INTERNAL)
(b) RCS $4+\mathrm{X}$ ON TIMER
(INTERNAL)

If (a) is false, proceed to Step 26.
If (a) is true and (b) ≥ 15 seconds, one time only, issue (1), terminate (2), and proceed to the next if statement. Otherwise, proceed to the next if statement.

If (a) is true and (b) ≥ 20 seconds, one time only, terminate (3), and proceed to Step 28. Otherwise, proceed to Step 28.

| (1) ABORT OMS IGN CMD | V90X8319X |
| :--- | :--- | :--- |
| (2) OMS CUTOFF CMD | V90X8318X |
| (3) ABORT RCS + X ON CMD | V90X8314X |

Step 26. This monitors the OMS/RCS I/C ENA/INH flag to determine if the interconnect is to terminated either by crew selection or upon burn completion or for exceedance of systems constraints in OPS 3.

The following signals are monitored:

(a) OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X	
(b)	NZ	V90A5381C
(c) CONTINGENCY_NZ_LIM	V97U9837C	
(d) OMS EQUIVALENT ON TIME	V90W8320C	
(e) OMS_RCS_INTERCON_TERM_FU_TIME	V99U9952C	
(f) OMS TO RCS INTERCONNECT COMPLETE FLAG	V90X8282X	

If $[$ (a) is false ($\mathbb{N} H$ HIBIT) or \mid (b) $\mid>$ (c) continuously for more than 1 second or (d) is \geq (e)], terminate (1), (2), and (4), issue (3), set (5) false (INHIBIT), set (6) true, and proceed to Step 27. Otherwise, proceed to monitor (f).

If (f) is true, proceed to Step 27. Otherwise, proceed to Step 28.

(1)	ABORT RCS + X ON CMD	V90X8314X
(2)	20 RCS NULL JETS ON CMD	V90X8317X
(3)	OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X
(4)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(5)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(6) OME ONLY FLAG	V90X8051X	

Step 27. This step initiates the OMS plus 24 RCS jet dump after the designed time delays.
The following signals are monitored:
(a) CG_TRIM_DELAY

V97U9836C
(b) CG TRIM DELAY TIMER
(c) OMS/RCS INTERCONNECT INH/ENA CMD
(INTERNAL)
(d) IGN_PRESS_DELAY
(e) IGN PRESS DELAY TIMER

V97U9838C
(f) AFT MANIFOLD $1 / 2$ JET INH FLAG
(INTERNAL)
V90X8285X
(g) AFT MANIFOLD 3/4/5 JET INH FLAG

V90X8286X
(h) OMS EQUIVALENT ON TIME V90W8320C
(i) OMS TIME SCALE FACTOR V94J3755C
(j) OMS-L ON CMD IND V90X8271X
(k) OMS-R ON CMD $\mathbb{I N D}$

V90X8272X
If (a) $\leq(b)$, proceed to monitor (\mathbf{j}) and (k). Otherwise, proceed to Step 28.
If both (j) and (k) are false, issue (1), terminate (2), start timer (e), and proceed to monitor (c), (d), and (e). Otherwise, proceed to monitor (c), (d), and (e).

If (c) is true (ENABLE) and (d) \leq (e), issue (3) and (4), and proceed to monitor (f) and (g). Otherwise, proceed to Step 28.
If (f) or (g) is true, increment (h) by (7), set (i) equal to (8), and proceed to Step 28. Otherwise, increment (h) by (5), set (i) equal to (6), and proceed to Step 28.
(1) ABORT OMS IGN CMD

V90X8319X
(2) OMS CUTOFF CMD
(3) ABORT RCS + X OM CMD
(4) 20 RCS NULL JETS ON CMD
(5) RCS_24_JET_FU_BIAS
(6) RCS_24_JET_FU_SCALE
(7) RCS_10_JET_FU_BIAS
(8) RCS_10_JET_FU_SCALE

V90X8318X V90X8314X V90X8317X V99U9772C V99U9773C V99U9775C V99U9776C

Step 28. This step increments the OMS dump timer and terminates the OMS propellant dump by crew input, dump completion or OMS system constraints in OPS 3.

The following signals are monitored:
(a) ORBITER DUMP INHIBIT V93X6981X
(b) OMS EQUIVALENT ON TIME V90W8320C
(c) OMS DELTA T COMPUTED V90W8325C
(d) NZ
(e) OMS_NZ_LIM V90A5381C
V99U9697C
(f) OMS-L ON CMD IND V90X8271X
(g) OMS-R ON CMD IND V90X8272X

If [(a) is true] or [(b) is \geq (c)] or [\mid (d) $\mid>$ (e) continuously for more than 1.0 sec], terminate outputs (1) through (13), issue (14) and (15) set (21) true, set (16) and (18) false and (17) false (INHIBIT), set (22) true, reset (19), (20), and (23), and return to Step 1. Otherwise, go to the next if statement.

If (f) or (g) is true, increment (b) by 80 msec , and return to Step 1. Otherwise, return to Step 1.

(1)	C.G. TRIM CMD	V90X8309X
(2)	ABORT OMS IGN CMD	V90X8319X
(3)	ABORT RCS + X ON CMD	V90X8314X
(4)	20 RCS NULL JETS ON CMD	V90X8317X
(5)	OMS TO RCS INTERCONNECT CMD	V90X8312X
(6)	OMS L POD HE ISLN VLV A OP	V43K4180X
(7)	OMS L POD VAPOR ISLN VLV 1 OP	V43K4182X
(8)	OMS R POD HE ISLN VLV A OP	V43K5180X
(9)	OMS R POD VAPOR ISLN VLV 1 OP	V43K5182X
(10)	OMS L POD HE ISLN VLV B OP	V43K4181X
(11)	OMS L POD VAPOR ISLN VLV 2 OP	V43K4183X
(12)	OMS R POD HE ISLN VLV B OP	V43K5181X
(13)	OMS R POD VAPOR ISLN VLV 2 OP	V43K5183X
(14)	OMS CUTOFF CMD	V90X8318X
(15)	OMS TO RCS RETURN TO NORMAL CONFIG CMD	V90X8313X
(16)	ORBITER DUMP ENABLE	V93X6980X
(17)	OMS/RCS INTERCONNECT INH/ENA CMD	V93X5348X
(18)	DUMP ENA INIT FLAG	(INTERNAL)
(19)	IGN PRESS DELAY TIMER	(INTERNAL)
(20)	RCS 4 + X ON TIMER	(INTERNAL)
(21)	ORBITER DUMP INHIBIT	V93X6981X
(22)	OME ONLY FLAG	

Step 29. This step controls the MM304 RCS propellant dump via the $\mathrm{RCS} 4+\mathrm{X}$ jets.
The following signals are monitored:
(a) AFT RCS DUMP ENABLE

V93X6849X
(b) AFT RCS DUMP DURATION

V93W6958C
(c) AFT RCS DUMP COUNTER

V90W8229C
(d) AFT RCS TTG SF

V94J3757C
If (a) is true, proceed to the next if statement. Otherwise, terminate (1), and return to Step 1.
If (b) $>$ (c), issue (1) below, increment (c) by the product of (d) and 80 msec , and return to Step 1 .
If $(b) \leq(c)$, terminate (1), set $(a)=$ false, and return to Step 1.
(1) $\mathrm{ABORT} R \mathrm{CS}+\mathrm{X}$ ON CMD

V90X8314C

ABORT CONTROL SEQUENCE INITIALIZATION

NOMENCLATURE	INITIAL VALUE	UNITS
BURN TIME SEL COMPLETE FLAG	FALSE	
ATO ABORT SELECTED	FALSE	
MM602 DUMP INIT FLAG	FALSE	SEC
CG TRIM DELAY TIMER	0.0	SEC
IGN PRESS DELAY TIMER	0.0	SEC
DUMP ENA INIT FLAG	FALSE	
RCS 4 + X ON TIMER	0.0	
OME ONLY FLAG	FALSE	
PREMECO ICNCT COMPLETE FLAG	FALSE	
IGN PRESS DELAY INIT	FALSE	
2 OME DUMP FLAG	FALSE	
OMS NZ DUMP INHIBIT FLAG	FALSE	
SERC FLAG	FALSE	

INFORMATION ONLY

INFORMATION ONLY

Figure 4.192. Abort Control Sequence (Sheet 3 of 7)
INFORMATION ONLY
MAJOR MODE 304 - OMS OR OMS/RCS BURN AND AFT RCS PROP BURN

Figure 4.192. Abort Control Sequence (Sheet 5 of 7)
INFORMATION ONLY
CONTINUATION OF MM304 BURN CONTROL

Figure 4.192. Abort Control Sequence (Sheet 6 of 7)

TABLE 4．3．1．4－1．ABORT CONTROL SEQUENCER（G4．192）INPUT／OUTPUT FUNCTIONAL PARAMETERS

DBFN: D3B027-F
FSSR NAME
TABLE 4.3.1.4-1. ABORT CONTROL SEQUENCER (G4.192) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4．3．1．4－2．ABORT CONTROL SEQUENCER（G4．192）I－LOADS
MSID ENG UNIT DT PR DS PR FCTN CAT ＂－
 N
哭
品
学

$\begin{array}{ll}\text { v99U9993C } & \text { ND } \\ \text { v97U9798C } & \text { SEC }\end{array}$
V99U971.8C SEC
V9709837C G v9909571C SEC
v9909786C
SEC V9909717C SEC 0
0
0
6
0
0
0
0 V9909716C SEC $\begin{array}{ll}\text { V99U9952C } & \text { SEC } \\ \text { V9909775C } & \text { SEC } \\ \text { v9909776C } & \text { ND．}\end{array}$ V9909772C SEC v9909773C ND v9909991C ND V9709780C SEC V9909573C FT／SEC V97U9828C SEC v99u9992C ND v97u9786C SEC
DBEN ： 0484
FSSR NAME

TABLE 4.3.1.4-3. ABORT CONTROL SEQUENCER (G4.192) K-LOADS

$\underset{\text { FSSR NAME }}{\text { DESCRIPTION }}$	MSID	mC kload value	eng unit	dt pr s pr fctn	Last CR eqtw msid
CG_trim_delay	v9709836C	+4.5	E+00 SEC	F S C G4.192	29551B
IGN_press_delay	v9709838C	+2.0	E+00 SEC	F S C G4.192	29551B

DBEN: 0558 FSSR NAME
NO REQUIREMENTS

4.3.2 Abort OMS/RCS Interconnect (4.184)

4.3.2.1 Introduction

The OMS/RCS interconnect function provides the control necessary to feed OMS propellants to RCS jets when required by an abort. In addition, after completion of the burn, controls are provided for reconfiguration to the normal RCS and OMS propellant feed from their respective tanks.

4.3.2.2 Overview

When the abort control sequence has issued a request for an interconnect, the OMS/RCS interconnect sequence performs the following functions. On the first pass, the AFT MANIFOLD JET INHIBIT $1 / 2$ and 3/4/5 FLAGS are set false, and all affected OMS/ RCS propellant valve commands are removed to establish a known condition. The RCS $1 / 2$ and $3 / 4 / 5$ ALL JET INHIBIT FLAGS are set to true to inhibit all AFT RCS jet firings during the interconnect process. Then the RCS propellant tank isolation valves are commanded closed.

Prior to opening the RCS crossfeed valves, the status of the RCS tank isolation valves is monitored. If any of the tank isolation valves do not indicate closed, or the associated COMMFAULT status indicates true, the corresponding AFT MANIFOLD JET INHIBIT FLAG is set true to inhibit the use of jets on those manifolds for dumping OMS propellants. The RCS crossfeed valves are commanded closed and a set of RCS tank isolation valves are commanded open for those manifolds whose jets are inhibited. If any of the RCS aft crossfeed valves have been commanded opened, the OMS pod crossfeed " B " valves are commanded open.

If all the jets have been inhibited in the above process, the RCS tank isolation valves are opened, the OMS TO RCS INTERCONNECT CMD set false, the OMS TO RCS RTRN TO NORM CONFIG CMD set true, the OMS TO RCS INTERCONNECT COMPLETE FLAG is set false to allow proper sequencing of the Abort Control Sequence, and the OMS/RCS INTERCONNECT INH/ENA CMD set false (INHIBIT), and the sequence is terminated.

The sequence monitors the RCS crossfeed valves which have been commanded open. If all of the valves which were commanded open indicate open, and none of the associated COMMFAULT status indicates true, the OMS pod crossfeed valves "B" are checked and the OMS pod crossfeed "A" valves commanded open if any " B " valve fails to open. If any of the OMS pod crossfeed "A" valves do not indicate open, the OMS TO RCS INTERCONNECT CMD is set false, the OMS TO RCS RTRN TO NORM CONFIG CMD is set true, and the OMS TO RCS INTERCONNECT COMPLETE FLAG is set true to allow for the proper sequencing of the ABT CNTL sequence and the OMS/RCS INH/ENA CMD is set false (INHIBIT) and the interconnect sequence returns to begin the return to normal process. If all OMS pod crossfeed " B " or " A " valves indicate open, then the OMS TO RCS INTERCONNECT COMPLETE FLAG is set true. If any of the jets have been inhibited, the RCS crossfeed valves for that manifold are closed and after a delay of 1.5 seconds the RCS tank isolation valves are opened. Then, after another 1.5 second delay, the OMS TO RCS INTERCONNECT COMPLETE FLAG is set true, and the sequence is terminated.

When the OMS/RCS interconnect is complete and if none of the jets have been inhibited, the sequence monitors the status of the RCS tank isolation valves. If any RCS tank isolation valve closed indication is lost for three consecutive passes, an internal flag is set to indicate which manifold requires reconfiguration and the RCS crossfeed valves for the affected manifolds are commanded closed. After a delay of 1.5 seconds the RCS tank isolation valves for those manifolds are commanded open. While the valves are
being reconfigured, a flag is set to inhibit all jet firings from that manifold until the propellant feed from the RCS tanks can be established. The sequence will then be terminated. If a COMMFAULT status for the RCS tank isolation valves indicates true for three consecutive cycles, the manifold jet inhibit flag for those manifolds is set true for those manifolds, and the monitor function is terminated.

When the abort control sequence requests a return to normal configuration the following functions are performed. All affected OMS/RCS propellant valve commands are set false to establish a known condition. If a Mode 2 return to normal has not been requested, then the ALL JET INHIBIT FLAGS are set true to inhibit all aft jet firings during the return to normal process if the respective AFT MANIFOLD JET INHIBIT FLAGS are false. Then, sequentially, the OMS pod crossfeed valves are commanded closed, and the RCS tank isolation valves are commanded open. Prior to closing the RCS crossfeed valves, the $1 / 2$ manifold RCS tank isolation valves are monitored. If any of the $1 / 2$ tank isolation valves does not indicate open, or the associated COMMFAULT status indicates true, the RCS crossfeed valves between that manifold and the companion 3/4/5 manifold will not be closed, providing RCS propellants to the affected $1 / 2$ manifold. Finally, as determined by the above check, those RCS crossfeed valves to be closed are commanded closed and the OMS/RCS INTERCONNECT COMPLETE FLAG, AFT MANIFOLD JET INHIBIT FLAGS, and the ALL JET INHIBIT FLAGS are set false, and the sequence is terminated.

During a Mode 2 return to normal sequence, continuous propellant flow is provided to the RCS for flight control and the ALL JET INHIBIT FLAGS remain false. The sequential order of the valve commands. begins with the opening of all RCS tank isolation valves. Prior to closing the RCS crossfeed valves, the $1 / 2$ manifold RCS tank isolation valves are monitored. If any of the $1 / 2$ tank isolation valves do not indicate open, or the associated COMMFAULT status indicates true, the RCS crossfeed valves between that manifold and the companion 3/4/5 manifold will be commanded open providing RCS propellants to the affected $1 / 2$ manifold. Finally, as determined by the above check, those RCS crossfeed valves are commanded closed, OMS crossfeed valves are commanded closed and the OMS/RCS INTERCONNECT COMPLETE FLAG and AFT MANIFOLD INHIBIT FLAGS are set false and the sequence is terminated.

When either an OMS/RCS interconnect or return to normal configuration has been requested by the Abort Control Sequence, the Abort OMS/RCS Interconnect Sequence will perform the requested function to completion prior to recognizing another request. RCS jet firing commands will be inhibited during an interconnect and a non-Mode 2 return to normal while the sequence is providing the requested function. This is controlled by the sequence setting RCS $1 / 2(3 / 4 / 5)$ ALL JET INHIBIT FLAGS true to be used by the Ascent and Entry/Landing RCS Command SOP.

4.3.2.3 DETALL REQUIREMENTS

Step 1. This step determines if the OMS-to-RCS interconnect or return-to-normal process is required.
When either an OMS/RCS interconnect or return to normal configuration has been requested by the Abort Control Sequence, the Abort OMS/RCS Interconnect Sequence will perform the requested function to completion prior to recognizing another request. In this step, use is made of two internal flags to control the process, these are the OMS/RCS I/C IN PROGRESS FLAG and the OMS/RCS RTRN TO NORM IN PROGRESS FLAG. Both of these flags are initialized to the false state.

The following signals are monitored:
(a) OMS TO RCS INTERCONNECT CMD V90X8312X
(b) OMS TO RCS RTRN TO NORM CONFIG CMD V90X8313X
(c) OMS TO RCS INTERCONNECT COMPLETE FLAG
V90X8282X
(d) INTERCONNECT MONITOR FLAG INTERNAL
(e) OMS/RCS I/C IN PROGRESS FLAG INTERNAL
(f) OMS/RCS RTRN TO NORM IN PROGRESS FLAG INTERNAL
(g) MODE 2 INDICATOR V90X8308X

If (e) is true, proceed to the next steps as required to complete the interconnect sequence, otherwise, go to the next if statement.

If (f) is true, proceed to the next steps as required to complete the return to normal configuration sequence, otherwise, go to the next if statement.

If (a) is true, and (c) is false, terminate (1) thru (76) below, upon completion of termination of all commands, change set and reset discretes for commands (63) thru (76) to false, set (77), (78), (79), and (82) false, set (80), (81), and (83) true, set (85) through (101) equal to zero, and go to Step 2. Otherwise go to the next if statement.

If (b) is true, and (c) is true, terminate (1) thru (76) below, set (79) and (82) false, set (84) true, and proceed to monitor (g). Otherwise, proceed to monitor (c) and (d).

If (g) is true, proceed to Step 12. Otherwise, set (80) and (81) true and proceed to Step 9.
If (c) and (d) are both true, proceed to Step 7. Otherwise, terminate the sequence.
(1) OMS-L POD XFD VLVS A CMD 1 CL V43K4283X
(2) OMS-L POD OXDZR XFD VLV A CMD 2 CL V43K4285X
(3) OMS-L POD FUEL XFD VLV A CMD 2 CL
(4) OMS-L POD XFD VLVS B CMD 1 CL
(5) OMS-L POD OXDZR XFD VLV B CMD 2 CL
(6) OMS-L POD FUEL XFD VLV B CMD 2 CL
(7) OMS-R POD XFD VLVS A CMD 1 CL
(8) OMS-R POD OXDZR XFD VLV A CMD 2 CL
(9) OMS-R POD FUEL XFD VLV A CMD 2 CL
(10) OMS-R POD XFD VLVS B CMD 1 CL
(11) OMS-R POD OXDZR XFD VLV B CMD 2 C
(12) OMS-R POD FUEL XFD VLV B CMD 2 CL
(13) RCS-L AFT XFD VLV-1/2 GPC CL A
(14) RCS-L AFT OX XFD VLV-1/2 GPC CL B
(15) RCS-L AFT FU XFD VLV-1/2 GPC CL B V42K2422X
(16) RCS-L AFT XFD VLV-3/4/5 GPC CL A V42K2428X
(17) RCS-L AFT OX XFD V-3/4/5 GPC CL B V42K2430X
(18) RCS-L AFT FU XFD V-3/4/5 GPC CL B

V42K2434X
(19) RCS-R AFT XFD VLV-1/2 GPC CLOSE A

V42K3416X
(20) RCS-R AFT OX XFD V-1/2 GPC CLOSE B
(21) RCS-R AFT FU XFD V-1/2 GPC CLOSE B
(22) RCS-R AFT XFD VLV-3/4/5 GPC CL A
(23) RCS-R AFT OX XFD V-3/4/5 GPC CL B
(24) RCS-R AFT FU XFD V-3/4/5 GPC CL B
(25) RCS-L AFT TK ISLN V-1/2 GPC CL A
(26) RCS-L AFT OX TK ISLN V1/2 GPC CL B
(27) RCS-L AFT FU TK ISLN V1/2 GPC CL B
(28) RCS-L AFT OX TK ISLN V3/4/5 A GPC CL
(29) RCS-L AFT FU TK ISLN V3/4/5 A GPC CL
(30) RCS-L AFT OX TK ISLN V3/4/5 B GPC CL
(31) RCS-L AFT FU TK ISLN V3/4/5 B GPC CL
(32) RCS-R AFT TK ISLN V-1/2 GPC CL A
(33) RCS-R AFT OX TK ISLN V-1/2 GPC CL B
(34) RCS-R AFT FU TK ISLN V-1/2 GPC CL B
(35) RCS-R AFT OX TK ISLN V3/4/5 A GPC CL
(36) RCS-R AFT FU TK ISLN V3/4/5 A GPC CL
(37) RCS-R AFT OX TK ISLN V3/4/5 B GPC CL
(38) RCS-R AFT FU TK ISLN V3/4/5 B GPC CL
(39) OMS-L POD XFD VLVS A CMD 1 OP
(40) OMS-L POD OXDZR XFD VLV A CMD 2 OP
(41) OMS-L POD FUEL XFD VLV A CMD 2 OP
(42) OMS-L POD XFD VLVS B CMD 1 OP
(43) OMS-L POD OXDZR XFD VLV B CMD 2 OP
(44) OMS-L POD FUEL XFD VLV B CMD 2 OP
(45) OMS-R POD XFD VLVS A CMD 1 OP
(46) OMS-R POD OXDZR XFD VLV A CMD 2 OP
(47) OMS-R POD FUEL XFD VLV A CMD 2 OP
(48) OMS-R POD XFD VLVS B CMD 1 OP
(49) OMS-R POD OXDZR XFD VLV B CMD 20 P
(50) OMS-R POD FUEL XFD VLV B CMD 2 OP
(51) RCS-L AFT XFD VLV-1/2 GPC OP A
(52) RCS-L AFT OX XFD VLV-1/2 GPC OP B
(53) RCS-L AFT FU XFD VLV-1/2 GPC OP B
(54) RCS-L AFT XFD VLV3/4/5 GPC OP A
(55) RCS-L AFT OX XFD V-3/4/5 GPC OP B
(56) RCS-L AFT FU XFD V-3/4/5 GPC OP B
(57) RCS-R AFT XFD VLV-1/2 GPC OPEN A
(58) RCS-R AFT OX XFD V-1/2 GPC OPEN B
(59) RCS-R AFT FU XFD V-1/2 GPC OPEN B
(60) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A
(61) RCS-R AFT OX XFD V-3/4/5 GPC OP B
(62) RCS-R AFT FU XFD V-3/4/5 GPC OP B
(63) RCS-L AFT TK ISLN V-1/2 GPC OP A
(64) RCS-L AFT OX TK ISLN V1/2 GPC OP B
(65) RCS-L AFT FU TK ISLN V1/2 GPC OP B

V42K3434X

V42K2353X
V42K2354X
V42K2355X
V42K2357X
V42K2358X
V42K2360X
V42K2361X
V42K3353X
V42K3354X
V42K3355X
V42K3357X
V42K3358X
V42K3360X
V42K3361X

V43K4282X
V43K4284X
V43K4384X
V43K4286X
V43K4288X
V43K4388X
V43K5282X
V43K5284X
V43K5384X
V43K5286X
V43K5288X
V43K5388X
V42K2402X
V42K2403X
V42K2404X
V42K2408X
V42K2409X
V42K2410X

V42K3402X
V42K3403X
V42K3404X
V42K3408X
V42K3409X
V42K3410X
V42K2342X
V42K2343X
V42K2344X
(66) RCS-L AFT OX TK ISLN V3/4/5 A GPC OP
(67) RCS-L AFT FU TK ISLN V3/4/5 A GPC OP
(68) RCS-L AFT OX TK ISLN V3/4/5 B GPC OP
(69) RCS-L AFT FU TK ISLN V3/4/5 B GPC OP
(70) RCS-R AFT TK ISLN V-1/2 GPC OP A
(71) RCS-R AFT OX TK ISLN V-1/2 GPC OP B
(72) RCS-R AFT FU TK ISLN V-1/2 GPC OP B
(73) RCS-R AFT OX TK ISLN V3/4/5 A GPC OP
(74) RCS-R AFT FU TK ISLN V3/4/5 A GPC OP
(75) RCS-R AFT OX TK ISLN V3/4/5 B GPC OP
(76) RCS-R AFT FU TK ISLN V3/4/5 B GPC OP
(77) AFT MANIFOLD $1 / 2$ JET INH FLAG
(78) AFT MANIFOLD 3/4/5 JET INH FLAG
(79) INTERCONNECT MONITOR FLAG
(80) RCS $1 / 2$ ALL JET INHIBIT FLAG
(81) RCS 3/4/5 ALL JET INHIBIT FLAG
(82) $1 / 2$ XFD/ISO FAIL FLAG
(83) OMS/RCS I/C IN PROGRESS FLAG
(84) OMS/RCS RTRN TO NORM IN PROGRESS FLAG
(85) I/C FAll COUNTER
(86) FA 1 COMMFAULT CYC COUNTER
(87) RCS L OX TK POSN CYC COUNTER
(88) RCS L FU TK POSN CYC COUNTER
(89) FA3 COMMFAULT CYC COUNTER
(90) RCS R OX TK POSN CYC COUNTER
(91) RCS R FU TK POSN CYC COUNTER
(92) FA 2 COMMFAULT CYC COUNTER
(93) RCS L A OX TK POSN CYC COUNTER
(94) RCS L B OX TK POSN CYC COUNTER
(95) RCS L A FU TK POSN CYC COUNTER
(96) RCS L B FU TK POSN CYC COUNTER
(97) FA 4 COMMFAULT CYC COUNTER
(98) RCS R A OX TK POSN CYC COUNTER
(99) RCS R B OX TK POSN CYC COUNTER
(100) RCS R A FU TK POSN CYC COUNTER
(101) RCS R B FU TK POSN CYC COUNTER

V42K2346X
V42K2347X
V42K2349X
V42K2350X
V42K3342X
V42K3343X
V42K3344X
V42K3346X
V42K3347X
V42K3349X
V42K3350X
V90X8285X
V90X8286X
INTERNAL
V90X8290X
V90X8291X
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL
INTERNAL

Step 2. This step commands RCS propellant tank isolation valves closed on initiation of the interconnect sequence.
Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 3.

RCS-L AFT TK ISLN V-1/2 GPC CL A V42K2353X
RCS-L AFT OX TK ISLN V1/2 GPC CL B V42K2354X
RCS-L AFT FU TK ISLN V1/2 GPC CL B V42K2355X
RCS-L AFT OX TK ISLN V3/4/5 A GPC CL V42K2357X
RCS-L AFT FU TK ISLN V3/4/5 A GPC CL V42K2358X

RCS-L AFT OX TK ISLN V3/4/5 B GPC CL V42K2360X
RCS-L AFT FU TK ISLN V3/4/5 B GPC CL
RCS-R AFT TK ISLN V-1/2 GPC CL A
V42K3353X
RCS-R AFT OX TK ISLN V-1/2 GPC CL B
RCS-R AFT FU TK ISLN V-1/2 GPC CL B V42K3354X
V42K3355X
RCS-R AFT OX TK ISLN V3/4/5 A GPC CL
V42K3357X
RCS-R AFT FU TK ISLN V3/4/5 A GPC CL
V42K3358X
RCS-R AFT OX TK ISLN V3/4/5 B GPC CL V42K3360X
RCS-R AFT FU TK ISLN V3/4/5 B GPC CL V42K3361X
Step 3. This step monitors the position of the RCS tank isolation valves, opening the RCS crossfeed $\overline{\text { valves for those manifolds with all tank isolation valves configured correctly. If any tank isolation valve }}$ ($1 / 2$ or $3 / 4 / 5$) indicates not closed, an I/C fail counter will be incremented for processing in Step 5 and Step 6. If any RCS crossfeed valve is commanded open, the OMS pod crossfeed valves " B " are also commanded open.

The following signals are monitored:
(a) RCS L AFT OX TANK ISLN VLV $1 / 2$ CL V42X2221X
(b) RCS L AFT FU TANK ISLN VLV 1/2 CL V42X2321X
(c) RCS R AFT OX TANK ISLN VLV $1 / 2$ CL

V42X3221X
(d) RCS R AFT FU TANK ISLN VLV $1 / 2 \mathrm{CL}$

V42X3321X
(e) RCS L AFT OX TANK ISLN VLV $1 / 2$ OP

V42X2220X
(f) RCS L AFT FU TANK ISLN VLV $1 / 2$ OP V42X2320X
(g) RCS R AFT OX TANK ISLN VLV $1 / 2$ OP V42X3220X
(h) RCS R AFT FU TANK ISLN VLV 1/2 OP V42X3320X
(i) RCS L AFT OX TANK ISLN VLV 3/4/5 A CL V42X2223X
(j) RCS L AFT OX TANK ISLN VLV 3/4/5 B CL V42X2225X
(k) RCS L AFT FU TANK ISLN VLV 3/4/5 A CL V42X2323X
(1) RCS L AFT FU TANK ISLN VLV 3/4/5 B CL V42X2325X
(m) RCS R AFT OX TANK ISLN VLV $3 / 4 / 5 \mathrm{~A}$ CL
(n) RCS R AFT OX TANK ISLN VLV $3 / 4 / 5 \mathrm{~B}$ CL
(o) RCS R AFT FU TANK ISLN VLV $3 / 4 / 5 \mathrm{~A}$ CL
(p) RCS R AFT FU TANK ISLN VLV $3 / 4 / 5 \mathrm{~B} \mathrm{CL}$

V42X3223X
V42X3225X
V42X3323X
(q) FA 1 INPUT PROM SEG 3, 10 STATUS

V42X3325X
(r) FA 3 INPUT PROM SEG 3, 10 STATUS
(s) FA 2 INPUT PROM SEG 3, 10 STATUS

V91X2845X
V91X2847X
V91X2846X
(t) FA 4 INPUT PROM SEG 3, 10 STATUS V91X2848X
(u) I/C FAIL COUNTER INTERNAL

If (a) thru (d) are not all true, or (e) thru (h) are not all false, or (q) or (r) is true, set (1) true, increment (3) by 1 , and go to the next if statement. Otherwise, issue (4) thru (9) and go to the next if statement.

If (i) thru (p) are not all true, or if (s) or (t) is true, set (2) true, increment (3) by 1 , and go to the next if statement. Otherwise, issue (10) thru (15) and go to the next if statement.

If (u) >1 proceed to Step 6. Otherwise, Issue (16) thru (21) and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 4.
(1) APT MANIFOLD $1 / 2$ JET INH FLAG
(2) AFT MANIFOLD $3 / 4 / 5$ JET INH FLAG
(3) I/C FAIL COUNTER
(4) RCS-L AFT XFD VLV-1/2 GPC OP A
(5) RCS-L AFT OX XFD VLV- $1 / 2$ GPC OP B
(6) RCS-L AFT FU XFD VLV-1/2 GPC OP B

V90X8285X
V90X8286X
INTERNAL
V42K 2402 X
V42K2403X
(7) RCS-R AFT XFD VLV-1/2 GPC OP A V42K2404X
(8) RCS-R AFT OX XFD VLV-1/2 GPC OP B
(9) RCS-R AFT FU XFD VLV-1/2 GPC OP B

V42K3402X
V42K3403X
V42K3404X
(10) RCS-L AFT XFD VLV-3/4/5 GPC OP A
(11) RCS-L AFT OX XFD VLV-3/4/5 GPC OP B
(12) RCS-L AFT FU XIFD VLV-3/4/5 GPC OP B

V42K2408X
V42K2409X
V42K2410X
(13) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A

V42K3408X
(14) RCS-R AFT OX XFD V-3/4/5 GPC OP B

V42K3409X
(15) RCS-R AFT FU XFD V-3/4/5 GPC OP B

V42K3410X
(16) OMS-L POD XFD VLVS B CMD 1 OP

V43K4286X
(17) OMS-L POD OXDZR XFD VLV B CMD 2 OP V43K4288X
(18) OMS-L POD FUEL XFD VLV B CMD 2 OP V43K4388X
(19) OMS-R POD XFD VLVS B CMD 1 OP V43K5286X
(20) OMS-R POD OXDZR XFD VLV B CMD 2 OP V43K5288X
(21) OMS-R POD FUEL XFD VLV B CMD 2 OP V43K5388X

Step 4. This step checks the response of the RCS crossfeed valves which have been commanded open during the interconnect sequence. If any RCS crossfeed valve ($1 / 2$ or $3 / 4 / 5$) failed to open, the sequence is directed to the step which will reconfigure the system to furnish propellants to those manifolds ($1 / 2$ or $3 / 4 / 5$) from the RCS tanks.

The following signals are monitored:

(a)	RCS-L AFT OX XFD VLV $1 / 2$ OP	V42X2236X
(b)	RCS-L AFT FU XFD VLV $1 / 2$ OP	V42X2336X
(c)	RCS-R AFT OX XFD VLV 1/2 OP	V42X3236X
(d) RCS-R AFT FU XFD VLV $1 / 2$ OP	V42X3336X	
(e)	RCS-L OX/FU XFD VLV $1 / 2$ OP	V42X2251X
(f)	RCS-R OX/FU XFD VLV $1 / 2$ OP	V42X2252X

(g) RCS L AFT OX XFD VLV 3/4/5 OP

V42X2238X
(h) RCS L AFT FU XFD VLV $3 / 4 / 5$ OP
(i) RCS R AFT OX XFD VLV $3 / 4 / 5$ OP
(j) RCS R AFT FU XFD VLV $3 / 4 / 5$ OP
(k) RCS L OX/FU XFD VLV $3 / 4 / 5 \mathrm{OP}$
(l) RCS R OX/FU XFD VLV $3 / 4 / 5 \mathrm{OP}$
(m) AFT MANIFOLD $1 / 2$ JET INH FLAG
(n) AFT MANIFOLD 3/4/5 JET INH FLAG
(o) FA 3 INPUT PROM SEG 3, 10 STATUS
(p) FA 4 INPUT PROM SEG 3, 10 STATUS
(q) I/C FAIL COUNTER

V42X2253X

V90X8285X V90X8286X
V42X2338X
V42X3238X
V42X3338X

V42X2254X

V91X2847X
V91X2848X
INTERNAL

If $[(\mathrm{m})$ is false] and [(a) or (b) or (f) is false, or (o) is true] and [(c) or (d) or (e) is false, or (p) is true], increment (2) by 1 , set (1) true, and go to the next if statement. Otherwise, go to the next if statement.

If $[(\mathrm{n})$ is false] and [(g) or (h) or (1) is false, or (p) is true] and [(i) or (j) or (k) is false, or (0) is true], increment (2) by 1 , and go to the next if statement. Otherwise, go to the next if statement.

If $(\mathrm{q})=0$, proceed to Step 11, otherwise go to Step 5 .
(1) $1 / 2$ XFD/ISO FAIL FLAG
(2) I/C FAIL COUNTER

INTERNAL
INTERNAL
Step 5. This step controls the reconfiguration process for returning propellant feed from the RCS tanks for those manifolds ($1 / 2$ and/or $3 / 4 / 5$) whose interconnect to the OMS tanks was unsuccessful, or those manifolds for which the monitor function had lost the indication of RCS tank isolation valve closed.

The following signals are monitored:
(a) AFT MANIFOLD $1 / 2$ JET INH FLAG

V90X8285X
(b) AFT MANIFOLD $3 / 4 / 5$ JET INH FLAG V90X8286X
(c) I/C FAIL COUNTER INTERNAL
(d) $1 / 2 \mathrm{XFD} / \mathrm{ISO}$ FAIL FLAG INTERNAL

If $(\mathrm{c})>1$, terminate (1) thru (18) below, issue (19) thru (36), then return to Step 1 until 1.5 seconds have elapsed. Then proceed to Step 6. Otherwise go to the next if statement.

If (a) or (b) is true, proceed to Step 6. Otherwise, go to the next if statement.
If $(d)=$ true, terminate (1) thru (6) below, issue (19) thru (24), set (37) equal true, and return to Step 1 until at least 1.5 seconds has elapsed. Then proceed to Step 6. Otherwise, proceed to the next if statement.

If (d) is false, terminate (7) thru (12) below, issue (25) thru (30), set (38) equal true, and return to Step 1 until at least 1.5 seconds has elapsed. Then proceed to Step 6.
(1) RCS-L AFT XFD VLV-1/2 GPC OP A
(2) RCS-L AFT OX XFD VLV-1/2 GPC OP B
(3) RCS-L AFT FU XFD VLV-1/2 GPC OP B
(4) RCS-R AFT XFD VLV-1/2 GPC OPEN A
(5) RCS-R AFT OX XFD V-1/2 GPC OPEN B
(6) RCS-R AFT FU XFD V-1/2 GPC OPEN B
(7) RCS-L AFT XFD VLV-3/4/5 GPC OP A
(8) RCS-L AFT OX XFD V-3/4/5 GPC OP B
(9) RCS-L AFT FU XFD V-3/4/5 GPC OP B
(10) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A
(11) RCS-R AFT OX XFD V-3/4/5 GPC OP B
(12) RCS-R AFT FU XFD V-3/4/5 GPC OP B
(13) OMS-L POD XFD VLVS B CMD 1 OP
(14) OMS-L POD OXDZR XFD VLV B CMD 2 OP
(15) OMS-L POD FUEL XFD VLV B CMD 2 OP
(16) OMS-R POD XFD VLVS B CMD 1 OP
(17) OMS-R POD OXDZR XFD VLV B CMD 2 OP
(18) OMS-R POD FUEL XFD VLV B CMD 2 OP
(19) RCS-L AFT XFD VLV-1/2 GPC CL A
(20) RCS-L AFT OX XFD VLV-1/2 GPC CL B
(21) RCS-L AFT FU XFD VLV-1/2 GPC CL B
(22) RCS-R AFT XFD VLV- $1 / 2$ GPC CLOSE A
(23) RCS-R AFT OX XFD V-1/2 GPC CLOSE B
(24) RCS-R AFT FU XFD V-1/2 GPC CLOSE B
(25) RCS-L AFT XFD VLV-3/4/5 GPC CL A
(26) RCS-L AFT OX XFD V-3/4/5 GPC CL B
(27) RCS-L AFT FU XFD V-3/4/5 GPC CL B
(28) RCS-R AFT XFD VLV-3/4/5 GPC CL A
(29) RCS-R AFT OX XFD V-3/4/5 GPC CL B
(30) RCS-R AFT FU XFD V-3/4/5 GPC CL B
(31) OMS-L POD XFD VLVS B CMD 1 CL
(32) OMS-L POD OXDZR XFD VLV B CMD 2 CL
(33) OMS-L POD FUEL XFD VLV B CMD 2 CL
(34) OMS-R POD XFD VLVS B CMD 1 CL
(35) OMS-R POD OXDZR XFD VLV B CMD 2 CL
(36) OMS-R POD FUEL XFD VLV B CMD 2 CL

V42K2402X
V42K2403X
V42K2404X

V42K3402X
V42K3403X
V42K3404X
V42K2408X
V42K2409X
V42K2410X
V42K3408X
V42K3409X
V42K3410X
V43K4286X
V43K4288X
V43K4388X
V43K5286X
V43K5288X
V43K5388X
V42K2416X
V42K2418X
V42K2422X
V42K3416X
V42K3418X
V42K3422X
V42K2428X
V42K2430X
V42K2434X
V42K3428X
V42K3430X
V42K3434X
V43K4287X
V43K4289X
V43K4389X
V43K5287X
V43K5289X
V43K5389X

Step 6. This step commands the RCS tank isolation valves open in the OMS TO RCS return to normal configuration and as part of an unsuccessful attempt to accomplish the OMS/RCS interconnect sequence. If both $1 / 2$ and $3 / 4 / 5$ manifold tank isolation valves have been commanded open, the OMS/RCS interconnect is inhibited and OMS propellant burn via RCS jets will not occur.

The following signals are monitored:
(a) OMS TO RCS RTRN TO NORM IN PROGRESS FLAG
(b) I/C FAIL COUNTER
(c) AFT MANIFOLD $1 / 2$ JET INH FLAG V90X8285X

If (a) is true, issue (15) thru (28) below, and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 10. Otherwise, go to the next if statement.

If (b) >1, terminate (1) thru (14), issue (15) thru (28) below, and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 11. Otherwise go to the next if statement.

If (c) is true, terminate (1) thru (6), issue (15) thru (20) below and return to Step 1 until at least 1.5 sec onds have elapsed. Then proceed to Step 11. Otherwise, terminate (7) thru (14), issue (21) thru (28) below and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 11.
(1) RCS-L AFT TK 1 SLN V-1/2 GPC CL A

V42K2353X
(2) RCS-L AFT OX TK ISLN V1/2 GPC CL B

V42K2354X
(3) RCS-L AFT FU TK ISLN V1/2 GPC CL B V42K2355X
(4) RCS-R AFT TK ISLN V-1/2 GPC CL A

> V42K3353X
(5) RCS-R AFT OX TK ISLN V-1/2 GPC CL B V42K3354X
(6) RCS-R AFT FU TK ISLN V-1/2 GPC CL B V42K3355X
(7) RCS-L AFT OX TK ISLN V3/4/5 A GPC CL

> V42K2357X
(8) RCS-L AFT FU TK ISLN V3/4/5 A GPC CL
V42K2358X
(9) RCS--R AFT OX TK ISLN V3/4/5 A GPC CL

V42K3357X
(10) RCS-R AFT FU TK ISLN V3/4/5 A GPC CL V42K3358X
(11) RCS-L AFT OX TK ISLN V3/4/5 B GPC CL V42K2360X
(12) RCS-L AFT FU TK ISLN V3/4/5 B GPC CL V42K2361X
(13) RCS-R AFT OX TK ISLN V3/4/5 B GPC CL V42K3360X
(14) RCS-R AFT FU TK ISLN V3/4/5 B GPC CL V42K3361X
(15) RCS-L AFT TK ISLN V-1/2 GPC OP A V42K2342X
(16) RCS-L AFT OX TK ISLN V1/2 GPC OP B V42K2343X
(17) RCS-L AFT FU TK ISLN V1/2 GPC OP B V42K2344X
(18) RCS-R AFT TK ISLN V-1/2 GPC OP A V42K3342X
(19) RCS-R AFT OX TK ISLN V-1/2 GPC OP B V42K3343X

V42K3344X
(21)
(23) RCS-R AFT OX TK ISLN V3/4/5 A GPC OP
(24) RCS-R AFT FU TK ISLN V3/4/5 A GPC OP
(25) RCS-L AFT OX TK ISLN V3/4/5 B GPC OP
(26) RCS-L AFT FU TK ISLN V3/4/5 B GPC OP
(27) RCS-R AFT OX TK ISLN V3/4/5 B GPC OP
(28) RCS-R AFT FU TX ISLN V3/4/5 B GPC OP

V42K2346X
V42K2347X

V42K3346X
V42K3347X

V42K2349X V42X2350X

V42K3349X
V42K3350X

Step 7. This step monitors the status of the left RCS tank isolation valves $1 / 2$ when the OMS to RCS interconnect has been successfully completed. If any RCS left tank isolation valve $1 / 2$ closed status becomes false for three consecutive cycles, the RCS $1 / 2$ ALL JET INHIBIT FLAG is set true to inhibit all $1 / 2$ jet firings and the $1 / 2$ XFD/ISO FAIL FLAG is set true for use in the RCS crossfeed reconfiguration process. If the COMMFAULT status for the left $1 / 2$ tank isolation valves indicates true for three consecutive cycles, the AFT MANIFOLD $1 / 2$ JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:
(a) FA 1 INPUT PROM SEG 3, 10 STATUS

V91X2845X

(b) FA 1 COMMFAULT CYC COUNTER (INTERNAL)
(c) RCS L AFT OX TANK ISLN VLV 1/2 CL V42X2221X
(d) RCS L AFT FU TANK ISLN VLV 1/2 CL V42X2321X
(e) RCS L OX TK POSN CYC COUNTER
(INTERNAL)
(f) RCS L FU TK POSN CYC COUNTER
(INTERNAL)

If (a) is true, increment (b) by 1 , set (e) and (f) to zero, and proceed to monitor (b). Otherwise, if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and return to Step 1. Otherwise, proceed to Step 7A.
If (c) is false, increment (e) by 1, and proceed to monitor (e). Otherwise, set (e) to zero, and proceed to monitor (d).

If (e) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5. Otherwise, proceed to monitor (d).

If (d) is false, increment (f) by 1, and proceed to monitor (f). Otherwise, set (f) to zero, and proceed to Step 7A.

If (f) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5. Otherwise, proceed to Step 7A.
(1) AFT MANIFOLD $1 / 2$ JET INH FLAG

V90X8285X
(2) INTERCONNECT MONITOR FLAG
(INTERNAL)
(3) $1 / 2 \times F D / I S O$ FAIL FLAG
(INTERNAL)
(4) RCS $1 / 2$ ALL JET INHHBIT FLAG V90X8290X
(5) OMS/RCS I/C IN PROGRESS FLAG
(6) I/C FAIL COUNTER

Step 7A. This step monitors the status of the right RCS tank isolation valves $1 / 2$ when the OMS to RCS interconnect has been successfully completed. If any $\mathbb{R C S}$ right tank isolation valve $1 / 2$ closed status becomes false for three consecutive cycles, the RCS $1 / 2$ ALL JET INHIBIT FLAG is set true to inhibit all $1 / 2$ jet firings and the $1 / 2$ XFD/ISO FAIL FLAG is set true for use in the RCS crossfeed reconfiguration process. If the COMMFAULT status for the right $1 / 2$ tank isolation valves indicates true for three consecutive cycles, the AFT MANIFOLD $1 / 2$ JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:

If (a) is true, increment (b) by 1 , set (e) and (f) to zero, and proceed to monitor (b). Otherwise, if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and return to Step 1. Otherwise, proceed to Step 8.
If (c) is false, increment (e) by 1 , and proceed to monitor (e). Otherwise, set (e) to zero, and proceed to monitor (d).
If (e) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (d).
If (d) is false, increment (f) by 1 , and proceed to monitor (f). Otherwise, set (f) to zero, and proceed to Step 8.
If (f) is equal to three, set (2) false, (3) through (5) true, increment (6) by 1 , and proceed to Step 5 . Otherwise, proceed to Step 8.

(1)	AFT MANIFOLD $1 / 2$ JET INH FLAG	V90X8285X
(2)	INTERCONNECT MONITOR FLAG	(INTERNAL)
(3)	$1 / 2$ XFD/ISO FAIL FLAG	(INTERNAL)
(4)	RCS 1/2 ALL JET INHIBIT FLAG	V90X8290X
(5)	OMS/RCS I/C IN PROGRESS FLAG	(INTERNAL)
(6) I/C FAIL COUNTER	(INTERNAL)	

Step 8. This step monitors the status of the 3/4/5A RCS tank isolation valves when the OMS to RCS interconnect has been successfully completed. If any $3 / 4 / 5 \mathrm{~A}$ RCS tank isolation valve closed status be-
comes false for three consecutive cycles, the RCS 3/4/5 ALL JET INHIBIT FLAG is set true to inhibit all $3 / 4 / 5$ jet firings. If the COMMFAULT status for the $3 / 4 / 5 \mathrm{~A}$ tank isolation valves indicates true for three consecutive cycles the AFT MANIFOLD $3 / 4 / 5$ JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:
(a) FA 2 INPUT PROM SEG 3, 10 STATUS V91X2846X
(b) FA 2 COMMFAULT CYC COUNTER (INTERNAL)
(c) RCS L AFT OX TANK ISLN VLV 3/4/5 A CL V42X2223X
(d) RCS R AFT OX TANK ISLN VLV $3 / 4 / 5 \mathrm{~A}$ CL V42X3223X
(e) RCS L AFT FU TANK ISLN VLV $3 / 4 / 5 \mathrm{~A}$ CL V42X2323X
(f) RCS R AFT FU TANK ISLN VLV 3/4/5 A CL V42X3323X
(g) RCS L A OX TK POSN CYC COUNTER
(INTERNAL)
(h) RCS RA OX TK POSN CYC COUNTER
(i) RCS L A FU TK POSN CYC COUNTER
(j) RCS R A FU TK POSN CYC COUNTER

If (a) is true, increment (b) by 1 , set (g), (h), (i), and j) to zero, and proceed to monitor (b). Otherwise, if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and return to Step 1. Otherwise, proceed to Step 8A.
If (c) is false, increment (g) by 1 , and proceed to monitor (g). Otherwise, set (g) to zero, and proceed to monitor (d).

If (g) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (d).

If (d) is false, increment (h) by 1, and proceed to monitor (h). Otherwise, set (h) to zero, and proceed to monitor (e).

If (h) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5. Otherwise, proceed to monitor (e).

If (e) is false, increment (i) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and proceed to monitor (f).

If (i) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5. Otherwise proceed to monitor (f).

If (f) is false, increment (j) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and proceed to Step 8A.

If (j) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to Step 8A.

(1)	AFT MANIFOLD 3/4/5 JET INH FLAG	V90X8286X
(2)		
(3)	RCS $3 / 4 / 5$ ALL JET INHIBIT FLAG	(INTERNAL)
V90X8291X		

(4) OMS/RCS I/C IN PROGRESS FLAG
(INTERNAL)
(5) 1/C FAIL COUNTER

Step 8A. This step monitors the status of the $3 / 4 / 5 \mathrm{~B}$ RCS tank isolation valves when the OMS to RCS interconnect has been successfully completed. If any $3 / 4 / 5 \mathrm{BRCS}$ tank isolation valve closed status becomes false for three consecutive cycles, the RCS $3 / 4 / 5$ ALL JET INHIBIT FLAG is set true to inhibit all $3 / 4 / 5$ jet firings. If the COMMIFAULT status for the $3 / / 4 / 5 B$ tank isolation valves indicates true for three consecutive cycles, the AFT MANIFOLD 3/4/5 JET INHIBIT FLAG is set true to inhibit dumping through that manifold. The monitor function is then terminated.

The following signals are monitored:
(a) FA 4 INPUT PROM SEQ 3, 10 STATUS

V91X2848X
(b) FA 4 COMMFAULT CYC COUNTER
(INTERNAL)
(c) RCS L AFT OX TANK ISLN VLV $3 / 4 / 5 \mathrm{~B}$ CL
(d) RCS R AFT OX TANK ISLN VLV $3 / 4 / 5 \mathrm{~B}$ CL

V42X2225X
(e) RCS L AFT FU TANK ISLN VLV 3/4/5 B CL

V42X3225X
(f) RCS R AFT FU TANK ISLN VLV $3 / 4 / 5 \mathrm{~B}$ CL

V42X2325X
V42X3325X
(g) RCS L B OX TK POSN CYC COUNTER
(INTERNAL)
(h) RCS R B OX TK POSN CYC COUNTER (INTERNAL)
(i) RCS L B FU TK POSN CYC COUNTER (INTERNAL)
(j) RCSRBFUTK POSN CYC COUNTER
(INTERNAL)
If (a) is true, increment (b) by 1 , set (g), (h), (i), and (j) to zero, and proceed to monitor (b). Otherwise. if (a) is false, set (b) to zero, and proceed to monitor (c).

If (b) is equal to three, set (1) true, (2) false, and retum to Step 1. Otherwise, return to Step 1.
If (c) is false, increment (g) by 1 , and proceed to monitor (g). Otherwise, set (g) to zero, and proceed to monitor (d).

If (g) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (d).
*If (d) is false, increment (h) by 1 , and proceed to monitor (h). Otherwise, set (h) to zero, and proceed to monitor (e).

If (h) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, proceed to monitor (e).

If (e) is false, increment (i) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and proceed to monitor (f).

If (i) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5. Otherwise, proceed to monitor (f).

If (f) is false, increment (j) by 1 , and proceed to monitor (i). Otherwise, set (i) to zero, and return to Step 1.

If (j) is equal to three, set (2) false, (3) and (4) true, increment (5) by 1 , and proceed to Step 5 . Otherwise, return to Step 1.
(1) AFT MANIFOLD $3 / 4 / 5$ JET INH FLAG

V90X8286X
(2) INTERCONNECT MONITOR FLAG
(INTERNAL)
(3) RCS 3/4/5 ALL JET INHIBIT FLAG V90X8291X
(4) OMS/RCS I/C IN PROGRESS FLAG
(INTERNAL)
(5) I/C FAIL COUNTER

Step 9. This step commands the OMS pod crossfeed valves closed on initiation of the return to normal configuration sequence.

Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed. Then proceed to Step 6.

(1)	OMS-L POD XFD VLVS A CMD 1 CL	V43K4283X
(2)	OMS-L POD OXDZR XFD VLV A CMD 2 CL	V43K4285X
(3)	OMS-L POD FUEL XFD VLV A CMD 2 CL	V43K4385X
(4)	OMS-L POD XFD VLVS B CMD 1 CL	V43K4287X
(5)	OMS-L POD OXDZR XFD VLV B CMD 2 CL	V43K4289X
(6)	OMS-L POD FUEL XFD VLV B CMD 2 CL	V43K4389X
(7)	OMS-R POD XFD VLVS A CMD 1 CL	V43K5283X
(8)	OMS-R POD OXDZR XFD VLV A CMD 2 CL	V43K5285X
(9)	OMS-R POD FUEL XFD VLV A CMD 2 CL	V43K5385X
(10)	OMS-R POD XFD VLVS B CMD 1 CL	V43K5287X
(11)	OMS-R POD OXDZR XFD VLV B CMD 2 CL	V43K5289X
(12)	OMS-R POD FUEL XFD VLV B CMD 2 CL	V43K5389X

Step 10. This step monitors the response of the RCS left and right tank isolation valves on the $1 / 2$ manifolds in the OMS/RCS return to normal configuration sequence. If any left or right $1 / 2$ tank isolation valve fails to open, the RCS crossfeed valves between that manifold pair (OX and FU) and the corresponding $3 / 4 / 5$ manifold will be left open to provide RCS propellant through the crossfeed valve.

The following signals are monitored:
(a) RCS L AFT OX TANK ISLN VLV $1 / 2$ OP V42X2220X
(b) RCS L AFT FU TANK ISLN VLV 1/2 OP V42X2320X
(c) RCS R AFT OX TANK ISLN VLV 1/2 OP V42X3220X
(d) RCS R AFT FU TANK ISLN VLV $1 / 2$ OP V42X3320X
(e) RCS L AFT OX TANK ISLN VLV 1/2 CL V42X2221X
(f) RCS L AFT FU TANK ISLN VLV $1 / 2 \mathrm{CL}$

V42X2321X
(g) RCS R AFT OX TANK ISLN VLV $1 / 2 \mathrm{CL}$ V42X3221X
(h) RCS R AFT FU TANK ISLN VLV $1 / 2 \mathrm{CL}$ V42X3321X
(i) FA 1 INPUT PROM SEG 3, 10 STATUS

V91X2845X
(j) FA 3 INPUT PROM SEG 3, 10 STATUS

V91X2847X

If (a) and (b) are true, and (e), (f) and (i) are false, issue (1) thru (6) below, and go to the next if statement. Otherwise, issue (13) through (18) and go to the next if statement,

If (c) and (d) are true, and (g), (h) and (j) are false, issue (7) thru (12) below, and go to the next statement, otherwise, issue (19) through (24) and go to the next statement.

Set (25) ad (26) false and return to Step 1 until at least 1.5 seconds have elapsed and then proceed to Step 16.
(1) RCS-L AFT XFD VLV-1/2 GPC CL A

V42K2416X
(2) RCS-L AFT OX XFD VLV-1/2 GPC CL B
(3) RCS-L AFT FU XFD VLV-1/2 GPC CL B
(4) RCS-L AFT XFD VLV-3/4/5 GPC CL A
(5) RCS-L AFT OX XFD V-3/4/5 GPC CL B
(6) RCS-L AFT FU XFD V-3/4/5 GPC CL B
(7) RCS-R AFT XFD VLV-1/2 GPC CLOSE A
(8) RCS-R AFT OX XFD V-1/2 GPC CLOSE B
(9) RCS-R AFT FU XFD V-1/2 GPC CLOSE B
(10) RCS-R AFT XFD VLV-3/4/5 GPC CL A
(11) RCS-R AFT OX XFD V-3/4/5 GPC CL B
(12) RCS-R AFT FU XFD V-3/4/5 GPC CL B

V42K2418X
V42K2422X
V42K2428X
(5) RCS-LAFT V42K2430X

V42K2434X
(13) RCS-L AFT XFD VLV-1/2 GPC OP A
(14) RCS-L AFT OX XFD VLV-1/2 GPC OP B
(15) RCS-L AFT FU XFD VLV-1/2 GPC OP B
(16) RCS-L AFT XFD VLV-3/4/5 GPC OP A
(17) RCS-L AFT OX XFD V-3/4/5 GPC OP B
(18) RCS-L AFT FU XFD V-3/4/5 GPC OP B
(19) RCS-R AFT XFD VLV-1/2 GPC OPEN A
(20) RCS-R AFT OX XFD V-1/2 GPC OPEN B
(21) RCS-R AFT FU XFD V-1/2 GPC OPEN B
(22) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A
(23) RCS-R AFT OX XFD V-3/4/5 GPC OPEN B

V42K3416X
V42K3418X
V42K3422X
V42K3428X
V42K3430X
V42K3434X
(24) RCS-R AFT FU XFD V-3/4/5 GPC OPEN B

V42K 2402 X
V42K2403X
V42K2404X
V42K2408X
V42K2409X
V42K2410X
V42K3402X
V42K3403X
V42K3404X
(25) RCS $1 R$ ALL
(25) RCS $1 / 2$ ALL JET INHIBIT FLAG V90X8290X
(26) RCS 3/4/5 ALL JET INHIIBIT FLAG

V90X8291X
Step 11. This step completes the interconnect sequence. In addition, the interconnect monitor is requested for those interconnects which were completed with no commfaults or RCS isolation valves open or crossfeed valves closed.

The following signals are monitored:
(a) OMS L POD OX XFD VLV B POSN OP

V43X4258X
(b) OMS L POD FU XFD VLV B POSN OP

V43X4358X
(c) OMS R POD OX XFD VLV B POSN OP

V43X5258X
(d) OMS R POD FU XFD VLV B POSN OP

V43X5358X
(e) OMS L POD OX XFD VLV A POSN OP

V43X4256X
(f) OMS L POD FU XFD VLV A POSN OP V43X4356X
(g) OMS R POD OX XFD VLV A POSN OP

V43X5256X
(h) OMS R POD FU XFD VLV A POSN OP V43X5356X
(i) FÁ 1 INPUT PROM SEG 3, 10 STATUS V91X2845X
(j) FA 2 INPUT PROM SEG 3, 10 STATUS V91X2846X
(k) OMS/RCS I/C IN PROGRESS FLAG
(l) I/C FAIL COUNTER

INTERNAL
(m) OMS TO RCS INTERCONNECT COMPLETE FLAG

If $(1)>1$, set $(8)=$ false $($ INHIBIT $)$, set (9) and $(11)=$ false, set (12) true and proceed to Step 16. Otherwise, go to the next if statement.

If [(k) is true and (m) is false], and [(a) or (b) or (c) or (d) is false, or (j) is true], issue (1) through (6), and return to Step 1 until at least 1.5 seconds have elapsed, then proceed to the next if statement. Otherwise proceed to monitor (l).

If [(e) or (f) or (g) or (h) is false] or (i) is true, set $(8)=$ false (INHIBIT), set (9) and (11) $=$ false, set (7) and $(12)=$ true, and return to Step 1. Otherwise, go to the next if statement.

If $(1)=0$ and (k) is true, set (7) and $(10)=$ true, set $(9),(13)$, and $(14)=$ false and go to Step 7 . Otherwise, go to the next statement.

Set $(7)=$ true, set $(9),{ }^{\circ}(13)$, and $(14)=$ false and return to Step 1.
(1) OMS-L POD XFD VLVS A CMD 1 OP V43K4282X
(2) OMS-L POD OXDZR XFD VLV A CMD 2 OP V43K4284X
(3) OMS-L POD FUEL XFD VLV A CMD 2 OP V43K4384X
(4) OMS-R POD XFD VLVS A CMD 1 OP V43K5282X
(5) OMS-R POD OXDZR XFD VLV A CMD 2 OP V43K5284X
(6) OMS-R POD FUEL XFD VLV A CMD 2 OP V43K5384X
(7) OMS TO RCS INTERCONNECT COMPLETE FLAG V90X8282X
(8) OMS/RCS INTERCONNECT INH/ENA CMD V93X5348X
(9) OMS/RCS I/C IN PROGRESS FLAG

INTERNAL
(10) INTERCONNECT MONITOR FLAG

INTERNAL
(11) OMS TO RCS INTERCONNECT CMD V90X8312X
(12) OMS TO RCS RTRN TO NORM CONFIG CMD V90X8313X
(13) RCS $1 / 2$ ALL JET INHIBIT FLAG V90X8290X

Step 12. This step is the first procedure in the execution of the Mode 2 return-to-normal for a contingency situation. The RCS tank isolation valves are commanded to the open position and then 1.5 seconds delay is satisfied before proceeding to the next step.

Issue commands (1) through (14) below and return to Step 1 until 1.5 seconds have expired, then proceed to Step 13.

(1)	RCS-L AFT TK ISLN V-1/2 GPC OP A	V42K2342X
(2)	RCS-L AFT OX TK ISLN V1/2 GPC OP B	V42K2343X
(3)	RCS-L AFT FU TK ISLN V1/2 GPC OP B	V42K2344X
(4)	RCS-R AFT TK ISLN V-1/2 GPC OP A	V42K3342X
(5)	RCS-R AFT OX TK ISLN V-1/2 GPC OP B	V42K3343X
(6)	RCS-R AFT FU TK ISLN V-1/2 GPC OP B	V42K3344X
(7)	RCS-L AFT OX TK ISLN V3/4/5 A GPC OP	
(8)	RCS-L AFT FU TK ISLN V3/4/5 A GPC OP	V42K2346X
		V42K2347X
(9)	RCS-R AFT OX TK ISLN V3/4/5 A GPC OP	V42K3346X
(10)	RCS-R AFT FU TK ISLN V3/4/5 A GPC OP	V42K3347X
(11)	RCS-L AFT OX TK ISLN V3/4/5 B GPC OP	V42K2349X
(12)	RCS-L AFT FU TK ISLN V3/4/5 B GPC OP	V42K2350X
(13)	RCS-R AFT OX TK ISLN V3/4/5 B GPC OP	V42K3349X
(14)	RCS-R AFT FU TK ISLN V3/4/5 B GPC OP	V42K

Step 13. This step monitors the response of the left RCS tank isolation valves on the $1 / 2$ manifolds during the Mode 2 OMS/RCS return-to-normal configuration sequence. If any left $1 / 2$ tank isolation valve fails to open or it's associated commfault is true, the left $1 / 2$ RCS crossfeed valves between that manifold pair (OX and FU) and the left $3 / 4 / 5$ manifold will be commanded open to provide RCS propellant through the crossfeed valves. If the left $1 / 2 \mathrm{RCS}$ tank isolation valves are open, the left $1 / 2$ and $3 / 4 / 5 \mathrm{RCS}$ crossfeed valves will be commanded closed.

Monitor the following signals:
(a) RCS L AFT OX TANK ISLN VLV $1 / 2$ OP

V42X2220X
(b) RCS L AFT FU TANK ISLN VLV $1 / 2$ OP V42X2320X
(c) RCS L AFT OX TANK ISLN VLV $1 / 2 \mathrm{CL}$ V42X2221X
(d) RCS L AFT FU TANK ISLN VLV $1 / 2 \mathrm{CL}$

V42X2321X
(e) FA 1 INPUT PROM SEG 3, 10 STATUS

V91X2845X

If [(a) and (b) are both true] and [(c), (d), and (e) are all false], issue (7) through (12) and proceed to Step 14.

If [(a) or (b) is false) or [(c) or (d) or (e) is true], issue (1) through (6) and proceed to Step 14.

(1)	RCS-L AFT XFD VLV-1/2 GPC OP A	V42K2402X
(2)	RCS-L AFT OX XFD VLV-1/2 GPC OP B	V42K2403X
(3)	RCS-L AFT FU XFD VLV-1/2 GPC OP B	V42K2404X
(4)	RCS-L AFT XFD VLV-3/4/5 GPC OP A	V42K2408X
(5)	RCS-L AFT OX XFD V-3/4/5 GPC OP B	V42K2409X
(6)	RCS-L AFT FU XFD V-3/4/5 GPC OP B	V42K2410X
(7)	RCS-L AFT XFD VLV-1/2 GPC CL A	V42K2416X
(8)	RCS-L AFT OX XFD VLV-1/2 GPC CL B	V42K2418X
(9)	RCS-L AFT FU XFD VLV-1/2 GPC CL B	V42K2422X
(10)	RCS-L AFT XFD VLV-3/4/5 GPC CL A	V42K2428X
(11)	RCS-L AFT OX XFD V-3/4/5 GPC CL B	V42K2430X
(12)	RCS-L AFT FU XFD V-3/4/5 GPC CL B	V42K2434X

Step 14. This step monitors the response of the right RCS tank isolation valves on the $1 / 2$ manifolds during the Mode 2 OMS/RCS return-to-normal configuration sequence. If any right $1 / 2$ tank isolation valve fails to open or it's associated commfault is true, the right $1 / 2$ RCS crossfeed valves between that manifold pair (OX and FU) and the right $3 / 4 / 5$ manifold will be commanded open to provide RCS propellant through the crossfeed valves. If the right $1 / 2$ RCS tank isolation valves are open, the right $1 / 2$ and $3 / 4 / 5$ RCS crossfeed valves will be commanded closed.

Monitor the following signals:
(a) RCS R AFT OX TANK ISLN VLV $1 / 2$ OP V42X3220X
(b) RCS R AFT FU TANK ISLN VLV 1/2 OP V42X3320X
(c) RCS R AFT OX TANK ISLN VLV $1 / 2$ CL V42X3221X
(d) RCS R AFT FU TANK ISLN VLV $1 / 2$ CL V42X3321X
(e) FA 3 INPUT PROM SEG 3, 10 STATUS V91X2847X

If [(a) and (b) are both true] and [(c), (d), and (e) are all false], issue (7) through (12) and return to Step 1 until 1.5 seconds has expired, then proceed to Step 15.

If [(a) or (b) is false] or [(c) or (d) or (e) is true], issue (1) through (6) and return to Step 1 until 1.5 seconds has expired, then proceed to Step 15.
(1) RCS-R AFT XFD VLV-1/2 GPC OPEN A V42K3402X
(2) RCS-R AFT OX XFD VLV-1/2 GPC OPEN B V42K3403X
(3) RCS-R AFT FU XFD VLV-1/2 GPC OPEN B V42K3404X
(4) RCS-R AFT XFD VLV-3/4/5 GPC OPEN A V42K3408X
(5) RCS-R AFT OX XFD V-3/4/5 GPC OP B V42K3409X
(6) RCS-R AFT FU XFD V-3/4/5 GPC OP B V42K3410X
(7) RCS-R AFT XFD VLV-1/2 GPC CLOSE A V42K3416X
(8) RCS-R AFT OX XFD V-1/2 GPC CLOSE B V42K3418X
(9) RCS-R AFT FU XFD V-1/2 GPC CLOSE B V42K3422X
(10) RCS-R AFT XFD VLV-3/4/5 GPC CL A

V42K3428X
(11) RCS-R AFT OX XFD V-3/4/5 GPC CL B

V42K3430X
V42K3434X
Step 15. This step commands the OMS propellant crossfeed valves closed.
Issue commands (1) through (12), and return to Step 1 until 1.5 seconds have elapsed, then proceed to Step 16.
(1) OMS-L POD XFD VLVS A CMD 1 CL V43K4283X
(2) OMS-L POD OXDZR XFD VLV A CMD 2 CL V43K4285X
(3) OMS-L POD FUEL XFD VLV A CMD 2 CL

V43K4385X
V43K 4287 X
V43K4289X
(5) OMS-L POD OXDZR XFD VLV B CMD 2 CL

V43K4389X
(6) OMS-L POD FUEL XFD VLV B CMD 2 CL
$\begin{array}{lll}\text { (7) OMS-R POD XFD VLVS A CMD } 1 \mathrm{CL} & \text { V43K5283X } \\ \text { (8) OMS-R POD OXDZR XFD VLV A CMD } 2 \mathrm{CL} & \text { V43K5285X }\end{array}$
(9) OMS-R ROD FUEL XFD VLV A CMD 2 CL V43K5385X
(10) OMS-R POD XFD VLVS B CMD 1 CL
(11) OMS-R POD OXDZR XFD VLV B CMD 2 CL

V43K5287X
V43K5289X
(12) OMS-R POD FUEL XFD VLV B CMD 2 CL

V43K5389X
Step 16. This step completes the intact abort and Mode 2 return to normal sequence.
Set (1) through (6) false and return to Step 1.
$\begin{array}{llr}\text { (1) } & \text { RCS 1/2 ALL JET INHIBIT FLAG } & \text { V90X8290X } \\ \text { (2) } & \text { RCS 3/4/5 ALL JET INHIBIT FLAG } & \text { V90X8291X } \\ \text { (3) } & \text { AFT MANIFOLD 1/2 JET INH FLAG } & \\ \text { (4) } & \text { AFT MANIFOLD 3/4/5 JET INH FLAG } & \text { V90X8285X } \\ & & \\ \text { (5) } & \text { OMS TO RCS INTERCONNECT COMPLETE FLAG } & \text { V90X8282X } \\ \text { (6) } & \text { OMS/RCS RTRN TO NORM IN PROGRESS FLAG } & \text { (INTERNAL) }\end{array}$

STEP 7
(PAGE 7)
(PAGE 7

Figure 4.184. Abort OMS/RCS Interconnect Sequence (Sheet 5 of 7)

Figure 4.184. Abort OMS/RCS Interconnect Sequence (Sheet 6 of 7)

MONITOR MODE

 TANK ISLN VLV B POSITION COUNTERS

Figure 4.184. Abort OMS/RCS Interconnect Sequence (Sheet 7 of 7)
TABLE 4．3．2．4－1．ABORT OMS／RCS INTERCONNECT FUNCTION（G4．184）INPUT／OUTPUT FUNCTIONAL PARAMETERS
ABT OMS／RCS CONN
SOURCE

	品 0_{0}	号品	응ㅆㅇㅇ	$\stackrel{\square}{\circ}$
和的吅	苭気	云玄	云品	瓷县
	－	－	\％${ }_{\text {O }}$	$\stackrel{\circ}{\circ}$
	¢	M ${ }^{\text {d }}$	04	∞ ¢
	公兮	号号	号分	号
光尝 	易易	易気	曷気	
	成品	品咸	如易	
 	웅융	－	会品	
 	－	Hy		
N－NNN	${ }_{\sim}^{\infty}$	${ }_{0}^{\infty}$	${ }^{\infty}$	
	त	${ }^{\text {¢ }}$	\sim_{0}^{n}	\％
	凩成	成尔	成成	
	ジロ	$\stackrel{\text { S }}{5}$	－${ }^{\text {a }}$	，${ }^{\circ}$

LAST CRS

FSSR NAME -

-10	

TABLE 4.3.2.4-1. ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) INPUT/OUTPUT FUNCTIONAL PARAMETERS

STS 83-0026D
OI-21
January 25, 1991
DBEN : 0484
NO REQUIREMENTS
TABLE 4.3.2.4-3. ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) K-LOADS
DBEN : 0558
ESSR NAME
NO REQUIREMENTS

Rockwell International
Space Systems Division
TABLE 4.3.2.4-4. ABORT OMS/RCS INTERCONNECT FUNCTION (G4.184) CONSTANTS
DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS

4.4 MECHANICAL SYSTEMS

4.4.1 Vent Doors (4.161)

4.4.1.1 Introduction

The orbiter's vent and purge system is made up of 18 active doors and is divided into the following six groups: left and right doors 1 and 2, left and right doors 3, left and right doors 5, left and right doors 4 and 7 , left and right doors 6 , and left and right doors 8 and 9 .

All vent doors have a purge position with the exception of left and right vents $3,4,5$, and 7.
The purge position is required to maintain a positive pressure in the orbiter's payload bay area to prevent contamination and to vent any residue gases in the orbiter and for overall vehicle thermal control during ground turnaround phase. During the ascent and entry phases, the active vent doors are open to vent/ repressurize the orbiter to preclude damaging pressures across the structure. On orbit, the vent doors remain open to permit molecular venting of the vehicle cavities and insulation blankets to achieve the required low internal blanket pressure.

Operation of the vent system is controlled exclusively through software.

4.4.1.2 Overview

The sequencing of the active doors is by the software program in the redundant set computer. The doors are cycled to the open, close, or purge position as required in each mission phase. Positioning of the active doors is performed by the software based on mission times or mission events during ascent, entry, and aborts and by keyboard entry during nominal and abort entry phases. The ALL VENTS CLOSE CMD will be used for the open/close status of the vent doors on SPEC 51.

Upon receipt of a cue from the RS launch sequence, this sequence will configure the vent doors for launch. The launch configuration will be all doors in the open position. The status of the vent doors position will be all outputs to the RS launch sequence to determine that the vent doors have achieved the desired open positions. If during the pre-SRB ignition phase a launch abort has occurred, the vent door system will be reconfigured to the prelaunch configuration by LPS.

In an RTLS abort mode upon entering MM 602 or in a TAL abort at ET SEP, the vent doors are commanded to the closed position to prevent ingestion of propellant during propellant dump. In the entry phase, the vent doors are in the closed position and will be commanded to the open position when a predetermined ground relative velocity value has been attained. (This is also true for entry in abort cases.)

Upon entering MM 304, the main propulsion system LO_{2} and LH_{2} prevalves, LH_{2} inboard and outboard fill/drain valves, LH_{2} topping valve, LH_{2} RTLS inboard and outboard dump valves, helium interconnect and crossover valves, and main engine oxidizer valves are commanded open to vacuum inert residual propellants. The main engine oxidizer valves will only be open during those mission phases when the EIU and main engine controllers are activated. The LO_{2} inboard and outboard fill/drain valves are opened in MM 304 at a ground relative velocity of $20,000 \mathrm{ft} / \mathrm{sec}$ (Mach 20). The sequence will also perform an automatic closure of the ET umbilical doors upon entering MM 304 if a TAL abort has been declared.

Termination of commands after performing any specific vent door activity will place both A and B SET commands equal to false. For open commands, the A and B RESET command will be set equal to true,
and then the A RESET command will be set equal to false and the B RESET command will remain equal to true. For termination following closure, the A and B RESET commands will be set first to true, then to the values specified in Table 4.4-1. These configurations define the dormant state of the active vent system functional software sequence. RTC mode can only be used to control individual vent doors on orbit.

When the ground relative velocity becomes less than a predetermined velocity (K -load), a helium purge of the aft compartment, OMS pod, and ET umbilical cavity is initiated to dilute the hydrogen concentrations in these areas. The purge function is terminated upon the expiration of a purge timer (K -load).

The $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ outboard fill/drain valves, LO_{2} prevalves, LH_{2} RTLS inboard and outboard dump valves, and main engine oxidizer valves are commanded closed, and the $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ manifolds are pressurized.

4.4.1.3 Detail Requirements

This sequence controls the operation of the doors based on mission times and mission events.
Tables 4.4-1 and 4.4-2 list the commands to position the vent doors to a closed and open position.
Table 4.4-3 lists the purge 1 and 2 commands for vent group 5 .
Tables 4.4-4 and 4.4-5 list the feedback signals of the vent doors closed and open configurations. Although the vent control sequence was deleted from OPS-2 after OFT-1, the parameters listed in Tables 4.4-4 and 4.4-5 are required to support telemetry requirements in MC 1,2, and 3 for all missions.

For times that are greater than six times the process execution time (reciprocal of the execution cycle), the accuracy shall be ± 1 execution time; otherwise, the accuracy shall be $+1,-0$ execution times.

Main engine oxidizer dump and terminate sequence output commands with corresponding binary/BCH command words will be generated in two 16 -bit words for output to the EIU, in accordance with the main engine command requirements specified in Section 4.8.2.3.8 and Table 4.8.2-1 of the SSME SOP (4.181).

The following logic steps, once started, must be completed prior to starting another.
Step 1. This step determines if the vent doors are to be configured for launch.
The following signals are monitored:
(a) CONFIGURE VENT DOOR FOR LAUNCH CMD V90X8375X
(b) MISSION ELAPSED TIME

V91W1990C
If (b) $<0.00 \mathrm{sec}$, monitor (a) above; otherwise proceed to Step 2.
If (a) is true, set the group 5 (vent 6) purge 1 and purge 2 A RESET CMDS equal to false (see Table 4.4-3), and proceed to Step 9; otherwise, return to Step 1.

Step 2. This step determines if the vent doors are to be automatically closed for an RTLS or TAL abort.
The following signals are monitored:
$\begin{array}{lll}\text { (a) MISSION ELAPSED TIME } & \text { V91W1990C } \\ \text { (b) MAJOR MODE 602 FLAG } & \text { V90X8174X } \\ \text { (c) ET SEPARATION CMD FLAG } & \text { V90X8250X }\end{array}$

If (a) $>100 \mathrm{sec}$ and [(b) is true, or if (c) and (d) are both true], one time only set (1) equal to 0.48 sec and proceed to Step 8; otherwise proceed to Step 2a.
(1) VENT_CMDS_TIME_DELAY

V97U9859C

Step 2a. This step checks for MM 304 and upon entry, if a TAL abort has been declared, provides for the automatic closure of the ET umbilical doors.

Monitor the following signals:
(a) MAJOR MODE 304 FLAG V90X8161X
(b) TAL ABORT DECLARED V90X8652X

If (a) or (b) is false, proceed to Step 3.
If (a) and (b) are both true, on first pass, start an ET umbilical door timer and set (1) through (8) below true, and proceed to Step 3. On subsequent passes, proceed to the next if statement.

If 66 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (9) through (11) and (17) though (24) false, and proceed to Step 3. On subsequent passes, proceed to Step 3. Otherwise, proceed to the next if statement.

If 54 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (12) through (16) false, (17) through (24) true, and proceed to Step 3. On subsequent passes, proceed to Step 3. Otherwise, proceed to the next if statement.

If 12 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (1) through (8) false and proceed to Step 3. Otherwise, proceed to the next if statement.

If 6 seconds have elapsed since the ET umbilical door timer was started, on first pass, set (9) through (16) true and proceed to Step 3. On subsequent passes, proceed to Step 3. Otherwise, proceed to Step 3.

(1)	ET DR CL LCH 1B1/2B2 FA1 STOW CMD	V56K1271X
(2)	ET DR CL LCH 1B2/2B1 FAI STOW CMD	V56K1272X
(3)	ET DR CL LCH 1B1/2B2 FA2 STOW CMD	V56K1273X
(4)	ET DR CL LCH 1B2/2B1 FA2 STOW CMD	V56K1274X
(5)	ET DR CL LCH 1B1/2B2 FA4 STOW CMD	V56K1371X
(6)	ET DR CL LCH 1B2/2B1 FA4 STOW CMD	V56K1343X
(7)	ET DR CL LCH 1B1/2B2 FA3 STOW CMD	V56K1373X
(8)	ET DR CL LCH 1B2/2B1 FA3 STOW CMD	V56K1374X
(9)	ET DR DRV \& CL LCH DC ARM AMCA $1 / 2$	V56K0141X
(10)	ET DR DRV \& CL LCH DC ARM AMCA $1 / 3$	V56K0142X
(11)	ET DR DRV \& CL LCH DC ARM AMCA $2 / 3$	V56K0143X
(12)	ET UMB DR L-B2/R-B1 CLOSE CMD	V56K3111X
(13)	ET UMB DR R-B2 CLOSE CMD	V56K3112X
(14)	ET UMB DR R-B1/B2 CLOSE CMD	V56K4121X
(15)	ET UMB DR L-B1 CLOSE CMD	V56K4122X
(16)	ET UMB DR L-B1/B2 CLOSE CMD	V56K0140X

| (17) ET L UMB COUT DOOR LATCH FA1 CMD | V56K3531X |
| :--- | :--- | :--- |
| (18) ET R UMB COUT DOOR LATCH FA1 CMD | V56K3532X |
| (19) ET L UMB COUT DOOR LATCH FA4 CMD | V56K3533X |
| (20) ET R UMB COUT DOOR LATCH FA4 CMD | V56K3534X |
| (21) ET L UMB COUT DOOR LATCH FA3 CMD | V56K4531X |
| (22) ET R UMB COUT DOOR LATCH FA3 CMD | V56K4532X |
| (23) ET L UMB COUT DOOR LATCH FA2 CMD | V56K4533X |
| (24) ET R UMB COUT DOOR LATCH FA2 CMD | V56K4534X |

Step 3. This step provides for automatic opening of the LH_{2} and LO_{2} prevalves, the LH_{2} inboard and outboard fill and drain valves, LH_{2} topping valve, LH_{2} RTLS inboard and outboard dump valves, helium interconnect and crossover valves, and the main engine oxidizer valves if the EIU and main engine controllers are active, to vacuum inert residual propeliant upon entry into MM 304. At Mach 20, the LO_{2} inboard and outboard fill/drain valves are opened in MM 304.

The following signals are monitored:
(a) MAJOR MODE 304 FLAG
V90X8161X
(b) GND REL VEL MAGNITUDE IN M50 SYS
V95L0151C

If (a) is false, proceed to Step 4.
If (a) is true, on first pass, set outputs (1) through (4), (7) through (10), (14) through (18), and (34) through (60) true; generate (61) through (63); set outputs (5), (19) through (30), (32), and (33) false; and proceed to Step 4. On subsequent passes, monitor (b).

If (b) $\leq 20,000 \mathrm{ft} / \mathrm{sec}$, on first pass, set outputs (11) through (13) true, set outputs (6) and (31) false, and proceed to Step 4. Otherwise proceed to Step 4.
(1) MPS PNEU VLV HE ISLN NO. 1 OPEN CMD V41K1607X
(2) MPS PNEU VLV HE ISLN NO. 2 OPEN CMD V41K1608X
(3) MPS L HE ISOV B OP CMD A V41K1256X
(4) MPS L HE ISOV B OP CMD B V41K1257X
(5) MPS LH ${ }_{2}$ OTBD FILL VALVE CLOSE CMD V41K1393X
(6) $\mathrm{MPS} \mathrm{LO}_{2}$ OTBD FILL VALVE CLOSE CMD V41K1515X
(7) MPS LH ${ }_{2}$ OTBD FILL VALVE OPEN CMD V41K1391X
(8) MPS LH ${ }_{2}$ INBD FILL VALVE OPEN CMD A V41K1401X
(9) $\mathrm{MPS}_{\mathrm{LH}}^{2}$ INBD FILL VALVE OPEN CMD B V41K1402X
(10) MPS LH2 TOPPING VALVE OPEN CMD V41K1411X
(11) MPS LO_{2} OTBD FILL VALVE OPEN CMD V41K1518X
(12) MPS LO 2_{2} INBD FILL VALVE OPEN CMD A V41K1501X
(13) MPS LH ${ }_{2}$ INBD FILL VALVE OPEN CMD B V41K1502X
(14) MPS E1 HE INTCON OUT/OPEN CMD A V41K1168X
(15) MPS E3 HE INTCON OUT/OPEN CMD A V41K1368X
(16) MPS PNEU CROSSOVER NO. 2 OPEN CMD V41K1613X
(17) MPS E2 HE INTCON IN/OPEN CMD A V41K1262X
(18) MPS E2 HE INTCON IN/OPEN CMD B V41K1263X
(19) MPS E-1 LO_{2} PREVALVE CLOSE CMD A V41K1139X
(20) MPS E-1 LO_{2} PREVALVE CLOSE CMD B V41K1140X
(21) MPS E-1 LO_{2} PREVALVE CLOSE CMD C

V41K1141X

(22)	MPS E- $1 \mathrm{LO}_{2}$ PREVALVE CLOSE CMD D	V41K1142X
(23)	MPS E-2 LO_{2} PREVALVE CLOSE CMD A	V41K1239X
(24)	MPS E-2 LO_{2} PREVALVE CLOSE CMD B	V41K1240X
(25)	MPS E-2 LO_{2} PREVALVE CLOSE CMD C	V41K1241X
(26)	MPS E-2 LO_{2} PREVALVE CLOSE CMD D	V41K1242X
(27)	MPS E-3 LO_{2} PREVALVE CLOSE CMD A	V41K1339X
(28)	MPS E-3 LO_{2} PREVALVE CLOSE CMD B	V41K1340X
(29)	MPS E-3 LO_{2} PREVALVE CLOSE CMD C	V41K1341X
(30)	MPS E-3 LO_{2} PREVALVE CLOSE CMD D	V41K1342X
(31)	MPS LO_{2} INBD FILL VALVE CLOSE CMD	V41K1512X
(32)	MPS LH_{2} INBD FILL VALVE CLOSE CMD	V41K1412X
(33)	MPS E2 HE INTCON OUT/OPEN CMD A	V41K1268X
(34)	MPS E- $1 \mathrm{LH}_{2}$ PREVALVE OPEN CMD A	V41K1119X
(35)	MPS E-1 LH_{2} PREVALVE OPEN CMD B	V41K1120X
(36)	MPS E-1 LH_{2} PREVALVE OPEN CMD C	V41K1121X
(37)	MPS E-2 LH_{2} PREVALVE OPEN CMD A	V41K1219X
(38)	MPS E-2 LH_{2} PREVALVE OPEN CMD B	V41K1220X
(39)	MPS E-2 LH_{2} PREVALVE OPEN CMD C	V41K1221X
(40)	MPS E-3 LH_{2} PREVALVE OPEN CMD A	V41K1319X
(41)	MPS E-3 LH_{2} PREVALVE OPEN CMD B	V41K1320X
(42)	MPS E-3 LH_{2} PREVALVE OPEN CMD C	V41K1321X
(43)	MPS E-1 LO_{2} PREVALVE OPEN CMD A	V41K1136X
(44)	MPS E-1 LO_{2} PREVALVE OPEN CMD B	V41K1137X
(45)	MPS E-1 LO_{2} PREVALVE OPEN CMD C	V41K1138X
(46)	MPS E-1 LO_{2} PREVALVE OPEN CMD D	V41K1143X
(47)	MPS E-2 LO_{2} PREVALVE OPEN CMD A	V41K1236X
(48)	MPS E-2 LO_{2} PREVALVE OPEN CMD B	V41K1237X
(49)	MPS E-2 LO_{2} PREVALVE OPEN CMD C	V41K1238X
(50)	MPS E-2 LO_{2} PREVALVE OPEN CMD D	V41K1243X
(51)	MPS E-3 LO_{2} PREVALVE OPEN CMD A	V41K1336X
(52)	MPS E-3 LO_{2} PREVALVE OPEN CMD B	V41K1337X
(53)	MPS E-3 LO_{2} PREVALVE OPEN CMD C	V41K1338X
(54)	MPS E-3 LO_{2} PREVALVE OPEN CMD D	V41K1343X
(55)	MPS LH ${ }_{2}$ RTLS INBD D/V OPEN CMD A	V41K1923X
(56)	MPS LH H_{2} RTLS INBD D/V OPEN CMD B	V41K1924X
(57)	MPS LH $_{2}$ RTLS INBD D/V OPEN CMD C	V41K1925X
(58)	MPS $L H_{2}$ RTLS OTBD D/V OPEN CMD A	V41K1913X
(59)	MPS LH 2 RTLS OTBD D/V OPEN CMD B	V41K1914X
(60)	MPS LH 2 RTLS OTBD D/V OPEN CMD C	V41K1915X
(61)	ME-1 OXIDIZER DUMP CMD	E41K1219B
(62)	ME-2 OXIDIZER DUMP CMD	E41K2219B
(63)	ME-3 OXIDIZER DUMP CMD	E41K3219B

Step 4. This step provides an automatic He purge of the aft compartment OMS pod and ET umbilical $\overline{\text { cavity }}$ during MM 304 or MM 305. The $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ outboard fill/drain valves, LO_{2} prevalves, LH_{2} RTLS inboard and outboard dump valves, and main engine oxidizer valves are commanded closed; and the $\mathrm{LH}_{2} / \mathrm{LO}_{2}$ manifolds are pressurized.

The following signals are monitored:

(a)	GND REL VEL MAGNITUDE IN M50 SYS	V95L0151C
(b)	HE_PURGE_VEL	V96U8958C
(c) MAJOR MODE 304 FLAG	V90X8161X	
(d) MAJOR MODE 305 FLAG	V90X8162X	
(e)	HE_PURGE_TIME	V96U8959C
(f) HEPURGE TIMER	(INTERNAL)	

If $(\mathrm{a})>(\mathrm{b})$ or if (c) and (d) are both false, proceed to Step 5.
If (a) \leq (b) and (c) or (d) is true, on first pass, set outputs (1) through (8) and (11) through (22) below true; set (9), (10), and (23) through (40) false; terminate (41) through (43); generate (44) through (46); start timer (f); and proceed to Step 5. On subsequent passes, monitor (e).

If (e) seconds have not elapsed since (f) started, proceed. Otherwise proceed to Step 5.
If (e) seconds have elapsed since (f) started, set outputs (1) and (2) false and proceed to Step 5.

(1)	MPS HE SPLY BLOWDOWN NO. 1 OPEN CMD	V41K1631X
(2)	MPS HE SPLY BLOWDOWN NO. 2 OPEN CMD	V41K1633X
(3)	MPS LH ${ }_{2}$ OTBD FILL VALVE CLOSE CMD	V41K1393X
(4)	MPS LH2 MANF REPRESS NO. 1 OPEN CMD	V41K1435X
(5)	MPS LH2 MANF REPRESS NO. 2 OPEN CMD	V41K1437X
(6)	MPS LO_{2} OTBD FILL VALVE CLOSE CMD	V41K1515X
(7)	MPS LO2 ${ }_{2}$ MANF REPRESS NO. 1 OPEN CMD	V41K1535X
(8)	MPS LO_{2} MANF REPRESS NO. 2 OPEN CMD	V41K1537X
(9)	MPS LH ${ }_{2}$ OTBD FILL VALVE OPEN CMD	V41K1391X
(10)	MPS LO_{2} OTBD FILL VALVE OPEN CMD	V41K1518X
(11)	MPS E- $1 \mathrm{LO}_{2}$ PREVALVE CLOSE CMD A	V41K1139X
(12)	MPS E- $1 \mathrm{LO}_{2}$ PREVALVE CLOSE CMD B	V41K1140X
(13)	MPS E- $1 \mathrm{LO}_{2}$ PREVALVE CLOSE CMD C	V41K1141X
(14)	MPS E- $1 \mathrm{LO}_{2}$ PREVALVE CLOSE CMD D	V41K1142X
(15)	MPS E-2 LO_{2} PREVALVE CLOSE CMD A	V41K1239X
(16)	MPS E-2 LO_{2} PREVALVE CLOSE CMD B	V41K1240X
(17)	MPS E-2 LO_{2} PREVALVE CLOSE CMD C	V41K1241X
(18)	MPS E-2 LO_{2} PREVALVE CLOSE CMD D	V41K1242X
(19)	MPS E- $3 \mathrm{LO}_{2}$ PREVALVE CLOSE CMD A	V41K1339X
(20)	MPS E-3 LO_{2} PREVALVE CLOSE CMD B	V41K1340X
(21)	MPS E-3 LO_{2} PREVALVE CLOSE CMD C	V41K1341X
(22)	MPS E-3 LO_{2} PREVALVE CLOSE CMD D	V41K1342X
(23)	MPS E-1 LO_{2} PREVALVE OPEN CMD A	V41K1136X
(24)	MPS E-1 LO2 PREVALVE OPEN CMD B	V41K1137X
(25)	MPS E-1 LO_{2} PREVALVE OPEN CMD C	V41K1138X
(26)	MPS E-1 LO2 PREVALVE OPEN CMD D	V41K1143X
(27)	MPS E-2 LO_{2} PREVALVE OPEN CMD A	V41K1236X
(28)	MPS E-2 LO_{2} PREVALVE OPEN CMD B	V41K1237X
(29)	MPS E-2 LO_{2} PREVALVE OPEN CMD C	V41K1238X
(30)	MPS E-2 LO_{2} PREVALVE OPEN CMD D	V41K1243X
(31)	MPS E-3 LO2 PREVALVE OPEN CMD A	V41K1336X

(32)	MPS E-3 LO_{2} PREVALVE OPEN CMD B	V41K1337X
(33)	MPS E-3 LO_{2} PREVALVE OPEN CMD C	V41K1338X
(34)	MPS E-3 LO_{2} PREVALVE OPEN CMD D	V41K1343X
(35)	MPS LH2 RTLS INBD D/V OPEN CMD A	V41K1923X
(36)	MPS LH2 RTLS INBD D/V OPEN CMD B	V41K1924X
(37)	MPS LH 2 RTLS INBD D/V OPEN CMD C	V41K1925X
(38)	MPS LH H_{2} RTLS OTBD D/V OPEN CMD A	V41K1913X
(39)	MPS LH ${ }_{2}$ RTLS OTBD D/V OPEN CMD B	V41K1914X
(40)	MPS LH2 RTLS OTBD D/V OPEN CMD C	V41K1915X
(41)	ME-1 OXIDIZER DUMP CMD	E41K1219B
(42)	ME-2 OXIDIZER DUMP CMD	E41K2219B
(43)	ME-3 OXIDIZER DUMP CMD	E41K3219B
(44)	ME-1 TERMINATE SEQUENCE CMD	E41K1218B
(45)	ME-2 TERMINATE SEQUENCE CMD	E41K2218B
(46)	ME-3 TERMINATE SEQUENCE CMD	E41K3218B

Step 5. This step determines if left vent groups 1 and 6 are to be opened in response to an open command during MM 304 and provides auto closure capability for all vent doors upon transition into MM 304.

The following signals are monitored:
(a) ALL VENT CLOSE CMD V93X7201X
(b) MAJOR MODE 304 FLAG V90X8161X
(c) VENT DOOR SEQUENCE INIT V95X0235X
(d) LEFT VENTS 1 AND 6 OPEN FLAG (INTERNAL)

If (b) is true and (c) and (d) are false, proceed to Step 8.
If (b) and (c) are true and (a) is false, issue the following groups of commands, maintaining the commands to each group for 10 seconds. Then set A and B OPEN SET CMDS $=$ false and A and B OPEN RESET CMDS = true. Then, three minor cycles later, set A OPEN RESET $\mathrm{CMDS}=$ false. Set $(\mathrm{d})=$ true and proceed to Step 6.

Table 4.4-2, Group 1 left vents
Table 4.4-2, Group 6 left vents
If none of the above conditions are met, proceed to Step 6.
Step 6. This step initiates the automatic vent door opening in MM 304, MM 305, MM 602, or MM 603 when the vehicle reaches a predetermined velocity.

The following signals are monitored:
(a) ALL VENT CLOSE CMD V93X7201X
(b) GND REL VEL MAGNITUDE IN M50 SYS V95L0151C
(c) MAJOR MODE 304 FLAG

V90X8161X
(d) MAJOR MODE 602 FLAG

V90X8174X
(e) MAJOR MODE 305 FLAG

V90X8162X
(f) MAJOR MODE 603 FLAG V90X0013X
(g) GROUND_REL_VEL_THRESHOLD V97U9806C
(h) VENT DOOR SEQ INIT V95X0235X

If $(\mathrm{b}) \leq(\mathrm{g})$ and $[(\mathrm{c})$ or (d) or (e) or (f)] is true and (h) is false, proceed to Step 9 ; otherwise proceed to Step 7.

Step 7. This step provides manual control of vent door operations during OPS 3.
The following signals are monitored:
(a) ALL VENT CLOSE CMD

V93X7201X
(b) MAJOR MODE 304 FLAG
(c) VENT DOOR SEQ INIT V90X8161X V95X0235X

If (c) is true and (a) and (b) are false, proceed to Step 9.
If (a) and (c) are true, proceed to Step 8. Otherwise return to Step 1.
Step 8. This step initiates the vent door close activities. On first entry into this step, using (a) below, do the following:
(a) VENT CMDS TIME DELAY

V97U9859C

Issue the following groups of commands at intervals of (a) seconds, maintaining the commands to each group for 10 seconds. Then set the A and B CLOSE SET CMDS equal to false, and A and B CLOSE RESET CMDS equal to true. Then, three minor cycles later, set the A CLOSE RESET CMD equal to Table 4.4-1 DORMANT STATE before proceeding.

Table 4.4-1, Group 1
Table 4.4-1, Group 2
Table 4.4-1, Group 3
Table 4.4-1, Group 4
Table 4.4-1, Group 5
Table 4.4-1, Group 6
Then monitor for (b) below:
(b) MM 301 FLAG

V90X8183X

If (b) is true, then issue open commands to the following groups of doors, maintaining commands to each group for 10 seconds. Then set A and B OPEN SET CMDS equal to false and A and B OPEN RESET CMDS equal to true. Then, three minor cycles later, set A OPEN RESET CMDS equal to false and return to Step 1.

Table 4.4-2, Group 1 left vents
Table 4.4-2, Group 6 left vents
If (b) is false, set ALL VENT CLOSE CMD to true and return to Step 1.
Step 9. This step initiates the vent door open activities. On first entry into this step, using (a) below, do the following:
(a) VENT CMDS TIME DELAY

Issue the following groups of commands at intervals of (a) seconds, maintaining the commands to each group for 10 seconds. Then set the A and B OPEN SET CMDS equal to false
and A and B OPEN RESET CMDS equal to true. Then, three minor cycles later, set A OPEN RESET CMDS equal to false before proceeding.

Table 4.4-2, Group 4
Table 4.4-2, Group 2
Table 4.4-2, Group 5
Table 4.4-2, Group 3
Table 4.4-2, Group 1
Table 4.4-2, Group 6
On the first pass, initialize the status word (b) below to all zeros, and for 5 seconds after issuing the Group 6 command above, monitor the corresponding parameters in Table 4.4-5 for status word updates. For each vent door (L, R), the status shall be set true if either one of the dual redundant status discretes is true; otherwise, the status shall be set false. If any of the commfaults (c) through (j) below occur, use the latest noncommfaulted values for subsequent status word update.
(b) ORBITER VENT DOOR STATUS WORD 1
(c) FF1 INPUT PROM SEG 2,6 STATUS (HFE)
(b) ORBITER VENT DOOR STATUS WORD 1
(c) FF1 INPUT PROM SEG 2,6 STATUS (HFE)
(d) FF2 INPUT PROM SEG 2, 6 STATUS (HFE)
(e) FF3 INPUT PROM SEG 2, 6 STATUS (HFE)
(f) FF4 INPUT PROM SEG 2, 6 STATUS (HFE)
(g) FA1 INPUT PROM SEG 3, 10 STATUS (HFE)
(h) FA2 INPUT PROM SEG 3, 10 STATUS (HFE)
(i) FA3 INPUT PROM SEG 3, 10 STATUS (HFE)

V90J8201C
V91X2288X
V91X2289X
V91X2290X
(j) FA4 INPUT PROM SEG 3, 10 STATUS (HFE)

When all commands have been issued, set the ALL VENT CLOSE CMD to false and return to step 1.

Table 4.4-1. Vent Group Close Commands
$\left.\begin{array}{llllll|}\hline & & & \text { RESET } \\ & & & \text { LORMANT } \\ \text { STATE }\end{array}\right]$
$\left.\begin{array}{|lccc|}\hline & \text { Table 4.4-1. Vent Group Close Commands } \\ & & & \text { RESET } \\ \text { DORMANT } \\ \text { STATE }\end{array}\right]$

Table 4.4-2. Vent Group Open Commands			
Vent Group 1	a	V59K3050X	L FWD VENTS 1\&2 OPEN CMD 1A
Left \& Right	b	V59K3051X	L FWD VENTS 1\&2 OPEN CMD 1B
Fwd Vent	c	V59K3060X	LFWD VENTS 182 OPEN CMD 2A
Port $1 \& 2$	d	V59K3061X	L FWD VENTS 1\&2 OPEN CMD 2B
	e	V59K4050X	R FWD VENTS $1 \& 2$ OPEN CMD 1A
	f	V59K4051X	R FWD VENTS 1\&2 OPEN CMD 1B
	g	V59K4060X	R FWD VENTS 1\&2 OPEN CMD 2A
	h	V59K4061X	R FWD VENTS $1 \& 2$ OPEN CMD 2B
Vent Group 2	a	V59K3250X	L PB VENT 3 OPEN CMD 1A
Left \& Right	b	V59K3251X	L PB VENT 3 OPEN CMD 1B
Mid Fus Vent	c	V59K3260X	LPB VENT 3 OPEN CMD 2A
Port 3	d	V59K3261X	LPB VENT 3 OPEN CMD 2B
	e	V59K4250X	R PB VENT 3 OPEN CMD 1A
	f	V59K4251X	R PB VENT 3 OPEN CMD 1B
	g	V59K4260X	R PB VENT 3 OPEN CMD 2A
	h	V59K4261X	R PB VENT 3 OPEN CMD 2B
Vent Group 3	a	V59K3450X	L PB VENT 5 OPEN CMD 1A.
Left \& Right	b	V59K3451X	L PB VENT 5 OPEN CMD 1B
Mid Fus Vent	c	V59K3460X	LPB VENT 5 OPEN CMD 2A
Port 5	d	V59K3461X	LPB VENT 5 OPEN CMD 2B
	e	V59K4450X	R PB VENT 5 OPEN CMD 1A
	f.	V59K4451X	R PB VENT 5 OPEN CMD 1B
	g	V59K4460X	R PB VENT 5 OPEN CMD 2A
	h	V59K4461X	R PB VENT 5 OPEN CMD 2B
Vent Group 4	a	V59K3350X	L PB/W VENTS 487 OPEN CMD 1A
Left \& Right	b	V59K3351X	L PB/W VENTS 4\&7 OPEN CMD 1B
Mid Fus Vent	c	V59K3360X	L PB/W VENTS 487 OPEN CMD 2A
Port 4\&7	d	V59K3361X	L PB/W VENTS 4\&7 OPEN CMD 2B
	e	V59K4350X	R PB/W VENTS 482 OPEN CMD 1A
	f	V59K4351X	R PB/W VENTS 4\&7 OPEN CMD 1B
	g	V59K4360X	R PB/W VENTS 4\&7 OPEN CMD 2A
	h	V59K4361X	R PB/W VENTS 4\&7 OPEN CMD 2B
Vent Group 5	a	V59K3550X	L PB VENT 6 OPEN CMD 1A
Left \& Right	b	V59K3551X	L PB VENT 6 OPEN CMD 1B
Aft Pld Vent	c	V59K3560X	LPB VENT 6 OPEN CMD 2A

		Table 4.4-2. Vent Group Open Commands	
Port 6	d	V59K3561X	L PB VENT 6 OPEN CMD 2B
	e	V59K4550X	R PB VENT 6 OPEN CMD 1A
	f	V59K4551X	R PB VENT 6 OPEN CMD 1B
	g	V59K4560X	R PB VENT 6 OPEN CMD 2A
	h	V59K4561X	R PB VENT 6 OPEN CMD 2B
Vent Group 6	a	V59K3850X	L AFT VENTS 8\&9 OPEN CMD 1A
Left \& Right	b	V59K3851X	L AFT VENTS 8\&9 OPEN CMD 1B
Aft Vent	c	V59K3860X	L AFT VENTS 8\&9 OPEN CMD 2A
Port 8 \& 9	d	V59K3861X	L AFT VENTS 8\&9 OPEN CMD 2B
	e	V59K4850X	R AFT VENTS 8\&9 OPEN CMD 1A
	f	V59K4851X	R AFT VENTS 8\&9 OPEN CMD 1B
	g	V59K4860X	R AFT VENTS 8\&9 OPEN CMD 2A
	h	V59K4861X	R AFT VENTS 8\&9 OPEN CMD 2B

Table 4.4-3. Vent Group Purge Configuration Commands

Vent Group 5	a	V59K3600X	LPB VENT 6 PURGE 1 CMD 1A
Left \& Right	b	V59K3700X	LPB VENT 6 PURGE 2 CMD 1A
Purge 1 and 2	c	V59K4610X	RPB VENT 6 PURGE 1 CMD 2A
Port 6	d	V59K4710X	RPB VENT 6 PURGE 2 CMD 2A
	e	V59K4600X	RPB VENT 6 PURGE 1 CMD 1A
	f	V59K4700X	RPB VENT 6 PURGE 2 CMD 1A
	g	V59K3610X	LPB VENT 6 PURGE 1 CMD 2A
	h	V59K3710X	LPB VENT 6 PURGE 2 CMD 2A

Table 4.4-4. Vent Group Close Measurements			
Vent Group 1	a	V59X3005X	L FWD VENTS 1\&2 CLOSED 1
Left \& Right	b	V59X3015X	L FWD VENTS $1 \& 2$ CLOSED 2
Fwd Vent	c	V59X4005X	R FWD VENTS 1\&2 CLOSED 1
Port 1 \& 2	d	V59X4015X	R FWD VENTS 1\&2 CLOSED 2
Vent Group 2	a	V59X3205X	L PB VENT 3 CLOSED 1
Left \& Right	b	V59X3215X	L PB VENT 3 CLOSED 2
Mid Fus Vent	c	V59X4205X	R PB VENT 3 CLOSED 1
Port 3	d	V59X4215X	R PB VENT 3 CLOSED 2
Vent Group 3	a	V59X3405X	L PB VENT 5 CLOSED 1
Left \& Right	b	V59X3415X	L PB VENT 5 CLOSED 2
Mid Fus Vent	c	V59X4405X	R PB VENT 5 CLOSED 1
Port 5	d	V59X4415X	R PB VENT 5 CLOSED 2
Vent Group 4	a	V59X3305X	L PB/W VENT 4\&7 CLOSED 1
Left \& Right	b	V59X3315X	L PB/W VENT 4\&7 CLOSED 2
Mid Fus Vent	c	V59X4305X	R PB/W VENT 487 CLOSED 1
Port 4 \& 7	d	V59X4315X	R PB/W VENT 4\&7 CLOSED 2
Vent Group 5	a	V59X3505X	L PB VENT 6 CLOSED 1
Left \& Right	b	V59X3515X	L PB VENT 6 CLOSED 2
Aft Pld Vent	c	V59X4505X	R PB VENT 6 CLOSED 1
Port 6	d	V59X4515X	R PB VENT 6 CLOSED 2
Vent Group 6	a	V59X3805X	L AFT VENTS 8899 CLOSED 1
Left \& Right	b	V59X3815X	L AFT VENTS 889 CLOSED 2
Aft Vent	c	V59X4805X	R AFT VENTS 889 CLOSED 1
Port 8 \& 9	d	V59X4815X	R AFT VENTS 889 CLOSED 2

Table 4.4-5. Vent Group Open Measurements			
Vent Group 1	a	V59X3055X	L FWD VENTS 1\&2 OPEN 1
Left and Right	b	V59X3065X	L FWD VENTS 182 OPEN 2
Forward Vent	c	V59X4055X	L FWD VENTS 1\&2 OPEN 1
Ports 1 and 2	d	V59X4065X	L FWD VENTS $1 \& 2$ OPEN 2
Vent Group 2	a	V59X3255X	L PB VENT 3 OPEN 1
Left and Right	b	V59X3265X	L PB VENT 3 OPEN 2
Mid Fuselage Vent	c	V59X4255X	R PB VENT 3 OPEN 1
Port 3	d	V59X4265X	R PB VENT 3 OPEN 2
Vent Group 3	a	V59X3455X	LPB VENT 5 OPEN 1
Left and Right	b	V59X3465X	LPB VENT 5 OPEN 2
Mid Fuselage Vent	c	V59X4455X	R PB VENT 5 OPEN 1
Port 5	d	V59X4465X	R PB VENT 5 OPEN 2
Vent Group 4	a	V59X3355X	L PB/W VENTS 4\&7 OPEN 1
Left and Right	b	V59X3365X	L PB/W VENTS 487 OPEN 2
Mid Fuselage Vent	c	V59X4355X	R PB/W VENTS 487 OPEN 1
Ports 4 and 7	d	V59X4365X	R PB/W VENTS $4 \& 7$ OPEN 2
Vent Group 5	a	V59X3555X	L PB VENT 6 OPEN 1
Left and Right	b	V59X3565X	LPB VENT 6 OPEN 2
Aft Payload Vent	c	V59X4555X	LPB VENT 6 OPEN 1
Port 6	d	V59X4565X	LPB VENT 6 OPEN 2
Vent Group 6	a	V59X3855X	L AFT VENTS 8\&9 OPEN 1
Left and Right	b	V59X3865X	L AFT VENTS 8\&9 OPEN 2
Aft Vent	c	V59X4855X	R AFT VENTS 8\&9 OPEN 1
Ports 8 and 9	d	V59X4865X	R AFT VENTS 889 OPEN 2

Figure 4.161. Vent Door Sequence (Sheet 1 of 7)

Figure 4.161. Vent Door Sequence (Sheet 2 of 7)

FIGURE 4.161 Vent Door Sequence (Sheet 3 of 7)

Figure 4.161. Vent Door Sequence (Sheet 4 of 7)

Figure 4.161. Vent Door Sequence (Sheet 5 of 7)

Figure 4.161. Vent Door Sequence (Sheet 6 of 7)

Figure 4.161. Vent Door Sequence (Sheel 7 of 7)
TABLE 4．4．1．4－1．VENT DOOR CONTROL SEQUENCER（G4．161）INPUT／OUTPUT FUNCTIONAL PARAMETERS
号 号
品

TABLE 4．4．1．4－1．VENT DOOR CONTROL SEQUENCER（G4．161）INPUT／OUTPUT FUNCTIONAL PARAMETERS
吅吅田

合

UNITS

[^4]OR VENT CNT
INPUT FUNCTIONAL PARAMETERS FOR
UNITS DATA
0
0
0
0
04
04
DBFN：D3B027－E
ESSR NAME
TABLE 4.4.1.4-1. VENT DOOR CONTROL SEQUENCER (G4.161) INPUT/OUTPUT FUNCTIONAL PARAMETERS

空

氙运


```
myn
```


a) 里四

Rockwell International
Space Systems Division

TABLE 4.4.1.4-3. VENT DOOR CONTROL SEQUENCER (G4.161) K-LOADS

TABLE 4.4.1.4-4. VENT DOOR CONTROL SEQUENCER (G4.161) CONSTANTS
DBFI: 0558
FSSR NAME
DESCRIRTION
NO PEQUIREMENTS

4.5 HYDRAULICS

4.5.1 LDG VLV CNTL (4.215)

4.5.1.1 Introduction

This sequence is used during entry to provide automatic control of the three hydraulic system brake isolation valves, a hydraulic system landing gear extend isolation valve, and the three hydraulic system MPS thrust vector control valves. These valves are latching valves.

The hydraulic system 1 landing gear isolation valve is opened by the sequence at a specified ground relative velocity cue to provide hydraulic pressure to deploy the landing gear. The hydraulic system landing brake isolation valves are commanded open upon receiving a Brake Isolation Valve Open Flag from the Landing SOP. A momentary switch is provided for manual control of each hydraulic system landing brake isolation valve and hydraulic system landing gear isolation valve. The center position of the manual switch is nonfunctional but is designated GPC to remind the crew that the valves will be automatically opened during entry.

During MM 304, the sequence opens the three hydraulic system MPS thrust vector control isolation valves to allow repositioning of the SSMEs to enable deployment of the drag chute without path interference from the SSMEs. The automatic control of the three hydraulic system MPS thrust vector control isolation valves can be bypassed by a crew SSME reposition inhibit item 19 entry on the Override Spec 051.

4.5.1.2 Overview

In Nominal Entry, the sequence is initiated when the Orbiter ground relative velocity is 8000 fps . During a RTLS Entry, the sequence is initiated upon transition into MM 603.

During MM 304, the automatic control of the three MPS thrust vector control (TVC) valves is initiated when the Orbiter ground relative velocity is between $3,500 \mathrm{fps}$ and $8,000 \mathrm{fps}$ and the crew has not inbibited the sequence via Override Spec 051. The Auxiliary Power Units (APU's) are checked when the orbiter relative velocity has diminished to $8,000 \mathrm{fps}$. If at least two out of three APU's are operational, the sequence proceeds to command the three hydraulic system MPS thrust vector control isolation valves open simultaneously. The valves will not be opened below a orbiter relative velocity of 3500 fps . The sequence will command the MPS thrust vector control valves closed upon: completion of SSME repositioning for chute deploy; or when less than two operational APU's are available; or if less than two valves are opened when commanded open. In the event of halted repositioning, a CRT message line and a Class 3 alert light and tone is provided.

During either MM 305 or MM 603 , when the Orbiter ground relative velocity has decreased to 800 fps , the hydraulic system landing gear valve is commanded open. The hydraulic system brake isolation valves are then commanded open upon receiving a Brake Isolation Valve Open Flag from the Landing SOP.

The sequence terminates the open and close commands 5 or more seconds after each isolation valve is commanded and the valve will remain latched in its commanded position.

4.5.1.3 Detailed Requirements

Step 1. In MM 304 this step opens hydraulic system 1, 2, and 3 MPS TVC isolation vaives during a predefined ground relative velocity if the crew has not inhibited this function. This step also indicates a crew alert if the crew has inhibited the SSME reposition while it was in progress.

Monitor the following signals:
(a) MAJOR MODE 304 FLAG V90X8161X
(b) CREW SSME REPOSITION V93X5480X
(c) SSME REPOSITION START FLAG
(INTERNAL)
(d) GROUND REL VEL MAGNITUDE IN M50 SYS

V95L0151C
(e) SSME REPOSITION STOP FLAG

V95X1623X
(f) SSME CHUTE DEPLOY POSITION CMPLT

If (a) is true, proceed to monitor (b). Otherwise, proceed to Step 8.
If (b) is true, proceed to monitor (c) and (d). Otherwise, proceed to monitor (c), (e), and (f).
If (c) is true or $8000 \mathrm{fps} \geq$ (d) $\geq 3500 \mathrm{fps}$, on first pass, set (1) through (9) true, start (12), and proceed to Step 2. On subsequent passes, proceed to Step 2. Otherwise, return to Step 1.

If (c) is true and both (e) and (f) are false, set (10) true to generate a CRT message line and Class 3 alert light and tone, set (11) false, and proceed to Step 5. Otherwise, proceed to Step 5.

(1)	HYD SYS 1 ME/TVC ISLN V OP/CL ENA A	V58K 1129X
(2)	HYD SYS 1 ME/TVC ISLN V OP/CL ENA B	V58K1132X
(3)	HYD SYS 1 ME/TVC ISLN V OP	V58K1134X
(4)	HYD SYS 2 ME/TVC ISLN V OP/CL ENA A	V58K1229X
(5)	HYD SYS 2 ME/TVC ISLN V OP/CL ENA B	V58K 1232X
(6)	HYD SYS 2 ME/TVC ISLN V OP	V58K1234X
(7) HYD SYS 3 ME/TVC ISLN V OP/CL ENA	V58K1332X	
(8)	HYD SYS 3 ME/TVC ISLN V OP	V58K1334X
(9)	SSME REPOSITION START FLAG	(INTERNAL)
(10) SSME REPOSITION STOP FLAG	V95X1623X	
(11) DRAG CHUTE GIMBAL POSITION FLAG	V90X5521X	
(12) MPS TVC VLV OPEN TIMER	(INTERNAL)	

Step 2. This step terminates the open commands to the hydraulic system 1,2 , and 3 MPS TVC isolation valves.

Monitor the following signals:
(a) SSME REPOSITION STOP FLAG

V95X1623X
(b) MPS TVC VLV OPEN TIMER
(INTERNAL)
If (a) is true or less than 5 seconds have elapsed since (b) started, proceed to Step 4.
If (a) is false and 5 or more seconds have elapsed since (b) started, on first pass, set (1) through (8) false and proceed to Step 3. On subsequent passes, proceed to Step 4.
(1) HYD SYS 1 ME/TVC ISLN V OP/CL ENA A V58K1129X
(2) HYD SYS 1 ME/TVC ISLN V OP/CL ENA B V58K1132X
(3) HYD SYS 1 ME/TVC ISLN V OP
(4) HYD SYS 2 ME/TVC ISLN V OP/CL ENA A V58K1134X
(4) HMD SYS 2 MEA V58K1229X
(5) HYD SYS 2 ME/TVC ISLN V OP/CL ENA B V58K1232X
(6) HYD SYS 2 ME/TVC ISLN V OP V58K1234X

Step 3. This step provides a crew alert if at least two MPS TVC isolation valves fail to open, and pro-
 opened within 5 seconds of being commanded.

Monitor the following signals:

(a)	HYD SYS 1 ME/TVC ISLN V OP IND	V58X1136X
(b) HYD SYS 2 ME/TVC ISLN V OP IND	V58X1236X	
(c)	HYD SYS 3 ME/TVC ISLN V OP IND	V58X1336X
(d) FA1 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2845X	
(e) FA2 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2846X	
(f)	FA3 INPUT PROM SEG 3, 10 STATUS (HFE)	V91X2847X
(g)	MPS TVC ISO VLV CLOSE COUNTER	(INTERNAL)

If (a) is false or (d) is true, increment (g) by one and proceed to monitor (b) and (e). Otherwise, proceed to monitor (b) and (e).

If (b) is false or (e) is true, increment (g) by one and proceed to monitor (c) and (f). Otherwise, proceed to monitor (c) and (f).

If (c) is false or (f) is true, increment (g) by one and proceed to monitor (g). Otherwise, proceed to monitor (g).

If $(g)>1$, set (1) true to generate a CRT message line and Class 3 alert light and tone, and proceed to Step 4. Otherwise, set (2) and (3) true and proceed to Step 4.

| (1) SSME REPOSITION STOP FLAG | V95X1623X |
| :--- | :--- | :--- |
| (2) DRAG CHUTE GIMBAL POSITION FLAG | V90X5521X |
| (3) PRL TVC ISO VLV OPEN FLAG | V90X5522X |

Step 4. This step monitors the hydraulic good status to ensure that at least two APU's remain good. A flag will be set to initiate MPS TVC isolation valve closure and a crew alert when less than two APU's are good and the SSME repositioning has not been completed.

Monitor the following signals:
(a) HYDR SYS GOOD STATUS V96Q3001C
(b) SSME CHUTE DEPLOY POSITION CMPLT
V95X1624X

If (a) <2 and (b) is false, set (1) true to generate a CRT message line and Class 3 alert light and tone and proceed to Step 5. Otherwise, proceed to Step 5.
(1) SSME REPOSITION STOP FLAG

V95X1623X

Step 5. This step commands MPS TVC isolation valves closed if SSME repositioning will not occur or if $\overline{\text { SSME }}$ repositioning for drag chute deploy is complete.

Monitor the following signals:
(a) SSME CHUTE DEPLOY POSITTION CMPLT
V95X1624X
(b) SSME REPOSITION STOP FLAG
V95X1623X

If (a) or (b) is true, on first pass, set (1) through (8) true, set (9) through (11) false, start (12) and proceed to Step 6. On subsequent passes, proceed to Step 6. Otherwise, return to Step 1.

(1)	HYD SYS 1 ME/TVC ISLN V OP/CL ENA A	V58K1129X
(2)	HYD SYS 1 ME/TVC ISLN V OP/CL ENA B	V58K1132X
(3)	HYD SYS 1 ME /TVC ISLN V CL	V58K1135X
(4)	HYD SYS 2 ME /TVC ISLN V OP/CL ENA A	V58K1229X
(5)	HYD SYS $2 \mathrm{ME} / \mathrm{TVC}$ ISLN V OP/CL ENA B	V58K1232X
(6)	HYD SYS 2 ME/TVCISLN V CL	V58K1235X
(7)	HYD SYS 3 ME/TVC ISLN V OP/CL ENA	V58K1332X
(8)	HYD SYS 3 ME/TVCISLN V CL	V58K1335X
(9)	HYD SYS 1 ME/TVC ISLN V OP	V58K1134X
(10)	HYD SYS 2 ME/TVC ISLN V OP	V58K1234X
(11)	HYD SYS 3 ME/TVC ISLN V OP	V58K1334X
(12)	MPS TVS ISO VLV CLOSE TIMER	(INTERNAL)

Step 6. This step terminates the close commands to the hydraulic system MPS TVC isolation valves.
Monitor the following signal:
(a) MPS TVC ISO VLV CLOSE TIMER
(INTERNAL)

If less than 5 seconds have elapsed since (a) started, return to Step 1.
If 5 or more seconds have elapsed since (a) started, on first pass, set (1) through (8) false and proceed to Step 7. On subsequent passes, return to Step 1.
(1) HYD SYS 1 ME/TVC ISLN V OP/CL ENA. A
V58K1129X
(2) HYD SYS 1 ME/TVCISLN V OP/CL ENA B V58K1132X
(3) HYD SYS 1 ME/TVCISLN VCL V58K1135X
(4) HYD SYS 2 ME/TVC ISLN V OP/CLENA A V58K1229X
(5) HYD SYS 1 ME/TVC ISLN V OP/CL ENA B V58K1232X
(6) HYD SYS 1 ME/TVC ISLN V CL
(7) HYD SYS $1 \mathrm{ME} / T V C$ ISLN V OP/CL ENA B V58K1235X
(8) HYD SYS 1 ME/TVCISLN V CL
V58K1332X
V58K1335X

Step 7. This step provides a flag for priority rate limiting if all three MPS TVC isolation valves are not closed after being commanded closed.

Monitor the following signals:

| (a) HYD SYS 1 ME/TVC ISLN V OP IND | V58X1136X |
| :--- | :--- | ---: |
| (b) HYD SYS 2 ME/TVC ISLN V OP IND | V58X1236X |
| (c) HYD SYS 3 ME/TVC ISLN V OP IND | V58X1336X |
| (d) FA1 INPUT PROM SEG 3, 10 STATUS (HFE) | V91X2845X |
| (e) FA2 INPUT PROM SEG 3, 10 STATUS (HIFE) | V91X2846X |
| (f) FA3 INPUT PROM SEG 3, 10 STATUS (HFE) | V91X2847X |
| (g) MPS TVC ISO VLV OPEN COUNTER | (INTERNAL) |

If (a) or (d) is true, increment (g) by 1 and proceed to monitor (b) and (e). Otherwise proceed to monitor (b) and (e).

If (b) or (e) is true, increment (g) by 1 and proceed to monitor (c) and (f). Otherwise proceed to monitor (c) and (f).

If (c) or (f) is true, increment (g) by 1 and proceed to monitor (g). Otherwise proceed to monitor (g).
If $(\mathrm{g})<1$, then set (1) and (2) false and proceed to Step 1. Otherwise set (1) true, set (2) false, and return to Step 1.
(1) PRL TVC ISO VLV OPEN FLAG

V90X5522X
(2) SSME REPOSITION START FLAG
(INTERNAL)
Step 8. This step opens the hydraulic system 1 isolation valve for extension of the landing gear in MM 603 and MM 305.

Monitor the following signals:
(a) MAJOR MODE 603 FLAG V93X0013X
(b) MAJOR MODE 305 FLAG V90X8162X
(c) GROUND REL VELOCITY MAGNITUDE IN M50 SYS V95L0151C

If (a) or (b) is true, and (c) is $\leq 800 \mathrm{fps}$, on first pass, set (1) true, start (2), and return to Step 1. On subsequent passes, proceed to Step 9. Otherwise, return to Step 1.
(1) HYDR SYS 1 LDG GR ISLN VLV OPEN V58K0195X
(2) LND GEAR ISO VLV OP CMD TIMER (INTERNAL)

Step 9. This step terminates the hydraulic system 1 landing gear isolation valve open command.
Monitor the following signal:
(a) LND GEAR ISO VLV OP CMD TIMER
(INTERNAL)
If less than 5 seconds have elapsed since (a) started, proceed to Step 10.
If 5 or more seconds have elapsed since (a) started, set (1) false, and proceed to Step 10.
(1) HYDR SYS 1 LDG GR ISLN VLV OPEN

V58K0195X

Step 10. This step opens the hydraulic system brake isolation valves.
Monitor the following signal:
(a) BRAKE ISO VLV OPEN FLAG

V96X0060X
If (a) is true, on first pass, set (1), (2), and (3) true, start (4) and return to Step 1. On subsequent passes, proceed to Step 11. Otherwise, return to Step 1.
(1) HYD SYS 1 BRAKE ISLN VLV OPEN
(2) HYD SYS 2 BRAKE ISLN VLV OPEN

V58K0295X
(3) HYD SYS 3 BRAKE ISLN VLV OPEN

V58K0395X
(4) BRAKE ISO VLV OP CMD TIMER
(INTERNAL)
Step 11. This step terminates the hydraulic system brake isolation valves open commands.
Monitor the following signal:
(a) BRAKE ISO VLV OP CMD TIMER
(INTERNAL)
If less than 5 seconds have elapsed since (a) started, return to Step 1.
If 5 or more seconds have elapsed since (a) started, terminate (1), (2), and (3), and return to Step 1.
(1) HYD SYS 1 BRAKE ISLN VLV OPEN

V58K0197X
(2) HYD SYS 2 BRAKE ISLN VLV OPEN
(3) HYD SYS 3 BRAIKE ISLN VLV OPEN

LANDING GEAR VALVE CONTROL INITIATION

NOMENCLATURE	INTTLAL VALUE	UNITS	
SSME REPOSITION START FLAG	OFF		
MPS TVC VLV OPEN TIMER	0.0	SEC	
MPS TVC ISO VLV CLOSE COUNTER	0		
MPS TVC ISO VLV CLOSE TIMER	0.0	SEC	
MPS TVC ISO VLV OPEN COUNTER	0	SEC	
LND GEAR ISO VLV OP CMD TIMER	0.0	SEC	
BRAKE ISO VLV OP CMD TIMER	0.0		
SSME REPOSITION STOP FLAG	OFF	OFF	
DRAG CHUTE GIMBAL POSITION FLAG	OFF		
PRL TVC ISO VLV OPEN FLAG			

Figure 4.215. Hydraulic Systems Landing Gear Isolation Valve Control Logic (Sheet 1 of 2)

THIS PAGE INTENTIONALLY LEFT BLANK
TABLE 4．5．1．4－1．HYD SYS LANDING GEAR ISLN VLV CNTL SEQ（G4．215）INPUT／OUTPUT FUNCTIONAL PARAMETERS

ロ必い

\％	－四口喵	
	लनल0－1	
E	－orung	
宸		のの○のののののののののののの $\infty \infty \sigma \infty \infty \infty \infty \infty \infty \infty \infty \infty \infty \infty$

DBEN：D3B027－E	PN：VP707100049P00L	INPUT FUNCTIONAL PARANETERS F	ldg gear vlv cntl
FSSR NAME	M／S ID	NOMENCLATURE	SOURCE
Brk VLV OP	V96x0060x	BRAKE ISO VLV OPEN FLAG	LANDING SOP
MM Code $304 / \mathrm{MM} 304$	$4 \mathrm{~V} 90 \times 8161 \mathrm{x}$	MAJOR MODE 304 FLAG	MSC
	$5 \mathrm{~V} 90 \times 8162 \mathrm{x}$	MAJOR MODE 305 FLAG	MSC
MM ${ }^{-1005-603 / M^{-1}} 603$	$3 \mathrm{~V} 90 \times 8122 \mathrm{x}$	MAJOR MODE 603 FLAG	MSC
N＿HYYDRAÜLIC＿GOÖD	V9603001C	HYDR SYS GOOD Status	HYD SYS SOP
REL＿VEL MAG	V95L0151CD	GND REL VEL MAGNITUDE IN M50 SYS	TAEM UPP
REL＿VEL＿MAG／V	V95L0151CA	GND REL VEL MAGNItUde in m50 sys	RTLS UPP
REL＿VEL＿MAG／V	v95L0151CC	GND Rel vel magnitude in m50 sys	ent upp
SSME＿PEPOS	v93x5480x	CREW SSME REPOSITITON	OVERRIDE DISP
SSME＿REPOS＿CMPLT	V95x1624x	SSME CHUTE DEPLOY POSITTION CMPLT	MPS TVC CMD SOP
	V58x1136x	HYD SYS 1 ME／TVC ISLN V OP IND	HDWR
	V58x1236X	HYD SYS $2 \mathrm{ME} / \mathrm{TVC}$ ISLN V OR IND	HDWR
	v58x1336x	HYD SYS $3 \mathrm{ME} / \mathrm{TVC}$ ISLN V OP IND	HDWR
	v91x2845x	FA1 INPUT PROM SEG3， 10 Status（hFE）	ecos
	v91x2846x	fal 2 InPut Prom seg3，10 status（hfe）	fcos
	v91x2847x	fa3 input prom seg3， 10 Status（hfe）	fcos

TABLE 4.5.1.4-1. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) INPUT/OUTPUT FUNCTIONAL PARAMETERS

DBFN: D3B027-F PN:	VP707100049P00L	OUTPUT FUNCTIONAL PARAMETERS FROM LDG GEAR VLV CNTL				P	
						R	
					DATA	E	
	M/S ID	NOMENCLATURE	DESTINATION	UNITS	TYPE	C	LAST CRS
	V90x5522X	PRL TVC ISO VLV OPEN FLAG	AEROJET DAP				89991 E
PRL TVC ISOL VLV_OR	V90x5521x	DRAG CHUTE GIMBAL POSITION FLAG	MPS TVC CMD SOP				89991E
SSME GMBL FOS	V90x51623x	SSME REPOSITION STOP ELAG	GAX				89991E
SSME_REPOS_STOP	V58K0195X	HYDR SYS 1 LDG GR ISLN VLV OPEN	HYDR SYS 1		BD		
	V58K0197x	HYDR SYS 1 BRAKE ISLN VLV OREN	HYDR SYS 1		BD		90102D
	V58K0295	HYDR SYS 2 BRAKE ISLN VLV OPEN	HYDR SYS 2		BD		90102 D
	V58K0395X	HYDR SYS 3 BRAKE ISLN VLV OPEN	HYDR SYS 3		BD		90102 D
	V58K1129x	HYD SYS1 ME/TVC ISLN V OP/CL ENA A	HYDR SYS 1				89991 E
	V58K1132	HYD SYS1 ME/TVC ISLN V OP/CL ENA B	HYDR SYS 1				89991 E
	V58K1134 ${ }^{\text {x }}$	HYD SYS1 ME/TVC ISLN V OP	HYDR SYS 1				89991 E
	V58K1135 x	HYD SYS1 ME/TVC ISLN V CL	HYDR SYS 1				89991 E
	V58K1229	HYD SYS2 ME/TVC ISLN V OP/CL ENA \mathbb{A}	HYDR SYS 2				89991 E
	V58K1232\%	HYD SYS2 ME/TVC ISLN V OP/CL ENA B	HYDR SYS 2	.			89991 E
	V58K1234	HYD SYS2 ME/TVC ISLN V OP	HYDR SYS 2				89991 E
	V58K1235	HYD SYS2 ME/TVC ISLN V CL	HYDR SXS 2				89991 E
	V58K1332	HYD SYS3 ME/TVC ISLN V OP/CL ENA	HYDR SYS 3				89991 E
	V58K1334X	HYD SYS3 ME/TVC ISLN V OP	HYDR SYS 3				89991 E
	V58K1335x	HYD SYS3 ME/TVC ISLN V OP	HYDR SYS 3				89991 E

TABLE 4.5.1.4-2. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) I-LOADS
TABLE 4.5.1.4-3. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) K-LOADS
DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS
TABLE 4.5.1.4-4. HYD SYS LANDING GEAR ISLN VLV CNTL SEQ (G4.215) CONSTANTS

LAST CR

PR ECTN

DT PR S ENG UNIT

MC CONSTANT VALUE
家

MSID

DBEN: 0558
FSSR NAME
DESCRIPTION
NO FEQUIREMENTS

4.6 REACTION CONTROL SYSTEM (RCS)

4.6.1 RCS/RCS Crossfeed and Recomfiguration (4.185)

4.6.1.1 Introduction

The RCS propellant crossfeed sequence is used during ascent/entry for contingencies where the crossfeed sequence enables propellants from one aft pod to feed the thrusters of both aft pods. The sequence is manually initiated by the crew positioning the RCS master crossfeed switch to the desired crossfeed configuration or automatically initiated by the RCS helium regulator failure protection sequence when an aft RCS helium regulator is failed closed and there is no OMS/RCS interconnect configured. The sequence is also initiated automatically by the abort OMS/RCS interconnect sequence at the completion of OMS/ RCS reconnect sequencing if a crossfeed is being commanded either by the RCS master crossfeed switch or by the RCS helium regulator failure protection sequence.

The RCS propellant crossfeed reconfiguration sequence is used during ascent/entry to reconfigure the RCS propellant feed to normal after an RCS crossfeed sequence has been employed. The sequence is manually initiated by the crew positioning the master RCS crossfeed switch to OFF (center) position from one of the two crossfeed positions. RCS helium isolation valve control is a manual operation. During ascent and entry, jet firings will be limited whenever on auto crossfeed occurs except for RTLS ET separation.

On orbit, both the RCS propellant crossfeed and the $R C S$ propellant crossfeed reconfiguration are performed manually by the crew. The crossfeed switch is monitored by SW RM to limit the number of RCS jets fired during crossfeed operation. The RCS jets are inhibited by the crew during system configuration in orbit.

4.6.1.2 Overview

The RCS crossfeed sequence initiation is dependent upon the master RCS crossfeed switch being placed in the desired crossfeed position, or upon the $\mathbb{R C S}$ helium regulator failure protection sequence selecting the desired crossfeed configuration automatically if the switch is in the OFF position. The RCS control switches should be in the GPC position.

The OMS crossfeed valves are commanded closed in the crossfeed portion of the sequence to prevent undesirable propellant transfer between OMS and RCS. If an OMS/RCS interconnect is in effect or being configured, the $R C S / R C S$ crossfeed sequence will be reinitialized in order to accept future commands.

Left to Right Crossfeed. This sequence configures the aft RCS to feed the left pod propellants to both the left and right pod thrusters by performing the following functions:
(a) Close the OMS left and right crossfeed valves
(b) Open the RCS left and right crossfeed valves
(c) Open the left RCS tank isolation valves
(d) Close the right RCS tank isolation valves

Right to Left Crossfeed. This sequence configures the aft RCS to feed the right pod propellants to both the left and right pod thrusters by performing the following functions:
(a) Close the OMS left and right crossfeed valves
(b) Open the RCS left and right crossfeed valves
(c) Open the right RCS tank isolation valves
(d) Close the left RCS tank isolation valves

RCS Reconfiguration Sequence. This sequence initiation is dependent upon the master RCS crossfeed switch being in the OFF (center) position after being in one of the two crossfeed positions. All the RCS switches involved in this sequence should be in the GPC position.

The sequence reconfigures the left pod propellants to the left pod thrusters and the right pod propellants to the right pod thrusters after a crossfeed sequence has been terminated.

4.6.1.3 Detail Requirements

During ascent and entry, the scheduling and descheduling of this sequence are performed by moding, sequence, and control (MSC) based on a change in the master RCS crossfeed switch position or upon the RCS helium regulator failure protection sequence selecting the desired crossfeed configuration automatically and sequence completion flags.

Step 1. This step prevents the RCS crossfeed sequencer from running while an OMS/RCS interconnect is in effect or being configured.

The following signals are monitored:
(a) OMS/RCS INTERCONNECT COMMAND

V90X8312X
(b) OMS/RCS INTERCONNECT COMPLETE V90X8282X

If (a) or (b) is true, then enable first pass indicators for subsequence A, B, and C and set (1) below true and (2) and (3) below false and return to Step 1.

If (a) and (b) are false, then proceed to Step 2.
$\begin{array}{llr}\text { (1) } & \text { RCS XFD RECONFIG SEQ COMPL FL } & \text { V90X1539X } \\ \text { (2) RCS CROSSFEED SEQ COMPLETE FLAG } & \text { V90X1540X } \\ \text { (3) POST SEQ CMD TERM FLAG } & \text { (INTERNAL) }\end{array}$
Step 2. This step determines whether the master RCS crossfeed switch or the automatic signals from the $\overline{\mathrm{RCS}}$ helium regulator failure protection sequence are in control of selecting which crossfeed sequence is to be performed.

The following signals are monitored:
(a) SEL RCS MASTER CROSSFEED FROM LEFT

V90X7501X
(b) SEL RCS MASTER CROSSFEED FROM RT

V90X7502X
If (a) or (b) is true, set (1) and (2) below false and proceed to Step 3.

If (a) and (b) are false proceed to Step 3.
(1) FEED FROM LEFT RCS
V93X5199X
(2) FEED FROM RIGHT RCS

Step 3. This step initiates and controls the left to right RCS crossfeed.
The following signals are monitored:
(a) SEL RCS MASTER CROSSFEED FROM LEFT

V90X7501X
(b) FEED FROM LEFT RCS V93X5199X

If (a) and (b) are false, proceed to Step 4.
If (a) or (b) is true and it is not first pass, proceed to Subsequence A.
If (a) or (b) is true and it is first pass, enable all first-pass indicators for Subsequences B and C, set (1) and (2) false, and proceed to Subsequence A.
(1) RCS CROSSFEED SEQ COMPLETE FLAG V90X1540X
(2) RCS XFD RECONFIG SEQ COMPL FLAG V90X1539X

Step 4. This step initiates and controls the right to left RCS crossfeed.
The following signals are monitored:
(a) SEL RCS MASTER CROSSFEED FROM RT

V90X7502X
(b) FEED FROM RIGHT RCS

V93X5200X

If (a) and (b) are false, proceed to Step 5.
If (a) or (b) is true and it is not first pass, proceed to Subsequence C.
If (a) or (b) is true and it is first pass, enable all first-pass indicators for Subsequences A and B, set (1) and (2) false, and proceed to Subsequence C.
(1) RCS CROSSFEED SEQ COMPLETE FLAG V90X1540X
(2) RCS XFD RECONFIG SEQ COMPL FL

V90X1539X

Step 5. This step initiates and controls the reconfiguration to normal RCS propellant feed.
The following signals are monitored:
(a) SEL RCS MASTER CROSSFEED FROM LEFT

V90X7501X
(b) SEL RCS MASTER CROSSFEED FROM RT
(c) FEED FROM LEFT RCS

V90X7502X
(d) FEED FROM RIGHT RCS

If (a) or (b) or (c) or (d) is true, return to Step 1.
If (a) and (b) and (c) and (d) are all false, and if not first pass, proceed to Subsequence B.

If (a) and (b) and (c) and (d) are all false and it is first pass, enable first-pass indicators for Subsequences A and C, set (1) and (2) false, and proceed to Subsequence B.
(1) RCS CROSSFEED SEQ COMPLETE FLAG V90X1540X
(2) RCS XFD RECONFIG SEQ COMPL FL

V90X1539X

Subsequence A

Subsequence A is the left to right RCS crossfeed sequence and is manually initiated when the crew places the master RCS crossfeed switch in the FEED FROM LEFT position or automatically initiated when the RCS helium regulator failure protection sequence selects a FEED FROM LEFT RCS due to a right RCS helium regulator being failed closed.

Step A1. This step controls the removal or termination of all required MDM outputs in preparation for subsequent use in the sequence or provides a return if the sequence has been completed.

The following signals are monitored:
(a) RCS CROSSFEED SEQ COMPLETE FLAG
(b) POST SEQ CMD TERM FLAG
(INTERNAL)

If (a) is true and (b) is true, proceed to Subsequence E.
If (a) is true and (b) is false, return to Step 1.
If (a) is false and it is first pass, proceed to Subsequence E.
If (a) is false and it is not first pass, proceed to Step A3.
Step A2. Deleted.
Step A3. This step is used to command the OMS left and right crossfeed valves closed to prevent propellant flow between the RCS and OMS.

Issue the following commands, return to Step 1 until at least 1.5 seconds have elapsed, and proceed to Step A4.

OMS L POD XFD VLVS A CMD 1 CL
OMS L POD OX XFD VLV A CMD 2 CL
OMS L POD XFD VLVS B CMD 1 CL
OMS L POD OX XFD VLV B CMD 2 CL
OMS L POD FU XFD VLV A CMD 2 CL
OMS L POD FU XFD VLV B CMD 2 CL
OMS R POD XFD VLVS A CMD 1 CL
OMS R POD OX XFD VLV A CMD 2 CL
OMS R POD XFD VLVS B CMD 1 CL
OMS R POD OX XFD VLV B CMD 2 CL
OMS R POD FU XFD VLV A CMD 2 CL
OMS R POD FU XFD VLV B CMD 2 CL

V43K4283X
V43K4285X
V43K4287X
V43K4289X
V43K4385X
V43K4389X
V43K5283X
V43K5285X
V43K5287X
V43K5289X
V43K5385X
V43K5389X

Step A4. This step is used to command the RCS left and right crossfeed valves open.

Issue the following commands, return to Step 1 until at least 1.5 seconds have elapsed, then continue to Step A5.

RCS L AFT XFD VLV-1/2 GPC OP A
V42K2402X
RCS L AFT OX XFD V-1/2 GPC OP B V42K2403X
RCS L AFT FU XFD V-1/2 GPC OP B V42K2404X
RCS L AFT XFD VLV-3/4/5 GPC OP A V42K2408X
RCS L AFT OX XFD V-3/4/5 GPC OP B V42K2409X
RCS L AFT FU XFD V-3/4/5 GPC OP B V42K2410X
RCS R AFT XFD VLV-1/2 GPC OP A V42K3402X
RCS R AFT OX XFD V-1/2 GPC OP B V42K3403X
RCS R AFT FU XFD V-1/2 GPC OP B V42K3404X
RCS R AFT XFD VLV-3/4/5 GPC OP A V42K 3408 X
RCS R AFT OX XFD V-3/4/5 GPC OP B V42K3409X
RCS R AFT FU XFD V-3/4/5 GPC OP B V42K3410X
Step A5. This step is used to command the left RCS propellant tank isolation valves open.
Issue the following commands, return to Step 1 until at least 1.5 seconds have elapsed, then proceed to Step A6.

RCS L AFT TK ISLN V-1/2 GPC OP A V42K2342X
RCS L AFT OX TK ISLN V-1/2 GPC OP B V42K2343X
RCS L AFT FU TK ISLN V-1/2 GPC OP B V42K2344X
RCS L AFT OX TK ISLN V-3/4/5A GPC OP V42K2346X
RCS L AFT FU TK ISLN V-3/4/5A GPC OP V42K2347A
RCS L AFT OX TK ISLN V-3/4/5B GPC OP V42K2349X
RCS L AFT FU TK ISLN V-3/4/5B GPC OP V42K2350X
Step A6. This step is used to command the right tank isolation valves closed for left to right crossfeed.
Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed; then set (1) and (2) below true and return to Step 1.

RCS R AFT TK ISLN V-1/2 GPC CL A V42K3353X
RCS R AFT OX TK ISLN V-1/2 GPC CL B V42K3354X
RCS R AFT FU TK ISLN V-1/2 GPC CL B V42K3355X
RCS R AFT OX TK ISLN V-3/4/5A GPC CL V42K3357X
RCS R AFT FU TK ISLN V-3/4/5A GPC CL V42K3358X
RCS R AFT OX TK ISLN V-3/4/5B GPC CL V42K3360X
RCS R AFT FU TK ISLN V-3/4/5B GPC CL V42K3361X
(1) RCS CROSSFEED SEQUENCE COMPLETE FLAG V90X1540X
(2) POST SEQ CMD TERM FLAG
(INTERNAL)

Subsequence B

During ascent and entry, Subsequence B is the reconfiguration sequence and is manually initiated when the crew places the master RCS crossfeed switch in the OFF position after it has been in one of the two crossfeed positions.

Step B1. This step controls the removal or termination of a 1 required MDM outputs in preparation for subsequent use in the sequence.

The following signals are monitored:
(a) RCS XFD RECONFIG SEQ COMPL FL V90X1539X
(b) POST SEQ CMD TERM FLAG
(INTERNAL)

If (a) is true and (b) is true, proceed to Subsequence E.
If (a) is true and (b) is false, return to Step 1.
If (a) is false and it is first pass, proceed to Subsequence E.
If (a) is false and it is not first pass, proceed to Step B2.
Step B2. This step is used to command the RCS left and right propellant tank isolation valves open.
Issue the following commands, return to Step 1 until at least 1.5 seconds have elapsed, then proceed to Step B3.

RCS L AFT TK ISLN V 1/2 GPC OP A	V42K2342X
RCS L AFT OX TK ISLN V 1/2 GPC OP B	V42K2343X
RCS L AFT FU TK ISLN V 1/2 GPC OP B	V42K2344X
RCS L AFT OX TK ISLN V 3/4/5A GPC OP	V42K2346X
RCS L AFT FU TK ISLN V 3/4/5A GPC OP	V42K2347X
RCS L AFT OX TK ISLN V 3/4/5B GPC OP	V42K2349X
RCS L AFT FU TK ISLN V 3/4/5B GPC OP	V42K2350X
RCS R AFT TK ISLN V 1/2 GPC OP A	V42K3342X
RCS R AFT OX TK ISLN V 1/2 GPC OP B	V42K 3343X
RCS R AFT FU TK ISLN V 1/2 GPC OP B	V42K3344X
RCS R AFT OXTK ISLN V 3/4/5A GPC OP	V42K3346X
RCS R AFT FU TK ISLN V 3/4/5A GPC OP	V42K3347X
RCS R AFT OX TK ISLN V 3/4/5B GPC OP	V42K 3349 X
RCS R AFT FU TK ISLN V 3/4/5B GPC OP	V42K3350X

Step B3. This step is used to command the RCS left and right crossfeed valves closed.
Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed; then set (1) and (2) below true and return to Step 1.

RCS L AFT XFD V $1 / 2$ GPC CL A	V42K 2416 X
RCS L AFT OX XFD V $1 / 2$ GPC CL B	V42K 2418 X
RCS L AFT FU XFD V $1 / 2$ GPC CL B	V42K 2422 X
RCS L AFT XFD V $3 / 4 / 5$ GPC CL A	V42K 2428 X
RCS L AFT OX XFD V $3 / 4 / 5$ GPC CL B	V42K 2430 X
RCS L AFT FU XFD V $3 / 4 / 5$ GPC CL B	V42K 2434 X
RCS R AFT XFD V $1 / 2$ GPC CL A	V42K 3416 X
RCS R AFT OX XFD V $1 / 2$ GPC CL B	V42K 3418 X
RCS R AFT FU XFD V $1 / 2$ GPC CL B	V42K 3422 X
RCS R AFT OX XFD V 3/4/5 GPC CL B	V42K $3430 X$

RCS R AFT FU XFD V $3 / 4 / 5$ GPC CL B
V42K3434X
RCS R AFT XFD V $3 / 4 / 5$ GPC CL A
V42K3428X
(1) POST SEQ CMD TERM FLAG
(INTERNAL)
(2) RCS XFD RECONFIG SEQ COMPL FL V90X1539X

Subsequence C

Subsequence C is the right to left RCS crossfeed sequence and is manually initiated when the crew places the master RCS crossfeed switch in the FEED FROM RIGHT position or automatically initiated when the RCS helium regulator protection sequence selects a FEED FROM RIGHT RCS due to a left RCS helium regulator being failed closed.

Step C1. This step controls the removal or termination of all required MDM outputs in preparation for subsequent use in the sequence or provides a retum if the sequence has been completed.

The following signals are monitored:
(a) RCS CROSSFEED SEQ COMPLETE FLAG

V90X1540X
(b) POST SEQ CMD TERM FLAG

If (a) is true and (b) is true, proceed to Subsequence E.
If (a) is true and (b) is false, return to Step 1.
If (a) is false and it is first pass, proceed to Subsequence E.
If (a) is false and it is not first pass, proceed to Step C3.
Step C2. Deleted.
Step C3. This step is used to command the OMS left and right crossfeed valves closed to prevent propellant flow between the RCS and OMS.

Issue the following commands, return to Step 1 until at least 1.5 seconds have elapsed, and proceed to Step C4.

```
OMS L POD XFD VLVS A CMD 1 CL
OMS L POD OX XFD VLV A CMD 2 CL
OMS L POD XFD VLVS B CMD 1 CL
OMS L POD OX XFD VLV B CMD 2 CL
OMS L POD FU XFD VLV B CMD 2 CL
OMS L POD FU XFD VLV B CMD 2 CL
OMS R POD XFD VLVS A CMD 1 CL
OMS R POD OX XFD VLV A CMD 2 CL
OMS R POD XFD VLVS B CMD 1 CL
OMS R POD OX XFD VLV B CMD 2 CL
OMS R POD FU XFD VLV A CMD 2 CL OMS R POD FU XFD VLV B CMD 2 CL
```

V43K4283X
V43K4285X
V43K4287X
V43K4289X
V43K4385X
V43K4389X
V43K5283X
V43K5285X
V43K5287X
V43K5289X
V43K5385X
V43K5389X

Step C4. This step is used to command the RCS left and right crossfeed valves open.

Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed; then continue to Step C5.

RCS L AFT XFD VLV-1/2 GPC OP A	V42K2402X
RCS L AFT OX XFD V-1/2 GPC OP B	V42K 2403 X
RCS L AFT FU XFD V-1/2 GPC OP B	V42K2404X
RCS L AFT XFD VLV-3/4/5 GPC OP A	V42K2408X
RCS L AFT OX XFD V-3/4/5 GPC OP B	V42K2409X
RCS L AFT FU XFD V-3/4/5 GPC OP B	V42K2410X
RCS R AFT XFD VLV-1/2 GPC OP A	V42K3402X
RCS R AFT OX XFD V-1/2 GPC OP B	V42K3403X
RCS R AFT FU XFD V-1/2 GPC OP B	V42K3404X
RCS R AFT XFD VLV-3/4/5 GPC OP A	V42K 3408 X
RCS R AFT OX XFD V-3/4/5 GPC OP B	V42K 3409 X
RCS R AFT FU XFD V-3/4/5 GPC OP B	V42K 3410 X

Step C5. This step is used to command the right RCS propellant tank isolation valves open. Issue the following commands, return to Step 1 until at least 1.5 seconds have elapsed, then proceed to Step C6.

RCS R AFT TK ISLN V-1/2 GPC OP A V42K3342X
RCS R AFT OX TK ISLN V-1/2 GPC OP B V42K3343X
RCS R AFT FU TK ISLN V-1/2 GPC OP B V42K3344X
RCS R AFT OX TK ISLN V-3/4/5A GPC OP V42K3346X
RCS R AFT FU TK ISLN V-3/4/5A GPC OP V42K.3347X
RCS R AFT OX TK ISLN V-3/4/5B GPC OP V42K3349X
RCS R AFT FU TK ISLN V-3/4/5B GPC OP V42K3350X
Step C6. This step is used to command the left tank isolation valves closed for right to left crossfeed.
Issue the following commands and return to Step 1 until at least 1.5 seconds have elapsed; then set (1) and (2) below true and return to Step 1.

RCS L AFT TK ISLN V-1/2 GPC CL A
V42K2353X
RCS L AFT OX TK ISLN V-1/2 GPC CL B
V42K2354X
RCS L AFT FU TK ISLN V-1/2 GPC CL B
V42K2355X
RCS L AFT OX TK ISLN V-3/4/5A GPC CL
V42K2357X
RCS L AFT FU TR ISLN V-3/4/5A GPC CL
V42K2358X
RCS L AFT OX TK ISLN V-3/4/5B GPC CL
V42K2360X
RCS L AFT FU TK ISLN V-3/4/5B GPC CL
V42K2361X
(1) RCS CROSSFEED SEQ COMPLETE FLAG

V90X1540X
(2) POST SEQ CMD TERM FLAG
(INTERNAL)

Subsequence D

Deleted.

Subsequence \mathbb{E}

Step E1. This subsequence is used to establish a known configuration of the valve commands at the stant $\overline{\text { of each crossfeed or reconfiguration sequence. Terminate the following commands: }}$

RCS-L AFT TK ISLN V-1/2 GPC OP A
RCS-L AFT OX TK ISLN V-1/2 GPC OP B
RCS-L AFT FU TK ISLN V-1/2 GPC OP B
RCS-L AFT OX TK ISLN V-3/4/5A GPC OP RCS-L AFT FU TK ISLN V-3/4/5A GPC OP RCS-L AFT OX TK ISLN V-3/4/5B GPC OP RCS-L AFT FU TK ISLN V-3/4/5B GPC OP RCS-L AFT TK ISLN V-1/2 GPC CL A RCS-L AFT OX TK ISLN V-1/2 GPC CL B RCS-L AFT FU TK ISLN V-1/2 GPC CL B RCS-L AFT OX TK ISLN V-3/4/5A GPC CL RCS-L AFT FU TK ISLN V-3/4/5A GPC CL RCS-L AFT OX TK ISLN V-3/4/5B GPC CL RCS-L AFT FU TK ISLN V-3/4/5B GPC CL RCS-L AFT XFD VLV-1/2 GPC OP A RCS-L AFT OX XFD V-1/2 GPC OP B RCS-L AFT FU XFD V-1/2 GPC OP B RCS-AFT XFD VLV-3/4/5 GPC OP A RCS-L AFT OX XFD V-3/4/5 GPC OP B RCS-L AFT FU XFD V-3/4/5 GPC OP B RCS-L AFT XFD V-1/2 GPC CL A RCS-L AFT OX XFD V-1/2 GPC CL B RCS-L AFT FU XFD V-1/2 GPC CL B RCS-L AFT XFD V-3/4/5 GPC CL A RCS-L AFT OX XFD V-3/4/5 GPC CL B RCS-L AFT FU XFD V-3/4/5 GPC CL B RCS-R AFT TK ISLN V-1/2 GPC OP A RCS-R AFT OX TK ISLN V-1/2 GPC OP B RCS-R AFT FU TK ISLN V-1/2 GPC OP B RCS-R AFT OX TK ISLN V-3/4/5A GPC OP RCS-R AFT FU TK ISLN V-3/4/5A GPC OP RCS-R AFT OX TK ISLN V-3/4/5B GPC OP RCS-R AFT FU TK ISLN V-3/4/5B GPC OP RCS-R AFT TK ISLN V-1/2 GPC CL A RCS-R AFT OX TK ISLN V-1/2 GPC CL B RCS-R AFT FU TK ISLN V-1/2 GPC CL B RCS-R AFT OX TK ISLN V-3/4/5A GPC CL RCS-R AFT FU TK ISLN V-3/4/5A GPC CL RCS-R AFT OX TK ISLN V-3/4/5B GPC CL RCS-R AFT FU TK ISLN V-3/4/5B GPC CL RCS-R AFT XFD VLV-1/2 GPC OP A RCS-R AFT OX XFD V-1/2 GPC OP B RCS-R AFT FU XFD V-1/2 GPC OP B RCS-R AFT XFD VLV-3/4/5 GPC OP A RCS-R AFT OX XFD V-3/4/5 GPC OP B RCS-R AFT FU XFD V-3/4/5 GPC OP B RCS-R AFT XFD V-1/2 GPC CL A RCS-R AFT OX XFD V-1/2 GPC CL B RCS-R AFT FU XFD V-1/2 GPC CL B

V42K2342X
V42K2343X
V42K2344X
V42K2346X
V42K2347X
V42K2349X
V42K2350X
V42K2353X
V42K2354X
V42K2355X
V42K2357X
V42K2358X
V42K2360X
V42K2361X
V42K2402X
V42K2403X
V42K2404X
V42K2408X
V42K2409X
V42K2410X
V42K2416X
V42K2418X
V42K2422X
V42K2428X
V42K2430X
V42K2434X
V42K3342X
V42K3343X
V42K3344X
V42K3346X
V42K3347X
V42K3349X
V42K3350X
V42K3353X
V42K3354X
V42K3355X
V42K3357X
V42K3358X
V42K3360X
V42K3361X
V42K3402X
V42K3403X
V42K3404X
V42K3408X
V42K3409X
V42K3410X
V42K3416X
V42K3418X
V42K3422X

RCS-R AFT XFD V-3/4/5 GPC CL A
RCS-R AFT OX XFD V-3/4/5 GPC CL B
RCS-R AFT FU XFD V-3/4/5 GPC CL B
OMS-L POD XFD VLVS A CMD 1 OP
OMS-L POD XFD VLVS A CMD 1 CL
OMS-L POD OXDZR XFD VLV A CMD 2 OP
OMS-L POD OXDZR XFD VLV A CMD 2 CL
OMS-L POD XFD VLVS B CMD 1 OP
OMS-L POD XFD VLVS B CMD 1 CL
OMS-L POD OXDZR XFD VLV B CMD 2 OP
OMS-L POD OXDZR XFD VLV B CMD 2 CL
OMS-L POD FUEL XFD VLV A CMD 2 OP
OMS-L POD FUEL XFD VLV A CMD 2 CL
OMS-L POD FUEL XFD VLV B CMD 2 OP
OMS-L POD FUEL XFD VLV B CMD 2 CL
OMS-R POD XIFD VLVS A CMD 1 OP
OMS-R POD XFD VLVS A CMD 1 CL
OMS-R POD OXDZR XFD VLV A CMD 2 OP
OMS-R POD OXDZR XFD VLV A CMD 2 CL
OMS-R POD XFD VLVS B CMD 1 OP
OMS-R POD XFD VLVS B CMD 1 CL
OMS-R POD OXDZR XFD VLV B CMD 2 OP
OMS-R POD OXDZR XFD VLV B CMD 2 CL OMS-R POD FUEL XFD VLV A CMD 2 OP
OMS-R POD FUEL XFD VLV A CMD 2 CL
OMS-R POD FUEL XFD VLV B CMD 2 OP
OMS-R POD FUEL XFD VLV B CMD 2 CL

V42K3428X V42K3430X
V42K3434X
V43K4282X
V43K4283X
V43K4284X
V43K4285X
V43K4286X
V43K4287X
V43K4288X
V43K4289X
V43K4384X
V43K4385X
V43K4388X
V43K4389X
V43K5282X
V43K5283X
V43K5284X
V43K5285X
V43K5286X
V43K5287X
V43K5288X
V43K5289X
V43K5384X
V43K5385X
V43K5388X
V43K5389X

When all commands above have been terminated, the following signal is set false, and the sequence returns to Step 1.
(1) POST SEQ CMD TERM FLAG
(INTERNAL)

STS 83-0026D
OI-21
January 25, 1991

Figure 4.185. RCS/RCS XFEED (Sheet 1 of 5)

INFORMATION ONLY

Figure 4.185. RCS/RCS XFEED (Sheet 2 of 5)

Figure 4.185. RCS/RCS XFEED (Sheet 3 of 5)

Figure 4.185. RCS/RCS XFEED (Sheet 4 of 5)

Figure 4.185: RCS/RCS XFEED (Sheet 5 of 5)
TABLE 4.6.1.4-1. RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) INPUT/OUTPUT FUNCTIONAL PARAMETERS

					P	
FSSR NAME	M/S ID	NOMENCLATURE	SOURCE	UNITS	DATA	LAST CRS
						Last crs
	v90x7501x	SEL RCS MASTER CROSSEEED FROM LEFT	GN\&C SW RM		BD	89599C
	v90x7502x	SEL RCS MASTER CROSSFEED FROM RT	GN\&C SW RM		BD	89599C
	v90x8282x	OMS TO RCS INTERCONNECT COMP FLAG	ABT OMS/RCS CONN		BD	$\begin{aligned} & 90114 \mathrm{~B} \\ & 89561 \mathrm{~A} \end{aligned}$
	v90x8312x	OMS TO RCS INTERCONNECT CMD	ABT CNTL SEQ		BD	89599 C
	v93x5199xA	FEED FROM LEET RCS	RCS REG SEQ		BD	79964 F
	V93x5200xA	FEED FROM RIGHT RCS	RCS REG SEQ			79964F

TABLE 4.6.1.4-1. RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) INPUT/OUTPUT FUNCTIONAL PARAMETERS

100049P00L	OUTPUT FUNCTIONAL PARAMETERS FROM RCS/RCS XFEED		P		
				data e	
M/S ID	nomenclature	destination	UNITS	TYPE C	LASt CRS
v90x1540x	rcs crossfeed seq complete flag	AEROJET DAP, trans dap,			
		GRTLS DAP, MSC			
v90x1539x	rcs xfd reconfig seo complete flag	aErojet dap, trans dap, GRTLS DAP, MSC, TLM			89599C
V42K2342xc	RCS-L AFt tK ISLN V-1/2 gPC OP A	MCA A3			
V42K2343xC	RCS-L AFt OX TK ISLN V1/2 GPC OP B	MCA A3			
V42K2344xC	RCS-L AFt fu tk isle vi/2 GPC OP B	MCA A3			
v42K2346xC	rcs-L AFT OX TK ISLN V3/4/5AGPC OP	MCA A1			
v42K2347xC	RCS-L AFT FU TK isln v3/4/5AgPC OP	MCA 11			
v42K2349xC	RCS-L AFT OX TK ISLN V3/4/5bgrc or	MCA A2			
v42K2350xc	RCS-L AFT FU TK ISLN V3/4/5BGPC OP	MCA A2			
v42K2353xc	RCS-L AFT TK ISLN V-1/2 GPC CL A	MCA A3			
v42K2354xc		MCA A3			
V42K2355xc	RCS-L AFT FU TK ISLN V1/2 GPC CL B	MCA A3			
V42K2357xc	RCS-L AFT OX TK ISLN V3/4/5AGPC CL	MCA A1			
V42K2358xC	RCS-L AFT FU TK ISLN V3/4/5AGPC CL	MCA A1			89598A
v42K2360xC	RCS-L AFT OX TK ISLN V3/4/5BGPC CL	MCA A2			
V42K2361xc	RCS-L AET FU TK ISLN V3/4/5BGPC CL	MCA A2			
V42K2402XA	RCS-L AFT XFD VLV $1 / 2 \mathrm{GPC}$ OP A	MCA A3			
V42K2403xA	RCS-L AFT OX XFD VLV-1/2 GPC OP B	MCA A3			
V42K2404xA	RCS-L AFT FU XFD VLV $1 / 2 \mathrm{GPC}$ OP B	MCA A3			
v42K2408xA	RCS-L AFT XFD VLV 3/4/5 GPC OP A	MCA A2			
V42K2409xA	RCS-I AFT OX XED V-3/4/5 GPC OP B	MCA A2			
V42K2410xA	RCS-L AFT FU XFD V-3/4/5 GPC OP B	MCA A2			
v42K2416xA	RCS-L AFT XFD VLV- $1 / 2 \mathrm{GPC}$ CL A	MCA A 3			
V42K2418XA	RCS-L AFT OX XFD VLV-1/2 GPC CL B	MCA A3			
V42k 422 XA	RCS-I AFT FU XFD VLV-1/2 GPC CL B	MCA A			
V42K2428×A	RCS-L AFT XFD V-3/4/5 GPC CL A	MCA A2			
V42K2430xA	RCS-I AFT OX XFD $\mathrm{V}-3 / 4 / 5 \mathrm{GPC}$ CL B	MCA. A2			
V42K2434xA	RCS-L AFT FU XFD V-3/4/5 GPC CL B	MCA A2			
V42K3342xC	RCS-R AFT TK ISLN V-1/2 GPC OR A	MCA A3			
V42K3343xC	RCS-R AFT OX TK ISLN V-1/2 GPC OPB	MCA A3			
V42k3344XC	RCS-R AFT FU TK ISLN V-1/2 GPC OPB	MCA A 3			
V42K3346xC	RCS-R AFT OX TK ISLN V3/4/5AGPC OP	MCA A1			
V42K3347xC	RCS-R AFT FU TK ISLN V3/4/5AgPC OP	MCA A1			
v42k3349xc	RCS-R AFT OX TK ISLN V3/4/5BgPC OP	MCA A2			
V42к3350xc	RCS-R AFT FU TK ISLN V3/4/5BGPC OP	MCA A2			
V42K3353xC	RCS-R AET TK ISLN V-1/2 GPC CL A	MCA A3			
V42K3354xC	RCS-R AFT OX TK ISLN V-1/2 GPC CLB	MCA A3			
V42K3355xC	RCS-R AFT FU TK ISLN V-1/2 GPC CLB	MCA A3			
V42K3357xC	RCS-R AFT OX TK ISLN V3/4/5AGPC CL	MCA A1			
V42K3358xC V42K3360xC	RCS-R AFT FU TK ISLN V3/4/5AGPC CL RCS-R AFT OX TK	MCA A1 MCA A2			
v42к3360xC	RCS-R AFT OX TK ISLN V3/4/5BGPC CL	MCA A2			

TABLE 4.6.1.4-1. RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.6.1.4-2. RCS/RCS CROSSFEED AND RECONFIGURATION FUNCTION (G4.185) I-LOADS

DT $\mathrm{PR} D \mathrm{~S}$ PR FCTN CAT
ENG UNIT

MSID

NO REQUIREMENTS
DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS
NO REQUIREMENTS

4.6.3 RCS Quantity Monitor (4.102)

4.6.3.1 Introduction

The RCS quantity monitor sequence uses the GPC to calculate the percent of usable fuel and oxidizer remaining in each RCS module: forward, aft left, and aft right. The sequence also uses the calculated quantities to determine and output the lowest quantity of oxidizer or fuel for each RCS module, determine if the difference between each pair of tanks exceeds a preset tolerance to leakage detection, and provide automatic closure of the high-pressure helium isolation valves on orbit when the C\&W high limit on tank outlet pressure is exceeded. The initial helium weight and the total usable propellant weight I-loads are to be uplinked prior to launch in OPS 9 or after transition into OPS 2 and will be based on propellant load data obtained prior to launch in OPS 9. These I-loads must be protected across OPS transitions between prelaunch, ascent, on orbit and entry.

4.6.3.2 Overview

RCS quantities are computed based on the PVT method, which requires that pressure and temperature measurements be combined with a unique set of constants to calculate the percent remaining in each of the six propellant tanks. Transducer failures or commfaults are accounted for by substitution of alternate measurements. If an alternate measurement cannot be selected, a crew quantity alert is provided and the calculation of quantity remaining is suspended for the particular tank involved. If the condition (transducer failure or commfault) is removed or corrected, the associated alert(s) is reset.

For each tank pair, a separate output of lowest quantity of fuel or oxidizer is also provided.
Leak detection, based on a comparison between fuel and oxidizer, will result in a C\&W alert when a preset tolerance is exceeded. Sequential leaks are provided for by reset of the fuel or oxidizer level and the leak alert indicators at the time of failure detection.

For each tank, based on a C\&W alert of excessive outlet pressure, the helium isolation valves are commanded closed. Should the tank outlet pressure return within limits, the close commands are removed.

4.6.3.3 Detailed Requirements

Step 1. This step performs a test to isolate transducer failure for each measurement listed in Table 4.6.3-1. The following test shall be performed.
Lower Limit < MSID < Upper Limit

Any measurement outside of the range shall be considered a failed transducer. Proceed to Step 2.
Step 2. This step selects the value, in the order listed below, to be used in the calculation of oxidizer and fuel quantities. Using Tables 4.6.3-2, 4.6.3-3, 4.6.3-4 commfaults*, and the results of Step 1, select the appropriate values from below for use in Step 3.

The parameter used in the computation is the MSID listed in the table or its substitute. If no entry is available the appropriate flag, 1 through 3 , shall be set true; otherwise, set flags 1 through 3 false. If there

[^5]is no entry for any parameter in a group, the computation in Step 3 shall not be performed and the last previous value for the propellant shall be output.

	(1)
PSl	$(1)=$ V42P1110C OR SUBSTITUTE
PS2	$(1)=$ V42P1112C OR SUBSTITUTE
PF1	$(1)=$ V42P1115C OR SUBSTITUTE
PF2	(1)
	$(1)=V 42 \mathrm{~T} 1200 \mathrm{C}$
	(2) = V42T1104C OR
PS1	$(2)=$ V42P1113C OR SUBSTITUTE
PS2	$(2)=$ V42P1114C OR SUBSTITUTE
PF1	$(2)=$ V42P1116C OR SUBSTITUTE
PF2	$(2)=$ V42P1310C OR SUBSTITUTE
	$(2)=V 42 \mathrm{~T} 1300 \mathrm{C}$
TS	(3) $=$ V 42 T 2100 COR
PS1	(3) $=$ V42P2110C
PS2	(3) = V42P2112C OR SU
PF1	$(3)=V 42 \mathrm{P} 2115 \mathrm{C}$ OR SUBSTITUTE
PF2	(3) = V42P2210C OR SUBSTITUTE
TF	$(3)=$ V42T2200C OR SUBSTITUTE
TS	$(4)=$ V42T2104C OR SUBSTITUTE
PS1	$(4)=$ V42P2113C OR SUBS
PS2	$(4)=V 42 \mathrm{P} 2114 \mathrm{C}$ OR SUBS
PF1	$(4)=$ V42P2116C OR SUBS
PF2	$(4)=V 42 \mathrm{P} 2310 \mathrm{C}$ OR SUBS
TF	(4) $=$ V42T2300C OR
TS	$(5)=V 42 T 3100 \mathrm{C}$ OR SUB
PS1	(5) = V42P3110C OR SUBSTITUTE
PS2	(5) $=$ V42P3112C OR SUBSTITUTE
PF1	(5) = V42P3115C OR SUBSTITUTE
PF2	(5) $=$ V42P3210C OR SUBSTITUTE
T	$(5)=$ V42T3200C OR SUBSTITUT
T	(6) $=$ V42T3104C OR SUBSTITUTE
PS1	$(6)=$ V42P3113C OR SUBS
PS2	(6) $=$ V42P3114C OR SUBST
PF1	(6) $=$ V 42 P 3116 C OR SUBSTITUT
PF2	(6) = V42P3310C OR SUBSTITUTE
TF	$(6)=$ V42T3300C OR SUBSTTTTU

where
(1) = FWD OX
(2) = FWD FU
(3) = AFT LEFT OX
(4) = AFT LEFT FU
(5) = AFT RIGHT OX
(6) = AFT RIGHT FU

Step 3. This step calculates the OX and FU quantities, using the parameters from Step 2.

$$
\begin{equation*}
\mathrm{RWFD}=\frac{\mathrm{RHOF}[\mathrm{VP}-\mathrm{VTP}-\mathrm{VHU}]-\mathrm{WTP}}{\mathrm{WFDA}}(100) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{RWFD}= & \text { Usable propellant quantity remaining in percent } \\
\mathrm{RHOF}= & \text { Propellant density } \\
\mathrm{VP}= & \text { Volume of the propellant system } \\
\mathrm{VTP}= & \text { Volume of trapped line propellant } \\
\mathrm{VHU}= & \text { Propellant tank ullage volume } \\
\mathrm{WTP}= & \text { Weight of residual tank propellant plus gaging system accuracy } \\
& (6 \text { I-loads, Table 4.6.3-6) }
\end{aligned}
$$

WFDA $=$ Weight of total usable propellant (6 I-loads, Table 4.6.3-6)
The terms of the algorithm must be selected for each quantity calculated; that is, six sets of parameters and/or constants are used in calculating the six propellant quantities. For constants, see Table 4.6.3-5. The terms RHOF and VHU are variables and must be computed for each quantity calculation using the following:

$$
\begin{gathered}
\operatorname{RHOF}_{(\mathrm{FU})}=\mathrm{E}_{1}-\left(\mathrm{E}_{2}\right)\left(\mathrm{T}_{\mathrm{f}}\right)+\left(\mathrm{E}_{3}\right)(\mathrm{PF}) \\
\text { RHOF }_{(\mathrm{OX})}=\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{2}\right)\left(\mathrm{T}_{\mathrm{f}}\right)+\left(\mathrm{C}_{3}\right)(\mathrm{PF}) \\
\mathrm{VHU}=\frac{\mathrm{G}[\mathrm{WHII}-\mathrm{WHS}]\left(\mathrm{T}_{\mathrm{f}}\right) \mathrm{R}}{\mathrm{PF}-\mathrm{PFV}}
\end{gathered}
$$

where

$$
\begin{aligned}
\mathrm{E}_{1}, \mathrm{E}_{2}, \text { and } \mathrm{E}_{3} & =\text { Fuel density coefficients } \\
\mathrm{T}_{\mathrm{f}} & =\text { Propellant tank temperature }={ }^{\circ} \mathrm{F}+\mathrm{H} \\
\mathrm{PF} & =\text { Propellant tank pressure }=\frac{\left(\mathrm{PF}_{1}+\mathrm{PF}_{2}\right)}{2} \\
\mathrm{C}_{1}, \mathrm{C}_{2} \text {, and } \mathrm{C}_{3} & =\text { Oxidizer density coefficients } \\
\mathrm{G} & =\text { Helium weight coefficient }
\end{aligned}
$$

```
WHI \(=\) Initial helium weight in system ( 6 I-loads, Table 4.6.3-6)
WHS \(=\) Weight of helium in helium supply
    R \(=\) Helium gas constant
\(\mathrm{PFV}=\) Propellant vapor pressure
```

$$
\mathrm{WHS}=\frac{(\mathrm{PS})(\mathrm{VHS})}{\mathrm{ZS}(\mathrm{R}) \mathrm{T}_{\mathrm{S}}}
$$

where

$$
\begin{aligned}
\mathrm{PS} & =\text { Helium bottle pressure }=\frac{\left(\mathrm{PS}_{1}+\mathrm{PS}_{2}\right)}{2} \\
\mathrm{VHS} & =\text { Helium supply system volume } \\
\mathrm{ZS} & =\text { Helium compressibility factor } \\
\mathrm{T}_{\mathrm{S}} & =\text { Helium bottle temperature }={ }^{\circ} \mathrm{F}+\mathrm{H} \\
\mathrm{R} & =\text { Helium gas constant } \\
\mathrm{VHS} & =\text { VHAM }[1+(\mathrm{PS})(\mathrm{A})]^{3}+\text { VHLI }
\end{aligned}
$$

where
VHAM $=$ Volume of helium bottle at 0 psig and $70^{\circ} \mathrm{F}$
$A=$ Helium system volume coefficient
VHLI $=$ Volume of helium lines

$$
Z S=1+B_{1}(P S)\left(T_{S}\right)^{-B 2}
$$

where

$$
B_{1} \text { and } B_{2}=\text { Helium compressibility coefficients }
$$

$$
\begin{gathered}
\mathrm{PFV}_{\mathrm{OX}}=\mathrm{e}^{+}\left[\mathrm{D}_{1}-\left(\frac{\mathrm{D} 2}{\mathrm{~T}_{\mathrm{f}}}\right)+\left(\mathrm{D}_{3}\right)^{\mathrm{T}_{\mathrm{f}}}\right] \\
\mathrm{PFV}_{\mathrm{FU}}=\mathrm{F} \text { at } 70^{\circ} \mathrm{F}
\end{gathered}
$$

where
D_{1}, D_{2}, and $D_{3}=$ Oxidizer vapor pressure coefficients

$$
F=\text { Fuel vapor pressure }
$$

The six calculated RCS quantities below are output to the dedicated cockpit meter, 5 PCM counts/ 1 percent, with quantities exceeding 99 percent limited to 99 percent.

RCS-FWD OX QUANTITY	V72Q1370C
RCS-FWD FUEL QUANTITY	V72Q1371C
RCS-L AFT OX QUANTITY	V72Q1374C
RCS-L AFT FUEL QUANTITY	V72Q1375C
RCS-R AFT OX QUANTITY	V72Q1378C
RCS-R AFT FUEL QUANTITY	V72Q1379C

The six calculated quantities are also output to the CRT displays as the following signals in percent remaining:

RCS-FWD OX QUANTITY REMAINING DISP	V90Q2360C
RCS-FWD FUEL QUANTITY REMAINING DISP	V90Q2361C
RCS-L AFT OX QUANTITY REMAINING DISP	V90Q2362C
RCS-L AFT FUEL QUANTTTY REMAINING DISP	V90Q2363C
RCS-R AFT OX QUANTTTY REMAINING DISP	V90Q2364C
RCS-R AFT FUEL QUANTTTY REMAINING DISP	V90Q2365C

Proceed to Step 4.
Step 4. This step is used to compare the calculated quantity of fuel and oxidizer in each RCS module and output the lowest quantity, oxidizer or fuel, to the dedicated meter.
Compare the quantities computed in Step 3 to determine the lowest remaining between each pair of fuel/ oxidizer tanks, forward, aft left, and aft right. Output the following as lowest value for each pair in volts, scaled for quantity remaining:
$\begin{array}{ll}\text { RCS FWD PROP QUANTITY LOWEST } & \text { V72Q1372C } \\ \text { RCS-L AFT PROP QUANTITY LOWEST } & \text { V72Q1376C } \\ \text { RCS-R AFT PROP QUANTITY LOWEST } & \text { V72Q1380C }\end{array}$

Proceed to Step 5.
Step 5. This step performs a comparison of oxidizer versus fuel for each location, forward, aft left, and $\overline{\text { aft right, to determine if utilization is balanced within the threshold level for leak detection. }}$
Each pair of quantities, fuel and oxidizer, in each module shall be compared to each other and the quantity difference compared to the preset leakage limits in the following algorithm.*

$$
\Delta \mathrm{RWL}=\mathrm{RWFD}(\mathrm{OX})+\mathrm{OX}-\mathrm{BIAS}-[\mathrm{RWFD}(\mathrm{FU})+\mathrm{FU}-\mathrm{BIAS}]
$$

If $|\Delta R W I L|-|\Delta R W L| \geq 0$, no leak, proceed to Step 6.
If $|\Delta R W I L|-|\Delta R W L|<0$, leak alert then
If $\Delta R W L>0$, set fuel leak alert (forward, left, or right) and set FU-BIAS $=$ FU-BIAS $+\Delta R W L$
or if $\triangle R W L<0$ set oxidizer leak alert forward, left, or right, and set OX-BIAS $=O X-B I A S+$ | \triangle RWL |

[^6]where
\[

$$
\begin{aligned}
\mathrm{RWFD} & =\text { Propellant quantity remaining (FU,OX) } \\
\pm \Delta \mathrm{RWL} & =\text { Difference in propellant quantities } \\
\Delta \mathrm{RWIL} & =\mathrm{RCS} \text { leak detection indicator limit (PCT) V97U9807C (Table 4.6.3-6) }
\end{aligned}
$$
\]

If any of the propellant leak alert is true, issue the corresponding following outputs to generate CRT message lines, a Class 2 alert light and tone, and status indicators:

(1)	RCS-FWD OX LEAKAGE ALERT	V90X2356X
(2)	RCS-FWD OX LEAKAGE ALERT DISP	V90X2379X
(3)	RCS-FWD FUEL LEAKAGE ALERT	V90X2355X
(4)	RCS-FWD FUEL LEAKAGE ALERT DISP	V90X2378X
(5)	RCS-L AFT OX LEAKAGE ALERT	V90X2352X
(6)	RCS-L AFT OX LEAKAGE ALERT DISP	V90X2375X
(7)	RCS-L AFT FUEL LEAKAGE AIERT	V90X2351X
(8)	RCS-L AFT FUEL LEAKAGE ALERT DISP	V90X2374X
(9)	RCS-R AFT OX LEAKAGE ALERT	V90X2354X
(10)	RCS-R AFT OX LEAKAGE ALERT DISP	V90X2377X
(11)	RCS-R AFT FUEL LEAKAGE ALERT	V90X2353X
(12)	RCS-R AFT FUEL LEAKAGE ALERT DISP	V90X2376X

Proceed to Step 6.
Step 6. This step is used to provide automatic closure of the high-pressure helium isolation valve when the C\&W high limit on tank outlet pressure is exceeded.

If (g) is true, monitor (a) through (f) below; otherwise return to Step 1.
The following signals are monitored:

(a)	RCS FWD TK PRESS OX HI/LO/IO STAT	V94J4342C
(b)	RCS FWD TK PRESS FU HILO/IO STAT	V94J4343C
(c)	RCS L TK PRESS OX HI/LO/IO STATUS	V94J4346C
(d)	RCS LK PRESS FU HI/LO/IO STATUS	V94J4347C
(e)	RCS R TK PRESS OX HLLO/IO STATUS	V94J4350C
(f)	RCS R TK PRESS FU HI/LO/IO STATUS	V94J4351C
(g)	OPS 2 IND	V90X8633X

For each lettered signal (a) through (f) above indicating an excess outlet pressure, HI, both of the corresponding lettered commands below will be issued.

For each pair of lettered signals (a) through (f) above (both propellants of the same location-fwd, L, and R) not indicating an excess outlet pressure, HI, both pairs of the corresponding lettered commands (a) through (f) below are terminated.
$\begin{array}{lll}\text { (a) } & \text { RCS FWD HIE PRESS VLV A GPC CL A } & \text { V42K1154X } \\ \text { (b) RCS FWD HE PRESS VLV A GPC CL A } & \text { V42K1154X } \\ \text { (c) } & \text { RCS L AFT HE PRESS VLV A GPC CL A } & \text { V42K } 2154 \mathrm{X}\end{array}$
(d) RCS L AFT HE PRESS VLV A GPC CL A V42K2154X
(e) RCS R AFT HE PRESS VLV A GPC CL A V42K3154K
(f) RCS R AFT HE PRESS VLV A GPC CL A V42K3154K
(a) RCS FWD HE PRESS VLV B GPC CL A V42K1156X
(b) RCS FWD HE PRESS VLV B GPC CL A
(c) RCS L AFT HE PRESS VLV B GPC CL A
(d) RCS L AFT HE PRESS VLV B GPC CL A
(e) RCS R AFT HE PRESS VLV B GPC CL A V42K1156X V42K2156X V42K2156X
(f) RCS R AFT HE PRESS VLV B GPC CL A V42K3156X V42K3156X

Then return to Step 1.

STS 83-0026D
OI-21
January 25, 1991

Table 4.6.3-1. RCS Propellant Transducer Limits					
FWD RCS					
LIMITS					
OXID	UPPER	LOWER	FUEL	UPPER	LOWER
V42T1100C	175	-75	V42T1104C	175	-75
V42P1110C	4000	400	V42P1113C	4000	400
V42P1112C	4000	400	V42P1114C	4000	400
V42P1115C	380	150	V42P1116C	380	150
V42T1200C	160	0	V42T1300C	160	0
V42P1210C	380	150	V42P1310C	380	150
LEFT RCS					
LIMITS					
OXID	UPPER	LOWER	FUEL	UPPER	LOWER
V42T2100C	175	-75	V42T2104C	175	-75
V42P2110C	4000	400	V42P2113C	4000	400
V42P2112C	4000	400	V42P2114C	4000	400
V42P2115C	380	150	V42P2116C	380	150
V42T2200C	160	0	V42T2300C	160	0
V42P2210C	380	150	V42P2310C	380	150
RIGHT RCS					
LIMITS					
OXID	UPPER	LOWER	FUEL	UPPER	LOWER
V42T3100C	175	-75	V42T3104C	175	-75
V42P3110C	4000	400	V42P3113C	4000	400
V42P3112C	4000	400	V42P3114C	4000	400
V42P3115C	380	150	V42P3116C	380	150
V42T3200C	160	0	V42T3300C	160	0
V42P3210C	380	150	V42P3310C	380	150

STS 83-0026D
OI-21
January 25, 1991

Table 4.6.3-2. Forward RCS Propellant Quantity Primary/Substitute Parameters

FWD		
MSID	MDM	COLUMN 1
V42T1100C	3	V42T1104C*
V42P1110C	3	V42P1112C*
V42P1112C	1	V42P1110C
V42P1115C	1	V42P1210C*
V42P1210C	3	V42P1115C
V42T1200C	1	V42T1300C*
V42T1104C	1	V42T1100C
V42P1113C	1	V42P1114C*
V42P1114C	3	V42P1113C
V42P1116C	3	V42P1310C*
V42P1310C	1	V42P1116C
V42T1300C	3	V42T1200C

Table 4.6.3-3. Aft Left RCS Propellant Quantity Primary/Substitute Parameters		
AFT LEFT		
MSID	MDM	COLUMN 1
V42T2100C	1	V42T2104C*
V42P2110C	1	V42P2112C*
V42P2112C	1	V42P2110C
V42P2115C	1	V42P2210C*
V42P2210C	1	V42P2115C
V42T2200C	1	V42T2300C*
V42T2104C	1	V42T2100C
V42P2113C	1	V42P2114C*
V42P2114C	1	V42P2113C
V42P2116C	1	V42P2310C*
V42P2310C	1	V42P2116C
V42T2300C	1	V42T2200C

Table 4.6.3-4. Aft Right RCS Propellant Quantity Primary/Substitute Parameters		
AFT Right		
MSID	MDM	COLUMN 1
V42T3100C	2	V42T3104C*
V42P3110C	2	V42P3112C*
V42P3112C	2	V42P3110C
V42P3115C	2	V42P3210C*
V42P3210C	2	V42P3115C
V42T3200C	2	V42T3300C*
V42T3104C	2	V42T3100C
V42P3113C	2	V42P3114C*
V42P3114C	2	V42P3113C
V42P3116C	2	V42P3310C*
V42P3310C	2	V42P3116C
V42T3300C	2	V42T3200C

Table 4.6.3-5. RCS Propellant Quantity Constants		
Title	Value	Units
RCS-FWD TRAPPED OX LINE VOL (VTP)	725.9	in. ${ }^{3}$
RCS-FWD TRAPPED FU LINE VOL (VTP)	677.5	in. ${ }^{3}$
FUEL DENSITY COEFFICIENT (E1)	4.1538×10^{-2}	-
FUEL DENSITY COEFFICIENT (E2)	1.8679×10^{-5}	-
FUEL DENSITY COEFFICIENT (E3)	1.4583×10^{-7}	-
FUEL VAPOR PRESSURE (F)	0.8	psia
HELIUM WEIGHT COEFFICIENT (G)	1.008	-
HELIUM GAS CONSTANT (R)	4635	in. $-1 \mathrm{~b} / \mathrm{lb}-{ }^{\circ} \mathrm{R}$
RANKIN TEMP CONVERSION COEFF (H)	459.7	-
HELIUM SYSTEM COEFFICIENT (A)	1.4972×10^{-6}	-
HELIUM COMPRESSIBILITY COEFFICIENT (B1)	9.7544×10^{-3}	-
HELIUM COMPRESSIBILITY COEFFICIENT (B2)	0.897	in. ${ }^{3}$
RCS-L AFT TRAPPED OX LINE VOL (VTP)	1.1326×10^{3}	in. ${ }^{3}$
RCS-L AFT TRAPPED FU LINE VOL (VTP)	1.2230×10^{3}	in. ${ }^{3}$
RCS-R AFT TRAPPED OX LINE VOL (VTP)	1.1326×10^{3}	in. ${ }^{3}$
RCS-R AFT TRAPPED FUL LINE VOL (VTP)	1.2230×10^{3}	in. ${ }^{3}$
RCS-FWD HE BOTTLE VOLUME (VHAM)	3.043×10^{3}	in. ${ }^{3}$
RCS-L AFT HE BOTTLE VOLUME (VHAM)	3.043×10^{3}	in. ${ }^{3}$
RCS-R AFT HE BOTTLE VOLUME (VHAM)	3.043×10^{3}	in. ${ }^{3}$
RCS-FWD OX HE LINE VOLUME (VHLI)	13.7	in. ${ }^{3}$
RCS-FWD FU HE LINE VOLUME(VHLI)	13.7	in. ${ }^{3}$
RCS-L AFT OX HE LINE VOLUME (VHLI)	23.6	in. ${ }^{3}$
RCS-L AFT FU HE LINE VOLUME (VHLI)	20.7	in. ${ }^{3}$
RCS-R AFT OX HE LINE VOLUME (VHLI)	23.6	in. ${ }^{3}$
RCS-R AFT FU HE LINE VOLUME (VHLI)	20.7	in. ${ }^{3}$
RCS-FWD OX SYSTEM VOLUME (VP)	3.1892×10^{4}	in. ${ }^{3}$
RCS-FWD FU SYSTEM VOLUME (VP)	3.18436×10^{4}	in. ${ }^{3}$
RCS-L AFT OX SYSTEM VOLUME (VP)	3.23156×10^{4}	in. ${ }^{3}$
RCS-L AFT FU SYSTEM VOLUME (VP)	3.23886×10^{4}	in. ${ }^{3}$
RCS-R AFT OX SYSTEM VOLUME (VP)	3.23156×10^{4}	in. ${ }^{3}$
RCS-R AFT FU SYSTEM VOLUME (VP)	3.23886×10^{4}	in. ${ }^{3}$
OXIDIZER DENSITY COEFFICIENT (C_{1})	7.6027×10^{-2}	-
OXIDIZER DENSITY COEFFICIENT (C_{2})	4.5162×10^{-5}	-
OXIDIZER DENSITY COEFFICIENT (C_{3})	4.1667×10^{-7}	-
OXID VAPOR PRESS COEFFICIENT (D_{1})	12.082	-
OXID VAPOR PRESS COEFFICIENT (D_{2})	6111.0	-
OXID VAPOR PRESS COEFFICIENT (D_{3})	4.03×10^{-3}	-

STS 83-0026D
OI-21
January 25, 1991

Table 4.6.3-6. RCS Propellant Quantity I-Loads

MSID	Title	Nomenclature
V99U7584C	WPT	RCS FWD FU TK RESIDUAL WT
V99U7583C	WPT	RCS FWD OX TK RESIDUAL WT
V99U7586C	WPT	RCS L AFT FU TK RESIDUAL WT
V99U7585C	WPT	RCS L AFT OX TK RESIDUAL WT
V99U7588C	WPT	RCS R AFT FU TK RESIDUAL WT
V99U7587C	WPT	RCS R AFT OX TK RESIDUAL WT
V97U9817C	WFDA	RCS FWD 100 PCT USABLE FU
V97U9816C	WFDA	RCS FWD 100 PCT USABLE OX
V97U9819C	WFDA	RCS L AFT 100 PCT USABLE FU
V97U9818C	WFDA	RCS L AFT 100 PCT USABLE OX
V97U9821C	WFDA	RCS R AFT 100 PCT USABLE FU
V97U9820C	WFDA	RCS R AFT 100 PCT USABLE OX
V97U9811C	WHI	RCS FWD FU TOTAL HE WT
V97U9810C	WHI	RCS FWD OX TOTAL HE WT
V97U9813C	WHI	RCS L AFT FU TOTAL HE WT
V97U9812C	WHI	RCS L AFT OX TOTAL HE WT
V97U9815C	WHI	RCS R AFT FU TOTAL HE WT
V97U9814C	WHI	RCS R AFT OX TOTAL HE WT
V97U9807C	ARWIL	RCS LEAK DET IND LMT

Figure 4.102. RCS Qty Mon (Sheet 1 of 2)

Figure 4.102. RCS Qty Mon (Sheet 2 of 2)

OPS 2 IND

DBEN: D3B327-F
FSSR NAME
ORS_2_INDICATOR

的内四

\qquad

PN：VP707100049P00L

DBEN：D3B027－F
TABLE 4．6．3．4－1．RCS QUANTITY MONITOR（G4．102）INPUT／OUTPUT FUNCTIONAL PARAMETERS

 W U U皆 | E |
| :--- |
| |

皆曷品品品品品品品品
品 $\sum_{B=1} \sum_{n} \sum_{B=1} \sum_{B} \sum_{B}$为

 FROM RCS QTY MON
DESTINATION RM RCS DIP，GNC SYS SUMM2 DISP，
TLM RM RCS DIP，GNC SYS SUMM2 DISP，
TLM
RM RCS DIP，GNC SYS SUMM2 DISP， TLM LM RCS DIP，GNC SYS SUMM2 DISP，
 RM RCS DIP，GNC SYS SUMM2 DISE RCS FWD OX QUANTITY REMAINING DISP RCS FWD FU QUANTITY REMAINING DISP RCS－L AFT OX QTY REMAINING DISP RCS－L AFT FUEL QTY REMAINING DISP RCS－R AFT OX OTY REMAINING DISP RCS－R AFT FUEL OTY REMAINING DISP RCS－FWD OX QUANTITY

齐 Har
TABLE 4.6.3.4-2. RCS QUANTITY MONITOR (G4.102) I-LOADS

FSSR NAME	MSID	ENG UNIT	DT PR D S PR FCTN				CAT
RCS_FWD_FU_TK_RESIDUAL_WT	V9907584C	LBS	F	s	M	C G4. 102	OHE2
RCS_FWD_FU_TOTAL_HE_WT	V97U9811C	LBS	F	S	M	C G4. 102	OHE 2
RCS_EWD_OX_TK_RESIDUAL_WT	v9907583C	LBS	F	s		C G4. 102	QHE2
RCS_FWD_OX_TOTAL_HE_WT	v97u9810C	LBS	F	S		C G4. 102	QHE2
RCS_FWD_100_PCT_USABLE_FU	V97U9817C	LBS	F	S	M	C G4. 102	QHE2
RCS_FWD_100_PCT_USABLE_OX	v97u9816C	LBS	F	s	M	C G4.102	QHE2
RCS_L_AFT_FU_TK_RESIDUAL_WT	V99U7586C	LBS	F	S	M	C G4.102	QHE2
RCS_L_AFT_FU_TOTAL_HE_WT	V97U9813C	LBS	F	S	M	C G4. 102	QHE2
RCS_L_AFT_OX_TK_RESIDUAL_WT	V99U7585C	LBS	F	S	M	C G4.102	QHE2
RCS_L_AFT_OX_TOTAL_HE_WT	V97u9812C	LBS	F	S	M	C G4. 102	QHE2
RCS_L_AFT_100_PCT_USABLE_FU	v97u9819C	LBS	F	S	M	C G4.102	QHE2
RCS_L_AFT_100_PCT_USABLE_OX	V97U9818C	LBS	F	S	M	C G4.102	QHE2
RCS_LEAK_DET_IND_LMT	V97U9807C	PCT	F	S	D	C G4.102	QHE2
RCS_R_AFT_FU_TK_RESIDUAL_WT	V99U7588C	LBS	F	S	M	C G4.102	QHE2
RCS_R_AFT_FU_TOTAL_HE_WT	v9709815C	LBS	F	S	M	C G4. 102	QHE 2
RCS_R_AFT_OX_TK_RESIDUAL_WT	v99u7587c	LBS	F	S	M	C G4. 102	QHE2
RCS_R_AFT_OX_TOTAL_HE_WT	V97U9814C	LBS	F	S	M	C G4. 102	QHE2
RCS_R_AFT_100_PCT_USABLE_FU	v97u9821C	LBS	F	S	M	C G4.102	QHE 2
RCS_R_AFT_100_PCT_USABLE_OX	V97U9820C	LBS	F	S	M	C G4. 102	QHE2

TABLE 4.6.3.4-3. RCS QUANTITY MONITOR (G4.102) K-LOADS

FSSR NAME
DESCRIPTION MSID
NO REQUIREMENTS

TABLE 4.6.3.4-4. RCS QUANTITY MONITOR (G4.102) CONSTANTS

DBEN:0558 ESSR NAME DESCRIPTION	MSID	MC	CONSTANT	VALUE	ENG UNIT	DT	PR	S	PR FCTN	LAST CR
FUEL DENSITY COEFFICIENT E1 FUEL DENSITY COEFFICIENTT (E1)	V97U6159C		+4.1538	E-02	ND	F	D	C	G4. 102	90374
FUEL DENSITY_COEFFICIENT_E2 FUEL DENSITY COEFFICIENTT (E2)	V97U6160C		+1.8679	E-05	ND	F	D	C	G4. 102	90374
FUEL DENSITY COEFFICIENT E3 EUEL DENSITY COEFFICIENTT (E3)	V97U6161C		+1.4583	E-07	ND	F	D	C	G4. 102	90374
FUEL VAPOR PRESSURE F FUEL VAP $\bar{O} R$ RRESSURE (F)	V97U6162C		+8.0	E-01	PSIA	F	D	C	G4. 102	90374
HE COMPRESSIBILITY COEFFICIENT B1 F$E L I U M$ COMPRESSIBILITY COEFFICIENT	$\begin{aligned} & \text { V97U6163C } \\ & \text { I (B1) } \end{aligned}$		+9.7544	E-03	ND	F	D	C	G4. 102	90374
HE COMPRESSIBILITY COEFFICIENT B2 HELIUM COMPRESSIBILITY COEFEICIENT	$\begin{aligned} & \text { V97U6164C } \\ & T \quad(\mathrm{~B} 2) \end{aligned}$		$+8.97$	E-01	ND	F	D	C	G4.102	90374
HELIUM_GAS_CONSTANT_R	V97U6165C		$+4.635$	E+03	$\begin{aligned} & \text { PSIA*IN**3/LBM } \\ & \star D E G R \end{aligned}$	\underline{F}	D	C		90374
HELIUM GAS CONSTANT (R)									G4. 102	
HELIUM SYSTEM COEFEICIENT A HELIUM SYSTEM VOLUME COEFFICIENT	$\begin{aligned} & \text { V97U6166C } \\ & \text { (A) } \end{aligned}$		+1.4972	E-06	ND	F	D	C	G4. 102	90374
HELIUM WEIGHT COEFEICIENT G HELIUM WEIGĒT COEFEICIENTT	V97U6167C		+1.008	E +00	ND	F	D	C	G4. 102	90374
OXID VAPOR PRESS COEFFICIENT D1 OXID VAPOR PRES̄S COEFFICIEN̄T (D1)	V97U6168C		+1.2082	E+01	ND	F	D	C	G4. 102	90374
OXID VAPOR PRESS COEFFICIENT D2 OXĪD VAPOR PRES̄S COEFFICIEN̄T (D2)	V97U6169C		$+6.1110$	E+03	ND	F	D	C	G4. 102	90374
OXID VAPOR PRESS COEFFICIENT D3 OXID VAPŌR PRES̄S COEFFICIEN̄T (D3)	V97U6170c		+4.03	E+03	ND	F	D	C	G4. 102	90374
OXIDIZER DENSITY COEFEICIENT C1 OXIDIZER DENSITY COEFEICIENTT (C1)	V97U6171C		+7.6027	E-02	ND	F	D	C	G4. 102	90374
OXIDIZER DENSITY_COEFFICIENT_C2 OXIDIZĒR DENSITTY COEFEICIENTT (C2)	V97U6172C		$+4.5162$	E-05	ND	F	D	C	G4. 102	90374
OXIDIZER DENSITY COEFFICIENT C3 OXIDIZER DENSITY COEEFICIENT (C3)	V9706173C		$+4.1667$	E-07	ND	E	D	c	G4. 102	90374

TABLE 4.6.3.4 - . RCS QUANTITY MONITOR (G4.102) CONSTANTS

ESSR NAME DESCRIPTION	MSID	MC	CONSTANT	VALUE	ENG UNIT	DT	PR	S	PR ECTN	LAST CR
RANKIN TEMP CONVERSION COEFF H RANKIN TEMP CONVERSION COEFE	V97U6174C		$+4.597$	E+02	ND	F	D	C	G4. 102	90374
RCS FWD FU HE LINE VOLUME VHLI R $\bar{C} S-F \bar{W} D \bar{F} U \overline{H E} L I \overline{N E}$ VOLUME (VHLI)	V97U6175C		$+1.37$	E+01	IN**3	F	D	C	G4. 102	90374
RCS FWD FU SYSTEM VOLUME VP R $\bar{C} S-E \bar{W} D$ EU SXSTEM VOLUME (VP)	V97U6176C		$+3.18436$	E+04	IN**3	F	D	C	G4. 102	90374
RCS FWD HE BOTTLE VOLUME VHAM RC̄S—ETDD $\overline{H E}$ BOTTLE VOLUME (VHAM)	v97U6177c		$+3.043$	E+03	IN**3	E	D	C	G4. 102	90374
RCS EWD OX HE LINE VOLUME VHLI RCS-FWD OX $\overline{\mathrm{HE}} \mathrm{LINE}$ VOLUME (VHLI)	V97U6178C		$+1.37$	E+01	IN**3	F	D	C	G4. 102	90374
RCS FWD OX SYSTEM VOLUME VP RCS-FWD OX SYSTEM VOLUME (VP)	V9746179C		+3.1892	E+04	IN**3	F	D	C	G4. 102	90374
RCS FWD TRAPPED FU LINE VOL VTP RC̄S-EWD TRAPPED $\overline{\mathrm{F}} \mathrm{U}$ LIN̄E VŌL (VTP)	V9706180C		$+6.775$	E +02	IN**3	F	D	c	G4. 102	90374
RCS FWD TRAPPED OX LINE VOL VTP RCS-FWD TRAPPED OX LINE VOL (VTP)	V9706181C		$+7.259$	$E+02$	IN**3	F	D	C	G4. 102	90374
RCS L AFT EU HE LINE VOLUME VHLI 	V97U6182C		+2.07	E+01	IN**3	F	D	C	G4. 102	90374
RCS L AFT FU SYSTEM VOLUME VP RCSEL AFT $\bar{F} U$ SYSTEM VOLUME (VP)	V97U6183C		$+3.23886$	E +04	IN**3	E	D	C	G4. 102	90374
RCS L AFT HE VOLUME VHAM R $\bar{C} S=L ~ A \bar{F} T$ HE BOTt $\bar{L} E$ VOLUME (VHAM)	V97U6184C		$+3.043$	E+03	IN**3	F	D	C	G4. 102	90374
RCS L AFT OX HE LINE VOLUME VHLI R $\bar{C} S-L ~ A \bar{F} T$ OX $\overline{\mathrm{H} E}$ LINE VOLUME (VHLI)	V97U6185C		$+2.36$	E+01	IN**3	F	D	C	G4. 102	90374
RCS L AFT OX SYSTEM VOLUME VP RCS-L AFT OX SYSTEM VOLUME (VP)	V97U6186C		$+3.23156$	$E+04$	IN**3	F	D	C	G4. 102	90374
RCS_L_AFT TRAPPED_EU LN_VOL_VTP 	$\begin{aligned} & \text { V97U6187C } \\ & \text { e) } \end{aligned}$		$+1.2230$	E+03	IN**3	F	D	C	G4. 102	90374
RCS L AFT TRAPPED OX LN VOL VTP RC̄S-I AET TRAPPED OX LINE VOL (VTP	v97U6188C)		$+1.1326$	E+03	IN**3	F	D	C	G4. 102	90374

TABLE 4.6.3.4-4. RCS QUANTITY MONITOR (G4.102) CONSTANTS

FSSR NAME DESCRIPTION MSID	MC	CONSTANT	VALUE	ENG UNIT	DT	PR	S	PR FCTN	LAST CR
RCS R AFT FU HE LINE_VOLUME_VHLI V97U6189C R $\bar{C} S_{-R} \bar{A} \bar{F} T \bar{F} U \overline{H E}$ LINE VOLUNE (VHLI)		+2.07	E+01	IN**3	F	D	C	G4. 102	90374
RCS R AFT FU SYSTEM VOLUME VP $R \bar{C} S=R$ A $\bar{F} T \bar{E} U$ SYSTEM VOLUME (VP)		+3.23886	E+04	IN**3	F	D	c	G4. 102	90374
RCS R AFT HE BOTTLE VOLUME_VHAM V97U6191C R $\bar{C} S=R \quad A \bar{F} T \overline{H E}$ BOTTEXE VOLUME (VHAM)		+3.043	E+03	IN**3	F	D	C	G4. 102	90374
RCS R AFT OX HE LINE VOLUME VHLI V97U6192C RC̄S=R AFTT $\bar{O} X \overline{H E}$ LINEE VOLUME (VHLI)		+2.36	E+01	IN**3	F	D	c	G4. 102	90374
RCS R AET OX SYSTEM VOLUME_VP 		+3.23156	E+04	IN**3	F	D	c	G4.102	90374
R $\bar{C} S=R \quad A \bar{F} T$ TRAPPED $\bar{E} U \bar{L} I N E$ VOL (VTP) RCS R AFT TRAPPED FU LN VOL_VTP V97U6194C		+1. 2230	E+03	IN**3	F	D	c	G4. 102	90374
RCS R AFT TRAPPED OX LN VOL VTP V97U6195C R $\bar{C} \bar{S}-\mathrm{R}$ A $\overline{\mathrm{F}} \mathrm{T}$ TRAPPĒD $\overline{\mathrm{O}} \mathrm{X}$ LINE VOL (VTP)		+1.1326	E + 03	IN**3	F	D	c	G4. 102	90374

4.6.4 RCS Helium Regulator Failure Protection Sequence (4.189)

4.6.4.1 Introduction

The RCS helium regulator failure protection sequence will be used during OPS 1,3, and 6 to protect the aft left and right RCS systems against helium regulator failures. If a regulator failure occurs, then the $\mathrm{RCS} / \mathrm{RCS}$ crossfeed and reconfiguration sequence will be called. This sequence will operate automatically and can be overridden by manual reconfiguration of the panel 07 or 08 switches controlling the appropriate valves. The sequence is initiated by the MECO CONFIRMED event.

The RCS helium regulator failure protection sequence will detect and respond to regulator closed failures. If a failure occurs, then the sequence will auto crossfeed, and the crew will be alerted to the reconfiguration.

This sequence is designed for OPS 1,3, and 6 only. Redundancy is built into the sequence so that reconfiguration will not occur with a single instrumentation failure, yet, following an instrumentation failure, the sequence will still protect against regulator failures.

4.6.4.2 Overview

RCS regulator failures are determined based on a comparison of selected transducer pressure readings to a low limit. Transducer failures or commfaults will be accounted for by elimination of the faulted measurement. If no instrumentation failures exist, then the sequence will use two pressure readings to check against the failure limits. If one transducer in a single system fails, the sequence will use only one transducer in order to determine a regulator failure. If an unfaulted measurement cannot be selected, the sequence will not work, and no crew annunciation will be made. The sequence will continue to look for a good pressure (i.e., unfaulted) in order to perform the intended function. If a measurement starts to work or a commfault is cleared, the sequence will start to check the pressure reading against the low limit. All of the good pressures must be out of limit for a regulator failure to be declared.

If a failed close regulator is detected, the sequence will call the $R C S / R C S$ crossfeed and reconfiguration sequence to provide propellant from the good pod.

4.6.4.3 Detail Requirements

During ascent and entry, this sequence shall run at 1.04 Hz . Prior to the first execution of this sequence, the parameters used by this sequence shall be initialized as defined in Table 4.6.4.4-4. The values of the parameters in Table 4.6.4.4-4 shall be preserved across all OPS transitions and OPS mode recalls with the exception of a transition into OPS 2, on which the parameters should be reinitialized per Table 4.6.4.4-4.

Step 1. This step initializes the current RCS pod counter so that both aft RCS pods (aft left and aft right) will be processed by the sequence.

Set (1) below to zero and proceed to Step 2.
(1) CURRENT POD
(INTERNAL)

Step 2. On each pass of the sequence, both aft RCS pods (aft left and aft right) are processed in a loop. This step defines which pod is being processed on the current pass of the loop.

Increment (a) below by one and proceed to monitor (a) below:
(a) CURRENT POD
(INTERNAL)
If (a) is equal to 1 , then proceed to Step 3 for the aft left RCS pod.
If (a) is equal to 2 , then proceed to step 3 for the aft right RCS pod.
If (a) is greater than 2 , i.e., both pods have been processed, then return to Step 1.
Step 3. This step initializes the current propellant type counter so that both propellant types (oxidizer and fuel) will be processed by the sequence for the current RCS pod.

Set (1) below to zero and proceed to Step 4.

(1) CURRENT PROPELLANT TYPE

(INTERNAL)
Step 4. On each pass of the sequence for each RCS pod, both propellants (oxidizer and fuel) are processed in a loop. This step defines which propellant is being processed on the current pass of the loop.

Increment (a) below by one and proceed to monitor (a) below:
(a) CURRENT PROPELLANT TYPE
(INTERNAL)

If (a) is equal to 1 , then proceed to Subsequence A for the oxidizer leg.
If (a) is equal to 2 , then proceed to Subsequence A for the fuel leg.
If (a) is greater than 2, i.e., both oxidizer and fuel legs have been processed, then return to Step 2.

Subsequence A

Subsequence A monitors the RCS pressures used by this sequence for commfaults and transducer failures, determines how many pressures are available for use by the sequence for the current RCS pod and propellant type, and performs regulator failure criteria limit checking on the good pressures available for use by the sequence.

All transducers are checked for commfaults and are checked against the transducer failure criteria (offscale values) in Table 4.6.4.4-3. A dedicated signal conditioner (DSC) failure will look like a transducer failure because the reading will go to the low state (zero), which is below the offscale low failure limit.

This subsequence will monitor the tank pressure and the tank outlet pressure sequentially for the current RCS pod and propellant type. If a pressure is determined to be good, the subsequence compares the pressure against a low limit to determine if the regulator is failed closed. If the instrumentation is failed, then the regulator failure criteria limit check is bypassed and the pressure will not be used. A regulator can be considered failed closed only if all the good pressures available for use by the sequence for the current RCS pod and propellant type are at or below the low limit. A noise filter is included in the subsequence to preclude a data hit from declaring a regulator failure. If the low limit test is failed for two consecutive passes, the appropriate action is taken to respond to the failed close regulator.
Step A1. This step initializes the number of pressures out of limits and the number of good pressures to zero before transducer checks are performed for the current RCS pod and propellant type. It also initializes the current pressure indicator so that the tank pressure will be the first pressure checked.

Set (a), (b), and (c) below to zero and then proceed to Step A2.
(a) NUMBER OF PRESSURES OUT OF LIMIT
(INTERNAL)
(b) NUMBER OF GOOD PRESSURES
(c) CURRENT PRESSURE
(INTERNAL)
Step A2. On each pass of the subsequence, both tank pressure transducers (tank pressure and tank outlet pressure) for the current RCS pod and propellant type are processed in a loop. This step defines which pressure transducer is being processed on the current pass of the loop.

Increment (a) below by one and proceed to monitor (a) below:

(a) CURRENT PRESSURE

(INTERNAL)
If (a) is equal to 1 , then proceed to Step $A 3$ to check the tank pressure.
If (a) is equal to 2 , then proceed to Step A4 to check the tank outlet pressure.
If (a) is greater than 2 , i.e., both pressures have been checked, then proceed to Step A7.
Step A3. This step selects the tank pressure and commfault signals for the current RCS pod and propellant type to be used to determine whether the tank pressure can be used by the sequence.

The following signals are monitored:
(a) CURRENT POD
(b) CURRENT PROPELLANT TYPE
(c) LRCS OX TK P V42P2115C
(d) LRCS FU TK P V42P2116C
(e) RRCS OX TK P V42P3115C
(f) RRCS FU TK P
(g) FA1 INPUT PROM SEG 1, 2 STATUS (MFE) V42P3116C
(h) FA2 INPUT PROM SEG 1, 2 STATUS (MFE)

V91X2841X
V91X2842X

If (a) is equal to 1 and (b) is equal to 1 , i.e., left RCS oxidizer is now being processed, then set (1) below to (c), set (2) below to (g), and proceed to Step A5.

If (a) is equal to 1 and (b) is equal to 2 , i.e., left $R C S$ fuel is being processed, then set (1) below to (d), set (2) below to (g), and proceed to Step A5.

If (a) is equal to 2 and (b) is equal to 1, i.e., right RCS oxidizer is being processed, then set (1) below to (e), set (2) below to (h) and proceed to Step A5.

If (a) is equal to 2 and (b) is equal to 2, i.e., right RCS fuel is being processed, then set (1) below to (f), set (2) below to (h), and proceed to Step A5.
(1) SELECTED PRESSURE
(INTERNAL)
(2) SELECTED PRESSURE COMMFAULT
(INTERNAL)
Step A4. This step selects the tank outlet pressure and commfault signals for the current RCS pod and propellant type to be used to determine whether the tank outlet pressure can be used by the sequence.

The following signals are monitored:
(a) CURRENT POD
(b) CURRENT PROPELLANT TYPE
(c) LRCS OX TK OUT P* V42P2210C*
(d) LRCS FU TK OUT P^{*} V42P2310C*
(e) RRCS OX TK OUT P^{*} V42P3210C*
(f) RRCS FU TK OUT P*
(g) FA3 INPUT PROM SEG 1, 2 STATUS (MFE) V42P3310P*
(h) FA4 INPUT PROM SEG 1, 2 STATUS (MFE)

If (a) is equal to 1 and (b) is equal to 1, i.e., left RCS oxidizer is being processed, then set (1) below to (c), set (2) below to (g), and proceed to Step A5.
If (a) is equal to 1 and (b) is equal to 2 , i.e., left RCS fuel is being processed, then set (1) below to (d), set (2) below to (g), and proceed to Step A5.
If (a) is equal to 2 and (b) is equal to 1, i.e., right RCS oxidizer is being processed, then set (1) below to (e), set (2) below to (h), and proceed to Step A5.
If (a) is equal to 2 and (b) is equal to 2, i.e., right RCS fuel is being processed, then set (1) below to (f), set (2) below to (h), and proceed to Step A5.
(1) SELECTED PRESSURE (INTERNAL)
(2) SELECTED PRESSURE COMMFAULT

Step A5. This step performs transducer and commfault checks on the selected pressure to determine whether the pressure can be used by the sequence. If the selected pressure is commfaulted or off scale high or off scale low, it will not be used. Otherwise, it will be used by the sequence.
The following signals are monitored:
(a) SELECTED PRESSURE COMMFAULT
(b) SELECTED PRESSURE

If (a) is true or (b) is greater than or equal to (1) below or (b) is less than or equal to (2) below, i.e., the selected pressure is bad, then return to Step A2.

If (a) is false and (b) is less than (1) below and (b) is greater than (2) below, i.e., the selected pressure is good, then increment (3) below by one and proceed to Step A6.
$\begin{array}{llr}\text { (1) } & \text { OFF_SCALE_HIGH_LIMIT } & \text { V99U9860C } \\ \text { (2) } & \text { OFF_SCALE_LOW_LIMIT } & \text { V99U9859C } \\ \text { (3) NUMBER OF GOOD PRESSURES } & \text { (INTERNAL) }\end{array}$
Step A6. This step performs the low-limit test on the selected pressure to determine whether the pressure is at or below the low limit. If the selected pressure is at or below the low limit, the number of pressures out of limit is incremented by one.

The following signals are monitored:
(a) SELECTED PRESSURE
(INTERNAL)
(b) RCS_TANK_LOW_PRESS_LIMIT V99U9862C

If (a) is less than or equal to (b), i.e., the selected pressure is equal to or below the low limit, then increment (1) below by one and return to Step A2.

If (a) is greater than (b), i.e., the selected pressure is above the low limit, then return to Step A2.
(1) NUMBER OF PRESSURES OUT OF LIMIT
(INTERNAL)
Step A7. This step determines whether or not a regulator may be failed closed based on the number of pressures out of limit. If all of the pressures available for use by the sequence are at or below the low limit, then the regulator may be failed closed and noise filtering must be performed to determine if a real failure exists.

The following signals are monitored:
(a) NUMBER OF GOOD PRESSURES
(INTERNAL)
(b) NUMBER OF PRESSURES OUT OF LIMIT
(INTERNAL)
If (a) is equal to zero, i.e., there are no good pressures available, then return to Step 4.
If (a) is not equal to zero and (a) is equal to (b), i.e., each good pressure is at or below the low limit, then proceed to Step A9 to perform noise filtering.

If (a) is not equal to zero and (a) is not equal to (b), i.e., at least one good pressure is above the low limit, then proceed to Step A8.

Step A8. This step reinitializes the failed-close first pass flag and the low noise filter count for the current RCS pod and propellant type, since the low-limit test has been passed without detecting a failed close regulator. It also resets the RCS low-pressure alert for the current RCS pod and propellant type to allow for annunciation of subsequent regulator-closed failures.

The following signals are monitored:
(a) CURRENT POD
(INTERNAL)
(b) CURRENT PROPELLANT TYPE
(INTERNAL)

If (a) is equal to 1 and (b) is equal to 1, i.e., left RCS oxidizer is being processed, then set (1) below true and (5) below false, set (9) below to zero, and return to Step 4.

If (a) is equal to 1 and (b) is equal to 2 , i.e., left RCS fuel is being processed, then set (2) below true and (6) below false, set (10) below to zero, and return to Step 4.

If (a) is equal to 2 and (b) is equal to 1 , i.e., right RCS oxidizer is being processed, then set (3) below true and (7) below false, set (11) below to zero, and return to Step 4.

If (a) is equal to 2 and (b) is equal to 2 , i.e., right RCS fuel is being processed, then set (4) below true and (8) below false, set (12) below to zero, and return to Step 4.
(1) LRCS OX FIRST PASS FAILED CLOSE FLAG
(2) LRCS FU FIRST PASS FAILED CLOSE FLAG
(3) RRCS OX FIRST PASS FAILED CLOSE FLAG
(4) RRCS FU FIRST PASS FAILED CLOSE FLAG
(5) LRCS OX LOW PRESS ALERT
(6) LRCS FU LOW PRESS ALERT
(7) RRCS OX LOW PRESS ALERT
(8) RRCS FU LOW PRESS ALERT
(9) LRCS OX LOW NOISE FILTER COUNT
(10) LRCS FU LOW NOISE FILTER COUNT
(11) RRCS OX LOW NOISE FILTER COUNT
(12) RRCS FU LOW NOISE FILTER COUNT

V90X5794X V90X5795X V90X5797X V90X5798X
(INTERNAL)
(INTERNAL)
(INTERNAL)
(INTERNAL)

Step A9. This step performs noise filtering for the low-limit test for the current RCS pod and propellant by incrementing the appropriate noise filter counter and then monitoring it. If the pressure has met or exceeded the low limit for two consecutive passes of the sequence, the regulator is considered failed closed and action is taken to perform an auto-crossfeed from the other RCS pod and to annunciate an alarm to the crew.

The following signals are monitored:
(a) CURRENT POD
(INTERNAL)
(b) CURRENT PROPELLANT TYPE
(INTERNAL)
If (a) is equal to 1 and (b) is equal to 1 , i.e., the left RCS oxidizer pressure has met or exceeded the low limit for at least one pass, then increment (c) below by one and proceed to monitor (c) below.

If (a) is equal to 1 and (b) is equal to 2, i.e., the left $R C S$ fuel pressure has met or exceeded the low limit for at least one pass, then increment (d) below by one and proceed to monitor (d) below.

If (a) is equal to 2 and (b) is equal to 1 , i.e., the right RCS oxidizer pressure has met or exceeded the low limit for at least one pass, then increment (e) below by one and proceed to monitor (e) below.

If (a) is equal to 2 and (b) is equal to 2 , i.e., the right RCS fuel pressure has met or exceeded the low limit for at least one pass, then increment (f) below by one and proceed to monitor (f) below.
(c) LRCS OX LOW NOISE FILTER COUNT
(d) LRCS FU LOW NOISE FILTER COUNT (INTERNAL)
(e) RRCS OX LOW NOISE FILTER COUNT (INTERNAL)
(f) RRCS FU LOW NOISE FILTER COUNT (INTERNAL)

If (a) is equal to $1,(b)$ is equal to 1 , and (c) is greater than or equal to 2 , i.e., the left RCS oxidizer pressure has met or exceeded the low limit for two consecutive passes, then proceed to Subsequence B to react to the failed close regulator. If (c) is less than 2 , then return to Step 4.

If (a) is equal to 1 , (b) is equal to 2 , and (d) is greater than or equal to 2 , i.e., the left $R C S$ fuel pressure has met or exceeded the low limit for two consecutive passes, then proceed to Subsequence B to react to the failed close regulator. If (d) is less than 2 , then return to Step 4.

If (a) is equal to 2 , (b) is equal to 1 , and (e) is greater than or equal to 2 , i.e., the right RCS oxidizer pressure has met or exceeded the low limit for two consecutive passes, then proceed to Subsequence B to react to the failed close regulator. If (e) is less than 2, then return to Step 4.

If (a) is equal to 2 , (b) is equal to 2 , and (f) is greater than or equal to 2 , i.e., the right RCS fuel pressure has met or exceeded the low limit for two consecutive passes, then proceed to Subsequence B to react to the failed close regulator. If (f) is less than 2 , then retum to Step 4.

Subsequence B

Subsequence B will be executed if a regulator is discovered to be failed close. This subsequence monitors for the failed close first pass flag for the current RCS pod and propellant type and for the OMS/RCS interconnect command and the OMS/RCS complete flags. If the appropriate failed-close first pass flag is true and an OMS/RCS interconnect is not in effect or being configured, then this subsequence will initiate an automatic crossfeed to the remaining good aft RCS system and annunciate a crew alert. The subsequence also sets the failed close first pass flag for the current RCS pod and propellant type false.

Step B1. This step determines whether action needs to be taken for a regulator failed close. If this is the first pass through this subsequence for the current RCS pod and propellant type, then the appropriate action will be taken based on the current RCS pod.

The following signals are monitored:
(a) CURRENT POD
(INTERNAL)
(b) CURRENT PROPELLANT TYPE
(c) LRCS OX FIRST PASS FAILED CLOSE FLAG
(d) LRCS FU FIRST PASS FAILED CLOSE FLAG
(e) RRCS OX FIRST PASS FAILED CLOSE FLAG
(f) RRCS FU FIRST PASS FAILED CLOSE FLAG

If (a) is equal to 1 and (b) is equal to 1, i.e., left RCS oxidizer is being processed, and (c) is true, i.e., it is first pass for a left RCS oxidizer regulator failed close, then proceed to Step B2. If (c) is false, i.e., it is not first pass for a left RCS oxidizer regulator failed close, then return to Step 4.
If (a) is equal to 1 and (b) is equal to 2, i.e., left RCS fuel is being processed, and (d) is true, i.e., it is first pass for a left RCS fuel regulator failed close, then proceed to Step B2. If (d) is false,i.e., it is not first pass for a left RCS fuel regulator failed close, then return to Step 4.
If (a) is equal to 2 and (b) is equal to 1 , i.e., right $R C S$ oxidizer is being processed, and (e) is true, i.e., it is first pass for a right RCS oxidizer regulator failed close, then proceed to Step B2. If (e) is false, i.e., it is not first pass for a right RCS oxidizer regulator failed close, then return to Step 4.
If (a) is equal to 2 and (b) is equal to 2, i.e., right RCS fuel is being processed, and (f) is true, i.e., it is first pass for a right RCS fuel regulator failed close, then proceed to Step B2. If (f) is false, i.e., it is not first pass for a right RCS fuel regulator failed close, then return to Step 4.
Step B2. This step initiates an automatic crossfeed to the remaining good aft RCS system after an aft RCS regulator-closed failure has been detected, provided there is no OMS/RCS interconnect in effect or being configured.
The following signals are monitored:
(a) OMS/RCS INTERCONNECT COMMAND
(b) OMS/RCS INTERCONNECT COMPLETE FLAG V90X8282X
(c) CURRENT POD

If (a) or (b) is true, i.e., an OMS/RCS interconnect is in effect or is being configured, then proceed to Step B4.

If (a) and (b) are false, i.e., there is no OMS/RCS interconnect in effect or being configured, and (c) is equal to 1, i.e., the failure is in the left RCS pod, then set (1) below false and (2) below true to initiate an RCS/RCS crossfeed from the right RCS system and proceed to Step B3.

If (a) and (b) are false, i.e., there is no OMS/RCS interconnect in effect or being configured, and (c) is equal to 2, i.e., the failure is in the right RCS pod, then set (1) below true and (2) below false to initiate an RCS/RCS crossfeed from the left RCS system and proceed to Step B3.
$\begin{array}{ll}\text { (1) FEED FROM LEFT RCS } & \text { V93X5199X } \\ \text { (2) FEED FROM RIGHT RCS } & \text { V93X5200X }\end{array}$
Step B3. This step performs additional actions unique to an aft RCS regulator-closed failure. An alert is issued to the crew that the current RCS pod has been reconfigured.

Monitor the following signals:
(a) CURRENT POD
(b) CURRENT PROPELLANT TYPE

If (a) is equal to 1 and (b) is equal to 1 , i.e., left RCS oxidizer is being processed, then set (1) below true and proceed to Step B4.

If (a) is equal to 1 and (b) is equal to 2 , i.e., left RCS fuel is being processed, then set (2) below true and proceed to Step B4.

If (a) is equal to 2 and (b) is equal to 1, i.e., right RCS oxidizer is being processed, then set (3) below true and proceed to Step B4.

If (a) is equal to 2 and (b) is equal to 2, i.e., right RCS fuel is being processed, then set (4) below true and proceed to Step B4.
(1) LRCS OX LOW PRESS ALERT

V90X5794X
(2) LRCS FU LOW PRESS ALERT V90X5795X
(3) RRCS OX LOW PRESS ALERT V90X5797X
(4) RRCS FU LOW PRESS ALERT V90X5798X

Step B4. This step resets the failed-close first pass flag for the current RCS pod and propellant type and zeroes the noise filter counter for the current RCS pod and propellant type.

Monitor the following signals:
(a) CURRENT POD
(b) CURRENT PROPELLANT TYPE

If (a) is equal to 1 and (b) is equal to 1, i.e., left RCS oxidizer is being processed, then set (1) below false, set (5) below to zero, and return to Step 4.

If (a) is equal to 1 and (b) is equal to 2, i.e., left RCS fuel is being processed, then set (2) below false, set (6) below to zero, and return to Step 4.

If (a) is equal to 2 and (b) is equal to 1 , i.e., right RCS oxidizer is being processed, then set (3) below false, set (7) below to zero, and return to Step 4.

If (a) is equal to 2 and (b) is equal to 2 , i.e., right RCS fuel is being processed, then set (4) below false, set (8) below to zero, and return to Step 4.
(1) LRCS OX FIRST PASS FAILED CLOSE FLAG
(INTERNAL)
(2) LRCS FU FIRST PASS FAILED CLOSE FLAG (INTERNAL)
(3) RRCS OX FIRST PASS FAILED CLOSE FLAG
(4) RRCS FU FIRST PASS FAILED CLOSE FLAG (INTERNAL)
(5) LRCS OX LOW NOISE FILTER COUNT (INTERNAL)
(6) LRCS FU LOW NOISE FILTER COUNT
(INTERNAL)
(7) RRCS OX LOW NOISE FILTER COUNT
(INTERNAL)
(8) RRCS FU LOW NOISE FILTER COUNT

Figure 4.189. RCS He Regulator Failure Protection Sequence (Sheet 1 of 3)

Figure 4.189. RCS He Regulator Failure Protection Sequence (Sheet 2 of 3)

INFORMATION ONLY

STEP B2

SET:

TABLE 4.6.4.4-1. RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) INPUT/OUTPUT FUNCTIONAL PARAMETERS

049P00L	INPUT FUNCTIONAL PARAMETERS FOR RCS REG SEQ		P		
	NOMENCLATURE				
				DATA	
M/S ID		SOURCE	UNITS	TYPE	LAST CRS
V42P2115C	RCS L AFT OX TANK ULLAGE PRESS	DSC OL1	PSIA	AMU	79964 F
V42P2116C	RCS L AFt fu tank ullage press	DSC OL2	PSIA	AMU	79964 F
V42P2210C*	RCS L AFT OX tank out press	DSC OL1	PSIA	AMU	79964 F
V42P2310C*	RCS L AFT FU tank out press	DSC OL2	PSIA	AMU	79964 F
V42P3115C	RCS R AFT OX TANK ULLAGE PRESS	DSC OR1	PSIA	AMU	79964 F
V42P3116C	RCS R AFt fu tank ullage press	DSC OR2	PSIA	AMU	79964 F
V42P3210C*	RCS R AFT OX TANK OUT PRESS	DSC OR1	PSIA	AMU	79964 F
V42P3310C*	RCS R AFT FU tank out press	DSC OR2	PSIA	AMU	79964 F
V90x8282x	OMS TO RCS INTERCONNECT COMP FLAG	ABT OMS/RCS CONN		BD	$\begin{aligned} & 90114 \mathrm{~B} \\ & 89561 \mathrm{~A} \end{aligned}$
V90x8312x	OMS TO RCS INTERCONNECT CMD	ABT CNTL SEQ		BD	89599 C
V90x8637xA	RTLS ABORT DECLARED	MSC			$\begin{aligned} & 89991 \mathrm{E} \\ & 89599 \mathrm{C} \end{aligned}$
V91x2841x	FA1 INPUT PROM SEG 1,2 Status (MFE)	FCOS			89846B
V91x2842x	FA2 INPUT PROM SEG 1,2 STATUS (MFE)	FCOS			90114 B
V91x2843x	FA3 INPUT PROM SEG 1,2 Status (mFe)	FCOS			90114 B
v 91 x 2844 X	FA4 INPUT PROM SEG 1,2 Status (mee)	FCOS		BD	89598A

TABLE 4.6.4.4-1. RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) INPUT/OUTPUT FUNCTIONAL PARAMETERS

DBFN: 0434
FSSR NAME MSID ENG UNIT DT PR D S PR FCTN CAT
TABLE 4.6.4.4-2. RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) l-LOADS
TABLE 4.6.4.4-3. RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) K-LOADS
DBFN : 0558
FSSR NAME MSID MC
DESCRIPTION
DBFN : 0558
ESSR NAME MSID MC
DESCRIPTION M
DT PR S PR ECTN LAST CR EQTN MSID
$\begin{array}{lllll}\text { F } & \text { S } & \text { P G4.189 } & 89246 A \\ F & S & \text { P G4. } & \text { B9 } & 79964 \mathrm{~F}\end{array}$
+1.50 E+02 ESIA
V9909860C
V9909859C
OFF_SCALE_LOW_LIMIT
TABLE 4.6.4.4-4. RCS HELIUM REGULATOR FAILURE PROTECTION SEQUENCER (G4.189) CONSTANTS

> DEFN : 0553 FSSR NAME DESCRIPTION
NO REQUIREMENTS

4.7.2 Orbit OMS/RCS Conn (4.212)

4.7.2.1 Introduction

For missions requiring RCS propellant in excess of the available volume in the RCS tanks, a manual capability is available with an automatic OMS tank repressurization function, which is initiated when left or right OMS tank feed is selected.

4.7.2.2 Overview

After the crew has manually configured the system valves for the required propellant transfer, a keyboard entry is used to start the automatic OMS tank repressurization and the OMS/RCS quantity gaging sequences. On entering a right or left OMS feed, required valve commands are terminated to establish a known MDM condition. This allows return of all switches to the GPC position and the OMS/RCS gaging is enabled. OMS ullage pressure is maintained by periodic cycling of helium isolation and vapor isolation valves based on pressure. If any of the helium or vapor isolation valves fail to close when commanded, a crew alert is provided. When no longer required as determined by return to normal item entry, this sequence and the OMS/RCS gaging is terminated. The OMS HE Valve Miscompare Signals are reset during each pass. Setting of the Miscompare to a false state will remove the crew alert in subsequent passes if the cause of the miscompare is removed.

4.7.2.3 Detailed Requirements

Step 1. This step initiates and controls the OMS tank repressurization function and resets the OMS HE Valve Miscompare Signal.

During each pass the following signals are reset:

$$
\begin{array}{ll}
\text { LT OMS HE/VAPOR ISO VLV MISCOM } & \text { V90X8274X } \\
\text { RT OMS HE/VAPOR ISO VLV MISCOM } & \text { V90X8275X }
\end{array}
$$

The following signals are monitored:

(a) OMS PRESS ENA L	V93X5100X	
(b) OMS PRESS ENA R	V93X5101X	
(c)	INTERCONNECT INITLATION FLAG	(INTERNAL)

If (a) or (b) is true and (c) is true, set (1) and (2) below true and (c) above false and proceed to Subsequence B.

If (a) or (b) is true, (c) false, and (1) below true, proceed to Subsequence B.
If (a) or (b) is true, (c) false, and (1) below false, proceed to Step 2.
If (a), (b), and (c) are all false, set (c) above true, (2) below false, terminate (3) through (10) below, and return to Step 1.
(1) PRE-SEQ CMD TERM FLAG
(2) $\mathrm{OMS} / \mathrm{RCS}$ GAGING FLAG
(3) OMS L POD HE ISLN VLV A OP V43K4180X
(4) OMS L POD HE ISLN VLV B OP
(5) OMS L POD VAPOR ISLN VLV 1 OP
(6) OMS L POD VAPOR. ISLN VLV 2 OP
(7) OMS R POD HE ISLN VLV A OP
(8) OMS R POD HE ISLN VLV B OP
(9) OMS R POD VAPOR ISLN VLV 1 OP
(10) OMS R POD VAPOR ISLN VLV 2 OP

V43K.4182X
V43K4183X
V43K5180X
V43K5181X
V43K 5182 X
V43K5183X

Step 2. This step monitors for commfault status. The following signals are monitored:
(a) FA 1 INPUT PROM SEG 1, 2 STATUS (MIFE)

V91X2841X V91X2842X
(INTERNAL)
V97U9823C

If (a) and (b) are both false, proceed to Step A1.
If (a) or (b) is true and (c) is true, then return to Step 1 until (d) has expired. Then, terminate the commands listed below, set (c) above false, and return to Step 1.

If (a) or (b) is true and (c) is false, then return to Step 1.
(1) OMS L POD HE ISLN VLV A OP

V43K4180X
(2) OMS L POD HE ISLN VLV B OP
(3) OMS L POD VAPOR ISLN VLV 1 OP V43K4181X
(4) OMS L POD VAPOR ISLN VLV 2 OP V43K4182X
(5) OMS R POD HE ISLN VLV A OP V43K4183X V43K 5180X
(6) OMS R POD HE ISLN VLV B OP
(7) OMS R POD VAPOR ISLN VLV 1 OP V43K5181X
(8) OMS R POD VAPOR ISLN VLV 2 OP V43K5182X V43K5183X

Subsequence A

Step A1. This step issues the commands necessary for LT/RT OMS tank pressurization.
The following signals are monitored:
(a) OMS L POD OXDZR TANK ULLAGE PRESS

V43P4221C
V43P4321C
V43P5221C
V43P5321C
(INTERNAL)
V97U9822C
V97U9823C
V93X5100X
V93X5101X

If (a), (b), (c), and (d) are all \geq (f) and (e) is false, return to Step 1.
If (e) is false and (a) or (b) is $<(f)$ and (h) is true, issue (1) through (4), set (9) true, and return to Step 1.

If (e) is false and if (c) or (d) is $<(\mathrm{f}$), and (i) is true, issue (5) through (8), set (9) true, and return to Step 1.

If (e) is true and (g) seconds have elapsed since (e) was first set true, terminate outputs (1) through (8) below and return to Step 1 until at least 1.5 seconds have elapsed since termination of outputs (1) through (8) in Step A1, then proceed to Step A2.
(1) OMS L POD HE ISLN VLV A OP V43K4180K
(2) OMS L POD HE ISLN VLV B OP V43K4181X
(3) OMS L POD VAPOR ISLN VLV 1 OP V43K4182X
(4) OMS L POD VAPOR ISLN VLV 2 OP V43K4183X
(5) OMS R POD HE ISLN VLV A OP V43K5180X
(6) OMS R POD HE ISLN VLV B OP V43K5181X
(7) OMS R POD VAPOR ISLN VLV 1 OP V43K5182X
(8) OMS R POD VAPOR ISLN VLV 2 OP V43K5183X
(9) REPRESS ACTIVE FLAG (INTERNAL)

Step A2. This step monitors the state of the OMS/HE/VAPOR ISLN VALVES and checks for commfaults. If any of the following signals are true, return to Step 1.
(1) FA 1 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2845X
(2) FA 2 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2846X
(3) FA 3 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2847X
(4) FA 4 INPUT PROM SEG 3, 10 STATUS (HFE) V91X2848X

Otherwise, monitor the following signals:

(a)	OMS L POD HE ISLN VLV A POSN OP	V43X4152X
(b) OMS L POD HE ISLN VLV B POSN OP	V43X4154X	
(c)	OMS L POD VAPOR ISLN VLV 1 POSN OP	V43X4156X
(d) OMS L POD VAPOR ISLN VLV 2 POSN OP	V43X4158X	
(e)	OMS R POD HE ISLN VLV A POSN OP	V43X5152X
(f)	OMS R POD HE ISLN VLV B POSN OP	V43X5154X
(g) OMS R POD VAPOR ISLN VLV 1 POSN OP	V43X5156X	
(h) OMS R POD VAPOR ISLN VLV 2 POSN OP	V43X5158X	
(i) OMS PRESS ENA L	V93X5100X	
(j) OMS PRESS ENA R	V93X5101X	

If (i) is true, and any signal (a) through (d) is true, then issue the following output to generate CRT message line and Class 3 Alert Light and Tone and then return to Step 1.

LT OMS HE/VAPOR ISO VLV MISCOM
V90X8274X

If (j) is true, and any signal (e) through (h) is true, then issue the following output to generate CRT message line and Class 3 Alert Light and Tone and then return to Step 1.

RT OMS HE/VAPOR ISO VLV MISCOM
V90X8275X

If (a) through (h) are false, set (1) below false and return to Step 1.
(1) REPRESS ACTTVE FLAG
(INTERNAL)

Subsequence \mathbb{B}

Step B1. This step terminates the following commands to establish a known signal condition.

OMS L POD XFD VLVS A CMD 1 CL	V43K4283X
OMS L POD OXDZR XFD VLV A CMD 2 CL	V43K4285X
OMS L POD FUEL XFD VLV A CMD 2 CL	V43K 4385 X
OMS L POD XFD VLVS B CMD 1 CL	V43K4287X
OMS L POD OXDZR XFD VLV B CMD 2 CL	V43K4289X
OMS L POD FUEL XFD VLV B CMD 2 CL	V43K 4389 X
OMS R POD XFD VLVS A CMD 1 CL	V43K5283X
OMS R POD OXDZR XFD VLV A CMD 2 CL	V43K5285X
OMS R POD FUEL XFD VLV A CMD 2 CL	V43K5385X
OMS R POD XFD VLVS B CMD 1 CL	V43K5287X
OMS R POD OXDZR XFD VLV B CMD 2 CL	V43K5289X
OMS R POD FUEL XFD VLV B CMD 2 CL	$V 43 K 5389 X$

RCS L AFT XFD VLV $1 / 2$ GPC CL A
RCS L AFT OX XFD VLV $1 / 2$ GPC CL B
RCS L AFT FU XFD VLV $1 / 2$ GPC CL B
RCS L AFT XFD V $3 / 4 / 5$ GPC CL A
RCS L AFT OX XFD V $3 / 4 / 5$ GPC CL B
RCS L AFT FU XFD V $3 / 4 / 5 \mathrm{GPC} C L \mathrm{~B}$

RCS R AFT XFD VLV $1 / 2$ GPC CL A
RCS R AFT OX XFD VLV $1 / 2$ GPC CL B
RCS R AFT FU XIFD VLV $1 / 2$ GPC CL B
RCS R AFT XFD V $3 / 4 / 5$ GPC CL A
RCS R AFT OX XFD V $3 / 4 / 5$ GPC CL B
RCS R AFT FU XFD V $3 / 4 / 5$ GPC CL B

RCS L AFT TK ISLN V $1 / 2$ GPC CL A
V42K2416X
V42K2418X
V42K2422X
V42K2428X
V42K2430X
V42K2434X

V42K3416X
V42K3418X
V42K3422X
V42K3428X
V42K3430X
V42K3434X

RCS L AFT OX TK ISLN V $1 / 2$ GPC CL B
RCS L AFT FU TK ISLN V $1 / 2$ GPC CL B
RCS L AFT OX TK ISLN V 3/4/5 A GPC CL
RCS L AFT FU TK ISLN V 3/4/5 A GPC CL
RCS L AFT OX. TK ISLN V $3 / 4 / 5$ B GPC CL
RCS L AFT FU TK ISLN V 3/4/5 B GPC CL

RCS R AFT TK ISLN V $1 / 2$ GPC CL A
V42K2353X
V42K2354X
V42K2355X
V42K2357X
V42K2358X
V42K2360X
V42K2361X

RCS R AFT OX TK ISLN V $1 / 2$ GPC CL B RCS R AFT FU TK ISLN V $1 / 2$ GPC CL B RCS R AFT OX TK ISLN V-3/4/5 A GPC CL RCS R AFT FU TK ISLN V-3/4/5 A GPC CL RCS R AFT OX TK ISLN V-3/4/5 B GPC CL

V42K3353X
V42K3354X
V42K3355X
V42K3357X
V42K3358X
V42K3360X

RCS R AFT FU TK ISLN V-3/4/5 B GPC CL
OMS L POD XFD VLVS A CMD 1 OP
OMS L POD OXDZR XFD VLV A CMD 2 OP
OMS L POD FUEL XFD VLV A CMD 2 OP
OMS L POD XFD VLVS B CMD 1 OP
OMS L POD OXDZR XFD VLV B CMD 2 OP
OMS L POD FUEL XFD VLV B CMD 2 OP
OMS R POD XFD VLVS A CMD 1 OP
OMS R POD OXDZR XFD VLV A CMD 2 OP OMS R POD FUEL XFD VLV A CMD 2 OP OMS R POD XFD VLVS B CMD 1 OP OMS R POD OXDZR XFD VLV B CMD 2 OP OMS R POD FUEL XFD VLV B CMD 2 OP

RCS L AFT XFD VLV $1 / 2$ GPC OP A
RCS L AFT OX XFD VLV $1 / 2$ GPC OP B
RCS L AFT FU XFD VLV $1 / 2$ GPC OP B
RCS L AFT XFD VLV $3 / 4 / 5$ GPC OP A
RCS L AFT OX XFD V $3 / 4 / 5 \mathrm{GPC}$ OP B
RCS L AFT FU XFD V $3 / 4 / 5$ GPC OP B
RCS R AFT XFD VLV $1 / 2$ GPC OP A
RCS R AFT OX XFD VLV $1 / 2$ GPC OP B
RCS R AFT FU XFD VLV $1 / 2$ GPC OP B
RCS R AFT XFD VLV $3 / 4 / 5$ GPC OP A
RCS R AFT OX XFD V $3 / 4 / 5$ GPC OP B
RCS R AFT FU XFD V $3 / 4 / 5$ GPC OP B

RCS L AFT TK ISLN V $1 / 2$ GPC OP A
RCS L AFT OX TK ISLN V $1 / 2$ GPC OP B RCS L AFT FU TK ISLN V $1 / 2$ GPC OP B RCS L AFT OX TK ISLN V 3/4/5 A GPC OP RCS L AFT FU TK ISLN V 3/4/5 A GPC OP

RCS L AFT OX TK ISLN V $3 / 4 / 5$ B GPC OP RCS L AFT FU TK ISLN V $3 / 4 / 5$ B GPC OP RCS R AFT TK ISLN V $1 / 2$ GPC OP A RCS R AFT OX TK ISLN V $1 / 2$ GPC OP B RCS R AFT FU TK ISLN V $1 / 2$ GPC OP B RCS R AFT OX TK ISLN V 3/4/5 A GPC OP RCS R AFT FU TK ISLN V 3/4/5 A GPC OP RCS R AFT OX TK ISLN V $3 / 4 / 5$ B GPC OP RCS R AFT FU TK ISLN V 3/4/5 B GPC OP

OMS L POD TK VLVS A CMD 1 OP OMS L POD TK VLVS A CMD 1 CL OMS L POD OXDZR ISLN V A CMD 2 OP

V42K3361X

V43K4282X
V43K4284X
V43K4384X
V43K4286K
V43K4288X
V43K4388X

V43K5282X
V43K5284X
V43K5384X
V43K5286X
V43K5288X
V43K5388X
V42K2402X
V42K2403X
V42K2404X
V42K2408X
V42K2409X
V42K2410X

V42K3402X
V42K3403X
V42K3404X
V42K3408X
V43K3409X
V42K3410X

V42K2342X
V42K2343X
V42K2344X
V42K2346X
V42K2347X

V42K2349X
V42K2350X
V42K3342X
V42K3343X
V42K3344X
V42K3346X
V42K3347X
V42K3349X
V42K3350X

V43K4270X
V43K4271X
V43K4272X

OMS L POD OXDZR ISLN V A CMD 2 CL
V43K4273X
OMS L POD TK VLVS B CMD 1 OP V43K4274X OMS L POD TK VLVS B CMD 1 CL OMS L POD OXDZER ISLN V B CMD 2 OP OMS L POD OXDZR ISLN V B CMD 2 CL. OMS L POD FUEL ISLN VLV A CMD 2 OP OMS L POD FUEL ISLN VLV A CMD 2 CL OMS L POD FUEL ISLN VLV B CMD 2 OP OMS L POD FUEL ISLN VLV B CMD 2 CL OMS R POD TK VLVS A CMD 1 OP OMS R POD TK VLVS A CMD 1 CL OMS R POD OXDZR ISLN V A CMD 2 OP V43K4275X V43K4276X V43K4277X V43K4372X V43K4373X V43K4376X V43K4377X V43K5270X V43K5271X OMS R POD OXOZR ISLN V A CMD 2 CL V43K5272X OMS R POD TK VLVS B CMD 1 OP V43K5273X

OMS R POD TK VLVS B CMD 1 CL V43K5274X

OMS R POD OXDZR ISLN V B CMD 2 OP V43K5275X OMS R POD OXDZR ISLN V B CMD 2 CL V43K5276X OMS R POD FUEL ISLN VLV A CMD 2 OP V43K5277X OMS R POD FUEL ISLN VLV A CMD 2 CL OMS R POD FUEL ISLN VLV B CMD 2 OP OMS R POD FUEL ISLN VLV B CMD 2 CL

When all commands above have been terminated, the following signal is set false and the sequence returns to Step 1.
(1) PRE-SEQ CMD TERM FLAG
(INTERNAL)

Figure 4. 212. Orbit OMS/RCS Connect (Sheet 1 of 2)

INFORMATION ONLY
IF 1.5 SEC
ELAPSED

TABLE 4．7．2．4－1．ORBIT OMS／RCS INTERCONNECT（G4．212）INPUT／OUTPUT FUNCTIONAL PARAMETERS

明田已
 UNITS

049P00L	INPUT FUNCTIONAL PARAMETERS FOR	ORB OMS／RCS CONN
M／S ID	NOMENCLATURE	SOURCE
V43x4152x	OMS－L POD HE ISLN VLV A POSN OP	HDWR
V43x4154X	OMS－L POD HE ISLN VLV B POSN OP	HDWR
V43x4156x	OMS－L POD VAPOR ISLN VLV 1 POSN OP	HDWR
V43x4158x	OMS－L POD VAPOR ISLN VLV 2 POSN OP	HDWR
V43P4221C	OMS－L POD OXDZR TANK ULLAGE PRESS	DSC OL2
V43P4321C	OMS L POD FUEL TANK ULlage press	DSC OL1
V43x5152x	OMS－R POD HE ISLN VLV A POSN OP	HDWR
V43x5154X	OMS－R POD HE ISLN VLV B POSN OP	HDWR
V43x5156x	OMS－R POD VAPOR ISLN VLV 1 POSN OP	HDWR
V43x5158x	OMS－R POD VAPOR ISLN VLV 2 POSN OP	HDWR
V43P5221C	OMS－R POD OXDZR TANK ULLAGE PRESS	DSC OR2
V43P5321C	OMS R POD FU TANK ULLAGE PRESS	DSC OR1
V91x2841x	FA1 INPUT PROM SEG 1，2 StAtUS（MFE）	ECOS
V91x2842x	FA2 INPUT PROM SEG 1，2 STATUS（MFE）	FCOS
v91x2845x	FA1 INPUT PROM SEG3， 10 Status（hFe）	FCOS
V91x2846x	FA2 INPUT PROM SEG3， 10 StATUS（hFE）	FCOS
V91x2847x	FA3 INPUT PROM SEG3， 10 StATUS（hFe）	ECOS
V91x2848x	FA4 INPUT PROM SEG3， 10 StATUS（HFE）	ECOS
V93x5100x	OMS PRESS ENA L	RM RCS DISP
V93x5101x	OMS PRESS ENA R	RM RCS DISP

DBEN：D3B027－F
ESSR NAME
TABLE 4.7.2.4-1. ORBIT OMS/RCS INTERCONNECT (G4.212) INPUT/OUTPUT FUNCTIONAL PARAMETERS

IAST CRS
ai 0
的 x员合㽞品皿员

盟 UNITS

品品品㽞

DBFN：D3B027－E
TABLE 4.7.2.4-3. ORBIT OMS/RCS INTERCONNECT (G4.212) K-LOADS
DBEN: 0558
FSSR NAME
DESCRIPTION
DBEN: 0558
ESSR NAME
DESCRIPTION
NO REQUIREMENTS

[^7]
4.7.6 OMS Fire Sequence (4.182)

4.7.6.1 Introduction

The OMS engine firing sequence is scheduled by MSC when an OMS burn is to be performed. This sequence provides the controls to command the engines $O N / O F F$ and to perform the engine purge function.

4.7.6.2 Overview

The sequence will command OMS engines ON when scheduled by MSC. When directed, the OMS engine ON commands are terminated and a purge is performed at the conclusion of the burn. If an OMS engine is manually shutdown by putting the ARM/PRESS switch to OFF, then that engine is not purged. If an OMS engine fails prematurely, the failed engine ON commands are terminated by the crew putting the ARM/PRESS switch to OFF, and the engine is not purged if the switch is not returned to the ARM/ PRESS position. For an engine failure, the helium isolation valve commands are not terminated since propellants are required from the failed engine pod.

The capability exists to select individual engines to be included in the planned firing.

4.7.6.3 Detailed Requirements

OMS engine firing sequence is scheduled and descheduled by moding, sequence, and control (MSC).
Step 1. This step determines if an OMS engine firing is to be terminated.
The following signal is monitored:
(a) OMS CUT-OFF COMMAND

If (a) is true, proceed to Step 6.
If (a) is false, terminate (1) through (4) below and proceed to Step 2.
(1) OMS L PURGE VLV 1 OP V43K4556X
(2) OMS L PURGE VLV 2 OP V43K4557X
(3) OMS R PURGE VLV 1 OP V43K5556X
(4) OMS R PURGE VLV 2 OP V43K5557X

Step 2. This step determines which engines are to be commanded ON for this firing.
The following signal is monitored:
(a) PRIME PROP SYS INDICATOR FLAG

V94J3791C

If not first pass, proceed to Step 3.
If (a) has a value of one on the first pass, of the signals listed below, issue (1) through (16), set (17) and (18) true, and proceed to Step 3.

If (a) has a value of two on first pass, of the signals listed below, issue (1) through (4) and (9) through (12), set (17) true, and proceed to Step 3.

If (a) has a value of three on first pass, of the signals listed below, issue (5) through (8) and (13) through (16), set (18) true, and proceed to Step 3.
(1) OMS L POD HE ISLN VLV A OP V43K4180X
(2) OMS L POD HE ISLN VLV B OP
(3) OMS L POD VAPOR ISLN VLV 1 OP
(4) OMS L POD VAPOR ISLN VLV 2 OP
(5) OMS R POD HE ISLN VLV A OP
(6) OMS R POD HE ISLN VLV B OP
(7) OMS R POD VAPOR ISLN VLV 1 OP
(8) OMS R POD VAPOR ISLN VLV 2 OP
(9) OMS L ENG CONTROL VLV 1 COIL 1 OP
(10) OMS L ENG CONTROL VLV 1 COIL 2 OP
(11) OMS L ENG CONTROL VLV 2 COIL 1 OP
(12) OMS L ENG CONTROL VLV 2 COIL 2 OP
(13) OMS R ENG CONTROL VLV 1 COIL 1 OP
(14) OMS R ENG CONTROL VLV 1 COIL 2 OP
(15) OMS R ENG CONTROL VLV 2 COIL 1 OP
(16) OMS R ENG CONTROL VLV 2 COIL 2 OP
(17) OMS L ON CMD IND
(18) OMS R ON CMD IND

V43K4181X
V43K4182X
V43K4183X
V43K5180X
V43K5181X
V43K5182X
V43K5183X
V43K4583X
V43K4584X
V43K4585X
V43K4586X
V43K5583X
V43K5584X
V43K5585X
V43K5586X
V90X8271X
V90X8272X

Step 3. This step monitors for an OMS engine failure.
The following signals are monitored:
(a) LEFT OMS ENGINE SHUTDOWN FLAG

V90X7670X
(b) RIGHT OMS ENGINE SHUTDOWN FLAG V90X7671X

If (a) and (b) are false, return to Step 1.
If (a) is true and (b) is false, proceed to Step 4.
If (a) is false and (b) is true, proceed to Step 5.
If (a) and (b) are both true, set (1) below true and return to Step 1.
(1) OMS CUTOFF COMMAND

V90X8318X
Step 4. This step terminates left OMS engine ON commands when a left OMS engine has failed.
The following signal is monitored:
(a) PRIME PROP SYS INDICATOR FLAG

V94J3791C

If (a) has a value of two on the first pass, of the signals listed below, terminate (1) through (4), set (5) false, issue (6), and return to Step 1. If not first pass, return to Step 1.

If (a) has a value of one on the first pass, of the signals listed below, terminate (1) through (4), set (5) false, and return to Step 1. If not first pass, return to Step 1.
(1) OMS L ENG CONTROL VLV 1 COIL 1 OP V43K4583X
(2) OMS L ENG CONTROL VLV 1 COIL 2 OP . V43K4584X
(3) OMS L ENG CONTROL VLV 2 COIL 1 OP V43K4585X
(4) OMS L ENG CONTROL VLV 2 COIL 2 OP V43K4586X
(5) OMS L ON CMD IND V90X8271X
(6) OMS CUT-OFF COMMAND

Step 5. This step terminates right OMS engine ON commands when a right OMS engine has failed.
The following signal is monitored:
(a) PRIME PROP SYS INDICATOR FLAG

V94J3791C

If (a) has a value of three on the first pass, of the signals listed below, terminate (1) through (4), set (5) false, issue (6), and return to Step 1. If not first pass, return to Step 1.

If (a) has a value of one on the first pass, of the signals listed below, terminate (1) through (4), set (5) false, and return to Step 1. If not first pass, return to Step 1.
(1) OMS R ENG CONTROL VLV 1 COIL 1 OP V43K5583K
(2) OMS R ENG CONTROL VLV 1 COIL 2 OP V43K5584K
(3) OMS R ENG CONTROL VLV 2 COIL 1 OP V43K5585X
(4) OMS R ENG CONTROL VLV 2 COIL 2 OP V43K5586X
(5) OMS R ON CMD IND V90X8272X
(6) OMS CUT-OFF COMMAND V90X8318X

Step 6. This step terminates the OMS engines firing when directed.

```
OMS L POD HE ISLN VLV A OP
V43K4180X
OMS L POD HE ISLN VLV B OP
OMS L POD VAPOR ISLN VLV 1 OP
V43K4181X
OMS L POD VAPOR ISLN VLV 2 OP
V43K4182X
OMS R POD HE ISLN VLV A OP
V43K4183X
V43K5180X
OMS R POD HE ISLN VLV B OP
OMS R POD VAPOR ISLN VLV 1 OP
V43K5181X
OMS R POD VAPOR ISLN VLV 2 OP
V43K5182X
V43K5183X
OMS L ENG CONTROL VLV 1 COIL 1 OP
V43K4583X
OMS L ENG CONTROL VLV 1 COIL 2 OP
V43K4584X
OMS L ENG CONTROL VLV 2 COIL 1 OP
V43K4585X
OMS L ENG CONTROL VLV 2 COIL 2 OP
V43K4586X
OMS R ENG CONTROL VLV 1 COIL 1 OP
V43K5583X
OMS R ENG CONTROL VLV 1 COIL 2 OP
V43K5584X
OMS R ENG CONTROL VLV 2 COIL 1 OP
V43K5585X
OMS R ENG CONTROL VLV 2 COIL 2 OP
V43K5586X
```

If first pass, terminate the above signals, set (1) and (2) false, and proceed to Step 7. If not first pass, proceed to Step 7.
(1) OMS L ON CMD IND
V90X8271X
(2) OMS R ON CMD IND V90X8272X

Step 7. This step determines if an OMS auto purge is to be performed.
The following signals are monitored:
(a) SEL OMS L ENG ARM/PRESS CMD
V90X7540X
(b) SEL OMS R ENG ARM/PRESS CMD
V90X7542X
(c) OMS_PURGE_DELAY_TIME
V97U9825C
(d) OMS_PURGE_TIME
V97U9824C

If (a) and (b) are both false, terminate (1) through (4) below and return to Step 1 until expiration of $(c)+(d)$. At that time, the OMS fire sequence is reinitialized and the sequence can be terminated.

If (a) and (b) are true, then issue (1) through (4) below after time delay (c) has expired.
If (b) is false and (a) is true, issue (1) and (2) below after time delay (c) has expired.
If (a) is false and (b) is true, issue (3) and (4) below after time delay (c) has expired.

(1)	OMS L PURGE VLV 1 OP	V43K 4556 X
(2)	OMS L PURGE VLV 2 OP	V43K 4557 X
(3)	OMS R PURGE VLV 1 OP	V43K.5556X
(4)	OMS R PURGE VLV 2 OP	V43K5557X

After expiration of OMS purge time (d), terminate the above commands and reinitialize the OMS fire sequence to allow for subsequent engine firing, including enabling of first-pass indicators and the reenabling of purge delay and OMS purge timers.

Figure 4.182. OMS Fire Sequence (Sheet 1 of 2)

INFORMATION ONLY

Figure 4.182. OMS Fire Sequence (Sheet 2 of 2)
TABLE 4.7.6.4-1. OMS FIRE SEQUENCER (G4.182) INPUT/OUTPUT FUNCTIONAL PARAMETERS

049P00L	INPUT FUNCTIONAL PARAMETERS EOR OMS EIRE SEQ				
			P		
			R		
				DATA	
M/S ID	NOMENCLATURE	SOURCE	UNITS	type	LAST CRS
V90x8190xA	OMS IGNITION COMMAND FLAG	MSC		BD	90120 B
V94J3791CA	PRIME PROP SYS INDICATOR FLAG	ASC MNVR DIP			90120 B
V94J3791CB	PRIME PROP SYS INDICATOR FLAG				89461
v94J3791CC	PRIME PROP SYS INDICATOR FLAG	ORB MNVR DIP			90120B
V90x7670x	LEFT OMS ENGINE SHUTDOWN FLAG	DEORB MNVR DIP OMS RM			90120 B
				BD	89461
V90x8318XA	OMS CUTOFF CMD	ABT CNTL SEQ			89990 E
					89461
V90x8318xB	OMS CUTOFF CMD	MSC			89461
V90x7671X	RIGHT OMS ENGINE SHUTDOWN FLAG	OMS RM		BD	90120B
V90x7540xA	SEL OMS-L ENG ARM/PRES				89461
V90K7542XA	SEL OMS-R ENG ARM/PRESS CMD	GN\&C ${ }_{\text {GN } \& C}$ SW RM			90182 90182

PN:
DBEN: D3E027-E
FSSR NAME
OMS IGNITION_CMD
PROP_ELAG_OFS
PROP_FLAG_OFS
PROPEFLAG_OES
S_LOMS FAIL
S_OMS_CUTOFE
S_OMS CUTOFE
S_ROMS_FAIL
TABLE 4.7.6.4-1. OMS FIRE SEQUENCER (G4.182) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.7.6.4-3. OMS FIRING SEQUENCER (G4.182) K-LOADS

TABLE 4.7.6.4-4. OMS FIRING SEQUENCER (G4.182) CONSTANTS

FSSR NAME DESCRIPTION	MSID	MC	Constant value	ENG UNIT	$D T$	RR	s	PR ECTN	LAST CR

4.7.9 OMS to RCS Gaging (4.101)

4.7.9.1 Introduction

OMS to RCS propellant quantities are calculated by burn time integration. Once each cycle, the accumulated thruster cycles are used to compute the OMS propellant used since initiation of the gaging. Gaging is initiated by item entry of OMS right or OMS left PRESS ENABLE and terminated by OFF item entry.

4.7.9.2 Overview

Since the OMS to RCS interconnect may be used at different times in the mission, but only from one pod at a time, it is necessary to maintain a summation of total OMS propellant used from each pod. This means that a record must be maintained of total quantity used from the currently selected pod, as well as a separate total from the other pod. The number of RCS main and vernier thruster 80 -millisecond command cycles and main thruster startup cycles are provided by the RCS CMD SOP. When the total quantity used from either OMS pod equals or exceeds a predetermined limit, an alert is issued to generate CRT message line and a Class 3 alert light and tone.

4.7.9.3 Detailed Requirements

Step 1. This step initializes OMS to RCS quantity gaging.
If first pass after each initiation, set the following quantity to zero and proceed to Step 2. If not first pass, proceed to Step 2.
(1) WPT (N-1)
(INTERNAL)

Step 2. This step determines the amount of propellants used during the current operation.
The following signals are monitored:

(a) TOTAL NO. AFT RCS MAIN THRUSTER CYCLES	V95Q1650C	
(b) TOTAL NO. AFT RCS VERNIER THRUSTER CYCLES	V95Q1651C	
(c)	TOTAL NO. AFT RCS MAIN THRUSTER STARTUPS	V95Q1652C

Compute the quantity of propellants used since initiation of this operation using the following algorithm and then proceed to Step 3.

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{pm}}=\mathrm{A}_{1} \mathrm{~N}_{\mathrm{m}}+\mathrm{A}_{2} \mathrm{~N}_{\mathrm{S}} \\
& \mathrm{~W}_{\mathrm{pv}}=\mathrm{B}_{1} \mathrm{~N}_{\mathrm{v}} \\
& \mathrm{~W}_{\mathrm{pt}}=\mathrm{W}_{\mathrm{pm}}+\mathrm{W}_{\mathrm{pv}}
\end{aligned}
$$

where
$W_{p m}=$ Total main jet propellant weight used
$\mathrm{A}_{1}=$ Main jet flow rate per $80-\mathrm{ms}$ cycle $\left(\mathrm{A}_{1}=2.50 \mathrm{E}-01 \mathrm{lb} / 80-\mathrm{ms}\right.$ cycle $)$
$\mathrm{A}_{2}=$ Correction factor for start-up/shutdown flow found by test $\left(\mathrm{A}_{2}=0\right)$
$\mathrm{N}_{\mathrm{m}}=$ Total number of RCS main thruster cycles (a)
$\mathrm{N}_{\mathrm{s}}=$ Total number of RCS main thruster start-ups (c)
$\mathrm{W}_{\mathrm{pv}}=$ Total vernier jet propellant weight used
$\mathrm{B}_{1}=$ Vernier jet flow rate per $80-\mathrm{ms}$ cycle $\left(\mathrm{B}_{1}=7.20 \mathrm{E}-03 \mathrm{lb} / 80-\mathrm{ms}\right.$ cycle $)$
$N_{v}=$ Number of vernier thruster cycles (b)
$\mathrm{W}_{\mathrm{pt}}=$ Total prop used this operation

Step 3. This step updates the quantity used values for the selected OMS pod.*
The following signals are monitored:
(a) OMS PRESS ENA L

V93X5100X
(b) OMS PRESS ENA R

V93X5101X
If (a) and (b) are both false, return to Step 1.
If (a) is true, then the following summation is performed:
LEFT OMS QUANTITY USED updated = LEFT OMS QUANTITY USED previously + $\mathrm{W}_{\mathrm{pt}}(\mathrm{N})-\mathrm{W}_{\mathrm{pt}}(\mathrm{N}-1)$

If (b) is true, then the following summation is performed.
RIGHT OMS QUANTITY USED updated = RIGHT OMS QUANTITY USED previously + $\mathrm{W}_{\mathrm{pt}}(\mathrm{N})-\mathrm{W}_{\mathrm{pt}}(\mathrm{N}-1)$

Then proceed to Step 4.
Step 4. This step provides the scaling of the stored values of left and right OMS propellants used for CRT display.

The following values are computed:
LEFT OMS QUANTITY USED $\times 7.72 \times 10^{-3}=$ left percent OMS used
RIGHT OMS QUANTITY USED $\times 7.72 \times 10^{-3}=$ right percent OMS used
The following signals are available for display:

LT OMS TOTAL QUANTITY USED (\%)	V90Q8535C
RT OMS TOTAL QUANTITY USED (\%)	V90Q8536C
\quad.	
Proceed to Step 5.	

Step 5. This step determines when the total quantity of propellant used from the OMS pods exceeds a predetermined limit.

The following signals are monitored:
(a) OMS PRESS ENA L

V93X5100X
(b) OMS PRESS ENA R
(c) Q_OMS_LIM
(d) LEFT OMS QUANTITY USED
(e) RIGHT OMS QUANTITY USED

If (a) is true and $(\mathrm{d})>(\mathrm{c})$, issue (1) below and return to Step 1.
If (b) is true and (e) $>$ (c), issue (2) below and return to Step 1.
(1) LT OMS PROP USED EXCEEDS LIMIT
V90X8531X
(2) RT OMS PROP USED EXCEEDS LIMIT V90X8532X

Otherwise, return to Step 1.

Figure 4.101. OMS to RCS Gaging

碞
自品 品 品
TABLE 4．7．9．4－1．OMS TO RCS QTY GAUGING（G4．101）INPUT／OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.7.9.4-1. OMS TO RCS QTY GAUGING (G4.101) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.7.9.4-2. OMS TO RCS QTY GAUGING (G4.101) 1-LOADS

MSID ENG UNIT DT PR D S PR ECTN CAT
F S DPG4.101 QELO
V97U9826C LBS F

QUANT OMS_LMT
TABLE 4.7.9.4-3. OMS TO RCS QTY GAUGING (G4.101) K-LOADS
OT PR S PR FCTN LAST CR EQTN MSID
TABLE 4.7.9.4-4. OMS TO RCS QTY GAUGING (G4.101) CONSTANTS

FSSR NAME DESCRIPTION	MSID	MC	CONSTANT	VALUE	ENG U		DT	PR	S	PR ECTN	LAST CR
MAIN JET FLOWRATE MA $\overline{\mathrm{I}} \mathrm{N}$ JET FLOWRATE (A1)	V97U6148C		+2.50	E-01	LB/80	MSEC	F	S	$\underline{1}$	G4. 101	90374
VERNIER JET FLOWRATE VERNIER JET FLOWRATE (B1)	V97U6149C		+7.20	E-03	LB/80	MSEC	F	s	$\underline{1}$	G4. 101	90374

4.8.1 Master Events Controller SOP (4.228)

The purpose of the master events controller (MEC) SOP principal function is to process user function discrete commands to generate the following serial-digital signals to the MEC: MEC critical commands, MEC noncritical commands, and MEC master reset commands.

The MEC SOP shall be processed on demand as required by the R/S LCH SEQ, SRB SEP SEQ, or ET SEP SEQ. The MEC SOP interfaces are indicated in the functional block diagram in Figure 4.8.1-1. The MEC critical and noncritical commands are shown in Tables 4.8.1-1 and 4.8.1-2, respectively. The input and output parameters are shown in Tables 4.8.1-3 and 4.8.1-4, respectively. The output requirements are shown in Table 4.8.1-5.

Figure 4.8.1-1. MEC SOP Functional Block Diagram

Table 4.8.1-1. MEC Critical Command Processing				
Input Flag	Output - Bits 9-24 in Command Data Word			
	Parameter		CMD Constant	Hex Value
T0_UMB_ARM $=1$	CRIT_CMD1 (1)	$=$	UMB_RLS_ARM (1)	CEDC
V90X8407X	CRIT_CMD2 (1)	=	UMB_RLS_ARM (2)	CEDC
SRM_IGN_ARM $=1$	CRIT_CMD1 (2)	$=$	SRM_ARM (1)	3EAC
V90X8404X	CRIT_CMD2 (2)	$=$	SRM_ARM (2)	3EAC
SRM_IGN_FIRE1 = 1	CRIT_CMD1 (3)	$=$	SRM_FIRE1 (1)	3E6A
V90X8405X	CRIT_CMD2 (3)	$=$	SRM_FIRE1 (2)	3E6A
SRM_IGN_FIRE $2 / 3=1$	CRIT_CMD1 (4)	$=$	SRM_FIRE2 (1)	3E42
V90X8699X	CRIT_CMD2 (4)	$=$	SRM_FIRE2.(2)	3E42
TO_UMB_FIRE1 $=1$	CRITC_CMD1 (3)	$=$	UMB_FIRE1 (1)	CE6A
V90X8408X	CRIT_CMD2 (3)	$=$	UMB_FIRE1 (2)	CE6A
TO_UMB_FIRE2/3 $=1$	CRIT_CMD1 (4)	$=$	UMB_FIRE2 (1)	CE9A
V90X8698X	CRIT_CMD2 (4)	$=$	UMB_FIRE2 (2)	CE9A
SRB_SEP_ARM $=1$	CRIT_CMD1 (2)	$=$	SRB_ARM (1)	3154
V90X8335X	CRIT_CMD2 (2)	$=$	SRB_ARM (2)	3154
SRB_SEP_FIRE1 = 1	CRIT_CMD1 (2)	$=$	SRB_FIRE1 (1)	316A
V90X8341X	CRIT_CMD2 (2)	$=$	SRB_FIRE1 (2)	316A
SRB_SEP_FIRE $2 / 3=1$	CRIT_CMD1 (3)	$=$	SRB_FIRE2 (1)	319B
V90X8354X	CRIT_CMD2 (3)	$=$	SRB_FIRE2 (2)	319B
ET_UMB_UNLCH ARM $=1$	CRIT_CMD1 (2)	$=$	ET_UMB_ARM (1)	C121
V90X8247X	CRIT_CMD2 (2)	$=$	ET_UMB_ARM (2)	C121
ET_YNB_RETR_CMDI $=1$	CRIT_CMD1 (4)	$=$	ET_UMB_CND1 (2)	7463
V90X8263X	CRIT_CMD2 (4)	$=$	ET_UMB_CMD1 (2)	7463
ET_UMB_UNLCH_FIRE1 $=1$	CRIT_CMD1 (3)	$=$	ET_UMB_FIRE1 (1)	C162

Table 4.8.1-1. MEC Critical Command Processing				
Input Flag	Output - Bits 9-24 in Command Data Word			
	Parameter		CMD Constant	Hex Value
V90X8256X	CRIT_CMD2 (3)	$=$	ET_UMB_FIRE1 (2)	C162
ET_UMB_UNLCH_FIRE	CRIT_-CMD1 (2)	$=$	ET_UMB_FIRE2 (1)	C193
$2 / 3=1$ V90X8242X	CRIT_CMD2 (2)	$=$	ET_UMB_FIRE2 (2)	C193
ET_UMB_RETR CMD	CRIT_CMD1 (1)	$=$	ET_UMB_CMD2 (1)	7498
$2 / 3=1 \quad \mathrm{~V} 90 \mathrm{X} 8243 \mathrm{X}$	CRIT_CMD2 (1)	$=$	ET_UMB_CMD2 (2)	7498
ET_SEP_ARM $=1$	CRIT_CMD1 (1)	$=$	ET_SEP_ARM (1)	E117
V90X8265X	CRIT_CMD2 (1)	$=$	ET_SEP_ARM (2)	E117
ET_SEP_FIRE1 $=1$	CRIT_CMD1 (2)	$=$	SEP_ET_FIRE1 (1)	E168
V90X8244X	CRIT_CMD2 (2)	$=$	SEP_ET_FIRE1 (2)	E168
ET_SEP_FIRE	CRIT_CMD1 (3)	$=$	SEP_ET_FIRE2 (1)	E199
$2 / 3=1$ V90X8241X	CRIT_CMD2 (3)	$=$	SEP_ET_FIRE2 (2)	E199
ET_TMBL_ARM $=1$	CRIT_CMD1 (3)	$=$	ET_TUMBLE_ARM (1)	EBC 2
V90X8251X	CRIT_CMD2 (3)	$=$	ET_TUMBLE_ARM (2)	EBC2
SRB_RSS_SAFE $=1$	CRIT_CMDI (3)	$=$	RSS_SRB_SAFE1 (1)	EB68
V90X8337X	CRIT_CMD2 (3)	$=$	RSS_SRB_SAFE1 (2)	EB68
	CRIT_CMD1 (4)	$=$	RSS_SRB_SAFE2 (1)	EB95
	CRIT_CMD2 (4)	$=$	RSS_SRB_SAFE2 (2)	EB95
ET_TMBL_FIRE $=1$	CRIT_CMD1 (4)	$=$	ET_TUMBLE_FIRE (1)	ECB6
V90X8252X	CRIT_CMD2 (4)	$=$	ET_TUMBLE_FIRE (2)	ECB6
ATVC_26V_DD_FACE $=1$	CRIT_CMD1 (1)	$=$	ATVC_1/2_DDFC (1)	EC68
V90X8339X	CRIT_CMD2 (1)	$=$	ATVC_1/2_DDFC (2)	EC68
	CRIT_CMD1 (4)	$=$	ATVC_3/4_DDFC (1)	EC9D
	CRIT_CMD2 (4)	$=$	ATVC_3/4_DDFC (2)	EC9D

4.8.1.1 MEC Critical Command Processing

The MEC SOP shall monitor command flags from the user functions and shall generate critical command data words to the two MEC's for each of the user function command flags as defined in Table 4.8.1-1. The user function command flag shall then be reset. The resulting parameter command constant shall be maintained until replaced by a new parameter command constant resulting from a new user function command flag or until zeroed by the MEC 1 and 2 master reset (see Section 4.8.1.3).

MEC critical commands must comply with the following timing constraints: (1) the MEC 1 to MEC 2 timing interval shall be less than 400 milliseconds (the MEC 1 to MEC 2 timing interval refers to the interval between like commands issued to MEC 1 and MEC 2 by any single GN\&C computer) and (2) a single GPC shall not issue successive commands to a MEC with less than 25 microseconds between the commands. Timing constarints that apply to MEC commands are also presented in the Level A CPDS, SS-P-0002-170, Section 4.4.2 Timing and Periodicity, Items (e), (f), (g), (h).

4.8.1.1.1 Initialization Requirements

The critical command data words, as defined in Table 4.8.1-5, shall be initialized with HEX CODE 0000 upon entry into OPS 1.

4.8.1.2 MEC Noncritical Command Processing

The MEC SOP shall monitor noncritical command flags from the user functions and shall generate noncritical set and reset command data words to the two MEC's for each of the user function command flags as defined in Table 4.8.1-2. MEC noncritical commands must comply with the following timing constraints: (1) the MEC 1 to MEC 2 timing interval shall be less than 400 microseconds (the MEC 1 to MEC 2 timming interval refers to the interval between like commands issued to MEC 1 and MEC 2 by any single GN\&C computer) and (2) a single GPC shall not issue successive commands to a MEC with less than 25 microseconds between the commands, and (3) MEC noncritical commands from the redundant set GPC's must be allowed to remain at the MEC ports as a set for at less 25 microseconds before being overwritten by other MEC commands. This is to ensure that identical noncritical commands are resident in each port of the MEC for at least 25 microseconds. Timing constarints that apply to MEC commands are also presented in the Level A CPDS, SS-P-0002-170, Section 4.4.2 Timing and Periodicity, Items (e), (f), (g), and (h).

The cumulative status of both the set and reset commands shall be maintained during OPS 1 . Whenever a noncritical command flag is set by the user function, the MEC SOP shall modify the cumulative set and reset command parameters as defined in Table 4.8.1-2. The user function command flag shall then be reset. The resulting parameter command constants shall be maintained until modified in response to subsequent user function command flags or, in the case of the FIRE3 commands, until reset by the MEC 1 and 2 master reset (see Section 4.8.1.3).

4.8.1.2.1 Initialization Requirements

The noncritical command data words, as defined in Table 4.8.1-5, shall be initialized with the Hex Code 607 C for the SET data words and Hex Code 9F83 for the RESET data words.

During OPS 3 and OPS 8, the set command shall be initialized and maintained with Hex Code 0003 and cyclically output to MEC's 1 and 2. Additionally, the reset command may be set to FFFC and cyclically output. Output of the reset command to the MEC is not required.

Table 4.8.1-2. MEC Noncritical Command Processing				
Input Flag Parameter	Name	Hex Code Bits Affected	Parameter	$\begin{aligned} & \text { Hex } \\ & \text { Code* } \end{aligned}$
OPS 1 INTTIALIZATION (see 4.8.1.2.1)	Initial noncritical command data words	$\begin{aligned} & 607 \mathrm{C}=1 \\ & 607 \mathrm{C}=1 \\ & 9 \mathrm{~F} 3=1 \\ & 9 \mathrm{~F} 83=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	607 C 607C 9F83 9F83
SRM_IGN_FIRE $2 / 3=1$	IGN_SRM_FIRE3 IGN_SRM_FIRE3 IGN_SRM_FIRE3 IGN_SRM_FIRE3	$\begin{aligned} & 1000=1 \\ & 1000=1 \\ & 1000=0 \\ & 1000=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 707 \mathrm{C} \\ & 707 \mathrm{C} \\ & 8 \mathrm{~F} 83 \\ & 8 \mathrm{~F} 83 \end{aligned}$
TO_UMB_FIRE $2 / 3=1$	UMB_TO_FIRE3 UMB_TO_FIRE3 UMB_TO_FIRE3 UMB_TO_FIRE3	$\begin{aligned} & 0800=1 \\ & 0800=1 \\ & 0800=0 \\ & 0800=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 787 \mathrm{C} \\ & 787 \mathrm{C} \\ & 8783 \\ & 8783 \end{aligned}$
MEC 1 \& 2 MASTER RESET $=1$	IGN_SRM_FIRE3 IGN_SRM_FIRE3 IGN_SRM_FIRE3 IGN_SRM_FIRE3	$\begin{aligned} & 1000=0 \\ & 1000=0 \\ & 1000=1 \\ & 1000=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 687 \mathrm{C} \\ & 687 \mathrm{C} \\ & 9783 \\ & 9783 \end{aligned}$
	UMB_TO_FIRE3 UMB_TO_FIRE3 UMB_TO_FIRE3 UMB_TO_FIRE 3	$\begin{aligned} & 0800=0 \\ & 0800=0 \\ & 0800=1 \\ & 0800=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 607 \mathrm{C} \\ & 607 \mathrm{C} \\ & 9 \mathrm{~F} 83 \\ & 9 \mathrm{~F} 83 \end{aligned}$
$\begin{aligned} & \text { SRB_RSS_OFF } \\ & (T R U E)=1 \end{aligned}$	RSS_SRB_OFF(1 \& 2) RSS_SRB_OFF(3 \& 4) RSS_SRB_OFF(1 \& 2) RSS_SRB_OFF(3 \& 4)	$\begin{aligned} & 0600=1 \\ & 0600=1 \\ & 0600=0 \\ & 0600=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & \text { 667C } \\ & 667 \mathrm{C} \\ & 9983 \\ & 9983 \end{aligned}$
ATVC_IVD_PWR = 1	ATVC_SRB_PWR(1 \& 2) ATVC_SRB_PWR(3 \& 4) ATVC_SRB_PWR(1 \& 2) ATVC_SRB_PWR(3 \& 4)	$\begin{aligned} & 000 \mathrm{C}=0 \\ & 000 \mathrm{C}=0 \\ & 000 \mathrm{C}=1 \\ & 000 \mathrm{C}=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 6670 \\ & 6670 \\ & 998 \mathrm{~F} \\ & 998 \mathrm{~F} \end{aligned}$
SRB_SEP_FIRE $2 / 3=1$	SEP_SRB_FIRE3 SEP_SRB_FIRE3 SEP_SRB_FIRE3 SEP_SRB_FIRE3	$\begin{aligned} & 0100=1 \\ & 0100=1 \\ & 0100=0 \\ & 0100=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 6770 \\ & 6770 \\ & 988 \mathrm{~F} \\ & 988 \mathrm{~F} \end{aligned}$
SRB_PWR_ON = 1	SRB_PWR(1,2,5 \& 6) SRB_PWR($3,4,7$ \& 8) SRB_PWR(1,2,5 \& 6) SRB_PWR(3,4,7 \& 8)	$\begin{aligned} & 6030=0 \\ & 6030=0 \\ & 6030=1 \\ & 6030=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_SET(1) NCRIT_SET(2)	$\begin{aligned} & 0740 \\ & 0740 \\ & \text { F8BF } \\ & \text { F8BF } \end{aligned}$

*For information only: cumulative effects of MEC SOP response to user flags.

STS 83-0026D
OI-21
January 25, 1991

Table 4.8.1-2. MEC Noncritical Command Processing				
Input Flag Parameter	Name	Hex Code Bits Affected	Parameter	$\begin{aligned} & \text { Hex } \\ & \text { Code* } \end{aligned}$
$\begin{aligned} & \text { SRB_RSS_OFF } \\ & (\text { FALSE })=1 \end{aligned}$	$\begin{aligned} & \text { RSS_SRB_OFF }(1 \& 2) \\ & \text { RSS_SRB_OFF }(3 \& 4) \\ & \text { RSS_SRB_OFF }(1 \& 2) \\ & \text { RSS_SRB_OFF }(3 \& 4) \end{aligned}$	$\begin{aligned} & 0600=0 \\ & 0600=0 \\ & 0600=1 \\ & 0600=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	0140 0140 FEBF FEBF
MEC 1 \& 2 MASTER RESET $=1$	SEP_SRB_FIRE3 SEP_SRB_FIRE3 SEP_SRB_FIRE3 SEP_SRB_FIRE3	$\begin{aligned} & 0100=0 \\ & 0100=0 \\ & 0100=1 \\ & 0100=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0040 \\ & 0040 \\ & \text { FFBF } \\ & \text { FFBF } \end{aligned}$
ET _DFl $=1$	ET_DFI_PWR ET_DFI_PWR ET_DFI_PWR ET_DFI_PWR	$\begin{aligned} & 0040=0 \\ & 0040=0 \\ & 0040=1 \\ & 0040=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0000 \\ & 0000 \\ & \text { FFFF } \\ & \text { FFFF } \end{aligned}$
ET_UMB UNLCH FIRE 2/3 = 1	ET_UNLCH_UMB_FIRE3 ET_UNLCH_UMB_FIRE3 ET_UNLCH_UMB_FIRE3 ET_UNLCH_UMB_FIRE3	$\begin{aligned} & 0080=1 \\ & 0080=1 \\ & 0080=0 \\ & 0080=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0080 \\ & 0080 \\ & \text { FF7F } \\ & \text { FF7F } \end{aligned}$
ET_UMB_RETR_CMD $2 / 3=1$	ET_RETR_UMB_CMD3 ET_RETR_UMB_CMD3 ET_RETR_UMB_CMD3 ET_RETR_UMB_CMD3	$\begin{aligned} & 0002=1 \\ & 0002=1 \\ & 0002=0 \\ & 0002=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0082 \\ & 0082 \\ & \text { FF7D } \\ & \text { FF7D } \end{aligned}$
ET_SEP_FIRE $2 / 3=1$	SEP_ET_FIRE3 SEP_ET_FIRE3 SEP_ET_FIRE3 SEP_ET_FIRE3	$\begin{aligned} & 0001=1 \\ & 0001=1 \\ & 0001=0 \\ & 0001=0 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0083 \\ & 0083 \\ & 007 \mathrm{C} \\ & 007 \mathrm{C} \end{aligned}$
MEC 1 \& 2 MASTER RESET 1	ET_UNLCH_UMB_FIRE3 ET_UNLCH_UMB_FIRE3 ET_UNLCH_UMB_FIRE3 ET_UNLCH_UMB_FIRE3	$\begin{aligned} & 0080=0 \\ & 0080=0 \\ & 0080=1 \\ & 0080=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0003 \\ & 0003 \\ & \text { FFFC } \\ & \text { FFFC } \end{aligned}$
	ET_RETR_UMB_CMD3 ET_RETR_UMB_CMD3 ET_RETR_UMB_CMD3 ET_RETR_UMB_CMD3	$\begin{aligned} & 0002=0 \\ & 0002=0 \\ & 0002=1 \\ & 0002=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0001 \\ & 0001 \\ & \text { FFFE } \\ & \text { FFFE } \end{aligned}$
	SEP_ET_FIRE3 SEP_ET_FIRE3 SEP_ET_FIRE3 SEP_ET_FIRE3	$\begin{aligned} & 0001=0 \\ & 0001=0 \\ & 0001=1 \\ & 0001=1 \end{aligned}$	NCRIT_SET(1) NCRIT_SET(2) NCRIT_RST(1) NCRIT_RST(2)	$\begin{aligned} & 0000 \\ & 0000 \\ & \text { FFFF } \\ & \text { FFFF } \end{aligned}$

[^8]
4.8.1.3 MEC Master Reset

The MEC SOP monitors master reset command flags from the user functions and generates master reset commands to the two MEC's as follows:
(a) The M_RESET_USER flag in the 1 state (which is master reset commanded) shall result in the issuing of the MASTER_RESET command to each MEC, zeroing the MEC critical command output buffers, and the RESET of all of the noncritical FIRE 3 commands listed in Table 4.8.1-2. This flag shall remain set for two cycles. Once two cycles have occurred, the MASTER_RESET flags shall be set to the zero state.

Table 4.8.1-3. MEC SOP Input Parameters

Name	MSID/MML	Description	Input Source	Signal Type	Range
TO_UMB_ARM	$\begin{aligned} & \text { V90X8407X } \\ & \text { G48010 } \end{aligned}$	TO UMB RELEASE ARM FLAG (1=ARM)	R/S LCH SEQ	DISCRETE	0,1
TO_-UMB_FIRE1	V90X8408X	TO UMB RELEASE FIRE 1 FLAG ($1=\mathrm{FIRE}$)	R/S LCH SEQ	DISCRETE	0,1
TO_UMB_FIRE $2 / 3$	V90x8698X	TO UMB RELEASE FIRE $2 / 3$ FLAG (1=FIRE)	R/S LCH SEQ	DISCRETE	0,1
SRM_IGN_ARM	$\begin{aligned} & \text { V90X8404X } \\ & \text { G48013 } \end{aligned}$	SRM IGN ARM FLAG (1=ARM)	R/S LCH SEQ	DISCRETE	0,1
SRM_IGN_FIRE1	$\begin{aligned} & \text { V90X8405X } \\ & \text { G48014 } \end{aligned}$	SRM IGN FIRE 1 FLAG ($1=\mathrm{FIRE}$)	R/S LCH SEQ	DISCRETE	0,1
SRM_IGN_FIRE $2 / 3$	V90X8699X	SRM IGN FIRE 2/3 FLAG (1=FIRE)	R/S LCH SEQ	DISCRETE	0,1
SRB_SEP_ARM	$\begin{aligned} & \text { V90X8335X } \\ & \text { G4B016 } \end{aligned}$	SRB SEP PICS ARM FLAG (1=ARM)	SRB SEP SEQ	DISCRETE	0,1
SRB_SEP_FIRE1	$\begin{aligned} & \text { V90X8341X } \\ & \text { G48017 } \end{aligned}$	SRB SEP FIRE 1 FLAG ($1=$ FIRE $)$	SRB SEP SEQ	DISCRETE	0,1
SRB_SEP FIRE $2 / 3$	V90x8354X	SRB SEP FIRE $2 / 3$ FLAG ($1=$ FIRE)	SRB SEP SEQ	DISCRETE	0,1
SRB_PWR_ON	$\begin{aligned} & \text { V90X8343X } \\ & \text { G48019 } \end{aligned}$	SRB PWR ON ($1=$ RESET)	SRB SEP SEQ ET SEP SEQ	DISCRETE	0,1
SRB RSS OFF (TRUE/ FALSE)	$\begin{aligned} & \text { V90X8336X } \\ & \text { G48020 } \end{aligned}$	SRB RSS PWR OFF FLAG (TRUE=1=SET OFF CMD FALSE $=1=$ RESET OFF CMD $)$	SRB SEP SEQ	DISCRETE	0,1
SRB_RSS_SAFE	$\begin{aligned} & \text { V90X8337X } \\ & \text { G48021 } \end{aligned}$	SRB RSS SAFE FLAG ($1=$ SAFE $)$	SRB SEP SEQ	DISCRETE	0,1
ATVC_IVD_PWR	$\begin{aligned} & \text { V90X8338X } \\ & \text { G48022 } \end{aligned}$	ATVC SRB IVD POWER ON ($1=0 \mathrm{FF}$)	SRB SEP SEQ ET SEP SEQ	DISCRETE	0,1
ATVC_25V_DDFACE	$\begin{aligned} & \text { V90X8339X } \\ & \text { G48023 } \end{aligned}$	ATVC SRB 26V AC DEADFACE FLAG ($1=$ DEADFACE $)$	SRB SEP SEQ	DISCRETE	0,1
ET_UMB_UNLCH_ARM	$\begin{aligned} & \text { V90X8247X } \\ & \text { G48000 } \end{aligned}$	ET/UMB UNLATCH PICS ARM FLAG (1=ARM)	ET SEP SEQ	DISCRETE	0,1
ET UMB_UNLCH FIRE1	$\begin{aligned} & \text { V90X8256X } \\ & \text { G48001 } \end{aligned}$	ET/UMB UNLATCH FIRE 1 FLAG (1=FIRE)	ET SEP SEQ	DISCRETE	0,1
ET UMB UNLCH FIRE2/3	V90X8242X	ET/UMB UNLATCH FIRE $2 / 3$ FLAG (1-FIRE)	ET SEP SEQ	DISCRETE	0,1
ET_SEP FIRE1	$\begin{aligned} & \text { V90x8244X } \\ & \text { G48003 } \end{aligned}$	ET/ORB STR SEPN FIRE 1 FLAG ($1=\mathrm{FIRE}$)	ET SEP SEQ	DISCRETE	0,1
ET_SEP_FIRE $2 / 3$	V90X8241X	ET/ORB STR SEPN FIRE $2 / 3$ FLAG (1=FIRE)	ET SEP SEQ	DISCRETE	0,1
ET_TMBL_ARM	$\begin{aligned} & \text { V90x8251X } \\ & \text { G48005 } \end{aligned}$	ET TUMBLE SYS ARM FLAG (1=ARM)	ET SEP SEQ	DISCRETE	0,1
ET_TMBL_FIRE	$\begin{aligned} & \text { V90X8252X } \\ & \text { G48006 } \end{aligned}$	ET TUMBLE SYS FIRE FLAG (1=FIRE)	ET SEP SEQ	DISCRETE	0,1

Table 4.8.1-3. MEC SOP Input Parameters

Name	MSID/MML	Description	Input Source	Signal Type	Range
ET_DFI_PWR	$\begin{aligned} & \text { V90X8255X } \\ & \text { G48007 } \end{aligned}$	ET DFI PWR ON ($1=\mathrm{OFF}$)	ET SEP SEQ	DISCRETE	0.1
M_RSET_USER	V90X8258XA V90X8258X8 V90X8258XC G48009	MEC 1\&2 MASTER RESET FLAG ($1=A C T I V A T E$)	ET SEP SEQ SRB SEP SEQ R/S LCH SEQ	DISCRETE	0,1
ETUMB_RETR_CMD 1	V90X8263X	ET/UMB RETRACT FIRE 1 FLAG (1=FIRE)	ET SEP SEQ	DISCRETE	0,1
ET UMB RETR CMD $2 / 3$	V90X8243X	ET/UMB RETRACT FIRE 2/3 FLAG (1=FIRE)	ET SEP SEQ	DISCRETE	0.1
ET_SEP_ARM	V90X8265X	ET/ORB STR SEP PICS ARM FLAG (1=ARM)	ET SEP SEQ	DISCRETE	0.1

4.8.1.4 Critical Pairs

The following combinations of FIRE 2 critical commands and FIRE 3 noncritical commands form critical pairs which have special output timing requirements.

MEC 1 SRM IGN FIRE 2 CMD	V76K6954B
MEC 1 SRM IGN FIRE 3 CMD	V76K6955B
MEC 2 SRM IGN FIRE 2 CMD	V76K6964B
MEC 2 SRM IGN FIRE 3 CMD	V76K6965B
MEC 1 L TO UMB RELEASE FIRE 2 CMD	V76K4611B
MEC 1 L TO UMB RELEASE FIRE 3 CMD	V76K4612B
MEC 2 R TO UMB RELEASE FIRE 2 CMD	V76K4615B
MEC 2 R TO UMB RELEASE FIRE 3 CMD	V76K 4616 B
MEC 1 SRB SEPN FIRE 2 CMD	V76K6959B
MEC 1 SRB SEPN FIRE 3 CMD	V76K6960B
MEC 2 SRB SEPN FIRE 2 AND RCVY ARM	V76K6969B
MEC 2 SRB SEPN FIRE 3 CMD	V76K6970B
MEC 1 ET/UMB UNLATCH FIRE 2 CMD	V76K4623B
MEC 1 ET/UMB UNLATCH FIRE 3 CMD	V76K4625B
MEC 2 ET/UMB UNLATCH FIRE 2 CMD	V76K4624B
MEC 2 ET/UMB UNLATCH FIRE 3 CMD	V76K4626B
MEC 1 ET/UMB RETR FIRE 2 CMD	V76K4656B
MEC 1 ET/UMB RETR FIRE 3 CMD	V76K4657B
MEC 2 ET/UMB RETR FIRE 2 CMD	V76K4660B
MEC 2 ET/UMB RETR FIRE 3 CMD	V76K4661B
MEC 1 ET/ORB STR SEPN FIRE 2 CMD	V76K6914B
MEC 1 ET/ORB STR SEPN FIRE 3 CMD	V76K6921B
MEC 2 ET/ORB STR SEPN FIRE 2 CMD	V76K6916B
MEC 2 ET/ORB STR SEPN FIRE 3 CMD	V76K6922B

For each critical pair listed above, the respective FIRE 2 critical command and FIRE 3 noncritical command must be issued together so that the FIRE 2 command shall not precede the FIRE 3 command by more than 4.176 milliseconds nor occur after the FIRE 3 command by more than 0.725 millisecond.

Timing constarints that apply to MEC commands are also presented in the Level A CPDS, SS-P-0002-170, Section 4.4.2 Timing and Periodicity, Items (e), (f), (g), and (h).

Table 4.8.1-4. MEC SOP Output Parameters					
Name	MSID/MML	Description	Non-CritCMD Hex Code	Crit- CMD Hex Code	Range
RSS_SRB_OFF(1)	V76K7006B	MEC 1 RSS L SRB PWR OFF CMD	0400		
RSS_SRB_OFF(2)	V76K7007B	MEC 1 RSS R SRB PWR OFF CMD	0200		
RSS_SRB_OFF(3)	V76K7106B	MEC 2 RSS L SRB PWR OFF CMD	0400		
RSS_SRB_OFF(4)	V76K7107B	MEC 2 RSS R SRB PWR 0FF CMD	0200		
RSS_SRB_SAFE1(1)	V76K7508B	MEC 1 RSS L SAFE 1 CMD		EB68	
RSS_SRB_SAFE1(2)	V76K7509B	MEC 1 RSS R SAFE 2 CMD		EB95	
RSS_SRB_SAFE2 (3)	V76K7608B	MEC 2 RSS R SAFE 1 CMD		EB68	
RSS_SRB_SAFE2(4)	V76K7609B	MEC 2 RSS L SAFE 2 CMD		EB95	
ATVC_SRB_PWR(1)	V76K7013B	MEC 1 ATVC 2 SRB IVD A PWR 0N CMD	0008		
ATVC_SRB_PWR(2)	V76K7014B	MEC 1 ATVC 4 SRB IVD B PWR ON CMD	0004		
ATVC_SRB_PWR(3)	V76\%7114B	MEC 2 ATVC 3 SRB IVD B PWR ON CMD	0004		
ATVC_SRB_PWR(4)	V76K7113B	MEC 2 ATVC 1 SRB IVD C PWR ON CMD	0008		
ATVC_DDFC(1)	V76K7515B	MEC 1 ATVC 2 SRB 26V DEADFACE CMD		EC68	
ATVC_DDFC(2)	V76K7516B	MEC 1 ATVC 4 SRB 26V DEADFACE CMD		EC9D	
ATVC_DDFC(3)	V76K7615B	MEC 2 ATVC 1 SRB 26V DEADFACE CMD		EC68	
ATVC_DDFC(4)	V76K7616B	MEC 2 ATVC 3 SRB 26V DEADFACE CMD		EC9D	
SRB_PWR(1)	V76K7002B	MEC 1 L SRB PWR A CMD	4000		
SRB_PWR(2)	V76K7003B	MEC 1 R SRB PWR A CMD	2000		
SRB_PWR(3)	V76K7102B	MEC 2 L SRB PWR B CMD	4000		
SRB_PWR(4)	V76K7103B	MEC 2 R SRB PWR B CMD	2000		
SRB_PWR(5)	V76K7011B	MEC 1 L SRB PWR C CMD	0020		
SRB_PWR(6)	V76K7012B	MEC 1 R SRB PWR C CMD	0010		
SRB_PWR(7)	V76K7111B	MEC 2 L SRB PWR C CMD	0020		
SRB_PWR(8)	V76K7112B	MEC 2 R SRB PWR C CMD	0010		
TMBLSYS_ARM (1)	V76K7504B	MEC 1 ET TUMBLE SYSTEM ARM CMD		EBC2	
TMBLSYS_ARM (2)	V76K7604B	MEC 2 ET TUMBLE SYSTEM ARM CMD		EBC2	
TMBLSYS_FIRE (1)	V76K7605B	MEC 2 ET TUMBLE SYSTEM FIRE CMD		ECB6	
TMBLSYS_FIRE(2)	V76K7505B	MEC 1 ET TUMBLE SYSTEM FIRE CMD		ECB6	
UMB_RLS_ARM(1)	V76K46098	MEC 1 I TO UMB RELEASE ARM CMD		CEDC	
UMB_RLS_ARM(2)	V76K 4613B	MEC 2 R TO UMB RELEASE ARM CMD		CEDC	
SRM_ARM(1)	V76K6951B	MEC 1 SRM IGN ARM CMD		3EAC	
SRM_ARM(2)	V76K6961B	MEC 2 SRM IGN ARM CMD		3EAC	

Name	MSID/MML	Description	Non- Crit- CMD Hex Code	Crit- CMD Hex Code	Range
SRM_FIRE1(1)	V76K6953B	MEC 1 SRM IGN FIRE 1 CMD		3E6A	
SRM_FIRE1(2)	V76K6963B	MEC 2 SRM IGN FIRE 1 CMD		3E6A	
SRM_FIRE2(1)	V76K6954B	MEC 1 SRM IGN FIRE 2 CMD		3E42	
SRM_FIRE2(2)	V76K6964B	MEC 2 SRM IGN FIRE 2 CMD		3E42	
SRM_FIRE3(1)	V76K6955B	MEC 1 SRM IGN FIRE 3 CMD	1000		
SRM_FIRE3(2)	V76K6965B	MEC 2 SRM IGN FIRE 3 CMD	1000		
UMB_FIRE1(1)	V76K4610B	MEC 1 L TO UMB RELEASE FIRE 1 CMD		CE6A	
UMB_FIRE1(2)	V76K4614B	MEC 2 R TO UMB RELEASE FIRE 1 CMD		CE6A	
UMB_FIRE2(1)	V76K 4611 B	MEC 1 L TO UMB RELEASE FIRE 2 CMD		CE9A	
UMB_FIRE2(2)	V76K4615B	MEC 2 R TO UMB RELEASE FIRE 2 CMD		CE9A	
UMB_FIRE3(1)	V76K4612B	MEC 1 L TO UMB RELEASE FIRE 3 CMD	0800		
UMB_FIRE3(2)	V76K4616B	MEC 2 R TO UMB RELEASE FIRE 3 CMD	0800		
SRB_ARM(1)	V76K6956B	MEC 1 SRB SEPN ARM CMD		3154	
SRB_ARM(2)	V76K6966B	MEC 2 SRB SEPN ARM CMD		3154	
SRB_FIRE1(1)	V76K6958B	MEC 1 SRB SEPN FIRE 1 CMD		316A	
SRB_FIRE1(2)	V76K6968B	MEC 2 SRB SEPN FIRE 1 AND RCVY PWR ON		316A	
SRB_FIRE2(1)	V76K6959B	MEC 1 SRB SEPN FIRE 2 CMD		319B	
SRB_FIRE2 (2)	V76K6969B	MEC 2 SRB SEPN FIRE 2 AND RCVY ARM		319B	
SRB_FIRE3(1)	V76K6960B	MEC 1 SRB SEPN FIRE 3 CMD	0100		
SRB_FIRE3(2)	V76K6970B	MEC 2 SRB SEPN FIRE 3 CMD	0100		
$\begin{aligned} & \text { ET_UMB_UNLCH_ } \\ & \text { ARM(1) } \end{aligned}$	V76K4617B	MEC 1 ET/UMB UNLATCH ARM CMD		C121	
$\begin{aligned} & \text { ET_UMB_UNLCH_ } \\ & \text { ARM(2) } \end{aligned}$	V76K4618B	MEC 2 ET/UMB UNLATCH ARM CMD		C121	
$\text { ET_UMB_RETR CMD } 1$ (1)	V76K4655B	MEC 1 ET/UMB RETR FIRE 1 CMD		7463	
$\begin{aligned} & \text { ET_UMB_RETR CMD } 1 \\ & (2) \end{aligned}$	V76K4659B	MEC 2 ET/UMB RETR FIRE 1 CMD		7463	
$\begin{aligned} & \text { ET_UMB_UNLCH } \\ & \text { FIRE1(1) } \end{aligned}$	V76K4619B	MEC 1 ET/UMB UNLATCH FIRE 1 CMD		C162	
ET_UMB_UNLCH_ FIRE1(2)	V76K4620B	MEC 2 ET/UMB UNLATCH FIRE 1 CMD		C162	
$\begin{aligned} & \text { ET_UMB_UNLCH_ } \\ & \text { FIRE2(1) } \end{aligned}$	V76K4623B	MEC 1 ET/UMB UNLATCH FIRE 2 CMD		C193	

Table 4.8.1-4. MEC SOP Output Parameters					
Name	MSID/MML	Description	Non-CritCMD Hex Code	Crit- CMD Hex Code	Range
$\begin{aligned} & \text { ET_UMB_UNLCH_ } \\ & \text { FIRE2(2) } \end{aligned}$	V76K4624B	MEC 2 ET/UMB UNLATCH FIRE 2 CMD		C193	
ET_UMB_UNLCH_ FIRE3(1)	V76K4625B	MEC 1 ET/UMB UNLATCH FIRE 3 CMD	0080		
$\begin{aligned} & \text { ET_UMB_UNLCH_ } \\ & \text { FIRE3(2) } \end{aligned}$	V76K4626B	MEC 2 ET/UMB UNLATCH FIRE 3 CMD	0080		
$\begin{aligned} & \text { ET_UMB_ } \\ & \text { RETR_CMD2(1) } \end{aligned}$	V76K 4656 B	MEC 1 ET/UMB RETR FIRE 2 CMD		7498	
$\begin{aligned} & \text { ET_UMB } \\ & \text { RETR_CMD2 (2) } \end{aligned}$	V76K 4660B	MEC 2 ET/UMB RETR FIRE 2 CMD		7498	
$\begin{aligned} & \text { ET_UMB } \\ & \text { RETR_CMD3 (1) } \end{aligned}$	V76K4657B	MEC 1 ET/UMB RETR FIRE 3 CMD	0002		
$\begin{aligned} & \text { ET_UMB_- } \\ & \text { RETR_CMD3 (2) } \end{aligned}$	V76K 4661B	MEC 2 ET/UMB RETR FIRE 3 CMD	0002		
SEP_ET_ARM(1)	V76K6909B	MEC 1 ET/0RB STR SEPN ARM CMD		E117	
SEP_ET_ARM(2)	V76K6911B	MEC 2 ET/ORB STR SEPN ARM CMD		E117	
SEP_ET_FIRE1(1)	V76K6913B	MEC 1 ET/ORB STR SEPN FIRE 1 CMD		E168	
SEP_ET_FIRE1(2).	V76K6915B	MEC 2 ET/ORB STR SEPN FIRE 1 CMD		E168	
SEP_ET_FIRE2(1)	V76K6914B	MEC 1 ET/ORB STR SEPN FIRE 2 CMD		E199	
SEP_ET_FIRE2(2)	V76K6916B	MEC 2 ET/ORB STR SEPN FIRE 2 CMD		E199	
SEP_ET_FIRE3(1)	V76K6921B	MEC 1 ET/ORB STR SEPN FIRE 3 CMD	0001		
SEP_ET_FIRE3(2)	V76K6922B	MEC 2 ET/ORB STR SEPN FIRE 3 CMD	0001		

STS 83-0026D
OI-21
January 25, 1991

Table 4.8.1-5. MEC SOP Output Requirements					
Name	MSID/G No.	Description	Output Destination	Signal Type	Range
CRIT_CMDI(1)		MEC 1 CRITICAL CMD DATA WORD 1	MEC 1	HEX CODE	$0000 \mathrm{TO}$ FFFF
CRIT_CMD1(2)		MEC 1 CRITICAL CMD DATA WORD 2	MEC 1	HEX CODE	$0000 \text { TO }$ FFFF
CRIT_CMD1(3)		MEC 1 CRITICAL CMD DATA WORD 3	MEC 1	HEX CODE	$\begin{aligned} & 0000 \mathrm{TO} \\ & \mathrm{FFFF} \end{aligned}$
CRIT_CMD1(4)		MEC 1 CRITICAL CMD DATA WORD 4	MEC 1	HEX CODE	$\begin{aligned} & 0000 \mathrm{TO} \\ & \mathrm{FFFF} \end{aligned}$
CRIT_CMD2(1)		MEC 2 CRITICAL CMD DATA WORD 1	MEC 2	HEX CODE	0000 TO FFFF
CRIT_CMD2(2)		MEC 2 CRITICAL CMD DATA WORD 2	MEC 2	HEX CODE	$\begin{aligned} & 0000 \text { TO } \\ & \text { FFFF } \end{aligned}$
CRIT_CMD2(3)		MEC 2 CRITICAL CMD DATA WORD 3	MEC 2	HEX CODE	$\begin{aligned} & 0000 \text { TO } \\ & \text { FFFF } \end{aligned}$
CRIT_CMD2(4)		MEC 2 CRITICAL CMD DATA WORD 4	MEC 2	HEX CODE	$\begin{aligned} & 0000 \mathrm{TO} \\ & \mathrm{FFFF} \end{aligned}$
NCRIT_SET ${ }^{\text {(1) }}$		MEC 1 NONCRTTICAL SET DATA WORD	MEC 1	HEX CODE	$\begin{aligned} & 0000 \text { TO } \\ & \text { FFFF } \end{aligned}$
NCRIT_SET (2)		MEC 2 NONCRITICAL SET DATA WORD	MEC 2	HEX CODE	$\begin{aligned} & 0000 \text { TO } \\ & \text { FFFF } \end{aligned}$
NCRIT_RST(1)		MEC 1 NONCRITICAL RESET DATA WORD	MEC 1	HEX CODE	$\begin{aligned} & 0000 \text { TO } \\ & \text { FFFF } \end{aligned}$
NCRIT_RST ${ }^{\text {(2) }}$		MEC 2 NONCRITICAL RESET DATA WORD	MEC 2	HEX CODE	$\begin{aligned} & 0000 \text { TO } \\ & \text { FFFF } \end{aligned}$
MASTER_RESET(1)	V76K7098B	MEC 1 MASTER RESET ($1=A C T I V A T E)$	MEC 1	DISCRETE	0,1
MASTER_RESET(2)	V76K7198B	MEC 2 MASTER RESET ($1=A C T I V A T E)$	MEC 2	DISCRETE	0,1

$$
\begin{aligned}
& \text { 的田 }
\end{aligned}
$$

> 合
> units风

$$
\begin{aligned}
& \text { NOMENCLATURE }
\end{aligned}
$$

$\begin{aligned} & \text { V } 90 \times 8338 \mathrm{KA} \\ & \mathrm{V} 90 \mathrm{X} 8338 \mathrm{XB} \\ & \mathrm{V} 90 \mathrm{X} 8339 \mathrm{XA}\end{aligned}$
V90x8255x
V90x8265X
$\begin{aligned} & \text { V90x8241X } \\ & \text { v90x8251X }\end{aligned}$
$\begin{aligned} & \text { V90x8252x } \\ & \text { V90x8263x }\end{aligned}$
$\begin{aligned} & \mathrm{V} 90 \mathrm{X} 8243 \mathrm{x} \\ & \mathrm{V} 90 \mathrm{X} 8256 \mathrm{X}\end{aligned}$
V90x8242X
V90x8258XA
V90×8258×C
$\begin{aligned} & \mathrm{V} 90 \mathrm{x} 8343 \mathrm{X} \\ & \mathrm{V} 90 \mathrm{x} 8336 \mathrm{x}\end{aligned}$
V90x8337X
V90x8354X
V90x8405x
V90x8408X FSSR NAME \qquad
 TO＿UMB＿FIRE 1
慁慁是是慁是是是

 0_{0}^{2} HNO

 \qquad

U UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU UUU U U U U U

A
 M／S

100049P00L
M／S ID
TABLE 4．8．1．4－1．MASTER EVENTS CONTROLLER（MEC）SOP（G4．228）INPUT／OUTPUT FUNCTIONAL PARAMETERS
a_{1} ar UNITS $\begin{aligned} & \text { DATA } \\ & \text { TYPE }\end{aligned}$
 FROM MEC SOE
DESTINATION
是易型易是昆

TABLE 4.8.1.4-2. MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) I-LOADS
MSID ENG UNIT DT RR D S PR ECTN CAT

DBFN: 0484
no requirements

TABLE 4.8.1.4-3. MASTER EVENTS CONTROLLER(MEC) SOP (G4.228) K-LOADS
LAST CR EQTN MSID
NO REQUIREMENTS

4.8.2 Space Shuttle Main Engine SOP (4.181)

4.8.2.1 Introduction

The SSME SOP performs the function of interfacing the user functions with the SSME controller through the engine interface unit (EIU). The SSME SOP becomes active upon entry into OPS 1 and continues as the interface until completion of the propellant dumps after ET separation.

Table 4.8.2-1 SSME SOP Command Processing			
Input Command	Output Command		
	CMD		BCH
K_CMD $=65 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =043400 \\ & =043400 \\ & =043400 \end{aligned}$	$\begin{aligned} & 132124 \\ & 132124 \\ & 132124 \end{aligned}$
K_CMD $=66 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =044000 \\ & =044000 \\ & =044000 \end{aligned}$	$\begin{aligned} & 057330 \\ & 057330 \\ & 057330 \end{aligned}$
K_CMD $=67 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =044400 \\ & =044400 \\ & =044400 \end{aligned}$	$\begin{aligned} & 046014 \\ & 046014 \\ & 046014 \end{aligned}$
K CMOD $=68 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =045000 \\ & =045000 \\ & =045000 \end{aligned}$	$\begin{aligned} & 075560 \\ & 075560 \\ & 075560 \end{aligned}$
K _CMD $=69 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =045400 \\ & =045400 \\ & =045400 \end{aligned}$	$\begin{aligned} & 064644 \\ & 064644 \\ & 064644 \end{aligned}$
K _CMD $=70 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =046000 \\ & =046000 \\ & =046000 \end{aligned}$	$\begin{aligned} & 012610 \\ & 012610 \\ & 012610 \end{aligned}$
$\mathrm{K} _$CMD $=71 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =046400 \\ & =046400 \\ & =046400 \end{aligned}$	$\begin{aligned} & 003534 \\ & 003534 \\ & 003534 \end{aligned}$
$\mathrm{K} _$CMD $=72 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =047000 \\ & =047000 \\ & =047000 \end{aligned}$	$\begin{aligned} & 030040 \\ & 030040 \\ & 030040 \end{aligned}$
$\mathrm{K} _$CMD $=73 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =047400 \\ & =047400 \\ & =047400 \end{aligned}$	$\begin{aligned} & 021364 \\ & 021364 \\ & 021364 \end{aligned}$
$\mathrm{K} _$CMD $=74 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =050000 \\ & =050000 \\ & =050000 \end{aligned}$	$\begin{aligned} & 175146 \\ & 175146 \\ & 175146 \\ & \hline \end{aligned}$

Table 4.8.2-1 SSME SOP Command Processing			
Input Command	Output Command		
	CMD		BCH
$\mathrm{K} _\mathrm{CMD}=75 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =050400 \\ & =050400 \\ & =050400 \end{aligned}$	$\begin{aligned} & 164262 \\ & 164262 \\ & 164262 \end{aligned}$
K _CMD $=76 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =051000 \\ & =051000 \\ & =051000 \end{aligned}$	$\begin{aligned} & 157716 \\ & 157716 \\ & 157716 \end{aligned}$
K_CMD $=77 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =051400 \\ & =051400 \\ & =051400 \end{aligned}$	$\begin{aligned} & 146432 \\ & 146432 \\ & 146432 \end{aligned}$
K	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =052000 \\ & =052000 \\ & =052000 \end{aligned}$	$\begin{aligned} & 130466 \\ & 130466 \\ & 130466 \end{aligned}$
$\mathrm{K} \mathrm{CMD}=79 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =052400 \\ & =052400 \\ & =052400 \end{aligned}$	$\begin{aligned} & 121742 \\ & 121742 \\ & 121742 \end{aligned}$
K CMD $=80 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =053000 \\ & =053000 \\ & =053000 \end{aligned}$	$\begin{aligned} & 112236 \\ & 112236 \\ & 112236 \end{aligned}$
$\mathrm{K} _\mathrm{CMD}=81 \%$	MEl_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =053400 \\ & =053400 \\ & =053400 \end{aligned}$	$\begin{aligned} & 103112 \\ & 103112 \\ & 103112 \end{aligned}$
$\mathrm{K} _$CMD $=82 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_-LEVEL	$\begin{aligned} & =054000 \\ & =054000 \\ & =054000 \end{aligned}$	$\begin{aligned} & 066306 \\ & 066306 \\ & 066306 \end{aligned}$
K_CMD $=83 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =054400 \\ & =054400 \\ & =054400 \end{aligned}$	$\begin{aligned} & 077022 \\ & 077022 \\ & 077022 \end{aligned}$
$\mathrm{K} _\mathrm{CMD}=84 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =055000 \\ & =055000 \\ & =055000 \end{aligned}$	$\begin{aligned} & 044556 \\ & 044556 \\ & 044556 \end{aligned}$

Table 4.8.2-1 SSME SOP Command Processing			
Input Command	Output Command		
	CMD		BCH
K_CMD $=85 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =055400 \\ & =055400 \\ & =055400 \end{aligned}$	$\begin{aligned} & 055672 \\ & 055672 \\ & 055672 \end{aligned}$
$\mathrm{K} _$CMD $=86 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =056000 \\ & =056000 \\ & =056000 \end{aligned}$	$\begin{aligned} & 023626 \\ & 023626 \\ & 023626 \end{aligned}$
$\mathrm{K} _$CMD $=87 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =056400 \\ & =056400 \\ & =056400 \end{aligned}$	$\begin{aligned} & 032502 \\ & 032502 \\ & 032502 \end{aligned}$
K CMD $=88 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =057000 \\ & =057000 \\ & =057000 \end{aligned}$	$\begin{aligned} & 001076 \\ & 001076 \\ & 001076 \end{aligned}$
K_CMD $=89 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =057400 \\ & =057400 \\ & =057400 \end{aligned}$	$\begin{aligned} & 010352 \\ & 010352 \\ & 010352 \end{aligned}$
$\mathrm{K} _$CMD $=90 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =060000 \\ & =060000 \\ & =060000 \end{aligned}$	$\begin{aligned} & 126104 \\ & 126104 \\ & 126104 \end{aligned}$
$\mathrm{K} _$CMD $=91 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =060400 \\ & =060400 \\ & =060400 \end{aligned}$	$\begin{aligned} & 137220 \\ & 137220 \\ & 137220 \end{aligned}$
$\mathrm{K} _$CMD $=92 \%$	MEl_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =061000 \\ & =061000 \\ & =061000 \end{aligned}$	$\begin{aligned} & 104754 \\ & 104754 \\ & 104754 \end{aligned}$
$\mathrm{K} _$CMD $=93 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =061400 \\ & =061400 \\ & =061400 \end{aligned}$	$\begin{aligned} & 115470 \\ & 115470 \\ & 115470 \end{aligned}$
$\mathrm{K} _$CMD $=94 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =062000 \\ & =062000 \\ & =062000 \end{aligned}$	$\begin{aligned} & 163424 \\ & 163424 \\ & 163424 \\ & \hline \end{aligned}$

Table 4.8.2-1 SSME SOP Command Processing			
Input Command	Output Command		
	CMD		BCH
K_CMD $=95 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =062400 \\ & =062400 \\ & =062400 \end{aligned}$	$\begin{aligned} & \hline 172700 \\ & 172700 \\ & 172700 \end{aligned}$
K _CMD $=96 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =063000 \\ & =063000 \\ & =063000 \end{aligned}$	$\begin{aligned} & 141274 \\ & 141274 \\ & 141274 \end{aligned}$
K_CMD $=97 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL.	$\begin{aligned} & =063400 \\ & =063400 \\ & =063400 \end{aligned}$	$\begin{aligned} & 150150 \\ & 150150 \\ & 150150 \end{aligned}$
K_CMD $=98 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =064000 \\ & =064000 \\ & =064000 \end{aligned}$	$\begin{aligned} & 035344 \\ & 035344 \\ & 035344 \end{aligned}$
K...CMD $=99 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =064400 \\ & =064400 \\ & =064400 \end{aligned}$	$\begin{aligned} & 024060 \\ & 024060 \\ & 024060 \end{aligned}$
K CMD $=100 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =065000 \\ & =065000 \\ & =065000 \end{aligned}$	$\begin{aligned} & 017514 \\ & 017514 \\ & 017514 \end{aligned}$
K _CMD $=101 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =065400 \\ & =065400 \\ & =065400 \end{aligned}$	$\begin{aligned} & 006630 \\ & 006630 \\ & 006630 \end{aligned}$
$\mathrm{K} _\mathrm{CMD}=102 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =066000 \\ & =066000 \\ & =066000 \end{aligned}$	$\begin{aligned} & 070664 \\ & 070664 \\ & 070664 \end{aligned}$
$\mathrm{K} _\mathrm{CMD}=103 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =066400 \\ & =066400 \\ & =066400 \end{aligned}$	$\begin{aligned} & 061540 \\ & 061540 \\ & 061540 \end{aligned}$
K_CMD $=104 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =067000 \\ & =067000 \\ & =067000 \end{aligned}$	$\begin{aligned} & 052034 \\ & 052034 \\ & 052034 \\ & \hline \end{aligned}$

- Table 4.8.2-1 SSME SOP Command Processing			
Input Command	Output Command		
	CMD		BCH
K_CMD $=105 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =067400 \\ & =067400 \\ & =067400 \end{aligned}$	$\begin{aligned} & 043310 \\ & 043310 \\ & 043310 \end{aligned}$
K_CMD $=106 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =070000 \\ & =070000 \\ & =070000 \end{aligned}$	$\begin{aligned} & 117132 \\ & 117132 \\ & 117132 \end{aligned}$
K_CMD $=107 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =070400 \\ & =070400 \\ & =070400 \end{aligned}$	$\begin{aligned} & 106216 \\ & 106216 \\ & 106216 \end{aligned}$
K_CMD $=108 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =071000 \\ & =071000 \\ & =071000 \end{aligned}$	$\begin{aligned} & 135762 \\ & 135762 \\ & 135762 \end{aligned}$
$\mathrm{K} _\mathrm{CMD}=109 \%$	ME1_THRUST_LEVEL ME2_THRUST_LEVEL ME3_THRUST_LEVEL	$\begin{aligned} & =071400 \\ & =071400 \\ & =071400 \end{aligned}$	$\begin{aligned} & 124446 \\ & 124446 \\ & 124446 \end{aligned}$
$\begin{aligned} & \operatorname{MPS} \operatorname{INH}(1)=1 \\ & \operatorname{MPS} \operatorname{INH}(2)=1 \\ & \operatorname{MPS} \operatorname{INH}(3)=1 . \end{aligned}$	ME1_INH_LIM_CNTL ME2_INH_LIM_CNTL ME3_INH_LIM_CNTL	$\begin{aligned} & =104000 \\ & =104000 \\ & =104000 \end{aligned}$	$\begin{aligned} & 014416 \\ & 014416 \\ & 014416 \end{aligned}$
$\begin{aligned} & \operatorname{MPS} \operatorname{ENA}(1)=1 \\ & \operatorname{MPS} \operatorname{ENA}(2)=1 \\ & \operatorname{MPS} \operatorname{ENA}(3)=1 \end{aligned}$	ME1_ENA_LIM_CNTL ME2_ENA_LIM_CNTL ME3_ENA_LIM_CNTL	$\begin{aligned} & =104400 \\ & =104400 \\ & =104400 \end{aligned}$	$\begin{aligned} & 005732 \\ & 005732 \\ & 005732 \end{aligned}$
$\begin{aligned} \text { MESTRTENA } & =1 \\ \text { MESTRTENA } & =1 \\ \text { MPSTRTENA } & =1 \end{aligned}$	$\begin{aligned} & \text { ME1_ST_ENA_CMD } \\ & \text { ME2_ST_ENA_CMD } \\ & \text { ME3_ST_ENA_CMD } \end{aligned}$	$\begin{aligned} & =107400 \\ & =107400 \\ & =107400 \end{aligned}$	$\begin{aligned} & 062442 \\ & 062442 \\ & 062442 \end{aligned}$
$\begin{aligned} & \operatorname{MESTRTCMD}(1)=1 \\ & \operatorname{MESTRTCMD}(2)=1 \\ & \operatorname{MPSTRTCMD}(3)=1 \end{aligned}$	$\begin{aligned} & \text { ME1_ST_CMD } \\ & \text { ME2_ST_CMD } \\ & \text { ME3_ST_CMD } \end{aligned}$	$\begin{aligned} & =100400 \\ & =100400 \\ & =100400 \end{aligned}$	$\begin{aligned} & 116572 \\ & 116572 \\ & 116572 \end{aligned}$
$\begin{aligned} & \operatorname{MESHDNENA}(1)=1 \\ & \operatorname{MESHDNENA}(2)=1 \\ & \operatorname{MESHDNENA}(3)=1 \end{aligned}$	$\begin{aligned} & \text { ME1_SHTDN_ENA_CMD } \\ & \text { ME2_SHTDN_ENA_CMD } \\ & \text { ME3_SHTDN_ENA_CMD } \end{aligned}$	$\begin{aligned} & =105000 \\ & =105000 \\ & =105000 \end{aligned}$	$\begin{aligned} & 036246 \\ & 036246 \\ & 036246 \\ & \hline \end{aligned}$

Table 4.8.2-1 SSME SOP Command Processing				
Input Command	Output Command			
	CMD			BCH
MESHDNCMD (1) $=1$	ME1_SHTDN_CMD	$=$	116000	$0601^{\prime} 00$
MESHDNCMD $(2)=1$	ME2_SHTDN_CMD	$=$	116000	060100
$\operatorname{MESHDNCMD}(3)=1$	ME3_SHTDN_CMD	$=$	116000	060100
MPS_L02_DUMP_START $=1$	ME1_L02_DUMP	$=$	110400	127544
	ME2_L02_DUMP	$=$	110400	127544
	ME3_L02_DUMP		110400	127544
MPS_LH2_DUMP_START $=1$	ME1_LH2_DUMP	$=$	111000	114030
	ME2_LH2_DUMP	$=$	111000	114030
	ME3_LH2_DUMP		111000	114030
MPS_LO2_DUMP_STOP $=1$	ME1_TERM_SEQ	$=$	110000	136660
	ME2_TERM_SEQ		110000	136660
	ME3_TERM_SEQ		110000	136660
MPS_LH2_DUMP_STOP $=1$	MEl_TERM_SEQ	$=$	110000	136660
	ME2_TERM_SEQ	$=$	110000	136660
	ME3_TERM_SEQ	$=$	110000	136660
ME_DCU_SW 1	ME1_DCU_SW	$=$	115400	016154
ME_DCU_SW 2	ME2_DCU_SW		115400	016154
ME DCU_SW 3	ME3_DCU_SW	$=$	115400	016154

4.8.2.2 Overview

The SSME SOP principal function is to perform the following:
a. Monitoring of the engine status indications, data-path fail indicators and command path fail indications, and major component fail from the three EIU's for user functions and dedicated displays
b. Processing of the engine start enable, start, DCU switchover, shutdown enable, shutdown, dump, throttle, and limit control commands from the user functions to the three EIU's
c. Processing of the engine shutdown commands and shutdown phase indications for user functions

The SSME SOP principal function will be processed at the $25-\mathrm{Hz}$ rate during Major Modes 101, 102, $103,104,601$, and 602. The interfaces are indicated on the functional block diagram in Figure 4.181. The input and output parameters are shown in Table 4.8.2-1.

The engine data monitoring will be performed prior to redundant set launch sequence and SSME OPS.

Table 4.8.2-2 GPC Engine Status Word

BIT OLOAD STATUS

1 IN MEMORY LOAD CONDITION
0 NOT IN MEMORY LOAD CONDITION
BIT 1,2 COMMAND STATUS

00	NO NEW COMMAND SINCE LAST STATUS/
RECORDER CHANNEL TRANSMISSION	
01	COMMAND REJECTED (NOT VALIDATED BY
10	BCH OR VOTING)
	COMMAND REJECTED (INCOMPATIBLE WITH
	CURRENT OPERATING MODE OR NOT IN
11	TABLE OF COMMANDS)
COMMAND ACCEPTED	

BIT 3, 4, 5 CHANNEL STATUS

000	ALL CHANNELS OK
001	MESSAGE ERROR, CHANNEL 1
010	MESSAGE ERROR, CHANNEL 2
011	MESSAGE ERROR, CHANNELS $1 \& 2$
100	MESSAGE ERROR, CHANNEL 3
101	MESSAGE ERROR, CHANNELS $1 \& 3$
110	MESSAGE ERROR, CHANNELS $2 \& 3$
111	MESSAGE ERROR, CHANNEL $1,2, \& 3$

BIT 6 FRT STATUS
$\begin{array}{ll}0 & \text { NORMAL OPERATION } \\ 1 & \text { FRT }\end{array}$
BIT 7 LMMIT CONTROL
0 INHIBIT

BTT $8,9,10,11,12,13$ PHASE/MODE

000000	NOT USED
000001	NOT USED
000010	NOT USED
000011	NOT USED
000100	NOT USED
000101	NOT USED
000110	NOT USED
000111	NOT USED
001000	NOT USED
001001	GROUND CHECKOUT/STANDBY
001010	GROUND CHECKOUT/SPARE
001011	GROUND CHECKOUT/SPARE
001100	GROUND CHECKOUT/COMPONENT CHECKOUT
001101	GROUND CHECKOUT/SPARE
001110	GROUND CHECKOUT/SPARE
001111	GROUND CHECKOUT/SPARE
010000	NOT USED
010001	START PREP/PURGE SEQ NO. 1
010010	START PREP/PURGE SEQ NO. 2

010001 START PREP/PURGE SEQ NO. 1

BIT 8, 9, 10, 11, 12, 13 PHASE/MODE (Cont)
010011 START PREP/PURGE SEQ NO. 3 010100 START PREP/PURGE SEQ NO. 4 010101 START PREP/SPARE 010110 START PREP/ENGINE READY
010111 START PREP/SPARE
011000 NOT USED
011001 START/START INITIATION
011010 START/MCP BUILDUP
011011 START/ELECTRONIC LOCKUP
011100 START/HYDRAULIC LOCKUP
011101 START/SPARE
011110 START/SPARE
011111 START/SPARE
100000 NOT USED
100001 MAINSTAGE/NORMAL CONTROL
100010 MAINSTAGE/SPARE
100011 MAINSTAGE/ELECTRONIC LOCKUP
100100 MAINSTAGE/HYDRAULIC LOCKUP
100101 MAINSTAGE/SPARE
100110 MAINSTAGE/SPARE
100111 MAINSTAGE/SPARE
101000 NOT USED
101001 SHUTDOWN/THROTTLE TO MPL
101010 SHUTDOWN/MLP TO ZERO MCP 101011 SHUTDOWN/PROP. VALVES CLOSED 101100 SHUTDOWN/FAIL SAFE PNEUMATIC
101101 SHUTDOWN SPARE
101110 SHUTDOWN SPARE
101111 SHUTDOWN SPARE
110000 NOT USED
110001 POST-SHUTDOWN/STANDBY
110010 POST-SHUTDOWN/OXIDIZER DUMP
110011 POST-SHUTDOWN/FUEL DUMP
110100 POST-SHUTDOWN/SPARE
110101 POST-SHUTDOWN/SPARE
110110 POST-SHUTDOWN/SPARE
110111 POST-SHUTDOWN/TERMINATE SEQ
111000 NOT USED
111001 SPARE
111010 SPARE
111011 SPARE
111100 SPARE
111101 SPARE
111110 SPARE
111111 SPARE
BIT 14, 15 SELF-TEST STATUS

00	NOT USED
01	ENGINE OK
10	MAJOR COMPONENT FAILED
11	ENGINE LIMIT EXCEEDED

4.8.2.3 Detail Requirements

4.8.2.3.1 Recycle Processing

The SSME SOP will monitor the SSME SOP RECYCLE FLAG from the RS launch sequence to determine when to reinitialize the SOP.

Monitor the following:
(a) SSME SOP RECYCLE FLAG V90X8668X

If the SSME SOP RECYCLE FLAG $=1$, then terminate the following:
$\begin{array}{ll}\text { (1) ME-1 CHANNEL FALL FLAG } & \text { V95X1236X } \\ \text { (2) ME-2 CHANNEL FAL FLAG } & \text { V95X1237X } \\ \text { (3) ME-3 CHANNEL FAIL FLAG } & \text { V95X1238X }\end{array}$
and perform the following function:
(4) Reinitialize the SSME SOP internal flags and counters.

4.8.2.3.2 Commfault Processing

On each cycle, prior to performing the main engine status data processing of paragraph 4.8.2.3.3, the following test shall be performed:

Monitor the following signals:
(a) EIU 1/P1 Data Status (HFE input)

V91X3009X
(b) EIU 1/P4 Data Status (HFE input) V91X2852X
(c) EIU 2/P1 Data Status (HFE input) V91X3012X
(d) EIU 2/P4 Data Status (HFE input) V91X2856X
(e) EIU 3/P1 Data Status (HFE input) V91X3015X
(f) EIU 3/P4 Data Status (HFE input) V91X2860X

For each signal path indicating a commfault, the last previous noncommfaulted input will be used for any further processing.

4.8.2.3.3 Main Engine Status Data Processing.

The SSME SOP will monitor and process the following status data from the three EIU's:

1. Main engine data identification words and main engine time reference word for data-path fail indications
2. Main engine status word data for command-path fail indications, channel fail indications, limit control status, phase and mode indications, and self-test status
3. Main engine chamber pressure data for percent of chamber pressure

Table 4.8.2-2 provides the general engine status word format and binary code indications. The processing of the main engine status data will be provided in the following subsections. The SSME SOP will
monitor both the primary and secondary data channels from each EIU. The data-path failure processing function will determine which data channel will be processed during a minor cycle (Section 4.8.2.3.4). Once a channel is selected, the SSME SOP will process the engine status data (Subsections 4.8.2.3.5 and 4.8.2.3.6) and chamber pressure (Subsection 4.8.2.3.7) from the selected data channel only.

4.8.2.3.4 Data-Path Failure Processing.

The SSME SOP will monitor both the primary and secondary data channels from each EIU. The main engine identification and time reference words for each data channel will be processed to determine which data set (if either) will be processed during that processing cycle. These same data words will be processed to generate PAD DATA-PATH FAIL, DCU-SW, and FLIGHT DATA PATH FAll indications for each EIU as follows:

1. Engine data identification words (data words 1 and 2) are 16 -bit complements. These data words will be exclusively "OR'd" together to generate a miscompare indication as follows:
a. If $\mathrm{A}+\mathrm{B}=16$ bits binary " 1 ," then DATA_ID $=0$ (no miscompare)
b. if $\mathrm{A}+\mathrm{B} \neq 16$ bits binary " 1 ," then DATA_ID $=1$ (miscompare)
where
$A=$ Identification word 1
$B=$ Identification word 2

DATA $\mathrm{ID}=$ Identification miscompare identification
2. Engine time reference data word will be compared with the previous time reference to generate an update fail indication as follows:
a. If TIME_REF \neq P_TIME_REF, then DATA_TIME $=0$ (update data)
b. If TIME_REF $=$ P_TIME_REF, then DATA_TIME $=1$ (old data)
where
TIME_REF = Current time reference data
P_TIME_REF = Previous cycle time reference data
DATA_TIME $=$ Time data update fail indication
The SSME SOP will process on a single engine basis the channel identification and time reference data words. The primary channel will be processed as follows:

1. If DATA_ID_P and DATA_TIME_P $=0$, then $P _F A I l=0$ (primary channel good)
2. If DATA_ID_P or DATA_TIME_P $=1$, then P_FAIL $=1$ (primary channel failed) where

DATA_ID_P = Primary channel data identification miscompare

DATA_TIME_P = Primary channel time data update fail
P_FAIL = Primary channel failure
If P_FALL $=1$, transfer the secondary channel data (6 words) into the location which provides for downlisted SSME data (6 words).

The secondary channel data will be processed as follows:

1. If DATA_ID_S and DATA_TIME_S $=0$, then $S _F A I L=0$ (secondary channel good)
2. If DATA_ID_S or DATA_TIME_S $=1$, then $S _F A I L=1$ (secondary channel failed) where

DATA_ID_S $=$ Secondary channel data identification miscompare
DATA_TIME_S = Secondary channel time data update fail
S_FAIL = Secondary channel failure
The primary and secondary fail flags are set to zero at the beginning of each pass.
Prior to SRB ignition, if either P_FAIL $=1$ for two consecutive passes, or S_FAIL $=1$ for two consecutive passes, set PAD_DATA_PATH_FAIL $=1$.

Note: The number of passes to set PAD_DATA_PATH_FALL should be less than the number of passes to set DCU SW. This avoids the possibility of lift-off on DCU B data.
Engine status data and chamber pressure will be processed from the primary channel if it is valid; otherwise, process the secondary channel if it is valid. If neither is valid, provide previous cycle's data to user functions and proceed to command processing (Subsection 4.8.2.3.8).

1. If both P_FAIL $=1$ and S_FAIL $=1$ for four consecutive cycles, set $D C U S W=1$ and DCU_SW_IND = 1 (internal flag).
2. If $D C U _S W _I N D=1$ and $P _F A I L=1$ and $S _F A I L=1$ for DATA_FAIL successive cycles, set and latch FLIGHT DATA PATH FAIL = 1
3. If $P _F A I L=1$ and $S _F A I L=1$ for two consecutive cycles or MESHDN $=1$ or MESHDNE$\mathrm{NA}=1$ or $\mathrm{MESHND} C M D=1$, set ME_X TVC SERVO OVRD CMD = 1 (internal flag).

After SRB ignition, the secondary data need not be processed unless the primary channel fail is set.

4.8.2.3.5 Command-Path Failure Processing.

The SSME SOP will monitor the main engine status word command status and channel status data from each EIU (Table 4.8.2-2) to generate command-path and channel fail indications.

Channel status data (bits 3, 4, and 5) will be monitored until SRB ignition. Command status data (bits 1 and 2) will be monitored, for purposes of command path failure processing, after SRB IGNITION CMD FLAG (V90X8377X) and continue until the SSME SOP is descheduled.

Engine command status data (bits 1 and 2 of each engine status word) will be monitored and compared with the command status indications from the previous two cycles and the command output flags from the pre-
vious three cycles for that engine to generate a command fail flag. The command output flag will indicate if a new engine command was generated in a previous cycle. The engine command status bits will be processed as follows:

ENGINE COMMAND STATUS DATA BITS GPC 1	COMMAND STATUS FLAG	
0	0	0
0	1	1
1	0	1
1	1	2
NOTE: $0=$ no new command		
$1=$ command rejected		
$2=$ command accepted		

The SSME SOP shall maintain the command status from the present and previous two cycles as well as the command output flags from the previous three cycles. These indications shall be compared to generate the command fail flag. The command fail flag shall be set to the " 1 " state (command failed) for the following:

COMMAND STATUS FLAG*			COMMAND OUTPUT FLAG**			COMMAND FAIL FLAG
T_{0}	T_{1}	T2	T	T2	T_{3}	
1	-	-	-	-	-	1
2	-	-	0	0	0	1
0	0	0	-	-	1	1
$\begin{array}{r} * 0 \\ 1 \\ 1 \\ 2 \\ * * 0 \\ 1 \\ \mathrm{~T}_{0} \\ \mathrm{~T}_{1} \\ \mathrm{~T}_{2} \\ \mathrm{~T}_{3} \end{array}$		itted				

The command fail flag shall be initialized to zero, and shall be set to zero when the command status $\mathrm{T}_{0}=$ 2 , and previous output T_{1}, T_{2} or $T_{3}=1$.

1. Before SRB ignition engine channel status data, GPC bits 3,4 , and 5 of each GPC engine status word will be monitored to generate a channel fail flag for each engine if a " 1 " is detected in either bit 3,4 , or 5 .
2. GPC engine channel status bits 3,4 , and 5 will not be processed post-SRB ignition.

4.8.2.3.6 Engine Status Word Processing

The SSME SOP will monitor the selected primary or secondary engine status word (Table 4.8.2-2) from the three EIU's for the following indications:

1. Phase/Mode status - Bits $8,9,10,11,12$, and 13 indicate phase and mode status. The code of bits 8,9 , and 10 indicates the phase status and will be processed before bits 11,12 , and 13 . Bits 11,12 , and 13 indicate the mode status during a specific phase. The following processing will apply to Engine Phase Bits 8,9 , and 10 during post-SRB ignition:
a. Shutdown phase output flag shall be set when for three or more consecutive passes:
(1) Phase Bits 8, 9, and 10 indicate shutdown phase and
(2) The current time in the main engine time reference word is less than 1.48 seconds.
b. Post-shutdown phase output flag shall be set when for three or more consecutive passes:
(1) Phase Bits 8, 9, and 10 indicate post-shutdown phase and
(2) The current time in the main engine time reference word is less than 1.48 seconds when Phase Bits 8, 9, and 10 indicate shutdown phase.
(Table 4.8.2-3 provides the binary code phase/mode indications and the phase and mode output flag indications.)
2. Self-Test Status - Bits 14 and 15 of the engine status word indicate self-test status and will be processed as follows:

Engine Status Word Bits		Self Test Output Flags		
14	15	Engine OK	Major Component Fail	Engine Limit Exceeded
0	0	Not used	Not used	Not used
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

4.8.2.3.7 Main Engine Chamber Pressure Data Processing

The SSME SOP will monitor main engine chamber pressure data from each of the main engines and perform data compensation to convert the measured data from psi to engineering units (percent of chamber pressure). The general compensation equations will be as follows:

$$
\mathrm{YC}=\mathrm{YMC}+\mathrm{K}
$$

where
$\mathrm{YC}=$ Compensation engine chamber pressure (\%)
$\mathrm{YM}=$ Measured engine chamber pressure (psia)
$\mathrm{C}=$ Compensation scale factor (\% psia)
$\mathrm{K}=$ Compensation bias (\%)

Format as follows:

Fixed point half-word operand format

Key:

$$
\begin{aligned}
S & - \text { Sign bit } \\
\text { MSB } & - \text { Most significant bit } \\
\text { LSB } & - \text { Least significant bit } \\
\Delta & - \text { Fractional binary point }
\end{aligned}
$$

4.8.2.3.8 Main Engine Command Processing

The SSME SOP will process and convert GNC user function commands for the three main engines into two 16-bit words for output to the EIU's. The two 16 -bit words will consist of a 16 -bit command word and a 16 -bit associated BCH code command word. The EIU removes the LSB of the BCH code command word and combines the two command words into a packed 31-bit word for use by the SSME.
Table 4.8.2-1 provides the general octal equivalent of the binary/BCH format conversions for the following commands:

1. Start enable commands will be processed to generate start enable commands to all three main engines. When the start enable command flag indicates the " 1 " state (enable start), the SSME SOP will generate the corresponding binary/BCH commands to all three EIU's.
2. Start commands will be processed to generate start commands to all three main engines. When the start command flag for an engine indicates the " 1 " state (start commanded), the SSME SOP will generate the corresponding binary/BCH command to that EIU.
3. Limit control enable commands will be processed on an engine basis. When the limit control enable command for an engine indicates the " 1 " state (enable limit control), the SSME SOP will generate the corresponding binary/ BCH command to the appropriate EIU.
4. Limit control inhibit commands will be processed on an engine basis. When the limit control inhibit command for an engine indicates a " 1 " state (inhibit limit control), the SSME SOP will generate the corresponding binary/BCH command to the appropriate EIU.
5. Throttle settings will be processed to generate thrust level commands to all three main engines. When a specific throttle setting has been commanded, the SSME SOP will generate the corresponding binary/BCH command to all three EIU's.
6. Shutdown enable commands will be processed on an engine basis. When the shutdown enable command for an engine indicates the " 1 " state (enable shutdown), the SSME SOP will generate the corresponding binary $/ \mathrm{BCH}$ command to the appropriate EIU.
7. Shutdown commands will be processed on an engine basis. When the shutdown command for an engine indicates the " 1 " state (shutdown commanded), the SSME SOP will generate the corresponding binary/BCH command to the appropriate EIU.
8. Switch VDT will be processed on a single engine basis. When the DCU-SW command for an engine indicates the " 1 " state (switchover commanded), the SSME SOP will generate the corresponding binary/ BCH command to the appropriate EIU.
9. Oxidizer dump start command will be processed to generate oxidizer dump commands to all three main engines. When the oxidizer dump start command indicates a " 1 " state (dump oxidizer), the SSME SOP will generate the corresponding binary/BCH commands to all three EIU's.
10. Fuel dump start command will be processed to generate fuel dump commands to all three main engines. When the fuel dump start command indicates a " 1 " state (dump fuel), the SSME SOP will generate the corresponding binary/BCH commands to all three EIU's.
11. Oxidizer dump stop command and fuel dump stop command will be processed to generate terminate sequence commands to all three main engines. When either the oxidizer dump or the fuel dump stop command indicates the " 1 " state (stop dump), the SSME SOP will generate the corresponding binary/BCH commands to all three EIU's.

The command output flag to be used in Section 4.8.2.3.5 will be set on an engine basis on the first transmission of any new command to that engine. When no new command to an engine has been processed, the output command flag will be set to the "zero" state. Only one command to the EIU will be transmitted per minor cycle.

The order of priority of user function commands on a single engine basis is as follows:

Shutdown enable
Shutdown
DCU-SW
Limit control inhibit
Limit control enable
Throttle settings
Start enable
Start
Oxidizer dump start
Oxidizer dump stop
Fuel dump stop
Fuel dump start

The SSME SOP output function will issue the command associated with the highest priority request and then set the flag to zero. Prior to SRB ignition each command must be transmitted to the EIU only one time, and then the output buffer must be set to zero unless an output request is pending. After SRB ignition, each command must be transmitted only one time to the output buffer and the I/O profile will continuously send the command to the EIU until replaced by another command to the output buffer.

Table 4.8.2-3 Phase Mode Processing							
Engine Status Word Bits*			Phase Output Flags	Engine Status Word Bits*			Mode Output Flags
8	9	10		11	12	13	
0	1	0	$\begin{aligned} \text { Shutdown Phase } & =0 \\ \text { Post-shutdown Phase } & =0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Engine Ready }=0 \\ & \text { Engine Ready }=0 \\ & \text { Engine Ready }=0 \\ & \text { Engine Ready }=0 \\ & \text { Engine Ready }=1 \end{aligned}$
0	1	1	$\begin{array}{r} \text { Shutdown Phase }=0 \\ \text { Post--shutdown Phase }=0 \end{array}$	0 0 0 1	0 1 1 0	0 1 0	Electronic Lockup $=0$ Hydraulic Lockup $=0$ Electronic Lockup $=0$ Hydraulic Lockup $=0$ Electronic Lockup $=1$ Hydraulic Lockup $=0$ Electronic Lockup $=0$ Hydraulic Lockup $=1$
1	0	0	$\begin{array}{r} \text { Shutdown Phase }=0 \\ \text { Post-shutdown Phase }=0 \end{array}$	0 0 1	0 1 0	1 1 0	Electronic Lockup $=0$ Hydraulic Lockup $=0$ Electronic Lockup $=1$ Hydraulic Lockup $=0$ Electronic Lockup $=0$ Hydraulic Lockup = 1
1	0	1	$\begin{array}{r} \text { Shutdown Phase }=1 \\ \text { Post--shutdown Phase }=0 \end{array}$		proc	g requ g requ	during this phase d during this phase
1	1	0	$\begin{array}{r} \text { Shutdown Phase }=0 \\ \text { Post--shutdown Phase }=1 \end{array}$			requ requ	during this phase d during this phase
* Bit combinations not shown are either not used or spare. See Table 4.8.2-2 GPC Engine Status Word.							

Figure 4.181.1. SSME SOP Functional Block Diagram
TABLE 4.8.2.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.8.2.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) INPUT/OUTPUT FUNCTIONAL PARAMETERS
LAST CRS

89218B
89218 B
89218 B
89218 B

89218 B
89218 B
89218 B
89218 B

UNITS

A
ω_{2}
a_{1}

ME-2
ME-2 MEC REFERENCE
MCESSURE (AVG)
ME-2 COMMAND STATUS

 ME-3 IDENT WORD NO ME-3 TTME REFERENCE (AVG) ME-3 MEMORY LOAD MODE
ME- 3 COMMAND STATUS ME-3 COMMAND STATUS ME- 3 FRT MODULE IN CONTROL
ME-3 LIMIT CONTROL ENABLED
 ME-3 OPERATING MODE
ME-3 SELF TEST SSME SOP RECYCLE FLAG
EIU1/P4 DATA STATUS (HFE) EIU $/ 24$ DATA STATUS (HFE)
EIU3/P4 DATA STATUS (HEE)

 LPS GO FOR AUTO SEQUENCE START
$\begin{aligned} & \mathrm{V} 91 \mathrm{X} 3015 \mathrm{X} \\ & \mathrm{V} 99 \mathrm{X} 8803 \mathrm{X}\end{aligned}$
M/S ID

TABLE 4.8.2.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) INPUT/OUTPUT FUNCTIONAL PARAMETERS

 NOMENCLATURE

 M／S ID

$$
\begin{aligned}
& \begin{array}{ll}
4 \\
0 \\
0 & 0 \\
0 & 0 \\
0 & 6 \\
0 & 0 \\
0 & 0
\end{array}
\end{aligned}
$$

SROM SSME SOP
DESTINATION
EIU 3

TABLE 4.8.2.4-1. SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) INPUT/OUTPUT FUNCTIONAL PARAMETERS

TABLE 4.8.2.4-2. SPACE SHUTTLE MAIN ENGINE(SSME) SOP (G4.181) 1-LOADS

DBEN:0484
FSSR NAME
CPRESS (1)
CPRESS (2)
CPRESS (3)
DATA_EAIL

DBEN: 0558
FSSR NAME
DESCRIPTION
NO REQUIREMENTS

O

TITLE FUNCTIONAL SUBSYSTEM SOFTWARE REQUIREMENTS SEQUENCE REQUIREMENTS

DATE OF LIST 3-26-91

DISTRIBUTION:

NASA/JSC
CA4/S. Kruse
DA8/E. Henderson

DC44/Wells

DF/C. Calix
DF4/L. Hicks (2)
DF62/Library (3)
DF63/Library
DF65/Library (3)
DF7
DG66/J. Simms (3)
DG67/D. Beckman
DH4/Pointing Library
DH6/Library
DM
DM/Library DM24/Library DM35/E. Smith DM4/G. Hillier DP3/R. Murray ED3/S. Whitehead
EG/S. Solis
EG2/H. Jackson
EG2/K. Todd
EG3/Library
EK/FDSD Library
EK2/P. Jones
EP2
EP2/L. Jenkins
EP2/D. Prevett
EP4/B. Boyd
NB2/D. Horn
NB2/Technical Library
NS5/W. Bates

VG/H. Hernandez
WG/Library
WG4/T. Kaluza
FORD/HOUSTON
F612H/SR\&QA Library
F664S/D. Files
F652S/G. Vincent
F650H/J. Bacon
UNISYS
U07B-16/ K. McMurtrie
U08C/L. Morris
RSOC/HOUSTON
R12A/B. Hawkins (3)
R12B-16/D. Magnusson
R16B/B. Picka
R16B/R. Schmidgall
R16C/Prox Ops/Rndz Library
R16D/Descent Library
R16E/M. Kocen
R16E/Traj. Ops. Library
R18B/M. Vaughn
R18H-555/E. Papavasiliou
R19E-4/M. Tarbescu
030B/STSOC Library (2)
FORD AEROSPACE
CC5/D. Smith
IBM FEDERAL SYSTEMS DIVISION
6402B/Project Office (50)
ROCKWELL/HOUSTON
ZC01/R. Winkler

Jm86/Remainder

NASA-MSFC
EB42/C. Horn
EP52/M. Neely
CN22D/Doc. Repository
LESC/HOUSTON
C07/B. Strassner
C07/S. Jo
C07A/A. Hockenbury (3)
C07AJK. C. Broyles
C18/E. Street
C87/B. Reitz
C87/L. Olson (3)
C87/S. Vickery
C87/R. Joa (5)
TRW
H5/R. Lee
MDAC-ENGINEERING SERVICES
MDCA215/G. Hirsch
TB2BHI/P. Swaim
T3C/R. Fisher
TA217/L. Guderian
TA123/AASC Library
INTERMETRICS
John Hanaway
1750 112th N. E.
Suite D151
Bellevue, WA 98004
INTERMET/HOUSTON
R. Reid

ROCKETDYNE
AC58/P. Seitz Rockwell International Corp. 6633 Canoga Ave.
Canoga Park CA 91303

FOR CHANGES TO THIS DISTRIBUTION LIST, CONTACT JSC DATA MANAGEMENT/JM21 AT 713-483-4006 (FTS 52 4006). TO REQUEST A COPY, SUBMIT A JSC FORM 614 TO DISTRIBUTION OPS./JM86

[^0]: 笑
 管営
 बig
 ai
 ni
 V41K1421KB MPS LH2 RECIRC DISC VLV OPEN CMD
 V41K1422XC MPS LH2 RECIRC DISC VLV CLOSE CMD
 V41K1584KA MPS LO2 OVBD B／V（PV19）CL CMD A
 V41K1585KA MPS LO2 OVBD B／V（PV19）CL CMD B
 \gg

[^1]: V41K1319xC MPS E3 LH2 PREVLV

[^2]: E S DEG4.114 $\mathrm{ZSZ7}$

 V97U9719C SEC

 VERIEY_ALL_ENG SHTDN_TIMER

[^3]: THIS PAGE INTENTIONALLY LEFT BLANK

[^4]: SEQ

[^5]: *Tenth character, an asterisk, in the MSID for commfaults and certain hardware parameters identifies measurements that are channelized on two flight critical MDM's.

[^6]: * OX-BIAS $=0$ and $\mathrm{FU}-\mathrm{BIAS}=0$ at initialization.

[^7]: THIS PAGE INTENTIONALLY LEFT BLANK

[^8]: *For information only: cumulative effects of MEC SOP response to user flags.

