Space Shuttle Model AP-101S
Principles of Operation
with Shuttle Instruction Set

g

REV DESCRIPTION . m T e DATE APPROVED
- Release ‘ 0l1-16-85

A Changes from AP-101B & OASCB 07-09-85

B | Update: Add IOP POO as appendix ‘ij* 04-30-86

c Update: Add clarificati??s & EDCP changes 05-01-87

D | Update: add clarif?cﬁtions 02-01-91

E U?date: Add clarifications 05-03-91

F Tipdate: Incorporated C.R. 90669A & 90954C 07-12-94

o - .TITLE =
Spacej?iﬂttle AP-101s Principles of Operation
Document Control Number: 85-C67-001 IBM Federal Secto:z Divaion.“

REVISION A

EDCP

PAGE

DESCRIPTION OF CHANGE

iii thru v

2-1 thru
2-4, 2-11,
2-13 thru
2=-22, 2-24,
2-25, 2-27,
2-29

3‘19 3-2

4-2 thru

4-5, 4-10,
4-11, 4-14,
4=24, 4-25,

4-31 thru

4-33

) 5-2’ 5-<10

8-1 thru

8-9, 8-12
thru 8-22,
8-24, 8-26
thru 8-34

9-1 thru
9-17, 9-19
thfu»9-22
10-2

12-3

13-1, 13-2

15-1 thru
15-34

16=1 thru
16-10

17-1, 17-2
17-3

Single Margin Bars Incorporated To Indicate

Changes To The AP-101B POO.

REVISION

A

EDCP PAGE DESCRIPTION OF CHANGE
2-1, 2-3, The following indicate changes from the
2-10, 2-13, Orbiter Avionics Software Change Board
2-16, 2-20, (OASCB) Baseline meeting held 02/28/85.
2-23, 2-24,
2-29
7-13
8-5, 8_7’
8-11, 8-17,
8-19, 8-29,
8§-31, 8-32,
8-34
9“4, 9"'5,
9-8, 9-15,
9-19, 9-21
10-3
15-10
15-12
15-31
15-33
16-9

REVISION B

EDCP

PAGE

DESCRIPTION OF CHANGE

86-101S-011

86-101S-011

86-101S-011
86-1015-008

86-101S-011

86-1018-011
186-1015-011
86-1015-006

86-101S-011

86-101S5-011

86-1015-011

86-101s=-011
86-1015-011
86-1015-005

86-101S-011

Title

iv

1-1

2-21

2-25

15-1 thru
15-34

15-19

16=1 thru
16-10

17-1 thru
17-4

Add note containing margin bar definition.

Change Appendices A, B, C, to Sections 15, 16,
17, respectively. Add Appendices I, IT, III
(1I0P PO0O).

Change Appendix B reference to Section 16.
Instruction Monitor Interrupt handling change.

Rewrote Interrupt Priority description in an
attempt to clarify Figure 2-20 on page 2-21.
The length of this change necessitated an
additional page such that material formerly on
pages 2-25 thru 2-29 is now on pages 2-26 thru
2-30.

Changed from one to multiple guard digits..

Added a new paragraph to clarify ICR AGE
command word format.

Changed bit format to include the second soft
error counter.

Corrected typo in table: XFER to MFER.

Changed from A-1 thru A-34.

Added statement explaining the effect on
scrubbing for the Reset ECC Bits assist
command.

Changed from B-1 thru B-10.
Changed from C-1 thru C-4.

Updated instruction times for LXA and LDM.
Updated instruction time for STDM.

Updated instruction times for SCAL and SRET.
Reduced because DSE Registers are no longer
stored.

B-1

REVISION B

EDCP PAGE DESCRIPTION OF CHANGE
IOP POO 85-C67-004 is being incorporated
into this document as Appendices I, II, III.
86-1015S-011| Appendix I
86-101S-011|I-4, I-5, The following pages contain single margin bars
I-7 thru which indicate changes from the original IOP
I1-7D, 1-8, POO and are being carried over into this
I-10, I-13, |document from 85-C67-004.
I-14, I-17,
I-20, I-21,
I-29 thru
I-31, I-34,
I-36 thru
I-40,
I-46 thru
I-52

Appendix II

II-18,
II-51,
I1-71,
I1-94,
I1-97

Appendix III

III-14,
I11-17,
III-18,
II1-19,
I11-21,
III-30,
II1-39,
III-74

REVISION B

EDCP PAGE . DESCRIPTION OF CHANGE
86-1015-011| Appendix I

I-7A Clarification of data to be used for forcing
errors.

I-7D Correct typing errors.

I-8 Correct three typing errors. Clarify parity
error symptoms and recovery.

I-17 Nomenclature change.

I-19 Clarification that all other interrupts are
reset by this PCO.

I-20 Removed appliéable termination control latches
information.

I-21 Explanation that terminate output driver 1is
permanently inhibited by the hardware.

I-22 Same as I-21.

I-24 Added note that Test and Enable do not force
the new parity interrupts.

I-36 Specified priority of interrupt error
condition.

I-39 Flagged Bits I-31 as unavailable.

I-40 Added note that those errors do not generafe
interrupts. Clarified PS overtemperature.
Flagged Bits 1, 2 as unavailable.

I-43 Same as I-21.

I-47 Changed HISAM dump from Bit 14 to Bit 15.

REVISION B

EDCP PAGE ‘ DESCRIPTION OF CHANGE

86-101S-011| Appendix II

II-13 Changed reference to AP-101S Design Workbook.
II-14 Same as II-13. Corrected typing error.

II-20 Removed fail latch reference in two places.
II-24 Removed DMA error and DMA channel reference.

Changed to parity error "during" instruction
and data read.

1I1-96 Added OPX field for diagnostic data flow error
test.

Appendix III

ITI-17 Corrected typing error.
ITII-20 Removed fail latch reference in two places.
ITI-25 Removed DMA error and channel logic reference.

Segregated termination latch detected by IOP
hardware.

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-1015-024 1-1 Added reference for AP-101S/AP-101B comparisons
document.
86-1015-024 2-3 Removed comment about 128K or less programs using the
DSEs.
86-101S-024 2-6 Added reference to Effective Address Generation Chart on
page 11-1.
86-1015-024 2-16 Removed typo "Z" from "16-Bit Branch Address." Added
explanation for IC relative expansion.
86-101S-024 2-18, 26 |Move instruction monitor paragraph from 2-26 to 2-18.
86-101S-024 2-19 Added missing information to Bits 48-63 of Figure 2-19.
86-1015-024 2-20 Correct Instruction Address Bit designation.
86-1015-024 2-21 Corrections to Interrupt Structure and Priority Table.
86-101S-009 2-23 Added reserved area for BCE 25.
86-101S-024 2-29 Changed Decimal designations to Hex. Added Memory Store
Protected note.
86-101S-024 3-1- Clarified IOP as I/0 Device. Added note clarifying DMA
can occur between CPU memory cycles.
86-101S-024 3-2 Clarified IOP as I/0 device.
86-1015-024 4-5, 22, Added warning note for DMA being enabled during
32, 34 instruction execution.
7-4, 5, 8,
9, 12, 15,
20, 9-5
86-101S-024 9-2 Correct typesetting.
86-1015-024 9-17, 18 |Clarified DMA is not allowed during fetch and storeback.
Add counter execution times.
86-1015-024 10-3 Correct Soft Error Counter Bit designations. Added
Counter Execution times and figure 10-1 reference.
86-101S-024 10-4 New Page: Added definition of MFER/MMU bits.
86-1015-024 13-1 Remove SRS, BROV and CRY from 1100 OP code.

c-1

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-101S-024 15-4, 10, Added missing execution times.
13 thru 16,
18, 19, 24,
26, 27, 28
87-101s5-047 2-22, 23; DSE instruction enhancement; text on page 2-23 moved
9-8, 19, back to page 2-22 to allow room for expanded
20, 22, Figure 2-21.
17-3, 4
86-101S-024 2-1, 7-13, Clarifications and typo corrections.
8-27, 10-2
I-2, 3, 5,
7A, 7D, 8,
17, 35, 40,
45, 52,
II-24, 25,
III-5, 19
thru 22, 24
thru 26, 29,
30, 43, 54,
55, 59, 74,
75, 81
87-101S8-047 17-3, 4 LDM, LXA, STDM, STXA execution changed.
86-101S-009 I-7D, Added details of IOP shutdown when an IOP Data Flow
I1-25, Parity Error occurs.
I11-27
86-1015-024 I-13 thru Changed DO/DI Bit designations to correspond to ALD's
I-15, I-45 and Specification. Flagged High Speed Discretes.
thru I-49 Clarified Sync Discrete numbering.
86-101S-009 I-8, 17 Processor 25 update.
86-1015-024 I-22 Clarified Note.
86-1015-024 I-25 Removed Bit 25 as self test.
86-101S-024 I-36 Rephrased for multiple error occurrence.
86-101s-024 II1-15 Added Bit Alignment note to IL description.
86-101S-024 II-70 Changed & NIX to @ NIX.
86-101S-024 I1-97 Added explanation of OP code 011.

c-2

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-101S-024 III-6 Added "Common IOP Addr" in IUA field.
86-1015-024 I1I-7 Corrected half word numbers. Added note for CPU and
IOP Memory Addressing.
86-1015-024 III-10 Changed "I" field to "M". PC clarification for "DISP"
field.
87-1018-049 | III-14, Changed for #MIN instruction update.
15, 76
86-101S-024 | III-14 Added reference paragraphs.
86-1015-024 III-15, Corrected gap time.
20, 48, 52
86-101S-024 III-17 Added paragraph for BCE programmable registers.
86-1015-024 II1-27 Added section for MIA Busy when asked to transmit.
86-1015-024 III-32 Removed nonapplicable programming note detailing
indexing.
86-101S-024 I1I-42 Added reference to listen mode/command mode
differences. :
86-1015-024 III-44 Added gap time‘details.
86-101S-024 III-50 Added paragraph for IUAR loading during #CMD and #CMDI.
86-101s5-024 III-52 Removed nonapplicable programming note.v
86-101S-024 III-53, 56 Added paragraph for GPC to GPC word transfers.
86-101S-024 ITI-65 Added #CMDI reference for Listen Mode. |
86-1015-024 III-70 Added typical time out detection time.
86-101S5-024 III-76 BCE IUAR in listen mode reference.
86-101s-010 ITII-80 Added details for real time MIA parity checking.

Changed "I" field to "M".

c-3

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE
86-101S-024 III-81 Added note for additional listen mode implementation.
86-101S-024 I11-86 Removed nonapplicable paragraph.

86-101S-024 I11-87 Separated #CMDI from #CMD.

C-4

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA 1-1 Deleted paragraph referencing the "AP-101B/AP-101S
Comparisons" document.

NA 2-15 Missing word added. Added word "to".

NA 2-16 Text added to clarify the action of the second stage
addressing when the high order address bit = 0.

NA 2-18. Deleted text concerning PSW bit 45.
Added a line at the top of the page that was left out from
the old GPC POO.

NA 2-21 Mask for CPU store protect revised from bit 45 to R
(CPU store protect not maskable).

NA 2-21 Made a note on the old PSW designation for CPU multibit
error.

NA 2-21 Interrupt priorities changed to put the EXT 1 INT (AGE)
ahead of the other EXT INTs.
Footnote added about CPU multibit error as referenced on
page 2-25,

NA 2-22 Reference to bit 45 mask deleted.

NA 2-25 Note added on CPU multibit error.

NA 2-25 Group 0 interrupts section clarified.

NA 2-26 Text concerning CPU store protect mask bit 45 deleted.

NA 2-27 BCE 25 processor storage (00A4-00A5) added to list of PSA
locations to not be store protected.

NA 4-24 Typographical error corrected. Added an "s" to replace.

NA 5-2 Programming note changed.

NA 7-13 Corrected typographical error.

NA 7-14 "Do not exceed ;ight" changed to "do not exceed sixteen".

NA 8-2 Sign corrected on exponents.

NA 8-15 CVFL diagram replaced with copy from AP-101B POO.

D-1

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA 8-26 Corrected typographical error.

NA 9-2 Changed reference from "Appendix A" to "Section 15."

NA 9-8 Last sentence under programming note - corrected from STM to
STDM. Flow chart corrected. Programming note clarified for
instruction main store addresses crossing 32K boundaries.

NA 9-20 The R1 designator was deleted and a note was added at the
bottom of the page. ’

NA 9-21 Corrected wording in description section for bit 20 and 27.

NA 9-22 The Rl designator was deleted and a note was added at the
bottom of the page.

NA 10-3 The ICR instruction operation was clarified by expanding the
code column to 32 bits.

NA 13-1 SRS branch on count deleted.

NA 15-1 Changed word "Reference" to "Section."

NA 15-19 Added I/0 delay times.

NA 15-29 External 4 interrupt added. Note added to bottom of page.

NA 15-33 An error code of 70 "EDAC error during reset" added.

NA I-2 Changed description for bits 17 through 31 from "NOT USED"
to "IGNORED."

NA I-4 Information pertaining to AP-101B crew trainers and
prototypes deleted.

NA I-4 Four occurrences of "spare not used in flight IOP" deleted.

NA I-10 Bits 25 - 31 bracketed.

NA I-22 Removed note.

NA I-24 The effect of the Test Interrupts PCO on the interrupt
registers clarified.

NA I1-37 Bits 6 - 31 bracketed.

NA I-43 Changed wording for bit 19 of RM status register.

D-2

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA IT-iii Typographical error corrected. Spelling of "general"
corrected.

NA II1-13 Removed reference to design workbook.

NA II-101 Added Appendix number to page numbers in MSC Instruction
Summary Chart.

NA II-102 Added Appendix number to page numbers in MSC Instruction
Summary Chart.)

NA I1I1-4 "Power surge" changed to "power".

NA ITI-8 Corrected typographical error.

NA III-11 Added note regarding direct addressing mnemonics.

NA III-14 Text aligned.

NA III-15 Changed page spacing.

NA III-20 Changed wording in section defining signals that set BCE
Halt bit to O.

NA III-25 Eliminated termination latch from Error Summary Chart.
NA III-26 "Invalid Manchester, or bit count error" added under the
parity error on input data.

NA II1I1-27 The "wrong bit encoding bit count error" section deleted.

NA I1I-43 Added note for MIA Busy.

NA III-48 Typographical error corrected. Last paragraph
corrected.

NA III-50 Clarified descriptions for #CMD and #CMDI.

87-101s-051 III-52 Removed program note for microcode error (microcode
corrected).

NA III->58 Added note for MIA Busy.

87-101S-049 III-75 Removed description of microcode anomaly (microcode
corrected).

87-101S5-049 III-80 Note on limited assembler support for this OP code.

Corrected typographical errors.

D-3

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA I1I-88 Added Appendix number to page numbers in BCE Instruction
Summary Chart.

'NA III1-97 Restored paragraph inadvertently deleted.

REVISION E

EDCP PAGE DESCRIPTION OF CHANGE

NA 2-21 Remove statement "Maskable Only in Problem
State, PSW 47=1" from Interrupt priority
C2.

Add an X in Not Maskable column for Store
Protect Interrupt.
NA 8-22 Correct condition code for Load Complement
) (Short Operands) for positive results.

NA I1-24, 25 Remove "Terminal Control plus" from last
IOP error description on page II-24. Move
paragraph extension on top of II-25 back
to II-24.

NA III-8 Change I to M for Short Format 1 Index
Specification.

NA III-15 Remove duplicated sentence under bit 23
description.

NA III-48 Add an "or" between #MIN and #MINE.

REVISION F

EDCP PAGE DESCRIPTION OF CHANGE

NA vi Replaced "(This page intentionally left
blank)" with "NOTE: Use of fields marked
as reserved can result in unpredictable
machine operation."

NA 2-14 Replaced "1" in bit position 0 of
Fig. 2-17 with MSB and added explanation.

NA 2-15 Deleted page and replaced with flow
chart.

NA 2-21 Added Anomaly Notes to Fig. 2-20.

NA 2-23 Clarification of "Reserved" locations
in Fig. 2-21.

NA 8-12 Deleted statement in description.

NA 8-12a Added Anomaly Note for CEDR/CED instruc-
tion.

NA 8-12b New Page: Added " (This page intentionally
left blank)".

NA 8-17 Added Anomaly Note for DEDR/DED instruc-
tion.

NA 9-8 Revised statement on MOVE HALFWORD
interruptibility.

NA 9-8a New Page: Added Anomaly Note for MOVE
HALFWORD instruction.

NA 9-8b New Page: Added "(ThlS page intentionally
left blank)"

NA 9-19 Corrected instruction bit 31 designation.

NA 15-32 Changed "FOV Fail" to "YOV Fail" for
Error Code 5A description.

NA 17-3 Corrected instruction execution time
calculation for MVH RR (COUNT ODD).

NA I-36 Changed "Dev out data error" to "Dev out
data parity error" under ERROR CONDITION.

NA III-14 Corrected bit 26 designation for TO.

NA III-59 Deleted first paragraph at top of page.

TABLE OF CONTENTS

Paragraph Title fage

1.0 AP-1015 AITH SHUTTLE INSTRUCTION SET e e e e e e e e e e e e e e e 1-1

2.0 AP-101S STRUCTURE .. e e e e e e e e e e e e 2-1
2.1 SHUTTLE INSTRUCTION SET e e e e e e e e e e e e e e e e 2-1
2.1.1 Information Formats c e e e e e B R B P TR Rt 4 . 2-1
2.1.2 Addressing ¢ e e s e e e e e e 2-2
2.1.3 Information Positioning O T 2-2
2.2 CENTRAL PROCESSING UNIT . . S U 2-2
2.2.1 Program Addressable Regtsters e A 2-2
2.2.2 Fixed Point Data Representation o v e e e e e e e 2-4
2.2.3 Instruction Formats e e e e e e e e e e e e e e e 2-4%
2.2.%4 RR Format Instructions e e e e e e e e v e e e e e e e e 2-6
2.2.5 SRS Format Instructions L 2-6
2.2.6 SI Instructions e e e e . 2-8
2.2.7 RI Instructions e e e e e e e e e e e e e e e e e 2-9
2.2.8 RS Format Instructions e e e e e e eiaie FEE ehE N iwil il 2-9
2.2.9 Expanded Addressing L T S 2 B
2.3 PROGRAM EXECUTION . e . S e e v e e e e e e e WS el . 2-17
2.4 STORAGE PROTECTION FEATURES e e e e e e e e e e e e W e 2-17
2.4.1 Instruction Monitor Feature s s e e e e e e e e e e e e e e . . 2-18
2.5 MACHINE STATUS c e 2-18
2.5.1 Program Status Word © s et e e e e s e e e e e e e e e e e e e . 2-18
2.5.1.1 PSW Fields L T K
2.5.2 Interrupts St e e e e e et e e e e e e e e e e e e e e e e . 2=22
2.5.2.1 Interrupt Handling S e . 2=26
2.5.2.2 Interrupt Priority c e e e e e e e e e e e e e e e e e e e . 2=25
2.5.2.3 Interrupt Masking e e e e . e e e e e e e e e e e e .. 2-26
2.5.2.4 Preferred Storage Area (PSA) As%lgnments e e e e e e e e e e . 2=27
2.5.3 <eneral System Operation © e e e e et e e e e e e e e e e e e . 2=217
2.5.3.1 I ower-0n Tt et e .. o2-28
2.5.3.2 System Reset C s s e . 2-28
2.5.3.3 IPL S S o, ¥ -
2.5.4 Operating State C ot s e e e e e e e e e e e e d e e e e d e e e . 2-29
2.5.64.1 Program State Alternatives e v e e e e e et e e e e e e e . 2-29
2.5.5 Architectural Growth S e e s e et e e e e e e e e e e e e e . o 2=-30

3.0 CPU Iv/0 e e e e e T O 3-1
3.1 DIRECT MEMORY ACCESS OPERATION . .. o e e e e wie kil el 3-1
3.2 PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION e e e el sfie eTF 4 e e e 3-1
3.3 PROGRAM-CONTROLLED I/0 INSTRUCTION e e e e e e e e e e e e e e e 3-1

4.0 FIXED POINT ARITHMETIC L 6-1
4.1 ADD o St s s e e e e e e e e e e e e e e e e e e e 4-2
4.2 ADD HALFHORD . e St e e e e e e e e e e e e e e e e e e e -3
4.3 ADD HALFWORD IMMEDIATE c e e e e e e e e e e e e e e e e e G4
4.4 ADD TO STORAGE St e 4-5
4.5 COMPARE . . L T, 4-6
4.6 COMPARE BETNEEN LIMITS S e e e e e e e e e e e e e e e e e e e 4-7
4.7 COMPARE HALFWORD St e e et e e e e e e e e e e e e e e e 4-8
4.8 . 4-9

COMPARE HALFWORD IMMEDIATE R T T O

Paragraph

TABLE OF CONTENTS

Title

4.9 COMPARE IMMEDIATE WITH STORAGE
LIYIJE .
EXZHANGE UPPER AND LOWER HALFNORDS
INSERT ADDRESS LOW e e e e
INSERT HALFWORD LOW .« o .

4.10
4.11
.12
.13
4.14
4.15
4.16
.17
4.18
4.19
.20
4.21
4.22
4.23
%.24
.25
4.26
4.27
.28
4.29
4.30
.31

5.0 BRANC
5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.1

LOAD

. ° 0y . ° . . .

LOAD ADDRESS . e ..
LOAD ARITHMETIC COMPLEMENT .
LOAD FIXED IMMEDIATE - e e .
LOAD HALFWORD « e s e e e s
LOAD MULTIPLE
MODIFY STORAGE HALFNORD . .

MULTIPLY

-

MULTIPLY HALFNORD « e e e
MULTIPLY HALFWORD IMMEDIATE

MULTIPLY INTEGER HALFWORD .
STORE
STORE HALFWORD C e e e e e

STORE MULTIPLE C e e e e e

SUBTR

ACT

- - - . . .

SUBTRACT FROM STORAGE o .
SUBTRACT HALFWORD « e e e
TALLY DOWN c e e e e

HING

BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

- . . ° ° . e o ° ° .

AND LINK e e e e e e
AND INDEX o« e e e e

ON
ON
ON
ON
ON
ON
ON

0 BRANCH ON OVERFLOW AND CARRY

CONDITION e e e
CONDITION BACKWARD

CONDITION (EXTENDED)
CONDITION FORWARD

COUNT« .
COUNT BACKNARD - .
OVERFLOW AND CARRY

6.0 SHIFT OPERATIONS e e e e e e e e
6.1 NOKMALIZE AND COUNT .. .
LEFT LOGICAL c e e e
LEFT DOUBLE LOGICAL . .
RIGHT ARITHMETIC .« .
RIGHT DOUBLE ARITHMETIC
RIGHT DOUBLE LOGICAL .
RIGHT LOGICAL o« e e e .
RIGHT AND ROTATE .« .
RIGHT DOUBLE AND ROTATE

[N« LT < B T o N« (R)
N N o
W 0O BN

.

St .FT
SHIFY
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

7.0 LOGICAL OPERATIONS e e e e e e e

7.1

AND .

7.2 ANRD HALFNORD IMMEDIATE o« .

ULt uuLu uwm
I t |
W O VWL UUN

(S T
[}
[y

o ONONONONON NN
|

[}
= o Vv NOo UL HN

o o
[
] b e

NN
U
W N -

TABLE OF CONTENTS

Paragraph Title

S W

= 0 00~ o

NN NN
. .

8.0 FLOAT
8.1

LS I FYRN \NY

o e e
= =0 00N o

0 00 00 00 00 00 00 O 00 00

AND IMMEDIATE WITH STORAGE e e e
AND T3 STORAGE c e e e e e e e e e
EXCLUSIVE OR e e e e e e
EXCLUSIVE OR HALFWORD IMMEDIATE . .
EXCLUSIVE OR IMMEDIATE WITH STORAGE . .
EXCLUSIVE OR TO STORAGE c e e e e
OR e e e e e e e e e e e e

OR HALFWORD IMMEDIATE e e e e e
OR TJ STORAGE e e e e e e e e e
CEARCH UNDER MASK C e e e e e e e
SET 3ITS e e e e e e .
SET HALFWORD e e e e e e e e e e
TE5T BITS e e e e e e e e e e e
TEST REGISTER BITS e e e e e e e e e
TEST HALFWORD e e e e e e

ZERO BITS C e e e e e e e e e e e .
ZERO REGISTER BITS e e e e e e e e .
ZERO HALFWORD c e e e e e e e e e e

ING PJINT OPERATIONS C e e e e e e e
DATA FORMAT © e e e e e e e e e e e
NUMBER REPRESENTATION c e e e e e e e
NORMALIZATION e e e e e e .
FLOATING POINT SECOND OPERANDS o e e
FLOATING POINT REGISTERS e e e e e
FLOATING POINT INSTRUCTIONS c e e e . .
CONDITION CODE o e e e e e .
FLOATING POINT ARITHMETIC EXCEPTIONS

ADD (LONG OPERANDS) e e e e e e e e e
ADD (SHORT OPERANDS) e
COMPARE (LONG OPERANDS) e e e e e
COMPARE (SHORT OPERANDS) c e e e e e
CONVERT TO FIXED POINT c e e e e e ..
CONVERT TO FLOATING POINT .« e e
DIVIDE (LONG OPERANDS) c e e e e e e
DIVIDE (SHORT OPERANDS) T
LOAD (LONG OPERANDS) B
LOAD (SHORT OPERANDS) S L.
LOAD COMPLEMENT (SHORT OPERANDS) o
LOAD FIXED REGISTER L
LOAD FLOATING IMMEDIATE N
LOAD FLOATING REGISTER S
MIDVALUE SELECT (SHORT OPERANDS) « .
MULTIPLY (LONG OPERANDS) c e e e e
MULTIPLY (SHORT OPERANDS) c e e e e
SUBTRACT (LONG OPERANDS) < e e e e e
SUBTRACT (SHORT OPERANDS) e e e e
STORE (LONG OPERANDS) c v e e e e e
““ORE (SHORT OPERANDS) e e e e e e e

. . . -

[
[| [T I D |
N O ®OD U WWHNRN P

00 00 CO 0 00 00 00 00 Co
1

TABLE OF CONTENTS

Paragraph Title Page
9.0 SPECIAL OFERATIONS e e
9.1 DIAGNOSE (DETECT) e e e e e e e e e e e e e e e e e e s 9-2
9.2 INSERT STORAGE PROTECT BITS e e e e e e e e e e e 9-4
9.3 LOAD PROGRAM STATUS e, 9-6
9.4 MOVE HALFWORD OPERANDS e e e e e e e e e e e e e e e e 9-7
9.5 SET PROGRAM MASK e e e e e e e e e e e e e e e s s s 9-9
9.6 SET SYSTEM MASK S Y
9.7 STACK CALL D B |
9.8 STACK RETURN e e e e e e e e e e e e e e e e e e e s e s s sy 9106
9.9 SUPERVISOR CALL e e e e e e e e e e e e e e s e s s s s s s 918
9.10 TEST AND SET A T
9.11 TEST AND SET BITS - I B
9.12 LOAD EXTENDED ADDRESS e
9.13 LOAD DSE MULTIPLE e B X)
9.14¢ STORE EXTENDED ADDRESS S B3 !
9.15 STORE DSE MULTIPLE - B
10.0 INTERNAL CONTROL OPERATIONS e 1 B
10.1 INTERNAL CONTROL S £ B
11.0 AP-101S SHUTTLE INSTRUCTION SET P B S |
11.1 EFFECTIVE ADDRESS GENERATION SUMMARY CHART T 5
12.0 AP-10iS INSTRUCTION REPERTOIRE S -2 !
12.1 SHUTTLE INSTRUCTION SET e P!
13.0 AP-101S OP CODE ASSIGNMENTS B 0
16.0 AP-101S INSTRUCTION SET e e e e e e T T T
14.1 AUTOMATIC INDEX ALIGNMENT DESCRIPTION B T |
15.0 AP-101S DIAGNOSTIC FUNCTIONS T T
16.0 PIPELINE TIMING CONSIDERATIONS e e R ¥
16.1 INSTRUCTION EXECUTION - PIPELINE BASICS T 1|
16.2 LONG INSTRUCTIONS - NON-SINGLE-CYCLE EXECUTION e e e e e e e . 162
16.3 BRANCH INSTRUCTIONS - RESTART THE PIPELINE e e e e e e e e e . .o16-2
16.4 REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER e e e« 16-5
16.5 STORE INSTRUCTIONS - MULTIPLE MEMORY CYCLES S
16.6 STORE CONFLICT - MODIFY PREFETCHED MEMORY OPERAND e e e e e o .. 16-6
16.7 SUCCESSIVE STORES - BACK-TO-BACK STORES - e . e e e+ <« .« . 16-8
16.8 I UNIT HAZARD -~ MODIFICATION OF PREFETCHED INSTRUCTION e e v . . . 16-8
16.9 CONFLICT/HAZARD SUMMARY e T 28
17.0 AP-1015 INSTRUCTION EXECUTION TIMES T Y A |
APPENDIX I - IOP P0OO FOR PROGRAM-CONTROLLED INPUTS AND OUTPUTS T € |
APPENDIX II - IOP POO FOR MASTER SEQUENCE CONTROLLER S & £ 1
APPENDIX III - IOP POO FOR BUS CONTROL ELEMENT e e e e e e e e e e e e I1I-1

iv

Figure

NN NN
L B O T]
NOU D N

NNN!})NNN
(=]

LIST OF FIGURES

Title

Instruction and Operand Bit Humbering

General Register Addresses

Fixed Point Operand Formats .

Basic Instruction Formats e e e e e e e e
The RR Instruction Formats . .

SRS Instruction Format . .« e e e

SRS Halfword Addressing © e e e e e

SRS Fullword Addressing e e e e e e e e e e e
SI Instructions e e e e e e e e e e e e
RI Instructions . C e e e e e e e e e e e e e
RS Instruction Formats e e e e e e e e e e e e

Displacement Alignment for Extended Addressing ..

Automatic Index Alignment .. .
Displacement Alignment for Indexed Addressrng . . .
The Contents of Indirect Address Storage Modi fication Word
The Contents of Index Register X e e e e e e e e
Fulluword Indirect Address Pointer e e e e e
Expanded Addressing © e e e e e e e e e e e e e

PSW Fields e e e e e e v e e e e e e e e e e
Interrupt Structure and Priority e e e e e e e
Preferred Storage Area Assignments e e e e

CPU Mode Switching e s e e e e e e e e e e e e
Shift Count © s e e e e e e e e e e e e e e e e
Normalize and Count Execution e o e a4 e s e s
Floating Point Operands in Registers

Combinations of Fractional Precision for Floatlng Po'

Operands c e e e e e e e . .« e e e .
Condition Code Setting for Floating Point Arithmetic
Move Halfword Execution . e e e e e e e
Current STACK Status - Prior to SCAL e e e e e e
STACK Status - Upon Completion of SCAL « e e 4 e .
MFER/MMU Registers c e e e e e e e e e e .

Dissection of Instruction e e e e e e e e
Pipeline Hardware Elements e e e e e e e e e e e
Pipeline Advantage s e e e e e e e e e e e e e
Long Instruction c e e e e e e e e e

Branch Taken L
Register Conflict S S,
Store Instruction c e e e e e e e e e e e e
Store Conflict e e e e e e e e e e e e e e e
Successive Stores e e e e e e e e e e e e e e
I Unit Hazard c e e e e e e e e e e e e e e

R
(]
1]

N NN NN
L O I T |
Ul Dl

|
O O W kBN

NNI})NN

[AS I\ IS I SR XY

L T R I Y
[el ™ S
W wWwN

NOTE: Use of fields marked as reserved can result in unpredictable machine operation.

1.0 AP-101S WITH SHUTTLE INSTRUCTION SET

The AP-101S is a high-speed, general-purpose computer intended primarily for
real-time applications such as guidance, navigation, control, and data processing.
The AP-101S is software compatible with the AP-101C/M, described in IBM No.
62646156B, 30 January 1979. This family shares, and is unified by, extensive design
experience, proven technology base, and common manufacturing processes.

This Principles of Operation manual provides a direct comprehensive description of
the CPU system structure; the arithmetic, logical, branching, and status switching;
and the interruption system. This publication defines and describes features common
to all AP-101S CPUs including the ground version, the AP-101S5/G computers that do

not contain an IOP.

Both computers contain a pipeline architecture CPU, and techniques for efficiently
Programming it are contained in Section 16 of this document.

1-1

(This page intentionally left blank)

1-2

2.0 AP-103iS STRUCTURE

2.1 SHUTTLE INSTRUCTION SET

The AP-1015 system structure encompasses the functional operation of main storage,
the central processing unit (CPU), and program—-controlled I/0 facilities.

2.1.1 Information Formats

The system transmits information between main storage and the CPU in units of 16
bits, or in integer multiple of 16 bits. Each 16-bit unit of information is called
a halfword. Six error correction bits and three voted storage protection bits are
also associated with each halfword for the AP-101S but later references in this
manual to the size of data fields exclude these bits. The AP-101S5/6G has two storage
protect bits per halfuword.

Halfwords may be handled separately or in pairs. A fullword is a group of two
consecutive halfwords. Both halfword and fullword instructions and operands are
used. Their location is always specified by the address of the leftmost halfword
(leftmost halfuword is the numerically smallest address). The instruction length is
designated implicitly in every instruction; the operand length is also implicit.

Within any instruction and operand format, the bits making up the format are
consecutively numbered from left to right, starting with the number 0, as shown in
Figure 2-1.

Haifword
I

0 15

Fullword
llll!l!ll!lllllllllllllllllllll
Y 15 16 31

Figure 2-1. Instruction and Operand Bit Numbering

2=1

2.1.2 Addressing

Halfword locations in storcge are consecutively numbered starting with 0. Each
number is considered the address of the corresponding halfword. The addressing
technique uses a 19-bit binary address to a maximum of 2!°® halfword addresses. This
set of main storage addresses includes some locations reserved for special purposes,
such as program status words; consequently, these special locations should not be
used for any purpose not implicitly defined.

2.1.3 Information Positioning

Unlike previous versions of the AP-101 computer, the AP-101S does not require either
fullword instructions or fullword/doubleword operands to be located in main storage
on even boundaries.

2.2 CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main =torage,
for fetching or storing information, for arithmetic and logical processing o+ data,
for sequencing instructions in the desired order, and for initiating the
communication between storage and external de:ices.

The control section guides the CPU through the functions necessary to execute the
program.

2.2.1 Program Addressable Registers

Two sets of eight fixed point general registers and one set of eight floating point
registers are under explicit program control. Th2 contents of one or more of these
registers (32 bits) participate in most CPU operations. Associated with each of the
fixed point registers is a 64-bit addressing extension register (Data Sector
Extension or DSE), the use of which is described below in Extended Addressing.

Conceptually, an additional doubleword status register, called the program status
word (PSW), is the focal point for machine status. The contents of the PSW are

updated during each instruction. Consequently, the PSW reflects current machine
status following every instruction. The PSW participates implicitly in status
switching, branching operations, and address calculations. Condition codes

resulting from an instruction are also part of the PSW.

In addition to the PSW and the general and floating point registers, the CPU also
contains working registers used for storage addressing, storage buffering, shift and
iteration counting, and operand storage. These registers are of no direct concern
to the programmer and are not described herein.

2=-2

The contents of the PSW specify which of the two sets of general registers is in
current use. Only the contents of the selected general register set can participate
in arithmetic operations and the contents of unselected sets of general registers
cannot be altered by a program. An alternate set of general registers can be
selected by changing the PSW. Only one set of the fixed point, general-purpose
registers and the floating point registers are available to the program at any one
time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative
addressing. Each set of general registers is numbered from 0 through 7 and is
addressed as shown in Figure 2-2.

General Register Function

Register

Number Operand Base Index
0 000 00 : None
1 001 01 001
2 010 10 010
3 011 11 or None™ | 011
4 100 100
S 101 101
6 110 110
7 111 111

%11 = Register 3 for SRS; none for RS

Figure 2-2. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses and that
general register 0 cannot contain an index.

For addressing data, general registers 0-3 can be augmented by 4-bit Data Sector
Extension (DSE) registers or by the DSR in the PSW to address beyond 16-bit
capabilities. There are 16 DSEs, one for each of the eight general-purpose
registers in each of the two sets of general registers.

For some operations, a pair of general registers is linked to form a 664-bit
doubleword register. The most significant half of a doubleword operand is contained
in the specified register; the least significant half of the doubleword is in the
next higher-numbered register (determined by Modulo 8 addition of one (1) to the
specified register). Note: If Reg 7 is specified, the least significant half of
the double word operand is contained in Reg. 0.

2.2.2 Fixed Point Data Representation

Data representation is fractional, with negative numbers represented in tuwos
complement form. A halfword operand is 15 bits plus sign, a fullword operand is 31
bits plus sign, and a doubleword operand is 63 bits plus sign, as shown in Figure
2-3. ’

Fixed-Point Halfword Operand

S Fraction

Fixed-Point Fullword Operand

Fixed-Point Doubleword Operand

S Fraction g g

0 1 63

Figure 2-3. Fixed Point Operand Formats

In fractional data representation, the binary point is immediately to the right of
the sign.

2.2.3 Instruction Formats

The length of an instruction format can be either one or two halfwords. Long format
instructions provide maximum range and extended flexibility <for addressing storage
operands. Short instructions are used to (1) specify register-to-register
operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that, in many instances, any
given operation can be coded using either a halfword or a fullword instruction. 1In
such cases, maximum use of halfword instructions results in increased storage
efficiency and performance.

The three basic instruction formats are as shown in Figure 2-4. Halfword
instructions are automatically selected by the assembler unless otherwise specified
by the programmer.

RR Format

(o]
Op R1 p R2
| | Ll dvlifr]olX] ||
0 4 5 7 8 11 12 13 15
SRS Format
op R Dise” 52 “Displa f the f 111XXX
isplacements of the lid.
[1| 1 P11 | p en orm are not vali
0 4 5 7 8 13 14 15
RS Format
0 A I
Op R1 Plm| B2 Address Specification
| 1 AN REREREE L Lttt
0 4 5 7 8 1112 13 14 15 16 31

Figure 2-4. Basic Instruction Formats

The fields within the instruction formats usually are used as described belouw.
described in conjunction

exceptions are
instructions.

Op This 5-bit field defines an operation, or the class

with the individual formats

of operation,

The
and

to

R1

R2

B2

Disp

oPX

AM

be performed Wy tr- ~PU,.

This 3-bit field designates the register containing the first operand.
Except for operations which alter main storage, the result usually
replaces the first operand.

This 3-bit field appears only in the RR format. It is used to speci fy
a general register containing either the second operand or the address
of the second operand.

This 2-bit field specifies the register containing the base address.
In halfword SRS format instructions, this 6-bit field is called the
displacement. For the SRS format, the displacement is added to the
base address specified by the B field to obtain a storage address.

This bit is an extension of the 0P field.

This field designates one of two fullword format addressing options.

Address The second halfword of a fullword instruction is specified as either

Specifi- extended or indexed addressing.
cation

See the Effective Address Generation Summary Chart, page 11-1.

2.2.4 RR Format Instructions

The RR format instructions (Figure 2-5) permit the specification of operations that

use two general registers.

(o]
Op R1 p R2
| L L trjrjrjoix) | |
0 4 5 7 8 1112 13 18

Figure 2-5. The RR Instruction Formats

The operation normally uses as operands the contents of two general registers.
R2 field specifies the second operand while the R1 specifies the first operand.
result of the operation usually replaces the first operand.

2.2.5 SRS Format Instructions

The SRS instruction format (Figure 2-6) is a compression of the RS format.
provides base plus displacement storage addressing.

° Displacements of the form

Op R1 Disp® 82 111X XX are not valid.
L1l [| | |
0 4 5 7 8 13 14 15
82 Register Containing Base
00 General Register 0
01 General Register 1
10 General Register 2
1 General Register 3

Figure 2-6. SRS Instruction Format

2-6

The
The

It

The R1 field specifies the first operand register address. The 19-bit effective
address (EA) of the second operand is developed as follows:

Step 1 First the positive integer contained in the displacement field is
added to the contents of the base contained in the general register
specified by B2.

When addressing halfword operands, the least significant bit of the
displacement field (instruction bit 13) is aligned with base register
bit 15. The 16-bit result is the sum of the base and the
displacement, aligned as shown in Figure 2-7.

When addressing fullword operands using the SRS format, the least
significant bit of the displacement field is aligned with base
register bit 14 as shown in Figure 2-8.

Unlike previous versions of this architecture, bit 15 of a base
register is significant when addressing fullword data. Fullword
storage operands may now be located on odd address boundaries.
Programs which utilize this feature will not be downward compatible.

Step 2 The 16-bit result of the addition of the base and displacement is

expanded (see Expanded Addressing) to a 19-bit effective address (EA),
and this is the address of the second operand.

l!llllslm! | 1'111115*&}\\\\&“\\%\\\?8&«32;

1

Disp Halfword Displacement
olojojojojojojojojol | | | | |
0 9 10 15
Base + Disp. 16-Bit Effective Address
Ll LUt
0 15

\ The low-order half of the general register containing
\ the base does not participate in SRS addressing.

Figure 2-7. SRS Halfuword Addressing

2=7

0 1516

Disp 0 Fullword Displacement
0jo0jojojojojojojof | | | 1 |
o] 8 9 14 15
Base + Disp 16-8Bit Effective Address
| I O 1 A O R R |
0 15

\\ The low order half of the general register containing
N

the base does not participate in SRS addressing.

Figure 2-8. SRS Fullword Addressing

Except for store instructions, the result of operation between the first operand
(the contents of general register R1) and the second operand (the contents of the
EA) replaces the first operand for SRS format operations. The first operand
replaces the second operand for store instructions.

2.2.6 SI Instructions

Direct initialization, modification, and testing of main storage is possible through
the use of an immediate data halfword appended to an SRS instruction. See Figure
2-9.

Op oPX Disp* 82 Immediate Data
[111 L | L1111 | I O O O O O
0 4 5 7 8 13 14 15 16 31
*Displacements of the form 111XXX are not valid.

Figure 2-9. SI Instructions

The address of the halfword second operand is developed in the normal manner for SRS
instructions using halfword addressing. Except for test instructions, the result of
the operation between the halfword second operand and the immediate data replaces

2-8

the second operand. The second operand is not altered for test instructions. The
first operand is never altered for SI instructions.

2.2.7 RI Instructions

Using an immediate data halfword appended to an RR instruction (Figure 2-10) permits
direct initialization, modification, and testing of the most significant 16 bits
contained in a general register.

0
Op oPX)P(R2 Immediate Data

L1 11 I | J1]1)1]0 |] T I I s e O R
0 4 5 7 8 1112 13 15 16 31

Figure 2-10. RI Instructions

Except for test instructions, the result of the operation between the second operand
and the immediate data replaces the second operand. The second operand is not
altered for test instructions. The immediate data first operand is never altered
for RI instructions. '

2.2.8 RS Format Instructions

There are two major classes of RS instructions, extended and indexed addressing
modes, differing in the techniques used to specify the second operand. See Figure
2-11.

0
Op R1 ; 3 82 . Address Specification
L1 I AEREREE | LAt ittt
0 45 78 11 1213 14 15 16 ' 31
AM
Extended : 0 Displacement
ettt
16 3
I
Indexed : 1 X All Displacement
| | Lt 1 11t 1
16 18 19 20 21 31

Figure 2-11. RS Instruction Formats

Extended addressing is specified when RS format bit 13 (AM) equals 0. This
addressing mode provides a full 16-bit halfword displacement. The base and
displacement are aligned as shoun in Figure 2-12 when base addressing is performed.

Displacement

I I N
16 3

Figure 2-12. Displacement Alignment for Extended Addressing

Aside from the size and alignment of the displacement, RS extended addressing
di ffers from SRS addressing in two other respects:

1. The alignment of the displacement is <the same whether addressing
doubleword, fullword or halfword operands. '

2. When B2 equals 11, base addressing is not performed. In this case, the
displacement is instead used directly as the effective address.

2-10

Indexed addressing is specified by RS format bit 13 (AM) equal to 1. This
addressing mode contains three additional fields. Normally, they contribute to the
effective address generation as follows:

X

IA

This 3-bit field specifies one of seven general registers containing

-the index. Indexing is not performed when X is equal to 000. An
index is contained in the upper halfword of a general register. The
index is automatically aligned as illustrated in Figure 2-13. For

additional information on index alignment, see Section 14. Consistent
with the restrictions that apply to register usage and indirect
addressing, general register contents can be used interchangeably as
either a base or an index or both. When indirect addressing is
specified, indexing follows indirect addressing (postindexing).

This format bit, when a one, specifies indirect addressing. Indirect
addressing is not perforned when this bit is zero. In the instruction
descriptions, the symbol 3 denotes IA for the assembler.

This format bit, in conjunction with X and IA, specifies various
address modes which are explained below. In the instruction
descriptions, the symbol # denotes I for the assembler.

The development of the EA for the indexed mode (including IC relative) of operand
addressing is explained in detail in the subsequent steps:

1.

Indexed addressing is specified by RS format bit 13 (AM) equal to 1. This
addressing mode provides an 11-bit displacement. The base and
displacement are aligned as shown in Figure 2-14 when indexed addressing
is performed.

The displacement is aligned so that bit 31 corresponds to base or index
bit 15 and displacement bit 21 corresponds to base or index bit 5. The

' displacement is expanded to 16 bits by appending five leading =zeros.

If B2 is not equal to 11, the 16-bit base, contained in the higher order
half of the specified register, is added to the aligned displacement.
This results in a preliminary effective address (PEA) whereby the PEA =
(B) + Displacement.

If B2 is equal to 11, the aligned displacement is added to zero. This
result is the preliminary effactive address (PEA) whereby the
PEA=Displacement.

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a
zero, then the 16-bit result of Step 2 is added to the contents of the
updated instruction counter (IC) to form the 16-bit EA whereby
EA=(updated) IC + PEA. (This EA is then expanded to a 19-bit EA, as
explained in the Expanded Addressing section, with the exception that the
Branch Sector Register (BSR) bits are used instead of the Data Sector
Register (DSR bits).

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a
one, the 16-bit result of Step 2 is subtracted from the contents of the
updated IC to form the 16-bit EA whereby EA = (updated) IC - PEA. (This

2-11

PEA
O O I
15
Index (Xg_1g) Halfword (Direct from Index Register

Bits 0—-15

RN =018l
15

PEA + Index EA

| I I I I
15

PEA
I T I O O I I
15
Index (Xq_1g) Fullword (Index Register Bits 0—15
Shitted Left 1)
| L1 L1111 o
15
PEA + Index EA
L1 1ttt
15
b. Fullword index Alignment
PEA
Lttt
15
Index (Xo_5) Double Word (sl::::d R;gfi:t;)r Bits 0—-15
L1 11 1 1111]ojo
13 14 15
PEA + Index EA
I T T O O A
15

¢. Double Word Index Alignment

Figure 2-13. Automatic Index Alignment

2-12

Displacement

olojojojol | | 11 1t b]|
16 20 21 31
Base
N O N I B O
0 5 15

Figure 2-14. Displacement Alignment for Indexed Addressing

EA is then expanded to a 19-bit EA, as explained in the Expanded
Addressing section with the exception that the Branch Sector Register
(BSR) bits are used instead of the Data Sector Register (DSR) bits.)

If the X field is all zeros, IA (bit 19) is a one and I (bit 20) is a
zero, then Indirect Addressing is performed. The l6-bit result of Step 2
is expanded to a 19-bit address and is used as the address of a main
storage halfword. This halfword is then fetched and expanded to 19 bits
by using expanded addressing to form the EA. EA=MS (PEA). Funectional
equivalency to preindexing capability can be obtained through modification

of the base.

If the X field is all zeros, IA (hit 19) is a one and I (bit 20) is a one,
Indirect Addressing is rerformed as described in Step 5 with a fullword
main storage pointer. Then, after the EA has been formed, storage
modification is automatically performed. The indirect address is
contained in a fullword. A modifier is contained in bits 16 through 31.
An address is contained in bits 0 through 15. The modifier is added to
the address and the resulting modified address replaces bits 0 through 15
of the indirect address word (see Figure 2-15).

Address Modifier

l!l!llllllll[l!l]!llllllllll!

15 16 3

Modified Addresg = MS (PEA) ~— MS (PEA) + MS (PEA + 1)

Figure 2-15. The Contents of Indirect Address Storage Modification Word

If the X field is not zeros, IA (bit 19) is a zero and I (bit 20) is a
zero, the most significant 16 bits of the general register specified by
the X field are aligned, and then added to the 16-bijt result of Step 2
(PEA) to form the 16-bit EA (See Figure 2-13). (This EA is then expanded
to a 19-bit EA, as explained in the Expanded Addressing section.)

10.

If the X field is not all zeros, IA (bit 19) is a zero and I (bit 20) is a
one, the most significant 16 bits of the general register specified by the
X field are aligned, and then added to the 16-bit result of Step 2 (PEA)
to form the 16-bit EA (see Figure 2-13). (This EA is then expanded to a
19-bit EA, as explained in the Expanded Addressing section.) (The
modifier is added to the address and the resulting modified address
replaces bits 0 through 15 of the index register after the EA s
determined.) Figure 2-16 jllustrates the address and modifier format in
the index register.

Address Modifier

lllllllllJ!l]lllll!llllljllill

0 15 16 k]|
Modified Address = (X)o_ls-——(X)o_ls + X16-31

Figure 2-16. The Contents of Index Register X

1f the X field is not all zeros, IA (bit 19) is a one and I (bit 20) is a
zero, Indirect Addressing (IA) with postindexing is performed. The 16-bit
result of Step 2 is expanded to a 19-bit address and is used to fetch a
main storage halfuword. The index contained in the general register
specified by X is aligned and then added to the fetched halfword to form
the 16-bit EA (see Figure 2-13). This EA is then expanded to a 19-bit EA
by using expanded addressing. Functional equivalency to preindexing
capability can be obtained through modification of the base.

If the X field is not all zeros, IA (bit 19) is a one and I (bit 20) is a
one, an indirect addressing mode is defined using a 32-bit fullword
indirect address pointer as follows:

a. First, the PEA from Step 2 must locate a fullword indirect address
pointer, with the format as illustrated in Figure 2-17.

M X CIC
S Address Reserved c B|D BSV Dsv
Bl Lt Lt Lttt 114 tololala 1 1 O I
0 1 15 16 1920 21 2223 24 27 28 N

Field Function

Xe Index Control

C Control to allow PSW modification

Cg Control BSV Usage

Cp Control DSV Usage

BSV (Branch Sector Vector) Selectively replaces BSR in PSW

DSV (Data Sector Vector) Selectively replaces DSR in PSW

MSB (Most Significant Bit) Determines type of address expansion

Figure 2-17. Fullword Indirect Address Pointer

'

2-14

b. Next the fullword indirect address pointer is expanded to a 19 bit address as follows:

FULLWORD INDIRECT
ADDRESS EXPANSION

YES NO

BRANCH
INSTRUCTION?

DATA INDIRECT
POST-INDEX _,

DATA
.1 INDIRECT

BRANCH EA=ADDR + (X) 2
TAKEN? AUTO INDEX EA=ADDR
ALIGNED

EXECUTE NEXT
INSTRUCTION

=0
WHEN C=0,
CB AND CD ARE
RESERVED AND
MUST BE 0. BASE
REG
MODIFY PSW
=3
CBICD ACTION
0/0 NONE EXPAND EA EXPAND EA EXPAND EA EXPAND EA
on DSR=DSV USING DSR USING DSV USING DSE USING 0000
T 10 BSR=BSV
f/ n DSR=DSV &
L , BSR=BSV
BRANCH BRANCH
INDIRECT INDIRECT
POST-
INDEX NOTE:
283}:‘:” 2232& H All EA/BA address calculations involve 16-bit operands and bit 0 of the fullword
ADDR+(X) ADDR indirect address pointer is included in these address calculations.

The results of indexed mode RS operations normally replace the first operand
except for store operations where the first operand replaces the second operand.
The second operand is unaltered for nonstore operations, and the first operand is
unaltered for store operations.

BRANCH ADDR
MsB

EXPAND BRANCH EXPAND BRANCH
ADDR USING ADDR USING
000 ! BSR

-
&

| 29 Expanded Addressing

"~ The addressing philosophy accommodates 64K halfword addresses since a full 16-bit

address is provided. Extending the addressing range beyond 64K halfword locations
2-15

up to 512K halfuword locations is provided by utilizing PSW bits and Data Sector
Extension (DSE) registers.

Expanding to 19 bits is achieved by replacing the high-order bit of a 16-bit address
with 4 bits, as shown in Figure 2-18. Data operand addresses are extended to 19
bits with a 4-bit Data Sector Register (DSR), a DSE, a BSR, or an implied DSR of
zero. When the high-order bit of a 16-bit data address is 1, a 4-bit DSR (PSW bits
28 through 31) is selected to replace the high-order bit. (Note: IC relative data
operand addressing would use BSR instead.) When the high-order bit of a 16-bit data
register is 0 and a base register is used to determine the address, the 4-bit DSE
for that base register is selected to replace the higher order bit. When the high
order bit of a 16-bit data address is a 0, and no base register is used, an implied
DSR containing 0000 is selected. Note that indirect addressing locates the indirect
address pointer as if the pointer were a data operand. Second stage expansion of
the indirect address pointer uses an implied DSR of zero if the high order bit of
the 16-bit address is 0 and no base register is used. If the high-order bit of the
16-bit address is 0, and a base register is used, then the 4-bit DSE for that base
register is selected to replace the high-order bit. Branch addresses are also
extended to 19 bits. When the high-order bit of a 16-bit branch address is a 1, a
4-bit Branch Sector Register (BSR-PSW bits 24 through 27) is selected to replace the
high-order bit. When the high-order bit is a 0, an implied BSR containing 0000 is
selected.

START
16-Bit Operand Address START
XYYYYYYYYYYYYYYY
16-Bit Branch Address
-04,/1\\‘-1 XYYYYYYYYYYYYYYY
X — DSR(orBSR)
[zzzz+<pPsw 2831} =0 =1
X BSR
80 e YES [zzzz<0s00] [zzzz<=Psw 2427]
l .]
“ \ 4 Expanded 19-Bit Branch Address
| zzzz + o000 | | 2zzzz<oDsEbese | ZZZZYYYYYYYYYYYYYYY
Expanded 19-Bit EA Branch Addressing Expansion
ZZZZYYYYYYYVYYYYYYY

Data Operand Addressing Expansion

Figure 2-18. Expanded Addressing

2-16

e

C

T
“/ ™
; \

s

T
y N

T

st N
4 b

Pictorially, main storage can be visualized as follows:

BA_ =0
or EA,=0 EA_=0 EA_ =0
EA_=0 ‘ 2 2
o DSEBO,1,2 DSEBO, 1,2 DSE B0,1,2
No Base
Reg - -
BA =1 EA =1
PSA
Operating Probiem Problem Problem Problem PROBLEM
System & Data Instruction Data Data DATA
Common Data Area Area Area Area AREA
Pool
0 32K BSR DSR 512K

PSW 24-27 PSW 28-31

This permits efficient communication from the problem program to the operating
system, the preferred storage area, (PSA) or a common data area.

It should be cautioned that instruction address incrementing or address calculations

"used to form the EA are performed on the low 16 bits only, and will not alter the

BSR, DSR, or DSE. The BSR or DSR may be altered only via a PSW swap, special
instruction operations (SVC, LPS) or by use of the indirect address pointer
described in this section. The DSE registers are loaded by the LXA and LDM
instructions.

2.3 PROGRAM EXECUTION

The CPU program consists of instruction and control words specifying the operations
to be performed. This information resides in main storage and addressable registers
and may be operated on as data. Instruction execution cantrol is as defined under
the section on Machine Status anc: Goneral System Operation. Insert Storage Protect
Bits, Load Program Status, Internal Control and Set System Mask instructions are
privileged instructions and can only be executed in the Supervisor State. The
Program Status Word determines the current state of the CPU and the Supervisor Call
instruction can be used by the problem program to enter Supervisor State.

2.4 STORAGE PROTECTION FEATURES

The storage protection feature prevents modification of specific main storage
locations. Any location which ceculd, for example, contain constant data or program
instructions can be selectively protected from Store operations without restricting
the use of other areas. Traps on store operations to specific data words can be
inserted during prougram checkout. A privileged instruction, Insert Storage Protect
Bits, is provided to set/reset the protection bits associated with each halfuword of

2-17

main storage. Attempting to store data in a protected location will result in a.
program interrupt. In this case, the store operation does not occur.

2.4.1 Instruction Monitor Feature

The storage rrotection bits described can also be used to flag an inadvertent
attempt to execute, as instructions, data stored in unprotected areas. The feature
will ensure that no program will continue to execute data as program instructions.
An attempt to execute an instruction word which is unprotected will result in an
interrupt if FSW bit 34 is a one. The feature can be masked by a System Mask Bit
(bit 36 of the PSW). During program checkout, this feature permits use of special
software to aid debugging. '

An instructioy Monitor difference is the state the effective address is left in
following the interrupt handling. In the AP-101B, the Instruction Counter is
incremented to point to the next instruction to be executed. The AP-101S Instruction
Counter is not incremented and is left pointing to the offending instruction.

2.5 MACHINE STATUS

System status can be altered by the occurrence of interrupts and by the program. A
doubleword register within the CPU contains a program status word (PSW) and is the
focal point for CPU and system status eonditions.

2.5.1 Program Status Word

The program status word (PSW), contains the basic information required for proper
program execution. The 64-bit PSW includes the next instruction address, the
current condition code, the carry and overflow indicators, the system mask for
interrupts, and other fields significant to CPU operations. In general, the PSW is
used to control instruction sequencing and to hold and indicate the status of the
system in relation to the program currently being executed. The active or
controlling PSW is called the "current PSW". By storing the current PSW during an
interruption, the status of the CPU can be preserved for subsequent use. By loading
a new PSW or part of a PSW, the state of the CPU can be initialized or changed.
Figure 2-19 shows the PSW format.

2-18

CIOfF E
Instruction Address C CiRrR{VioO \ uls BSR DSR
bl A decdoat folegod godsy 4 1 MpoyMIMl b 1 1 b1
0 15 16 17 18 13 20 21 22 23 24 27 28 31
\\\\\ R P
System Mask NEA—-HighJSimMiwgl/ Interrupt Code
NN NN SL L0
32 : 39 40 43 44 45 46 47 48 63
0-15 Next Instruction Address 36 External Interrupt 1 Mask
16-17 Condition Code 37 External Interrupt 2 Mask System*
18 Carry Indicator 38 External Interrupt 3 Mask Mask
19 Overflow Indicator 39 External Interrupt 4 Mask
20 Fixed-Point Arithmetic Overflow Mask * 4043 Reserved for SVC High Order EA Bits
21 Reserved 44 Register Set (GR set 0 or 1)
22 Floating Point Exponent Underflow Mask* 45 Machine Check Mask*
23 Significance Mask * 46 Wait State Bit (Wait/Process)***
24-27 Branch Sector Register . 47 Problem/Supervisor State Control Bit* *
28-31 Data Sector Register 4863 Interrupt Code for Program Check, Machine
32 Counter 1 Mask Check, and Special External Interrupts, or
33 Counter 2 Mask System* 16 Bit Operand PEA for SVC Instruction
34 Instruction Monitor Mask Mask -
35 External Interrupt O Mask

*Mask bit = 0, interrupt inhibited
=1, interrupt allowed
**0 = supervisor state
1 = problem state
***0 = process state
1 = wait state

Figure 2-19. PSW Fields

The overall status of the CPU is preserved in the current PSW and the contents of
the general registers. The PSW is automatically retained upon taking an interrupt.
It is the programmer's responsibility to preserve the contents of the general

registers when necessary.
Certain other conditions that contribute to an overall system Status situation are

not automatically preserved when a CPU is interrupted. There conditions involve
additional units and include the dynamic state of all other interrupts, the state of

real time counters, and I/0 system status.

Masking is accomplished by setting the appropriate PSW bit to zZero.

2.5.1.1 PSW Fields

The PSW fields (Figure 2-19) are defined as follows:

2-19

Instruction Address - Bits 0 through 15 and 24 through 27 of the PSW
contain the information to determine the address of the next instruction
to be executed. The machine architecture makes provision to address
262,144 fullwords, and the AP-101S space shuttle hardware implementation
provides full addressing capability.

PU Status

(s-d
it

Use

16, 17 Condition code for certain arithmetic, logical
and I/0 instructions

18 Carry status bit indicator

19 Overflow status bit indicator (overflow can
be reset by testing or by loading the PSW)

20 Fixed Point Arithmetic Overflow Mask
21‘ Reserved

22 Floating Point Exponent Underflow Mask
23 Significance Mask

Branch Sector Register - Bits 24 through 27 replace the high-order bit of
a branch address when that bit is a 1. Otherwise, an implied sector
register of 0000 replaces the high-order bit.

Data Sector Register - Bits 28 through 31 replace the high-order bit of a
data address when that bit is a 1. See "Expanded Addressing™ for details
when bit 0 is a zero.

Svystem Mask = Bits 32 through 39 are mask bits. The first two bits of the
System Mask are normally assigned to the two counters and the third to the
instruction Monitor Feature. The remaining five masks include I/0 end
conditions, other application dependent items such as a manual interrupt
key, and timer overflow conditions. The instruction SET SYSTEM MASK is
provided for modifying this field.

EA-High = For an SVC instruction, the 4-bit extension to make the 19-bit
effective address is saved in the old PSW bits 40-43. :

Register Select Field - The register select field, bit 44, controls either
of two sets of general registers in current use. When this bit is a zero,
then register set 0 is used; when this bit is one, then register set 1l is
used. The set of general registers in current use can be selected when a
new PSW is loaded. This can result from the execution of the PSW load
instruction or from an interrupt.

Machine Check Mask = Bit 45 is the mask bit which is used to inhibit
machine check interrupts (see Figure 2-20). When this bit is a zero, then
machine check interrupts detected by the CPU are inhibited.

2-20

ANOMALY: When one of these interrupts is taken, the condition code (CC) in the OLD PSW will be set to
a binary 10 and the carry and overflow bits in the OLD PSW will be cleared.

ANOMALY: A masked DMA store protect intermupt will set the condition code (CC) to a binary 10 and
clear the carry and overflow bits. This can result in GPC operation if an { ion tries to utilize
the CC, carry bit or overflow bit before they are set by another instruction. Additionally, a masked DMA store
Protect interrupt clears any fixed poim overflow, flosting point underflow, and floating point overflow
inxermm.mlmmumammmmihmaDMAmummmnup(mnm
an instruction that causes one of these arithmetic interrupts.

Internpt New Not PSwW Int. Interrupt Accept | CPU/IOP/AGE
Priority |Class | Old PSW |PSW Maskable | Mask | Pending | Code | Time Generated Interrupt
Bit
00 Power | 0010 — X — |- N/A ENDOP CPU Power Off ****** (Microcode Put Away)
01 Power | — 0004 X — |- N/A MCYCLE CPU Power On
02 Power | —~- 0014 X = e N/A MCYCLE CPU System Reset
03 Power | -— — — - |- N/A — — N/A 1o Shuttle ISA
co MC 0040**=# | 0044 - 45 No 0008 | MCYCLE CPU EA Fault
04 MC 0040°*=# | 0044 — 45 |No 0005 | MCYCLE CPU CPU Microstore Parity
05 MC 0040# 0044 —_— 45 [No 0006 | ENDOP CPU Intermupt Page Fault
35 MC 0040# 0044 — 45 |No 0002 | Forced ENDOP |IOP ° DMA Memory Muiti-bit Error
06 MC 0040t% | 0044 — 45 |No 0003 | Forced ENDOP | CPU CPU Memory Muiti-bit Error
10 MC |— _ —-— — |- -_ - —_— Spare
11 MC — — — — — — —_— Spare
12 MC 0040°**# | 0044 X — 0007 | MCYCLE CPU ENDOP Timeout
13 MC |— — - — — —-— - Spare
14 MC 0040***# | 0044 X -~ [No 0009 |MCYCLE CPU CPU Camnot Continue
15 MC - -— —_— — | _— -~ — Reserved
16 MC |-— _— X — |- — ENDOP AGE AGE Breakpoint (Tester Service)
30 MC |[-— - — — |- — - — N/A to Shuttle ISA
36 MC |~ — — — - —_— —_— —_— U Memory Error ***=*
37 MC |- — —-— — |- - — -_ EU Memory Error **=**
17 PE 0070 0074 — 34 |No N/A ENDOP CPU CPU Breakpoint (1 ion Monitor)
20 PE 0048 604C - 20 Note | 0004 | ENDOP CPU Fixed Point Overflow
21 PE 0048 004C X ~— |No 000B | Forced ENDOP | CPU Floating Point Overflow (Exponent)
22 PE 0048 004C — 22 |No 0009 | Forced ENDOP | CPU Floating Point Underflow
23 PE — — —-— — — —_ — Spare
C1,34 PE 0048 004C X No 0000 | MCYCLE CPU Iliegal Instruction, or 1/O Command
c2 PE 0048 004C Xmnne — |No 0001 | ENDOP CPU Privileged Instruction
fox] PE 0048 004C X No 000C | Forced ENDOP | CPU Divided by Zero (Fit. Pr)
C4 PE 0048 004C —_ 23 |No 0005 | ForcedENDOP | CPU -~ Significance
Cs PE 0048 004C X — |No 000A | ENDOP CPU Convert Overflow
31 PE 0048 004C X ~— |No 0002 | Forced ENDOP | CPU CPU Addr Spec 128K, GB Only
PO SC 0058 00sC X - |No (INST) | ENDOP CPU Supervisor Call
31 PE -— _— — —_— - — — —_ Spare
32 PE — —_ — —_ |- —_ — - N/A to Shuttle ISA
33 PE 0048# 004C X e R 0007 | ForcedENDOP | CPU Store Protect Violation
07 PE — _— — —_ = — —_ N/A to Shuttle ISA
4043 SYS |— —_ - —_ |- — —_— —_— N/A to Shuttle ISA
44 SYS |— - -_ —_ |- —_ —_ —_— Spare
45 SYS | 0060 0064 — 32 | Yes —_ ENDOP CPU Interval Timer No. 1
46 SYS | 0068 006C — 33 |Yes — ENDOP CPU Interval Timer No. 2
47 SYS |— — —_ — |- - — — N/A to Shuttle ISA
50 SYS | 0078 007C — 35 | Yes 0000 |ENDOP 1oP External 0 (IOP Voter, IOP Reg. A)
50 SYs 0078 007C — 35 Yes 0000 {ENDOP op External 0 (C/M ldle, IOP Reg. A)
50 SYS | 0078 007C — 35 |Yes 0000 | ENDOP op External 0 (IOP ROS Parity, IOP Reg. A)
50 8YS | 0078 007C — 35 |Yes 0000 | ENDOP (o) External 0 (TOP Fauit, IOP Reg. A)
50 | SYS | 0078 007C — 35 |Yes 0000 | ENDOP op Extermal 0 (Watchdog Timer, IOP Reg. A)
51 SYS | 0080 0084 — 36 | Yes 0000 | ENDOP 0P Ext 1 IOP Data Flow Error Encoded (see Read Interrupt Reg. B
in Appendix I)
51 SYS 0080 0084 — 36 Yes 0000 | ENDOP : op Ext 1 Q Overflow (IOP Reg. B)
51 SYS | 0080 0084 — 36 | Yes 0000 | ENDOP op Ext 1 DMA Timeout (IOP Reg. B)
51 SYS | 0080# 0084 — 36 |Yes 0004 - | ENDOP CPU Ext 1 DMA Store Protect Violation##
53 SYS | 0088 008C —_ 37 |Yes — ENDOP op Ext 2 10P Programmed Interrupts (1-12)
54 SYS | 0090 0094 — 38 | Yes — ENDOP 0P Spare Extemal 3
55 SYS | 0098 009C — 39 | Yes —-— ENDOP (0} Spare External 4
56 SYS — —_ |- — — Spare
52 SYS | 0080 0084 - 36 | Yes 0006 | ENDOP AGE Shuttle AGE Internpt
* CPU must not be in the hait mode

** CPU must be in halt mode

*** PSW can vary, maybe updated PC or unupdated PC
=¢ Only occurs when in problem state
see** Valid only during

se=*=s If power off during long instruction, IC may be
backed up

in Diagn

(INST) 16 Bit Operand PEA of SVC Instruction
Note 1 Status held active in PSW 19
1 See note in Paragraph 2.5.2.1 on page 2-25.

Figure 2-20. Interrupt Structure and Priority

2-21

10.

11.

Wait State - Bit 46 determines the wait or processing (run) states. When
this bit is a zero, the CPU is in the processing state. When this bit is
a one, the CPU is in the Wait State.

Problem/Supervisor = Bit 47 determines the problem or supervisor states.
When this bit is a zero, the CPU is in the supervisor state and privileged
instructions can be executed. When this bit is a one, the CPU is in the
problem state and attempts to execute privileged instructions are
inhibited resulting in an interrupt.

Bits 648 <through 63 are reserved for the interrupt code. Program and
machine check interrupt conditions and associated interrupt codes are
given in Figure 2-20.

2.5.2 Interrupts

4.

Power - This interrupt occurs when primary power is removed from the
system for any reason. The current PSW, the general register set 1 and 2,
the floating point registers, counters 1 and 2, and the current DSEs are
put away (stored) in main storage for future reference. Figure 2-21 shous
the PSA assignments including putaway. When primary pouwer is restored,
operation is initiated with the "power on PSW" (if the power-up mode is
defined as Run). This power-up condition is explained in General System
Operation.

Machine Check - When not masked, this interrupt class occurs following the
detection of a malfunction. The current instruction is then terminated
and the interrupt taken. A diagnostic procedure may then be initiated.
When masked the interrupt does not remain pending.

Program - This class of interrupt arises from improper specification or
use of instructions or data. Bits 20, 22, and 23 (l=interrupt enabled,
O=interrupt disabled) in the PSW are provided to permit masking program
interrupts due to arithmetic exceptions such as fixed point overflow. Bit
34 in the PSW is provided to permit masking the instruction monitor
interrupt. When masked, program interrupts do not remain pending. When
jnvalid instruction or address detection is provided, the resulting
program interrupts cannot be masked.

Supervisor Call (SVC) = This interrupt results from the execution of the
SVC instruction. The four MSBs of the 19-bit extended EA are placed into
the EA-high field (bits 40-43) of the old PSW, and the nonextended 16-bit
EA is placed into the interrupt code (bits 48-63) of the old PSW. This
instruction can be used to switch from the problem to the supervisor
state.

2-22

0 1 2 3

4 5 6 7 8 9 A B

C D E F

000

i&—Used for Self-Tests—

&—— Power On —>

€&—— Available For S

oftware Use ——————

001

Power Off
Interrupt PSW

e

System Reset

PSW ———€——— Available For S

oftware Use ————3

Ea

Available For Software Use

002

Reserved For Future Hardware Growth

003

004

Machine Checks
le—— Old PSW——3j€¢—— New PSW —>

Program
) &—— OIld PSW

Checks
New PSW —»

005

l¢—— Reserved For Future

Supervisor

Hardware Growth —> Old PSW

———

Call (S§VC)
New PSW —»

006

Program Counter 1
le—— New PSW ——>

&—— Old PSW:

Program

€&—— OIld PSW

Counter 2
New PSW —>»

007

Instruct
€—— Old PSW

on Monitor

External

New PSW ——»€—— Old PSW——>

Interrupt 0
New PSW —>

008

€«—— 0ld PSW——>

External Interrupt 1

Externa

Old PSW—-->

New PSW ——¢——

Interrupt 2
New PSW —3

Externa

Interrupt 3

Externa

Interrupt 4

009) ¢e—— Old PSW——3t€—— New PSW ——pt€&—— Old PSW: New PSW —3»
00A€——Reserved * BCE 25 (Page [-17) P€—Res. *—3
00B Cl;lr.ll CI,:_‘ZZ Available For Software Use
00C Put-Away Locations for General Register Set 0
00D Put-Away Locations for General Register Set 1
00E Put-Away Locations for the Floating Point Register Set
00F j&———— Micro Working Registers - DSEs
010 fp s CPt:.t-le(;,:yJRes.‘ j¢——— Used For Hardware Fault Detection
011 & Used For Hardware Fault Detection
012 Used For Hardware Fault Detection
013 & Used For Hardware Fault Detection
* Reserved For Future Hardware Growth
DSE PUTAWAY FORMAT

ADDR REGISTER SET 0 REGISTER SET 1

00F8 | RESV | DSEO | RESV | DSE1 | RESV | DSEO | RESV | DSE1

00FA | RESV | DSE2 | RESV | DSE3 | RESV | DSE2 | RESV | DSE3

00FC | RESV | DSE4 | RESV | DSE5 | RESV | DSE4 | RESV | DSES

O00OFE | RESV | DSE6 | RESV | DSE7 | RESV | DSE6 | RESV | DSE7

BITS |0 314 7|18 11{12 15(16 19|20 23|24 27|28 31

Figure 2-21. Preferred Storage Area Assignments

2-23

5. System - This class of interrupt results from program counter timeouts and
conditions outside the CPU. Provision is made for seven interrupt levels
Wwithin this class, and each is provided with a unique set of PSWs and a
mask bit. Two are program counters and five are external interrupts.

Any number of the five external interrupt conditions may be grouped into a
single level by the external equipment. In the event of simultaneous
external interrupt conditions, the lowest numbered (bit within the system
mask field in the PSW) interrupt is taken first. These interrupts remain

pending when masked.

The two program interval timers are each 32 bits wide and decrement. The lower 16
bits (least significant halfword) of each counter resides in 16-bit binary harduare
counters that count dowun by one every microsecond. The high 16 bits (most
significant halfword) of each counter resides in main store. The high halfword lies
in main store location 80B0 for counter 1 and main store location 00B1 for counter
2. When the low halfword (in the hardware counter) passes from 0000 (hex) to FFFF
(hex) an interrupt occurs which can cause the high halfword in main store (via
microcode) to be decremented by one. This interrupt is transparent to the
programmer until the high halfuord in main store equals 0000 (hex). When such an
interrupt occurs, the high halfword is decremented to FFFF (hex) and a PSW swap
occurs, telling the programmer that the counter has timed out. Note that if the
interrupt is masked the high halfword will not be decremented by the microcode. The
low halfword continues to count down. The interrupt although, remains pending and
if unmasked within 65 ms, the upper halfuword will be decremented without a loss of a

count.

The counters can be loaded and read by the Internal Control instruction, described
in Section 10. ’

2.5.2.1 Interrupt Handling

The machine check, program, SVC, and each system interrupt have two related PSUs
called "old™ and "new™ in unique main store locations. This zone of main store is
referred to as a preferred storage area (PSA), which is illustrated in Figure 2-21.

In all cases, an interruption involves merely storing the current PSW in its old
position and making the PSW at the new position the current PSW. The old PSW holds
all the necessary status information in the szvstem existing at time of interruption.
If, at the conclusion of the interruption routine, there is an instruction to make
the old PSW the current PSW, the system is restored to the state prior to the
interruption, and the interrupted routine continues. This means the programmer must
clear the fixed point overflow indicator before being reloaded. Note that it is
possible to switch to the alternate saet of general registers when the PSW swap takes
place. This set of registers is defined by bit 44 in the new PSW.

Interruptions can only be taken when the CPU is interruptible for a given source.
The system mask, machine check mask bit, floating point exponent underflow mask, the
significance mask; and the fixed point overflow mask bits in the PSW dafina the
interruptible state of the CPU with respect to those sources. When masked, system
interrupts remain pending while machine check and program interrupts are ignored.

2-24

The power transient, certain Program interrupts, and the SVC interrupt cannot be
masked.

Note: The pipeline is the driver for CPU multibit errors (IU and EA). Therefore,
the machine check old PSW for CPU multibit error will reflect the updated PC - not
the address of the multibit error. The following are ways in which a CPU multibit
error may be encountered:

1. The instruction unit (IU) prefetching instructions (up to 23 halfwords
ahead of the PC)

2. The effective address unit (EA) prefetching data (anywhere in memory)
3. The EA prefetching a branch target address (anywhere in memory) .

In the event of this type of error, the error detection and correction (EDAC)
address register may be read for determination of the actual multibit error address.

2.5.2.2 Interrupt Priority

Figure 2-20 presents the repertoire of interrupts with approximate priority levels.
Individual interrupts are listed in order by classification, rather than by
priority. The priority of each interrupt is represented by a two-digit code, which
is interpreted as follows:

First Digit - represents the capture latch number (lower-numbered capture
latches are examined first) or, if alphabetic, the fact that the interrupt is
generated by the CPU - either a Command Interrupt (C), or a Supervisor Call PSW
swap (P).

Second Digit - represents the priority of the interrupt within a grouping
(hardware or "other").

Conceptually, the order of processing (in the case of interrupts received
simultaneously) is as follows:

1. Group 0 Interrupts - These are the highest priority - the Power/Machine
Check type interrupts. The Power, System Reset, and IPL interrupts clear
all pending interrupts - the remaining Group 0 interrupts do not. See
Page 2-21 for interrupt structure and priority.

2. Command Interrupts - These are usually interrupts which demand direct
communication from the CPU to the Interrupt Page Processor. Often, they
are included within a CPU microcode procedure. Action taken by the CPU is
usually to request the interrupt and then loop at one microword, waiting
for the Interrupt Page to reset the Control Store Data Register, thereby
forcing a branch to zero.

3. Group 1, 2, er 3 Interrupts - These interrupts differ from the following
two groups in that the harduware freezes the CPU microcode at the next

.ENDOP when one of them is detected.

[Group & or 5 Interrupts - These interrupts are the only types that are
held pending until they are unmasked with no additional higher-priority
interrupts present. They are only accepted at ENDOP time and generally
cause only slight CPU Processing delays if they are masked OFF.

2=-25

When more than one unmasked interrupt requests service, the current (old) PSW is
stored into and the new PSW is fetched from two PSA locations assigned to the first
interrupt to be processed. Then, the same procedure is followed using the PSA
locations of the second interrupt, with the exception that the "old" PSW is the
former new PSW as fetched for the first interrupt. This procedure of "passing” the
PSW is continued until the last interrupt request 1is acknowledged. Then,
instruction execution is commenced using the PSW last fetched. The order of
execution of the interrupt service routines is, consequently, the reverse of the
order in which the string of "new™ PSWs were fetched. Machine Check and Power
Transient interruptions supersede all other interrupts when they are encountered.

The priority scheme as outlined above is used to resolve race conditions due to
multiple interrupt conditions. However, since in the case of most normal interrupts
(those expected to be encountered during the execution -of typical application
software) separate mask bits and PSW locations are provided for each external
source, the priority of handling these interrupts is further affected by the
contents of the PSWs actually fetched during the interrupt service overhead. That
is, as each PSW swap occurs, further action with regard to System (and Machine
Check) interrupts is determined by the mask fields encountered within the new PSW.

Two major exceptions to the above process involve the Instruction Monitor Interrupt
and Supervisor Call. Instruction Monitor conditions are monitored by hardware and
cause no processing delays if masked OFF, since the Interrupt Page will not even be
notified of the condition in that event. It could be argued that Supervisor Call
might not be considered an interrupt at all, since it is not an unexpected condition
and is appropriately handled by the CPU microcode, but it is included in the list
because its execution necessitates a PSW SWAP and, therefore, cooperation by the
Interrupt Page processor in that portion of the instruction implementation.

2.5.2.3 Interrupt Masking

Individual masking of several of the interrupt types is possible. MWhen masked off,
the interruption is either ignored or remains pending for later execution. The
masking capability for each of the interrupt types is as follous:

1. Power Transient - Cannot be masked off.
2. Machine Check - Can be masked off by setting the machine check mask bit 45

in the PSW equal to zero. When masked off, normal instruction sequencing
occurs, and the interrupts do not remain pending.

3. Program - Three of the 1l program interrupts are capable of being masked
off; fixed point arithmetic overflow, exponent underflow, and
significance, by setting the appropriate mask bits in the PSW equal to
zero. When masked off, these interruptions do not remain pending. Note
that if a PSW with both Fixed Point Overflow Indicator and mask (bits 19
and 20) set is used, the interrupt will occur.

G, Supervisor Call - Cannot be masked off.

5. System - Each level of external interrupts can individually be masked off
by setting the corresponding system mask bit in the PSW equal to zero.
Interrupts that are masked remain pending.

2.5.2.4 Preferred Storage)Area (PSA) Assignments

The contents of the PSA are shown in Figure 2-21 with the main store address

.expressed in hexadecimal notation. The following PSA locations must not be store

protected:

1. Power off interrupt PSW

2. All old PSW locations

3. BCE 25 processor storage (00A4 - 00AS5)

4, Counter 1 and 2, high halfword locations 00BO and 00B1
5. Putaway locations (00CO through 0102)

6. Diagnostics (104-13F).
2.5.3 General System Operation

The various states entered by the computer and their relationship to the basic
operator controls are shown in Figure 2-22. The basic controls provided for the
operator are power-on, initial program load (IPL) and the system reset key. Among
the many controls available, these functions have special significance because of
their relationship to an unconditional system reset sequence. These functions each
produce a system reset sequence which applies to the computer, I/0 channels, and
peripherals. Further operation within the system differs, however, as explained in

the following sections.

e Power-On
® System Reset
e IPL

|

System Reset

Sequence
(1PL) / l \ (Power-On Run Mode!

5

(AGE Stop)
Execute IPL
Sequence
L (System Reset)
Use
Power-On
Stop Key Continue Key PSW

Use System Load PSW Key 1

T

(Instruction
or Interrupt)
(Interrupt) @
-
s
7~
-/

o

— e e ot o o] - o —

* ~ | (Wait
~

—_——————— ~—— — — — | State PSW

Figure 2-22. CPU Mode Switching

2.5.3.1 Power-0n

One of two modes of operation must be specified for the system at power-on. The
first results in a system reset followed by the computer entering the stop state.
In this state, instructions are not processed, interrupts are not accepted, and
system timers are not updated. This system is termed "manual"™ because further
operation must be determined by the operator.

The second mode at power-on enters the run state after the system reset is complete.
The instruction stream is initiated and interrupts are processed. The computer can
be removed from the run state by certain instructions, interruptions, and by manual
intervention.

2.5.3.2 System Reset

The system reset function resets the computer system to a known state such that
processing can be initiated without the presence of machine checks, except for those
caused by subsequent machine malfunctions. The system reset function causes the
following: -

2-28

° CPU pending interrupts are reset

® Internal timers are reset to all ones (1l's)
° Status registers are reset
° DSE registers are set to zero.

2.5.3.3 1IPL

The use of the IPL function is independent of the prior state of the system. IPL
first causes a system reset function and the writing of C6C6 (hex) by the CPU to all
memory locations above and including address 20000 Hex with memory store protected.
I0P microcode at IPL writes C9FB (hex) to all locations from 0 to 1FFFF Hex, with
memory store protected.

2.5.4 DOperating State

The run state and wait state shown in Figure 2-22 are collectively termed the
operating state for the system. When the computer is in the run state, instructions
are executed in the normal manner. An instruction may be encountered or an
interrupt processed that forces the computer into the wait state. The computer does
not execute instructions in the wait state, but it is interruptible when not masked.
System timers are updated and input/output operations continue in the wait state.

The wait state may also be entered after completing IPL or by special operating
intervention via the stop state (dotted lines on Figure 2-22). This action is the
result of the wait bit being set in the controlling PSUW.

2.5.4.1 Program State Alternatives

Certain other states exist within the CPU that contribute to its overall status.
These states are directly related to program operation and are:

1. Maskad or Interruptible State - The computer may be masked for certain
interrupt conditions at any given time. These conditions generally remain-
peixding within the system until the masked condition is changed by the
Fraogram. Certain error conditions cannot be masked off, while other error
coaditions, such as program checks, are ignored when specifically masked.

2. Sucervisor or Problem State - In the supervisor state, all instructions
are valid. In the problem state, I/0 and certain other instructions are
invalid, and their use produces an error interrupt. This state is

coatrolled by bit 47 in the PSW. The SVC instruction is provided to
switch from problem to supervisor state. The LOAD PSW instruction is used

2-29

tb switch from supervisor to problem state.

3. General Register Selection - Bit 44 is the current PSW and selects the set
of general registers in current use.

2.5.5 Architectural Growth

Throughout this Principles of Operation manual, architecture conventions are defined
or facilities are marked "reserved" to retain flexibility for future implementations
and extensions. The computer operates in conformance to this manual when
architecture definitions are followed consistently. Hardware operation, when these
rules are violated, is not defined and is properly outside the scope of this manual
to retain flexibility of implementation. "Programmer discovered™ operations that
violate or go beyond the definitions described herein, but produce "useful™
functions, should not be used and should be considered "reserved", because the
results obtained may vary from computer to computer, or even release levels for one
computer, depending upon options selected or the design release level to which the
hardware is manufactured.

2-30

3.0 CPU I/0

The transfer of information with input/output occurs in one of two modes:
1. Direct Memory Access (IOP initiated and controlled)

2. Frogram Controlled (CPU initiated and controlled).

3.1 DIRECT MEMORY ACCESS OPERATION

Direct Memory Access (DMA) operations are IOP initiated. Although the resulting
cvcle steal menory access preempts CPU accessas, thereby slowing program execution,
DMA operations are not under program control and are transparent to the functional
operation of the CPU. DMA operations can occur between CPU memory cycles during
instruction execution, unless the instruction specifies that DMAs are held off
during execution of that instruction. ’ '

3.2 PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION

Program-Controlled I/0 operations transfer onae fullword between a CPU general
register and an IOP Subsystem. The operation is initiated by executing the
privileged instruction "PC Input/Output™. A control word (CW), in a second general
register specified by the instruction, defines the specific I/0 operation and the
specific I0P Subsystem associated with the operation.

3.3 PROGRAM-CONTROLLED I/0 INSTRUCTION

Op R1 : R2
Y1Tjofritg J ot jrgrjrgoltl oy g
0 4 5 7 8 1112 13 15

Mnemonic Format
PC R1. R2

DESCRIPTION:

The Input/Output instruction transfers a fullword to or from the general register
specified by Rl. Direct I/0 operations are defined by a control word (CW) contained
in the general register specified by R2. The CW format is shown belowu:

Command (M)

LI L b b

Of O m

3-1

ID: For an input operation, bit 0 must be coded as 0. For an output
operation, this bit must be coded as 1.

Command (M): Bits 1-31 specify the particular operation to be performed. In
executing an input operation, the channel (1) transmits the 32-bit CW
to the IOP Subsystem; and (2) subsequently loads 32 bits of
information, transmitted from the IOP Subsystem, into general register
R1. In executing an output operation, the channel (1) ‘transmits the
CW to the IOP Subsystem, and (2) subsequently transmits bits 0-31 of
general register R1 to the IOP Subsystem. The specific definition of
the command bits is described in Appendix I, Program Controlled Inputs
and Outputs.

Each control unit connected to the channel is required to accept the CW, decode the
control unit and device address, and perform the input or output operation defined
by the command field.

If the 1/0 handshaking operation does not complete within 9.5 microseconds for CW
and DATA 0OUT transfers or 6.5 microseconds <for DATA 1IN transfers, the
Program-Controlled instruction will terminate and the condition code will be set to
reflect the timeout.

RESULTING CONDITION CODE:

00 Operation successful
01 Interface timeout error; operation not successful
INDICATORS:

The overflow and carry indicators are not changed by this instruction.
Program Interrupt - Privileged instruction.
PROGRAMMING NOTE:

This isia privileged instruction and can only be executed when the CPU is in the
supervisor state.

3-2

4.0 FIXED POINT ARITHMETIC

For all of the following sections, [d] [#] indicates that the use of indirect
addressing and/or autoindexing is optional. For .example, M specifies direct
addressing without autoindexing, while M2 specifies direct addressing with
autoindexing.

The arithmetic instruction set performs binary arithmetic on fixed point, fractional
operands. Fullword operands are signed and 32 bits long. Negative quantities are
represented in twos complement form.

Halfword operands are 16 bits long. Within the CPU, a halfword operand from storage
is developed into a fullword operand prior to instruction execution. This is done
by using the contents of the halfuord second operand location as the most
significant 16 operand bits and generating 16 low-order zeros. This result is the
second operand.

4.1 ADD

Op R1 R2
0 0|0|0|0 | | 111|110 0 | |
0 4 5 7 8 11 1213 15
Mnemonic Format
AR R1, R2
Op R1 Disp*® B2 °Displacements of the form 111XXX are not valid.
01010100} | | L 11 1 |
0 4 5 7 8 13 14 15
Mnemonic Format
A R1,D2 (B2)
A
Op R1 M| 82 Address Specification
0Jjojojojof | | J1y1y1y1]o0 | Lttt brr
0 4 5 7 8 11 1213 14 15 16 3
AM Mnemonic Format
Extended: 0 A R1, D2 (B2) Disp
| | N I O O |
Indexed: 1 A[@ [#]R1,D2 (X2, B2) X Ll Disp
[I O O R
DESCRIPTION:

The fullword second operand is added to the contents of general register R1. The
result replaces the contents of general register Rl. The second operand is not
changed.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2731, or less than or =
-1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

4.2 ADD HALFWORD

Op R1 Disp® 82 “Displacements of the form
110101010f | | L1 L 111X XX are not valid.
0 -4 5 7 8 1314 15
Mnemonic Format
AH R1, 02 (B2)
Op R1 a B2 Address Specification
1jo0jojojo] | | J1j1j1]1]jo] I T O O O O I
0 4 s 7 8 11121314 1516 31
AM Mnemonic Format ;
— e Disp
Sxtanded: 0 M R1.D2 (B9 L1 I O A A
Indexed: 1 AH (@] [#] R1,D2(X2 B2) X IA, Disp
| I O I |

DESCRIPTION:

The halfword second operand is first developed into a fullword operand by appending
16 low-order zeroes. This fullword operand is then added to the contents of general
register Rl. The result replaces the contents of general register R1. The second
operand is not changed.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one, if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2-3!, or less than or =
-1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

4.3 ADD HALFWORD IMMEDIATE

Op oPX R2 Immediate Data
1]0j1jrjojojojojrj1y1jojof | | LAttty
0 4 5 7 8 11 12 13 15 16 31
Mnemonic Format
AHI R2, Data
DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfword
immediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The resulting fullword operand is then added to the contents of general
register R2. The result replaces the contents of general register R2. The
immediate operand is not changed.

RESULTING CTONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-2731, or less than or =
-1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry

out of the high-order bit position of the general register.
PROGRAM INTERRUPTS:

Fixed point overflow

4-4

4.4 ADD TO STORAGE

A
Op R1 ml B2 Address Specification
ofjojojojof | | [1]1]1]1]1 | N I T I O O
0 4 5 7 8 11 1213 14 15 16 31
AM Mnemonic Format
Extended: 0 AST R1, D02 (B2) Disp
. | | I T O O O |
Indexed: 1 AST (@] [#] R1,D2(X2,B2) | Disp
R N N
DESCRIPTION:
The contents of general register Rl is added to the fullword second operand. The
result replaces the contants of the second operand location. The first operand is

not changed.
RESULTING CUNDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the second operand location. That is, greater than 1-2-3!, or less
than or = -1. If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of the high-order bit position of the result.

PROGRAM INTERRUPTS:
Fixed point overflow
WARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
Hith any memary locations that might be DMA'd into.

4-5

4.5 COMPARE

Op R1 R2
0jojoj1q0f | | fijrqp1jofol | |
0 4 5 7 8 11 1213 15
Mnemonic Format
CR R1, R2
Op A1 Disp* 82 *Displacements of the form 111X XX are not valid.
o0jojoj 1o} | | | 1 111 |
0 4 5 7 8 1314 15
Mnemonic Format
(o4 R1, D2 (B2)
A
Op R1 m| 82 . Address Specification
010101140} -y J1j1y1y140] I I T T I I O I O
0 4 5 7 8 11 12 131415 16 31
AM Mnemonic Format .
Extended: 0 C R1,D2(B2 Disp
L T T S O I
| .
Indexed: 1 cl@] [#]R1, D2 (X2, B2) X INK Disp
| 1 1 T T 1 I
DESCRIPTION:

The fullword
register R1.

second operand is algebraically compared with the contents of general
The contents of general register Rl and main storage are not changed

at the end of instruction execution.

RESULTING CONDITION CODE:

00 The

11 The

01 The
INDICATORS:

The overflow

contents of general register Rl equals the second operand
contents of general register Rl are less than the second operand
contents of general register Rl are greater than the second operand

and carry indicators are not changed by this instruction.

6-6

4.6 COMPARE BETWEEN LIMITS

Op R1 R2
oJojJojfojrj | | frjafrjof] | |
0 4 5 7 8 11 12 13 15

Mnemonic Format
CBL R1,R2

DESCRIPTION:

A compare between limits instruction occurs. The condition code reflects the result
of the comparison.

(R1) Addr of Operand modifier

(R2) Addr of Limits modifier

The address of a 16-bit twos complement integer operand is contained in bits 0
through 15 of general register R1. The address of a fullword with the following
format containing the upper and lower limits is contained in bits 0 through 15 of
the general register R2:

Upper Limit Lower Limit

Lt bbbttt

0 15 16 31

These limits are 16-bit twos complement integers.

In bits 16 through 31 of general registers R1 and R2 are 1l6-bit twos complement
integer modifiers. After the addresses in bits 0 through 15 have been used to
locate the operands, each modifier is added to the most significant 16 bits of the
registers. The result replaces the most significant 16 bits. The modifier is not
changed, overflows and carry out of the most significant address bit are ignored.

RESULTING CONDITION CODE:

00 Within Limits: Lower Limit € Operand < Upper Limit
01 Above Upper Limit: Operand > Upper Limit
11 Below Lower Limit: Operand < Lower Limit

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

-7

4.7 COMPARE HALFWORD

Op R1 Disp* B2 *Displacements of the form
110904110) | | L1 | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
CH R1,02(82)
Op R1 S‘ 82 Address Specification
1j0jojrjo | 1 111111110 | | N N S I T O I A O
0 4 5 7 8 11 1213 14 15 16 31
ﬁ_l\/.i Mnemonic Format
Extended: O CH R1, D2 (B2) Disp
| 1 | S U O A O I I |
Indexed: 1 CH(@| [#] R1,D2(X2,82) x lial1 Dise
| [I O O O O |
DESCRIPTION:

The halfword second operand is first developed. into a fullword operand by appending
16 low-order =zeros. This fullword operand is then algebraically compared with the
contents of general register Rl1. The contents of the general register and main
storage are not changed at the end of instruction execution.

RESULTING CONDITION CODE:
00 The contents of general register Rl equals the developed fullword operand
11 The contents of general register Rl are less than the developed fullword
operand
01 The contents of general register Rl are greater than the developed fullword
operand
INDICATORS: The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

After development, all 32 bits of the fulluword operand participate in the
comparison. :

4-8

Vi %,

4.8 COMPARE HALFWORD IMMEDIATE

Op oPX R2 Immediate Data
1J0jtyrjojrjoqifrgry1yojol | | I O T I O O O
0 4 5 7 8 111213 15 16 3
Mnemonic Format
CHI R2, Data
DESCRIPTION:

Instruction bits 16 thougsh 31 are treated as immediate data. This halfword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeros. This fullword operand is then algebraically comparcd with the contents of
general register R2. The contents of the general register and main storage are not
changed at the end of instruction execution. '

RESULTING CONDITION CODE:

00 The contents of general register R2 equéls the developed fullword operand
11 The contents of general register R2 are less than the developed fullword
operand

01 The contents of general register R2 are greater than the developed fullword
operand :
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

After development, all 32 bits of the fullword operand participate in the
comparison. .

6.9 COMPARE IMMEDIATE WITH STORAGE

Op oPXx Disp* 82 Immediate Data
110117110 [1 1041 | 1111 | I I O I O O O R R R
0 4 5 7 8 13 14 15 16 ' 31
Mnemonic Format °Displacements of the form
cIsT D2 (B2), Data 111XXX are invalid.
DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. This is algebraically
compared with the halfword main storage operand. Tha immeciate data and the
contents of main storage are not char gad at the end of this instruction. ’

RESULTING CONDITION CODE:
00 The immediate data equals the hélfword main storage operand
11 The immediate data is less than the halfword main storage operand
01 The immediate data is greater than the halfword main storage operand

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.10 DIVIDE

Op R1 R2
i I I RN RN)
0 4 5 7 8 11 12 13 15
Mnemonic Format
DR R1, R2
Op R1 Disp* B2 *Displacements of the form
011101011 | | | 1| | | | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic 125221
D R1,D2(B2)
Op R1 G B2 Address Specification
0 1jojop1] | J1y1y1q1jo | LU bttt
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format
Extended: 0 D R1, D2 (B2) Disp
|| [
Indexed: 1 D(@](#] R1,D2(X2 82 x || Disp
| 1 |Aa I I O O O |

DESCRIPTION:

The first operand, a 64-bit, signed twos complement dividend, is contained in the
general register pair Rl and (R1+1)mod8. The most significant portion is in R1.
When R1 indicates an odd general register, the first operand is developed by
appending 32 low-order =zeros to the contents of R1. The second operand is the
divisor.

The first operand is divided by the second operand. The unrounded quotient replaces
the contents of general register R1. The remainder is not developed. When Rl is
even, specifying an even/odd general register pair, the contents of (Rl + 1) mod 8
are indeterminant at the end of instruction execution. When R1 is odd, (R1 + 1) mod
8 is never changed. The second operand is not changed.

When the relative magnitude of dividend and divisor is such that the quotient cannot

be expressed as a 32-bit signed fraction, an overflow is generated. In this event,
the contents of both R1 (and Rl + 1 when Rl is even) are indeterminate upon

instruction termination.

RESULTING CONDITION CODE:

The code is not changed.

6-11

INDICATORS:

The overflow indicator is set to one when the <uotient cannot be represented, or
when division by zero is attempted. The dividenc is destroyed in these cases. 1If
the overflow indicator already contains a one, it is not changed. The carry
indication has no significance following execution and is indeterminate.

PROGRAM INTERRUPTS:

Fixed point overflow

£

.11 EXCHANGE UPPER AND LOWER HALFWORDS

Op R1 R2
ojojojojol | | Jrprpgofr] g |
0 4 5 7 8 11 12 13 15

Mnemonic Format
XuL R1, R2

DESCRIPTION:

The upper halfword of general register Rl is exchanged with the lower halfword of
general register R2. Bits 0 through 15 of general register Rl replace bits 16
through 31 of general register R2, while simultanerusly bits 16 through 31 of
general register R2 replace bits 0 through 15 of general register R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.12 INSERT ADDRESS LOW

Op R1 pkp' B2
1]1]1ojol | | L L1 11 |
0 4 B 7 8 ’ 1314 15
¢ Displacements of the form 111XXX are not valid.
Mnemonic Format
1AL R1, D2 (B2)
A
Op R1 M| B2 | Address Specification
Ldadolol L da]a]a | Lttt
0 4 5 7 8 11 121314 15 16 31
AM Displacement
0 Lttt e
16 ’ 31
|
X All Displacement
1 1 Lttt
16 31
AM Mnemonic Format
Extended: 0 1AL R1, D2 (B2)
Indexed: 1 IAL [@][#] R1,D2 (X2, B2)
DESCRIPTION:

A 16-bit effective address is developed in the normal manner utilizing halfword
index alignment, if specified. This address itself replaces the 16 low-order bits
of general register Rl. The 16 high-order bits of general register Rl are not
changed.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-14

4.13 INSERT HALFWORD LOW
A
R1 M| B2 Address Specification
1Jolololol | | |alslilih] I I O I L 11
0 4 5§ 7 8 1112 13 1415 16 31
AM Dispiacement
Y N S N N N I A S L1
16 31
|
X A |l Displacement
1 L | | | 11
16 31
AM Mnemonic Format
Extended: 0 IHL R1, D2 (B2)
Indexed: 1 IHL (@] [#]R1, D2 (X2, B2)
DESCRIPTION:

The halfword second operand replaces the contents
of general register Rl are

R1. Bits 0-15
changed.

RESULTING CONDITION CODE:
The codé is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

not changed.

The second

of bits 16-31 of general register

operand is not

4.14 LOAD

op R1 | R2
01001y g fryprygogo] 1 |
0 4 5 7 8 11 12 13 15
Mnemonic Format
LR R1, R2
Op R1 Disp® B2 °Displacements of the form
010 o[1)1 [| RN | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
L R1, D2 (B2)
o A .
Op R1 m| B2 Address Specification
0j10j0j1j1] | (Jry1yrytjo | N 1 T 1 T T T O O
4 5 7 8 11121314 1516 31
AM Mnemonic Format
Disp
Extended: 0 L R1.02(82) L] N O
Indexed: 1 L(@] [#] R1,D2(X2 B2) X]! Disp
1 1 1A | I I I O O

DESCRIPTION:

The fullword second operand is placed in general register Rl. The second operand is
not changed.

RESULTING CONDITION CODE:
00 The second operand is zero

11 The second operand is negative
01 The second operand is positive (>0)

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-16

4.15 LOAD ADDRESS

Op R1 Disp* B2 °Displacements of the form
111111011 | | L 111 | 111XXX are not valid.
0 4 5 7 8 1314 15
Mnemonic Format
LA R1, D2 (B2)
Op R1 a B2 Address Specification
1Jrjjogl | lipapatado | I N
0 4 5 7 8 11121314 15 16 31
AM Mnemonic Format
Extended: 0 LA R1, D2 (B2) Disp
| | I T O O
Indexed: 1 LA[@] [#] R1, D2 (X2, B2) X (A Disp
[| |A LI L 1
DESCRIPTION:
A 16-bit effective halfword address is developed in the normal manner
expanding to 19 bits. This address itself replaces the 16 high-order bits

general register R1.
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

The 16 low-order bits of general register Rl are zeroed.

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

When R1 = B2, it is possible to increment R1 by the displacement field.

In the RS format when B2
HALFWORD IMMEDIATE
immediate data.
zeros. This
R1.

11 and AM
instruction.
The immediate data is expanded to 32 bits by appending 16 low-order
resulting fullword operand replaces

In this

6-17 -

case,

= 0, this is functionally equivalent to a LOAD
treated as

bits 16 through 31 are

the contents of

general register

4.16 LOAD ARITHMETIC COMPLEMENT

Op R1 R2
frjyopry | jigipojiy g
0 4 5 7 8 1112 13 15
Mnemonic Format
LCR R1, R2

DESCRIPTION:

The twos complement of the fullword second operand replaces the contents of general
register Rl1. Complementation is accomplished by adding the ones complement of the
fullword second operand and a low-order one.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one when the maximum negative number is
complemented. If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of high-order bit position of general register. The carry indicator
will only be set when the operand is =zero.

PROGRAM INTERRUPTS:

Fixed point overflow

4.17 LOAD FIXED IMMEDIATE

DESCRIPTION:

A fixed point
The immediate
The immediate

through 31 of

OPX (Bits

[o]
Op R1 % opx
1lolsla gl 1 U 1l1ln L
0 4 5 7 8 111213 15

Mnemonic Format

LFXI

RI, Vaiue

literal value is loaded into the general register specified by RI1.

values
is loaded into

are -2, -1, 0’
bits 0 through 15 of general register R1. Bits 16

1, 2,

3, %, 5, 6, 7, 8, 9, 10, 11, 12 or 13.

general register Rl are set to zero.

12, 13, 164 & 15)

(hex)

TMOOW»>O0O0IAUDUNKOS

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

Imme

diate Value -=> R

(hex)

FFFE0000
FFFF0000
00000000
00010000
00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
000A0000
000B0000
000C0000
000D0000

The overflow and carry indicators are not changed by this instruction.

4-19

4.18 LOAD HALFWORD

Op R1 Disp* B2 ‘Displacements of the form
110 |0} 1]1 | | I 1L L | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
LH R1,D2(B2)
A T
Op R1 m| B2 Address Specificiation
1000 W1y | J1qryrytjo 1 T T Y O O
0 45 7 8 11121314 15 16 3
AM Mnemonic Format
Extended: 0 LH R1, 02 (82) Disp
" L1 | S O O
|
Indexed: 1 LH(®] (#] R1,D2(X2 82 X Al Disp
| | L it

DESCRIPTION:
The halfuord second operand is developed into a fullword operand by appending 16
low-order zeros. The resulting fullword operand replaces the contents of general
register Rl1. The second operand is not changed.
RESULTING CONDITION CODE:
00 The fullword operand is zero
11 The fullword operand is negative
01 The fullword operand is positive (>0)
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction clears the low-order half of general register R1l.

4.19 LOAD MULTIPLE

Op oPX 'e‘ B2 Address Specifications
1lrdojol1jrjotol a1l gl gl | | |
0 4 5 7 8 1112131415 16 31
AM Mnemonic Format .

Extended 0— LM D2 (B2) Disp
X :

[| Lttt
Indexed: 1 LM(@] [#] D2(x2 B2 X L | Disp

[] LD Lt b

DESCRIPTION:

All eight general registers are loaded from the eight fullword locations starting at
the fullword, second operand address. The general registers are loaded in ascending
order.

RESULTING CONDITION CODE:

N The code is not changed.

2~w" INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction will always have halfword index alignment and will be excluded from
automatic index alignment.

4.20 MODIFY STORAGE HALFWORD

Op oPX Disp* B2 Immediate Data
1joj1j1jojojojol | | | | | | Lttt
0 4 5 7 8 1314 15 16 31

Mnemonic Format °Displacements of the form
MSTH D2(B2), Data 111XXX are invalid.

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data representing a twos
complement integer. This immediate data is added to the halfword main storage
operand. The result replaces the halfword main storage operand. The contents of
the general registers are not changed. Only the contents of the halfword main
storage operand location are altered.

RESULTING CONDITION CODE:
00 The result is zero
11 The result is negative
01 The result is positive (>0)
INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The MSTH immediate data (mask) is algebraically added to the halfword operand in
main storage. Tally up and tally down is thus possible.

HARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the salected main storage location during the time between the fetch of
the operanr and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

4-22

4.21 MULTIPLY

Op R1 R2
0jrjojoj0f | | jrjryrjejoj ¢ |
0 4 5 7 8 1112 13 15
Mnemonic Format
MR R1,R2
Op R1 Disp* 82 *Displacements of the form 111XXX are not valid.
ojrjojoroj | | | |
0 4 5 7 8 1314 15
Mnemonic Format
M R1,D2(82)
Op R1 d B2 Address Specification
0f1J0j0y0] | | J1p1y1(1]0] | 1 | L. 11] L1 11
0 4 5 78 1112 1314 1516 31
AM Mnemonic Format Disp
Extended: (] M R1,02(B2) | L1111 | I |
|
Indexed: 1 M (@] (#] R1,D2(X2,82) X A Disp
| L L1 1| L1 1
DESCRIPTION:

The product of the multiplier (the second operand) and the
Both multiplier

operand) replaces the multiplicand.

signed twos complement fractions.

fraction number and occupies an even/odd register

an even-numbered general register.

When R1

The product is a 64-bit,

multiplicand (the first

and multiplicand are 32-bit

signed twos complement

pair when the Rl field references

is odd,

bits of the product is saved in general register R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is

indicator already contains a one,

PROGRAM INTERRUPTS:

Fixed point overflow

only the most

set to one when -1 is multiplied by

=-1.

significant 32

If the overflow

it is not altered by this instruction.

%.22 MULTIPLY HALFWORD

Op R1 Disp® B2'| “Displacements of the form 111 XXX are not valid.
110011011} 1 | 1 1111 |
0 4 5 7 8 1314 15
Mnemonic Format
MH R1,D2(B2)
Op R1 a B2 Address Specification
1jojrjoyr] | | f1p1jlio | LA Lttty
0 4 5 7 8 111213 14 1516 31
AM Mnemonic Format
— Disp
Extended: 0 MH R1,02(82) | | | IR
|
indexed: 1 MH (@] [#] R1,02(X2,82) X |A’ | Disp
| 1 | I O O |
DESCRIPTION:

The product of the halfword multiplier (the halfword second operand) and the
halfword multiplicand (the contents of bits 0 through 15 of general register R1)
Both multiplier and multiplicand are 16-bit signed twos
The product is a 32-bit signed fraction.

replaces the mutiplicand.
complement fractions.
saved in general register R1.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The overflow indicator is
indicator already contains a one,

PROGRAM INTERRUPTS:

Fixed point overflow

4-24

set to one when -1 is multiplied by
it is not altered by this instruction.

-1.

This product is

If the overflow

.23 MULTIPLY HALFWORD IMMEDIATE

Op OoPX R2 Immediate Data
tjojrjrjojrjrgrp 1 j1qofof | | L1 LUttt
0 4 5 7 8 11 1213 15 16 31
Mnemonic Format
MHI R2, Data
DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. This halfuword of
immediate data is the multiplier. The contents of bits 0 through 15 of general
register R2 are the halfword multiplicand. The product of the multiplier and the
multiplicand is a 32-bit signed fraction. Both multiplier and multiplicand are
16-bit signed twos complement fractions. This product is saved in general register

R2.
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:

The overflow indicator is set to one when -1 is multiplied by -1. If the overflow
indicator already contains a one, it is not altered by this instruction.

PROGRAM INTERRUPTS:

Fixed point overflow

4-25

4.26 MULTIPLY INTEGER HALFWORD

Op R1 a B2 Address Specification

ooty e] |

0 4 5 7 8 11 1213 14 1516 31
AM Displacement
0

NN

16 31
1 X :\l Displacement

L1 | I I O O I O I |

16 31
AM Mnemonic Format
Indexed: 1 MIH [@] [#] R1, D2 (X2, B2)

DESCRIPTION:

The product of the multiplier (the :twos complement signed integer halfword second
operand) and the twos complement signed integer halfword multiplicand (the contents
of bits 0 through 15 of general register R1) replaces the multiplicand. An
intermediate product is formed as a 31-bit signed integer. This product is
algebraically shifted left 15 places, to form a twos complement signed halfword
integer product. This halfuord product replaces bits 0 through 15 of general
register Rl. Bits 16 through 31 of general register Rl are zeroced.

RESULTING CONDITION CODE:

The code :s not changed.

INDICATORS:

The overflow indicator is set when the upper 16 bits of the intermediate product do
not equal all ones or all zeroes. If the overflow indicator already contains a one,
it is not altered by this instruction. '
PROGRAM INTERRUPTS:

Fixed point overflow

PROGRAMMING NOTE:

If I, J, and K are halfword operands, the equation IXJ+K. may be solved with the
following code:

LH R1,I
MIH R1,J
AH R1,K

p f»«n».\

4.25 STORE

Op R1 Disp* B2 *Displacements of the form 111XXX are not valid.
0j0j1)140{ | | | |
Q 4 5 7 8 1314 15
Mnemonic Format
ST R1,D2(B2)
Op R1 a 82 Address Specification:
0jojrjrjol | | Jrpryprgrfo | Lttt
0 4 5 7 8 111213 14 15 16 : 31
AM Mnemonic Format .
. D2,(82) Disp
Extended: 0 ST R1,D2, l NN 1]
|
Indexed: 1 STI@| [#1 R1.D2(X2.82) X Al Disp
! N O O O
DESCRIPTION:
The contents of general register Rl are stored at the fullword second

location.
RESULTING CONDITION CODE:
The code is not changed.

INDICATORS :

The contents of general register R1 are not changed.

The overflow and carry indicators are not changed by this instruction.

operand

4.26 STORE HALFWORD

Op R1 Disp® 82 *Displacements of the form 111XXX are not valid.
ojujig) | | L1111 |
0 4 5 7 8 13 14 15
Mnemonic Format
STH R1,D02(B2)
Op R1 Al B2 Address Specification
Tjojrgrge) 4 | drtigrgajo | I I T T O O O O
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format Dis.
Extended: 0 STH R1,D2 (B2) P
1] | I I O O O
Indexed: STH (@] [# R1,D2 (X2.,82) X 1\ 1 Disp
[I O I O N |
DESCRIPTION:

The most significant 16 bits (bits 0 through 15) of general register Rl are stored
at the halfword second operand location. No other storage location is altered. The
contents of general register Rl are not changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.27 STORE MULTIPLE

Op oPX a B2 Address Specification
1]10j0j1j0jojoj1y1y1y 1)1 | L L Lttt
0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format Disp
E ded: ST™M D2(B2)
xrended: 0 L HEEEENNN
Indexed: 1 ST™ (@] [#] D2(X2.82) X L ! Disp
[| | L1

DESCRIPTION:

All eight general registers are stored at the eight fullword locations starting at
the fullword second operand address. The general registers are stored in ascending
order.

RESULTING CONDITION CODE:

The code is not changed.i

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction is excluded from automatic index alignment. Indexes will always
specify the halfword.

=29

.28 SUBTRACT

Op R1 R2
0104070y 1] | | Jrpryrofof | |
0 4 5 7 8 1112 13 15
Mnemonic Format
SR R1.R2
Op R1 Disp* B2 °Displacements of the form 111XXX are not valid.
0j00 01| | | L 1 1.1]
0 4 5 7 8 13 1415
Mnemonic Format
S R1,D02 (82)
Op R1 a 82 Address Specification’
0jo0jojoj1] | (fJ1p1yg1y1io] I I S T I I O O O O |
0 4 5 7 8 1112 1314 15 16 31
AM Mnemoﬁc Format Disp
Extended: 0 S R1,02 (B2)
[I O |
Indexed: 1 Sl@| (# R1,02'(X2.82) .
X 1A Disp
1 1 |
DESCRIPTION:

The fullword second operand is subtracted from the contents of general register R1.
The result replaces the contents of general register Rl. The second operand is not
changed.

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the <first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the difference is too large
to be represented in R1; that is, greater than 1-273!, or less than or = -1. If the
overflow indicator already contains a one, it 1is not altered by this instruction.
The carry indicator is set to indicate whether or not there is a carry out of the

high-order bit position of R1.

PROGRAM INTERRUPTS:

Fixed point overflow

.29 SUBTRACT FROM STORAGE

A
On R1 Ml 82 Aﬂd“ﬁsSpcmfmanon
0l10f0jOy 1| | |ty | LUttty
0 4 5 7 8 11 1213 14 15 16 k3
AM Mnemonic Format
Extended: 0 SST R1,D2(B2) Disp
L 1 | |
Indexed: 1 SST (@] | =] ' R1,D2 (X2 B2)
i Dispy
L X1 NN

DESCRIPTION:

The contents of general register Rl are subtracted from the fullword second operand.
The result rerlaces the contents of the second operand location. The first operand
is not changad. .

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the first aperand. All 32 bits of both operands participate as in ADD. The
overflow, ca-~ry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 Tke result is zero
11 The rasult is negative
01 Thke result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the second operand location. That is, greater than 1-2 3!, or less
than or = =3, If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of the high-order bit position of the result.

PROGRAM INTERRUPTS:
Fixed point overflow
WHARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time betueen the fetch of

the operand and store of the result. Therefore, this insiruction should not be used
Hith any memory locations that might be DMA'd into.

4.30 SUBTRACT HALFWORD

Op R1 Disp* B2 | “Displacements of the form 111 XXX are not valid.
110109011} | | L1111]
0 4 5 7 8 1314 15
Mnemonic Format
SH R1,D02(B2)
Op R1 a B2 Address Specification
1j{ojojoyr) | o qryryrjo | I T Y O O O |
0 4 5 7 8 111213 14 1516 31
AM Mnemonic Format Disp
Extended: 0 SH R1,D02,(82) | | NN
l:1dexed: 1 SH (@] [#] R1,D2(X2,82) X 1Al Disp
: | | Lt
DESCRIPTION:

The halfword second operand is first developed into a fullword operand by appending
16 low-order zeroes. This second operand is then subtracted from the contents of
general register Rl. The result replaces the contents of general register R1. The
second halfuword operand is not changed.

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is negative
01 "The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in R1l; that is, greater than 1-2-31, or less than or = -1. If the
overflow indicator already contains a one, it is not altered by this instruction.
The carry indicator is set to indicate whether or not there is a carry out of the
high-order bit position of R1.

PROGRAM INTERRUPTS:

Fixed point overflow

4.31 TALLY DOWN

Op oPX Disp* 82 * Displacement of the form
1jopppjojojojol | | | | | | 111XXX are not valid
0 45 78 13 14 15
Mnemonic Format
T0 D2 (B2)
Op oPX a B2 Address Specifications .
1]0)1j0(0j0 j0jo0j1j1 411140 | | I T O T O O O O O R |
0 4 5 7 8 1112 1314 15 16 31
ﬁﬁ" Mnemonic Format .
Extended: 0 TD D2 (B2) Disp
|] [
| .
Indexed: 1 TD(@] [#] D2 (X2, B2) X al ! Disp
| | I I O I R O
DESCRIPTION:

The main storage halfword operand is decremented by one, and the result replaces the
halfword operand. The contents of the general registers are not changed. Only the
contents of the main storage operand are altered.

RESULTING CONDITION CODE:
00 The result is zero
11 The result is negative
01 The result is positive (>0)
INDICATORS:
The oyerflou and carry indicators are not changed by this instruction.

PROGRAMMING WOTES:

This instruction is similar to the MODIFY STORAGE HALFWORD instruction with an.
implied oper.and of all ones.

WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of tre sclected main storage location during the tim2 betwecen the fetch of
the operand ani store of the result. Therefore, this instruction should not be used
With any memary locations that might be DMA'd into.

5.0 BRANCHING

Instructions are executed, by the central processing unit, primarily in the
sequential order of their locations. A departure from this normal sequential
operation may occur when branching is performed. The branching instructions provide
a means to make a two-way choice, to reference a subroutine, or to repeat a segment

of coding.

Branching is performed by introducing a branch address as the new instruction
address. The 19-bit branch address is generated as described under Expanded
Addressing. Therefore, when a branch is taken, the branch address is used as the
address of the next instruction. If Instruction Protection Monitor is enabled, an
interrupt will occur, regardless of the branch address contents, should the branch
be attempted and the destination location is not storage protected.

5.1 BRANCH AND LINK

Op R1 R2
1pagoe) ot yjojol g
0 4 5 7 8 111213 15
. Mnemonic Format

BALR R1, R2

Op R1 IG B2 Address Spgcification
ryiejel o Jiprprajo d N I N (N O O O
o] 4 5 7 8 111213 14 1516 31

_/ﬂ Mnemonic Format

Extended: 0 BAL R1, D2 (B2) | HEEEEEEEE
Indexed: 1 BAL[@] [=] R1,D2, (X2, 82) X 1! Disp
| | |A I I I I I O

DESCRIPTION:
First, the branch address is computed. Then, the first word of the current PSW
(bits 0 - 31) is loaded into general register R1. Thus, the address of the next
sequential instruction is preserved in register R1 (bits 0 - 15). The remaining
bits of general register R1 (bits 16 - 31) will contain the condition code, the

carry indicator, overflow indicator, the fixed point overflow mask, the exponent
underflow mask, the significance mask, and the contents of the branch and data
sector registers.

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2, if field R2 # 0. This 16-bit branch address is expanded to a 19-bit
branch address. (See Expanded Addressing.) If field R2 = 0, see programming notes.
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

In the case where R2 = 0, (BAIR R1l, 0), no branch is taken.

5=-2

5.2 BRANCH AND INDEX

Op R1 :: B2 Address Specification
yaigofrpr) g Jrjpgryrjo | L4ttt rtd
0 4 5 7 8 11 1213 14 15 16 31
AM Mnemonic Format Disp
Extandeds. Ou.m-reBIX R1.D2(82) [HEEEEEEEN
- | Disp
Indexed: 1 BIX (@) (# R1,D2(X2,8B82) X Al
1 Lttt

DESCRIPTION:

Bits 0 through 15 of the general register specified by R1 contain an index. Bits 16
through 31 of general register Rl contain a count. An effective address is computed
in the normal manner for the extended class. (For the indexed addressing mode, the
fullword indirect address pointer must contain zeros in bit locations 22 and 23.)
Next, the index is incremented by one. Then the count is decremented by one. If
the count prior to update is greater than zero, a branch to the effective address is
taken. If the count prior to update is less than or equal to zero, no branch
occurs.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The carry and overflow indicators areAnot changed by this instruction.

5.3 BRANCH ON CONDITION

Op M1 R2
1111010900 4y frpyrodol g g
0 4 5 7 8 11 1213 15
Mnemonic Format
BCR M1, R2
A e L.
) Op M1 . ml B2 Address Specifications
111104050} | ¢ f1p1y1yyo | Ll bbbl
0 4 5 78 1112 13 14 15 16 31
AM Mnemonic Foina_t
Extended- O BC M1, D2 (B2) Disp
: L1 I I O
Indexed: 1 BC(@) [#] M1,D2 (X2 82) X ;L Disp
| | A | | | S I I R |
DESCRIPTION:
This instruction tests the PSW condition code status bits. Instruction bits 5

through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken. Thus, when more than one
bit of the M1 field is a one, the branch is taken for any successful test (e.g., M1
= 111 always branches, M1 = 000 never branches).

The branch address is contained in bits 0 through 15 of general register R2 for the
RR format. This 16-bit branch address is expended to a 19-bit branch address. (See
Expanded Addressing.)

RESULTING CONDITION CODE:

The condition code was set <following all arithmetic, logical, test and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The result and test conditions are shown as follows:

M1l Field (Test)
(5) (6) (7>
Arithmetic and Tally
Zero 1 0 0
Negative 0 1 0
Positive (>0) 0 0 1
Logical
Zero 1 0 0
Not Zero 0 1 0
Test
Zero 1 0 0
Mixed 0 1]
All ones 0 0 1
Compare
Equal 1 0 0
0, < 02“ 0 1 0
0, > 0, 0 0 1

It is possible to combine tests. For example, following the MSTH instruction, an M1
field of 1 0 1 specified branch on nonnegative (zero or positive).

5.4 BRANCH ON CONDITION BACKWARD

- Op M1 Disp* *Displacements of the form
111 |0|1l1 | I 1|0 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
BC8 M1, D2
DESCRIPTION:
This instruction tests the PSW condition code status bits. Instruction bits 5

through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by subtracting the Disp from
the updated IC. Thus, when more than one bit of the M1 field is a one, the branch

is taken for any successful test (e.g., Ml = 111 always branches).

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

5-6

£

5.5 BRANCH ON CONDITION (EXTENDED)

Op M1 R2
1j1pfojof | frprgrgoqeg gy
0 4 5 7 8 i1 1213 15
Mnemonic Format
BCRE M1, R2
DESCRIPTION:
This instruction tests the PSW condition code status bits. Instruction bits 5

through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken. Thus, when more than one
bit of the M1 field is a one, the branch is taken for any successful test (e.g., M1
= 111 always branches).

When the branch is taken, PSW bits 0 through 15 and 24 through 31 are replaced by
corresponding bits in general register R2.

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instrﬁction.

PROGRAMMING NOTES:

This instruction is similar to the RR version of the BRANCH ON CONDITION
instruction. It is provided to facilitate subroutine returns across sector

boundaries after general register R2 has been initialized by the use of the BRANCH
AND LINK instruction.

5.6 BRANCH ON CONDITION FORWARD

Op M1 Disp* *Displacements of the form
111XXX are not valid.
o by oo
0 4 5§ 7 8 13 14 15
Mnemonic Format
BCF M1, D2

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5
through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by adding the Disp to the
updated IC. Thus, when more than one bit of the Ml field is a one, the branch is
taken for any successful test (e.g., Ml = 111 always branches).)

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators: ar- not changed by this instruction.

5-8

5.7 BRANCH ON COUNT

Op R1 R2
MR I AN L
0 45 7 8 111213 15
Mnemonic Format
BCTR R1,R2
op R1 Al B2 Address Specification
111101 110f | 111(1111]0 | Illlllllllllll!
0 45 738 1112 1314 15 16 3
&A Mnemonic Format
Extended: 0 BCT R1,02 (B2) Disp
, | L bt
Indexed: 1 BCcTi@l (¥ R1D2(x282)| x [!] Disp
| | |
DESCRIPTION:

First, the branch address is computed. The branch address is contained in bits 0
through 15 of general register R2 for the RR format. This 16-bit branch address is
expanded to a 19-bit branch address. (See Expanded Addressing.)

Then, the contents of bits 0 through 15 of general register Rl are reduced by one.

When the result is =zero, the next sequential instruction is executed in the normal
manner. When the result is not 2zero, the instruction counter is loaded with the

branch address.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

An initial count of one results in zero, and no branch takes place. An initial
count of zero results in a minus one and causes branching to be executed. The
low-order 16 bits of R1 do not participate in the count or zero test.

5.8 BRANCH ON COUNT BACKWARD

Op ‘R1 Disp 1 °Displacements of the form 111XXX are not valid.
RN LRI L1111 [!
0 4 5 7 8 1314 15
Mnemonic Format
BCTB R1,D2
DESCRIPTION:

First, the branch address is formed by subtracting the displacement from the updated
instruction counter. Then, the contents of bits 0 through 15 of general register Rl
are reduced by one. When the result is zero, the next sequential instruction is
executed in the normal manner. When the result is not zero, the instruction counter
is loaded with the branch address.

RESULTING CONDiTION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

An initial count of one results in zero, and no branch takes place. An initial

count of zero results in a minus one and causes branching to be executed. The
low-order 16 bits do not participate in the count or zero test.

5-10

5.9 BRANCH ON OVERFLOW AND CARRY
Op M1 R2
1jrgogt) | jigryrqofof | |
0 4 5 7 8 11 1213 15
Mnemonic Format
BVCR M1,R2
Op M1 a 82 Address Specification
141104031 | | Jrypryrgrjo] HN N N A A N T T I |
0 4 5 7 8 1112 1314 15 16 31
AM Mnemonic Format
Disp
Extended: 0 BvC M1,D2,(B2)
X HEEENEENN
Indexed: 1 BvC (@] (=] M1,D2 (X2,82) L | Disp
L1 | |
DESCRIPTION:

This instruction tests the PSW overflow and carry indicator status bits.
field, instruction bits 5 through 7 specifies the test.
instruction bit 7
"specified bit of the PSW
when both indicators are
one.

against PSW bit 18 (carry), and
(overflow). Whenever a
and the branch is taken.

branch is taken if either

Thus,

indicator contains a

is tested

is a one, the

inverts the logic, causing bits 6 and 7 to test the PSW bits for =zero.

For the RR format,
register R2. This 16-bit branch
(See Expanded Addressing.)
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set
changed by this instruction.

PROGRAMMING NOTES:

the branch address is contained in bits 0
address is expanded to a 19-bit

0 by this instruction.

The possible combinations of test conditions are shown as follows:

5-11

tested by M1
A one in instruction

Instruction bit 6
against PSW bit 19
test is successful
011,

The carry indicator

is tested

through 15 of general
branch address.

X
[

Ml Field

(]
o~
N

- -0 000

= -0 0 M- OO

= O MO OO

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

Test Conditions

never taken (no operation)

on Overflow

on Carry

either on Overflow or on Carry

On No Overflow

On No Carry
On No Overflow and No Carry

5-12

5.10 BRANCH ON OVERFLOW AND CARRY FORWARD

Op M1 Disp® *Displacements of thg form
111!01111 [1] |] 011 111X XX are not valid.
0 45 78 13 14 15
Mnemonic ‘ Format
BVCF M1, D2

DESCRIPTION:

This instruction tests the PSW overflow and carry indicator status bits.
Instruction bits 5 through 7 specify the test. Instruction bit 6 is tested against
PSW bit 18, and instruction bit 7 is tested against PSW bit 19. Whenever a
specified bit of the PSW is a one, the test is successful and the branch is taken by
adding the Disp to the updated IC. Thus, when both indicators are tested by M1 =
011, the branch is taken if either indicator contains a one. A one in instruction

bit 5 inverts the logic, causing bits 6 and 7 to test the PSW bits for zero.

The branch address is formed by adding the displacement to the updated instruction
counter.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The overflow indicator is set 0 by this instruction. The carry indicator is not
changed by this instruction. '

PROGRAMMING NOTES:

The possible combinations of test conditions are shown as follows:

Ml Field Test Conditions

5612

000 Branch never taken (no operation)
001 Branch on Overflow

010 Branch on Carry

011 Branch either on Overflow or on Carry
1 00 Branch

101 Branch On No Overflow

11090 Branch On No Carry

111 Branch On No Overflow and No Carry

(This page intentionally left blank)

5-1¢6

PN

6.0 SHIFT OPERATIONS

Shift instructions use the halfword format. The shift count is defined by the count
field, as shown in Figure 6-1.

Instruction Bits 8-13 Shift Count Determined By
000000 (Zero) No Operation

000001-110111 (1-55) Instruction bits 8 through 13
111000 (56) Bits 10 - 15 of general register 0
111001 (57) Bits 10 - 15 of general register 1
111010 (58) Bits 10 - 15 of general register 2
111011 (59) Bits 10 - 15 of general register 3
111100 (60) Bits 10 - 15 of general register ¢
111101 (61) Bits 10 - 15 of general register 5
111110 (62) Bits 10 - 15 of general register 6
111111 (63) Bits 10 - 15 of general register 7

Figure 6-1. Shift Count

If the shift count is 56 through 63, bits 10 through 15 of the corresponding general
register (0 through 7) designate the shift count. When specified using the count
field, the maximum shift count allowed for shift operations is 55. Shifts of up to
63 positions are allowed, when general register 0 through 7 is used to specify a
computed shift. »

6.1 NORMALIZE AND COUNT

Op R1 R2
Tp1j110§0) ¢ fryprqrgof1f | |

0 4 5 7 8 1112 13 15

Mnemonic Format
NCT R1, R2

DESCRIPTION:

First, all bits (0 through 31) of general register Rl are set to zero. For each
position that the contents of general register R2 are shifted to the left, the
high-order half of general register R1 (bits 0 through 15) is incremented by 1. The
shift terminates when bit position 0 # bit position 1 of general register R2. If
the contents of general register R2 are initially zero, a count of zero is entered
in general register Rl. Zeros are entered into the vacated low-order bits of
general register R2. Upon completion of this instruction, the count is contained in
bits 0 through 15 of general register R1.

RESULTING CONDITION CODE:
The code is not changed.
INDICATORS:

The carry indicator will be zero at the end of the operation, if general register R2
contains zero. The carry indicator will be one at the end of t+e operation, if the
shift is terminated by the detection nf bit position one not equal to bit position 0
of the general register R2. The overflow indicator is not changed by this
instruction.

PROGRAMMING NOTES:

If the initial condition of general register R2 was such that bit position 0 is not
equal to bit position 1, the count in the high-order bit of general register Rl is
zero, the carry indicator 1is one, and there is no shift. If the initial condition
of R2 was all ones, the count is 31, the carry is one and R2 contains 80000000.

This instruction is executed as shown below in Figure 6-2.

START

Count =0

Yes

R2=0?

<

Reset Carry
Indscator
RY=— @
Set Carry
indicator
To One
R1 <=—Cgunt
Overation
Comopieted

Figure 6-2.

Shitt R2
Latt One

Increment Count
By One

Normalize and Count Execution

6.2 SHIFT LEFT LOGICAL

Op R1 Count
11]111104 | | | 1 1 1] Jolo
0 4 5 7 8 13 14 15

Mnemonic Format
SLL R1,Count

DESCRIPTION:

The contents of general register Rl are shifted left, as specified by the shift
count Figure 6=1. Zeros are entered into the vacated low-order bits of general
register Rl. Bits leaving the high-order bit (bit 0 of general register R1)
position are entered in the carry indicator (see indicators below). Bits shifted
out of the carry indicator are lost. Only the contents of general register Rl are
changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry indicator is set to one for each one, and to zero for each zero, shifted
left from the high-order position of general register Rl1. The overflow indicator is
not changed by this instruction.

PROGRAMMING NOTES:

When the shift count n is greater than 31, then the result of the shift of general
register Rl is zero.

6-4

6.3 SHIFT LEFT DOUBLE LOGICAL

Op R1 Count

LN RN IR L1 1 11 lojo
0 45 7 8 13 14 15

Mnemonic Format

SLDL R1,Count

DESCRIPTION:

The contents of the pair of general register; (Rl and (R1+1)mod8) are shifted letr*
as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position zero of general register (R1 + 1dmod8, are
entered into bit position 31 of general register RI1. . Zeros are entered into the
vacated low-order bits of general register (Rl + 1)mod8. Bits leaving the
high-order bit position (bit position 0 of general register Rl1) are shifted into the
carry indicator. Bits shifted out of the carry indicator are lost.

RESULTING CONDITION CODE:
The code is not changed.

INDICATORS:
The carry indicator is set to one for each one, and to 2ero for each zero, shifted

left from +the high-order bit position of general register RI1. The overflow
indicator is not changed by this instruction.

6-5

6.4 SHIFT RIGHT ARITHMETIC

Op R1 Count

LRI R L L1 1 1 ot
0 4 5 7 8 1314 15
Mnemonic Format

SRA R1,Count

DESCRIPTION:

The contents of general register Rl are shifted right the number of places indicated
by the shift count. Bits equal to the sign are entered into vacated high-order bit
positions. Bits shifted out of bit position 31 of general register Rl are lost.
RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

A shift right of n is equivalent to dividing the contents of general register Rl by
20,

6.5 SHIFT RIGHT DOUBLE ARITHMETIC

Op

111111

R1 Count
] Lt L 11 Jols

DESCRIPTION:

1
0

4 5

——

7 8 13 141
Mnemonic Format

SRDA R1,Count

The contents of the pair of general registers (Rl and (R1+1)mod8) are shifted right
The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31 of general register Rl, are entered into
bit position 0 of general register (R1 + 1)mod8. Bits equal to the sign are entered
into vacated high-order bit positions. Bits shifted out of bit positior 31 of
general register (R1 + 1)mod8 are lost.

as a 664-bit register.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-7

6.6 SHIFT RIGHT DOUBLE LOGICAL

Op R1 Count

L LIS L L I T O O O R B R R)
0 4 5 7 8 13 14 15
Mnemonic Format

SRDOL R1,Count

DESCRIPTION:

The contents of the pair of general registers (Rl and (R1+1)mod8) are shifted right
as a 64-bit register. The number of positions shifted is specified by the shift
count. Zeros are entered into all vacated high-order bit positions. Bits shifted
out of bit position 31 of general register Rl, are entered into bit position 0 of
general register (R1 + 1)mod8. Bits shifted out of bit position 31 of general
register (R1 + 1)mod8 are lost. ‘

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-8

6.7 SHIFT RIGHT LOGICAL

Op R1 Count
rjrgngod || | I R I
0 4 5 7 8 13 14 15

Mnemonic Format
SRL R1.Count

DESCRIPTION:

The contents of general register Rl are shifted right the number of places indicated
by the shift count. Zeros are entered into all vacated high-order bit positions.
Bits shifted out of bit position 31 of general register R1 are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators arc aot changed by this instruction.

6.8 SHIFT RIGHT AND ROTATE

Op R1 Count
1jijriol || L 11 11t
0 4 5 7 8 13 14 1
Mnemonic Format
SRR R1,Count

DESCRIPTION:

The contents of general register Rl are shifted right the number of places indicated
by the shift count. Bits shifted out of bit position 31 are entered into bit
position 0. The general register thus becomes a circular register and no bits are
lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-10

6.9 SHIFT RIGHT DOUBLE AND ROTATE

Op R1 Count
IERELERIRE N BN I ERL
0 4 5 7 8 13 14 1
Mnemonic Format
SRODR R1,Count

DESCRIPTION:

The contents of the pair of general registers (Rl and (R1+1)mod8) are shifted right
as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31 of general register Rl are entered into
bit position 0 of general register (R1+1)modS8. Bits shifted out of bit position 31
of general register (R1+1)mod8 are entered into bit position 0 of general register
Rl1. Thus, the two registers become a single, circular, 64-bit register, and no bits
are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

When the shift count equals 32, the contents of general register Rl and (R1+1)mod8
are exchanged.

(This page intentionally left blank)

7.0 LOGICAL OPERATIONS

A set of instructions is provided for the logical manipulation of data. Fullword
operands consist of 32 bits. Halfword immediate and storage operands are developed
into fullword operands by appending 16 low-order zeros. The sign position is
treated in the same manner as any other position.

There is no interdependence between bits for logical operations; that is, the result
in position i is independent of bit j in either operand when i is not equal to j.

7.1 AND
Op R1 R2
ojojijojof | | filslilolol | |
0 4 5 7 8 13 15
Mnemonic Format
NR R1,R2
Op R1 Disp*® B2 * Displacements of the form
111XXX are not valid.
gjoji1jojof | | | 1 1 1]]
0 35 7 8 111213 14 15
Mnemonic Format
N R1,D2 (82)
Op R1 ‘:ﬂ 82 Address Specification
0lo0]1]olo] 11j111]1]0 | I I 1 T I |
0 4 5 7 8 11 12 13 14 15 16 1
AM Mnemonic For- -
Extended: 0 N Ri,_. 32 Disp
1 1 1 I S O T O O |
Indexed: 1 N (@] [#] R1,D2 (X2, B2) X ar Disp
[1A Ll bt
DESCRIPTION:
The logical product (AND), of the fullword second operand and the contents of
general register Rl, is formed bit-by-bit. The result replaces the contents of
general register R1. The second operand is not changed. The following table

defines the AND operation.

AL
Storage 1100
R1 1010
Result 1000

RESULTING CONDITION CODE:

23 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-2

7.2 AND HALFWORD IMMEDIATE

Op oPX R2 Immediate Data

tjofrjrjofrjijolrfrjajojol | | I S I
0 45 78 111213 15 16 :

Mnemonic Format

NHI R2,Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfword
immediate data is first developed into a fullword by appending 16 low-order zeros.
The logical product (AND), of this fullword operand and the contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the

AND operation.

AND
Immediate Data 1100
R2 1010
Result 1000

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The least significant 16 bits of the result (bits 16 through 31) will always be
zero.

7.3 AND IMMEDIATE WITH STORAGE

Op OoPX Disp® 1 B2 Immediate Data

1joqryijojrgrgol | 1111 | N T O O O B N R
0 45 7 8 13 14 15 16 31

3

Mnemonic Format Displacements of the form
NIST D2(B2), Data’ 111XXX are invalid.

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
logical product (AND), of this immediate data and the halfword main storage operand,
is formed bit-by-bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The zero bits in the immediate data specify the bits of the halfword first operand
that are set to =zero. Zero bits in the halfword main storage operand remain

unaltered.
WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit 1I0P
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
with any memiry locations that misht be DMA'd into.

7.6 AND TO STORAGE

Op R1 a B2 Address Specification
ofof1jojof | | dr1l1]sl1ls | R % T s (M (e Wi i Wl G s AT
0 4 5 7 8 1112 13 141516 1
AM Mnemonic Format
Extended: 0 NST _ TR1.02(82) Disp
1 1 1 I N T O O I O
Indexed: 1 NST (@] (#] R1,02(X2,82) X feb L Disp
| N
DESCRIPTION:

The logical product (AND), of the fullword second operand and the contents of
general register Rl, is formed bit-by-bit. The result replaces the second operand.
The contents of the general register are not changed. The following table defines

the AND operation.

AND
Storage 1100
R1 1010
Result 1000

RESULTING CONDITION CODE:

00 The result is =zero
11 The result is not zero

INDICATORS:
The overlow and carry indicators are not changed by this instruction.
WARNING!
This ‘instruction requires multiple memory accesses. The CPU does not prohibit I0P
accesses of th2 selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, thic instruction should not be used
With any mem3ry locations that might be DMA'd into.

7.5 EXCLUSIVE OR

Or R1 R2
O0j1y1y1of y J J1p1p1qojof | |
0 4 5 78 13 15
Mnemonic Format
XR R1, R2
Op R1 Disp* B2 ® Displacements of the form
01 l1|1 | 0 l i l l 1 l l l 111XXX are not valid.
0 4 5 7 8 1112 13 14 15
Mnemonic Format
X R1,D02(82)
A
Op R1 M| 82 Address Specification
0119111104 ¢t ¢ J1y1y1yr]o | e e
0 4 5 7 8 11 121314 15 16 31
AM Mnemonic Format
Extended: 0 X R1,D02(B2) Disp
1 1 | I S O I I O O O
: Indexed: 1 X [@] (#] R1,D2(X2,82) .
DESCRIPTION: x Al Diso
] 1 | O O I R

The modulo-tuwo sum (Exclusive OR), of the fullword second operand and the contents
of general register R1, is formed bit-by-bit. The result replaces the contents of
general register R1. The second operand is not changed. The following table
defines the Exclusive OR operation.

Exclusive OR

Storage 1100
R1 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

The ones complement of the general register is obtained when the second operand
contains all ones.

7.6 EXCLUSIVE OR HALFWORD IMMEDIATE

Op oPX R2 Immediate Data

1o yrjojryoqojryryrjojol | | LIt
0 4 5 7 8 111213 15 16 1

Mnemomic Format

XHI R2,Data

DESCRIPTION:

Instruction bits 16 though 31 are treated as immediate data. The halfword of
immediate data is first developed into a fullword by appending 16 low-order zeros.
The modulo-two sum (Exclusive OR), of this fullword operand and contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the
Exclusive OR operation.

Exclusive OR

Immediate Data 1100
R2 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7.7 EXCLUSIVE OR IMMEDIATE WITH STORAGE

Op oPX Disp*® B2 Immediate Data
1O o o108 3ot b b L
0 45 7 8 13 14 15 16 31
Mnemonic Format ° Displacements of the form

111XXX are invalid.
XIST D2(82),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
modulo-two sum (Exclusive OR), of this halfword immediate data and the halfword main
storage operand, is formed bit-by-bit. The result replaces the halfword main
storage operand.)

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not =zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
HARNING!
This instruction regquires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
Wwith any memory locations that might ba DMA'd into.

7.8 EXCLUSIVE OR TO STORAGE

A
Op R1 M| B2 Address Specification
Of MM Mo o qrpr g I O O R R
0 4 5 7 8 111213 14 15 16 31
AM Mnemonic Format

Extended: 0 XST R1,02(B2) Disp

1 1 1 A I O T O O O O
Indexed: 1 XST[@] (#] R1,02(X2,82) X il Disp

[1 |A L1l

DESCRIPTION:

The modulo-twe sum (Exclusive OR), of the fullword second operand and the contents
of general ~ejister Rl, is formed bit-by-bit. The result replaces the second
operand. The contents of the general register are not changed. The following table
defines the Exzlusive OR operation.

Exclusive OR

Storage 1100
R1 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
WARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

7.9 OR
Op R1 R2
01011|011] 111111040 | |
0] 4 5 7 8 1112 13 15
Mnemonic Format
OR R1,R2
Op R1 Disp*® B2 * Displacements of the form
01011 |011 1 l l l | l | I 111XXX are not valid.
.0 4 5 7 8 13 14 15
Mnemonic Format
0 R1,02(B82)
A
Op R1 M| B2 Address Specification
ojofrjojty | | {1prprprjo | I R |
0 4 5 7 8 1112 1314 15 16 31
AM Mnemonic Format
Extended: 0 0 R1,D2(82) Disp
L1 1 | I O N |
Indexed: 1 0 (@] (#] R1,02(X2,82) X 1] Diso
. Ly
DESCRIPTION:

The logical

sum (OR), of the fullword second operand

and the contents

is formed bit-by-bit.

The

result replaces

the contents

of general
of general

register R1,
register R1.
operation.

The second operand is not changed.

The following table defines the OR

OR

R1
Result

Storage

[RSy
-

[-3
oo o

RESULTING CONDITION CODE:

The result is zero
The result is not zero

00
11

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-10

7.10 OR HALFWORD IMMEDIATE

Op oPX R2 Immediate Data _
1jogryrojoqrjo gty 1y 1y0jof 4 I O B R R
0 -4 5 7 8 111213 15 16 31

Mnemonic Format

ORIl R2,Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfuword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The logical sum (OR), of the fullword operand and the contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the

OR operation.

OR
Immediate Data 1100
R2 1010
Result 1110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7.11 OR TO STORAGE

Op R1 a 82 Address Specification
0101101 g jrpyye | Lt tr
) 4 5 7 8 1112 13 14 15 16 3
AM Mnemonic Format _
Extended: 0 OSsT R1,D2(B2). Disp
| | | I I S S O O O |
Indexed: 1 OST (@] [#] R1,D2(X2,82) X 11 Disp
L |A LU
DESCRIPTION:

The logical sum (OR), of the fullword second operand and the contents of general
register R1, is formed bit-by-bit. The result replaces the second operand. The
contents of general register Rl are not changed. The following table defines the OR
operation.

OR
Storage 1100
R1 1010
Result 1110

RESULTING CONDITION CODE:

00 The rasult is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.
WARNING!
This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of th2 selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used
Hith any memory locations that might be DMA'd into.

7.12 SEARCH UNDER MASK

Op R1 R2
VIo0jogugtf ¢ lrprpnolty g
0 4 b 7 8 11 1213 186

Mnemonic Format
SUM R1, R2

DESCRIPTION:

A variable search of an array under control of fields in a mask for specific bit
patterns i: performed. A twos complement 16-bit integer count is contained in bits
0 through 15 of the general register specified by R2. (This must be a positive
number for correct execution of this instruction.)

The address of an array (Ai) is contained in bits 0 through 15 of the general
register pair specified by Rl and (Rl +1)mod8. A tuwos complement integer modifier
is contained in bits 16 through 31. After each Ai has been located via bits 0
through 15, the modifier is added to the most significant 16 bits of "general
register R1. This result replaces the most significant 16 bits. The modifier is
not changed. A 16-bit mask (M) is contained in bits 0 through 15 of the general
register specified by (R1+1)mod8 while field values (FV) are contained in bits 16

through 31.

The following equation is solved.
CAifMY B (FYAM)

where
i =1, .. ., count

A

C)= logical Exclusive-OR function.

logical AND function

Ai AMextracts bits selected by the mask out of array. FVA M extracts bits selected
by the mask also. These latter bits are compared with AiAM. If they are equal, the
comparison cintinues until the count is exhausted. The condition code reflects the

result of this operation.

If the comparison indicates an inequality, the instruction is terminated with the
address of the inequality operand located in general register R1, bits 0 through 15.

RESULTING CONDITION CODE:
00 All array items matched

11 An array item mismatched and general register Rl has the address where it
failed

7-13

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This is a variable length instruction execution. Care must be taken to ensure
proper interrupt response by using sufficiently small count values. 1In order to

assure proper completion of the putaway routine, the programmer must make sure that
the count values do not exceed sixteen.

The following flowchart indicates how this instruction is executed:

Start
Y « Aij e e = = —={ Ai= MS(PTR)
i=1
X~ FVA M
SetCC*-mOO Is(YAM) @ X Set CC + 11
PTR « =
018 0°? R1gqg + PTR
INC + R1
16:31 PTR = PTR + INC
: i*=i+1
Yes
i <Count
N
—

Return

'

7.13 SET BITS

Op oPX Disp* 82 Immediate Data
VO TN 9010 11t | N 1 O Y
0 4 5 78 13 1415 16 31
Mnemonic Format * Displacemencs ot the form

111XXX are invalid.
S8 D2(B2),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
logical sum (OR3}, of the immediate data and the halfword main storage operand, is
formed bit-by-bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:
The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword mask specify the bits of the halfword second operand
that are set one. The result replaces the halfword second operand. The following
table defiras this instruction.

SET BITS

Mask 1100

Storage 1 010

Result 1110
WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the salected main storage location during the time betwsen the fetch of
the operand and store of the result. Therefore, this instruction should not be used
with any memory locations that might be DMA'd into.

7.16 SET HALFWORD

- Op oPX Disp*® B2 ® Displacements of the form
110(110]0]0(1]0 11]| | 111XXX are not valid.
0 4 5 7 8 13 14 15
Mnemonic Format
SHW D2(B2)

Op oPX a B2 Address Specification
1/]0j1j0jo0foj1jo0{1j141]1}0] T I I I O O O O O R
0 4 5 78 111213 14 15 16 31

AM Mnemonic Format
Extended: 0 SHW D2(B2) Disp
1 1 1 | I O O O O O |
Indexed: 1 SHW(@] [#] D2(X2,B2) X 11 Disp
| 1 1A LIttt
DESCRIPTION:

The halfword main storage operand is set to all ones.

RESULTING CONDITION CODE:

The condition code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.
PROGRAMMING NOTES:

This instruction is similar to the SET BITS instruction with the mask (i.e.,
immediate data) equal to all ones.

7.15 TEST BITS

Op oPX Disp B2 Immediate Data

ogtprqofoqryl | || (| | LUt r
0 3 5 7 8 13 14 1516 31

-

Displacements of the form
111XXX are invalid.

Mnemonic Format

T8 D2(B2),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as immediate data. This halfword
immediate data is logically tested with the halfuord main storage operand. A one in
the immediate data tests the corresponding bit in the halfword main storage operand.
The halfword main storage operand is not changed. The result of the test is given
in the condition code.

RESULTING CONDITION CODE:
00 Either the bits selected by the immediate data are zeros or the immediate
data is all zeros
11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-17

7.16 TEST REGISTER BITS

Op oPX R2 Immediate Data

1lofrjrjojojrjijijrjrjojol | | N O O O B N O
0 4 5 7 8 11 1213 15 16 31

Mnemonic Format

TRB R2,Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as immediate data. A fullword
operand is formed by appending 16 low-order zeros.

A one in this fullword tests the corresponding bit in general register R2. The
corresponding bit position in general register R2 is not changed. The result of the
test is given in the condition code.

RESULTING CONDITION CODE:

00 Either the bits selected by the immediate data are all zeros or the
immediate data is all zeros
11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones
INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-18

7.17 TEST HALFWORD
Op oPX Disp® 82 * Displacements of the form
UO 11 1010 °l1l1 [11]| | 111XXX are not valid.
0 4 5 7 8 1314 15
Mnemonic Format
TH D2(82)
Op oPX a B2 Address Specification
1/]0)1j0t0joj1y1} 141(1]1]0 | I S O A O I O I
0 4 5 7 8 111213 14 15 16
AM Mnemonic = Format Diso
Extended: 0 TH B :
D282} L1 (L1 1
Indexed: 1 TH (@] [#] Dp2(x2B2) X L Diso
[| 1A I
JESCRIPTION:
All bits in the halfword main storage operand are tested. This operand is not
changed. The result of the test is given in the condition code.

RESULTING CONDITION CODE:

00 The bits are all zeros
11 The bits are mixed with zeros and ones
01 The bits are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is the same as the TEST BITS instruction with the mask equal to all

ones.

7.18 ZERO BITS

Op oPX Disp*® B2 Immediate Data
1yo0pvjrjojojoqry | | | | | | Lty
0 4 5 7 8 1314 15 16 31

Mnemonic Format ° Displacements of the form

111XXX are invalid.
ZB D2(82),Data

DESCRIPTION:

The logical complement of bits 16 through 31 of this instruction is ANDed to the
halfword main storage operand bit-by-bit. The result replaces the halfword main
storage operand.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING WABTES:

The one bits in the halfword immediate data specify the bits of the halfword main

storage operand that are set =zero. The result replaces the halfword main storage
operand. Th2 following table defines this instruction:

ZERO BITS
Immediate Data 1100
Storage 1010
Result 0010
HARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time betueen the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memary locations that might be DMA'd into.

~
U

20

7.19 ZERO REGISTER BITS

Op oPX R2 Immediate Data

Ljojryrjojoqor g grgofo] § oLl bbb
0 4 5 7 8 111213 1516 3

Mnemonic Format

ZRB R2,Data

DESCRIPTION:
First, the halfuword immediate data is expanded to a fullword by appending 16

low-order zeros. The logical complement of this fullword is then ANDed to the
contents of general register R2. The result replaces general register R2.

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The ovgrflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword immediate data specify the bits in the general register

that are set zero. Bits 16 through 31 of general register R2 are not changed by
this instruction.

7.20

ZERO HALFWORD

Op oPX Disp* B2 ° Displacements of the form
1]0]1]0]0 0(0f1 N 1 111XXX are not valid.
0 4 5 7 8 13 14 15

Mnemonic Format
ZH D2(B2)

Op oPX ::1 B2 Address Specification
11o0j1jojo0fojoj1j1jry1y1fo] T T N
0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format
Extended: 0 ZH D2 (B2) Disp
L1 1] | S N R |
Indexed: 1 ZHI@| =] .D2(X2.82) x || Diso
| 1A I I O O R A
DESCRIPTION:

The halfword second operand is set to all zeros.

RESULTING CONDITION CODE:

The condition code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is similar to the ZERO BITS

ones.

instruction with the

mask equal to

all

8.0 FLOATING POINT OPERATIONS

The floating point instruction set is used to perform calculations on operands with
a wide range of magnitude and to yield results scaled to preserve precision.

A floating point number consists of a signed exponent and a signed fraction. The
quantity expressed by this number is the product of the fraction and the number 16
raised to the pdwer of the exponent. The exponent is expressed in excess 64 binary
notation; the fraction is expressed as a sign-magnitude hexadecimal number having a
radix point to the left of the high-order fraction digit.

The floating point instruction set provides for loading, adding, subtracting,
comparing, multiplying, dividing, and storing. Short operands generally provide
faster processing and require less storage than long operands. On the other hand,
long operands provide greater precision in computation. Operations may be either
register-to-register or storage-to-register. All floating point instructions are
part of the floating point feature including the two data conversion instructions.
A normalized number is one in which the high-order hexadecimal digit of the fraction
is not zero or else one in which both the fraction and characteristic are zero (true
zZero).

Maximum precision is preserved in addition, subtraction, multiplication, and
division because all results are normalized.

The condition code is set as a result of all compare, add, subtract, and load
operations.

8.1 DATA FORMAT

Floating point data occupy a fixed-length format which may be either a fullword
short format or a doubleword long format. Both formats may be used in main storage.

Short Floating-Point Number

S " Characteristic Fraction
L1t 1t LAt ittt ety
01 ‘ 78 31

Long Floating-Point Number

S Characteristic Fraction k}l ‘
I O | | I I O O S I N I O I N O O IO O O

01 78 63

The first bit in either format is the sign bit(s). The subsequent seven bit
positions are occupied by the characteristic. The fraction field may have either
six or 14 hexadecimal digits.

Although final results have six fraction hexadecimal digits in short-precision,
intermediate results may have additional low-order digits. These low-order digits,
the guard digits, increase the precision of the final result.

8.2 NUMBER REPRESENTATION

The fraction of a floating point number is expressed in hexadecimal digits. The
radix point of the fraction is assumed to be immediately to the left of the
high-order fraction digit. To provide the proper magnitude for the floating point
number, the fraction is considered to be multiplied by a power of 16. The
characteristic portion, bits 1 through 7 of both floating point formats, indicates
this power. The bits within the characteristic field can represent numbers from 0
through 127. To accommodate large and small magnitudes, the characteristic is
formed by adding 64 to the actual exponent. The range of the exponent is thus -64%
through +63. This technique produces a characteristic in excess 64 notation.

Both positive and negative duantifies have a true fraction, the difference in sign
being indicated by the sign bit. The number is positive or negative accordingly as
the sign bit is zero or one.
The range covered by the magnithde (M) of a normalized floating point number is:

In short precision - 16 85 < M < (1-167%) o 16%3, and

In long precision = 16 %5 < M < (1-16714) e 1663,

Or approximately = 5.4 e 10 79 < M < 7.2 o 1075,

The short and long precisions contain 6.2 and 15.5 decimal digits, respectively.

A number with zero characteristic, zero fraction, and plus sign is called a true
zero. A true zero may arise as the result of an arithmetic operation because of the

particular magnitude of the operands. A true zero is forced when one or both
operands of MULTIPLY or the dividend in DIVIDE has a zero fraction. The sign of a
sum, difference, product, or quotient with zero fraction is positive. The proper

representation of a floating point zero when used for any of the floating point
operations is the true zero form.

8.3 NORMALIZATION

A quantity can be represented with the greatest precision by a floating point number
of given fraction length when that number is normalized. All floating point
operations preserve maximum accuracy when normalized inputs are used. A normalized
floating point number has a nonzero high-order hexadecimal fraction digit or is a
true zero (all digits =zero). If one or more high-order fractional hexadecimal
digits are zero, the number is said to be unnormalized unless it is a true zero.
The process of normalization consists of shifting the fraction left until the
high-order hexadecimal digit is nonzero and reducing the characteristic by the

8-2

“number of hexadecimal digits shifted. A zero fraction cannot be normalized, and its

associated characteristic therefore remains unchanged when normslization is called
for. A floating point word of all zeros is defined as a true zero.

Normalization usually takes place when the intermediate arithmetic result is changed
to the final result. This function is called postnormalization, and it is performed
as part of instruction execution. Nonarithmetic instructions (i.e., Loads and
Stores) do not normalize their outputs.

PROGRAMMING NOTES:

Floating point operands should be normalized prior to instruction execution;
however, unnormalized inputs are not rejected via the unnormalized input interrupt

as in earlier versions of this computer. Please note that although unnormalized
inputs are accepted, programmers should expect a loss in accuracy for utilizing
unnormalized numbers and their use is not recommended. Also note that for all

arithmetic operations, any input with a zero fraction is treated as a true zero
regardless of its sign or characteristic. A zero input to an arithmetic instruction
wWwill cause the bulk of the processing algorithm for the instruction to be bypassed,
resulting in drastic decreases in execution time.

.. 8.4 FLOATING POINT SECOND OPERANDS

Second operands for the floating point set are no longer restricted by harduware to
even halfword boundary address locations.

8.5 FLOATING POINT REGISTERS

The registers used for floating point arithmetic are distinct or separate registers
from those used for fixed point arithmetic. Register designation may be even or odd
for short operands.

The first operand is contained in floating point register Rl when the second operand
is a short 32-bit operand. If the second operand is a long or extended operand, the
first operand is contained in the pair of floating point registers specified by Rl
and (R1+1)mod8.

Floating-Point Register (even or odd)

S | Characteristic : Fraction

0 1 7 8

S| Characteristic

I O O I O |

Q1 7 8

Figure 8-1. Floating Point Operands in Registers

A comprehensive set of floating point instruction
summarizes the
precision used for the floating

long operands. Figure 8-2

individual instructions.

various

is available for both
combinations
point operands. For further

Short 2nd Operand

Long 2nd Operand

Convert to Floating
Convert to Fixed
L

SRSs
A/S

‘_"PUZ

RSs

(7]

t_/]r-ognz

24— 32
R —24

2424

2d<—24+ 24
24/48 «—=24 x 24
24— 24 24
24t 24

24 =24,

2424+ 24
24: 24
24/4§<—24 x 24
2424 =~ 24
28t 24,

28 e 24,

Instructions Operand Operand
Result 1 2 | Result 1 2
RARs
A/S 28424 + 24 56-+——56 + 56
c 24 : 24 56 : 56
M 24/48 -—24 x 24 56 =——56 X 56
D 24 —24 =24 56-=—— 56 — 56

56— 56+ 56

56 : 56
56— 56 x 56
56<——56 56
56 +————56

56 ————=56

Figure 8-2. Combinations of

short and

of fractional

see the

Fractional Precision for Floating Point Operands

) !ﬂgmm\%\

8.6 FLOATING POINT INSTRUCTIONS

The floating point arithmetic instructions and their mnemonics, and descriptions
follow. The following table indicates when the condition code is set and the
exceptions in operand designations, data, or results that cause a program
interruption.

Name Mnemonic Type Exceptions
Add (Long Operands) AEDR RR C. U,E,S
Add (Long Operands) AED RS C U,E,S
Add (Short Operands) AER RR C U,E,S
Add (Short Operands) AE SRS,RS C U,E,S
Compare (Long Operands) CEDR RR C
Compare (Long Operands) CED RS C
Compare (Short Operands) CER RR C
Compare (Short Operands) CE RS €
Convert to Fixed Point CVFX RR C o]
Convert to Floating Point CVFL RR C
Divide (Extended Operands) DEDR RR U,E,F
Divide (Extended Operznds) DED RS U,E,F
Divide (Short Operands) DER RR U,E,F
Divide (Short Operands) DE SRS, RS U,E,F
Load (Long Operands) LED RS C XN
Load (Short Operands) LE SRS, RS C XN
Load (Short Operands) LER RR C XN
Load Complement (Short Operands) LECR RR C XNx*
Load Fixed Register LFXR RR XN
Load Floating Immediate (Short

Operands) LFLI RR
Load Floating Register (Short .
Operands) LFLR RR ' XN

Midvalue Select (Short Operands) MVS RS C
Multiply (Extended Operands) MEDR RR U,E
Multiply (Extended Operands) MED RS U,E
Multiply (Short Operands) MER RR U,E
Multiply (Short Operands) ME SRS, RS U,E
Store (Long Operands) STED RS XN
Store (Short Operands) STE SRS,RS XN
Subtract (Long Operands) SEDR RR C U,E,S
Subtract (Long Operands) SED RS C U,E,S
Subtract (Short Operands) SER RR C U,E,S
Subtract (Short Operands) SE SRS,RS,C U,E,S
Notes: C Condition code is set

E ‘Exponent—overflow exception

F Floating point divide exception

0 Overflow

S Significance exception

u Exponent-underflow exception

XN Output is not normalized

XN* Output is not normalized, but a true zero is written

for an input with a zero fraction.

8.7 CONDITION CODE

The results of floating point add, compare, subtract, convert, load, and midvalue
select operations are used to set the condition code. Multiplication, division, and
stores leave the condition code unchanged. The condition code can be used for
decision making by subsequent branch on condition instructions.

The condition code can be set to reflect the type of results for floating point
instructions. The states 00, 11, or 01 indicate that the result is zero, less than
zero, or greater than zero respectively. Load instructions which do not modify the
input operand will set the condition code based upon the fraction of the operand
only, thus it is possible to have a zero condition code set for a result which is
not true =zero. This interpretation is consistent since all floating point
instructions interpret a fraction =zero input as a true =zero. Note that all
arithmetic instructions always write a true zero when a fraction zero is
encountered, so this condition can only occur for loads. State 10 is never set by
floating point operations. The compare instruction indicates the relative
arithmetic magnitude of the first operand (R1) and the second operand (called ¢ 2)
(see Figure 8-3).

00 1 01
Add S/L zero <zero > zero
Compare S/L (R1) = (¢2) (R1)<(¢2) (R1)> (¢2)
.Load S/L zero < zero > zero
Subtract S/L zero < zero > zero
Converts zero < zero > zero
Mid Value Select within above below

Figure 8-3. Condition Code Setting for Floating Point Arithmetic
INDICATORS:

The overflow and carry indicators are not changed by floating point instructions.

8.8 FLOATING POINT ARITHMETIC EXCEPTIONS

Invalid operation codes, operand designations, data, or results cause a program
interruption. When the interruption occurs, the current PSW is stored as an old
PSW, and a new PSW is obtained. The interruption code in the old PSW identifies the
cause of the interruption. The following exceptions cause a program interruption in
floating point arithmetic.

Protection: Each halfword in main storage can be protected with a storage
protection bit. The operation is terminated on a store violation.

Addressing: An address designates an operand lo:cation outside the available storage
for the installed system. In most cases, the operation is terminated. The result
data and the condition code, if affected, are unpredictable and should not be used

for further computation.

Exponent Overflow: The result exponent in addition, subtraction, multiplication, or
division exceeds 127 (16¢3), and the result fraction is not zero. The, operation is
terminated without changing the operands, and a program interrupt occurs.

Exponent Underflow: The result exponent in addition, subtraction, multiplication,
or division is less than zero (16—%%4), and the result fraction is not zero. The
operation is terminated, and a program interruption occurs if the exponent-underflow

mask bit (PSW bit 22) is one.

The setting of the exponent-underflow mask also affects the result of the operation.
When the mask bit is zero, the sign, exponent, and fraction are set to zero, thus
making the result a true zero and no interrupt occurs. When the mask bit is one,
the operation is terminated without changing the operands, and the interrupt is
taken.

Significance: The result fraction of an addition or subtraction results in a zero
fraction. A program interruption occurs if the significance mask bit (PSW bit 23)
is one. The mask bit does not affect the result of the operation. A significance
interrupt will result in a true zero answer with 00 condition code set.

Floating Point Divide: When division by an input with a zero fraction is attempted,
theAdivision is suppressed. The condition code and data in registers and storage
remain unchanged.

8.9 ADD (LONG OPERANDS)

Op R1 R2
oj1jojrgo} | | jryrqrjof1] | |
0 4 5 7 8 11 1213 18
Mnemonic Format
AEDR R1, R2
Op R1 a B2 Address Specification
ofjrjojrjof | | qrqrpgrg | I T T I O I O O
0 4 5 7 8 1112 1314 15 16 31
aM Displacement
0
I I A T O O I I B
- 168 31
1 X ; | Displacement
L | I I O O O B
16 31
AM Mnemonic Format
Extended: 0 AED R1, D2 (B2)
Indexed: 1 . AED [@] [#] R1, D2 (X2, B2)
DESCRIPTION:

The second operand is added to the first operand, and the normalized sum is placed

in the first operand location.

is added with the contents of the floating point
The normalized result is placed into

The long 64-bit second operand
register pair specified by register RI1.
floating point registar‘pair specified by R1l.
Addition of two floating point numbers consists of a characteristic comparison and a
fraction addition. The characteristics of the two operands are compared, and the
fraction with the smaller characteristic is right-shifted; its characteristic is
increased by one for each hexadecimal digit of shift, until the two characteristics
agree. The fractions are then added algebraically to form an intermediate sum. If
a high-order carry occurs, the intermediate sum is right-shifted one hexadecimal
digit, and the characteristic is increased by one. If this increase causes a
characteristic overflow, an exponent-overflow exception is signaled, and a program
interruption occurs.

The long intermediate sum consists of 15 hexadecimal digits, possible guard digits,
and a possible carry.

After the addition, the intermediate sum is left-shifted as necessary to form a
normalized fraction; vacated low-order digit positions are filled with zeros and the
characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and the corresponding mask
bit is one, a program interruption occurs and the operands remain unchanged (no
result is written). If the mask bit is zero, a true zero is written as the result
and no interrupt occurs.

When the intermediate sum is zero and the significance mask bit is one, a
significance exception exists, and a program interruption takes place. Regardless
of the sign of the significance bit, a true zero is written as the operations
result. Exponent underflow does not occur for a zero fraction.

The sign of the sum is derived by the rules of algebra. The sign of a sum with zero
result fraction is always positive.

RESULTING CONDITION CODE:
00 Result fraction is zero

11 Result is less than zero
01 Result is greater than zero.

PROGRAM INTERRUPTS:
Significance
Exponent Overflow

Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point addition does not affect the
value of the sum. ‘

8.10 ADD (SHORT OPERANDS)

Op . R1 R2
oj1joj1jof | | J1j1]1tofo) | |
0 4 5 7 8 111213 15
Mnemonic Format
AER R1,R2.
Op R1 Disp® B2 ° Displacements of the form
0 .4 5§ 7 8 13 14 15
Mnemonic Format
AE R1,D2(B2)
. A
Op R1 Ml 82 Address Specification
ol 1joj1jof | | f1l1]1l1]0O | I N T T N O I O T O
0 4 5 7 8 11 1213 14 15 16 31
AM Mnemonic Format Disp
Extended: 0 AE R1,02(B2) 1] NN
Indexed: 1 AE (@] [#] R1,D2(X2,82) X 1K Disp
[1 |4 Lt g

DESCRIPTION:

The short second operand is added to the short first operand, and the six digit
normalized sum is placed in the first operand location.

Addition of two floating point numbers consists of a characteristic comparison and a
fraction addition. The characteristics of the two operands are compared, and the
fraction with the smaller characteristic is right-shifted; its characteristic is
increased by one for each hexadecimal digit of shift, until the two characteristics
agree. The fractions are then added algebraically to form an intermediate sum. If
an overflow carry occurs, the intermediate sum is right-shifted one digit, and the
characteristic is increased by one. If this increase causes a characteristic
overflow, and exponent-overflow exception is signaled, and a program interruption
occurs. v

The short intermediate sum consists of seven hexadecimal digits and a possible
carry. The low-order digits are guard digits retained from the fraction which is
shifted right. The guard digits participate in the fraction addition. The guard
digits are zero if no shift occurs.

‘After the addition, the intermediate sum is left-shifted as necessary to form a

normalized fraction, vacated low-order digit positions are filled with zeros and the
characteristic is reduced by the amount of shi ft.

If normalization causes the characteristic to undertlow and the corresponding mask
bit is one, a program interruption occurs and the operands remain unchanged (no
result is written). If the mask bit is zero, a true zero is written as the result

and no interrupt occurs.

When the intermediate sum is zero and the significance mask bit is one, a
significance exception exists, and a program interruption takes place. Regardless
of the setting of the significance bit, a true zero is written as the operation
result. Exponent underflow does not occur for a zero fraction.)

The sign of the sum is derived by the rules of algebra. The sign of a sum with zero

result fraction is always positive.
RESULTING CONDITION CODE:

00 Result fraction is zero
11 Result is less than zero
01 Result is greater than zero

PROGRAM INTERRUPTS:

Significance
Exponent Overflow
Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point addition does not affect the

value of the sum.

8-11

8.11 COMPARE (LONG OPERANDS)

Op R1 R2
ofjojodrjaf J | Jafagrfofr] 1 |
0 4 5 7 8 1112 13 15
Mnemonic Format
CEDR R1,R2
Op R1 :n B2 Address Specification
ojojogrgry 1§ drprgrige] Lttt rrrrrrr
0 4 5 7 8 11 12 13 14 15 16 ’ 31
AOM Displacement
Lidtrr ittt
16 31
]
1 X All Displacement
L1 L1 11t 11111
16 31
AM Mnemonic Format
Extended: 0 CED R1,02(B2)
Indexed: 1 CED[@] [# R1,D2(x2,82)
DESCRIPTION:

The long first operand is compared with the long second operand, and the condition
code indicates the result. '

The long second operand is compared with the contents of the floating point register
pair specified by register R1. Comparison is algebraic, taking into account the
sign, fraction, and exponent of each number. An equality is established by
following the rules for normalized floating point subtraction. Neither oper-
and is changed as a result of the operation.

Exponent overflow, exponent underflow, or loss significance canhot occur.
RESULTING CONDITION CODE:

00 Operands are equal

11 First operand is less than the second operand

01 First operand is greater than the second operand

PROGRAMMING NOTES:

Numbers with zero _fraction compare equal evan when they differ in sign or
characteristic.

ANOMALY NOTE:

False indications of equality can occur in some cases when the
fractional portion of the operands differ by x'80 0000' after

prealignment.

Prealignment shifts the fraction, of the operand with the smaller
exponent, right a number of hex digits equal to the absolute value of
the difference between the two exponents. The fraction being shifted is
left filled with zeroes. After prealignment, the comparison is based on
64 fractional bits (right filled with zeroes) and a possible guard bit.
Note that unnormalized numbers are not first normalized and are compared

in the same manner as normalized numbers.

Examples of failing cases (return false indications of equality)

Operand 1: 423F FFFF 0000 1234

Operand 2: 423F FFFF 0080 1234

Absolute difference of OP2 and OP1 is .00 0000 0080 0000
Returns CC of 00 (equal); correct CC is 11 (OP1l < OP2)

Operand 1: BEFF FFFF FBO07 6890

Operand 2: BF10 0000 0030 7689

Absolute difference of OP2 and OP1 is .00 0000 0080 0000
Returns CC of 00 (equal); correct CC is 01 (OP1l > OP2)

Operand 1: 4010 0000 0000 1234

Operand 2: 3FFF FFFF F801 2340

Absolute difference of OP2 and OP1 is .00 0000 0080 0000
Returns CC of 00 (equal); correct CC is 01 (OP1 > OP2)

8§-12a

(This page intentionally left blank)

8-12b

' 8.12 COMPARE (SHORT OPERANDS)

Op R1 R2
oj1jojoqrf | | Jyryrjofg |1
0 4 5 7 8 11 1213 15
Mnemonic Format
CER R1, R2
Op R1 a 82 Address Specification
0]1]0jo|1 L ppppg | I I T O I I O I O O O
] 4 5 78 11 1213 14 15 16 ‘ 31
M
Es' Displacement
I N T O O
16 i 31
1 X ; | Displacement
L1 I N T O O O |
16 kil
AM Mnemonic Format '
Extended: 0 CE R1,D2 (B2
Indexed: 1 CE (@I[#] R1,D2(X2,82
DESCRIPTION:

The first operand is compared with the second operand, and the condition code
indicates the result.

Comparison is algebraic, taking into account the sign, fraction, and exponent of
each number. In short-precision, the low-order halves of the floating point
registers are ignored. An equality is established by following the rules for
normalized floating point subtraction. When the intermediate sum, including a
possible guard digit, is zero, the operands are equal. Neither operand is changed
as a result of the operation.

Exponent overflow, exponent underflow, or loss significance cannot occur.
RESULTING CONDITION CODE:

00 Operands are equal

11 First operand is less than the second operand

01 First operand is greater than the second operand

PROGRAMMING NOTES:

Numbers with =zero fraction compare equal even when they differ in sign or
characteristic.

8.13 CONVERT TO FIXED POINT

Op R1 R2
ofojqrjijr} | | Jrjijrjojoj | |
0 45 78 11 1213 1§

Mnemonic Format
CVFX R1, R2

DESCRIPTION:

The second operand located in floating point register R2, is a normalized short
32-bit floating point operand using the sign magni tude floating point

representation. The second operand 1is converted to fixed point by an
unnormalization operation in order to have its characteristic equal to a hexadecimal
44 (1000100 (2)). The number is then converted to a twos complement representation

and placed into general register R1 (truncated if necessary).

A convert overflow will occur if a floating point number is outside the following
range:

.7FFFFF X 16E04(16) 2 N 2 -.800000 X 16E04(16)
RESULTING CONDITION CODE:
00 Bits 0 through 15 of the result in general register Rl are zero
11 Bits 0 through 15 of the result in general register Rl are negative
01 Bits 0 through 15 of the result in general register Rl are positive
INDICATORS:
The overflow and carry indicators are not cHanged.
. PROGRAM INTERRUPTS:
Convert overfl-..

PROGRAMMING NOTES:

Refer to the CONVERT TO FLOATING instruction.

3-14

8.14 CONVERT TO FLOATING POINT

Op R1 R2
ofogqrrgty] L qrprprgofrg |
0 4 5 7 8 11 1213 15

Mnemonic Format
CVFL R1, R2

DESCRIPTION:

The second operand is a 32-bit twos complement number with its binary point
considered to be between bits 15 and 16. It is converted to sign magnitude floating
point representation and placed into floating point register R1.

First, the sign bit of the fixed point number is placed into the sign bit of the
intermediate result shown below. Then, bits 0 through 31 of the fixed point number
are converted from +twos complement representation to the magnitude of a
sign-magnitude represention, and then placed into bits 8 through 39 of the
intermediate result. The charact<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>