
4

REV DESCRIPTION . : ae DATE APPROVED

- Release . 01-16-85

A Changes from AP-101B & OASCB 07-09-85

B Update: Add IOP POO as appendix oan 04-30-86

Cc Update: Add clarifications & EDCP changes 05-01-87

D Update: Add clarifications 02-01-91

E vPdaces Add clarifications 05-03-91

F Mpdate: incorporated C.R. 90669A & 90954C 07-12-94

a
“TITLE se

~

Space = vttle AP-101S Principles of Operation

Document Control Number: 85-C67-001 IBM Federal Sectozt Civsion *

REVISION A

 EDCP PAGE DESCRIPTION OF CHANGE

iii thru v

2-1 thru

2-4, 2-l1l,

2-13 thru

2-22, 2-24,

2-25, 2-27,

2-29

3-1, 3-2

4=]=2 thru

4-5, 4-10,

4-11, 4-14,

4-24, 4-25,

4-31 thru

4-33

5-2, 5-10

8-1 thru
8-9 9 8-12

thru 8-22,
8-24, 8-26

thru 8-34

9-1 thru

9-17, 9-19
thru 9-22

10-2

12-3

13-1, 13-2

15-1 thru
15-34

16-1 thru
16-10

17-1, 17-2

17-3

Single Margin Bars Incorporated To Indicate
Changes To The AP=-101B POO,

REVISION A

EDCP DESCRIPTION OF CHANGE

8-5, 8=7,

thru 8-9,

8-11, 8-17,

8-19, 8-29,
8-31, 8-32,
8-34

9=5
9=1]

WO
WO

wo

iy

U
n
»

» 9-21 (
O
w

w 4
8
-1

10-3

15-10
15-12
15-31
15-33

16-9

The following indicate changes from the
Orbiter Avionics Software Change Board

(OASCB) Baseline meeting held 02/28/85.

REVISION B

EDCP PAGE DESCRIPTION OF CHANGE

86-101S-011/Title Add note containing margin bar definition.:

86-101S-Olliiv | Change Appendices A, B, C, to Sections 15, 16,
17, respectively. Add Appendices I, II, III
(IOP POO).

86-101S-011/ 1-1 Change Appendix B reference to Section 16.

86-~101S-008 | 2-21 Instruction Monitor Interrupt handling change.

86-101S-011/ 2-25 Rewrote Interrupt Priority description in an
attempt to clarify Figure 2-20 on page 2-21.
The length of this change necessitated an
additional page such that material formerly on
pages 2-25 thru 2-29 is now on pages 2-26 thru

2-30.

 {86-101S-011/8-2, 8-8, Changed from one to multiple guard digits. ’ 8-10
~— |g6-101s-011 10-3 Added a new paragraph to clarify ICR AGE

command word format.

86-101S-006/ 10-3 Changed bit format to include the second soft
error counter.

86-101S-011/10-3 Corrected typo in table: XFER to MFER.

86-101S-011/15-1 thru Changed from A-1 thru A-34,
; 15-34

86-101S-011/15-19 Added statement explaining the effect on
scrubbing for the Reset ECC Bits assist
command.

86-101S-011/16-1 thru Changed from B-1 thru B-10.
16-10

86-101S=-011/17-1 thru Changed from C-1 thru C-4,
17-4

86-101S-005/17-3 Updated instruction times for LXA and LDM.
| 17-4 Updated instruction time for STDM.

(86-101S-011/17-4 Updated instruction times for SCAL and SRET.
aa Reduced because DSE Registers are no longer

stored.

B=]

REVISION B

EDCP PAGE DESCRIPTION OF CHANGE

IOP POO 85-C67-004 is being incorporated
into this document as Appendices I, II, III.

86-101S-011| Appendix I

86-101S5-011|; 1-4, I-5, The following pages contain single margin bars

I-7 thru which indicate changes from the original IOP

I-7D, I-8, POO and are being carried over into this

I-10, I-13, | document from 85-C67-004.

I-14, I-17,
I-20, I-21,
I-29 thru
I-31, I-34,
I-36 thru
I-40,
I-46 thru
I-52

Appendix II

II-18,
II-51,
II-71,
II-94,
I1I-97

Appendix III

III-14,
III-1/7,
IITI-18,
III-19,
III-21,
III-30,
ITI-39,
III-74

REVISION B

EDCP PAGE . DESCRIPTION OF CHANGE

86-101S-011] Appendix I

I-7A Clarification of data to be used for forcing
errors,

I-7D Correct typing errors.

I-8 Correct three typing errors. Clarify parity
error symptoms and recovery.

I-17 Nomenclature change.

I-19 Clarification that all other interrupts are
reset by this PCO,

I-20 Removed applicable termination control latches
information. |

I-21 Explanation that terminate output driver is
permanently inhibited by the hardware.

I-22 Same as I-21.

I-24 Added note that Test and Enable do not force
the new parity interrupts.

I-36 Specified priority of interrupt error
condition.

I-39 Flagged Bits I-31 as unavailable.

I-40 Added note that those errors do not generate
interrupts. Clarified PS overtemperature.
Flagged Bits 1, 2 as unavailable.

I-43 Same as I-21,

I-47 Changed HISAM dump from Bit 14 to Bit l5.

REVISION B

EDCP PAGE | DESCRIPTION OF CHANGE

86~101S5-011| Appendix II

II-13 Changed reference to AP=-101S Design Workbook.

II-14 Same as I[I-13. Corrected typing error.

II-20 Removed fail latch reference in two places.

II=-24 Removed DMA error and DMA channel reference.
Changed to parity error "during" instruction
and data read.

II-96 |Added OPX field for diagnostic data flow error
test.

Appendix III

III-17 Corrected typing error.

ITI-20 Removed fail latch reference in two places.

IITI-25 Removed DMA error and channel logic reference.
Segregated termination latch detected by IOP
hardware.

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE

86-101S-024 1-1 Added reference for AP-101S/AP-101B comparisons
document.

86-101S-024 2-3 Removed comment about 128K or less programs using the
DSEs.

86-101S-024 2-6 Added reference to Effective Address Generation Chart on
page 11-1.

86-101S-024 2-16 Removed typo "Z" from "16-Bit Branch Address." Added
explanation for IC relative expansion.

86-101S-024 2-18, 26 |Move instruction monitor paragraph from 2-26 to 2-18.

86-101S-024 2-19 Added missing information to Bits 48-63 of Figure 2-19.

86-101S-024 2-20 Correct Instruction Address Bit designation.

86-101S-024 2-21 Corrections to Interrupt Structure and Priority Table.

86-101S-009 2-23 Added reserved area for BCE 25.

86-101S-024 2-29 Changed Decimal designations to Hex. Added Memory Store
Protected note.

86-101S-024 3-1 - Clarified IOP as I/O Device. Added note clarifying DMA
can occur between CPU memory cycles.

86-101S-024 3-2 Clarified IOP as I/O device.

86-101S-024 4-5, 22, Added warning note for DMA being enabled during
32, 34 instruction execution.
7-4, 5, 8,
9, 12, 15,
20, 9-5

86-101S-024 9-2 Correct typesetting.

86-101S-024 9-17, 18 | Clarified DMA is not allowed during fetch and storeback.
Add counter execution times.

86-101S-024 10-3 Correct Soft Error Counter Bit designations. Added
Counter Execution times and figure 10-1 reference.

86-101S-024 10-4 New Page: Added definition of MFER/MMU bits.

86-101S-024 13-1 Remove SRS, BROV and CRY from 1100 OP code.

C-l1

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE

86-101S-024 15-4, 10, Added missing execution times.
13 thru 16,
18, 19, 24,
26, 27, 28

87-101S-047 2-22, 23; DSE instruction enhancement; text on page 2-23 moved

9-8, 19, back to page 2-22 to allow room for expanded
20, 22, Figure 2-21.
17-3, 4

86-101S-024 2-1, 7-13, Clarifications and typo corrections.
8-27, 10-2
I-2, 3, 5,
7A, 7D, 8,
17, 35, 40,
45, 52,.
II-24, 25,
III-5, 19
thru 22, 24

thru 26, 29,

30, 43, 54,
55, 59, 74,
75, 81

87-101S-047 17-3, 4 LDM, LXA, STDM, STXA execution changed.

86-101S-009 I-7D, Added details of IOP shutdown when an IOP Data Flow

II-25, Parity Error occurs.
III-27

86-101S-024 I-13 thru Changed DO/DI Bit designations to correspond to ALD’s
I-15, I-45 and Specification. Flagged High Speed Discretes.
thru I-49 Clarified Sync Discrete numbering.

86-101S-009 I-8, 17 Processor 25 update.

86-101S-024 I-22 Clarified Note.

86-101S-024 I-25 Removed Bit 25 as self test.

86-101S-024 I-36 Rephrased for multiple error occurrence.

86-101S-024 II-15 Added Bit Alignment note to IL description.

86-101S-024 II-70 Changed & NIX to @ NIX.

86-101S-024 II-97 Added explanation of OP code O11.

C-2

REVISION C

 | | sper

PAGE DESCRIPTION OF CHANGE

86-101S-024 III-6 Added "Common IOP Addr" in IUA field.

86-101S-024 III-7 Corrected half word numbers. Added note for CPU and
IOP Memory Addressing.

86-101S-024 ITI-10 Changed "I" field to "M". PC clarification for "DIgp"
field.

87-101S-049 | III-14, Changed for #MIN instruction update.
15, 76

86-101S-024 III-14 Added reference paragraphs.

86-101S-024 III-15, Corrected gap time.
20, 48, 52 7

86-101S-024 III-17 Added paragraph for BCE programmable registers.

86-101S-024 III-27 Added section for MIA Busy when asked to transmit.

86-101S-024 III-32 Removed nonapplicable programming note detailing
indexing.

| 86-101S-024 IITI-42 Added reference to listen mode/command mode
differences. |

86-101S-024 III-44 Added gap time details.

86-101S-024 III-50 Added paragraph for IUAR loading during #CMD and #CMDI,

86-101S-024 III-52 Removed nonapplicable programming note. |

86-101S-024 IITI-53, 56 Added paragraph for GPC to GPC word transfers.

86-101S-024 IITI-65 Added #CMDI reference for Listen Mode. |

86-101S-024 IITI-70 Added typical time out detection time.

86-101S-024 III-76 BCE IUAR in listen mode reference.

86-101S-010 III-80 Added details for real time MIA parity checking. Changed "I" field to "M".

C-3

REVISION C

EDCP PAGE DESCRIPTION OF CHANGE

86-101S-024 III-81 Added note for additional listen mode implementation.

86-101S-024 III -86 Removed nonapplicable paragraph.

86-101S-024 III-87 Separated #CMDI from #CMD.

C-4

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA 1-1 Deleted paragraph referencing the "AP-101B/AP-101S
Comparisons" document.

NA 2-15 Missing word added. Added word "to".

NA 2-16 Text added to clarify the action of the second Stage
addressing when the high order address bit = 0.

NA 2-18. Deleted text concerning PSW bit 45.

Added a line at the top of the page that was left out from
the old GPC POO.

NA 2-21 Mask for CPU store protect revised from bit 45 to me
(CPU store protect not maskable).

NA 2-21 Made a note on the old PSW designation for CPU multibit
error.

NA 2-21 Interrupt priorities changed to put the EXT 1 INT (AGE)
ahead of the other EXT INTs.

Footnote added about CPU multibit error as referenced on
page 2-25.

NA 2-22 Reference to bit 45 mask deleted.

NA 2-25 Note added on CPU multibit error.

NA 2-25 Group 0 interrupts section clarified.

NA 2-26 Text concerning CPU store protect mask bit 45 deleted.

NA 2-27 BCE 25 processor storage (00A4-00A5) added to list of PSA
locations to not be store protected.

NA 4-24 Typographical error corrected. Added an "s" to replace.

NA 5-2 Programming note changed.

NA 7-13 Corrected typographical error.

NA 7-14 "Do not exceed eight" changed to "do not exceed sixteen".

NA 8-2 Sign corrected on exponents.

NA 8-15 CVFL diagram replaced with copy from AP-101B Poo.

D-1

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA 8-26 Corrected typographical error.

NA 9-2 Changed reference from "Appendix A" to "Section 15."

NA 9-8 Last sentence under programming note - corrected from STM to

STDM. Flow chart corrected. Programming note clarified for
instruction main store addresses crossing 32K boundaries.

NA 9-20 The Rl designator was deleted and a note was added at the
bottom of the page.

NA 9-21 Corrected wording in description section for bit 20 and 27.

NA 9-22 The Rl designator was deleted and a note was added at the
bottom of the page.

NA 10-3 The ICR instruction operation was clarified by expanding the
code column to 32 bits.

NA 13-1 SRS branch on count deleted.

NA 15-1 Changed word "Reference" to "Section."

NA 15-19 Added I/0 delay times.

NA 15-29 External 4 interrupt added. Note added to bottom of page.

NA 15-33 An error code of 70 "EDAC error during reset" added.

NA I-2 Changed description for bits 17 through 31 from "NOT USED"

to "IGNORED."

NA I-4 Information pertaining to AP-101B crew trainers and
prototypes deleted.

NA I-4 Four occurrences of "spare not used in flight IOP" deleted.

NA I-10 Bits 25 - 31 bracketed.

NA I-22 Removed note.

NA I-24 The effect of the Test Interrupts PCO on the interrupt

registers clarified.

NA I-37 Bits 6 - 31 bracketed.

NA I-43 Changed wording for bit 19 of RM status register.

D-2

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA IT-iii Typographical error corrected. Spelling of "general"
corrected.

NA II-13 Removed reference to design workbook.

NA II-101 Added Appendix number to page numbers in MSC Instruction
Summary Chart.

NA II-102 Added Appendix number to page numbers in MSC Instruction
Summary Chart. ,

NA III-4 "Power surge" changed to "power".

NA III-8 Corrected typographical error.

NA III-11 Added note regarding direct addressing mnemonics.

NA III-14 Text aligned.

NA III-15 Changed page spacing.

NA III-20 Changed wording in section defining signals that set BCE
Halt bit to 0.

NA III-25 Eliminated termination latch from Error Summary Chart.

NA III-26 "Invalid Manchester, or bit count error" added under the
parity error on input data.

NA III-27 The “wrong bit encoding bit count error" section deleted.

NA IIIT-43 Added note for MIA Busy.

NA III-48 Typographical error corrected. Last paragraph
corrected.

NA III-50 Clarified descriptions for #CMD and #CMDI.

87-101S-051 IITI-52 Removed program note for microcode error (microcode
corrected).

NA IITI-58 Added note for MIA Busy.

87-101S-049 III-75 Removed description of microcode anomaly (microcode
corrected).

87-101S-049 III-80 Note on limited assembler support for this OP code. Corrected typographical errors.

D-3

REVISION D

EDCP PAGE DESCRIPTION OF CHANGE

NA ITI-88 Added Appendix number to page numbers in BCE Instruction

Summary Chart.

NA III-97 Restored paragraph inadvertently deleted.

D-4

REVISION E

EDCP PAGE DESCRIPTION OF CHANGE

NA 2-21 Remove statement "Maskable Only in Problem
State, PSW 47=1" from Interrupt priority
C2.

Add an X in Not Maskable column for Store
Protect Interrupt.

NA 8-22 Correct condition code for Load Complement
(Short Operands) for positive results.

NA II-24, 25 Remove "Terminal Control plus" from last
IOP error description on page II-24. Move
paragraph extension on top of II-25 back
to II-24.

NA III-8 Change I to M for Short Format 1 Index
Specification.

NA III-15 Remove duplicated sentence under bit 23
description.

NA III-48 Add an "or" between #MIN and #MINE@.

REVISION F

EDCP PAGE DESCRIPTION OF CHANGE

NA vi Replaced "(This page intentionally left
blank)" with "NOTE: Use of fields marked
as reserved can result in unpredictable
machine operation."

NA 2-14 Replaced "1" in bit position 0 of
Fig. 2-17 with MSB and added explanation.

NA 2-15 Deleted page and replaced with flow
Chart.

NA 2-21 Added Anomaly Notes to Fig. 2-20.

NA 2-23 Clarification of "Reserved" locations
in Fig. 2-21.

NA 8-12 Deleted statement in description.

NA 8-l12a Added Anomaly Note for CEDR/CED instruc-
tion.

NA 8-12b New Page: Added "(This page intentionally
left blank)".

NA 8-17 Added Anomaly Note for DEDR/DED instruc-
tion.

NA 9-8 Revised statement on MOVE HALFWORD
interruptibility.

NA 9-8a New Page: Added Anomaly Note for MOVE
HALFWORD instruction.

NA 9-8b New Page: Added "(This page intentionally
left blank)". .

NA 9-19 Corrected instruction bit 31 designation.

NA 15-32 Changed "FOV Fail" to "YOV Fail" for
Error Code 5A description.

NA 17-3 Corrected instruction execution time
calculation for MVH RR (COUNT ODD).

NA I-36 Changed "Dev out data error" to "Dev out
data parity error" under ERROR CONDITION.

NA III-14 Corrected bit 26 designation for TO.

NA III-59 Deleted first paragraph at top of page.

TABLE OF CONTENTS

Paragraph Title

1.0 AP-101S WITH SHUTTLE INSTRUCTION SET woe ew ee

2.0 AP-101S STRUCTURE 8 ee ee ee GREK
2.1 SHUTTLE INSTRUCTION SET oe ee ew le lw ll
2.1.1 Information Formats o 8 8 ew ew el
2.1.2 Addressing oe 8 ew te lw lw
2.1.

2.2

2.2.

2.2.

2.2.

2.2.

2.2.

2.2.

2.2.

2.2.

2.2.

2.3

2.4

2.4.

2.5

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

2.5.

3: Information Positioning oe

CENTRAL PROCESSING UNIT eee ew eH
1 Program Addressable Registers se ew ew

2 Fixed Point Data Representation .

> Instruction Formats oe

4 RR Format Instructions oe 8 ee ew ee

5 SRS Format Instructions o 8 8

6 SI Instructions 2 8 6

7 RI Instructions ee ee we ek lw kw
8 RS Format Instructions oe ee we wt
9 Expanded Addressing © 8 © we we ew ew le lw
PROGRAM EXECUTION e 8 o 8
STORAGE PROTECTION FEATURES .
1 Instruction Monitor Feature oe ee ew
MACHINE STATUS © 6 8 ew ew ew lw lt ll lw lk lw lw
1 Program Status Word * = © © © © « we
1.1 PSW Fields © ee ew ew lw lw lt lt lt
2 Interrupts o 8 8 we ew ee le le lw lk lk
2-1 Interrupt Handling ee 6 © ew ew le lw
2.2 Interrupt Priority

2.3 Interrupt Masking oe ew :
2.%¢ Preferred Storage Area (PSA) Assignments
3 “eneral System Operation ow we Be
3.1 T ower-On co 8 8 ew we lt lk lk lk lw lk
3.2 System Reset eo 8 ee ew et ew kl tk
3.3 IPL ce ee ee we ee ke kk kk kk
4 Operating State © 8 ee we we ew ek ee
4.1 Program State Alternatives oe wee
5 Architectural Growth ee ee

3.0 CPU I70 oe ew ew . . oe 8 ee ew
3.1 DIRECT MEMORY ACCESS OPERATION see ww
3.2 PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION :
3.5 PROGRAM-CONTROLLED I/”0 INSTRUCTION oe 8

4.0 FIXED POINT ARITHMETIC er
4 -l ADD 8 a

ADD HALFWORD- 2 8 i
ADD HALFWORD IMMEDIATE a
ADD TO STORAGE a
COMPARE o ee we a
COMPARE BETWEEN LIMITS rr
COMPARE HALFWORD a
COMPARE HALFWORD IMMEDIATE ce ee ww

N
N
N
M
N
N

NNN

N
N
N
 L
Y

19

fo
t

ft
£

tf
@

t
£

¢
€

t
€

G
4

N
O
O
O

O
O
D

A
P
D
P

PM
19

PD

Re

po

w
n

nm

ee

ee

|
ho
 f

ee

pe

fe
e

pee

00

08

~J

2-18

2-19

2-22

2-24

2-25

2-26

2-27

2-27

2-28

2-28

2-23

2-29

2-29

2-30

G
l

a

ee
 e
e
e

i
4

pm
s

A
D
H

P
P
D

DP
DD

LH
i

Oo
O
N
O

U
I

h
w

TA

5.0 BRANC

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.1 0

6.0 SHIFT

6.1

e
e

oo

@®
£
€

©

O
O
S

oO
U
I

£S
W

A

O
O
P

A

O
H

OHO
WH

8

7.0 LOGIC

7.1

7.2

TABLE OF CONTENTS

Paragraph Title

4.9 COMPARE IMMEDIATE WITH STORAGE o 8 es

4.10 LIVID5E ec 8 6 2. © 8

4.11 EXCHANGE UPPER AND LOWER HALFWORDS °

4.12 INSET ADDRESS LOW 2 8 ee ew lw lw lt lw ls

4.13 INSERT HALFWORD LOW o 8 8 8 ew le le lw

4.14 LOAD 7 8 6 ee ew he hw ltl tlw lt ltl ll lt

4.15 LOAD ADDRESS oe oe 8 ew ew

4.16 LOAD ARITHMETIC COMPLEMENT o 8 © 8 ee

4.17 LOAD FIXED IMMEDIATE co 6 6 ee le lw lw

4.18 LOAD HALFWORD oe ee et lt lw ll

4.19 LOAD MULTIPLE oe ee ee ee ww

4.20 MODIFY STORAGE HALFWORD o 8 8 8 ew

4.21 MULTIPLY 2 8 ee we we lt lt lt lt lt le ll

4.22 MULTIPLY HALFWORD 2 8 © © © ew ew ew ls

4.23 MULTIPLY HALFWORD IMMEDIATE o 8 8

4.24 MULTIPLY INTEGER HALFWORD o 8 e © ew

4.25 STORE oe ee ee lw lt lw lt lt lt lt lk

4.26 STORE HALFWORD oe 8 et he lw lt lw ll

4.27 STORE MULTIPLE ee

4.28 SUBTRACT 2 2 2 8 ee le lw ltl ls

4.29 SUBTRACT FROM STORAGE o 8 8 ew lt le

4.30 SUBTRACT HALFWORD o 8 6 © ew thle lel wl

4.31 TALLY DOWN © 8 © 6 eo te lt lk lt lw lw lw ll

HING 5 6 © ew ee lw lw lt ltl lt lw lt

5.1 BRANCH AND LINK oe ee ew le lt lt

BRANCH AND INDEX s 6 6 ee ew we

BRANCH ON CONDITION ee

BRANCH ON CONDITION BACKWARD oe 8

BRANCH ON CONDITION CEXTENDED) 2

BRANCH ON CONDITION FORWARD ee ee ew
BRANCH ON COUNT oe 8 8 ew ee ew lw wl
BRANCH ON COUNT BACKWARD os 8 ee we
BRANCH ON OVERFLOW AND CARRY se 8

BRANCH ON OVERFLOW AND CARRY FORWARD

OPERATIONS a

NOKMALIZE AND COUNT soe 8 ee we ww

St-.FT LEFT LOGICAL re

SHIF: LEFT DOUBLE LOGICAL ce ee ew

SHIFT RIGHT ARITHMETIC eo 8 ee ewe

SHIFT RIGHT DOUBLE ARITHMETIC 2 8

SHIFT RIGHT DOUBLE LOGICAL os ee

SHIFT RIGHT LOGICAL © 8 es © 6 ew ew

SHIFT RIGHT AND ROTATE © 5 © 6 ew ew

SHIFT RIGHT DOUBLE AND ROTATE

AL OPERATIONS oe 6 6 ee ew ww ew ww

AND. a

AND HALFWORD IMMEDIATE ee oe ee ww

11

Page

4-10

4-11

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

G-21

4-22

4-23

4-24

4-25

4-26

G-27

4-28

4-293

4-30

4-32

w
o
o

w
y

u
u
u

{
f

W
r

O
O

W
n
s

HD
B
W

be

w
y

>
f
o

ps

if

t
i

h
n

Qa
n
w
m
n

n
n
n

ow
2

pe

t
mM

o
w
o
w
m
n

o
u

f
n

&

oO
oO

w
w

NS
i
f
f

4
W
N

Paragraph

a
oe

e
@

©

N
W
E
N
O
N
D

O
N
E

N
E

S
E

S
E

a
d

os
#8

@
e i

O
O

~
J

O
N

wl
 >

|S
 O
d

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

TABLE OF CONTENTS

Title

AND IMMEDIATE WITH STORAGE toe ew ee
AND T2 STORAGE coe ee ew ee
EXCLUSIVE OR woe ee ee ek
EXCLUSIVE OR HALFWORD IMMEDIATE
EXCLUSIVE OR IMMEDIATE WITH STORAGE ..
EXCLUSIVE OR TO STORAGE
OR oe ee ee we ee we kk ww kk
OR HALFWORD IMMEDIATE we ee ee
OR T2 STORAGE se ee ek we ek
SEARCH UNDER MASK ee ee ew ew ek ek
SET 3ITS woe ee ew ee .
SET YALFWORD2.2.2.2.24..,
TEST BITS - ee ee ew ke kw ww ke
TEST REGISTER BITS oe ee ee wt kw
TEST HALFWORD wee ee ee .
ZERO BITS oe ee ew ww we wt ew kl
ZE20 REGISTER BITS wee ee we ke
ZE20 HALFWORD oe ee ee ee ee we

8.0 FLOATING PJINT OPERATIONS er
8.1 DATA FORMAT a

i
n

&

WG
Ay

9

09

00

0
0

6
Co

0
9

GO

&

0

oO

—

O0
8

“J

ON

NUMBER REPRESENTATION oe 8 8 ew ew ww
NORMALIZATION a
FLOATING POINT SECOND OPERANDS eee
FLOATING POINT REGISTERS ee
FLOATING POINT INSTRUCTIONS oe es ee
CONDITION CODE % 2 0
FLOATING POINT ARITHMETIC EXCEPT
ADD CLONG OPERANDS) a

e s oe @ Ss

IONS .

ADD CSHORT OPERANDS) ce 8 ee ee
COMPARE (LONG OPERANDS) oe ee we
COMPARE CSHORT OPERANDS) oe 8 ew we
CONVERT TO FIXED POINT oc 8 ee ww
CONVERT TO FLOATING POINT oe 8 ee
DIVIDE (LONG OPERANDS) rn
DIVIDE (SHORT OPERANDS) a
LOAD (LONG OPERANDS) oe ee ew ee
LOAD CSHORT OPERANDS) oe ee ee
LOAD COMPLEMENT (SHORT OPERANDS) oe
LOAD FIXED REGISTER ce ee ew ee
LOAD FLOATING IMMEDIATE oe ee ew
LOAD FLOATING REGISTER re
MIDVALUE SELECT. (SHORT OPERANDS) eo 8
MULTIPLY (LONG OPERANDS) oe ee ew
MULTIPLY CSHORT OPERANDS) o ee ee
SUBTRACT (LONG OPERANDS) nr
SUBTRACT CSHORT OPERANDS) soe ew ew ew
STORE CLONG OPERANDS) oe ee ew ww
<*ORE CSHORT OPERANDS) o 8 8 8 ew

09

f
{

i
ob

ot

b
g

N
O

O
O
R
D

AH
U
W

W
D

p
r

pf

T
G
)

GB

0

0

0
09

0
0

Paragraph

TABLE OF CONTENTS

Title

9.0 SPECIAL OFERATIONS o 8 © © ee ew ww lw tlw lt

10.0

11.0

12.0

13.0

14.0

15.0

16.0

9.1

8
e

H
r

eo

ww
08

~
3

HO
UF

&

Uw
 A
S

~~
©

“
o
w
o
v
o
w
v
o
v
o

vu

vo
VO

oO
wo

@
e

¢
e

0
0

a
a

f
u
e

a

A

9.14

9.15

DIAGNOSE (DETECT) er

INSERT STORAGE PROTECT BITS oe

LOAD PROGRAM STATUS a

MOVE HALFWORD OPERANDS a

SET PROGRAM MASK ee ee ee ee ee

SET SYSTEM MASK oe ee ee ew

STACK CALL a

STACK RETURN a

SUPERVISOR CALL a

TEST AND SET a

TEST AND SET BITS oe ee ew

LOAD EXTENDED ADDRESS oe ee ee

LOAD DSE MULTIPLE ee ee

STORE EXTENDED ADDRESS ee ee ee eee

STORE DSE MULTIPLE a

INTERNAL CONTROL OPERATIONS a a

10.1

AP-1

li.1

AP-1

12.1

AP-1

AP~]

14.1

AP=-1

PIPE

16.1

16.2

16.3

16.4%

16.5

16.6

16.7

16.8

16.9

INTERNAL CONTROL o 8 6 ew ew ww

01S SHUTTLE INSTRUCTION SET ee ee ee ee we ee

EFFECTIVE ADDRESS GENERATION SUMMARY CHART

01S INSTRUCTION REPERTOIRE i

SHUTTLE INSTRUCTION SET a

01S OP CODE ASSIGNMENTS oe

01S INSTRUCTION SET a

AUTOMATIC INDEX ALIGNMENT DESCRIPTION 7 se ee

01S DIAGNOSTIC FUNCTIONS a

LINE TIMING CONSIDERATIONS 2 oe ee ew ew

INSTRUCTION EXECUTION - PIPELINE BASICS | ce eee

LONG INSTRUCTIONS - NON-SINGLE-CYCLE EXECUTION

BRANCH INSTRUCTIONS - RESTART THE PIPELINE oe ee

REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER .

STORE INSTRUCTIONS - MULTIPLE MEMORY CYCLES 2

STORE CONFLICT - MODIFY PREFETCHED MEMORY OPERAND °

SUCCESSIVE STORES ~ BACK-TO-BACK STORES oe 8

I UNIT HAZARD =~ MODIFICATION OF PREFETCHED INSTRUCTION

CONFLICT/HAZARD SUMMARY oe

17.0 AP-101S INSTRUCTION EXECUTION TIMES © ee ew ee ww ww

APPENDIX I ~ IOP POO FOR PROGRAM-CONTROLLED INPUTS AND OUTPUTS

APPENDIX II - IOP POO FOR MASTER SEQUENCE CONTROLLER 2 ee ele

APPENDIX III ~- IOP POO FOR BUS CONTROL ELEMENT eo ee

iv

4
 uy iD

0
0
0

O
O

OO
4

m
M
m
o
w
n
t

n
D

&

ow
O
O

wo |
>

bb

bm
 p

e
HO

9-17

9-18

9-19

9-20

9-21

9-22

12-1

12-1

13-1

15-1

16-1]

16-1

16-2

16-2

16-5

16-6

16-6

16-8

16-8

16-9

17-1

II-1i

III-1

Figure

e
e
e

§
N
O

U
D

W
N

Re
LIST OF FIGURES

Title

Instruction and Operand Bit Humbering
General Register Addresses
Fixed Point Operand Formats a
Basic Instruction Formats ce ee ee ew th wk ww
The RR Instruction Formats oe
SRS Instruction Format o 8 ee ee le lt lw le le lk lk lw lw
SRS Halfword Addressing a a
SRS Fullword Addressing ee
SI Instructions oe 8 ee lw lw ss es es ow ew ow ow ew
RI Instructions . oe ee ww we le lw lt lt lw lw kk kl kl
RS Instruction Formats oe 6 ew 2 8 ee ew
Displacement Alignment for Extended Addressing oc 8 8
Automatic Index Alignment 2 oe .
Displacement Alignment for Indexed Addressing o 2 ew
The Contents of Indirect Address Storage Modification Word
The Contents of Index Register X re
Fullword Indirect Address Pointer oe ee ke we kw kk
Expanded Addressing a
PSW Fields a
Interrupt Structure and Priority a
Preferred Storage Area Assignments oe ee ew lw lw lw .
CPU Mode Switching a
Shift Count a
Normalize and Count Execution oe ew ew ew ew ww
Floating Point Operands in Registers
Combinations of Fractional Precision for Floating Point

s = se 3s @ = e

Operands ee ew ee ew es . oe ew ek ws
Condition Code Setting for Floating Point Arithmetic
Move Halfword Execution : so 8 ee ew le le le le le
Current STACK Status - Prior to. SCAL oe 8 ee le lk le
STACK Status - Upon Completion of SCAL oe 8 ee le lk le
MFER/MMU Registers o 8 © 6 we we ew wl lk lk kl . 28
Dissection of Instruction oe 8 ew ew ww lw lw
Pipeline Hardware Elements o 8 8 8 ew ww lw lt lt lt et
Pipeline Advantage rr
Long Instruction a

Branch Taken a
Register Conflict a
Store Instruction eo 8 ew ew : . . ee
Store Conflict 2 8 et ew
Successive Stores re
I Unit Hazard a

~y

Qs

0

mM

MN
NM

f

r
y

i
|

(
b
t

t
§

4
4

QO

°F27

O
O

O
W
N

O
H

i
n

wo

Ww
p
a

v
o
n

NM
R
O

P
O

i
@

¢@
¢@

4
b>
 p
o

ed

p
e

pe

C
A

G
a

f
a

NOTE: Use of fields marked as reserved can result in unpredictable machine operation.

1.0 AP-101S WITH SHUTTLE INSTRUCTION SET

The AP-101S is a high-speed, general-purpose computer intended Primarily for
real-time applications such as guidance, navigation, control, and data processing.
The AP-101S is software compatible with the AP-101C/M, described in IBM No.
6246156B, 30 January 1979. This family shares, and is unified by, extensive design
experience, proven technology base, and common manufacturing processes.

This Principles of Operation manual provides a direct comprehensive description of
the CPU system structure; the arithmetic, logical, branching, and status Switching;
and the interruption system. This publication defines and describes features common
to all AP-101S CPUs including the ground version, the AP-101S/G computers that do
not contain an IOP.

Both computers contain a pipeline architecture CPU, and techniques for efficiently
Programming it are contained in Section 16 of this document.

1-1

(This page intentionally left blank)

2-0 AP-1035 STRUCTURE

2-1 SHUTTLE INSTRUCTION SET

The AP-101S system structure encompasses the functional operation of' main storage,
the central processing unit (CPU), and Program-controlled I/0 facilities.

2-1.1 Information Formats

The system transmits information between main storage and the CPU in units of 16
bits, or in integer multiple of 16 bits. Each 16-bit unit of information is called
a haltfword. 91X error correction bits and three voted storage protection bits are
also associated with each halfword for the AP-101S but later references in this manual to the size of data fields exclude these bits. The AP-101S/G has two storage
protect bits per halfword.

Halfwords may be handled separately or in pairs. A fullword is a group of two
consecutive halfwords. Both halfword and fullword instructions and operands are used. Their location is always specified by the address of the leftmost halfword
Cleftmost halfword is the numerically smallest address). The instruction length is
designated implicitly in every instruction; the operand length is also Implicit.

Within any instruction and operand format, the bits making up the format are
consecutively numbered from left to right, starting with the number 0, as shown in
Figure 2-1.

Halfword

{| | | {| | |
0 15

Fullword

et tt tt ptt ly
0 15 16 31

Figure 2-1. Instruction and Operand Bit Numbering

2.1.2 Addressing

Halfword locations in storzge are consecutively numbered starting with 0. Each

number is considered the address of the corresponding halfword. The addressing

technique uses a 19-bit binary address to a maximum of 22° halfword addresses. This

set of main storage addresses includes some locations reserved for special purposes,

such as program status words; consequently, these special locations should not be

used for any purpose not implicitly defined.

2.1.3 Information Positioning

Unlike previous versions of the AP-101 computer, the AP-101S5 does not require either

fullword instructions or fullword/doubleword operands to be located in main storage

on even boundaries.

2.2 CENTRAL PROCESSING UNIT

The central processing unit (CPU) contains facilities for addressing main etorage,

for fetching or storing information, for arithmetic and logical processing o: data,

for sequencing instructions in the desired order, and for initiating the

communication between storage and external devices. .

The control section guides the CPU through the functions necessary to execute the

program.

2.2.1 Program Addressable Registers

Two sets of eight fixed point general registers and one set of eight floating point

registers are under explicit program control. ‘he contents of one or more of these

registers (32 bits) participate in most CPU operations. Associated with each of the

fixed point registers is a &-bit addressing extension register (Data Sector

Extension or DSE), the use of which is described below in Extended Addressing.

Conceptually, an additional doubleword status register, called the program status

word (PSW), is the focal point for machine status. The contents of the PSW are

updated during each instruction. Consequently, the PSW reflects current machine

status following every instruction. The PSW participates implicitly In status

switching, branching operations, and address calculations. Condition codes

resulting from an instruction are also part of the PSW.

In addition to the PSW and the general and floating point registers, the CPU also

contains working registers used for storage addressing, storage buffering, shift and

iteration counting, and operand storage. These registers are of no direct concern

to the programmer and are not described herein.

2-2

The contents of the PSW specify which of the two sets of general registers is in
Current use. Only the contents of the selected general register set can participate
in arithmetic operations and the contents of unselected sets of general registers
cannot be altered by a program. An alternate set of general registers can be
selected by changing the PSW. Only one set of the fixed point, general-purpose
registers and the floating point registers are available to the program at any one
time.

General register contents can be used interchangeably as operands for arithmetic,
logical, and shifting operations, or as base and index registers for relative
addressing. Each set of general registers is numbered from 0 through 7 and is
addressed as shown in Figure 2-2.

General Register Function

Register

Number Operand Base Index

0 000 00 | None

l 001 01 001

2 010 10 010

3 011 llor None | 011
4 100 100

5 101 101

6 110 110

7 lil lll

*11 = Register 3 for SRS; none for RS

Figure 2-2. General Register Addresses

Note that general registers 4 through 7 cannot contain base addresses and that
general register 0 cannot contain an index.

For addressing data, general registers 0-3 can be augmented by 44-bit Data Sector
Extension (DSE) registers or by the DSR in the PSW to address beyond 16-bit
capabilities. There are 16 DSEs, one for each of the eight general-purpose
registers in each of the two sets of general registers.

For some operations, a pair of general registers iss linked to form a 64-bit
doubleword register. The most significant half of a doubleword operand is contained
in the specified register; the least Significant half of the doubleword is in the
next higher-numbered register (determined by Modulo 8 addition of one (1) to the
specified register). Note: If Reg 7 is specified, the least significant half of
the double word operand is contained in Reg. 0.

2.2.2 Fixed Point Data Representation

Data representation is fractional, with negative numbers represented in twos
complement form. A halfword operand is 15 bits plus sign, a fullword operand is 3l
bits plus sign, and a doubleword operand is 63 bits plus sign, as shown in Figure
2-3.

Fixed-Point Halfword Operand

S Fraction

Fixed-Point Doubleword Operand

S Fraction

Figure 2-3. Fixed Point Qperand Formats

In fractional data representation, the binary point is immediately to the right of
the sign.

2.2.3 Instruction Formats

The length of an instruction format can be either one or two halfwords. Long format
instructions provide maximum range and extended flexibility for addressing storage
operands. Short instructions are used to (1) specify register-to-register
operations, and (2) specify storage operands in cases where a small displacement is
sufficient and complete address modification capability is not required.

Instruction formats overlap. Programs are written so that, in many instances, any
given operation can be coded using either a halfword or a fullword instruction. In

such cases, maximum use of halfword instructions results in increased storage

efficiency and performance.

The three basic instruction formats are as shown in Figure 2-4. Halfword

instructions are automatically selected by the assembler unless otherwise specified

by the programmer.

RR Format

O
Op R1 Pp R2

| | | ft titi fifoyxt |
0 4 § 7 8 11 12 13 15

SRS Format

Op *Dispia ts of the f 1T1XXX lid isplacements of the form are not valid. | | {| | |{
0 4 5 7 8 13 14 15

RS Format

O A
pes Op R1 Play} 82 Address Specification

Pt} | | | ¢ f1yrysy1tx a ee
0 4 § 7 8 171 12 13 14 15 16 31

The fields wit

Figure 2-4. Basic Instruction Formats

hin the instruction formats usually are used as described below. The
exceptions are described in conjunction with the individual formats and
Instructions.

Op

Rl

R2

B2

Disp

OPX

AM

This 5-bit field defines an operation, or the class of operation, to
be performed by tk- “PU.

This 3-bit field designates the register containing the first operand.
Except for operations which alter main storage, the result usually
replaces the first operand.

This 3-bit field appears only in the RR format. It is used to specify
a general register containing either the second operand or the address
of the second operand.

This 2-bit field specifies the register containing the base address.

In halfword SRS format Instructions, this 6-bit field is called the
displacement. For the SRS format, the displacement is added to the
base address specified by the B field to obtain a storage address.

This bit is an extension of the OP field.

This field designates one of two fullword format addressing options.

Address The second halfword of a fullword instruction 1S specified as either
Specifi~ extended or indexed addressing.

cation

see the Effective Address Generation Summary Chart, page li-1.

2.2.4 RR Format Instructions

The RR format instructions (Figure 2-5) permit the specification of operations that
use two general registers.

Op R1 C R2

[ji i Pt tox |
0 4 5 7 8 1112 13 15

Figure 2-5. The RR Instruction Formats

The operation normally uses as operands the contents of two general registers. The
R2 field specifies the second operand while the R1 specifies the first operand. The
result of the operation usually replaces the first operand.

2.2.5 SRS Format Instructions

The SRS instruction format (Figure 2-6) is a compression of the RS format. It
Provides base plus displacement Storage addressing.

* Displacements of the form

Op R1 Disp* B2 111XXX are not valid. Ltt | |_| | It | | | |
0 4 5 7 8 13 14 15

B2 Register Containing Base

00 General Register 0
01 General Register 1
10 General Register 2
11 General Register 3

Figure 2-6. SRS Instruction Format

The R1 field specifies the first operand register address. The 19-bit effective address (CEA) of the second operand is developed as follows:

Step 1

Step 2

First the positive integer contained in the displacement field is added to the contents of the base contained in the general register specified by B2.

When addressing halfword operands, the least significant bit of the displacement field Cinstruction bit 13) is aligned with base register bit 15. The 16-bit result is the sum of the base and the displacement, aligned as shown in Figure 2-7.

When addressing fullword operands using the SRS format, the least significant bit of the displacement field is aligned with base register bit 14 as shown in Figure 2-8.

Unlike previous versions of this architecture, bit 15 of a base
register is significant when addressing fullword data. Fullword
storage operands may now be located on odd address boundaries. Programs which utilize this feature will not be downward compatible.

The 16-bit result of the addition of the base and displacement is
expanded (see Expanded Addressing) to a 19-bit effective address (EA),
and this is the address of the second operand.

XY \ Base (B2)

Disp Halfword Displacement

 |
Base + Disp. 16-Bit Effective Address

es ee

15

The low-order half of the general register containing
the base does not Participate in SRS addressing.

Figure 2-7. SRS Halfword Addressing

2-7

Peete AX)

0 15 16

Disp 0 Fullword Displacement

OL, OyoyoOyo;ofojojo} | | | | yf
0 8 9 14 15

Base + Disp 16-Bit Effective Address

Pit | | | |] | jj] |] | | f

15

|
QO

\) The low order half of the general register containing
YQ the base does not participate in SRS addressing.

Figure 2-8. SRS Fullword Addressing

Except for store instructions, the result of operation between the first operand
(the contents of general register R1) and the second operand (the contents of the
EA) replaces the first operand for SRS format operations. The first operand
replaces the second operand for store instructions.

2.2.6 SI_Instructions

Direct initialization, modification, and testing of main storage is possible through
the use of an immediate data halfword appended to an SRS instruction. See Figure
2-9,

Op OPX Disp * B2 immediate Data
[| | | | [| | | | Ltt tit tt te | tT] |

0 4 § 7 8 13 14 15 16 31
* Displacements of the form 111XXX are not valid.

Figure 2-9. SI Instructions

The address of the halfword second operand is developed in the normal manner for SRS
instructions using halfword addressing. Except for test instructions, the result of
the operation between the halfword second operand and the immediate data replaces

2-8

the second operand. The second operand is not altered for test instructions. The
first operand is never altered for SI instructions.

2.2.7 RI Instructions

Using an immediate data halfword appended to an RR instruction (Figure 2-10) permits
direct initialization, modification, and testing of the most Significant 16 bits
contained in a general register.

O
; Op OPX P R2 immediate Data

Ppp ol pt et pp pp y
0 4 5 7 8 1112 13 15 16

31

Figure 2-10. RI Instructions

Except for test instructions, the result of the operation between the second operand
and the immediate data replaces the second operand. The second operand is’ not
altered for test instructions. The immediate data first operand is never altered
for RI instructions.

2.2.8 RS Format Instructions

There are two major classes of RS instructions, extended and indexed addressing
modes, differing in the techniques used to specify the second operand. See Figure
2-il.

O
A

Op R1 ? M B2 Address Specification

| | { fififi{i | es a

0 45 7 8 111213 1415 16 . 31

AM
Extended -; 0 Displacement

fits}! | {|} | | | ft fy
16 31

|
indexed : 1 x Aj | Displacement

| | { | 7 | | | | | ff
16 18 19 20 21 31

Figure 2-11. RS Instruction Formats

Extended addressing is specified when RS format bit 13 CAM) equals 0Q. This
addressing mode provides a full 16-bit halfword displacement. The base and
displacement are aligned as shown in Figure 2-12 when base addressing is performed.

Displacement

Ltt
16 31

Figure 2-12. Displacement Alignment for Extended Addressing

Aside from the size and alignment of the displacement, RS extended addressing
differs from SRS addressing in two other respecte:

1. The alignment of the displacement is the same whether addressing

doubleword, fullword or halfword operands.

2. When B2 equals 11, base addressing is not performed. In this case, the
displacement is instead used directly as the effective address.

2-10

Indexed addressing is specified by RS format bit 13 (AM) equal to 1. This
addressing mode contains three additional fields. Normally, they contribute to the
effective address generation as follows:

Xx

IA

This 3-bit field specifies one of seven general registers containing

‘the index. Indexing is not performed when X is equal to O00. An

index is contained in the upper halfword of a general register. The

index is automatically aligned as illustrated in Figure 2-13. For

additional information on index alignment, see Section 14. Consistent

with the restrictions that apply to register usage and indirect

addressing, general register contents can be used interchangeably as

either a base or an index or both. When indirect addressing is

specified, indexing follows indirect addressing (postindexing).

This format bit, when a one, specifies indirect addressing. Indirect

addressing is not perforned when this bit is zero. In the instruction

descriptions, the symbol a denotes IA for the assembler.

This format bit, in conjunction with X and IA, specifies various

address modes which are explained below. In the instruction

descriptions, the symbol # denotes I for the assembler.

The development of the EA for the indexed mode (including IC relative) of operand

addressing is explained in detail in the subsequent steps:

1. Indexed addressing is specified by RS format bit 13 CAM) equal to 1. This

addressing mode provides an 1li-bit displacement. The base = and

displacement are aligned as shown in Figure 2-14 when indexed addressing

is performed.

The displacement is aligned so that bit 31 corresponds to base or index

bit 15 and displacement bit 21 corresponds to base or index bit 5. The

displacement is expanded to 16 bits by appending five leading zeros.

If B2 is not equal to 11, the 16-bit base, contained in the higher order

half of the specified register, is added to the aligned displacement.

This results in a preliminary effective address (PEA) whereby the PEA =

(B) + Displacement.

If B2 is equal to 11, the aligned displacement is added to zero. This

result is the preliminary effective address (PEA) whereby the

PEA=Displacement.

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a

zero, then the 16-bit result of Step 2 is added to the contents of the

updated instruction counter (IC) to form the 16-bit EA whereby

EA=Cupdated) IC + PEA. (This EA is then expanded to a 19-bit EA, as

explained in the Expanded Addressing section, with the exception that the

Branch Sector Register (BSR) bits are used instead of the Data Sector
Register CDSR bits).

If the X field is all zeros, IA (bit 19) is a zero and I (bit 20) is a

one, the 16-bit result of Step 2 is subtracted from the contents of the

updated IC to form the 16-bit EA whereby EA = (Cupdated) IC - PEA. (This

2~-ll

15

Index (Xq_45) Halfword (Direct from Index Register
Bits O—15) oe

15

PEA + Index EA

[ttt ttt tt ft
15

PEA

tL ttitl i tf | lf
15

Index (X4_ ye) Fullword (index Register Bits O—15

Shifted Left 1) { ttt ttt tt ft fo
1§

PEA + Index EA

ptt ett tt tt
15

b. Fullword index Alignment

PEA

Litirirtiti st
15

index (Xo_y s) Double Word Sraee ey Bits O—15

Lijit | tt [Ojo ted
13 14 15

PEA + Index EA

Litt t tty t ft |
1§

c. Double Word Index Alignment

Figure 2-13. Automatic Index Alignment

2-12

Displacement

OfOjvoyopopep ett ee yy yy

Figure 2-14. Displacement Alignment for Indexed Addressing

EA is then expanded to @ 19-bit EA, as explained in the Expanded Addressing section with the exception that the Branch Sector Register (BSR) bits are used instead of the Data Sector Register (DSR) bits.)

If the X field is al] zeros, IA (bit 19) is a one and I (bit 20) is a zero, then Indirect Addressing is performed. The l6-bit- result of Step 2 is expanded to a 19-bit address and jis used as the address of a main storage halfword. This halfword is then fetched and expanded to 19 bits by using expanded addressing to form the EA. EA=MS (PEA). Functional equivalency to preindexing capability can be obtained through modification of the base.

If the X field is all zeros, IA (bit 19) is a one and I Cbit 20) is a one, Indirect Addressing is performed as described in Step 5 with a fullword main storage pointer. Then, after the EA has been formed, storage modification is automatically performed. The indirect address is contained in a fullword. A modifier is contained in bits 16 through 31. An address is contained in bits 0 through 15. The modifier is added to the address and the resulting modified address replaces bits 0 through 15 of the indirect address word (see Figure 2-15).

Address

Modifier Pp tt Ty YY ptt tte eee yy :
15 16 31

Modified Address = MS (PEA) <— Ms (PEA) + MS (PEA + 1)

Figure 2-15. The Contents of Indirect Address Storage Modification Word

If the X field is not zeros, IA (bit 19) is a zero and I (bit 20) is a zero, the most significant 16 bits of the general register specified by the X field are aligned, and then added to the 16-bit result of Step 2 (PEA) to form the 16-bit EA (See Figure 2-13). (This EA is then expanded to a 19-bit EA, as explained in the Expanded Addressing section.)

10.

If the X field is not all zeros, IA (bit 19) is a zero and I Cbit 20) is a

one, the most significant 16 bits of the general register specified by the

X¥ field are aligned, amd then added to the 16-bit result of Step 2 (PEA)

to form the 16-bit EA Csee Figure 9-13). (This EA is then expanded to a

19-bit EA, as explained in the Expanded Addressing section.) (The

modifier is added to the address and the resulting modified address

replaces bits 0 through 15 of the index register after the EA is

determined.) Figure 27-16 illustrates the address and modifier format in

the index register.

Address Modifier

 tye EELELeLe ttt tt | ttt py ETL si tt ft
 0 15 16 31

Modified Address = ()o_57 7)p-1s * @)36-31

Figure 2-16. The Contents of Index Register X

If the X field is not all zeros, IA (bit 19) is a one and I (bit 20) is a

zero, Indirect Addressing (IA) with postindexing is performed. The 16-bit

result of Step 2 is expanded to a 19-bit address and is used to fetch a

main storage halfword. The tndex contained in the general register

specified by X is aligned and then added to the fetched halfword to form

the 16-bit EA (see Figure 2-153). This EA is then expanded to a 19-bit EA

by using expanded addressing. Functional equivalency to preindexing

capability can be obtained through modification of the base.

19) is a one and I (bit 20) is a

defined using a 32-bit fullword
If the X field is not all zeros, IA (bit

one, an indirect addressing mode is

indirect address pointer as follows:

a. First, the PEA from Step 2 must locate a fullword indirect address

pointer, with the format as illustrated in Figure 2-17.

M
X CiCc

S Address Reserved Cc BIO BSV DSV

Br {ttt tep_LeeitLtt tS tototats | | { | | |

Qo 1 15 16 19 20 21 2223 24 27 28 31

Field Function

Xe
Index Control

C
Control to allow PSW modification

Ce Control BSV Usage

Co Control DSV Usage

BSV (Branch Sector Vector)

OSV (Data Sector Vector)

MSB (Most Significant Bit)

Selectively replaces BSR in PSW

Selectively replaces DSR in PSW

Determines type of address expansion

Figure 2-17. Fullword Indirect Address Pointer

2-14

b. Next the fullword indirect address pointer is expanded to a 19 bit address as follows:

FULLWORD INDIRECT
ADDRESS EXPANSION

YES NO
BRANCH

INSTRUCTION?
DATA INDIRECT DATA
POST-INDEX _» =1 INDIRECT

NO EA=ADDR + (X) .
Co AUTO INDEX EA=ADDR

ALIGNED

EXECUTE NEXT
YES INSTRUCTION

=O | =1 EA =0

WHEN C=0, MSs
CB AND CD ARE |
RESERVED AND <>3

| = MUST BE 0. or

MODIFY PSW 4

cpep ACTION !)
0/0 NONE EXPAND EA EXPAND EA EXPAND EA EXPANO EA
o/1 OSR=DSV USING DSR USING DSV | USING DSE USING 0000

LE, 1/0 BSRA=BSV Leen ners
f 9 | a1 DSR=DSV &
\ / BSA=BSV

BRANCH BRANCH
INDIRECT INDIRECT
POST-
INDEX NOTE:

aoe H pea bed All EA/BA address calculations involve 16-bit operands and bit 0 of the fullword
ADDR+(X) ADDR indirect address pointer is included in these address calculations.

unaltered for store operations.

BRANCH ADDR
MSB

EXPAND BRANCH EXPAND BRANCH
ADDR USING ADDR USING
0000 BSR

ee

(2.9 Expanded Addressing

~~ The addressing philosophy accommodates 64K halfword addresses since a full 16-bit
address is provided. Extending the addressing range beyond 64K halfword locations

2-15

The results of indexed mode RS operations normally replace the first operand
except for store operations where the first operand replaces the second operand.
The second operand is unaltered for nonstore operations, and the first operand is

up to 512K halfword locations is provided by utilizing PSW bits and Data Sector
Extension (DSE) registers.

Expanding to 19 bits is achieved by replacing the high-order bit of a 16-bit address
with 4 bits, as shown in Figure 2-18. Data operand addresses are extended to 19
bits with a 4-bit Data Sector Register (DSR), a DSE, a BSR, or an implied DSR of
zero. When the high-order bit of a 16-bit data address is 1, a 4-bit DSR (PSW bits
28 through 31) is selected to replace the high-order bit. (Note: IC relative data
operand addressing would use BSR instead.) When the high-order bit of a 16-bit data
register is 0 and a base register is used to determine the address, the 4-bit DSE
for that base register is selected to replace the higher order bit. When the high
order bit of a 16-bit data address is a 0, and no base register is used, an implied
DSR containing 0000 is selected. Note that indirect addressing locates the indirect
address pointer as if the pointer were a data operand. Second stage expansion of
the indirect address pointer uses an implied DSR of zero if the high order bit of
the 16-bit address is 0 and no base register is used. If the high-order bit of the
16-bit address is 0, and a base register is used, then the 4-bit DSE for that base
register is selected to replace the high-order bit. Branch addresses are also
extended to 19 bits. When the high-order bit of a 16-bit branch address is a l, a
4-bit Branch Sector Register (BSR-PSW bits 24 through 27) is selected to replace the
high-order bit. When the high-order bit is a 0, an implied BSR containing 0000 is
selected.

START

16-Bit Operand Adaress START
XYYYYYYYYYYYYYYY .

16-Bit Branch Address

XYYYYYYYYYYYYYYY

DSR (or BSR) |

{ZZZZ PSW 28-31]

| zzzz<o0800 ~~
ce cnet ete i

rr ———_—

| Expanded 19-Bit Branch vere |
[2222 — 0000 | | 2222 < DSE base | |_2Z2ZYYYYYYYYYYYYYYY |

“fF
: Expanded 19-Bit EA Branch Addressing Expansion

| ZZLLZYYYYVYYYY YYYVYYY

END

Data Operand Addressing Expansion

Figure 2-18. Expanded Addressing

2-16

BSR
| Z2Z2zZ <- PSw 24-27 |

me Be
& _

£ 4

[: ‘ J

y
o

é
‘,

é
ay

:
4

Pictorially, main storage can be visualized as follows:

BA 0 =0

or EA_=0 EA =0 EA ,=0
EA =0 ° 2 oO DSE BO, 1,2 DSE BO, 1, 2 DSE BO,1,2

No Base

Reg = = BA ° 1 EA, 1

: + —
PSA

Operating Problem Problem Problem Problem PROBLEM

System & Data Instruction Data Data DATA

Common Data Area Area Area Area AREA

Pool

0 32K BSR DSR 512K

PSW 24-27 PSW 28-31

This permits efficient communication from the problem program to the operating
system, the preferred storage area, (PSA) or a common data area.

It should be cautioned that instruction address incrementing or address calculations
' used to form the EA are performed on the low 16 bits only, and will not alter the
BSR, DSR, or DSE. The BSR or DSR may be altered only via a PSW swap, special
Instruction operations (SVC, LPS) or by use of the indirect address pointer
described in this’ section. The DSE registers are loaded by the LXA and LDM
instructions.

2.3 PROGRAM EXECUTION

The CPU program consists of instruction and control words specifying the operations
to be performed. This information resides in main storage and addressable registers
and may be operated on as data. Instruction execution control is as defined under
the section on Machine Status ant. G-rneral System Operation. Insert Storage Protect
Bits, Load Program Status, Internal Control and Set System Mask instructions are
privileged instructions and can only be executed in the Supervisor State. The
Program Status Word determines the current state of the CPU and the Supervisor Call
instruction can be used by the problem program to enter Supervisor State.

2.4 STORAGE PROTECTION FEATURES

The storage protection feature prevents modification of specific main storage
locations. Any location which ceuld, for example, contain constant data or program
instructions can be selectively protected from Store operations without restricting
the use of other areas. Traps on store operations to specific data words can be

inserted during program checkout. A privileged instruction, Insert Storage Protect
Bits, 1s provided to set/reset the protection bits associated with each halfword of

2-17

main storage. Attempting to store data in a protected location will result in a |
program interrupt. In this case, the store operation does not occur. -

2.4.1 Instruction Monitor Feature

The storage trotection bits described can also be used to flag an inadvertent

attempt to execute, as instructions, data stored in unprotected areas. The feature

Will ensure that no program will continue to execute data as program instructions.

An attempt to execute an instruction word which is unprotected will result in an

interrupt if FSW bit 34 is a one. The feature can be masked by a System Mask Bit

(bit 34 of the PSW). During program checkout, this feature permits use of special

software to aid debugging. .

An instructio. Monitor difference is the state the effective address is left in

following the interrupt handling. In the AP-101B, the Instruction Counter is

incremented to point to the next instruction to be executed. The AP-101S Instruction

Counter is not incremented and is left pointing to the offending instruction.

2.5 MACHINE STATUS.

System status can be altered by the occurrence of interrupts and by the program. A

doubleword register within the CPU contains a program status word (PSW) and is the

focal point for CPU and system status eonditions.

2.5.1 Program Status Word

The program status word (PSW), contains the basic information required for proper

program execution. The 64-bit PSW includes the next instruction address, the

current condition code, the carry and overflow indicators, the system mask for

interrupts, and other fields significant to CPU operations. In general, the PSW is

used to control instruction sequencing and to hold and indicate the status of the

system in relation to the program currently being executed. The active or

controlling PSW is called the “current PSW". By storing the current PSW during an

interruption, the status of the CPU can be preserved for subsequent use. By loading

a new PSW or part of a PSW, the state of the CPU can be initialized or changed.

Figure 2-19 shows the PSW format.

2-18

Cc F
Instruction Address C Cy REVIO UTS BSR DSR

reneien tiie Ae MPoyM My petty yf
15 16 17 18 19 20 21 22 23 24 27 28 31

0

SS R P
System Mask EA —High NSE Miwt / Interrupt Code

Lt tt tC SEL ttt tt tt
32 , 39 40 43 44 45 46 47 48 63

0-15 Next Instruction Address 36 External Interrupt 1 Mask
16-17 Condition Code 37 External Interrupt 2 Mask System *
18 Carry Indicator 38 External Interrupt 3 Mask Mask
19 Overfiow Indicator 39 External Interrupt 4 Mask
20 Fixed-Point Arithmetic Overflow Mask * 4043 Reserved for SVC High Order EA Bits
21 Reserved 44 Register Set (GR set O or 1)
22 Floating Point Exponent Underflow Mask* 45 Machine Check Mask*
23 Significance Mask* | 46 Wait State Bit (Wait/Process) ***
24-27 Branch Sector Register 47 Problem/Supervisor State Control Bit**
28-31 Data Sector Register 4863 Interrupt Code for Program Check, Machine
32 Counter 1 Mask Check, and Special External Interrupts, or
33 Counter 2 Mask System * 16 Bit Operand PEA for SVC Instruction
34 Instruction Monitor Mask Mask ©
35 External Interrupt O Mask

“Mask bit = 0, interrupt inhibited

= 1,interrupt allowed
**Q = supervisor state

1 = problem state

***Q = process state

1 = wait state

Figure 2-19. PSW Fields

The overall status of the CPU is preserved in the current PSW and the contents of
the general registers. The PSW is automatically retained upon taking an interrupt.
It is the programmer's responsibility to preserve the contents of the general
registers when necessary.

Certain other conditions that contribute to an overall system status Situation are
not automatically preserved when a CPU is interrupted. There conditions involve
additional units and include the dynamic state of all other interrupts, the state of
real time counters, and I/O system status.

Masking is accomplished by setting the appropriate PSW bit to zero.

2.5.1.1 PSW Fields

The PSW fields (Figure 2-19) are defined as follows:

2-19

Instruction Address - Bits 0 through 15 and 24 through 27 of the PSW

contain the information to determine the address of the next instruction

to be executed. The machine architecture makes provision to address

262,144 fullwords, and the AP-101S space shuttle hardware implementation

provides full addressing capability.

CPU Status

Bit Use

16, 17 Condition code for certain arithmetic, logical

and I/0 instructions

18 Carry status bit indicator

19 Overflow status bit indicator Coverflow can

be reset by testing or by loading the PSW)

20 Fixed Point Arithmetic Overflow Mask

21 Reserved

22 Floating Point Exponent Underflow Mask

23 Significance Mask

Branch Sector Register - Bits 24 through 27 replace the high-order bit of

a branch address when that bit is a ll. Otherwise, an implied sector

register of 0000 replaces the high-order bit.

Data Sector Register - Bits 28 through 31 replace the high-order bit of a

data address when that bit is a l. See "Expanded Addressing” for details

when bit 0 is a zero.

system Mask - Bits 32 through 39 are mask bits. The first two bits of the

System Mask are normally assigned to the two counters and the third to the

instruction Monitor Feature. The remaining five masks include I/0 end

conditions, other application dependent items such as a manual interrupt

key, and timer overflow conditions. The instruction SET SYSTEM MASK is

provided for modifying this field.

EA-High ~- For an SVC instruction, the 4-bit extension to make the 19-bit

effective address is saved in the old PSW bits 40-43. |

Register Select Field - The register select field, bit 44, controls either

of two sets of general registers in current use. When this bit is a zero,

then register set 0 1s used; when this bit is one, then register set 1 is

used. The set of general registers in current use can be selected when a

new PSW is loaded. This can result from the execution of the PSW load

instruction or from an interrupt.

Machine Check Mask ~- Bit 45 is the mask bit which is used to inhibit

machine check interrupts (see Figure 2-20). When this bit is a zero, then

machine check interrupts detected by the CPU are inhibited.

2-20

we i.

 # ANOMALY: When one of these interrupts is taken, the condition code (CC) in the OLD PSW will be set to

a binary 10 and the carry and overflow bits in the OLD PSW will be cleared.

ANOMALY: A masked DMA store protect interrupt will set the condition code (CC) to a binary 10 and
y and overflow bits. This can result in erroneous GPC operation if an instruction tries to utilize

the CC, carry bit or overflow bit before they are set by another instruction. Additionally, a masked DMA store

clear.th

protect interrupt clears any fixed point overflow, floating point underflow, and floating point overflow
imferrupts. This can result in a ost arithmetic interrupt if a masked DMA store protect interrupt occurs during
an instruction that causes one of these arithmetic interrupts.

Interrupt New Not PSW Int. Interrupt Accept | CPUIOP/AGE
Ponty {Class | Old PSW | PSW Maskabie | Mask | Pending | Code | Time Generated Interrupt

Bit
00 Power | 0010 —_ x — [oe N/A ENDOP CPU Power Off ****** (Microcode Put Away) 01 Power | --— 0004 x* om fe N/A MCYCLE CPU Power On
02 Power | -— 0014 xX ** of eee N/A MCYCLE CPU System Reset
03 Power | -— — — a oe N/A — —_ N/A to Shuttle ISA
Co MC 0040°**# | 0044 -- 45 }No 0008 | MCYCLE CPU BA Fault
04 MC 0040°**# | 0044 — 45 {No 0005 | MCYCLE CPU CPU Microstore Parity
05 MC 0040# 0044 — 45. | No 0006. | ENDOP CPU Interrupt Page Fault
35 MC 0040# 0044 —— 45 |No 0002 | ForcedENDOP | IOP ' DMA Memory Multi-bit Error
06 MC 0040T# 0044 — 45 |No 0003 | Forced ENDOP | CPU CPU Memory Multi-bit Error
10 MC |— — —_— —_— |— —_ — —_— Spare
11 MC |-— —_ -— — — _ -— Spare
12 MC 0040°**# | 0044 x —— 0007 | MCYCLE CPU ENDOP Timeout
13 MC — —_ — — fae _— —_— —_ Spare
14 MC 0040***# | 0044 x -—— |No 0009 | MCYCLE CPU CPU Cannot Continue
15 MC |— — -_— — j- — —_ — Reserved
16 MC. |-— —_— x — |[— — ENDOP AGE AGE Breakpoint (Tester Service)
30 MC |-- —_ —_ — |— — —_ —_— N/A to Shuttle ISA
36 MC | — —_ — {——- —_ — — TU Memory Error *****
37 MC —— — — — |— — _ _ EU Memory Error *****
17 PE 0070 0074 — 34 | No N/A ENDOP CPU CPU Breakpoint (Instruction Monitor)
20 PE 0048 004C -- 20 =| Note | 0004 | ENDOP CPU Fixed Point Overflow
21 PE 0048 004C »,¢ -— |No 000B | ForcedENDOP | CPU Floating Point Overflow (Exponem)
22 PE 0048 004C — 22 | No 0009 | ForcedENDOP | CPU Floating Point Underflow
23 PE _ — — — |-— -— — _— Spare
Cl, 34 PE 0048 004C p, ¢ -— |No 0000 | MCYCLE CPU IHegal Instruction, or 1/O Command
C2 PE 0048 004C xX=see — |No 0001 | ENDOP CPU Privileged Instruction
C3 PE. 0048 004C X -—- |No 000C jj ForcedENDOP | CPU Divided by Zero (Fit. Pt.)
C4 PE 0048 004C —_ 23. | No 0005 | Forced ENDOP | CPU Significance
C5 PE 0048 004C X — |No 000A |} ENDOP CPU Convert Overflow
31 PE 0048 004C x — |No 0002 | ForcedENDOP | CPU CPU Addr Spec 128K, GB Only
PO SC 0058 005C x -—— | No (INST) | ENDOP CPU Supervisor Call
31 PE - —_ — —_— |j— — — —_— Spare
32 1 PE — —_ — — |— —_ — —_ N/A to Shuttle ISA
33 PE 0048# 004C X —— [= 0007 | ForcedENDOP | CPU Store Protect Violation
07 PE —_ —_ —_ —_— |— —_ — —_ N/A to Shuttle ISA
40-43 SYS j|— —_ — — j— — —_ _ N/A to Shuttle ISA
44 SYS |— —_ — — |— —_ — —_— Spare
45 SYS | 0060 0064 —_ 32 | Yes —_ ENDOP CPU Interval Timer No, 1
46 SYS | 0068 006C —_ 33. | Yes _ ENDOP CPU Interval Tamer No. 2
47 SYS j|— —_ — —_— |— — — —_ N/A to Shuttle ISA
50 SYS | 0078 007C — 35. | Yes 0000 | ENDOP IOP External 0 (IOP Voter, IOP Reg. A)
50 SYS | 0078 007C — 35. | Yes 0000 | ENDOP IOP External 0 (C/M Idle, IOP Reg. A)
50 SYS. | 0078 007C —_ 35. | Yes 0000 | ENDOP IOP External 0 (IOP ROS Parity, IOP Reg. A)
50 SYS | 0078 007C —_ 35° | ‘Yes 0000 | ENDOP IOP External 0 (IOP Fault, IOP Reg. A)
50 {SYS | 0078 007C —_ 35. | Yes 0000 | ENDOP IOP External 0 (Watchdog Timer, IOP Reg. A)
51 SYS | 0080 0084 — 36 | Yes 0000 | ENDOP IOP Ext 1 IOP Data Flow Error Encoded (see Read Interrupt Reg. B

in Appendix I)
51 SYS | 0080 0084 — 36 «| Yes 0000 | ENDOP IOP Ext 1 Q Overflow (IOP Reg. B)
51 SYS j; 0080 0084 _— 36 | Yes 0000 | ENDOP IOP Ext 1 DMA Timeout (IOP Reg. B)
51 SYS | 0080# 0084 —_ 36] Yes 0004 - | ENDOP CPU Ext. 1 DMA Store Protect Violation##
53 SYS | 0088 008C —_ 37 | Yes _ ENDOP IOP Ext 2 IOP Programmed Interrupts (1-12)
54 SYS | 0090 0094 —_ 38 =| Yes ENDOP IOP Spare External 3
55 SYS | 0098 009C —_ 39. | Yes ENDOP IOP Spare Extemal 4
56 SYS — — | — — Spare
52 SYS | 0080 0084 —_ 36 «=| Yes 0006. | ENDOP AGE Shuttle AGE Interrupt

* CPU must not be in the halt mode

“* CPU must be in halt mode

*** PSW can vary, maybe updated PC or unupdated PC

“eee Only occurs when in problem state

seee* Valid only during execution in Diagnose Instruction

seers If power off during long instruction, IC may be

backed up

(INST) 16 Bit Operand PEA of SVC Instruction

Note 1 Status held active n PSW 19

t See note m Paragraph 2.5.2.1 on page 2-25.

Figure 2-20. Interrupt Structure and Priority

2-21

10.

ll.

Wait State - Bit 46 determines the wait or processing (run) states. When

this bit is a zero, the CPU is in the processing state. When this bit is

a one, the CPU is in the Wait State.

Problem/Supervisor - Bit ¢7 determines the problem or supervisor states.

When this bit is a zero, the CPU is in the supervisor state and privileged

instructions can be executed. When this bit is a one, the CPU is in the

problem state and attempts to execute privileged instructions are

inhibited resulting in an interrupt.

Bits 48 through 63 are reserved for the interrupt code. Program and

machine check interrupt conditions and associated interrupt codes are

given in Figure 2-20.

2.5.2 Interrupts

2.

Power - This interrupt eccurs when primary power is removed from the

system for any reason. The current PSW, the general register set 1 and 2,

the floating point registers, counters 1 and 2, and the current DSEs are

put away (stored) in main storage for future reference. Figure 2-21 shows

the PSA assignments including putaway. When primary power is restored,

operation is initiated with the "power on PSW" (Cif the power-up mode 15s

defined as Run). This power-up condition is explained in General System

Operation.

Machine Check - When not masked, this interrupt class occurs following the

detection of a malfunction. The current instruction is then terminated

and the interrupt taken. A diagnostic procedure may then be initiated.

When masked the interrupt does not remain pending.

Program - This class of interrupt arises from improper specification or

use of instructions or data. Bits 20, 22, and 23 (l=interrupt enabled,

O=interrupt disabled) in the PSW are provided to permit masking program

interrupts due to arithmetic exceptions such as fixed point overflow. Bit

34 in the PSW is provided to permit masking the instruction monitor

interrupt. When masked, program interrupts do not remain pending. When

invalid instruction or address detection is provided, the resulting

program interrupts cannot be masked.

Supervisor Call (SVQ) - This interrupt results from the execution of the

SVC instruction. The four MSBs of the 19-bit extended EA are placed into

the EAchigh field (bits 40-43) of the old PSW, and the nonextended 16-bit

FA is placed into the interrupt code (bits 48-63) of the old PSW. This

instruction can be used to switch from the problem to the supervisor

state.

l 5 6 9 A B D

ed for Self- Power On Available For Use

Interrupt PSW PSW Available For Software Use

Available For Software Use

Reserved For Future

O

BCE 25 (Page I-17)

Away

Put-Away Locations for the Floating Point Register Set

Micro Working Registers - DSEs

“Away Used For Hardware Fault Detection

Used For Hardware Fault Detection

Used For Hardware Fault Detection

Used For Hardware Fault Detection

* Reserved For Future Hardware

REGISTER SET 1

12 23
Figure 2-21. Preferred Storage Area Assignments

2-23

5. System - This class of interrupt results from program counter timeouts and

conditions outside the CPU. Provision is made for seven interrupt levels

within this class, and each is provided with a unique set of PSWs and a

mask bit. Two are program counters and five are external interrupts.

Any number of the five external interrupt conditions may be grouped into a

single level by the external equipment. In the event of simultaneous

external interrupt conditions, the lowest numbered (bit within the system

mask field in the PSW) interrupt is taken first. These interrupts remain

pending when masked.

The two program interval timers are each 32 bits wide and decrement. The lower 16

bits Cleast significant halfword) of each counter resides in 16-bit binary hardware

counters that count down by one every microsecond. The high 16 bits (most

significant halfword) of each counter resides in main store. The high halfword lies

in main store location 00B0 for counter 1 and main store location 00B1 for counter

2. When the low halfword (in the hardware counter) passes from 0000 (hex) to FFFF

(hex) an interrupt occurs which can cause the high halfword in main store (via

microcode) to be decremented by one. This interrupt is transparent to the

programmer until the high halfword in main store equals 0000 (hex). When such an

interrupt occurs, the high halfword is decremented to FFFF Chex) and a PSW swap

occurs, telling the programmer that the counter has timed out. Note that if the

interrupt is masked the high halfword will not be decremented by the microcode. The

low halfword continues to count down. The interrupt although, remains pending and

if unmasked within 65 ms, the upper halfword will be decremented without a loss of a

count.

The counters can be loaded and read by the Internal Control instruction, described

in Section 10. |

2.5.2.1 Interrupt Handling

The machine check, program, SVC, and each system interrupt have two related PSWs

called "old®™ and "new" in unique main store locations. This zone of main store is

referred to as a preferred storage area (PSA), which jis illustrated in Figure 2-21.

In all cases, an interruption involves merely storing the current PSW in its old

position and making the PSW at the new position the current PSW. The old PSW holds

all the necessary status information in the system existing at time of interruption.

If, at the conclusion of the interruption routine, there is an instruction to make

the old PSW the current PSW, the system is restored to the state prior to the

interruption, and the interrupted routine continues. This means the programme- must

clear the fixed point overflow indicator before being reloaded. Note that :: is

possible to switch to the alternate set of general registers when the PSW swap takes

place. This set of registers is defined by bit 44 in the new PSW.

Interruptions can only be taken when the CPU is interruptible for a given source.

The system mask, machine check mask bit, floating point exponent underflow mask, the

significance mask; and the fixed point overflow mask bits in the PSW define the

interruptible state of the CPU with respect to those sources. When masked, system

interrupts remain pending while machine check and program interrupts are ignored.

2-249

The power transient, certain program interrupts, and the SVC interrupt cannot be masked.
:

Note: The pipeline is the driver for CPU multibit errors (IU and EA). Therefore, the machine check old PSW for CPU multibit error will reflect the updated PC - not the address of the multibit error. The following are ways in which a CPU multibit error may be encountered:

1. The instruction unit (IU) prefetching instructions (up to 23 halfwords ahead of the PC)

2. The effective address unit (EA) prefetching data (anywhere in memory)

3. The EA prefetching a branch target address (anywhere in memory).

In the event of this type of error, the error detection and correction (EDAC) address register may be read for determination of the actual multibit error address.

2.5.2.2 Interrupt Priority

Figure 2-20 presents the repertoire of interrupts with approximate Priority levels. Individual interrupts are listed in order by classification, rather than by Priority. The priority of each interrupt is represented by a two-digit code, which is interpreted as follows:

First Digit - represents the capture latch number Clower-numbered capture latches are examined first) or, if alphabetic, the fact that the interrupt is generated by the CPU - either a Command Interrupt (C), or a Supervisor Call PSW swap (P).

Second Digit - represents the priority of the Interrupt within a grouping (hardware or "other"™).

Conceptually, the order of processing (in the case of interrupts received simultaneously) is as follows:

l. Group 0 Interrupts - These are the highest priority - the Power/Machine Check type interrupts. The Power, System Reset, and IPL interrupts clear all pending interrupts - the remaining Group 0 interrupts do not. See Page 2-21 for interrupt structure and priority.

2. Command Interrupts - These are usually interrupts which demand direct
communication from the CPU to the Interrupt Page Processor. Often, they
are included within a CPU microcode Procedure. Action taken by the CPU is
usually to request the interrupt and then loop at one microword, waiting
for the Interrupt Page to reset the Control Store Data Register, thereby
forcing a branch to zero.

3. Group Jj], 2, cr 3 Interrupts - These interrupts differ from the following
two groups in that the hardware freezes the CPU microcode at the next
-ENDOP when one of them is detected.

G , Group 4 or 5 Interrupts - These interrupts are the only types that are
held pending until they are unmasked with no additional higher-priority
interrupts present. They are only accepted at ENDOP time and generally
cause only slight CPU processing delays if they are masked OFF.

2-25

When more than one unmasked interrupt requests service, the current (Cold) PSW is

stored into and the new PSW is fetched from two PSA locations assigned to the first

interrupt to be processed. Then, the same procedure is followed using the PSA

locations of the second interrupt, with the exception that the "old" PSW is the

former new PSW as fetched for the first interrupt. This procedure of "passing" the

PSW is continued until the last interrupt request is acknowledged. Then,
instruction execution is commenced using the PSW last fetched. The order of

execution of the interrupt service routines is, consequently, the reverse of the

order in which the string of "new" PSWs were fetched. Machine Check and Power

Transient interruptions supersede all other interrupts when they are encountered.

The priority scheme as outlined above is used to resolve race conditions due to

multiple interrupt conditions. However, since in the case of most normal interrupts

(those expected to be encountered during the execution of typical application

software) separate mask bits and PSW locations are provided for each external

source, the priority of handling these interrupts is further affected by the

contents of the PSWs actually fetched during the interrupt service overhead. That

is»>' as each PSW swap occurs, further action with regard to System (Cand Machine

Check) interrupts is determined by the mask fields encountered within the new PSW.

Two major exceptions to the above process involve the Instruction Monitor Interrupt

and Supervisor Call. Instruction Monitor conditions are monitored by hardware and

cause no processing delays if masked OFF, since the Interrupt Page will not even be

notified of the condition in that event. It could be argued that Supervisor Call

might not be considered an interrupt at all, since it is not an unexpected condition

and is appropriately handled by the CPU microcode, but it is included in the list

because its execution necessitates a PSW SWAP and, therefore, cooperation by the

Interrupt Page processor in that portion of the instruction implementation.

2.5.2.3 Interrupt Masking

Individual masking of: several of the interrupt types is possible. When masked off,

the interruption is either ignored or remains pending for later execution. The

masking capability for each of the interrupt types is as follows:

1. Power Transient - Cannot be masked off.

2. Machine Check - Can be masked off by setting the machine check mask bit 45

in the PSW equal to zero. When masked off, normal instruction sequencing

occurs, and the interrupts do not remain pending.

3. Program - Three of the 11 program interrupts are capable of being masked
off; fixed point arithmetic overflow, exponent underflow, and
significance, by setting the appropriate mask bits in the PSW equal to
zero. When masked off, these interruptions do not remain pending. Note
that if a PSW with both Fixed Point Overflow Indicator and mask (bits 19

and 20) set is used, the interrupt will occur.

G. Supervisor Call - Cannot be masked off.

5. System ~- Each level of external interrupts can individually be masked off by setting the corresponding system mask bit in the PSW equal to zero. Interrupts that are masked remain pending.

2.5.2.% Preferred Storage Area (PSA) Assignments

The contents of the PSA are shown in Figure 2-21 with the main store address .expressed in hexadecimal notation. The following PSA locations must not be store protected:

1. Power off interrupt PSW

2. All old PSW locations

3. BCE 25 processor storage (O0A4 - 00A5)

4. Counter 1 and 2, high halfword locations OOBO and 00B1

5. Putaway locations (00CO through 0102)

6. Diagnostics (104-13F).

2.5.3 General system Operation

The various states entered by the computer and their relationship to the basic operator controls are shown in Figure 2-22. The basic controls provided for the operator are power-on, initial Program load CIPL) and the system reset key. Among the many controls available, these functions have special Significance because of their relationship to an unconditional system reset sequence. These functions each Produce a system reset sequence which applies to the computer, I/0 channels, and peripherals. Further operation within the system differs, however, as explained in the following sections.

@ Power-On

@ System Reset

e IPL

\
System Reset

Sequence

‘ (1PL) L IN (Power-On Run Mode}

t | (AGE Stop)
Execute IPL Stop

Sequence State

| (System Reset)

Use

Power-On
) Stop Key Continue Key PSW

Use System Load PSW Key — “7]
Reset PSW /

|

|

|

|
i

|

L

or Iinterruutl

(interrupt)

|
|

|

“wp\ State J
|

(Instruction. |

|
|
|
|

(Wait

—_ — — — —. _. 7 —_ __. — _J State PSW)

Figure 2-22. CPU Mode Switching

2.5.3.1 Power-On

One of two modes of operation must be specified for the system at power-on. The

first results in a system reset followed by the computer entering the stop state.

In this state, instructions are not processed, interrupts are not accepted, and

system timers are not updated. This system is termed "manual™ because further

operation must be determined by the operator.

The second mode at power-on enters the run state after the system reset is complete.

The instruction stream is initiated and interrupts are processed. The computer can

be removed from the run state by certain instructions, interruptions, and by manual

intervention.

2.5.3.2 System Reset

The system reset function resets the computer system to a known state such that

processing can be initiated without the presence of machine checks, except for those

caused by subsequent machine malfunctions. The system reset function causes the

following: -

® CPU pending interrupts are reset

® Internal timers are reset to all ones (1's)

® Status registers are reset

@ DSE registers are set to zero.

2.5.3.3 IPL

The use of the IPL function is independent of the prior state of the system. IPL first causes a system reset function and the writing of C6C6 Chex) by the CPU to all memory locations above and including address 20000 Hex with memory store Protected. IOP microcode at IPL writes C9FB Chex) to all locations from 0 to 1FFFF Hex, with memory store protected.

2.5.4 Operating State

The run state and wait state shown in Figure 2-22 are collectively termed the operating state for the system. When the computer is in the run state, instructions are executed in the normal manner. An instruction may be encountered or an interrupt processed that forces the computer into the Wait state. The computer does not execute instructions in the wait state, but it is interruptible when not masked. System timers are updated and input/output operations continue in the wait state.

The wait state may also be entered after completing IPL or by special operating intervention via the stop state (dotted lines on Figure 2-22). This action is the result of the wait bit being set in the controlling PSW.

2.5.4.1 Prosram State Alternatives

Certain other states exist within the CPU that contribute to its overall status.
These states are directly related to Program operation and are:

1. Masked or Interruptible State - The computer may be masked for certain
interrupt conditions at any given time. These conditions generally remain.
pending within the system until the masked condition is changed by the
Frogram. Certain error conditions cannot be masked off, while other error
conditions, such as program checks, are Ignored when specifically masked.

2. Suvervisor or Problem State - In the supervisor state, all instructions
are valid. In the problem state, I/O and certain other instructions are
invalid, and their use produces an error interrupt. This state is
controlled by bit 47 in the PSN. The SVC instruction is provided to
switch from problem to supervisor state. The LOAD PSW instruction is used

2-29

to switch from supervisor to problem state.

3. General Register Selection - Bit 44 is the current PSW and selects the set

of general registers in current use.

2.5.5 Architectural Growth

Throughout this Principles of Operation manual, architecture conventions are defined
or facilities are marked "reserved" to retain flexibility for future implementations
and extensions. The computer operates in conformance to this manual when
architecture definitions are followed consistently. Hardware operation, when these
rules are violated, is not defined and is properly outside the scope of this manual
to retain flexibility of implementation. "Programmer discovered" operations that
violate or go beyond the definitions described herein, but produce "useful"
functions, should not be used and should be considered "reserved", because the
results obtained may vary from computer to computer, or even release levels for one
computer, depending upon options selected or the design release level to which the
hardware is manufactured.

2-30

3-0 CPU I70

The transfer of information with input/output occurs in one of two modes:

1. Direst Memory Access CIOP initiated and controlled)

Ze Frogram Controlled (CPU initiated and controlled).

3.1 DIRECT MEMORY ACCESS OPERATION

Direct Memory Access (DMA) operations are IOP Initiated. Although the resulting
cycle steal menory access Preempts CPU accesses, thereby slowing program execution,
DMA operations are not under program control and are transparent to the functional
operation of the CPU. DMA operations can occur between CPU memory cycles during
instruction execution, unless the instruction specifies that DMAs are held off
during execution of that instruction.

3.2 PROGRAM-CONTROLLED INPUT/OUTPUT OPERATION

Program-Controlled I/0 operations transfer one fullword between a CPU general
register and an IOP Subsystem. The operation is initiated by executing the
Privileged instruction "PC Input/Output™. A control word (CW), in a second general
register specified by the instruction, defines the specific I/0 operation and the
specific IOP Subsystem associated with the operation.

3.3 PROGRAM-CONTROLLED I70 INSTRUCTION

Op R1 R2 |

PEOPLE toy yy
0 4 5 7 8 11 12 13 15

Mnemonic Format

PC R1. R2

DESCRIPTION:

The Input/Output instruction transfers a fullword to or from the general register
specified by R1. Direct I/O operations are defined by a control word (CW) contained
in the general register specified by R2. The CW format is shown below:

I | Command (M)

Pept tee tet e tT tT pT pp tt tte tp dy
1

31

3-1

ID: For an input operation, bit 0 must be coded as QO. For an output

operation, this bit must be coded as 1.

Command (M): Bits 1-31 specify the particular operation to be performed. In

executing an input operation, the channel (1) transmits the 32-bit CW

to the IOP Subsystem; and (2) subsequently loads 32 bits of

information, transmitted from the IOP Subsystem, into general register

Ri. In executing an output operation, the channel (1) transmits the

CW to the IOP Subsystem, and (2) subsequently transmits bits 0-31 of

general register R1 to the IOP Subsystem. The specific definition of

the command bits is described in Appendix I, Program Controlled Inputs

and Outputs.

Each control unit connected to the channel is required to accept the CW, decode the

control unit and device address, and perform the input or output operation defined

by the command field.

If the I/0 handshaking operation does not complete within 9.5 microseconds for CW

and DATA OUT transfers or 6.5 microseconds for DATA IN transfers, the
Program-Controlled instruction will terminate and the condition code will be set to

reflect the timeout.

RESULTING CONDITION CODE:

00 Operation successful

01 Interface timeout error; operation not successful

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

Program Interrupt ~- Privileged instruction.

PROGRAMMING NOTE:

This is a privileged instruction and can only be executed when the CPU is in the

supervisor state.

4.0 EIXED POINT ARITHMETIC

For all of the following sections, [a3] [#] indicates that the use of indirect
addressing and/or autoindexing is optional. For .example, M specifies direct
addressing without autoindexing, while M% specifies direct addressing with
autoindexing.

The arithmetic instruction set performs binary arithmetic on fixed point, fractional
operands. Fullword operands are signed and 32 bits long. Negative quantities are

represented in twos complement form.

Halfword operands are 16 bits long. Within the CPU, a halfword operand from storage
is developed into a fullword operand prior to instruction execution. This is done
by using the contents of the halfword second operand location as the most
significant 16 operand bits and generating 16 low-order zeros. This result is the
second operand.

4.1 ADD

Op R1 R2

O7OpO; OOF fy fiyry tyoyoy yy
0 45 7 8 11 12 13 15

Mnemonic Format
AR Ri, R2

,, Op R1 Disp * B2 | “Displacements of the form 111XXX are not valid.
O;O;0; HO} | | | | {| | { [J
0 4 5 7 8 13 14 15

Mnemonic Format
A R1, 02 (B2)

A
Op R1 Mj B82 Address Specification

OJOO;o;o; | |; Fryryayrjo | Pitt tf | | | | YT | | yg
0 4 5 7 8 11 1213 14 15 16 3T

AM Mnemonic Format

Extended: Oo A R1, D2 (B2) Disp
{ | | | | | | | {| | | Y

indexed: 1 A (@) (#}R1,02 (x2, 82) x [AT Disp
| | ss |

DESCRIPTION:

The fullword second operand 1s added to the contents of general register R1. The
result replaces the contents of general register Ri. The second operand is not
changed.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-273!, or less than or =
“1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

4.2 ADD HALFWORD

ee

Op R1 Disp° B2 “Displacements of the form

eee | 111XXX are not valid.
0 -4 § 7 8 1314 15

Mnemonic Format
AH R1, 02 (B2)

Op R1 ” B2 Address Specification

1} Oy; oyoyoy tf tf titty ty ijo | Ltt tt tt tl | | |] |] | fl
0 4 5 7 8 111213 14 15 16 31

AM | Mnemonic Format :
mm ee]

Disp

Extended: 0 AH R1, O02 (B82) (ttt pt pgyy

Indexed: 1 AH (@] [#] R11, 02 (X2, B82)

DESCRIPTION:

The halfword second operand is first developed into a fullword operand by appending
16 low-order zeroes. This fullword operand is then added to the contents of general
register Rl. The result replaces the contents of general register R1. The second
operand is not changed.

RESULTING CONDITION CODE:

00 The result is zero

ll The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one, if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-27°!, or less than or =
~1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

4.3 ADD HALFWORD IMMEDIATE

Op OPX R2 immediate Data

TLOL I yOPO;O;Ofiyty{r1yoOfo; | | Pit tt tt] |] TT] fy iY
0 4 § 7 8 11 12 13 15 16 31

Mnemonic Format

AHI R2, Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfword
immediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The resulting fullword operand is then added to the contents of general
register R2. The result replaces the contents of general register R2. The
immediate operand is not changed.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the general register; that is, greater than 1-277!, or less than or =
“1. If the overflow indicator already contains a one, it is not altered by this
instruction. The carry indicator is set to indicate whether or not there is a carry
out of the high-order bit position of the general register.

PROGRAM INTERRUPTS:

Fixed point overflow

(4.4 ADD TO STORAGE

A
Op R1 mi 82 Address Specification

ofojojojo} ff iiyryysti pei ttir it eT ey yy yyy
0 4 5 7 8 111213 1415 16 31

AM Mnemonic Format ee

Extended: O AST R1, D2 (B2) Disp |
. { | ee ee

Indexed: 1 AST(@] [#] R1, 02 (X2, B2) | Disp

xy AT ete tg

DESCRIPTION:

The contents of general register R1 is added to the fullword second operand. The

result replaces the contents of the second operand location. The first operand is

not changed.

RESULTING CUNDITION CODE:

00 The tesult is zero

li The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be

represented in the second operand location. That is, greater than 1-27%!, or less

than or = -1. If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is

a carry out of the high-order bit position of the result.

PROGRAM INTERRUPTS:

Fixed point overflow

WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP

accesses of the selected main storage location during the time between the fetch of

the operand and store of the result. Therefore, this instruction should not be used

With any memsry locations that might be DMA'd into.

4-5

4.5 COMPARE

Op R1 R2

O,OyO;1yO; | | Jififtrjojo; | |
0 4 5 7 8 11 12 13 15

Mnemonic Format
CR Ri, R2

OP a Disp” Ba “Displacements of the form 111XXX are not valid.

O; OJOf yO} | | | | {| { | {
0 4 § 7 8 13 14 1§

Mnemonic Format

Cc R1, 02 (B2)

A
, Op R1 . mi B2 Address Specification

O,OjO;1;O}] Fy fry tyty1}0 | ttt

0 4 5 7 8 11 12 131415 16 . 31

AM Mnemonic Format :

Extended: ft) Cc R11, D2 (B2) — Disp

|_| tf} }] } T_T tt fs
|

Indexed: 1 C[@] (#]R1, D2 (X2, B2) x Al Disp

| | {| | | | { {| {| f| fd

DESCRIPTION:

The fullword second operand is algebraically compared with the contents of general

register R1. The contents of general register Rl and main storage are not changed

at the end of instruction execution.

RESULTING CONDITION CODE:

00 The contents of general register R1 equals the second operand

11 The contents of general register R1 are less than the second operand

01 The contents of general register Rl are greater than the second operand

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

is

4.6 COMPARE BETWEEN LIMITS

Op R1 R2

oJoJojol]i; | tfitifoy it | |
0 4 5 7 8 11 12 13 15

Mnemonic Format

CBL R1,R2

DESCRIPTION:

A compare between limits instruction occurs. The condition code reflects the result
of the comparison.

_ Addr of Operand modifier

modifier Addr of Limits

operand is contained in bits 0

a fullword with the following

through 15 of

of a 16-bit twos complement integer
through 15 of general register R1. The address of
format containing the upper and lower limits is contained in bits 0
the general register R2: }

The address

Upper Limit Lower Limit

Ppp tte tt ttt ttt tet tt tT TT TT yyy
0 15 16 31

These limits are 16-bit twos complement integers.

In bits 16 through 31 of general registers Rl and R2 are 16-bit twos complement
Integer modifiers. After the addresses in bits 0 through 15 have been used to
locate the operands, each modifier is added to the most significant 16 bits of the
registers. The result replaces the most Significant 16 bits. The modifier is not
changed, overflows and carry out of the most significant address bit are. ignored.

RESULTING CONDITION CODE:

Lower Limit < Operand < Upper Limit

Operand > Upper Limit

Operand < Lower Limit

00 Within Limits:

01 Above Upper Limit:

ll Below Lower Limit:

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-7

4.7 COMPARE HALFWORD

Op R1 Disp * B2 * Displacements of the form

ee | | td | 111XXX are not valid.
0 4 5 7 8 13 14 15

Mnemonic Format

CH R1,02 (82)

Op R1 \ B2 Address Specification

17O jOyt yO} | | { TT; 14140 | f {| | | kt | | | | f | | | ft

0 4 5 7 8 11 121314 15 16 31

AM Mnemonic Format

Extended: 0 CH R1, D2 (B2) Disp
{ | {| | | | [| | | | | f

Indexed: 1 CH(@!] [#1] ——-R1, 02 (X2,B2) x 1A l Dis.

{ | {f | | {| {| {| {| | | |[

DESCRIPTION:

The halfword second operand is first developed. into a fullword operand by appending

16 low-order zeros. This fullword operand is then algebraically compared with the

contents of general register R1. The contents of the general register and main

storage are not changed at the end of instruction execution.

RESULTING CONDITION CODE:

00 The contents of general register Ri equals the developed fullword operand

11 The contents of general register Rl are less than the developed fullword

operand

01 The contents of general register R1 are greater than the developed fullword

operand

INDICATORS: The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

After development, all 32 bits of the fullword operand participate in the

comparison.

4-8

4.8 COMPARE HALFWORD IMMEDIATE

Op OPX R2 immediate Data |
TOT OF yO; ttayrytyofol yy a a

0 4 5 7 8 1112 13 15 16 31

Mnemonic Format

CHI R2, Data

DESCRIPTION:

Instruction bits 16 though 31 are treated as immediate data. This halfword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeros. This’ fullword operand is then algebraically compared with the contents of
general register R2. The contents of the general register and main storage are not
changed at the end of Instruction execution.

RESULTING CONDITION CODE:

00 The contents of general register R2 equals the developed fullword operand
11 The contents of general register R2 are less than the developed fullword

operand

01 The contents of general register R2 are greater than the developed fullword
operand

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

After development, all 32 bits of the fullword operand participate in the
comparison.

“

4.9 COMPARE IMMEDIATE WITH STORAGE

Op OPx Disp ° B2 Immediate Data

Opty tyOttyoyt yy | ttt Piette e tet tt TE ET tT] yf
0 4 § 7 8 13 14 15 16 31

Mnemonic Format “Displacements of the form

CIST 02 (B2), Data 111XXX are invalid.

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. This is algebraically

compared with the halfword main storage operand. Tha immeciate data and the

contents of main storage are not cha. ged at the end of this instruction.

RESULTING CONDITION CODE:

00 The immediate data equals the halfword main storage operand

11 The immediate data is less than the halfword main storage operand

01 The immediate data is greater than the halfword main storage operand

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.10 DIVIDE

Op R1 R2
0; 1,0) Oj1 11 j14 0 0

0 4 § 7 8 11 12 13 15
Mnemonic Format

OR R1, R2

Op R1 Disp* B2 * Displacements of the form
0| 1;O;0;1 | f | | | 111XXX are not valid.

0 45 7 8 13 14 15

Mnemonic Format

D R1, 02 (B2)

Op R1 A B2 Address Specification
Op tyO; ort; fF y fryryty1fo | ee a |
0 4 5 7 8 1112131418 16 31

AM Mnemonic Format

Extended: O OD R1, D2 (B2) Disp
| | | |] | | |] | {| Y yy

Indexed: 1 DO[@) (#] R1,02 (x2, B82) X jist Disp
| | {A {}]f] ff] t ty] |] f

DESCRIPTION:

The first operand, a 64-bit, signed twos complement dividend, is contained in the
general register pair R1 and (R1+1)mod8. The most significant portion is in Rl.
When R1l indicates an odd general register, the first operand is developed by
appending 32 low-order zeros to the contents of R1. The second operand is the
divisor.

The first operand is divided by the second operand. The unrounded quotient replaces
the contents of general register Rl. The remainder is not developed. When R1 is
even, specifying an even/odd general register pair, the contents of (R1 + 1) mod 8
are indeterminant at the end of instruction execution. When Rl is odd, (R1 + 1) mod
8 is never changed. The second operand is not changed.

When the relative magnitude of dividend and divisor is such that the quotient cannot
be expressed as a 32-bit signed fraction, an overflow is generated. In this event,
the contents of both RI (Cand R1 + 1 when Rl is even) are indeterminate upon
instruction termination.

RESULTING CONDITION CODE:

The code is not changed.

mo
) i 11

INDICATORS:

The overflow indicator is set to one when the <uotient cannot be represented, or
when division by zero is attempted. The dividend is destroyed in these cases. If
the overflow indicator already contains a one, it is not changed. The carry
indication has no significance following execution and is indeterminate.

PROGRAM INTERRUPTS:

Fixed point overflow

4.11 EXCHANGE UPPER AND LOWER HALFWORDS

Op R1 R2

Oj Of OFOIO | | 1] 1f 1/071 | |
0 4 § 7 8 11.12 13 15

Mnemonic Format

XUL R1, R2

DESCRIPTION:

The upper halfword of general register R1 is exchanged with the lower halfword of
general register R2. Bits 0 through 15 of general register R1 replace bits 16
through 31 of general register R2, while simultaneously bits 16 through 31 of general register R2 replace bits 0 through 15 of general register R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.12 INSERT ADDRESS LOW

Op R1 Disp* B2

1/1] sfoj{ of] | | | | | j | |
0 4 § 7 8 13.14 15

* Displacements of the form 111XXX are not valid.

Mnemonic Format

IAL R1, 02 (B2)

A

Op Ri M| B82 Address Specification
1iifrfofol | | | yf dafiti ;}}]_t_tTy?T ttt] {| ff | fy yf ft
0 4 § 7 8 11121314 15 16 31

AM Displacement

o- | 7;7i_7tTy_t_ T_T] yy | ft
16 , 31

{

Xx All Displacement

1 [{ { { {ey tTyT_T y
16 31

AM Mnemonic Format

Extended: 0 {AL R1, 02 (B2)

indexed: 1 IAL [@][#] R11, 02 (X2, B2)

DESCRIPTION:

A 16-bit effective address is developed in the normal manner utilizing halfword

-16 low-order bits

are not

This address itself replaces the

high-order bits of general register Rl

specified.

The 16

index alignment, if

of general register Ri.

changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-14

4.13 INSERT HALFWORD LOW

A :
R1 Mi B2 Address Specification

tlojofofol | {| | yfatgdah | Litt e_et_ yt] {typ yt ly
0 4 5 7 8 1112 13 1415 16 31

AM Displacement

0 L{{t{_t_e_TtETT_TL_ YT T_ TL yyy

16 31

x Displacement

1 | | | | | {| {| | | { | f

16 31

AM. Mnemonic = Format

Extended: 0 tHE R1, D2 (B2)

Indexed: 1 IHL [@] [#]R1, D2 (X2, B2)

DESCRIPTION:

The halfword second operand replaces the contents of bits 16-31 of general register
Rl. Bits 0-15 of general register Rl are not changed. The second operand is not
changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.14 LOAD

Op RI 1 R2
Oyo youn ty pe tty yoyo}
0 4 § 7 8 11 12 13 15

Mnemonic Format
LR R1, R2

Op R1 Disp* B2 | “Displacements of the form
0,0; 011; 1 1 | rtd ! 111XXxX are not valid.

0 4 5 7 8 13 14 15

Mnemonic Format
L R1, 02 (B2)

PAT ee. | Op Ri uj B82 Address Specification

OpOpor mitt | fy titty ito l Ltt ttt tt tT Tf] |] | ft Y

4 5 7 8 111213 14 15 16 | 31

AM Mnemonic Format
Disp |

Extended: O 8 RY. 02 (62) Lt peepee tt

Indexed: 1 L{@] [#] R1, 02(X2, B2) X i} Disp
| A {titi tt tt

DESCRIPTION:

The fullword second operand is placed in general register Rl. The second operand is
not changed.

RESULTING CONDITION CODE:

00 The second operand is zero

11 The second operand is negative

01 The second operand is positive (>0)

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-16

4.15 LOAD ADDRESS

Op R1 Disp ° B2 “Displacements of the form Vy dyryor | | f | | td | 111XXX are not valid.
0 4 5 7 8 1314 15

Mnemonic Format
LA R1, 02 (B2)

Op R1 0 B2 Address Specification
Tir yryotrt | f fatapatato | Pept tt | | pT tp yt

0 4 5 7 8 11121314 15 16 31

AM Mnemonic Format |
Extended: 0 LA R1, 02 (B2) Disp

| | Lt | | | |

Indexed: 1 LA (@] (#] R1, D2 (X2, B2) x i yt Disp

LJ 4 se

DESCRIPTION:

A 16-bit effective halfword address is developed in the normal manner without
expanding to 19 bits. This address itself replaces the 16 high-order bits of
general register R1. The 16 low-order bits of general register Rl are zeroed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

When Rl = B2, it is possible to increment Rl by the displacement field.

In the RS format when B2 = ll and AM = 0, this is functionally equivalent to a LOAD
HALFWORD IMMEDIATE instruction. In this case, bits 16 through 31 are treated as
immediate data. The immediate data is expanded to 32 bits by appending 16 low-order
zeros. This’ resulting fullword operand replaces the contents of general register
Rl.

4.16 LOAD ARITHMETIC COMPLEMENT

Op R1 R2

Ty 1] if Oi1 f {| fig ty Ort; ff

0 4 § 7 8 1112 13 1§

Mnemonic Format

LCR Ri, R2

DESCRIPTION:

The twos complement of the fullword second operand replaces the contents of general
register R1. Complementation is accomplished by adding the ones complement of the

fullword second operand and a low-order one.

RESULTING CONDITION CODE:

00 The result is zero

ll The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one when the maximum negative number is.
complemented. If the overflow indicator already contains a one, it is not altered
by this instruction. The carry indicator is set to indicate whether or not there is
a carry out of high-order bit position of general register. The carry indicator

Will only be set when the operand is zero.

PROGRAM INTERRUPTS:

Fixed point overflow

4.17 LOAD FIXED IMMEDIATE

O
Op R1 &| OPx

tlolifz{[i} | | lo | |
0 4 5 7 8 11:12 13 15

Mnemonic Format

LEXI Ri, Value

DESCRIPTION:

A fixed point literal value is loaded into the general register specified by R1.

The Immediate values are ~2> -i, 0, 1, o> 3» G, 5, 6, 7 > 8 > 9, 10, li, 12 or 13.
The immediate is loaded into bits 0 through 15 of general register Rl. Bits 16
through 31 of general register R1 are set to zero.

OPX (Bits 12, 13, 14 2 15 Immediate Value --> R1

Chex) (hex)

FFFE0000
FFFFO000
oo000000
00010000
00020000
00030000
00040000
00050000
00060000
00070000
00080000
00090000
oo0Ac000
000B0000
o00C0000
oo0D0000 A

M
O
I
O
D
P

w
o
O
N

K
U

B
W
R

oO

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4-19

4.18 LOAD HALFWORD

Op R1 Disp ° B2 Displacements of the form
1{0 JO] 1{1 | | | {| [| ff | 111XXX are not valid.

0 4 § 7 8 13 14 15

Mnemonic Format

LH R1, 02 (B2)

A Spee. Op R1 mi 82 Address Specificiation
MO Op yt ft tty tyt yt yo | a ee

0 45 7 8 11121314 15 16 31

AM = Mnemonic Format

Extended: 0 LH R1, 02 (B2) Disp
| | re ee

|

indexed: 1 LH(@] (#) R1, O02 (X2, B2) Xx Aj | Disp

| | es

DESCRIPTION:

The halfword second operand is
low-order zeros. The resulting
register R1. The second operand

RESULTING CONDITION CODE:

00 The fullword operand is

11 The fullword operand is

01 The fullword operand is

INDICATORS:

developed into a fullword operand by appending 16
fullword operand replaces the contents of general
17S not changed.

<ero0

negative

positive (>0)

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction clears the low-order half of general register Rl.

4.19 LOAD MULTIPLE

; Op OPX " B2 Address Specifications
Wet oof ati folo} sty] tat | et

0 4 5 7 8 1112131415 16 31

AM Mnemonic Format

Extended: Oo! LM O2 (B2) Disp
|_| Litt ft] {] {| | | |

Indexed: 1 LM [@] [#] O02 (X2, B2) X h Disp

| fj Pitt] | { {Yt Y

DESCRIPTION:

All eight general registers are loaded from the eight fullword locations starting at
the fullword, second operand address. The general registers are loaded in ascending
order.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction will always have halfword index alignment and will be excluded from
automatic index alignment.

4.20 MODIFY STORAGE HALFWORD

Op OPX Disp” B2 Immediate Data
1{O};141}o;O;of/o; | | {| { | | Pie tT tT TE fT tf tT tlt] fg

0 4 5 7 8 1314 15 16 31
Mnemonic Format “Displacements of the form

MSTH 02(B2), Data 111XXX are invalid.

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data representing a twos
complement integer. This immediate data is added to the halfword main storage
operand. The result replaces the halfword main storage operand. The contents of
the general registers are not changed. Only the contents of the halfword main
storage operand location are altered.

RESULTING CONDITION CODE:

00 The result is zero

ll The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow and carry indicators are not changed by this Instruction.

PROGRAMMING NOTES:

The MSTH immediate data (mask) is algebraically added to the halfword operand in
main storage. Tally up and tally down is thus possible.

WARNING?

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage Iscation during the time between the fetch of
the operanr and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

4-22

4.21 MULTIPLY

Op R1 R2

OftyOp;O; oO; fy | ftytyryOyo; | |

0 4 § 7 8 1172 13 1§

Mnemonic Format

MR R1,R2

Op R1 Disp* B2 | “Displacements of the form 111XXX are not valid.

Oj71 {Oj o7 Oo; | | | | | {| f{ |

0 4 5 7 8 13 14 15

Mnemonic Format

M R1,02(82)

Op R1 ‘ B2 Address Specification
Oj1 jO;O;o}; | | | ty 1714140 { Ltt | | | | | |] ff gly
0 4 5 7 8 1112 1314 1516 31

AM Mnemonic Format

Extended: 0 M R1,02(B2) | | {ttt tt} |

{
Indexed: 1 M [@] (#] R1,02(X2,B2) X Aji Disp

| | Litt tt

DESCRIPTION:

The product of the multiplier (the second operand) and the multiplicand (the first
operand) replaces the multiplicand. Both multiplier and multiplicand are 32-bit
signed twos complement fractions. The product is a 64-bit, signed twos complement
fraction number and occupies an even/odd register pair when the R1 field references
an even-numbered general register. When R1 is odd, only the most significant 32
bits of the product is saved in general register Ri.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set to one when -1 is multiplied by -1l. If the overflow
indicator already contains a one, it is not altered by this instruction.

PROGRAM INTERRUPTS:

Fixed point overflow

4.22 MULTIPLY HALFWORD

Op Ri Disp” B2 | *Displacements of the form 111XXX are not valid.
T{O}; yO; 1] | | {| | | | { {

0 45 7 8 131415

Mnemonic Format

MH R1,02(B2)

Op R1 7 B2 Address Specification

Vyoyrpors} ff frtr{sfrjo Ps ee
0 4 5 7 8 111213 14 1516 31

AM Mnemonic _ Format ;
ame mane Disp Extended: 0 MH R1,02(B2) {] | if {| {| | tt ft tet

|

indexed: 1 MH (@] [#4] R1,02(X2,82) x 4 I Disp

| | { | |] | | | {| {| {| {

DESCRIPTION:

The product of the halfword multiplier (the halfword second operand) and the
halfword multiplicand (the contents of bits 0 through 15 of general register R1)
replaces the mutiplicand. Both multiplier and multiplicand are 16-bit signed twos
complement fractions. The product is a 32-bit Signed fraction. This product is
saved in general register Rl.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set to one when -1 is multiplied by -1l. If the overflow
indicator already contains a one, it is not altered by this instruction.

PROGRAM INTERRUPTS:

Fixed point overflow

4-24

4.23 MULTIPLY HALFWORD IMMEDIATE

Op OPX R2 immediate Data

Tyo tpt fo ft ytyt ft ft pt ojo] ¢ y Peete tE tT fT PT Te ly
0 4 §5 7 8 11 1213 15 16 31

Mnemonic Format

MHI R2. Data

DESCRIPTION:

Instruction bits 16 through 31 «ene treated as immediate data. This halfword of
immediate data is the multiplier. ‘Ynhe contents of bits 0 through 15 of general
register R2 are the halfword multiplicand. The Product of the multiplier and the
multiplicand is a 32-bit signed fraction. Both multiplier and multiplicand are
16-bit signed twos complement fractions. This Product is saved in general register
R2.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set to one when -1 is multiplied by <1. If the overflow
indicator already contains a one, it is not altered by this instruction.

PROGRAM INTERRUPTS:

Fixed point overflow

4-25

4.24 MULTIPLY INTEGER HALFWORD

Op R1 a B2 Address Specification

PyOpOu yt fF fF ft yt ytyt yt | es es ee
0 4 5 7 8 111213 14 18 16 31

AM Displacement
0

Pitti t | |] |] |] }] yyy y
16 31

1 x a | Displacernent

| | es ee
16 31

AM Mnemonic Format

Extended: 0 Mit R1, 02 (B2)

Indexed: 1 MIH (@] [#] R1, 02 (X2, B2)

DESCRIPTION:

The product of the multiplier (the <i:wos complement signed integer halfword second
operand) and the twos complement signed integer halfword multiplicand (the contents
of bits 0 through 15 of general register R1) replaces the multiplicand. An
intermediate product is formed as a 31-bit Signed integer. This product is
algebraically shifted left 15 places, to forma twos complement signed halfword
integer product. This halfword product replaces bits 0 through 15 of general
register Rl. Bits 16 through 31 of general register Rl are zeroed.

RESULTING CONDITION CODE:

The code -s not changed.

INDICATORS:

The overflow indicator is set when the upper 16 bits of the intermediate product do
not equal all ones or all zeroes. If the overflow indicator already contains a one;
1t is not altered by this instruction.

PROGRAM INTERRUPTS:

Fixed point overflow

PROGRAMMING NOTE:

If I, J, and K are halfword operands, the equation IXJ+K. may be solved with the
following code:

LH Ri,I

MIH R1,J

AH R1,K

GS
 i 26

4.25 STORE

Op R1 Disp* B2 * Displacements of the form 111XXX are not valid.
O,O;1;14O} | | | {| | { { |
0 4 5 7 8 1314 15

Mnemonic Format

ST R1,D2(B2)

Op R1 wt B2 Address Specification.
Oporto; | | fryprsry1fo Lt et
0 4 5 7 8 1112 13 14 15 16 . 31

AM Mnemonic Format

Extended: 0 ST R1,02,(B2) Pept rrrry |

indexed: 1 ST[@| (#1 R1,02 (X2.82) Disp

| | | | | | f { f Y

DESCRIPTION:

The contents of general register Rl are stored at the fullword second operand location. The contents of general register Rl are not changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

ce F L fe

4.26 STORE HALFWORD

Op R1 Disp” B2 * Displacements of the form 111XXX are not valid.
rpOym yt Tt Ltt tC |

0 4 § 7 8 13 14 15
Mnemonic Format
STH R1,02(82)

Op R1 m| 82 Address Specification
MEO yt | fT fit itriijo Piette t tt ttt tt tt TY YY

0 45 78 111213 14 15 16 , 31

AM Mnemonic Format Disp
Extended:. Q STH R1,02 (B2)

{| ee

Indexed: j STH [@| (#1 R1,02 (X2,B2) x i. | Disp

| J ttt ttt ttt

DESCRIPTION:

The most significant 16 bits (bits 0 through 15) of general register R1 are stored
at the halfword second operand location. No other storage location is altered. The
contents of general register R1 are not changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

4.27 STORE MULTIPLE

Op OPX " B2 Address Specification

VETO Oy1 70 yO yO] ty tyty tf | | Pitt |] {| { |] Yt gy yj
0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format Disp
Extended: 0 STM D2(B2)

Pil had tt ll

{ Indexed: 1 STM |@] [#] D2(X2,B2) x Al! Disp
| | | oe

DESCRIPTION:

All eight general registers are stored at the eight fullword locations starting at
the fullword second operand address. The general registers are stored in ascending
order.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is excluded from automatic index alignment. Indexes will always
‘specify the halfword.

4-29.

4.28 SUBTRACT

Op R1 R2
0; 0,0; 0) 1 | | Ty] T{ 170 0 | |

0 4 5 7 8 1712 13 1§
Mnemonic Format

SR R1,R2

Op R1 Disp ° B2 *Displacements of the form 111XXX are not valid.
O,;O;O;O;1} | | { | | | { {

0 4 5 7 8 13 1415
Mnemonic Format

S R1,02 (82)

Op | R1 vt B2 Address Specification’
0; 0j0O; O; 1; | | | 14 141] THO | es Ge es es De

4 5 7 8 1112 1314 15 16 31

AM Mnemonic Format Disp
Extended: 0 S F402 (B2)

| | es
Indexed: 1 S(@] (#1 R1,02 (X2,B2)

Xx AY | Disp

| | f | { {| {| {| | | {| f

DESCRIPTION:

the contents of general register R1.

The second operand is not

The fullword second operand is subtracted from
The result replaces the contents of general register Rl.
changed.

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero

li The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the difference is too large to be represented in R13; that is, greater than 1-271, or less than or = -1. I¥€ the overflow indicator already contains a one, it is not altered by this Instruction. The carry indicator is set to indicate whether or not there is a carry out of the high-order bit position of Rl.

PROGRAM INTERRUPTS:

Fixed point overflow

4.29 SUBTRACT. FROM STORAGE

On RI a B2 Aciciress Specification

Opoyojorry py tyr peepee tee eet
0 4 5 7 8 17.1213 14 15 16 3!

AM Mnemonic Format

Extended: oO) SST R1, 02 (B2) Disp)

 indexed: 1 SST [@] [=] ° R1, 02 (x2. B2)

DESCRIPTION:

The contents of general register Rl are subtracted from the fullword second operand.
The result replaces the contents of the second operand location. The first operand
is not changad.

Subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added
to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero

lil The rasult is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in the second operand location. That is, greater than 1-2 71, or less
than or = =}. If the overflow indicator already contains a one, it is not altered
by this instrustion. The carry indicator is set to indicate whether or not there is
a carry out of the high-order bit position of the result.

PROGRAM INTERRUPTS:

Fixed point overflow

WARNING £

This instruction requires multiple memory accesses. The CPU does not Prohibit IOP
accesses of the selected main storage location durins the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA‘d into.

4.30 SUBTRACT HALFWORD

Op R1 Disp” B2 “Displacements of the form 111XXX are not valid.
1,O;0;0; 1) | | {| {| {| | | |
0 4 5 7 8 1314 15

Mnemonic Format

SH R1,02(B2)

Op R1 “ B2 Address Specification

pO;O;O;ty | f fry ty ysyo | ee ee |
0 4 5 7 8 111213 14 15816 31 |

AM Mnemonic Format Disp
Extended: 0 SH R1,.02.(82) 1 | rtrd rtrd

l:idexed: 1 SH (@|(#] R1,02(X2,B2) X LAI Disp

| | | | | | {| | | { ff

DESCRIPTION:

The halfword second operand is first developed into a fullword operand by appending
16 low-order zeroes. This second operand is’ then subtracted from the contents of
general register R1. The result replaces the contents of general register R1. The
second halfword operand is not changed.

subtraction is performed by adding the ones complement of the second operand and a
low-order one to form the twos complement for the fullword. This fullword is added

to the first operand. All 32 bits of both operands participate as in ADD. The
overflow, carry, and condition code indicators reflect the result of this addition.

RESULTING CONDITION CODE:

00 The result is zero

ll The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow indicator is set to one if the magnitude of the sum is too large to be
represented in R1; that is, greater than 1-2°%1, or less than or = -1. If the
overflow indicator already contains a one, it is not altered by this instruction.
The carry indicator is set to indicate whether or not there is a carry out of the
high-order bit position of Rl.

PROGRAM INTERRUPTS:

Fixed point overflow

4.31 TALLY DOWN

Op OPx Disp” B2 * Displacement of the form

yO; JO;O;O yo ;o; |; | {| f | LILXXX are not valid

0 4 5 7 8 13 14 15

Mnemonic Format

TD D2 (B2)

Op OPX ’ B2 Address Specifications .

1{ 041); 0/0 {0 | O;O}71 41 [1{71]}0 | {| | jf | | | {| | | | | | | | ft
0 4 5 7 8 1112131415 16 31

AM Mnemonic Format |

Extended: 0 TD D2 (B2) Disp

| | {| {| | {| | | { | | |

{
Indexed: 1 TD[(@] [#] D2 (X2, B2) x Al ! Disp

‘| {| | | {| | {| | | | |

DESCRIPTION:

The main storage halfword operand is decremented by one, and the result replaces the

halfword operand. The contents of the general registers are not changed. Only the

contents of the main storage operand are altered.

RESULTING CONDITION CODE:

00 The result is zero

ll The result is negative

01 The result is positive (>0)

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING WOTES:

This instruction is similar to the MODIFY STORAGE HALFWORD instruction with an

implied oper.and of all ones.

WARNING?

This instruction requires multiple memory accesses. The CPU does not prohibit IOP

accesses of tre selected main storage location during the time betueen the fetch of

the operand and store of the result. Therefore, this instruction should not be used

With any mem3ry locations that might be DMA‘d into.

4-34

5.0 BRANCHING

Instructions are executed, by the central processing unit, primarily in the
sequential order of their locations. A departure from this normal sequential
operation may occur when branching is performed. The branching instructions provide
a means to make a two-way choice, to reference a subroutine, or to repeat a segment
of coding.

Branching is performed by introducing a branch address as the new instruction
address. The 19-bit branch address is generated as described under Expanded
Addressing. Therefore, when a branch is taken, the branch address is used as the
address of the next instruction. If Instruction Protection Monitor jis enabled, an
interrupt will occur, regardless of the branch address contents, should the branch
be attempted and the destination location is not storage protected.

5.1 BRANCH AND LINK

Op R1 R2

TE apoyo; | | yi woo; | |

0 4 5 7 8 11 12 13 15
. Mnemonic Format

BALR R1, R2

Op R1 a B2 Address Specification

1] 141;0;0 | | Vi] tf{ tf 140 | ee ee Ds eG

0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format

Disp
Extended: 0 BAL | R1, O02 (B2). 1 | rrttrprrprgt

Indexed: 1 BAL [@] [=] R1, O02, (X2, B82) X iit Disp

| | jA | | | | | | | | ff

DESCRIPTION:

First, the branch address is computed. Then, the first word of the current PSW
(bits 0 - 31) is loaded into general register R1. Thus, the address of the next
sequential instruction is preserved in register R1 (bits 0 - 15). The remaining
bits of general register R1 (bits 16 - 31) will contain the condition code, the
carry indicator, overflow indicator, the fixed point overflow mask, the exponent
underflow mask, the significance mask, and the contents of the branch and data

sector registers.

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2, if field R2 #0. This 16-bit branch address is expanded toa 19-bit

branch address. (See Expanded Addressing.) If field R2 = 0, see programming notes.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

In the case where R2 = 0, (BALR Rl, 0), no branch is taken.

5.2 BRANCH AND INDEX

Op R1 . B2 | Address Specification

Wapopi ty | ft tif yijitfo | [fd df | ff ff - - f—
0 45 7 8 111213 14 1§ 16 31

AM Mnemonic Format Disp
Extended: 0 BIX R1, 02 (B2) fat ty] (yf

{ .

Indexed: 1 BIX (@) (#4) R1, O02 (X2, B2) X Aj l Disp
| | Pistigfgy | jy}

DESCRIPTION:

Bits 0 through 15 of the general register specified by R1 contain an index. Bits 16
through 31 of general register R1 contain a count. An effective address is computed
in the normal manner for the extended class. (For the indexed addressing mode, the
fullword indirect address pointer must contain zeros in bit locations 22 and 23.)
Next, the index is incremented by one. Then the count is decremented by one. If
the count prior to update is greater than zero, a branch to the effective address is
taken. If the count prior to update is less than or equal to zero, no branch
occurs.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry and overflow indicators are not changed by this instruction.

5.3 BRANCH ON CONDITION

Op M1 R2

Me OOO t | fy Pty yp tyo joy yy.
0 4 5 7 8 11 1213 15

Mnemonic Format

BCR M1, R2

A ae Op M1 mi 82 Address Specifications
TET yO;OpO] yy tty tyty 140 | oe
0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format

Extended: 0 BC Mi, O02 (B2) Disp
. Eft { . | |] | | | | | | | |

Indexed: 1 BC({@) [=] M1, 02 (X2, B82) x yt Disp
fj {| JAH | | | {| | | | yf yy

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5
through 7 (the Ml field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken. Thus, when more than one
bit of the Ml field is a one, the branch is taken for any successful test (e.g., Ml
eee

= 111 always branches, M1 = 000 never branches).

The branch address is contained in bits 0 through 15 of general register R2 for the
RR format. This 16-bit branch address 1s expended to a 19-bit branch address. (See
Expanded Addressing.)

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical, test and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The result and test conditions are shown as follows:

Arithmetic and Tally

Zero

Negative

Positive

Logical

Zero

Not Zero

Test

Zero

Mixed

All ones

Compare

Equal

0, < O02
0, > 02

(>0)

M1 Field (Test)

C5) C6) (7)

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

It is possible to combine tests.
field of 10 1 specified branch on nonnegative (zero or positive).

For example, following the MSTH instruction, an Ml

3-4 BRANCH ON CONDITION BACKWARD

- Op M1 Disp° *Displacements of the form

11 1 0) 1) 1 1 | rrr 1,0 111XXX are not valid.

0 4 § 7 8 13 14 15

Mnemonic Format

BCB M1, 02

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5
through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by subtracting the Disp from
the updated IC. Thus» when more than one bit of the M1 field is a one, the branch
is taken for any successful test Ce.g., M1 = 111 always branches).

RESULTING CONDITION CODE:

The condition code was’ set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

E
T
O
,

a
e

8,

a
A

5.5 BRANCH ON CONDITION CEXTENDED)

Op M1 R2

Myryoyoyoy py ftytyryolry yy
0 4 5 7 8 11°1213 15

Mnemonic Format

BCRE M1, R2

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5
through 7 (the M1 field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken. Thus, when more than one
bit of the Ml field is a one, the branch is taken for any successful test (Ce.g., Ml
= 111 always branches).

When the branch is taken, PSW bits 0 through 15 and 24 through 31 are replaced by
corresponding bits in general register R2.

RESULTING CONDITION CODE:

The condition code was set following all arithmetic, logical test, and compare
Instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is similar to the RR version of the BRANCH ON CONDITION
instruction. It is provided to facilitate subroutine returns across sector
boundaries after general register R2 has been initialized by the use of the BRANCH
AND LINK instruction.

5-7

5.6 BRANCH ON CONDITION FORWARD

Op M1 Disp° “Displacements of the form
Vp dy Opty t 1 | 1 | tty foyo 111XXX are not valid.

0 4 § 7 8 13 14 15

Mnemonic Format

BCF M1, 02

DESCRIPTION:

This instruction tests the PSW condition code status bits. Instruction bits 5
through 7 (the Ml field) specify which condition code (bits 16 and 17 of the PSW) is
to be tested. Instruction bit 5 tests for a code equal 00, instruction bit 6 tests
for a code equal 11, and instruction bit 7 tests for a code equal 01. Whenever the
condition code test is successful, the branch is taken by adding the Disp to the
updated IC. Thus, when more than one bit of the Ml field is a one, the branch is
taken for any successful test (e.g., Ml = 111 always branches).

RESULTING CONDITION CODE:

The condition code was’ set following all arithmetic, logical, test, and compare
instructions, and otherwise remains unchanged unless the program status word is
altered. The code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators: ar: not changed by this instruction.

9.7 BRANCH ON COUNT

Op R1 R2

ee ET ty Opoy yy
0 4 5 7 8 111213 15

Mnemonic Format

BCTR R1,R2

Op R1 - B2 Address Specification

TE TO] yO; fy | pay ayaio | Pett tt tt TT] |] yt gy
0 4 § 7 8 1112 1314 15 16 31

AM Mnemonic Format

Extended: 0 BCT R1,02 (82) Disp “4 a | poppe ee
indexed: 1 BCT [@} [#] R1,02 (X2,82) x ia Disp

| | fi}] yt ty fy

DESCRIPTION:

First, the branch address is computed. The branch address is contained in bits 0 through 15 of general register R2 for the RR format. This 16-bit branch address is
expanded to a 19-bit branch address. (See Expanded Addressing.)

Then, the contents of bits 0 through 15 of general register Rl are reduced by one.
When the result is zero, the next sequential instruction is executed in the normal manner. When the result is not zero, the instruction counter is loaded with the
branch address.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

An initial count of one results in zero, andno. branch takes place. An initial
count of zero results ina minus one and causes branching to be executed. The
low-order 16 bits of R1 do not participate in the count or zero test.

59-8 BRANCH ON COUNT BACKWARD

Op ‘RI Disp* "Displacements of the form 111XXX are not valid.
TE TyOy tty fy [| | | | | fry
0 45 78 1314 15

Mnemonic Format
BCTB R1,02

DESCRIPTION:

First, the branch address is formed by subtracting the displacement from the updated
instruction counter. Then, the contents of bits 0 through 15 of general register Rl
are reduced by one. When the result is zero, the next sequential instruction is
executed in the normal manner. When the result is not zero, the instruction counter
is loaded with the branch address.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

An initial count of one results in zero, and no branch takes place. An initial
count of zero results ina minus one and causes branching to be executed. The
low-order 16 bits do not participate in the count or zero test.

5-10

5.9 BRANCH ON OVERFLOW AND CARRY

Op M1 R2

TET Oyo; ty | | fiytfiyojyol | |

0 4 5 7 8 11 1213 15
Mnemonic Format

BVCR M1,R2

| Op M1 . B2 Address Specification

TEtyO;O; ty | y J aytytyt fo | a ee |
0 4 5 7 8 1112 1314 15 16 31

AM Mnemonic Format

Disp Extended: 0 86©BvC M1,02,(B2)
| | | | | | | {| | [| | Y

indexed: 1 BVC (@] [4] M1,D2 (X2,B2) x Wh Disp

| | f {| | | | | | { | f

DESCRIPTION:

This instruction tests the PSW overflow and carry indicator status bits. The Ml
field, instruction bits 5 through 7 specifies the test. Instruction bit 6 is tested
against PSW bit 18 Ccarry), and instruction bit 7 is tested against PSW bit 19
Coverflow). Whenever a specified bit of the PSWois a one, the test is successful
and the branch is taken. Thus, when both indicators are tested by M1 = 011, the
branch is taken if either indicator contains a one. A one in instruction bit 5
inverts the logic, causing bits 6 and 7 to test the PSW bits for zero.

For the RR format, the branch address is contained in bits 0 through 15 of general
register R2. This 16-bit branch address is expanded to a 19-bit branch address.
(See Expanded Addressing. }

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set 0 by this instruction. The carry indicator is not
changed by this instruction.

PROGRAMMING NOTES:

The possible combinations of test conditions are shown as follows:

5-11

M1 Field x
4

~~

lu
n

“
e
f

O
O

2

&

jo

m
m

O
F

O
K

HM

©

CO

IN

~~

O
m

O
e
}

©

K-
@& Branch

Branch

Branch

Branch

Branch

Branch

Branch

Branch

Test Conditions

never taken (no operation)

on Overflow

on Carry

either on Overflow or on Carry

On No Overflow

On No Carry

On No Overflow and No Carry

5-12

5-10 BRANCH ON OVERFLOW AND CARRY FORWARD

Op M1 Disp * “Displacements of the form
Ty 1yOy 141 (| rot [| O11 111XXX are not valid.

0 45 7 8 13 14 15

Mnemonic | Format

BVCE M1, D2

DESCRIPTION:

This instruction tests the PSW overflow and carry indicator status bits.
Instruction bits 5 through 7 specify the test. Instruction bit 6 is tested against
PSW bit 18, and instruction bit 7 is tested against PSW bit 19. Whenever a
specified bit of the PSW is a one, the test is successful and the branch is taken by
adding the Disp to the updated IC. Thus, when both indicators are tested by M1 =
011, the branch is taken if either indicator contains a one. A one in instruction
bit 5 inverts the logic, causing bits 6 and 7 to test the PSW bits for zero.

The branch address is formed by adding the displacement to the updated instruction
counter.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow indicator is set 0 by this instruction. The carry indicator is not
changed by this instruction. .

PROGRAMMING NOTES:

The possible combinations of test conditions are shown as follows:

M1 Field Test Conditions

2672

00 0 Branch never taken (no operation)
001 Branch on Overflow
010 Branch on Carry

06141 Branch either on Overflow or on Carry
100 Branch

101 Branch On No Overflow
i110 Branch On No Carry
11i1 Branch On No Overflow and No Carry

5-13

(This page intentionally left blank)

5-14

6.0 SHIFT OPERATIONS

Shift instructions use the halfword format. The shift count is defined by the count
field, as shown in Figure 6-1.

Instruction Bits 8-13 Shift Count Determined By

000000 (Zero) No Operation

000001-110111 (1-55) Instruction bits 8 through 13

111000 (56) © Bits 10 - 15 of general register 0

111001 (57) Bits 10 - 15 of general register 1

111010 (58) Bits 10 - 15 of general register 2

111011 (59) Bits 10 - 15 of general register 3

111100 (60) Bits 10 - 15 of general register 4

111101 (613 Bits 10 - 15 of general register 5

111110 (62) Bits 10 - 15 of general register 6

111111 (63) Bits 10 - 15 of general register 7

Figure 6-1. Shift Count

If the shift count is 56 through 63, bits 10 through 15 of the corresponding general
register (0 through 7) designate the shift count. When specified using the count
field, the maximum shift count allowed for shift operations is 55. Shifts of up to
63 positions are allowed, when general register 0 through 7 is used to specify a
computed shift.

6.1 NORMALIZE AND COUNT

Op R1 | R2

TE TMT OF OT fF fF ftyryryotry |
0 4 § 7 8 1112 13 15

Mnemonic Format

NCT R1, R2

DESCRIPTION:

First, all bits (0 through 31) of general register R1 are set to zero. For each
position that the contents of general register R2 are shifted to the left, the
high-order half of general register R1 (bits 0 through 15) is incremented by 1. The
shift terminates when bit position 0 # bit position 1 of general register R2. If
the contents of general register R2 are initially zero, a count of zero is entered
in general register Rl. Zeros are entered into the vacated low-order bits of
general register R2. Upon completion of this instruction, the count is contained in
bits 0 through 15 of general register R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry indicator will be zero at the end of the operation, if general register R2
contains zero. The carry indicator will be one at the end of tte operation, if the
shift is terminated by the detection of bit position one not equal to bit position 0
of the general register R2. The overflow indicator is not changed by this
instruction.

PROGRAMMING NOTES:

If the initial condition of general register R2 was such that bit position 0 is not
equal to bit position 1, the count in the high-order bit of general register Rl is
zero, the carry indicator is one, and there is no shift. If the initial condition
of R2 was all ones, the count is 31, the carry is one and R2 contains 80000000.

This instruction is executed as shown below in Figure 6-2.

Count =¢

“ nN .
capes R220? ON gn

Reset Carry te
indicator

Ria g

! y
SE

Set Carry
Indiestor

Shift R2
To One

Lett One
Ri o=Count

}

’ j

Operation inerement Count
Completed By One

Figure 6-2. Normalize and Count Execution

6.2 SHIFT LEFT LOGICAL

Op Ri Count

Ty 1p1f1yO; | | { {| {| {| { fo]lo
0 4 5 7 8 13 14 15

Mnemonic Format

SLL R1,Count

DESCRIPTION:

The contents of general register Rl are shifted left, as specified by the shift
count Figure 6-1. Zeros are entered into the vacated low-order bits of general
register Rl. Bits leaving the high-order bit (bit 0 of general register Ri)
position are entered in the carry indicator (see indicators below). Bits shifted
out of the carry indicator are lost. Only the contents of general register R1 are
changed.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry indicator is set to one for each one, and to zero for each zero, shifted

left from the high-order position of general register R1. The overflow indicator is

not changed by this instruction.

PROGRAMMING NOTES:

When the shift count n is greater than 31, then the result of the shift of general

register Rl is zero.

6-4

6.3 SHIFT LEFT DOUBLE LOGICAL

Op R1 Count

teri pt et Joyo]
) 4 5 7 8 13 14 15

Mnemonic Format

SLDL R1,Count

DESCRIPTION:

The contents of the pair of general registers; (Rl and (R1+1)mod8) are shifted lett
as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position zero of general register (Rl + 1)mod8, are
entered into bit position 31 of general register Rl. Zeros are entered into the
vacated low-order bits of general register (R1 + 1)mod8. Bits leaving the
high-order bit position (bit position 0 of general register R11) are shifted into the
carry indicator. Bits shifted out of the carry indicator are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry indicator is set to one for each one, and to zero for each zero, shifted
left from the high-order bit position of general register Rl. The overflow
indicator is not changed by this instruction.

6-5

6.4 SHIFT RIGHT ARITHMETIC

Op R1 Count

Ty_ayty ty oy f | { {| | | | | of1
QO 4 5 7 8 13.14 15

Mnemonic Format

SRA R1,Count

DESCRIPTION:

The contents of general register R1 are shifted right the number of places indicated
by the shift count. Bits equal to the sign are entered into vacated high-order bit
Positions. Bits shifted out of bit position 31 of general register R1 are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

A shift right of n is equivalent to dividing the contents of general register R1 by
2”,

6.5 SHIFT RIGHT DOUBLE ARITHMETIC

Op R1 Count

Vt ta Pe to
0 45 78 13147

Mnemonic Format

SRDA R1,Count

DESCRIPTION:

The contents of the pair of general registers (R1 and (R1+1)mod8) are shifted right
as a 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31 of general register R1, are entered into
bit position 0 of general register (R1 + 1)mod&8. Bits equal to the sign are entered
into vacated high-order bit positions. Bits shifted out of bit Position 31 of
general register (R1 + 1)mod8 are lost. .

RESULTING CONDITION CODE:

a The code is not changed.

INDICATORS:
SL

The overflow and carry indicators are not changed by this instruction.

6.6 SHIFT RIGHT DOUBLE LOGICAL

Op R1 Count

TL Vt y ty ay ft | { {| {| | { j141{0
0 4 § 7 8 13 14 15

Mnemonic Format

SRDL R1,Count

DESCRIPTION:

The contents of the pair of general registers (R1 and (Rit+tl)mod&) are shifted right
as a 64-bit register. The number of positions shifted is specified by the shift
count. zeros are entered into all vacated high-order bit positions. Bits shifted
out of bit position 31 of general register Rl, are entered into bit position 0 of
general register (R1 + 1)mod8. Bits shifted out of bit position 31 of general
register (R1 + 1)mod8 are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6-8

6.7 SHIFT RIGHT LOGICAL

Op R1 Count

Tr qrisyo] | | ty yy yy figo
0 4 5 7 8 13.14 15

Mnemonic Format

SRL R1,Count

DESCRIPTION:

The contents of general register R1 are shifted right the number of places indicated
by the shift count. Zeros are entered into all vacated high-order bit positions.
Bits shifted out of bit position 31 of general register R1 are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are aot changed by this instruction.

6.8 SHIFT RIGHT AND ROTATE

Op R1 Count

1] tftp to; | | [| | | { fy {4
0 4 5 7 8 13 14 1

Mnemonic Format

SRR R1,Count

DESCRIPTION:

The contents of general register R1 are shifted right the number of places indicated
by the shift count. Bits shifted out of bit position 31 are entered into bit
position 0. The general register thus becomes a circular register and no bits are
lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

6.9 SHIFT RIGHT DOUBLE AND ROTATE

Op R1 Count

TL Tf1 fii; | | | | {| {| { fy];
0 4 5 7 8 13 14 15

Mnemonic Format

SROR R1,Count

DESCRIPTION:

The contents of the pair of general registers (R1 and (R1+1)mod8) are shifted right
asa 64-bit register. The number of positions shifted is specified by the shift
count. Bits shifted out of bit position 31 of general register Ril are entered into
bit position 0 of general register (R1+1)mod8. Bits shifted out of bit position 31
of general register (R1+1)mod8 are entered into bit position 0 of general register
Rl. Thus, the two registers become a single, circular, 64-bit register, and no bits
are lost.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

When the shift count equals 32, the contents of general register R1 and (R1+1)mod8
are exchanged.

(This page intentionally left blank)

7.0 LOGICAL OPERATIONS

A set of instructions is provided for the logical manipulation of data. Fullword
operands consist of 32 bits. Halfword immediate and storage operands are developed
into fullword operands by appending 16 low-order zeros. The sign position is
treated in the same manner as any other position.

There is no interdependence between bits for logical operations; that is, the result
in position i is independent of bit j in either operand when i is not equal to j.

7.1 AND

Op R1 R2

OfO;rfojo} | | fafiftafotol | |
0 4 5 7 8 13 15

Mnemonic Format

NR Ri,R2

Op R1 Disp* B2 * Displacements of the form
111XXX are not valid.

Oj Oj1;o;o; | | { {| {| {| { |
0 4 5 7 8 T1 1213 14 1§

Mnemonic Format

N R1,02 (B82)

Op R1 - 82 Address Specification |

0/01 {0/0 Ty] iy1y 140 { f jf] | jf | | | | ff ft fy
0 45 8 11 °2 13 14 15 16 3

AM Mnemonic For-
Extended: 0 N Ri,... 32) Disp

, | 7; | ; {| | { {| | | {| f{ f

} ; {A |

DESCRIPTION:

The logical product (AND), of the fullword second operand and the contents of
general register Rl, is formed bit-by-bit. The result replaces the contents of
general register R1. The second operand is not’ changed. The following table
defines the AND operation.

A>

Storage 110 0

Ri 1010

Result 100 0

RESULTING CONDITION CODE:

-3 The result is zero

ll The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-2

7.2 AND HALFWORD IMMEDIATE

Op OPX immediate Data

1Jo;rfrfol1{rpotr {1 f1 Pete te te eT tt tT TT |
0 45 7 8 1112 13 15 16

Mnemonic Format

NHI R2,Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as immediate data. The halfword

immediate data is first developed into a fullword by appending 16 low-order zeros.

The logical product (AND), of this fullword operand and the contents of general

register R2, is formed bit-by-bit. The result replaces the contents of general

register R2. The immediate operand is not changed. The following table defines the

AND operation.

AND

Immediate Data 1100

R2 1010

Result 10.0 0
RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The least significant 16 bits of the result (bits 16 through 31) will always be

zero.

7.3 AND IMMEDIATE WITH STORAGE

Op OPx Disp* ‘| B2 immediate Data

PpOp py oet toy Pt Ppt tt tt
0 45 78 13 14 15 16 31

@
Mnemonic Format Displacements of the form

NIST 02(82), Data’ 111XXX are invalid.

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
logical product (AND), of this immediate data and the halfword main storage operand,
is formed bit-by-bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The zero bits in the immediate data specify the bits of the halfword first operand
that are set to zero. Zero bits in the halfword main storage operand remain
unaltered.

WARNING ¢

This instruction requires multiple memory accesses. The CPU does not Prohibit IOP
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memairy locations that misht be DMA'd into.

7-4 AND TO STORAGE

A
Op R1 u| 82 Address Specification

OjOj;r1fofjo; | { faftaltatada | Josefa feed nd ufrvtefe fof peep fe poor a
0 4 § 7 8 1112 13 14 1516 31

AM Mnemonic Format
Extended: 0 N R1,02(B2)

Indexed: 1 NST (@] (#] R1,02(X2,B2)

DESCRIPTION:

of the fullword second operand and the contents of

The result replaces the second operand.

The following table defines

The logical product (CAND),

general register Rl, is formed bit-by-bit.

The contents of the general register are not changed.

the AND operation.

AND

Storage

R1

Result a
e
e

Qo
0

-

O
r
o

2
9
2
0

RESULTING CONDITION CODE:

00 The result is zero

li The result is not zero

INDICATORS:

The overlow and carry indicators are not changed by this instruction.

WARNING?

This instruct‘on requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction Should not be used
With any memory locations that might be DMA'd into.

7.5 EXCLUSIVE OR

| Op R1 R2
Opty yoy | | fay tytyojol 7 yf
0 4 5 7 8 13 15

Mnemonic Format

XR R1, R2

Op R1 Disp* B2 * Displacements of the form
0 j1 puyd 0 { { | | . | T11XXX are not valid.

4 5 7 8 1112 13 14 15
Mnemonic Format

x R1,02(B2)

A
Op R1 mi 82 Address Specification

Opty ty 1yO; fy fiyrtyryi fo} | Ltt tf | | | | | | |] | ff
0 4 § 7 8 11 12 13 14 15 16 31

AM Mnemonic Format
Extended: 0 x R1,02(B2) Disp

{| | | ftii | | | j | | |

Indexed: 1 X [@} (#] R1,02(X2,82)
DESCRIPTION: x thy! Disp

| | Pit |] |]; [yyy

The modulo-two sum (Exclusive OR), of the fullword second operand and the contents
of general register R1, is formed bit-by-bit. The result replaces the contents of
general register Rl. The second operand is not’ changed. The following table
defines the Exclusive OR operation.

Exclusive OR

Storage 110 0

Ri 1010

Result 011 0

RESULTING CONDITION CODE:

00 The result is zero

li The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The ones complement of the general register is obtained when the’ second operand

contains all ones.

7.6 EXCLUSIVE OR HALFWORD IMMEDIATE

Op OPX R2 immediate Data

POOP ypOpo pty yt yofo} | Pitt tee tT tp yp pe yy 0 4 § 7 8 11 12 13 15 16 317

Mnemomic Format
an ee A

XH R2,Data

DESCRIPTION:

Instruction bits 16 though 31 are treated as immediate data. The halfword of
immediate data is first developed into a fullword by appending 16 low-order zeros.
The modulo-two sum (Exclusive OR), of this fullword operand and contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the Exclusive OR operation.

Exclusive OR

Immediate Data 1100

R2 1010
Result 0110

RESULTING CONDITION CODE:

00 The result is zero
11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7.7 EXCLUSIVE OR IMMEDIATE WITH STORAGE

Op OPx Disp* B2 Immediate Data
oo op ett tt Ett tt pp pp ty
0 4 5 7 8 13 14 15 16 1

Mnemonic Format * Displacements of the form
111XXX are invalid.

X(ST D2(B2) Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
modulo-two sum (Exclusive OR), of this halfword immediate data and the halfword main
storage operand, is formed bit-by-bit. The result replaces the halfword main
storage operand.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

WARNING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

7.8 EXCLUSIVE OR TO STORAGE

A
Op R1 mi B2 Address Specification

Opty ot ee tty tty ty Pit ete ete tte eT yy
0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format
Extended: 0 XST R1,02(B2) | Disp

{| {| | pif | | | j| | {| ¥{

Indexed: 1 XST(@] (#] R1,02(X2,B2) x it Disp

1) {4 Pitty y yyy Y

DESCRIPTION:

The modulo-twe sum CExclusive OR), of the fullword second operand and the contents
of general -cezister R1, is formed bit-by-bit. The result replaces the second
operand. The sontents of the general register are not changed. The following table
defines the Exslusive OR operation.

Exclusive OR

|

Storage 110 0

R1 10i1 0

Result 0110

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

WARNING £

This instruction requires multiple memory accesses. The CPU does not Prohibit IOP
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction Should not be used
With any memory locations that might be DMA'd into.

7.9 OR

Op R1 R2
0,0 ;1;0;1 Ty 17140 0 |

0 4 5 7 8 1112 13 15

Mnemonic Format"

OR R1,R2

Op R1 Disp * B2 * Displacements of the form

.0 4 5 7 8 13 14 15

Mnemonic Format

0 R1,02(B2)

A
Op R1 M| 82 Address Specification

OL orp ors {| {| fipafiyijo { pitt} | tet te tT tT | ty
0 4 5 7 8 1112 131415 16 31

AM Mnemonic Format
Extended: 0 0 R1,D2(B2) Disp

{| {| {| fj {{] {yyy |] | f

Indexed: 1 0 (@] (#] R1,02(X2,B82) x ryt Disp

Ly [4 os ee
DESCRIPTION:

The logical

register R1i,

register Rl.

operation.

RESULTING CONDITION CODE:

00

ll

INDICATORS:

The overflow and carry indicators are

The

sum (OR), of the fullword second operand

1s formed bit-by-bit.

The second operand is not changed.

resu

and the contents of general

lt replaces the contents of general

The following table defines the OR

OR

Storage

R1

Result a

—
 >

—
 =
©

2
0
 0

2

The result is zero

The result is not zero

not

7-10

changed by this instruction.

f
o

d
: >

»

i
4

7.10 OR HALFWORD IMMEDIATE

 eeerEaestirnsenemmemmemmeemenentmmrcte nee

Op OPXx R2 immediate Data |

MYO TOO yr Oy ry ty 1p O}O] | es
0 “4 5 7 8 1112 13 15 16 31

Mnemonic Format

OHI R2,Data

DESCRIPTION:

Instruction bits 16 through 31 are treated as_ immediate data. The halfword of
immediate data is first developed into a fullword operand by appending 16 low-order
zeroes. The logical sum (OR), of the fullword operand and the contents of general
register R2, is formed bit-by-bit. The result replaces the contents of general
register R2. The immediate operand is not changed. The following table defines the
OR operation.

OR

Immediate Data 110 0

R2 1010

Result 111 0

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-11

7.11 OR TO STORAGE

Op R1 B2 Address Specification

Opty oet ye tty ty PEt tet tt ttt eT tT TT yy yy
0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format
Extended: 0 OST R1,02(B2). Disp

| | | es |

indexed: 1 OST (@] (#] R1,02(X2,82) x ry Disp

| | |* Liye ete ety

DESCRIPTION:

The logical sum (OR), of the fullword second operand and the contents of general
register Rl, is formed bit-by-bit. The result replaces the second operand. The
contents of general register Rl are not changed. The following table defines the OR
operation.

OR

Storage 110 0

R1 101 0

Result 111 0

RESULTING CONDITION CODE:

00 The rasult is zero

ll The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

WARMING!

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memary locations that might be DMA‘'d into.

7.12 SEARCH UNDER MASK

Ta

Op R1 R2

1 Oy;O;1y41 i | Ty TY 170; 1 i} |

0 4 5 7 8 11.1213 18

Mnemonic Format

SUM R1, R2

DESCRIPTION:

A variable search of an array under control of fields in a mask for specific bit
patterns i: performed. A twos complement 16-bit integer count is contained in bits
0 through 15 of the general register specified by R2. (This must be a positive
number for correct execution of this instruction.)

The address of an array (Ai) is contained in bits 0 through 15 of the general
register pair specified by Rl and (R1 +1)mod8. A twos complement integer modifier
is contained in bits 16 through 31. After each Ai has been located via bits 90
through 15, the modifier is added to the most significant 16 bits of ‘general
register Rl. This result replaces the most significant 16 bits. The modifier is
not changed. A 16-bit mask (M) is contained in bits 0 through 15 of the general
register specified by (R1l+1)mod8 while field values (FV) are contained in bits 16
through 31.

The following equation is solved.

CAiAM) @) CFYAM)

where

1 l, . . .» count

A

®
AiAMextracts bits selected by the mask out of array. FVAM extracts bits selected
by the mask also. These latter bits are compared with Ai AM. If they are equal, the
comparison continues until the count is exhausted. The condition code reflects the.
result of this operation.

logical AND function

logical Exclusive-OR function.

If the comparison indicates an inequality, the instruction is terminated with the
address of the inequality operand located in general register R1, bits 0 through 15.

RESULTING CONDITION CODE:

00 All array items matched

11 An array item mismatched and general register Rl has the address where it
failed

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This is a variable length instruction execution. Care must be taken to ensure
proper interrupt response by using sufficiently small count values.

the count values do not exceed sixteen.

The following flowchart indicates how this Instruction is executed:

may

im 1
X~- FVAM
Set CC + 00
PTR= RI

0-15
INC + R1

16-31

Y= Ai

Poh meee cm amy ence

|

| Yes

Ai = MS(PTR)

Is(YAM)@ x \No |
=Q?

PTR - PTR + INC
pmit+]

Set CC + 11

Yes | (<a)
No
a

a)

In order to
assure proper completion of the putaway routine, the programmer must make sure that

7.13 SET BITS

Op OPX Disp” B2 Immediate Data

Met yt yt OP Ty | Pett ttt ETT Ty yy
0 4 5 7 8 13. 14 15 16 31

Mnemonic Format * Displacemencs ot the form

T11XXX are invalid.
SB D2(B2),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
logical sum (OR), of the immediate data and the halfword main storage operand, jis
formed bit-by~bit. The result replaces the halfword main storage operand.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword mask specify the bits of the halfword second operand
that are set one. The result replaces the halfword second operand. The following
table defiras this instruction.

SET BITS

Mask 110 0

Storage 101 0

Result 111 0

WARNING!

This instruction requires multiple memory accesses. The CPU does not Prohibit IOP
accesses of the selected main storage location during the time betneen the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'd into.

7.14 SET HALFWORD

_ Op OPXx Disp ° B2 * Displacements of the form
1] OJ1 JOJO 0{1]0 rruqy 111XXX are not valid.

0 45 7 8 13 714 15>

Mnemonic Format

SHW 02(B2)

Op OPX - B2 Address Specification
TL 041 j0{0; Of 1; Of 17 1414140 | fi ff yet |] | ff yf ye yy
0 4 5 7 8 111213 14 15 16 31

AM Mnemonic Format
Extended: 0 SHW 02(82) | Disp

; {| f{ ft {| | | | {| | ¢{ {

Indexed: 1 SHW(@] (#] 02(X2,B2) x ty Disp

; ; {A ee

DESCRIPTION:

The halfword main storage operand is set to all ones.

RESULTING CONDITION CODE:

The condition code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is similar to the SET BITS instruction with the mask
immediate data) equal to all ones.

7-16

Ci.e.,

7.15 TEST BITS

Op OPX Disp Immediate Data

Opp Opoptp ty et fe 0 45 7 6 1314 15°16 31

Mnemonic Format * Displacements of the form
111XXX are invalid.

TB 02(B2),Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as immediate data. This halfword
immediate data is logically tested with the halfword main storage operand. A one in
the immediate data tests the corresponding bit in the halfword main storage operand.
The halfword main storage operand is not changed. The result of the test is given
in the condition code.

RESULTING CONDITION CODE:

00 Either the bits selected by the immediate data are zeros or the immediate
data is all zeros

11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7-17.

7.16 TEST REGISTER BITS

Op OPX R2 immediate Data

Vo ptptpoporty ty yt tyoyoy Pt
0 45 7 8 111213. 15 16 31

Mnemonic Format

TRB R2,Data

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as immediate data. A fullword
operand is formed by appending 16 low-order zeros.

A one in this fullword tests the corresponding bit in general register R2. The
corresponding bit position in general register R2 is not changed. The result of the
test 1s given in the condition code.

RESULTING CONDITION CODE:

00 Either the bits selected by the immediate data are all zeros or the
immediate data is all zeros

11 The bits selected by the immediate data are mixed with zeros and ones
01 The bits selected by the immediate data are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

7.17 TEST HALFWORD

Op OPX Disp B2 * Displacements of the form
1,0 41 0,0; 0); 1;1 rt fu 111XXX are not valid.

0 4 5 7 8 13 14 15

Mnemonic Format

TH 02(B2)

Op OPX \ B2 Address Specification

T{O;T;OFO;O{ ryt} 1444714140 | { | | ¢| | jf | | | | | {| [| | Y
0 4 § 7 8 111213 14 18 16

am

AM Mnemonic Format Disp
Extended: 0 TH

p2(B2) ty Lit tr tye yyy

Indexed: 1 TH [@] [#1] 92(x2.82) X ae Disp

pj }A4 Ley eE tT Tey

JESCRIPTION:

All bits in the halfword main storage operand are tested. This operand is not

changed. The result of the test is given in the condition code.

RESULTING CONDITION CODE:

00 The bits are all zeros

ll The bits are mixed with zeros and ones

01 The bits are all ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is the same as the TEST BITS instruction with the mask equal to all

ones.

7-19

7.18 ZERO BITS

Op OPX Disp * B2 Immediate Data

T,O(1;1;O;/O/O0;71}) | | | | f | ptt ttt | | Et]] yy gy
0 4 5 7 8 13 14 15 16 31

Mnemonic Format ” Displacements of the form
111XXX are invalid.

2B 02(B2),Data

DESCRIPTION:

The logical complement of bits 16 through 31 of this instruction is ANDed to the
halfword main storage operand bit-by-bit. The result replaces the halfword main
storage operand.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING AOTES:

The one bits in the halfword immediate data specify the bits of the halfword main
storage operand that are set zero. The result replaces the halfword main storage

operand. Tha following table defines this instruction:

ZERO BITS

Immediate Data 1190 0

Storage 101 0

Result 001 0

WARNING?

This instruction requires multiple memory accesses. The CPU does not prohibit IOP

accesses of the selected main storage location during the time between the fetch of

the operana and store of the result. Therefore, this instruction should not be used

with any memory locations that might be DMA'd into. |

ad
 i 20

7.19 ZERO REGISTER BITS

Op OPX R2 Immediate Data
POPE TOPO Op yt pop Pe bd fea} mifefe |
0 4 5 7 8 11.12 13 15 16 31

Ninemonic Format

ZRB R2,Data

DESCRIPTION:

First, the halfword immediate data is expanded to a fullword by appending 16
low-order zeros. The logical complement of this fullword is then ANDed to the
contents of general register R2. The result replaces general register R2.

RESULTING CONDITION CODE:

00 The result is zero

11 The result is not zero

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword immediate data specify the bits in the general register
that are set zero. Bits 16 through 31 of general register R2 are not changed by
this instruction.

7.20 ZERO HALFWORD

Op OPX Disp ° B2 ° Displacements of the form
1;0)1;0;0 Q;0;1 (tod T11XXX are not valid.

0 4 5 7 8 13 14 15

Mnemonic Format

ZH D2(B2)

Op OPX - B2 Address Specification

TPO} 1 O;Of;OO] WF ryt yryrjo | ptt tt | | |] | | fT ft
0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format

Extended: 0 ZH D2 (B2) Disp

| | | fit | | |] | |] | ff

Indexed: 1 - ZHI@I{#] .D2(x2,B2) x taily Disp
| |* ee

DESCRIPTION:

The halfword second operand is set to all zeros.

RESULTING CONDITION CODE:

The condition code is not changed by this instruction.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction is similar to the ZERO BITS
ones.

instruction with the mask equal to all

8.0 FLOATING POINT OPERATIONS

The floating point instruction set is used to perform calculations on operands with

a wide range of magnitude and to yield results scaled to preserve precision.

A floating point number consists of a signed exponent and a_ signed fraction. The

quantity expressed by this mumber is the product of the fraction and the number 16

raised to the power of the exponent. The exponent is expressed in excess 64 binary

notation; the fraction is expressed as a sign-magnitude hexadecimal number having a

radix point to the left of the high-order fraction digit.

The floating point instruction set provides for loading, adding, subtracting,

comparing, multiplying, dividing, and storing. Short operands generally provide

faster processing and require less storage than long operands. On the other hand,

long operands’ provide greater precision in computation. Operations may be either

register-to-register or storage-to-register. All floating point instructions are

part of the floating point feature including the two data conversion instructions.

A normalized number is one in which the high-order hexadecimal digit of the fraction

is not zero or else one in which both the fraction and characteristic are zero (true

zero).

Maximum precision is preserved in addition, subtraction, multiplication, and

division because all results are normalized.

The condition code is set as a result of all compare, add, subtract, and load

operations.

8.1 DATA FORMAT

Floating point data occupy a fixed-length format which may be either a fullword

short format or a doubleword long format. Both formats may be used in main storage.

Short Floating-Point Number

S Characteristic Fraction

fj} yy ff Ltt tt | | | | fl |] | |] fT | tT TT yy
01 7 8 31

Long Floating-Point Number

S Characteristic Fraction \

| | | | | Liter ype tL yy yyy |
Oo 1 7 8 63

The first bit in either format is the sign bit(€s). The subsequent seven bit

positions are occupied by the characteristic. The fraction field may have either

six or 14 hexadecimal digits.

Although final results have six fraction hexadecimal digits in short-precision,
intermediate results may have additional low-order digits. These low-order digits,
the guard digits, increase the precision of the final result.

8.2 NUMBER REPRESENTATION

The fraction of a floating point number is expressed in hexadecimal digits. The
radix point of the fraction is assumed to be immediately to the left of the
high-order fraction digit. To provide the proper magnitude for the floating point
number, the fraction is considered to be multiplied by a power of 16. The
characteristic portion, bits 1 through 7 of both floating point formats, indicates
this power. The bits within the characteristic field can represent numbers from 0
through 127. To accommodate large and small magnitudes, the characteristic is
formed by adding 64 to the actual exponent. The range of the exponent is thus -64
through +63. This technique produces a characteristic in excess 64 notation.

Both positive and negative quantities have a true fraction, the difference In sign
being indicated by the sign bit. The number is positive or negative accordingly as
the sign bit is zero or one.

The range covered by the magnitude (M) of a normalized floating point number is:

In short precision - 16 ®5 ¢ M § (1-1676) © 166°, and

In long precision - 16 *5 <M < (1-167!4%) © 163,

Or approximately - 5.4 © 10 79 ¢ M ¢ 7.2 © 1075,

The short and long precisions contain 6.2 and 15.5 decimal digits, respectively.

A number with zero characteristic, zero fraction, and Plus sign is called a true
zero. A true zero may arise as the result of an arithmetic operation because of the
particular magnitude of the operands. A true zero is forced when one or both
operands of MULTIPLY or the dividend in DIVIDE has a zero fraction. The sign of a
sum, difference, product, or quotient with zero fraction is positive. The proper
representation of a floating point zero when used for any of the floating point
operations is the true zero form.

8.3 NORMALIZATION

A quantity can be represented with the greatest precision by a floating point number
of given fraction length when that number is normalized. All floating point
operations preserve maximum accuracy when normalized inputs are used. A normalized
floating point number has a nonzero high-order hexadecimal fraction digit or is a
true zero (all digits zero). If one or more high-order fractional hexadecimal
digits are zero, the number is said to be unnormalized unless it is a true zero.
The process of normalization consists of shifting the fraction left until the
high-order hexadecimal digit is nonzero and reducing the characteristic by the

8-2

oo
o
s

Se

an

number of hexadecimal digits shifted. A zero fraction cannot be normalized, and its

associated characteristic therefore remains unchanged when normalization is called

for. <A floating point word of all zeros is defined as a true zero.

Normalization usually takes place when the intermediate arithmetic result is changed

to the final result. This function is called postnormalization, and it is performed

as part of instruction execution. Nonarithmetic instructions (Ci.e., Loads = and

Stores) do not normalize their outputs.

PROGRAMMING NOTES:

Floating point operands should be normalized prior to instruction execution;

however, unnormalized inputs are not rejected via the unnormalized input interrupt

as in. earlier versions of this computer. Please note that although unnormalized

inputs are accepted, programmers'7 should expect a loss in accuracy for utilizing

unnormalized numbers and their use is) not recommended. Also note that for all

arithmetic operations, any input with a zero fraction is treated as a true zero

regardless of its sign or characteristic. A zero input to an arithmetic instruction
will cause the bulk of the processing algorithm for the instruction to be bypassed,

resulting in drastic decreases in execution time.

.. 8.4 FLOATING POINT SECOND OPERANDS

Second operands: for the floating point set are no longer’ restricted by hardware to

even halfword boundary address locations.

8.5 FLOATING POINT REGISTERS

The registers used for floating point arithmetic are distinct or separate registers

from those used for fixed point arithmetic. Register designation may be even or odd

for short operands.

The first operand is contained in floating point register R1 when the second operand

is a short 32-bit operand. If the second operand is a long or extended operand, the

first operand is contained in the pair of floating point registers specified by Rl

and (R1+1)mod8.

Floating-Point Register (even or odd)

S | Characteristic

0 1 7 8

S | Characteristic

ttt ttt

0 1 7 8

Figure 8-1.

A comprehensive set

long operands.

precision

individual

Figure 8-2

used for the

instructions.

of floating point instruction

summarizes the

floating

various

point operands.

Floating Point Operands in Registers

For

Short 2nd Operand Long 2nd Operand

Convert to Floating

Convert to Fixed

L

SRSs

A/S

Q
r
o
s

RSs

A
r
o
U
s
o
e

24 mm FZ
32 24

26 an.

24 <u 24 + 24

24/48 <tume 24 x 24

24 tee 24 a= 24

24 aceon 3),

24 ——-_——-24

24 <tomee 24 + 24

. 24: 24

24/45 <a 24 x 24

24 te 24 == 24

24 pene YO

24 ———_——-e- 24

Instructions Operand Operand

Result 1 2 | Result 1 2

RRs

AIS 24 tome 24 + 24 56~———-56 + 56

Cc 24: 24 56 : 56

M 24/48 ~<——— 24 x 24 56———- 56 x 56

OD 24 ate 24 <= 24 56————— 56 = 56

56——= 56 + 56

56 : 56

56—-————- 56 x 56

56—<———- 56 = 56

56 56

66 56

Figure 8-2. Combinations of Fractional Precision for Floating Point Operands

1s available for both

combinations

further

short and

of fractional

8.6 FLOATING POINT INSTRUCTIONS

The floating point arithmetic instructions and their mnemonics, and descriptions

S
O

fo

Oy
 4

:
A

ee
.

a
>,

ih

follow. The following table indicates when the condition code is set and the
exceptions in operand designations, data, or results that cause a program
interruption.

Name Mnemonic Type Exceptions

Add (Long Operands) AEDR RR C. U,E,S
Add (Long Operands) AED RS C U,E,S
Add (Short Operands) AER RR C U,E,S
Add (Short Operands) AE SRS,RS C U,E,S

Compare (Long Operands) CEDR RR C
Compare (Long Operands) CED RS Cc
Compare (Short Operands) CER RR C
Compare (Short Operands) CE Rs ¢
Convert to Fixed Point CVFX RR C 0
Convert to Floating Point CVFL RR C

Divide (Extended Operands) DEDR RR U,E,F
Divide (Extended Operzends) DED RS U,E,F
Divide (Short Operands) DER RR U,E,F

_ Divide (Short Operands) DE SRS, RS U,E,F

Load (Long Operands) LED RS Cc XN
Load (Short Operands) LE SRS, RS C XN
Load (Short Operands) LER RR C XN
Load Complement (Short Operands) LECR RR C XN*
Load Fixed Register LFXR RR XN
Load Floating Immediate (Short

Operands) LFLI RR
Load Floating Register (Short

Operands) LFLR RR XN

Midvalue Select (Short Operands) MVS RS C
Multiply CExtended Operands) MEDR RR U,E
Multiply (Extended Operands) MED RS U,E
Multiply (Short Operands) MER RR U,E
Multiply (Short Operands) ME SRS, RS U,E

Store (Long Operands) STED RS XN
Store (Short Operands) STE SRS,RS XN
Subtract (Long Operands) SEDR RR C U,E,5S
Subtract (Long Operands) SED RS C U,E,S
Subtract (Short Operands) SER RR C U,E,S
Subtract (Short Operands) SE SRS.RS,C U,E,S

Notes: C Condition code is set

E Exponent—overflow exception
F Floating point divide exception
0 Overflow

S Significance exception
U Exponent~-underflow exception

XN Output is not normalized
XNX Output is not normalized, but a true zero is written

- for an input with a zero fraction.

8.7 CONDITION CODE

The results. of floating point add, compare, subtract, convert, load, and midvalue
select operations are used to set the condition code. Multiplication, division, and
Stores leave the condition code unchanged. The condition code can be used for
decision making by subsequent branch on condition instructions.

The condition code can be set to reflect the type of results for floating point
instructions. The states 00, 11, or 01 indicate that the result is zero, less than
zero, or greater than zero respectively. Load instructions which do not modify the
input operand will set the condition code based upon the fraction of the operand
only, thus it is possible to have a zero condition code set for a result which is
not true zero. This interpretation is consistent since all floating point
instructions interpret a fraction zero input as a true zero. Note that all
arithmetic instructions always write a true zero when ae fraction evzero is
encountered, so this condition can only occur for loads. State 10 is never set by
floating point operations. The compare instruction indicates the relative
arithmetic magnitude of the first operand (R1) and the second operand (called ® 2)
(see Figure 8-3).

00 11 01

Add S/L zero <zero > zero

Compare S/L (R1) = (62) = (R1)<(¢2) (R1) > (¢2)

.Load S/L zero < zero > zero

Subtract S/L zero < zero > zero

Converts zero < zero > zero

Mid Value Select within above below

Figure 8-3. Condition Code Setting for Floating Point Arithmetic

INDICATORS:

The overflow and carry indicators are not changed by floating point instructions.

8.8 FLOATING POINT ARITHMETIC EXCEPTIONS

Invalid operation codes, operand designations, data, or results cause a program
interruption. When the interruption occurs, the current PSN is stored as an old
PSW, and a new PSW is obtained. The interruption code in the old PSW identifies the
cause of the interruption. The following exceptions cause a program interruption in
floating point arithmetic.

Protection: Each halfword in main storage can be protected with a storage
protection bit. The operation is terminated on a store violation.

Addressing: An address designates an operand location outside the available storage
for the installed system. In most cases, the operation is terminated. The result
data and the condition code, if affected, are unpredictable and should not be used
for further computation.

Exponent Overflow: The result exponent in addition, subtraction, multiplication, or
division exceeds 127 (16°7), and the result fraction is not zero. The, operation is
terminated without changing the operands, anda program interrupt occurs.

Exponent Underflow: The result exponent in addition, subtraction, multiplication,
or division is less than zero (167%*), and the result fraction 1S not zero. The
operation is terminated, and a program interruption occurs if the exponent-underflow
mask bit (PSW bit 22) is one.

The setting of the exponent-underflow mask also affects the result of the operation.
When the mask bit is zero, the sign, exponent, and fraction are set to zero, thus
making the result a true zero and no interrupt occurs. When the mask bit is one,
the operation is terminated without changing the operands, and the interrupt is
taken.

Significance: The result fraction of an addition or subtraction results in a zero
fraction. <A program interruption occurs if the Significance mask bit (PSW bit 23)
is one. The mask bit does not affect the result of the operation. A significance
interrupt will result in a true zero answer with 00 condition code set.

Floating Point Divide: When division by an input with a zero fraction is attempted,
the division 1S Suppressed. The condition code and data in registers and storage
remain unchanged.

8.9 ADD CLONG OPERANDS)

Op Ri R2

OpVporryoy | | Frfryryosry |¢{ |
0 4 § 7 8 11 1213 15

Mnemonic Format

AEDR R1, R2

Op R1 * B2 Address Specification

Op Popo; | | ttyryryiyi | Lf E_t_e_T_ ETT t_ T_T Ty fT ft
0 4 § 7 8 1112 1314 15 16 31

aM Displacement
0

Pere eter epee yt |
- 16 31

1 X . 1 Displacement

| | es ee
16 31

AM Mnemonic Format

Extended: 0 AED R1, D2 (B2)

indexed: 1 . AED [@] [#] R1, 02 (X2, B2)

DESCRIPTION:

The second operand is added to the first operand, and the normalized sum is placed

in the first operand location.

The long 64-bit second operand is added with the contents of the floating point

register pair specified by register R1. The normalized result is placed into

floating point register pair specified by Rl.

Addition of two floating point numbers consists of a characteristic comparison and a

fraction addition. The characteristics of the two operands are compared, and the

fraction with the smaller characteristic is right-shifted; its characteristic is

increased by one for each hexadecimal digit of shift, until the two characteristics

agree. The fractions are then added algebraically to form an intermediate sum. Lf

a high-order carry occurs, the intermediate sum is right-shifted one hexadecimal

digit, and the characteristic is increased by one. If this increase causes a

characteristic overflow, an exponent-overflow exception is signaled, and a program

interruption occurs.

The long intermediate sum consists of 15 hexadecimal digits, possible guard digits,

and a possible carry.

After the addition, the intermediate sum is left-shifted as necessary to form a
normalized fraction; vacated low-order digit positions are filled with zeros and the
characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and the corresponding mask
bit is one, a program interruption occurs and the operands remain unchanged (no
result is written). If the mask bit is zero, a true zero is written as the result
and no interrupt occurs.

When the intermediate sum is zero and the Significance mask bit is one, a
Significance exception exists, and a program interruption takes Place. Regardless
of the sign of the significance bit, a true zero is written as the operations
result. Exponent underflow does not occur for a zero fraction.

The sign of the sum is derived by the rules of algebra. The Sign of a sum with zero
result fraction is always positive.

RESULTING CONDITION CODE:

00 Result fraction is zero

11 Result is less than zero

01 Result is greater than zero.

PROGRAM INTERRUPTS:

Significance

Exponent Overflow

Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point addition does not affect the
value of the sum. |

8.10 ADD CSHORT OPERANDS)

Oj 1{0{1]0 | | 1} 1f1fof;o; | f{

0 4 5 7 8 1112 13 15

Mnemonic Format

AER R1,R2.

Op R1 Disp* B2 * Displacements of the form
X lid. ofr foli{ ol; |{ | 1 | td | 111XXX are not valid

0 4 5 7 8 13 14 15

Mnemonic Format

AE R1,02(82)

A
Op | RI m| B82 Address Specification

Ol 1jJoj1{o{; | | {14141 {1 {0 { a a ee GG

0 45 7 8 111213 14 15 16 31

| AM Mnemonic Format Disp
Extended: 0 AE R1,02(B2) | f(ttttpeptty

Indexed: 1 AE (@] [#]) R1,02(X2,B2) X tit Disp
; 1 {A fi} t | | yey yy

DESCRIPTION:

The short second operand is’ added to the short first operand, and the six digit

normalized sum is placed in the first operand location.

Addition of two floating point numbers consists of a characteristic comparison and a

fraction addition. The characteristics of the two operands are compared, and the

fraction with the smaller characteristic is right-shifted; its characteristic is

increased by one for each hexadecimal digit of shift, until the two characteristics

agree. The fractions are then added algebraically to form an intermediate sum. If

an overflow carry occurs, the intermediate sum is right-shifted one digit, and the

characteristic is increased by one. If this increase causes a characteristic

overflow, and exponent-overflow exception is signaled, and a program interruption

occurs. |

The short intermediate sum consists of seven hexadecimal digits and a possible

carry. The low-order digits are guard digits retained from the fraction which is

shifted right. The guard digits participate in the fraction addition. The guard

digits are zero if no shift occurs.

After the addition, the intermediate sum is left-shifted as necessary to form a

normalized fraction, vacated low-order digit positions are filled with zeros and the

characteristic is reduced by the amount of shift.

If normalization causes the characteristic to underflow and the corresponding mask

bit is one, a program interruption occurs and the operands remain unchanged (no

result is written). If the mask bit is zero, a true zero is written as the result

and no interrupt occurs.

When the intermediate sum iS zero and the significance mask bit 1s one, a

significance exception exists, and a program interruption takes place. Regardless

of the setting of the significance bit, a true zero is written as the operation

result. Exponent underflow does not occur for a zero fraction. "

The sign of the sum is derived by the rules of algebra. The sign of a sum with zero

result fraction is always positive.

RESULTING CONDITION CODE:

00 Result fraction is zero

11 Result is less than zero

01 Result is greater than zero

PROGRAM INTERRUPTS:

Significance

Exponent Overflow

Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point addition does not affect the

value of the sum. .

8-11

8.11 COMPARE CLONG OPERANDS)

=

| | “Tal 1} fafapsfpofi
| Op
ojo fojidi

0 4 5 7 8 11.12 13 15

Mnemonic Format

CEDR R1, R2

| Op R1 a B2 Address Specification |

Ofoyouryry fF fF frprgrp rj | Pippy yetT_ETTTLT_ttity | | |
0 4 5 7 8 111213 14 15 16 31

au ; Displacement |

prt tey_itt_tttijyt ts
16 31

; =

1 Xx Ai! Displacement |

j | Li gyrygifyruyt ft |
16 31

AM Mnemonic Format

Extended: 0 CED R1,02(B2)

Indexed: 1 CED [@] [7 —R1,D2(x2,82)

DESCRIPTION:

The long first operand is compared with the long second operand, and the condition

code indicates the result.

The long second operand is compared with the contents of the floating point register

pair specified by register Rl. Comparison is algebraic, taking into account the

sign, fraction, and exponent of each number. An equality is established by

following the rules for normalized floating point subtraction. Neither oper-

and is changed as a result of the operation.

Exponent overflow, exponent underflow, or loss significance cannot occur.

RESULTING CONDITION CODE:

00 Operands are equal

ll First operand is less than the second operand

01 First operand is greater than the second operand

PROGRAMMING NOTES:

Numbers with zero fraction compare equal even when they differ in sign or

characteristic.

ANOMALY NOTE:

False indications of equality can occur in some cases when the

fractional portion of the operands differ by x'80 0000' after

prealignment.

Prealignment shifts the fraction, of the operand with the smaller

exponent, right a number of hex digits equal to the absolute value of

the difference between the two exponents. The fraction being shifted is

left filled with zeroes. After prealignment, the comparison is based on

64 fractional bits (right filled with zeroes) and a possible guard bit.

Note that unnormalized numbers are not first normalized and are compared

in the same manner as normalized numbers.

Examples of failing cases (return false indications of equality)

Operand 1: 423F FFFF 0000 1234

Operand 2: 423F FFFF 0080 1234
Absolute difference of OP2 and OP1 is .00 0000 0080 0000

Returns CC of 00 (equal); correct CC is 11 (OP1 < OP2)

Operand 1: BEFF FFFF FBO7 6890
Operand 2: | BF10 0000 0030 7689
Absolute difference of OP2 and OP1 is .00 0000 0080 0000

Returns CC of 00 (equal); correct CC is 01 (OP1 > OP2)

Operand 1: 4010 0000 0000 1234

Operand 2: 3FFF FFFF F801 2340
Absolute difference of OP2 and OP1 is .00 0000 0080 0000

Returns CC of 00 (equal); correct CC is 01 (OP1 > OP2)

8-i2a

(This page intentionally left blank)

8-12b

e
r
n

é

| 8.12 COMPARE (SHORT OPERANDS)

Op R1 R2

Oy; 1yofoys |] | | fF yryiyoyry | f
0 4 5 7 8 11 1213 15

Mnemonic Formst

CER R1, R2

Op R1 a B2 Address Specification

O[7 foOfjoyt] | | ft fi ytyfi ti | fy; pT eyy_T_T__Tt_T_T_T YT | YY
0 4 5 7 8 11 1213.14 15 16 | 31

aM Displacement

fy yTt__t_T___ T_T T_T ty |
16 31

1 Xx A { Displacement

| | | | | | | | f ff] f
16 31

AM Mnemonic Format |

Extended: 0 CE R1, 02 (BJ

Indexed: 1 CE [@][#] 1, D2 (x2, B2)

DESCRIPTION:

The first operand is compared with the second operand, and the condition code

indicates the result.

Comparison is algebraic, taking into account the sign, fraction, and exponent of

each number. In short-precision, the low-order halves of the floating point

registers are ignored. An equality is established by following the rules’ for

normalized floating point subtraction. When the intermediate sum, including a

possible guard digit, is zero, the operands are equal. Neither operand is changed

as a result of the operation.

Exponent overflow, exponent underflow, or loss significance cannot occur.

RESULTING CONDITION CODE:

00 Operands: are equal

11 First operand is less than the second operand

01 First operand is greater than the second operand

_.. PROGRAMMING NOTES:

Numbers with zero fraction compare equal even when they differ in sign or

characteristic.

8.13 CONVERT TO FIXED POINT

Op R1 R2

Opour fatty Eee pitt oye} ft
0 45 78 111213 15

Mnemonic Format
CVFX R1, R2

DESCRIPTION:

The second operand located in floating point register Red, is a normalized short

32-bit floating point operand using the sign magnitude floating point

representation. The second operand 31s converted to fixed point by— an

unnormalization operation in order to have its characteristic equal to a hexadecimal

44 (€1000100 (¢€2)). The number is then converted to a twos complement representation

and placed into general register R1 (truncated if necessary).

A convert overflow will occur if a floating point number is outside the following

range:

.7FFFFF X 16E04(€16) 2 N 2 -.800000 X 16E04(16)

RESULTING CONDITION CODE:

00 Bits 0 through 15 of the result in general register Rl are zero

11 Bits 0 through 15 of the result in general register Rl are negative

01 Bits 0 through 15 of the result in general register Rl are positive

INDICATORS:

The overflow and carry indicators are not changed.

. PROGRAM INTERRUPTS:

Convert overfi-..

PROGRAMMING NOTES:

Refer to the CONVERT TO FLOATING instruction.

&.14¢ CONVERT TO FLOATING POINT

Op | R1 R2

OfOyr tty f | ft fryryosry | yf
0 4 5 7 8 11.1213 15

Mnemonic Format

CVFL R1, R2

DESCRIPTION:

The second operand is a 32-bit twos complement number with its binary point
considered to be between bits 15 and 16. It is converted to sign magnitude floating
point representation and placed into floating point register Rl.

First, the sign bit of the fixed point number is placed into the sign bit of the
Intermediate result shown below. Then, bits 0 through 31 of the fixed point number
are converted from twos complement representation to the magnitude of a
Sign-magnitude represention, and _ then placed into bits 8 through 39 of the
intermediate result. The characteristic in. bits 1 through 7 of the intermediate
result is set to (1000100 (2)). Finally, the resulting intermediate number is
normalized and only a short floating point representation (bits 0 through 31) is
developed and placed into the floating point register R1.

RESULTING CONDITION CODE:

00 The floating point result is zero.
ll The floating point result is negative
01 The floating point result is positive (>0)

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAM INTERRUPTS:

None

PROGRAMMING NOTES:

Unlike earlier versions of this machine, no significance interrupt is issued for
conversion of fixed point zero to floating point true zero.

Fixed Point Halfword Operand (R2)

S Integer Fraction

ee Ppt ttt tet] |] fT
0t~ 15 16 ao 31

Floating Point Number ‘ _—
Characteristic integer (Fraction {

VJoyojojrjojo;, | | yyy yy yy [| ttt Op O,o;ojo
01 789 23 424 39 40 63
Intermediate Result Before Normalization Binary Point

8-15

8.15 DIVIDE CLONG OPERANDS)

Op R1 R2

OyOyOytyO} fF fy FrytyryOyry | Y
0 45 7 8 11 1213 1§

Mnemonic Format

DEDR R1, R2

Op R1 a B2 Address Specification

OjOyoOr7Ty oO} fF | fF ryprytyti | Piette t_t__t_t_t_ T_T] ft yf
0 4 § 7 8 1112 13 1415 16 31

AM Displacement
0

es Ce
16 , 31

1 x A i Displacement

| | fet ecee_T_ tT |] ft yf
16 . 31

AM Mnemonic Format

Extended: 0 DED R1, O02 (B2)

Indexed: 1 DED (@] (#] R1, 02 (X2, B2)

DESCRIPTION:

The dividend (the long first operand) is divided by the divisor ‘(the long second
operand) and replaced by the quotient. No remainder is preserved.

The first operand is located in bits 0 through 63 of the pair of floating point
registers specified by R1. The first operand is divided by the divisor, another
long floating point operand, and the quotient replaces bits 0 through 63 of the pair
of floating point registers specified by Rl.

A floating point division consists of a characteristic subtraction and a fraction
division. The difference between the dividend and divisor characteristics Plus 64,
is used aS an intermediate quotient characteristic. The sign of the quotient is
determined by the rules of algebra.

All dividend fraction digits participate in forming the quotient, even if the
normalized dividend fraction is larger than the normalized divisor fraction. The

quotient fraction is truncated to 56 bits.

A program interruption for exponent overflow occurs when the final quotient
characteristic exceeds. 127 and the operation is terminated, without changing the
operands.

8-16

(
&

: \
me ee es

A program interruption for exponent underflow is possible if the final
quotient characteristic is less than zero. If the corresponding mask
bit is one a program interruption occurs and the operands remain
unchanged (no result is written). If the mask bit is zero, a true zero

is written as the result and no interrupt occurs. Underflow is not

signaled for the intermediate quotient or for the operand

characteristics during prenormalization.

When division by a zero divisor is attempted, the operation is
suppressed. The dividend remains unchanged, and a program interruption
for floating point divide exception occurs. When the dividend is a true
zero, the quotient fraction will be Zero. The quotient sign and

characteristic are made zero, yielding a true zero result without taking
the program interruptions for exponent underflow and exponent overflow.

The program interruption for significance is never taken for division.

RESULTING CONDITION CODE:

The code is not changed.

PROGRAM INTERRUPTS:

Exponent Overflow

Exponent Underflow

Floating Point Divide Exception

PROGRAMMING NOTES:

The divide instruction interrupt hierarchy for both long and short
operands is given in the diagram below:

START

1

. Floating Point Divide Exception
(divisor is true zero or fraction is zero)

. Code C

2
Exponent Underfiow

ace ee

Exponent Overflow (final Quotient) Ne ae
Code 8

Good Divide

ANOMALY NOTE:

Under certain conditions, the accuracy of the quotient is limited to 29
fractional bits (counting 1 to 56). Since it is not feasible to
characterize these conditions, the long divide instruction should not be
used if more than 29 bits of precision are required.

8-17

8.16 DIVIDE (SHORT OPERANDS)

Op R1 R2

Ofryrjoyry fF | frpryrpO;oy fey
0 4 5 7 8 111213 15

Mnemonic Format

DER R1,R2

Op R14 Disp? B2 * Displacements of the form _ 1 ;

0 4 § 7 8 13 14 15

Mnemonic Format

DE R1,02(B2)

) Op R1 aL 82 Address Specification
O;T prsOy ry Ff fF FIL pty rjoa | } 7} | | | | f | | | | | f |
0 4 § 7 8 11 12 13 14 15 16 31

AM Mnemonic Format .
Extended: 0 DE R1,02(B2) Disp

j | ff | {| | | jf f | fj

Indexed: 1 DE (@} [#] R1,02(X2,B2) xX } | Disp
| | ||] | f | [tt |}

DESCRIPTION:

The dividend (the short first operand) is divided by the divisor (the short second

operand) and replaced by the quotient. No remainder is preserved.

A floating point division consists of a characteristic subtraction and a fraction

division. The difference between the dividend and divisor characteristics plus 64

is used as an intermediate quotient characteristic. The sign of the quotient is

determined by the rules of algebra.

in forming the quotient, even if the All dividend fraction digits participate

The normalized dividend fraction is larger than the normalized divisor fraction.

quotient fraction is truncated to 24 bits.

A program interruption for exponent overflow occurs when the final quotient

characteristic exceeds 127. The operation is terminated, without changing the

operand.

A program interruption for exponent underflow is possible if the final quotient

characteristic is less than Zero. If the corresponding mask bit is one a program

interruption occurs and the operands remain unchanged (no result written). If the

8-18

mask 4it is zero, a true zero is written as the result and no interrupt occurs.

Underflow is. not signaled for the intermediate quotient or for the operand characteristics during prenormalization.

When division by a zero divisor is attempted, the operation is suppressed. The dividend remains unchanged, and a Program interruption for floating point divide exception occurs. When the dividend is a true zero, the quotient fraction will be zero. The quotient sign and characteristic are made zero, yielding a true zero result without taking the program interruptions for exponent underflow and exponent overflow. The program interruption for significance is never taken for division.

RESULTING CONDITION CODE:

The code is not changed.

PROGRAM INTERRUPTS:

Exponent Overflow
Exponent Underflow

Floating Point Divide Exception

8-19

8.17 LOAD CLONG OPERANDS)

Op R1 a B2 Address Specification

Opty ty Tf ftv yty sys | Peete tet tet te yt yt yy
0 4 5 7 8 111213 1415 16 31

- Displacement

ee ee ee |
16 31

1 xX A | Displacement

| | fttsf] {] {] | | Y
16 31

AM Mnemonic format

Extended: 0 LED Ri, 02 (B2)

Indexed: 1 _ LED (@)[#] = R1, D2 (X2, B2)

DESCRIPTION:

The long second operand is Placed in the long first operand register. The second
operand is not changed.

First, bits 0 through 31 of the doubleword main storage operand are loaded into
floating point register R1. Then, bits 32 through 63 of the doubleword main storage
operand ara loaded into floating point register (R1+001)mod8. Exponent overflow,
exponent underflow, or lost significance cannot occur.

RESULTING CONDITION CODE:

00 The second operand has a zero fraction (not necessarily true
zero operand)

li The second operand is negative
01 The second operand is positive (>0)

g
t
,

< é

é

8.18 LOAD CSHORT OPERANDS)

Op R1 R2
OUT ttt tt topo] yy ft 0 45 78 111213 15

Mnemonic Format

1,

Op R1 Disp * B2 * Displacements of the form
Oj1 f1yay I | { | | | 111KXKX are not valid.

0 4 5 7 8 13 14 15

Mnemonic Format
LE R1;:02(B2)

Op R1 N B2 _ Address Specification
OlTyiy ap ry yy Titf7414e { pee et te tT tT Tp et ty
0 45 78 111213 14 15 16 31

AM Mnemonic _ Format Disp Extended: 0 LE R1,D2(B2) “ Pete te tT ppp yy

1; {A |

DESCRIPTION:

The long second operand 1s placed in floating point register R1. The second operand 1s not changed. The overflow, underflow, and carry indicators are not changed by this instruction.

RESULTING CONDITION CODE:

00 The second operand has a zero fraction (not necessarily true zero operand) ll The second operand is negative
01 The second operand is positive (>0)

8.19 LOAD COMPLEMENT (SHORT OPERANDS)

Op RI R2

OP ri atty tt tt yotiy |
0 4 5 7 8 12 13 15

i Format

LECR R1,R2

DESCRIPTION:

The arithmetic complement of the fullword second operand replaces the contents of
floating point register Rl. The sign bit of the second operand is inverted, while
the characteristic, the fraction, and register (R1+001)mod8 are not changed.
Indicators are unchanged by this instruction. |

RESULTING CONDITION CODE:

00 The result is a true zero
ll The result is negative

Ol The result is positive (>0)

PROGRAMMING NOTES:

Invoking this instruction on an operand with a fraction zero will result in a true
zero with a condition code of 00. That 1S, an operand with zero fraction will not
be complemented but will be loaded as a true zero regardless of characteristic.

e
e

m
m
,

ce
es

gf
ih

ce
i

8.20 LOAD FIXED REGISTER

Op

OO; py]
R1

R2

 0 | | TyT {yous |

0

DESCRIPTION:

The fullword contents of the floating point register specified by R2 are loaded into the general register specified by

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators

4 5 7 8 11.1213
Mnemonic Format

LFXR R1, R2

Rl.

are not changed by this instruction.

15

8.21 LOAD FLOATING IMMEDIATE

0
Op R1 P OPX

Vyoyoroys| yy fryrytyol*t 4 Y
0 4 5 7 8 11.1213 15

Monemonic Format

LFLI R1, Value

DESCRIPTION:

A floating point immediate value .is loaded into the floating point register
specified by Ri.

The immediate values are 0.51.52.53. 94.75. 160772 78-79-10. ll. > 12.,13.,14., and 15.

OPX (bits 12,13,14,15) Immediate Values --> R1

Chex) Chex)

0000 0000 (TRUE ZERO)
4110 0000
4120 0000
4130 0000
4140 0000
4150 0000
4160 0000
4170 0000
4180 0000
4190 0000
G41A0 0000
41B0 0000
41C0 0000
41D0 0000
41E0 0000
41FO0 0000

T
I
M

O
G
S
W

P
w
o

m
n
t

o
u

P
W
D

&

©

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

8.22 LOAD FLOATING REGISTER

Op R1 R2

O;O;1;0741 tpt pty tyty O;ty YY
0 4 § 7 8 111213 15

Mnemonic Format

LFLR R1, R2

DESCRIPTION:

The fullword contents of the general register specified by R2 are loaded into the
floating point register specified by R1.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

8.23 MIDVALUE SELECT (SHORT C*=RANDS)

Op R1 : . B2 Address Specification

Ofiyr yoyo! | | frypryryi yt i es ee ee
0 4 5 7 8 11 1213 1415 16 31

x Dispiacement

fy; t_t_ eT Tt Tf fc T ty
16 31

i xX Ih Displacement

{| { i {| {fj j}fyf{yy f{

16 1819 20 21 | 31

AM Mnemonic Format |

Extended: 0 MVS — R1, 02 (B2)
Indexed: 1. MVS (@) (# R1, 02 (X2, B2)

DESCRIPTION:

The floating point registers specified by R1 and (R1+001)mod8 each contain a short
(8/24) floating point operand. The third short floating point operand is located in
the main storage effective address. The three operands are compared, and the
midvalue operand is selected such that it is less than or equal to the maximum value
operand. The normalized midvalue operand is then placed in the floating point
register specified by Rl. Both the main storage operand and the contents of
Register (R1+001)mod8 are not changed.

RESULTING CONDITION CODE:

-The condition code is set as a result of executing this instruction, but its value
iS, in general, meaningless when this instruction is used for midvalue selection.
However, see the Programming Note for condition code settings when this instruction
1s used as a limiter.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

This instruction can also be used as a limiter. The upper limit must be placed in
CRitl)mod&8; the lower limit must be placed in the main store location. The input
value to be tested must be placed in R1. The condition code will reflect the result
of the instruction and, if the input value is outside the limit values, the
appropriate limit value will be placed in R1. :

When this instruction is used as a limiter, the condition code will be set as
follows:

00 Within Limits: Lower Limit (Main Storage Operand) <

Operand (Initial Contents of Register

Rl) < Upper Limit (Contents of Register

CR1+1)mod8. CR1 is midvalue)

01 Above Upper Limit: Initial Rl Operand > Upper Limit
CRil+l)Jmod&. (R1 is midvalue: originated
in (CR1i+1)mod8)

ll Below Lower Limit: Initial R1 Operand < Lower Limit (Main

Storage Operand): (main storage operand

715 midvalue)

The programner is responsible to ensure that the upper limit is not equal to the
lower limit. If these conditions are inadvertently set up, the resulting condition
code will be meaningless.

PROGRAM INTERRUPTS:

Underflow =" she output of the MVS instruction, if normalized, could cause an
exponent underflow.

8.24 MULTIPLY CLONG OPERANDS)

Op | R1 R2

OP opmyoy ft ft fiyrtytyosiy 7 fy :
0 45 7 8 11 1213 15

Mnemonic Format

MEDR R1, R2

A pee Op R1 M B2 Address Specification

OfOPry roy | | fr yr qaqa ds | es
0 45 7 8 111213 1415 16- 31

AM Displacement
0

Pitt] tT tT tT {yy yy
16 31

1 x al | Displacement

| |{ fei t_TyTyTT_ ty yy
16 31

AM Mnemonic Format

Extended: 0 MED R1, 02 (B2)

indexed: 1 MED (@] (#] R1, 02 (X2, B2)

DESCRIPTION:

The normalized product of multiplier (the long second operand) and multiplicand (the
long first operand) replaces the multiplicand.

The first operand is located in bits 0 through 63 of the pair of floating point
registers specified by register R1. This operand is multiplied by the’ second
operand. For the RR- format, the second operand is located in bits 0 through 63 of
the pair of floating point registers specified by R2. For the RS format, the second
operand is located in bits 0 through 63 of the main storage word pair. The extended
product replaces bits 0 through 63 of the pair of floating point registers specified
by R1 and ¢€R1+001)mod8.

The multiplication of two floating point numbers consists of a characteristic
addition and a fraction multiplication. Fraction multiplication is accomplished by
multiplying the three most significant fullword Partial sum pairs and adding the
results (to 68 bits), followed by normalization and truncation to 56 bits. The sum
of the characteristic less 64 is used as’ the characteristic of an intermediate
product.

The sign of the product is determined by the rules of algebra.

The product fraction is normalized by postnormalizing the intermediate product, if
necessary, then truncating the product to 56 bits. The intermediate product
characteristic is reduced by the number of left shifts.

8-28

Exponent overflow is possible if the final product characteristic exceeds 127. The
operation is terminated, and a program interruption occurs without changing the
operands. The overflow exception does not occur for an intermediate product
characteristic exceeding 127, when the final characteristic is brought within range
because of normalization.

Exponent underflow is possible if the final product characteristic is less than
zero. If the floating point exponent underflow mask is a one, a program
interruption occurs and operands remain unchanged (no result written). If the mask
bit is zero, the result is made a true zero and no interrupt occurs.

When all digits of the intermediate product fraction are zero, the Product sign and
characteristic are made zero, yielding a true zero result. No interruption for
exponent underflow or exponent overflow can occur when the result fraction iS zero.
The program interruption for lost significance is never taken for multiplication.

RESULTING CONDITION CODE:

The code is not changed.

PROGRAM INTERRUPTS:

Exponent Overflow

Exponent Underflow

PROGRAMMING NOTES:

When either the multiplicand or multiplier is a true zero, the result is normally
forced to a true zero withuut requiring the hardware to enter the longer multiply
algorithm.

Interchanging the two operands will not affect the value of the product.

8.25 MULTIPLY CSHORT OPERANDS)

Op R1 | R2
Oi ;i1fOjO} | {| Ft Ji{rt{oyo} | |
0 4 5 7 8 1112 13 15

Mnemonic Format

MER R1,R2

Op R1 Disp * B2 * Displacements of the form
111 lid. of 1t1}olo \ 1 | 1 | | XXX are not valid

0 4 §5 7 8 13 14 15

Mnemonic Format

R1,D2(B2)

Op - RI | \ B2 | Address Specification
olrirjorol | yt iui io Peete ttt et
0 4 §5 7 8 1112 13 14 15 16 31

AM Mnemonic Format Dj
Extended: 0 ME R1,02,(B2) ‘sp

; | | (| {| | | | | {| { |

Indexed: 1 ME (@/[#] R1,02(X2,B2) x rly Disp

|_| |A LEE tT Tye ey
DESCRIPTION:

The normalized product of multiplier (the short second operand) and multiplicand

(the short first operand) replaces the multiplicand.

The multiplication of two fleo.c:.ing point numbers consists of a characteristic

addition and a fraction multiplicatisan. The sum of the characteristics less 64 is

used as the characteristic of an intermediate product. The sign of the product is

determined by the rules of algebra.

The preduct fraction is normalized by postnormalizing the intermediate product, if

necessary. The intermediate product characteristic is reduced by the number of left

shifts. For short operands (six-digit fractions), the product fraction has the full

14 digits of the long format with the two low-order fraction digits accordingly

always zero.

Exponent overflow occurs if the final product characteristic exceeds 127. The

operation is terminated, and a program interruption occurs) without changing the

operands. The overflow exception does not occur for an intermediate product

characteristic exceeding 127, when the final characteristic is brought within ransge

because of normalization.

Exponent underflow is possible if the final Product characteristic is less than
zero. If the floating point exponent underflow mask is a one, a program interrupt
occurs and the operands are unchanged (no result written). If the mask bit is zero,
the result is made a true zero and no interruption occurs.

When all 14 digits of the intermediate product fraction are zero, the product sign
and characteristic are made zero, yielding a true zero result. No.interruption for
exponent underflow or exponent overflow can occur when the result fraction is zero.
The program interruption for lost Significance is never taken for multiplication.

If Rl is even, the least significant part of the product fraction replaces the
contents of floating point register Ri+t001. The most significant part of the
intermediate product fraction replaces the contents of floating point register Rl.

RESULTING CONDITION CODE:

The code is not changed.

PROGRAM INTERRUPTS:

Exponent Overflow

Exponent Underflow

PROGRAMMING NOTES:

Interchanging the two operands in a floating point. multiplication does not affect
the value of the product.

When either the multiplicand or multiplier is a true zero, the result is normally
forced to a true zero without requiring the hardware to enter the longer multiply
algorithm.

Notice that the MULTIPLY (short) instruction uses two registers for its result if Rl
was even. This allows the programmer to use the additional precision without going
to the extended form of the MULTIPLY. If R1 was odd, one register is used for the
result (32 bit product).

8.26 SUBTRACT (LONG OPERANDS)

Op R1 R2

Olifolair] | | frfi{rjof a | |
0 4 § 7 8 1112 13 15

Mnemonic Format

SEDR R1, R2

A
Op R1 um |B2 Address Specification

Oli fofits{ | | fafa ts frti LiLtiTe_t_E_T_T_T_t_t_t_?_T | ff
0 4 § 7 8 1112 1314 15 16 31

AM Displacement

0 ee |
16 : 31

{

1 X Aj | Displacement

| | [| {| ff f f {| ft f
16 31

AM Mnemonic Format

Extended: 0 SED R1, O02 (B2)

Indexed: 1 SED [@]({#] R1, D2 (X2, B2)

DESCRIPTION:

The long second operand is’ subtracted from the long first operand, and the

normalized difference is placed in the first operand location.

The long 64-bit second operand is subtracted from the contents of floating point
register pairs specified by the register R1 and (R1it+1)mod8. The normalized result

is placed into floating point registers R1 and (R1+1)mod8.

The SUBTRACT Clong operand) is similar to ADD (long operand), except that the sign

of the second operand is inverted before addition.

The sign of the difference is derived by the rules of algebra. The sign of a

difference with zero result fraction is always positive.

RESULTING CONDITION CODE: PROGRAM INTERRUPTS:

00 Result is true zero Significance

ll Result is less than zero Exponent Overflow

01 Result is greater than zero Exponent Underflow

PROGRAMMING NOTES:

The technique used to clear a register by subtracting a floating point register from

itself will work even though unnormalized numbers are used in the subtract

operation. The result will be a true zero. .

B-32°

8.27 SUBTRACT (SHORT OPERANDS)

Op R1 |

Op pouty fT | fiyityiyofo} yy

0 4§ 7 8 1112130 15)
Mnemonic Format

SER R1,R2

Op R1 Disp* B2 ° Displacements of the form
= T11XXKXX lid. pet are not vali

0 4 § 7 8 13 14 15

Mnemonic Format
R1,02(B2)

Op Ri , B2 Address Specification
Oj) JO; 141 Pt to | es Gs |
0 4 § 7 8 11 121314 1§ 16

: AM Mnemonic Format Disp ded:

Indexed: 1 =SE {@] [=] R1,02(x2,B2) x ne Disp

oe Peete ty yy YY

DESCRIPTION:

The short second operand its subtracted from the short first operand, and the
normalized difference is placed in the first operand location.

The SUBTRACT (short operands) 1s similar to ADD (short operands), except that the
sign of the second operand is inverted before addition.

The sign of the difference 1s derived by the rules of algebra. The sign ofa
difference with zero result fraction is always positive.

RESULTING CONDITION CODE: PROGRAM INTERRUPTS:

00 Result is true zero Significance
li Result is less than zero Exponent Overflow
01 Result is greater than zero Exponent Underflow

PROGRAMMING NOTES:

The technique used to clear a register by subtracting a floating point register from
itself will work even though unnormalized numbers are used in- the subtract
operation. The result will be a true zero.

8-33

8.28 STORE CLONG OPERANDS)

A

Op R1 M iB2 Address Specification

OJo ji fifa] | {| fafafaf afi | es ee
0 4 5 7 8 1112131415 16 31

AM Displacement

0 LTT i_t_ tT T_T tT TE tT dT tT ft
16 31

1 Xx I Displacement

| | | | { | | {| | {| { |
16 31

AM Mnemonic Format

Extended: 0 STED R1, 02 (B2)

indexed: 1 STED (@](#] R1, 02 (X2, B2)

DESCRIPTION:

The long first operand is stored at the long second operand location. The first

operand is not changed.

The first operand is located in the pair of floating point registers specified by

bits 0 through 31 of floating point register R1 are stored in.

Bits 0 throucrh 31 of

register Rl. First,

the fullword specified by the second operand fullword address.

CR1+1l)mod8 are stored floating point register

ints the second fullword or

doubleword storage area starting with the second operand fullword address.

contents of register R1 and (R1 + 1)mod 8 are not changed.

RESULTING CONDITION CODE:

The code is not changed.

8.29 STORE (SHORT OPERANDS)

operand

| Op R1 Disp” B2 * Displacements of the form
OfO;isif4 1 | t | 1 | 111XXX are not valid.

0 4 5 7 8 13 14 15

Mnemunic Format

R1,02(B2)

| Op R1 - B2 Address Specification
Of/Ol;1/1{ 1 | { if 1/111 jo | | | | |} | | | | yy

0 4 5 7 8 1112 13 14 15 16 31

AM Mnemonic Format Disp
Extended: 0 STE . ~R1,02(B2) ; Lt Piru
Indexed: 1 STE{@] [=] R1,02(x2,82) x daily Disp

; ; {A Lt y yyy

DESCRIPTION:

register Rl are stored at the The contents of floating point
location. The contents of R1 are not
are not changed by this instruction.

RESULTING CONDITION CODE:

The code is not changed.

changed. The overflow and carry indicators

(This page intentionally left blank)

9.0 SPECTAL OPERATIONS

This section describes the special instructions. These instructions make possible the use of efficient Pseudo subroutines, permit the specification of storage Protection, perform status switching, control I/0, and loading and storing the Data Sector Register (DSE).

9-1

9.1 DIAGNOSE CDETECT)

A wpe Op R1 M B2 Address Specification |
TLapOoyoy;oy | {| f1j14iti ti | es ||
0 4 5 7 8 11121314 15 16 31

au Displacement]

;jifttt fff | {| | j | | 4

16 31

1 4 Ty | Displacement

{| | {A fie ett tt tt

16 18 1920 21 31

AM Mnemonic Format

Extended: 0 DIAG R1,D2(B2)
Indexed: 1 DIA G(@) (#) R1,D2(X2,B2)

DESCRIPTION:

A 16-bit effective address is developed in the normal manner without expanding to 19

effective address uniquely selects

perform built-in

of the CPU hardware and to

"ee

bits. ine

routines. These routines

verify the proper functioning

are used to

one of several

The particular diagnostic operations performed are defined in Section 15.

The instruction is not intended for normal program usage. This is
operation and can only be executed when the CPU is in the Supervisor state.

RESULTING CONDITION CODE:

00 The diagnostic result is "pass"

11 The diagnostic result is "fail"

01 --- Cimpossible)

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

AUTOMATIC INDEX ALIGNMENT:

This instruction aligns the index value assuming a halfword main storage operand.

special microprogram

diagnostic functions

detect faulty components.

a privileged

PROGRAM CHECK EXCEPTIONS:

Privileged Instruction

Address Specification - Address Violation for a fullword indirect
address pointer.

Address Specification - Nonexistent Address for an indirect address
pointer.

PROGRAMMING NOTES:

This instruction is not intended for genere] programming use; it is designed for the
diagnostic programmer. Every programmer desiring to use the Diagnose instruction
should be thoroughly familiar with the contents of the Diagnostic Function Appendix.
Unexpected results can occur if this instruction is improperly used.

9-3

9.2 INSERT STORAGE PROTECT BITS

Op M1 . B82 Address Specification
T{1 71 jOyr? | | fapryryryis | es se ee |
0 45 78 1112 13 14 15 16 | 31

AM Mnemonic Format

Extended: 0 ISPB M1,02(B2) Disp

| {| | ; { {| | {| | | | {| Y

Indexed: 1 ISPB [@] [#] = _M1,02(X2,B2) x ty Disp
{|} {4 Lit ?_ty yy yy

DESCRIPTION:

Bits 5 through 7, the Ml field, are decoded to set or reset the protection bit .
associated with each halfword in main-storage as specified by the EA. The contents
of the specified location, however, are not changed.

The following defines the combinations of the Ml field and the corresponding result:

Ml Field Result

000 Reset the storage protection bits for the halfword second operand.
001 Reset the storage protection bits for both halfwords in the fullword

second operand.

010 set the storage protection bits for the halfword second operand.
011 set the storage protection bits for both halfwords in the fullword

second operand.

100 Tllegal

101 Illegal

110 Illegal

111 Tllegal

This is a privileged operation and can only be executed when the CPU is in the
Supervi.sor state.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry and overflow indicators are not changed by this instruction.

PROGRAM INTERRUPTS:

Illegal operation

Privileged instruction

9-4

PROGRAMMING NOTES:

The low-order bit in the EA is used to specify the halfword when M1 is 000 or 010.
When M1 is 001 or O11, the low-order bit of the EA should be 0 and will be ignored.

This instruction will always have halfword alignment and will be excluded from
automatic index alignment.

WARNING {

This instruction requires multiple memory accesses. The CPU does not prohibit IOP
accesses of the selected main storage location during the time between the fetch of
the operand and store of the result. Therefore, this instruction should not be used
With any memory locations that might be DMA'’d into.

9-5

9.3 LOAD PROGRAM STATUS

Op opx B2 Address Specification
TPO pO ptf tyOy ty tyt pty tft [| ee Oe eG
0 4 § 7 8 1112131415 16

AM Mnemonic Format
Extended: “0 LPS D2(B2) | Disp

; | | (tt | | | | {| YY
Indexed: 1 LPS(@) (#]) 02(X2,B2) x ity Diso

Ly {A os ee

DESCRIPTION:

Two fullwords starting at the location designated by the fullword operand address
replace the contents of the program status registers on the CPU, as described under
Program Status Word (Section 2, Figure 2-19).

RESULTING CONDITION CODE:

The code is set or defined by the new PSW.

INDICATORS:

The carry and overflow indicators are set or defined by the new PSW.

PROGRAM INTERRUPT

If PSW bits 19 and 20 are set, a fixed-point overflow interrupt will occur.

PROGRAMMING NOTES:

This is a privileged operation and can only be executed when the CPU is in the
Supervisor state. This instruction will always have halfword index alignment and
will be excluded from automatic index alignment.

PSW bits 40 through 43 are not changed by the load operation.

9-6

9.4 MOVE HALFWORD OPERANDS

Op R1 R2

O41 41 4O]1 | 1) rp ry ort i |

0 4 § 7 8 11.1213 15

Mnemonic Format

MVH R1, R2

ny, ye +

DESCRIPTION: —

Bits 1 through 15 of the general register specified by R1 contain the offset of the
destination address within a specified sector. When bit 0 in Rl isa one, the

destination address is determined by concatenating the DSR value in the PSW with the

offset. When bit 0 in Rl 18 a 2ero, the destination address is determined by

concatenating the value in the corresponding DSE register with the offset. Bits 16

through 31 of R1 contain a count of halfwords to be moved. Since its representation

uses a signed twos complement integer format, bit 16 (the sign bit) should be zero.

A negative count Cbit 16 equals 1), or a count equal to 0, indicates no data will be

moved.

The content of the general register specified by R2 is as follows:

oa

Source Address ° Reserved ignored OSR

ss ee eee
0 1 15 16 27 28 31

When bit 0 in R2 is zero, the source address uses an implied DSR of all zeros.

When bit 0 in R2 is one, the source address uses the DSR contained in bits 28-31,

Data (a block of contiguous halfwords) is moved a halfworad at a time from a source

whose address is determined by concatenating the value of the DSR in R2, with the

Source Address in R2, and adding to it the value of the count in bits 16 through 31

of R1, which is decremented by one for each halfword moved. The data is moved to

the destination whose address is determined by adding the current value of the count

to the destination address. The move is completed when the count becomes zero (see

Figure 9-1).

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

9-7

iC = Instruciton Counter
S = Source Address
D = Destination

s TR20.45 Address

D<R1 nn ae en en ee © = Count of
< 0-15 Halfwords > 0

CRI, MS(X) = Contents of
16-31 .

Main Store
Location at X

a

?

NO

MS (D+C) <"MS (S+C)

‘é Interrupt Pending
?

interrupt Service
Routine Will

iC—1C-. -——@-=——_— i Restart This
Instruction at

1 its Beginning

To Next Instruction
or Interrupt
(If Pending)

T_
Figure 9-1. Move Halfword Execution

PROGRAMMING NOTES:

As in all instructions, main store addresses (for source and

destination) must not be expected to cross 32K sector boundaries,

because this instruction will not modify the DSR/DSE. If this is ever

attempted, operands will be used from sector zero.

Because the MOVE HALFWORD instruction can execute for a long time, it

has been designed to be interruptible by all interrupts except AGE halt,

which only interrupts MOVE HALFWORD at the end of the instruction.

When MOVE HALFWORD ends prematurely due to any of the above pending

interrupts, the instruction counter will be decremented such that when

the interrupt is taken the old PSW contains the instruction address of

the move instruction. Note that the count in R1 is modified to reflect

the number of halfwords remaining to be moved. This will allow

returning to the move instruction so that it can continue to be executed

from where it was interrupted. Note that the DSEs associated with

registers R4-R7 are not saved/restored by STDM/LDM instructions and

therefore may not be saved by standard interrupt handlers.

~ ANOMALY NOTE:

_ MOVE HALFWORD will not correctly move data when the expanded source
address is exactly one greater than the expanded destination address and
the most significant bit of R1 and R2 are not equal. To avoid this

problem, the programmer should ensure that when the source and

destination blocks overlap, the source address is not exactly one

halfword greater than the destination address.

The recommended approach when using the MVH to initialize a block of
memory is to initialize the last fullword of the block and make the
source address 2 halfwords greater than the destination address, thereby
moving fullwords instead of halfwords. This avoids the anomaly and

executes in half the time.

(This page intentionally left blank)

9.5 SET PROGRAM MASK

(+f afof1

Mnemonic Format

SPM R2

DESCRIPTION:

The contents of bits 16 through 23 of general register R2 replace the corresponding
contents of the current Program status registers on the CPU as follows:

Bits 16 and 17 become the new condition code
Bit 18 becomes the new carry indicator
Bit 19 becomes the new overflow indicator
Bit 20 becomes the fixed point overflow mask
Bit 21 Creserved)

Bit 22 becomes the floating point exponent underflow mask
Bit 23 becomes the significance mask.

RESULTING CONDITION CODE:

The code is changed as defined above.

INDICATORS:

The carry, overflow, underflow, and significance indicators are changed as defined
above.

PROGRAM INTERRUPT:

If both bits 19 and 20 are set, the fixed-point overflow interrupt will occur.

PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero
as shown above and considered as an op code extension.

9.6 SET SYSTEM MASK

 | | | |

Address Specification

ttt t tt tt

31

/

a // a ©
1{0 10 |O| 1%9 MA 4 1 [

0 4 5 7 8 11121314 15 16

AM. Mnemonic Format
Extended: 0 SSM D2(B2)

|

indexed: 1 SSM(@] (#] 02(X2,82)

DESCRIPTION:

The halfword second operand replaces bits 32 to 47 of the PSW.

This is a privileged

operation and can only be executed when the CPU is in the Supervisor state.

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The carry and overflow indicators are not changed by this instruction.

PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction.

as shown above and considered as an op code extension.

9-10

These bits should be set to zero

9.7 STACK CALL

Op RI {| 82 Address Specification
Tyr fofr poy fp ett yy tts ee ee
0 4 5 7 8 111213 14 1616

31

AM
0 Displacement

a
16 | 31

i r
1 X Aly Displacement

{J Pepe e te
16 = =18 1920 21 31

AM Mnemonic Format
Extended: 0 SCAL R1, 02 (B2)
indexed: 1 SCAL (@] [#] R1, 02 (x2, B2)

DESCRIPTION:

This instruction for calling subroutines automatically controls saving bits 0 through 31 of the current
(frame) into main storage.
general register R1 must contain a Stack Status Descriptor word (SSD). when the Corresponding Stack Return CSRET)
the called subroutine, gen
general register containin

into a stack space

is to be used,

Likewise,
instruction is to be used to return from

The contents of the

PSW and the 8 general registers
When the Stack Call C(SCAL) instruction

eral register R2 must contain an SSD.
g9 the SSD are as follows:

First, a branch address is
from values in the SSD in

When bit zero of the PTR
which is represented by a

SA bits 0 - 3

SA bits 4 - 18

PTR bits 1

halfuwords

Note:

When bit zero of the PTR i
follows:

15 16 31

computed. A save area address on the stack is computed
Rl and either the associated DSE or PSW DSR, as follows:

is one, the stack space save area address (SA) or pointer,
19-bit machine address, is determined as follows:

DSR contained in the PSW

?TR bits 1-15 + INC

-15 represent the offset or number of
from the beginning of a specified sector.

S zero, the stack space save area address is determined as

9-11

SA bits 0 - 3 = DSE associated with the reuister containing the SSD

SA bits 4 - 18 = PTR bits 1-15 + INC

The first two halfwords of the current PSW and the eight general-purpose registers

(GPR) are the stored in the 18 halfwords beginning at locatior, SA. The SSD in R1 is

now updated, as follows:

PTR bit 0 is set to the old PTR bit 0 value

PTR bit 1 - 15 is set to SA bits 4 - 18

INC is set to 18

(Note: The DSE associated with Rl is not changed.)

When updated, R1 provides the base offset address of the current stack space frame

within the specified sector.

Finally, the next instruction is taken from tke branch addiess. This is essentially

a BAL instruction which provides an automatic call stack function.

PROGRAMMING NOTES:

PTR is a 16-bit address in Rl which is used to formulate the location of a

particular stack frame within a specified sector, i.e., SA (contiguous storage).

INC represents the number of halfwords which have currently been used in the stack

beyond SA. Since its representation uses a signed twos complement integer format,

1ts sign bit should be zero (see Figure 9-2).

(Beginning)

Figure 9-2. Current STACK Status ~- Prior to SCAL

When SCAL is executed, the new stack save address (SA) is calculated as indicated

above, the current PSW and the eight general registers are saved in the new stack

save area pointed to by SA so «*nat the stack now appears as in Figure 9-3. Then the

PTR in R1 is updated to the sum of the values in PTR + INC, and then INC is set at

18.

9-12

(Beginning)

Pee Ferrera

SA

Linkage

and GPR INC = 18 Halfwords
Save Area

Figure 9-3. STACK Status - Upon Completion of SCAL

The programmer is free to use additional space in the stack, by simply using R1 as a
base, and an offset which is greater than 18 (to avoid destroying the saved GPR
contents). However, this additional information will be lost if he issues another
SCAL without specifically adjusting INC in R1 to include this new space.

When SRET is executed, the first two halfwords of the PSW and the eight GPRs are
automatically loaded from the stack frame save area at location SA. Note that this
restores Rl to contain the SSD it had Prior to the last SCAL, which means “hat the
stack is automatically restored to the state of Figure 9-2 (refer to STACK RETURN).

PROGRAM INTERRUPTS:

Store protection

9.8 STACK RETURN

Op M1 R2

PO Opto yt Et ot
0 45 78 111213 15

Mnemonic Format

SRET M1, R2

DESCRIPTION:

When SCAL is used to call a subroutine, the complementary branch instruction SRET is
used to leave the called subroutine and return to the conditions Prior to the last
SCAL. This is a conditional branch instruction in the RR format which provides the
first two halfwords of the PSW, and restores the GPR registers to the same state as
existed at the time of the SCAL, Ci.e., to the extent that the stack space save area
has remained unchanged).

The instruction execution first matches the Ml field against the condition code to
determine if the branch should be taken. If the branch should not be taken, the
instruction terminates at this point. The remaining description applies when the
branch should occur.

The stack frame pointer or offset within a specified sector, PTR, is defined by bits
0 though 15 of the general register specified by R2. (Note: This register should
be the same as the Rl register specified in the SCAL instruction.) PTR, when
concatenated with the sector specification, forms a 19-bit address which is used to
address the initial location of the current stack frame. When SRET is invoked, the
two halfwords located at this location are moved into the tirst half of the PSW,
i1.e@., into bits 0 through 31. Next, the 16 halfwords located at the stack frame
address + 2, are moved, in order, into the eight general-purpose registers.
Finally, instruction execution continues from the address indicated by the active
PSW.

RESULTING CONDITION CODE:

The value in the corresponding field is loaded from the stack.

INDICATORS:

The value in the corresponding field is loaded from the stack.

PROGRAMMING NOTES:

The following notes are intended to amplify and clarify the use of the steck and
extended call facility.

since the stack is located in main store, any area of the current stack

frame can be accessed by standard addressing techniques (i.e., using R1 as

a base).

9-14

One of the primary purposes of the stack is automatic register saving and
restoring. Another important purpose is the allocation and deallocation
of temporary work space, a function often required for efficient use of
storage, and for reentrant programs. This latter function can be realized
by judiciously increasing the INC value in the SSD.

The total stack space (i.e., the space taken up by the total stack at any
given time) is variable. It grows and shrinks as a function of the depth
of the call tree and the amount of workspace used by the various programs.
However, in the overall data structure of the total application, there
must inevitably be a fixed limit on the amount of main store which can be
allocated to the stack. such limit would presumably be based on either
statistics of usage plus a safety factor, or else on a detailed analysis
of the usage of all possible call chains. In both cases (tha latter as an
error detection mechanism) it is important to have some mechanism to stop
the call chain, if through some peculiar circumstances, the stack should
exceed its allocated space. Unfortunately, there does not appear to be
any foolproof scheme. However, most such situations would be caught by
appending a few words at the end of the allocated space which have. the
store protect bit on. Any attempt to store into the appended space would
result in a protection violation and interrupt.

Since the PSW and the eight general-purpose registers are automatically
restored on SRET, it is not possible to return results directly to the
calling program in the registers. Rather, the value to be returned in a
register must be stored into the appropriate slot in the general-purpose
register save area in the stack. Then, when the registers are restored,
the calling program will, in fact, find the value in the register. At the
same time, additional values can be returned to the calling program in the
work space in the stack, since the calling program can access that space
by addressing relative to the base in R1 (SCAL). (There must, of course,
be an agreed-upon convention as to the specific locations in the work
space.) Note: The floating point registers are not affected by SCAL and
SRET, so variables can be passed in these registers.

9-15

9.9 SUPERVISOR CALL

Op OPX . B2 Address Specification

WnoporsP oops yp Pe te tt
0 4 5 7 8 111213 14 18 16 31

AM Mnemonic Format Disp

Extended: 0 SVC 02(B2) * : fie t_ EPpy yyy YY
Indexed: 1 SVC [@] [=] 02(X2,B2) x ryt Disp

, | |A Piet t_iT ty y

DESCRIPTION:

This instruction causes an interruption and a program status word switch. As a
result of this instruction, the interrupt code stored in the old program status word
is the 16-bit effective address. This is the only way to enter the supervisor state
from the program state. The 4-bit extension (zzz2 of Figure 2-18) of the 19-bit
effective address is stored in old PSW bits 40 through 43.

RESULTING CONDITION CODE:

The condition code in the stored PSW is not changed by this instruction.

INDICATORS:

The overflow and carry indicators in the stored PSW are not changed by this
Instruction.

PROGRAMMING NOTES:

The new PSW sets or defines the condition code, overflow indicator, and carry
indicator as well as all other bits in the new PSW.

9.10 TEST AND SET

Op YY - B2 Address Specification Yi
PLoyty ty Opty ty | PT] | Yt CY

7 8

0 4 § 1112 13 14 1§ 16 31

AM. Mnemonic Format
Extended: 0 TS D2(B2) Disp

| {| f{ es ee Ge

Indexed: 1 TS(@] (#] 02(X2,B2) x yd Disp
| |4 Pit ety yy yy

DESCRIPTION:

Bits in the halfword second operand are tested to set the condition code, and the second operand is set to all ones. No other access to this location, including DMA, 1s permitted between the fetch and the storing of all ones.

RESULTING CONDITION CODE:

00 The bits are all zeros
ll The bits are mixed with Zeros and ones.
01 The bits are all ones

INDICATORS:

The carry and overflow indicators are not changed by this instruction.

PROGRAMMING NOTES:

TS can be used for the controlling and sharing of a common storage area by more than
one program. To accomplish this, a halfword can be designated as control. The
desired interlock can be achieved by establishing a program convention in which a zero halfword indicates that the common area is available, but a one means that the
area is being used. Each using program then must examine this halfword by means of
a Test and Set before making access to the common area. If the test sets the
condition code to 00, the area is available for use; if it sets the condition code either 01 or to 11, the area cannot be used. Because Test and Set permits no access
to the test halfword between the moment of fetching (for testing) and the moment of
storing all ones (setting), the Possibility is eliminated of a second program
testing the halfword before the first Program is able to reset it. Selective bits
can be tested by using the TEST AND SET BITS instruction.

Bits 5 through 7 are not used by this instruction. These bits should be set to
zero, as shown above and considered an op code extension.

9-17

9.11 TEST AND SET BITS

Op OP> Disp * B2 Immediate Data

TLO}7{1/o;1]41 1] | | YT YY | a es De |
0 4 5 7 8 13 14 15 16 31

Mnemonic Format _ “Displacements of the form
TSB D2(B2),Data 111XXX are invalid.

DESCRIPTION:

Bits 16 through 31 of this instruction are treated as halfword immediate data. The
immediate data is logically tested with the halfword second operand. The logical
sum (OR) of the immediate data and the halfword second o2erand is formed bit-by-bit.
The result replaces the halfword second operand. No other access to this location,
including DMA, is permitted between the fetching of the operand and the storing of
the result. |

RESULTING CONDITION CODE:

00 Either the bits selected by the. immediate data are zeros or the immediate
data is all zeros.

11 The bits selected by the immediate data are mixed With zeros and ones
01 The bits selected by the immediate data are al] ones

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAMMING NOTES:

The one bits in the halfword mask specify the bits of the halfword second operand
that are set one. The result replaces the halfword second operand. The following
table defines this instruction.

TEST AND SET

BITS

Mask 1100

Storage 1010

Result 1110

9-18

9.12 LOAD EXTENDED ADDRESS

OP ° R1 R2

0100 0 141 1 OF 1
i i Q } 2 l l i

0 4 5 7 8 1 #1 =47 1

12 3 5

Mnemonic Format

LXAR R1,R2

OP R1 Al B2

0190 0 1 17 T74M Address Specification
j i t 4 2 i i i 2) j } § } I f ! i ; } j I j j)

0 4 5 7 8 | 1 1 1 3

123 4 § 6 1

AM Mnemonic Format

Displacement

Extended: QO LXA R1, D2 (B2) sc eed doen antinori ont em
{

Indexed: 1 LXA(@] [#] R1, D2 (X2, B2) X All Displacement
q i | ee | f i i f i 9 i t

DESCRIPTION:

General register R1, and the associated Data Sector Extension (DSE), are initialized

from the fullword second operand. Bits 0 and bits 16 through 31 of R1 are zeroed.

Bits 1 through 15 of Rl are replaced by bits 1 through 15 of the full word constant,
and the DSE associated with Ril is replaced by bits 28 through 31 of the fullword

address constant.

The format of the fullword address constant second operand is:

Reserved Xicic{ic
Address . 000 C B/D BSR OSR |

Lemmasfammnsssfanesemaemmmnn eum ommmmnanmeiemmammlamm ameter toni! —— Lmmmeetommmml boeemmmonfasmemal

0 1 1 1 12222 2 2 2 3

5 _6 90123 4 7 8 1

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

Note: If the DSR to be loaded and the current DSE are equal, an early out option is
executed by microcode to significantly shorten instruction zxecution time.

9-19

9.13 LOAD DSE MULTIPLE

Op Y, A B2 Adaress Specification

0 2 1 2 1 9 0 q 1 1 g 1 q 1 1 1 M a 9 0) | f i 2 q 9 9 g 8 9 a 2

0 4 § 7 8 1 $414 11~«1 3
1.2 3 4 5 6 1

AM Mnemonic Format
Displacement

Extended: QO LDM D2(B2) a ee Pie ee errr

Indexed: 1 LDM(@] (#] 02(X2,B2) x A | Displacement

, ft 1 ft § ¢ yy 9 9 g yg ¥

DESCRIPTION:

The four Data Sector Extensions (DSE) corresponding to RO-R3 of the current register

set are initialized from the fullword second operand.

The format o* the fullword second operand is:

| RO R1 R2 R3
, DSE DSE DSE DSE

0,0,0,0 a i i 0,0,0,0 i i } 0,0,0,0 9 j 0,0,0,0 i =

0 3 4 7 8 11 11 1 2 2 2 2 2 3
1 2 5 6 9 0 3 4 7 8 1

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero

as shown above and considered as an op code extension.

9-20

9.14 STORE EXTENDED ADDRESS

OP Ri R2

1,0,1 ,o,0 1 7 11 ,1,0 a i

0 4 § 7 8 1 #71 é7 1

1 2 5

Mnemonic Format

STXAR R1, R2

' OP R1 A B2 Address Specification

1 i 07 1 i 0 q) ft } 1 i 1 i 1 @ 1 1 | M i t { { ! i { j | i i i { { i i J

0 4 5 7 8 11 #7 «7 ~«7~«' 3

12 3 4 5 6 1

AM Mnemonic Format Displacement

Extended: OQ STXA R1, 02 (B2) Se ee ee ee ee ee ee

Indexed: 1 STXA([@] [#] R1, D2 (X2, B2)

DESCRIPTION:

The extended data address contents of R1 plus R1 DSE are stored at the fullword

second operand location in fullword address constant format. Bit 0 of the second

operand is set to one, bits 1 through 15 are replaced by bits 1 through 15 of Ri,

bits 28 through 31 are replaced by the contents of R1 DSE, bits 16 through 19 are

set to zero, and bits 20 through 27 are unchanged and ignored.

The format of the fullword address constant second operand is:

Address Reserved |X| C{C/C BSR OSR |
Cc Bi D

1 t a i a t ‘ i i i i i Q { 0,0,0,0 4 i 4 2 i i

0 1 1 1 12222 2 2 2 3
5 6 9012 3 4 7.8 1

RESULTING CONDITION CODE:

The code is not changed.

»~. INDICATORS:

The overflow and carry indicators are not changed.

9-21

9.15 STORE DSE MULTIPLE

Op Al B2

100 1 0 1 1 14 d@t17M Address Specification
ly f 4 i ¢ f 4 f hoy ¢ gf ij yy ff ff 7 gf fy fy yy ff

0 4 5 7 8 1171 «7 ~«71~«27 3
. 12 3 4 5 6 1

M Mnemonic Format Displacement

Extended: O STDM D2(B2) feo Le,
[

indexed: 1 STDM[@] [#] D2(X2,B2) xX All | Displacement
ty tps. yy, y 4, «- , ,

DESCRIPTION:

The four, Data Sector Extensions (DSE) corresponding to RO-R3 of the current register

set are stored at the location of the fullword second operand.

The format of the fullword second operand is:

RO R1 R2 R3 |
DSE , DSE | DSE DSE

0,0,0,0 i i. i O,0,0,0) i i i 0,0,0,0 § i i 0,0,0,0 j i i

0 3 4 7 8 1 1 11 1 2 2 2 2 2 3
1 2 5 6 9 0 3 4 7 8 1

RESULTING CONDITION CODE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed.

PROGRAMMING NOTES:

Bits 5 through 7 are not used by this instruction. These bits should be set to zero
as shown above and considered as an op code extension.

10.0

A CPU

INTERNAL CONTROL OPERATIONS

instruction will initiate an Internal Control operation that will perform the
following functions, depending on the control word (CW) coding:

A fullword will be transferred between general register Rl and counter 1
or 2. The high halfword of general register R1 (the most Significant
halfword) is transferred to or from the main store nalfword location 00B0
for counter 1, or 00B1 for counter 2. The low halfword of general
register Rl (the least significant halfword) is transferred to or from a
16-bit hardware binary counter 1 or counter 2. Section 2? contains a
description of counter operations. .

An AGE command word, specified by bits 16 through 31 of the CW (R2), will
be transferred to the AGE interface, and a halfword will be transferred to
or from bits 0 through 15 of a general register (R11) and the AGE
interface.

Four disecretes will be transferred from bits 0 through 3 of a general
register (R1) to the I/O interface.

0 - XMIT Disable

1 - BCE Disable

2 - Spare 1

3 - Spare 2

I/O channel reset. The channel reset operation issues a reset to the I0.
The IQ and CPU uses the signal to reset the IO/CPU interface logic. If an
external interrupt 0 has occurred, this command must not be executed until
IOP level A interrupt register has been read.

10-1

10.1 INTERNAL CONTROL

oP R1 R2

LS
0 45 78 111213. 15

Mnemonic Format

ICR R1,R2

DESCRIPTION:

This instru-tion transfers a fullword to or from the general register specified by
Rl. Operat.sns are further defined by a control word contained in bits 0 through 31
of the gens*al register specified by R2. The CW format is shown belon.

CONTROL WORD (CW::

D Reserved for AGE Command Word

Pet te POOP pO pOpOyOpOyoyoyoy | y yy yy Ty te tp tp ay
0 4 § 15 16 31

Legal D

Command Meaning

00000 Read Counter 1

00001 Read Counter 2

00101 Read AGE
01000 Write Counter 1

01001 Write Counter 2

01100 Write Discretes
01101 Write AGE

10000 Channel! Reset

No data transfer is associated with the Channel Reset operation.

RESULTING CONDITION —‘DE:

The code is not changed.

INDICATORS:

The overflow and carry indicators are not changed by this instruction.

PROGRAM INTERRUPTS:

Illegal operation

Privileged irastruction

Clears any pending counter interrupts when counter is loaded

(10-2

PROGRAMMING NOTES:

- This is a privileged operation and can only be executed when the CPU is in the

Supervisor state.

Command codes which are not defined in this document are illegal and should not be.

used. Unlike previous versions of this architecture, only the command 10000 causes

a channel reset, not the general case 1XXXxX.

The AGE command word, specified by bits 16 through 31 of the CW (R2), should be a

valid AGE command, otherwise an illegal operation interrupt could occur. The valid

AGE commands are: Read AGE (04XX), Load AGE (86XX), Diract AGE (€84¢XX) and AGE Mode

Control (€87XX). Bits 24 through 31 of the CW are decoded by the AGE to perform a

definite function.

When using either Counter 1 or Counter 2 as a counter Crather than as an incremental

timer), a possibility exists that the counter could be in error during a single read

by 65,536 microseconds (low order bit of location 00B0 or OOB1). This problem can

be avoided by doing two consecutive reads and making comparisons to pick the correct

reading. To further insure that one of the readings is correct and as a

compensation for interrupt processing overhead a value of two (2) is added to the

timer when it is read. The write Counter N commands reset the corresponding clock

interrupt latch, clearing any pending interrupts.

In addition to the normal shuttle ICR command codes, the following hardware

dependent ICR commands are defined for AP-101S series as an aid for diagnostic

coding. General use of these codes is not encouraged. If the timer is loaded With

a value and read while in the stop condition the value read will be incremented by a

value of two. |

Typical

Execution

Originate Function of ICR R/W Cocle Code in R2 Time lus)

Read Soft Error Counters R 0002 0002 0000 7.5

(1-7, low page; 9-15, high page)

Load Counter 0 W 8801 8801 0000 5.5

Start Counter 0 id 8802 8802 0000 5.75

Stop Counter 0 wl 8803 8803 O000 5.75

Load Counter 1 W 8809 8809 0000 5.75

Start Counter 1 al S80A 880A 0000 5.75

Stop Counter 1 bl &880B 880B 0000 5.75

Read Counters R 0802 0802 0000 5.5

Read Counters R 0803 0803 0000 5.75

AGE & CPU Read AGE R O4XxX 2800 O4XX 20.25

AGE & CPU Load AGE i 86XX 6800 86XX 20.00

AGE & CPU Direct AGE W 8 4XX 6800 84XX 20.25

AGE & CPU AGE Mode Control W 87XX 6800 87XX 20.25

MMU Read and Clear MFER (Figure 10-1) R 1408 1408 0000 7.25
MMU Read MMU (Figure 10-1) R 140A 140A 0000 7.25
MMU Read EDAC Address Reg. 00-15 R 140F 140F 0000 7.25

MMU Read MFER (Figure 10-1) R 140C 140C 0000 7.25
MMU Clear Soft Error Counter W 9402 9402 0000 5.75

Bit MFER Function MMU Function

0 Spare = 0 Spare = 0

1 Illegal Address = 1 Illegal Address = 1

2 Spare = 0 Spare = 0

3 Spare = 0 Spare = 0

4 Spare = 0 Spare = 0

5 MMP Store Protect = 1 MMP Store Protect = 1

6 MMP Store Protect Bits Miscompare = 1 MMP Store Protect Bits Miscompare = 1

CDRAM only) (DRAM only) |

7 CPU/IOP Single Bit Memory Error = 1 CPU/IOP Single Bit Memory Error = 1

8 IOP Multibit Memory Error = 1 IOP Muitibit Memory Error = 1

9 IOP Store Protect Error = 1 IOP Store Protect Error = 1

10 Spare = 0 Spare = 0

11 CPU Multibit Error = 1 1750 Block Protect Enabled = 1

12 Spare = 0 Spare = Float

13 Spare = 0 Logic 0

14 Illegal I/0 Command = 1 CMOS Memory Installed = 0

15 Spare = 0 MMP = 0; 1750 = 1
Figure 10-1.

10-4

MFER/MMU Registers

AP-101S SHUTTLE INSTRUCTION SET

11.1 EFFECTIVE ADDRESS GENERATION SUMMARY CHART

=

a

38 HE

RS Format

SRS, SI Extended Indexed Addressing (AM=1)
Formats Addressing |

(AM=0) IA | I X=000 X=000

a
PEA=(B)+DISP

132411 | EA=(B)+DISP | EA=(B)+DISP | 00 | EA=IC+PEA EA=(X)9_15+PEA
01 EA=IC-PEA EA=(&) 6- 5+PEA
10 EA=MS(PEA) EA=MS(P A)+(X)9-15
11 | EA=MS(PEA)**| EA=MS(PEA)***+(X)o_15

PEA=DISP

B2=11 | EA=(8)+DISP | EA=DISP 00 EA=IC+PEA EA= (X)9_15+PEA
01 EA=IC-PEA . EA=(X)4_) 5+PEA
10 EA=MS(PEA) EA=MS(PEA)+(X)9_35
11 EA=MS(PEA)** EA=MS(PEA)***+(X)o_, 5

Definitions

EA Effective address, main Storage address of second operand
PEA Preliminary effective address
(RN) Contents of bits 0-15 of general register N specified by B2 or X RN General register 'N'", where N = 0 to 7 | (B) Contents of bits 0-15 of general register specified by the B2 field B2 B field of SRS, SI, or RS format instruction

| MS() Contents of the main storage location specified by the contents of the parenthesis DISP Displacement field of instruction
xX X field of RS format instruction with indexed mode of addressing (X)o.75 Most significant halfword (bits 0-15) of the content of index register X automatic-

ally aligned.
AM AM (addressing mode) field of RS format instruction
IA IA (indirect address) field of RS format instruction with the indexed mode of addressing

| I I field of RS format instruction with indexed mode of addressing
IC Updated Instruction Counter

Automatic Index Modification
Automatic Storage Modification
Direct Storage Addressing with/without Post Indexing

x INDEX VALUE x INDEX VALUE
000 Zero 100 (R4)
001 (Rl) 101 (R5)
010 (R2) - 110 - (R6)
011 (R3) 111 (R7)

li-1

(This page intentionally left blank)

el i N

12.0 AP-101S5 INSTRUCTION REPERTOIRE

12.1 SHUTTLE INSTRUCTION SET

Name

Fixed Point Operations

Add

Add Halfword

Add Halfword Immediate

Add to Storage

Compare

Compare Between Limits

Compare Halfword

Compare Halfword Immediate
Compare Immediate with Storage

Divide

Exchange Upper and Lower Halfwords

Insert Address Low

Insert Halfword Low

Load

Load Address

Load Arithmetic Complement

Load Fixed Immediate

Load Halfword

Load Multiple

Modify Storage Halfword

Multiply

Multiply Halfword

Multiply Halfword Immediate

Multiply Integer Halfword

Store

Store Halfword

Store Multiple

Subtract

Subtract from Storage

Subtract Halfword

Tally Down

Mnemonics

AR,A

AH

AHI

AST

CR»C

CBL

CH.

CHI

CIST

DR,D

XUL

ITAL

THL

LR,L

LA

LCR

LFXI

LH

LM

MSTH

MRM

MH

MHI

MIH

ST

STH

STM

SRS

3ST

SH

TD

12-1

Format

RR,»SRS,RS

ORS,RS

RI

RS

PR:SRS,RS

RR

SRS,RS

RI

SI

RR,SRS,RS

RR

SRS,RS

RS

RR,SRS,RS

SRS,RS

RR

RR

SRS,RS

RS

SI

RR,»SRS,RS

SRS,RS

RI

RS

SRS,RS

SRS,RS

RS

RR,SRS,RS

RS

SRS,RS

SRS,RS

12-2

Name Mnemonics Format

Branch Operations

Branch and Link BALR, BAL RR,RS
Branch and Index BIX RS
Branch on Condition BCR,BC RR,RS
Branch on Condition Backward BCB SRS
Branch on Condition (Extended) BCRE RR
Branch on Condition Forward BCF SRS
Branch on Count BCTR,BCT RR,RS
Branch on Count Backward BCTB SRS
Branch on Overflow and Carry BVCR,BVC RR,RS
Branch on Overflow and Carry Forward BVCF SRS

Shift Operations

Normalize and Count NCT RR
Shift Left Logical SLL SRS
Shift Left Double Logical SLDL SRS
Shift Right Arithmetic SRA SRS
Shift Right Double Arithmetic SRDA SRS
Shift Right Logical SRL SRS
Shift Right Double Logical SRDL SRS
Shift Right and Rotate SRR SRS
Shift Right Double and Rotate SRDR SRS

Logical Operations

AND NR,N RR,SRS,RS
AND Halfword Immediate NHI RI
AND Immediate with Storage NIST SI
AND to Storage NST RS
Exclusive-OR XR»X RR,SRS,RS
Exclusive-OR Halfword Immediate XHI RI
Exclusive-OR Immediate with Storage XIST SI
Exclusive-OR to Storage xST RS
OR OR,O RR,SRS,RS
OR Halfword Immediate OHI RI
OR to Storage OST RS
Search Under Mask SUM RR
Set Bits SB SI
Set Halfword SHW SRS,RS
Test Bits TB SI
Test Register Bits TRB RI
Test Halfword TH SRS,RS
Zero Bits ZB SI
Zero Register Bits ZRB RI
Zero Halfword ZH SRS;RS

Name

Floating Point Operations

Add (Long Operand)

Add (Short Operands)

Compare (Short Operand)

Compare (Long Operand)

Convert to Fixed Point

Convert to Floating Point

Divide CExtended Operand)

Divide (Short Operand)

Load (Long Operand)

Load (Short Operand)

Load Complement (Short Operand)

Load Fixed Register

Load Floating Immediate

Load Floating Register

Midvalue Select (Short Operands)

Multiply CExtended Operand)

Multiply (Short Operand)

Subtract (Long Operand)

Subtract (Short Operand)

Store (Long Operand)

Store (Short Operand)

Special Operations

Diagnosex

Store Extended Address

Store DSE Multiple

Insert Storage Protect Bits

Load Program Status*

Move Halfword Operands

Set Program Mask

Set System Mask x

Stack Call

Stack Return

Load DSE Multiple

Load Extended Address

Supervisor Call

Test and Set

Test and Set Bits

Internal Control Operations

Internal Control x

fo
m /0 Operations

Program Controlled Input/Outputx

¥Privileged Instruction:

Mnemonics

AEDR,AED

AER,AE

CER,CE

CEDR,CED

CVFX

CVFL

DEDR, DED

' DER,DE

LED

LER,LE

LECR

LFXR

LFLI

LFLR

MVS

MEDR,MED

MER,ME

SEDR,SED

SER,SE

STED

STE

STXA
STDM
ISPB
LPS -
MVH
SPM
SSM
SCAL
SRET
LDM
LXA
SVC
TS
TSB

ICR

PC

Format

RR,RS
RR,SRS,RS
RR,RS
RR,RS
RR
RR
RR,RS
RR,SRS,RS
RS
RR,SRS,RS
RR
RR
RR
RR
RS.
RR,RS
RR,SRS,RS
RR,RS
RR,SRS,RS
RS
SRS,RS

RS

RR,RS

RS

RS

RS

RR

RR

RS

RS

RR

RS

RR,RS

RS

RS

oI

RR

RR

(This page intentionally left blank)

13.0 AP-101S OP CODE ASSIGNMENTS

OPO, OPl
Op
2,3

00 01 11 10

OP 04 = 1

60 SRS SUBTRACT SRS DIVIDE SBS SUB HV
RR SUBTRACT RR DIVIDE RR BROV & CRY RR LOAD FL IMM RR. COMP BTWN RR. COMP FL ST RR, SET PROG MSK RS SUB HW
LMTS RS“DIVIDE RS“BROV & CRY RS. SET SYST MASK RS SUBTRACT RS. COMP FL ST RS. LM, LPS,

RS. SUB FRM STO “ ; STM, SVC

Ol SRS LOAD SRS SUBTRACT FL ST SRS BR RELATIVE SRS LOAD HW RR LOAD RR SUBTPACT FL ST RR ICR I/O RR, SUM
RR COMP FL LN PR. SUBTRACT FI, IN RR. PC KS“LOAD HW
RS LOAD RS“SUBTRACT FL ST RS“BIX RS. MIH
RS. COMP FL LN RS. SUBTRACT FL LN

11 SRS STORE FL ST SRS LOAD FL ST SRS REG SH DBL SRS STO HW RR CONV TO FXD RR LOAD FL ST SRS COMPUTED SH DBL RR LOAD FX IM RR. CONV TO FLT RR. LOAD COMPL FT RS STO HW RS“ STORE FL ST st RS, TST & SET
RS LOAD FL ST “
RS, LOAD FL LN

10 SRS OR SRS DIVIDE FL st SRS LOAD ADDRESS SRS MULTIPLY HW RR OR RR DIVIDE FL ST RR. LOAD ARITH TEST 3 (RRL) RR. LOAD FLTG REG RR MOVE HALFWORD OPS| COMP RS MULTIPLY HW RS“OR RS DIVIDE FL ST RS LOAD ADDRESS
RS. OR TC STORE TEST 2 (LRS) RS. INSTR PROT BITS

RS LOAD DSE MTPL “

CP 04 = 0

00 SRS ADD SRS MULTIPLY RR BR ON COND SRS ADD HW RR ADD RR MULTIPLY RR. BR ON COND EXT RR, RR, XU&L HW RS MULTIPLY RS“BR ON COND RS“ADD HW RS“ADD RS LOAD DSE | RS. DIAGNOSE RS. INSERT HW LOW RS. ADD TO STORE RR LOAD DSE

01 SRS COMP DVD FL SRS ADD FI, ST SRS COMP HW LN BR ADD FL ST RR BR ON CT RR, STACK RTRN RR COMP RR. ADD FL LN TEST 4 (RR) RS“COMP HW RR., DVD FL LONG RS“ADD FL ST RS BR ON CT RS STORE DSE MTPL kS“COMP RS, ADD FL LN .RS. STACK CALL
RS. DVD FL LN

ll SRS STORE SRS XOR SRS' RG SH SING TEXP PR, MPY FL LN RR XOR SRS COMPUTED SH SING| RR, RS RS“ STORE RS XOR Rl = OPX RS, MPY FL LN RS XOR TO STORE

10 SRS AND SRS MULTIPLY FL ST SRS INSRT ADD LO IMPL RR AND RR MULTIPLY FL ST RR BR & LNK SRS, RS RR, LOAD FX RG TEST 1 (RR) RS BR & LNK Rl = OPXx RS “AND RS MULTIPLY FL ST RR, NORM & CNT TEST 3 (LRS) RS. AND TO STORE RS. MID VALUE SLCT RS5 INSTR ADD LO RR STORE DSE
RS STORE DSE

Notes: OPl2 = 1 Causes either RR, or RS. Operations PL LN - Floating-Point (Long Operands) FL ST - Floating-Point (SKort Opérands)

Op Code 00011 with OP12 = 1 is reserved

HW - Halfwords

AP-101S OP CODE ASSIGNMENTS (cont)

OP R1=OPX RRo

11001 000 Set Program Mask
11001 001 Reserved
11001 010 Reserved
11001 O11 Reserved
11001 #100 Reserved
11001 £101 Reserved
11001 110 Reserved
11001 lil Reserved

IMPLIED IMMEDIATE

10100 000 Tally Down
10100 O01 Zero Halfword
10100 10 Set Halfword
10100 O11 Test Halfword
10100 £100 Reserved
10100 101 Reserved
10100 + 110 Reserved
10100 111 Reserved

EXPLICIT IMMEDIATE

OP R1=OPX RR

10110 000 Add Half Immediate
10110 001 Zero Register Bits
10110 £010 OR Half Immediate
10110 011 Test Register Bits
10110 100 SOR Half Immediate
10110 101 Comp Half Immediate
10110 £110 AND Half Immediate
10110 =lii Mult Half Immediate

RSo

Store Multiple |

Supervisor Call

Reserved

Reserved

Load Multiple

Load Program Status

Reserved

' Reserved

SRS,RS

SRS, RS

SRS, RS

SRS, RS

RR92

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

13-2

SRS

Modify Storage Halfword
Zero Bits

Set Bits

Test Bits

XOR Immediate With Store

Compare Immediate With Store
AND Immediate With Store

Test and Set Bits

14.0 AP~-101S INSTRUCTION SET

14.1 AUTOMATIC INDEX ALIGNMENT DESCRIPTION

Index alignment occurs automatically. That is, bits 0 through 15 of the general register specified by X specify entities. The identity of this entity is explicitly defined by the Particular operation being executed.

Halfword operations align index value bit 15 with the least significant bit of the PEA (described in Section 2) or the ADDRESS portion of an indirect address pointer (described in Section 2). It should be noted that the LOAD MULTIPLE, STORE MULTIPLE, LOAD PROGRAM STATUS, and INSERT STORAGE PROTECT BITS instructions are excluded from automatic index alignment and have a halfword index alignment.

PEA or Address

ppt tet ee tee TY YY 0 15

Index Vaiue

es |
0

15

Likewise, fullword operations functionally shift the index value one Position to the left, prior to alignment. Note that bit 0 of the index value is lost.

PEA or Address

Lippe ttt ee yy
0 14 15

Index Value

1
15

Likewise, doubleword operations functionally shift the index value two Positions to the left prior to alignment. Note that bits 0 and 1 of the index value are lost.

PEA or Address

Peete tet ppp y
0 13 14 15

Index Value

se
2 15 |

(This page intentionally left blank)

14-2

15.0 AP-101S DIAGNOSTIC FUNCTIONS

This section describes the several operations available, any special requirements, any results, and provides a timing estimate for each operation, assuming successful completion.

The purpose of the Diagnose Instruction is to provide tests of hardware that are critical to the proper operation of the Central Processor Unit (CPU) and to provide access to hardware not accessible or easily testable using the implemented instruction set. In addition, tests that might require an inordinate amount of time and/or memory are partially or wholly implemented in microcode.

All Diagnose Instructions, unless stated otherwise in the description, execute in 50 microseconds or less and do not delay I/0 for more than 3 microseconds. The Read and Write System and Program Mask Diagnose Instructions do not affect the condition code. All other Diagnose Instructions set the condition code zero for Pass and negative for fail.

The execution of a hardcore diagnostic test terminates at the detection of the first error for all tests except interrupt page tests. Interrupt page test errors are detected during execution of EA SCAN 5 assist. Detection of an error shall cause diagnostic data to be logged out in locations x'106! through x'12D", |

The execution of a Diagnose Instruction terminates at the detection of the first error. Detection of an error will cause diagnostic data to be logged out in locations X"106! through X'12pD'.

The layout of the log out area is described below:

Location Description

104 Unlogged error count
105 Error Flag
106-7 FA register
108-9 FB register
1O0A-B FC register
1oc bits 0-7 EI register

bits 8-15 EA register
10D bits 0-7 EB register

bits 8-15 X*'00!
10E-11D Local Store CPU Sector 0 registers
L1E-12D Local Store CPU Sector 7 registers

Unlogged error count contains a count of the number of errors which were not logged because the log area was occupied. If error count and error flag are both zero, the error flag is set to X'01' and error Gata is logged out. If error count or” error flag are not zero, error count iS incremented and error data is not logged out. Location X'111" (Local Store CPU Sector 0 Register 3) contains the error code.

Diagnose, unlike other instructions, does not follow the rule that programming errors are distinguished from equipment errors. MImprorer use of Diagnose may result in false machine-check indications or may cause actual machine malfunctions to be ignored. It may also alter other aspects of system operation, including instruction

15-1

execution and channel operation, to an extent that the operation does not comply
with that specified in this manual. As a result of the improper use of Diagnose,
the system may be left in such a condition that the power-on reset function must be
performed.

The following descriptions define the hexadecimal value effective address (command
word) required to select each of the microsequences and an estimate of the average
execution time for RS Extended Addressing without a Base Register. Actual execution
times will depend on pipe prefetching and conflicts, and I/0 interference. The
Diagnose descriptions also include any programming restrictions and a description of
the data returned when an error is detected. All effective addresses not described
here are reserved and shall not be used. The result of using a reserved effective
address is indeterminate.

15-2

The CPU Hardcore Microcode Test is separated into nine tests to facilitate the 50
microsecond interruptibility requirement.

Hexadecimal

Contents of

Effective

Address

0000

0100

0200

0300

Description

CPU HARDCORE MICROCODE TEST 0

(31 microseconds)
The CPU hardcore microcode test 0 verifies the basic operation of a
Portion of the CPU pages. The functions tested are: fraction ALU,
fraction zero detect, fraction A, B, and C registers and controls,
exponent ALU, exponent A, B, and I registers and controls. At
completion of the test, the condition code shall be set zero if no
error occurred. The condition code shall be set negative if an error
occurred.

CPU HARDCORE MICROCODE TEST 1

(27 microseconds)
The CPU hardcore microcode test 1 verifies the basic operation of a
portion of the CPU pages. The function tested is the two- and
four-way Y-BUS micro branch hardware. At completion of the test, the
condition code shall be set zero if no error occurred. The condition
code shall be set negative if an error occurred.

CPU HARDCORE MICROCODE TEST 2

(45 microseconds)
The CPU hardcore microcode test 2 verifies the basic operation of a
portion of the CPU pages. The function tested is the l6-way Y-BUS
micro branch hardware. At completion of the test, the condition code
shall be set zero if no error occurred. The condition code shall be
set negative if an error occurred.

CPU HARDCORE MICROCODE TEST 3

(46 microseconds)
The CPU hardcore microcode test 3 verifies the basic operation of a
portion of the CPU pages. The function tested is the two-way STAT A
bit microbranch hardware. At completion of the test, the condition
code shall be set zero if no error occurred. The condition code:
shall be set negative if an error occurred.

15-3

Hexadecimal

Contents of

Effective

Address

0400

0401

0500

0600

Description

CPU HARDCORE MICROCODE TEST 4

(50 microseconds)
The CPU hardcore microcode test 4 verifies the basic operation of a
portion of the CPU pages. The function tested is the four-way STAT A
bit microbranch hardware. At completion of the test, the condition
code shall be set zero if no error occurred. The condition code

shall be set negative if an error occurred.

CPU HARDCORE MICROCODE TEST 8

(16 microseconds)
The CPU hardcore microcode test 8 verifies the basic operation of a
portion of the CPU pages. The function tested is local store
addressing. At completion of the test, the condition code shall be
set zero if no error occurred. The condition code shall be set
negative if an error occurred.

CPU HARDCORE MICROCODE TEST 5

(5.2 milliseconds)

The CPU hardcore microcode test 5 verifies the basic operation of a
portion of the CPU pages. The function tested is the Constant PROM.
At completion of the test, the condition code shall be set zero if no
error occurred. The condition code shall be set negative if an error
occurred. Note: This test will delay any pending interrupts more
than 5.2 milliseconds and so should not be executed in an operational

environment which cannot tolerate this delay.

CPU HARDCORE MICROCODE TEST 6

(78 microseconds)
The CPU hardcore microcode test 6 verifies the basic operation of a
portion of the CPU, MMU, and memory pages. The functions tested are:

basic memory addressing and data, and basic store protect bit
hardware. At completion of the test, the condition code shall be set
zero if no error occurred. The condition code shall be set negative

if an error occurred. Note: This test will delay any pending

interrupts more than 78 microseconds, and will delay any pending I/0
operation more than 68 microseconds and so should not be executed in

an operational environment which does not control I/O activity.

15-4

Hexadecimal

Contents of

Effective

Address

0700

1000

2000

2001

3000

fo
Ef

|
=

e
.

a

Description

CPU HARDCORE MICROCODE TEST 7

(14.2 microseconds)
The CPU hardcore microcode test 7 verifies the basic operation of a
portion of the CPU pages. The functions tested are the Real Time
Communications Channel register and the Execution Unit Program
Counter. The CCU need not be attached to execute this test. At
completion of the test, the condition code shall be set zero if no
error occurred. The condition code Shall be set negative if an error
occurred. Note: This Diagnose Instruction cannot be macrostepped.

READ PROGRAM AND SYSTEM MASK CPSMR)

(4.8 microseconds)
The Read Program and System Mask reads bits 16-47 of the active PSW
and places them in bits 0-31 of register Rl. The condition code is
not altered.

LOCAL STORE CPU SECTOR TEST (LSMICRO)

(40 microseconds)
The Local Store Sector test shall perform a write/read test on one
sector of CPU local store. Register Rl bits 1-4¢ shall contain the
register set to be tested. The contents of the local store. sector
tested will not be altered. At completion of the test, the condition
code shall be set zero if no error occurred. The condition code
shall be set negative if an error occurred.

LOCAL STORE CONSTANT SECTOR TEST C(LSMICRO)

(38 microseconds)
The Local Store Sector test shall perform a write/read test on one
sector of constant local store. Register R1 bits 1-4 shall contain
the register set to be tested. The contents of the local store
sector tested will not be altered. At completion of the test, the
condition code shall be set zero if no error occurred. The condition
code shall be set negative if an error occurred.

WRITE PROGRAM AND SYSTEM MASK (PSM)

€9.2 microseconds)
The Write Program and System Mask command loads bits 16-47 of the
active PSW from bits 0-31 of register Rl.

15-5

Hexadecimal

Contents of

Effective

Address

4000

4100

7000

7001

Description

LOCAL STORE READ ASSIST CLSREAD)

(5.8 microseconds)
The Local Store Read Assist allows any local store register to be
read. Bits 0-15 of register R1 shall contain the address of the
local store register to be read. Bits 0-6 shall be zero. Bit 7
shall be one to reference the Constant Sector and zero to reference
the CPU Sector. Bits 8-11 shall indicate the sector number and bits
12-15 shall indicate the register number. The contents of the local
store register shall be placed in bits 16-31 of register Rl.

LOCAL STORE WRITE ASSIST (CLSWRITE)

C13 microseconds)
The Local Store Write Assist allows any local store register to be
written. Bits 0-15 of register R1 shall contain the address of the
local store register to be written. Bits 0-6 shall be zero. Bit 7
shall be one to reference the Constant Sector and zero to reference
the CPU Sector. Bits 8-11 shall indicate the sector number and bits
12-15 shall indicate the register number. Bits 16-31 of register Rl
shall be placed in the local store register referenced by bits 0-15
of register Rl. After execution of this assist, the PSW will be
updated and the pipe purged so that a write to the PSW portion of
local store will be processed immediately.

H-BUS READ CHBUSR)

(6.6 microseconds)
The H-BUS Read command allows any Internal I/0 CIIO) command to be
read. It is the responsibility of the macro programmer to ensure
that only valid commands are issued. Invalid commands may cause loss
of control or bus timeouts. Bits 0-15 of register R1 shall contain
the Internal Bus command. Bits 16-31 of register R1 shall contain
the data to be sent with the read command, if any is required. Bits
16-31 of register R1 shall contain the data read. The execution time
of this Diagnose is IIO command dependent.

H-BUS WRITE CHBUSW)

(4.2 microseconds)
The H-BUS Write command allows any Internal I/0 CIIO) command to be
written. It is the responsibility of the macro programmer to ensure
that only valid commands are issued. Invalid commands may cause loss
of control or bus timeouts. Bits 0-15 of register R1 shall contain
the Internal Bus command. Bits 16-31 of register R1 shall contain
the data to be written. The execution time of this Diagnose is IIO
command dependent.

15-6

Hexadecimal

Contents of

Effective

Address

7100

7101

Description

DETECT STORES INTO IU FILE (CBSTAT6)

(9.6 microseconds)
The Detect Stores into IU File microcode sets bit 6 of the B STAT
Reg. When this status bit is set, the CPU hardware checks for
conflicts within the IU file. When conflicts are detected, the file
iS purged.

DISREGARD STORES INTO IU FILE (CBSTAT6)

(9.6 microseconds)

The Disregard Stores into IU File microcode resets bit 6 of the B
STAT Reg. When this status bit is reset, no checks for conflicts
within the IU file are performed. The pipeline will not be purged.

15-7

The Interrupt Page Command PLA Test is separated into five tests to facilitate the

50 microsecond interruptibility requirement.

Hexadecimal

Contents of

Effective

Address

8000

8100

8200

Description

INTERRUPT PAGE COMMAND PLA TEST 0 C(CINTCMD)

(32 microseconds)

The Interrupt Page Command PLA test 0 verifies the operation of a

portion of the interrupt page command PLA. The CPU microcode informs

the interrupt page that the test will be run and then sends a

sequence of MMP IIO commands to the interrupt page. The interrupt

page verifies that the proper commands were received in the proper

sequence. Any errors detected by the interrupt page during this test

shall be saved in the interrupt page Scan Register which can be read

using the EA Scan 5 Assist Diagnose. The condition code will always

be zero.

INTERRUPT PAGE COMMAND PLA TEST 1 (CINTCMD)

€38 microseconds)

The Interrupt Page Command PLA test 1 verifies the operation of a

portion of the interrupt page command PLA. The CPU microcode informs

the interrupt page that the test will be run and then sends a

sequence of MMP IIO commands to the interrupt page. The interrupt

page verifies that the proper commands were received in the proper

sequence. Any errors detected by the interrupt page during this test

shall be saved in the interrupt page Scan Register which can be read

using the EA Scan 5 Assist Diagnose. The condition code will always

be zero. |

INTERRUPT PAGE COMMAND PLA TEST 2 (CINTCMD) |

(33 microseconds)

The Interrupt Page Command PLA test 2 verifies the operation of a

portion of the interrupt page command PLA. The CPU microcode informs

the interrupt page that the test will be run and then sends a

sequence of MMP IIO commands to the interrupt pace. The interrupt

page verifies that the proper commands were received in the proper

sequence. Any errors detected by the interrupt page during this test

shall be saved in the interrupt page Scan Register which can be read

using the EA Scan 5 Assist Diagnose. The condition code will always

be zero.

15-8

4

Hexadecimal

Contents of

Effective

Address

8400

8500

9000

Description

INTERRUPT PAGE COMMAND PLA TEST 4 CCINTCMD)

(37 microseconds)
The Interrupt Page Command PLA test 4 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP IIO commands to the interrupt page. The interrupt
page verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will always
be zero.

INTERRUPT PAGE COMMAND PLA TEST 5 CCINTCMD)

(34 microseconds)
The Interrupt Page Command PLA test 5 verifies the operation of a
portion of the interrupt page command PLA. The CPU microcode informs
the interrupt page that the test will be run and then sends a
sequence of MMP IIO commands to the interrupt page. The interrupt
page verifies that the proper commands were received in the proper
sequence. Any errors detected by the interrupt page during this test
shall be saved in the interrupt page Scan Register which can be read
using the EA Scan 5 Assist Diagnose. The condition code will always
be zero.

INTERRUPT PAGE ARITHMETIC INTERRUPT TEST (CPUARITH)

(23 microseconds)
The Interrupt Page Arithmetic Interrupt test verifies that the
Floating Point Overflow, Fixed Point Overflow, and Floating Point
Underflow CPU interrupts set the proper bits in the interrupt page
Arithmetic Group Capture Register. The CPU microcode informs the
interrupt page that the test will be run and then forces each
interrupt in the proper sequence. The interrupt page verifies that
the proper interrupts were received in the proper sequence. Any
errors detected by the interrupt page during this test shall be saved
in the interrupt page Scan Register which can be read using the EA
Scan 5 Assist Diagnose. The condition code will always be set zero.

15-9

Hexadecimal

Contents of

Effective

Address

9100

A000

B000

Description

INTERRUPT PAGE H-BUS WRAP ASSIST CIHBUSWRP)

(11.6 microseconds)
The Interrupt Page H-BUS Wrap assist verifies that data can be sent
to the interrupt page on the H-BUS and received from the interrupt
page on the H-BUS and INBUS correctly. The data pattern in bits 0-15
of register Rl shall be sent to the interrupt page on the H-BUS. The
data received from the interrupt page on the H-BUS shall be placed in
bits 16-31 of register R1, while the data received on the INBUS shall
be placed in bits 0-15 of register Rit+1l.

EU ROS PARITY ERROR MICROCODE TEST CROSPAR)

| C25 microseconds)
The EU ROS Parity Error microcode test verifies that the EU ROS
microcode parity check circuit functions correctly. The test
verifies that a microword with incorrect parity generates an EU ROS
Parity error. At completion of the test, the condition code shall be
set zero if no error occurred. The condition code shall be set
negative if an error occurred.

DSE RAM TEST CDSETEST)

(72 microseconds)
The DSE RAM test verifies that all DSE RAM locations can be addressed
and that there is no stuck bits. The DSE RAM test first will write
the address of each location into its location. The DSE RAM is read,
verifying that each location can be addressed. Then the DSE RAM test
Will write the complement of its address into its location. The DSE
RAM is read, verifying no stuck data bits. If the test passes, the
condition code shall be set zero. Note: The DSE RAM is set to all
zeros at the end of this diagnose instruction.

15-10

Hexadecimal

Contents of

Effective

Address

C000

Description

MONOLITHIC CHECKSUM MICROCODE ASSIST (CKSUM)
(20 microseconds plus 24 microseconds for each additional halfword)

The monolithic checksum assist allows the macrocode to checksum all
monolithic memory locations within a specified range. The 19-bit
start address shall be placed right-justified in the fullword
register R1. This register shall be incremented as each halfword is
checksummed. The 19-bit end address shall be placed right-justified
in the fullword register R1+1. This is the address of the last word
to checksum. This register will not be altered. At completion, the
start address will equal the end address. The checksum shall be in
bits 0-15 of register R1+2. This register should be zeroed by
-macrocode before calling the Diagnose to accumulate a new checksum.
This register will contain the updated checksum of the halfword
locations. This Diagnose is interruptible. Note: This test will
delay any pending I/O operation more than 3.05 microseconds and so
should not be executed in an operational environment which does not
control I/0 activity.

15-11

Hexadecimal

Contents of

Effect: ve

Address

C20X

Description

MONOLITHIC MEMORY READ/WRITE TEST CMEMRWT)

(49 microseconds)
The Monolithic memory Read/Write test shall perform a read/write test
on one fullword of monolithic memory. It may be called repeatedly to
test all memory. This test shall test any location, regardless of
store protect status. It shall test the data bits, check bits, and
store protect bits. At the end of the test, the location shall be
returned to its original value and protect status. Hardware errors
may cause machine check interrupts for bad memory or store protect
unalike. The X field of the Diagnose Command word shall be 0, 1, or
2 to select one of the three test patterns to use in the test.

Pattern

(Both Halfwords) Data Check Bits (binary) Store Protect

0 C3B2 010010 111
1 3C4D 010010 000
2 944C 101101 111

Register R1 shall contain the 19-bit physical address right-justified
of the location to test. This must be an even fullword address. At
completion of the test, the condition code shall be set to zero if
the test passed, and negative if the test failed. If an error
occurs, the Diagnose log out area shall contain the following data in
the CPU Sector Zero local store area:

RO/RI Address Tested

R2 ~ Diagnose Command Word (X'C20X')

R3 - Error Code

X'90" - Data Bits

X'91" - Check/Store Protect Bits

R4¢/R5 - XOR of actual and expected data

C1 - bit in error)

R6/R7 - XOR of actual and expected Check

and Store Protect bits.

Note: This test will delay any pending I/0 operation more than 35
microseconds and so should not be executed in an operational
environment which does not control I/0 activity.

15-12

Hexadecimal

Contents of

Effective

Address

D000

Description

EDAC SOFT ERROR TEST CDIAGEDAC)

(37 microseconds)
The EDAC Soft Error Test checks the Error Detection And Correction
CEDAC) logic used to detect and correct all single bit errors in
monolithic memory. Bits 0-15 of register R1 shall contain the check
bit pattern to be tested and bits 16-31 of register R1 shall contain
the data bit pattern to be tested. Bits 0-15 of register Ri+l shall
contain the expected data bit pattern for a soft error. At
completion of this Diagnose, a condition code of zero indicates the
test passed and a negative condition code indicates a failure. If an
error occurs, the Diagnose log out area shall contain the following
data in the CPU Sector Zero local store area:

RO - Data read back from halfword location

R1 - Not used

R2 ~- Diagnose Command Word (X'D000')

R3 - Error Code

X'9A® = Soft Error expected,

Hard Error bit on

X°9B" - Soft Error expected,

Soft Error bit off

X"'9C* - Soft Error expected,

Data not correct

R4 - MMU Fault Extension Register

(MFER) at end of test

R5 - Expected Data for Soft Errors

C(R1+1 bits 0-15)

Data Patterns used for test (R1) R6/R7

The memory address used in this test is location 0 which must not be
store protected. Note: This test will delay any pending I/70
operation more than 6.1 microseconds and so should not be executed in
an operational environment which does not control I/0 activity.

15-13

Hexadecimal

Contents of

Effective

Address

DVO01

Description

EDAC HARD ERROR TEST CDIAGEDAC)

(37 microseconds)
The EDAC Hard Error Test checks the Error Detection And Correction
CEDAC) logic used to detect all double bit errors and many multiple
bit errors in monolithic memory. Bits 0-15 of register Ri shall
contain the check bit pattern to be tested and bits 16-31 of register
Rl shall contain the data bit pattern to be tested. At completion of
this Diagnose, a condition code of zero indicates the test passed and
a negative condition code indicates a failure. If an error occurs,
the Diagnose log out area shall contain the following data in the CPU
Sector Zero local store area:

RO ~- Data read back from halfword location

Ri - Not used

R2 - Diagnose Command Word (X'DO001')

R3 - Error Code

X'98" - Hard Error expected,

Hard Error bit off

A"'99" - Hard Error expected,

Soft Error bit on

R4 - MMU Fault Extension Register

(MFER) at end of test

Data Patterns used for test (R1) R6/R7

The memory address used in this test is location 0 which must not be
store protected. Note: This test will delay any pending I/0
operation more than 6.1 microseconds and so should not be used in an
operational environment which does not control I/0 activity.

15-14

Hexadecimal

Contents of

Effective

Address

D010

Description

ADDRESSABLE EDAC SOFT ERROR TEST CDIAGEDAC)

(37 microseconds)
The Addressable EDAC Soft Error Test checks the Error Detection And
Correction (EDAC) logic used to detect and correct all single bit
errors in monolithic memory. It allows the user to specify the
address of the location to be used for the EDAC test. This
facilitates the testing of multiple monolithic memory pages. Bits
0-15 of register R1 shall contain tHe check bit pattern to be tested
and bits 16-31 of register R1 shall contain the data bit pattern to
be tested. Bits 0-15 of register R1+1 shall contain the expected
data bit pattern for a soft error. The 19-bit physical address,
right~justified, of the location to test, shall be contained in bits
16-31 of register R1i+l and bits 0-15 of register R1+2. At completion
of this Diagnose, a condition code of zero indicates the test passed
and a negative condition code indicates a failure. If an error
occurs, the Diagnose log out area shall contain the following data in
the CPU Sector Zero local store area:

RO - Data read back from halfword location
Ri - Not used

R2 - Diagnose Command Word (X'D010")
R3 - Error Code

X"9A* - Soft Error expected,

Hard Error bit on

X"9B*" - Soft Error expected;

Soft Error bit off

X'9C* - Soft Error expected,

Data not correct
R4 - MMU Fault Extension Register

(MFER) at end of test

R5 - Expected Data for Soft Errors

CR1+1 bits 0-15)

R6/R7 - Data Patterns used for test (R1)

The memory address used in this test must not be store protected.
Note: This test will delay any Pending I/0 operation more than 6.1
microseconds and so should not be executed in an operational
environment which does not control I/O activity.

15-15

Hexadecimal

Contents of

Effective

Address

D011

Description

ADDRESSABLE EDAC HARD ERROR TEST CDIAGEDAC)

(37 microseconds)
The Addressable EDAC Hard Error Test checks the Error Detection And
Correction CEDAC) logic used to detect all double bit errors and many
multiple bit errors in monolithic memory. It allows the user to
specify the address of the location to be used for the EDAC test.
This facilitates the testing of multiple monolithic memory pages.
Bits 0-15 of register R1 shall contain the check bit pattern to be
tested and bits 16-31 of register R1 shall contain the data bit
pattern to be tested. The 19-bit physical address, right-justified,

of the location to test shall be contained in bits 16-31 of register
Ri+1 and bits 0-15 of register R1+2. At completion of this Diagnose,
a condition code of zero indicates the test passed and a negative
condition code indicates a failure. If an error occurs, the Diagnose
log out area shall contain the following data in the CPU Sector Zero
local store area:

RO ~- Data read back from halfword location
R1 - Not used

R2 - Diagnose Command Word (X'DO011')

R3 - Error Code

X°98" - Hard Error expected,

Hard Error bit off

X"99" - Hard Error expected,

Soft Error bit on

R4 - MMU Fault Extension Register

(MFER) at end of test

Data Patterns used for test (R1) R6/R7

The memory address used in this test must not be store protected.
Note: This test will delay any pending I/0 operation more than 6.1
microseconds and so should not be used in an operational environment
which does not control I/0 activity.

15-16

Hexadecimal

Contents of

Effective

Address

D100

Description

READ MONOLITHIC STORE PROTECT BITS CREADSP)

(16.8 microseconds)
The Read Monolithic Store Protect Bits assist reads the store protect
bits from two monolithic memory halfwords and places them in a
general register. Register R1 shall contain the 19-bit physical
address right-justified of the memory location from which the store
protect bits are to be read. This must be an even fullword boundary.
Register R1+1 shall contain the store protect bits read from the two
halfwords. The definition of the bits in R1+1l is described below:

Bits 0-12 Undefined

Bits 13-15 Redundant Store Protect Bits

for address in R1 Ceven HW)

Bits 16-21 Undefined |
Bits 22-24 Redundant Store Protect Bits

for address in R1 plus one

‘Codd HW)

Bits 25-31 Undefined

The macrocode can use this Diagnose to determine which monolithic
memory locations are store protected and only checksum those
locations. Note: The store protect bits read are inverted. Zero
Signifies a protected location. One signifies an unprotected
location. Note: This test will delay any pending I/0 operation more
than 3.8 microseconds and so should not be executed in an operational
environment which does not control I/O activity.

15-17

Hexadecimal

Contents of

Effective

Address

D200

Description

SET ECC BITS ASSIST CSETEDA C)

(13 microseconds)
The Set ECC Bits assist allows the macrocode to force data with
incorrect Cor correct) ECC bits

Fullword register Ri shall contain the

19-bit address right-justified of the halfword location in monalithic

which is not store protecte d.

memory in which ECC is to be

the following:

Register

Rit+i bits Contents

0 Check bit

1 Check bit
2 Check bit

3 Check bit

4 Check bit

5 Check bit
6 0

7 0

8 0

9 0

10 0

li 1

12 0

13 1

14 0

15 0

16-31 1

changed.

O
r

FF
oC
x

in any monolithic memory location

Register R1+1 shall contain

6 bit data pattern to be stored

Check bit X is the XOR of data pattern bits 1, 2,

3> 5, 8 >» 9, li, and 14

Check bit 0 is the XOR of data pattern bits 0, I,

2, 4 6, 8» 10, and 12 e

Check bit 1 is the XNOR of data pattern bits 0, 3,

4, 7> 9, 10, 13, and 1 5.
Check bit 2 is the XNOR of data pattern bits 0, 1,

5, 6, ls 1i, 12, and 1 3.
Check bit 4 is the XOR of data pattern bits 2, 3,
4, 5, 6, 7» 14, and 15

Check bit 8 is the XOR of data pattern bits 8, 9>

10, li, 12, i3, 14, and 15.

15-18

Contents of
Effective

Address

D200

D300

Description

Ccont)

Note: For multibit errors, the corrected data produced by the EDAC

is unspecified. This assist cannot be used to restore monolithic

memory locations with incorrect ECC to correct ECC. Use the Reset

ECC Bits assist to restore correct ECC to a monolithic memory

location. This assist also disables scrubbing when executed. To

enable scrubbing, use the H-BUS Write command with the correct [IO

command and data. Note: This test will delay any pending I/0

operation more than 13 microseconds and so should not be executed in

an operational environment which does not control I/0 activity.

Note: To increase performance, this Diagnose does not purge the

pipe. So any prefetched data will not be affected by this Diagnose.

To detect errors on data which has been prefetched, execute a branch

after this Diagnose so that the data is fetched again.

RESET ECC BITS ASSIST CSETEDAC)

(8 microseconds)

The Reset ECC Bits assist allows the macrocode to force correct ECC

bits in any monolithic memory location which is not store protected.

Fullword register R1 shall contain the 19-bit address left-justified

of the halfword location in monolithic memory in which ECC is to be

restored. Bits 16-31 of register Riti1 shall contain the data to be

written into the monolithic memory location. This assist also

disables scrubbing when executed. To enable scrubbing, use the H-BUS

Write command with the correct IIO command and data. The correct ECC

bits shall be generated when the data is written if the MMU Mode

register does not have IDO active. Note: This test will delay any

pending I/0 operation more than 8 microseconds and so should not be

executed in an operational environment which does not control [/0

activity.

15-19

Hexadecimal

Contents of

Effective

Address

E000

EA SCAN ASSISTS

The register set used with all EA SCAN ASSISTS contains the following

values in the general registers. These values will be used by the EA

in computing effective addresses.

RO - X*'01060000" RG - X"'00040040'

Rl - X'FEF90000"° R5 - X*'00050050'

R2 - X'01060000' R6 - X'00060060'

R3 - X'01060000" R7 -— X*'00010000'"

Only one instruction which reads store protect bits (store type) may

be included in an EA SCAN buffer. The store pending hardware will be

set when this instruction is decoded. But, since the instruction is

not executed, only decoded, a second instruction of this type will

cause the EA to stop until the first instruction has been executed.

This will cause Diagnose to hang and result in an Endop Timeout

Machine Check Interrupt. The Instruction Address in the Old PSW for

a Machine Check Interrupt which occurs during an EA SCAN ASSIST may

not be correct. The instructions placed in an EA SCAN buffer must be

selected and arranged with care. Any register conflicts, operand

conflicts, or pending stores will alter the results produced by the

EA SCAN ASSISTS.

Description

EA SCAN 1 ASSIST CEASCAN)
(21 microseconds)

The EA Scan 1 Assist allows the IU and EA to be stepped and the

selected scan register to be read. The IU and EA can each be stepped

from 0-15 times before scanning. Bits 0-15 of register R1 contains

the virtual address of the buffer of instructions to be used by the

assist. Register R1+1 contains the scan command. The bits of the

scan command are defined below.

Bits Contents

0-3 IU Step Count

4-7 EA Step Count

8-15 Interrupt Page Scan Data

16-31 Interrupt Page Scan Command

The results of this scan assist can be read by EA Scan 5 Assist. The

execution time of this Diagnose is instruction buffer dependent.

15-20

Hexadecimal

Contents of

Effective

Address

E100

Description

EA SCAN 2 ASSIST CEASCAN2)

(22 microseconds)
The EA Scan 2 Assist allows the IU to run and the EA to be stepped.
For each EA step which produces a valid decoded opcode, the decoded
opcode, the halfword operand, the fullword operand, the left loca]
store, and the right local store are checksummed. Bits 0-15 of
register Rl contain the count of the number of valid decoded opcodes
to step. Bits 16-31 of register R1 contain the virtual address of
the buffer of instructions to be used by the assist. The checksums
produced by this assist are placed in the following CPU sector 7
registers:

Register Checksum

0,1 Fullword Operand
8 Decoded Opcode
9 Halfword Operand
10 Left Local Store
il Right Local Store

These checksums can be read using the Local Store Read Diagnose. The
execution time of this Diagnose is instruction buffer dependent.

15-21

Hexadecimal

Contents of

Effective

Address

E200

E300

Description

EA SCAN 3 ASSIST CEASCAN)

(45 microseconds)
The EA Scan 3 Assist allows an IU or EA scan register to be read.
Then the IU and EA are stepped and the selected scan register is
read. The IU and EA can each be stepped from 0-15 times. The
results of the first scan are placed in local store CPU sector 7
registers 14 and 15. This data can be read using the Local Store
Read Diagnose. Bits 0-15 of register R1 contain the virtual address
of the buffer of instructions to be used by the assist. Register
Ri+l contains the second scan command. The bits of the scan command
are defined below:

Bits | Contents

0-3 IU Step Count

4-7 EA Step Count

8-15 Interrupt Page Scan Data

16-31 Interrupt Page Scan Command

Bits 0-15 of register R1+2 contain bits 0-15 of the first scan
command. However, only bits 8-15 are used. Bits 16-31 of the first
scan command are the same as for the second scan command and are
contained in bits 16-31 of register R1+1. The results of the second
scan can be read by EA Scan 5 Assist. The execution time of this
Diagnose is instruction buffer dependent.

EA SCAN 4 ASSIST CEASCAN2)

(21 microseconds)
The EA Scan 4 Assist allows the IU to run and the EA to be stepped.
For each EA step which produces a valid decoded opcode, the fullword
operand is checksummed. Bits 0-15 of register R1 contain the count
of the number of instructions to step. Bits 16-31 of register R1
contain the virtual address of the buffer of instructions to be used

by the assist. The fullword operand checksum is placed in local
store CPU sector 7 registers 8 and 9. The checksum can be read using
the Local Store Read Diagnose. The execution time of this Diagnose
1S instruction buffer dependent.

15-22

Hexadecimal

Contents of

Effective

Address

E301

Description

EA SCAN 5 ASSIST CCPUSREAD)

(18 microseconds)
The EA Scan 5 Assist allows the 32 bits of EA scan data to be read
from the Interrupt page. Register R1 will contain the 32 bits of
scan data at completion. The Interrupt page scan register is used
for scan data and also as the Interrupt page Diagnose Error register.
This register is cleared after reading. It should be read before
executing any Interrupt page self-test commands to clear the register
and after executing the self-test to see if any errors were detected.
The bits in the Interrupt Page Diagnose Error Register are defined
below:

Bit Description

0 Diagnose Register Fault

1 GP Register Fault

2 Unconditional Branch Test Fault

3 ALU Function Test Fault

& Local Store Data Test Fault

7 § Local Store Addressing Test Fault

6 Conditional Branch Test Fault

7 POR Fault

8 Capture Register - High Group Fault

9 Capture Register - CPU Group Fault

10 Capture Register - Memory Group Fault

11 Capture Register - I/0 Group Fault

12 Capture Register - External Group Fault

13 0 (spare)

14 0 (spare)

15 Bad Parity Test Fault

16 Priority PLA Fault (Input = X'FF’' Fails)
17 Priority PLA Fault (Input = X'7F" Fails)
18 Priority PLA Fault (Input = X'3F' Fails)
19 Priority PLA Fault (Input = X"1F' Fails)
20 Priority PLA Fault (Input = X'OF’ Fails)
21 Priority PLA Fault (Input = X'07' Fails)
22 Priority PLA Fault (Input = X'03' Fails)
23 Priority PLA Fault CInput = X'01' Fails)

24 Command PLA Fault

25 0 (spare)

26 ' Priority PLA Test 2 Fault

27 Priority PLA Test 3 Fault

28 Floating Point Overflow Fault

29 Fixed Point Overflow Fault
30 0 (spare)

31 Floating Point Underflow Fault

15-23

Hexadecimal

Contents of

Effective

Address

F100

F200

F300

Description

ENDOP TIMER TEST CENDOPINT)

(300 ‘microseconds)
The ENDOP Timer test verifies the proper operation of the ENDOP
timer. The ENDOP timer is reset and microcode waits to see if the
correct micro interrupt is generated when the timer times out. If
the timer does not time out in the proper time (200us) or the correct
micro interrupt is not generated, the condition code shall be set
negative. If the test passes the condition code shall be set vero.
Note: This test will delay any pending interrupts more than 300
microsecends and so should not be executed in an _ operational
environment which can not tolerate this delay. Also, this Diagnose
Instruction cannot be macrostepped.

WAIT MICROCODE ASSIST (CWAITMICR)

The Wait microcode assist causes all CPU memory operations to stop
until any macro or micro level interrupt occurs. Note: This
Diagnose Instruction cannot be macrostepped.

FORCE ROS PARITY ERROR ASSIST CFORCEROS)

(3.5 microseconds)
The Force ROS Parity Error Assist allows macrocode to force a ROS
parity error. The ROS parity error will only be forced if bits 0-15
of register R1 contain X'0001'. The condition code will be set zero.
The ROS parity error machine check interrupt can be masked by PSW bit
45. If it is masked, it will not remain pending and the computer
will not be reset. The reset of the computer on detection of the ROS
parity error can be inhibited by placing the interrupt page in
Diagnose Mode. In Diagnose Mode the machine check interrupt will not
be generated. |

15-24

The following descriptions define the hexadecimal value for the H-BUS IIO command required to select each of the micro sequences. Only the diagnostic IIO commands are described here. These commands are used by the H-BUS Read and Write commands.

H-BUS IIO

Command Description

1002 READ INTERRUPT PAGE LOCAL STORE REGISTER (READ)

(12.8 microseconds)
The read interrupt page local store register IIO command allows
macrocode to read the interrupt page local store registers. Each
register is eight bits in length. The command reads two consecutive
registers. The table below describes the data to be sent with the
command and the registers which are read and placed in the general
register.

H-BUS Register Read
Data bits 0-7 bits 8-15

0000 RO Ri
0001 Rl R2
0002 R2 R3
0003 R3 R4
0004 R4 R5
0005 R5 R6
0006 R6 R7
0007 R7 R8
0008 R8 R9
0009 RY R10
OO0A R10 Ril
000B R11 R1l2
o00Cc Ri2 R13
0o0D R13 R14
OO0E R14 R15
OO0F — R15 RO

9011 INTERRUPT PAGE SELF-TEST (WRITE)

The interrupt page self-test IIO command allows macrocode to perform
various self-test microcode functions on the interrupt page. The
results of the self-test are placed in the scan register. This
register can be read by the macrocode via the EA SCAN 5 ASSIST
Diagnose. The register should be read to clear it before executing
the self-test. The table below describes the data to be sent with
the command and the function performed. The self-test is divided
into many small tests to meet the 90 microsecond interruptibility
requirement.

15-25

H-BUS

Data

0000

9001

0002

0003

0004

0005

0006

0007

0008

0009 —

OOOA

000B

Description

This subcommand verifies unconditional

branching, ALU functions and local

store register 15 data integrity.

(34 microseconds)

This subcommand verifies local store

register 0 and 1 data integrity.

C38 microseconds)

This subcommand verifies local store

register 2 and 3 data integrity.

(38 microseconds)

This subcommand verifies local store

register ¢ and 5 data integrity.

(38 microseconds)

This subcommand verifies local store

register 6 and 7 data integrity.

(38 microseconds)

This subcommand verifies local store

register 8 and 9 data integrity.

(38 microseconds)

This subcommand verifies local store

register 0 addressing.

(24 microseconds)

This subcommand verifies local store

register 1 addressing.

(22 microseconds)

This subcommand verifies local store

register 2 addressing.

C39 microseconds)

This subcommand verifies local store

register 3 addressing. |

€36 microseconds)

This subcommand verifies local store

register 4 addressing.

(33 microseconds)

This subcommand verifies local store

register 5 and 6 addressing.

(41 microseconds)

15-26

H-BUS

Data

d00Cc

000D

OO0E

O00F

8000

8100

8200

8C00

8D00

8E00

Description

This subcommand verifies local store

register 7 and 8 addressing.

(33 microseconds)

This subcommand verifies local store

register 9, 10, and 11 addressing.

(36 microseconds)

This subcommand verifies local store

register 12 and 13 addressing.

(16.2 microseconds) .

This subcommand verifies the

conditional branching function.

(32 microseconds)

This subcommand verifies the parity

circuits on the command PLA, the

Priority PLA, and the control store.

This subcommand also verifies the

operation of a portion of the priority

PLA.

(27 microseconds)

This subcommand verifies the operation

of the capture register. Any pending

interrupts will be lost when this

subcommand is executed. Note: Since any
pending interrupts are lost, it may not
be possible to macrostop when executing

this Diagnose.
(335 microseconds)

This subcommand verifies the operation
of a portion of the priority PLA.

(29 microseconds)

This subcommand verifies local store

register 10 and 11 data integrity.

(38 microseconds)

This subcommand verifies local store

register 12 and 13 data integrity.

(38 microseconds) |

This subcommand verifies local store

register 14 data integrity.

(23 microseconds)

15-27 |

H-BUS

Data Description

8F00 This subcommand verifies the operation

of a portion of the priority PLA.

(28 microseconds)

15-28

Command _

9013

9014

Description

SET/RESET INTERRUPT PAGE DIAGNOSE MODE CWRITE)

(6.6 microseconds)

The set/reset interrupt page Diagnose mode [IO command allows

macrocode to place the interrupt page in, or remove it from diagnose

mode. When in diagnose mode, the interrupt page will not reset the

computer when it detects a crash interrupt condition. Also, the ROS

parity error, and the Endop Timeout machine check interrupts will not

be generated. If the data sent with the command is nonzero, the page

will be placed in diagnose mode. If the data sent with the command

is zero, the page will be removed from diagnose mode.

START INTERRUPT PRIORITY MICROCODE TEST CWRITE)

The Start Interrupt Priority Test IIO command sets all of the valid

interrupts in the External Pending Interrupt Register. Also, the two

interval timers are set pending. Interrupt processing will then

proceed in the normal manner. Any pending interrupts will be lost

when this command is executed.

The following interrupts are set in the External Pending Interrupt

Register:

External 0

External 1

External 2

External 3

External 4

AGE

The following interrupts are set in I/0 Interrupt Register:

Timer A

Timer B

Note: Timer A and B interrupts only become macro interrupts if

location BO and Bl, respectively, equal zero.

15-29

H-BUS I10

Command Description

9407 LOAD MMU MODE REGISTER CWRITE)

(4.3 microseconds)

The Load MMU Mode Register IIO command allows the operation of the

MMU and the various memory options to be selected. The definition of

the bits in the MMU Mode Register is presented below:

Bit Description

6 Inhibit memory accesses from all sources except EX

7 Inhibit all memory error interrupts

8 BSE Disable

9 Insert store protect bits

10 Transmit Disable

li System IPL

12 Passthrough mode

13 Gate syndrome/check bits to data bus

14 Code IDO

15 Disable scrubbing

Bits 6-15 of the data word sent with this command will be loaded into

the MMU Mode register.

15-30

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST

CODE DESCRIPTION SHEET NAME

01 |RTCC Register 5's Pattern Fail UD34 RTCC

02 {RTCC Register A's Pattern Fail UD34 RTCC

03 [Constant Prom Checksum Fail | UDd25 CPROM

04 |2way Branch On YBUS Bit 11 Fail | UD51 XWAYBR
05 |2way Branch On YBUS Bit 12 Fail UD51 XWAYBR

06 [2way Branch On YBUS Bit 13 Fail UD52 XWAYBR

07 |2way Branch On YBUS Bit 14 Fail UD52 XWAYBR

08 j2way Branch On YBUS Bit 15 Fail UD52 XWAYBR

09 |4way Branch On YBUS Bits 12,13 UD53 XWAYBR

OA i4way Branch On YBUS Bits 14,15 UD53 XWAYBR

OB {léway Branch On YBUS Bits 8-11 UD54 XWAYBR

0C |iéway Branch On YBUS Bits 12-15 UD54 XWAYBR

0D |Local Store Adr Forced CPUSECD UD95 LSADR |

OE {Local Store Adr Forced CONSECO UD96 LSADR

OF jLocal Store Adr Direct CONSEC15 UD96 LSADR

10 {lLecal Store Adr Indirect CONSEC15/ UD96 LSADR

li {Ls Adr CPUSEC Direct # Forced UD97 Se LSADR «.
12’ |Ls Adr CONSEC Direct # Forced UD98 ” = TLSADR

13 jEven Adr FW Write HN Read VE55 HCMEMTST

14 [Even Adr FW Write Odd HW Read VE55 HCMEMTST

15 {Two HW Writes FW Read Even Adr VE56 HCMEMTST

19 | FW Write Read Odd Adr UE56 HCMEMTST

1A [Two HW Writes FW Read Odd Adr UE60 HCMEMTST

1B j|2way Branch On ASTATS3 Fail UE18 STATBR

1C [2way Branch On ASTAT2 Fail UE18 STATBR

1D j|2way Branch On ASTATI Fail UE19 STATBR

1E [2way Branch On ASTATO Fail UE19 STATBR
1F |4way Branch On ASTAT45 Fail UE21 STATBR

20 |4way Branch On ASTAT67 Fail VE21 STATBR

21 {Logical/Physical Adr Error UE61 HCMEMTST

22 |Store Protect Bits Incorrect VE62 HCMEMTST

30 {EI # EPEMIT Or EXZERO Fail VE27 EXHARD

31 |EI=EI+1 Or EXZERO Fail VE27 EXHARD

32 |EI=EI+EPEMIT Or EXSIGN Fail UE27 EXHARD

33 {EXCRY Fail UE27 EXHARD

34 EXSIGN Fail UE28 EXHARD

35 EXCRY Fail. VE28 EXHARD

36 | EA=EI,EB=EI,ES=EA+EB Or Reg Fail! UE28 EXHARD

37 |}EA=EPEMIT Or EA=EA+EPEMIT Fail UE29 EXHARD

38 {EA carry Or ES=EIZEPEMIT Fail UE293 EXHARD

39 {EA Effects EI VE2Z9 EXHARD

15-31

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST

CODE DESCRIPTION SHEET NAME

3A |EA Effects EB UE30 EXHARD

3B |EB=EB-1 Fail VE30 EXHARD

_ 3C JEB=FO0-07 Fail UESO EXHARD

3D [EB Effects EA VE31 EXHARD

3F |EA=F00-07 Fail VESI EXHARD

GQ |EI=EIZEPEMIT Fail VE32 EXHARD

41 |EA=EA~EB Fail VES2 EXHARD

42 |EA=F24-31;INV Fail VES2 EXHARD

43 |EB=f24-31;INV Fail VE33 EXHARD

44 |EI=EA-EB Fail VE33 EXHARD

G5 |EA=EACL1) Fail VE33 EXHARD

46 |EI=EI+2 Fail VE33 EXHARD

47 |EI=EI-2 Fail VE34 EXHARD

48 |EI=EA Fail VE3S4 EXHARD

49 |EI=EPEMIT Of EB=F00-07;EI=EPEMIT| UE34 EXHARD

6A |EB=F00-07 Of EB=FO0-07;EI=EPEMIT| UES4 EXHARD

4B |EI=EI-1 Fail s UE2S8 EXHARD

GC |EI=INBO815 Fail UE34 EXHARD

4D |WLS=YCFW, EXALU, MMP/1750) Fail UE34 EXHARD

50 |FA # 0 Or FZERO Fail UES5 FRXHARD

51 | FB # 0 VES5 FRXHARD

52 |FC # 0 UE35 FRXHARD

53 |FA # F,LS Addr, AI+BI Or FCRY VE36 FRXHARD

54 |FA Effects FB UE36 FRXHARD

55 |FA Effects FC VE36 FRXHARD

56 |FB # F UE36 FRXHARD

57 |FB Effects FA Or FC UE36 FRXHARD

58 |FSIGN1 Fail UE37 FRXHARD

59 |FC Effects FA Or FB UE37 FRXHARD

5A }YOV Pail VE37 FRXHARD

5B |FZERO With Overflow Fail VE3S7 FRXHARD

5C |AI+AI Or Guard Bit Fail VE37 FRXHARD

5D |Shift Right 2 Or FNORM Fail VE37 FRXHARD

5E |FANORM Fail VE38 FRXHARD

5F |FA # F HW Fail VE38 FRXHARD

60 |Bits 16-31 # 0 HW VE3S8 FRXHARD

61 |Y MUX CONTROL Or ENABLE Fail VE33 FRXHARD

62 |Y=(N,NON,N,I,I) Fail —UE39 FRXHARD

63 |FC Shift/Rotate Fail VE39 FRXHARD

64 |FA31=SFC00 Of FA31=FCO0;FC31=FC32) UES9 FRXHARD

65 VE39 FRXHARD

FC3L=FC32 Of FA3S1=FCO0;FC3I1=FCS32

15-32

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST
CODE DESCRIPTION SHEET NAME

66 |FAQO=FA-1 Of FAQO=FA-1;FCOO=FA31| UE4O FRXHARD
67 | FCOO=FA31 Of FAOO=FA-1;FCOO=FA31/ UE4O FRXHARD
68 |FA=Y Of FA=Y;FC=FCI Fail UE40 FRXHARD
69 |FC=FCI Of FA=Y;FC=FCI Fail UE40 FRXHARD
6A |RDEXPALU Or BI=INBUS Fail UE41 FRXHARD
6B | FIO, FL8, FB=FBCRL) Fail UE41 FRXHARD
6C |FA=(Z,Z); FC=FCI Fail UE41 FRXHARD
6D |FCI=FC(R2) Fail UE41 FRXHARD
70 |EDAC Error During Reset UD71 EDACTEST
80 |Local Store RYW LLS Pat 1 UD46,48 LSMICRO
81 jLocal Store R/W LLS4RLS Pat 1 |UD466,68 LSMICRO
82 j;Local Store R/W RLS Pat 2 UD46,48 LSMICRO
83 {Local Store R/W RLS#¥LLS Pat 2 |UD47,49 LSMICRO
84 |EU PC Fail On X'5555' Pattern UD40 EUPCTST
85 |EU PC Fail On x"AAAA' Pattern UD40 EUPCTST
86 |EU PC Increment Fail UD40 EUPCTST

90 |Memory R/W Data Pattern 1 UD65 WRCCORE
91 |Memory R/W Check/SP Pattern 1 UD65 WRCCORE
98 |EDAC Hard Error Bit Not. On UD74 EDACTEST
99 |EDAC Unexpected Soft Error UD74 EDACTEST
9A |EDAC Unexpected Hard Error UD74 EDACTEST
9B |EDAC Soft Error Bit Not On UD75 EDACTEST
9C | EDAC Soft Error Not Corrected UD75 EDACTEST

A0 |Memory Protect RAM, Pattern 1 UE09 DIAGMPPR
Al |Memory Protect RAM, Pattern 2 UE09 DIAGMPPR
A2 |Inst-Page Reg RAM, Pattern 1 UE09 DIAGMPPR
A3 |Inst-Page Reg RAM, Pattern 2 UE09 DIAGMPPR
A4 |Opnd-Page Reg RAM, Pattern 1 UE09 DIAGMPPR
A5 |Opnd-Page Reg RAM, Pattern 2 UE09 DIAGMPPR
A7 |BSR/DSR - PS/AS Test Failed UE23 DIAGBSRP

BO {Interval Timer A Test -SIB UD94 ITMATST

F6é {Interrupt Page Failure - UE49 HCSREAD
FC reg is Int Page Diag Err Reg

F7 {ROS Parity Test Failure UVE03 INTCRASH
F8 |ENDOP Timer Test Failure VE03 INTCRASH
F9 |DSE Test Failure UE71 DSETEST
FB |Intr Page HBUS Wrap CINBUS) Fail] UD87 IHBUSWRP

15-33

AP-101S DIAGNOSTIC ERROR CODES

ERROR CLD TEST
CODE DESCRIPTION SHEET NAME

FC |Intr Page HBUS Wrap (HBUS) Fail UD8&6 IHBUSWRP
FD |Operand (FW) Checksum Fail UD39 HEASCAN2
FE |LLS & RLS Checksum Fail UD39 HEASCAN2
FF |Opcode & Operand Checksum Fail UD39 HEASCAN2

15-34

16.0 PIPELINE TIMING CONSIDERATIONS

The AP~-101S computer is a pipelined machine which exhibits significant throughput
improvement over nonpipelined sequential machines. The pipeline which is involved
is based on prefetching both instructions and operands from memory. Instructions
and operands are prefetched assuming sequential instruction execution. This means
that as long as the sequence of instruction execution is not altered, all prefetched
information will be used.

Some branch instructions alter the sequence of execution, and therefore nullify any
prefetched information. The time required to restart the Pipeline in this case may
be directly attributed to the branch instruction. Instruction execution times for
branch instructions include all overhead required to restart the pipeline, if the
order of execution is altered.

Other factors also exist which have an impact on the throughput of the pipeline.
These factors may not be attributed directly to any one instruction in general,
rather they are a function of the order and relationship of instruction execution.
Three factors may be classified as follows:

Register conflict Modification of base or index register

needed to prefetch an operand

Store conflict Modification of prefetched operand

I unit hazard Modification of prefetched instruction

Instruction execution times do not include any overhead due to these factors. Any
penalty in execution time must be considered independent of instruction execution
time. The total time required to execute a given sequence of instructions) must
include any applicable penalty due to these factors.

It is for this reason that a separate description of conflicts and hazards is
presented. Not only will this description explain the various conflicts and hazards
as previously mentioned, it will also discuss how the conflicts and hazards are
resolved and what the execution time impact is associated with these events.
Furthermore, numerous conditions, such as branching and store instructions, will be
discussed with an emphasis on pipeline operation. Instructions of this type change
the nature of pipeline processing near that instruction, but are not a conflict or
hazard. In order to aid understanding of the AP-1015S computer and the pipeline,
these instructions have been included in this discussion. Any execution time
impacts due to the pipeline have already been included in the stated instruction
execution times.

16.1 INSTRUCTION EXECUTION - PIPELINE BASICS

Every instruction requires at least four stages in order to execute. First, the
instruction must be read from memory during the instruction fetch stage. Second,
the instruction must be decoded both in terms of what type of operation is specified
(add, multiply, shift, etc.) and the effective address of the second operand must be

16-1

computed. Next, the second operand is read from ‘emory using the effective address
CEA) during the operand fetch stage. Finally, the instruction may be executed,
generally resulting in modification of the general purpose registers. In the case
of the AP-101S computer, two additional stages are required in support of the memory
references. Since the AP~-101S utilizes expanded addressing, an additional Stage of
address translation is required for every memory operation. Therefore, an
Instruction address translation stage and operand address translation stage are
required. Figure 16-1 shows the relationship between all six stages of the AP-1015
computer.

Each stage represents a specific function which is relatively independent of the
other functions, except for the given time relationship. It is this independence
and the timing sequence which permits the construction of a six stage pipeline.
Within the pipeline, each function, or stage, is contained and controlled completely
by an independent hardware element. The timing relationship between an instruction
and each hardware element is shown in Figure 16-2.

The advantage of using a pipelined organization is obvious when considering the
execution of three simple instructions. Figure 16-3 indicates that a total of 18
machine cycles would be required for a sequential machine to execute just three
instructions, assuming that each stage of the instruction could be completed in a
single machine cycle. Each hardware element is capable of independent operation,
which permits pipeline operation as shown in the figure. Notice that a total of 8
machine cycles are required to execute three instructions. Consideri ng p:zeline
operation for a sequence of a single type of instruction yields the mear, time
required to execute that instruction. The example shown is for an RS format
Instruction. If the example were extended indefinitely, the execution time would
average to 2 cycles per instruction. Completing a similar pipeline chart for SRS
instructions would indicate 1.5 cycles per instruction, and 1 cycle for RR format
instructions. For the AP-101S computer, the pipeline cycle time is 0.250
microseconds.

16.2 LONG INSTRUCTIONS - NON-SINGLE-CYCLE EXECUTION

Not all instructions may be executed by the execution unit within a single pipeline
cycle. These instructions, referred to as long instructions, force the Pipeline to
stop while execution proceeds, as indicated in Figure 16-4. This is actually
accomplished by postponing further EA calculations until the last machine cycle of
the long instruction. Instruction execution times as indicated include any effects
of long instructions, as necessary. Notice that even though the pipeline waits for
a number of cycles, there are no unused cycles in the execution unit.

16.353 BRANCH INSTRUCTIONS - RESTART THE PIPELINE

Branch instructions, as previously discussed, cause any prefetched information to be
discarded and the pipeline must be restarted. The branch instruction shown in
Figure 16-5 indicates that 3 machine cycles within the execution unit are :nused
during the pipeline restart. Also, notice that the target instruction has

— 16-2

Instruction Execution

Instruction

Decode
Instruction + Operand Instruction

Operand
Fetch EA Fetch Execution

Generation

With Expanded Address Generation (Translation)

Instruction

. Decode
Instruction Instruction + Operand Operand
Address 0 Address

erand .
Translation Fetch nah Translation Fetch

Generation

instruction

Execution

Figure 16-1. Dissection of Instruction

oO Sequence of 6 functions —6 stage pipeline

oO Independent hardware per stage/function

Instruction Instruction Instruction Operand
Hardware Address Fetch Decode Address
Element Translate EA Gen Translate

ix

 F
‘ ch
0% C4
OF

EX

Operand Instruction
Fetch Execute

C3

Figure 16-2. Pipeline Hardware Elements

16-3

OX

OF

EX

Qo Consider the instruction sequence 1 12,3
QO Sequential machine operation is:

IX | IF JEA
1 1 1

OX JOF [EX |Ix_ |IF
1 1 1 2 2

ca] |
6 cycles x 3 instructions = 18 cycles to complete 3 instructions

EA_|OX_|OF_|EXx sf*3] Fo]

OQ Pipeline machine execution is:

['*, *1'* 3]

rat oLF sl
[F4, [EA [FA 3]

[ox , [°x,] Ox. 8 cycles to complete 3 instructions

|OF, [oF [OF |

[F*, [F*2]F%s |

Therefore, over a period of time, pipelined instructions would average:

2 cycles / RS instruction

1.5 cycles / SRS instruction

1 cycle / RR instruction

Figure 16-3. Pipeline Advantage

QO Not a hazard or conflict
oO Instructions which require more than 1 pipeline cycle to execute

oO Postpones EA calculations until end of instruction

LOC INSTR

L AE
L+2 —— (SHORT FLT PU ADD)
L+4 om
L+6 ——

pigeon VY A | TT
| EAL | EA +2 | Farag EA 46

| Ox, OX 42 OX 44 Ox L+6

OF OF 45 OF 46

EX) EX 42. EX 44 | EX 46 |

(x0ifeomee 15S eee

Figure 16-4.

Long Instruction

16-4

oO Not a hazard or conflict

O Harmful to pipeline throughput — 3 cycles to restart

Oo Example:

LOC INSTR

B BC, T
B+2

+

EAB EAT

OX,
ox:

Instr @ T 2AT

OF

Ins @ T OF+ |

| {

EX. Unused Unused ! Unused | EX. |

i
A

Branch
Figure 16-5. Branch Taken

previously been prefetched by the EA unit in order to minimize the restart time. If
a conditional branch is not taken, then the pipeline is not restarted. Indicated
instruction execution times include al] effects of restarting the pipeline.

16.4 REGISTER CONFLICT - MODIFY BASE OR INDEX REGISTER

Register conflicts can only occur for instructions which use either a base or an
index register to compute the effective address of a memory operand. A conflict
arises if a preceding instruction (within three instructions) modifies the contents
of the register which is used for the base or index value. In order to minimize the
penalty involved, register conflicts are detected and totally controlled by hardware
resources. EA unit operation is postponed, as shown in Figure 16-6, until the
register involved has been loaded with the correct value. At most, three machine
cycles will be unused by the EA unit while Waiting for valid register data. This
results in three unused machine cycles in the execution unit hardware. This penalty
will decrease, depending upon the number of instructions between the
register-modifying instruction and the register-using instruction. Any penalty
involved with register conflicts has not been included with the stated instruction
execution times, and must be. evaluated separately if necessary.

16-5

Oo Caused by loading & using a base/index register within 3 instructions
Oo Detected and handled by hardware

O Forces sequential instruction execution within pipeline
‘0 Postpones fetch of base/index register by 1, 2, or 3 cycles
Oo Example:

LOC INSTR
R AHR R3, R5

R+1 M R11, ADDR(R3)
R+3 —-——

R3 i i {
EA, Conflict | i EAR41 EAR. 3 = = a» oe

Detected | i y R3 used

Unused OFpy, |----

| l i
EX, Unused ! Unused Unused EX a4 -_—=—
R3

Modified

Figure 16-6. Register Conflict

16.5 STORE INSTRUCTIONS - MULTIPLE MEMORY CYCLES

The pipeline structure has been implemented to maximize performance for memory read

operations. Memory write operations do not fit into the same pipeline structure as

read operations and, as a result, the pipeline is disturbed in the area of a store

instruction. Figure 16-7 indicates that two additional memory cycles are needed to

perform the actual memory write operation. Also notice that the EA unit performs a

pre-read of the memory location in order to assist the memory management unit in

storage protection error detection. At most, two cycles will be unavailable for

instruction execution due to this pipeline disturbance. The actual number of cycles

lost is dependent upon the nature of the instruction following the store

instruction. Therefore, the instruction execution time presented for store

instructions is a typical value. The corresponding note for applicable store

instructions indicates some criteria for determining the exact time required to

execute a specific store instruction. Only simple store instructions operate in

this fashion. These are; ST, STH», STE and STB.

16.6 STORE CONFLICT - MODIFY PREFETCHED MEMORY OPERAND

Store conflicts are a result of prefetching operands from memory. An operand

16-6

o Nota hazard or conflict
Oo Causes additional 2 cycle delay due to memory — total execution .75 > .25 us
o Example:

LOC INSTR

Ww ST ADDR
W+2 AR R3, R4

Wt3 a

Wh
W+5

EA EA EA EA Wait for EA

W+2 W+3 W+4 Memory W+5

Ox OX Ox OX OX OX
W W+2 W+3 Ww -Busy- W+4 W+5

Preread Store

OF OF OF OF OF OF OF
WwW W+2 W+3 W W W+4 W+5

Preread Store Store

EX EX Extend- EX EX wx
Ww W+2 | Do Not W+3 Unused W+4 W+5

Update PC
V7

V

Used if EX is
W+2

at least 2 cycles

Used if EX is

W+2

at least 4 cycles

Figure 16-7. Store Instruction

prefetch for a load instruction will actually occur before the memory write is done
for a store instruction which precedes the load. If the load and store instructions
involve the same memory address, then the operand prefetch for the load instruction
must be postponed until the memory write is completed, as shown in Figure 16-8.
(The operand fetch actually occurs, however, the data 1s discarded). In order to
minimize the penalty involved, store conflicts are detected and totally controlled
by hardware resources. Any penalty involved with store conflicts has not been
included with the stated instruction times, and must be evaluated separately if
necessary. Store conflicts are applicable for simple store instructions only.

The store conflict hardware has been simplified somewhat by assuming that all memory
operations involve two locations, or 32 bits. Therefore, the conflicting
instructions only need to deal with memory locations which are within one location
of each other in order to cause the detection of a store conflict. Furthermore,
store conflicts are detected on the 16 bit logical address, and not the 19 bit
Physical address. In order to guarantee proper operation with expanded memory
addressing, store conflicts are detected on the 15 least Significant bits of the
logical address. Addresses 7FFF and 0000 are considered to be contiguous, as are
addresses FFFF and 8000. At most, two machine cycles will be lost while the operand
fetch is postponed. This penalty will decrease to one machine cycle if one other
instruction is executed between the conflicting instructions. No conflict will
exist if there are two or more intervening instructions.

16-7

© Caused by store with successive load from memory within 2 instructions
Oo Detected and handled by hardware
Oo Example:

Loc INSTR

W ST ADDR

W+2 L ADDR

W+4 —a

St WwW. Ore ft _ ait
EA EA Conflict 7 “P| for EA

W+2 Detected | Memory W+4

x Ox Ox Ox
ey We2 | vaio | gee | Busy wee J0* Sto

(wasted) wasted) me (ooo) | W+4

OF OF OF OF OF
OF W+2 ane W Ww W+2 |OF

Ww (wasted) wasted) Store Store (0000) W+4

EX Normal Normal |EX EX
W Unused Store Unused Store W+2 W+4

Unused due to timing .
of the store instruction

Figure 16-8. Store Conflict

16.7 SUCCESSIVE STORES - BACK-TO-BACK STORES

The execution unit of the CPU contains a store pending register which holds the
memory address for simple store instructions. Since only one register exists, only
one store instruction can reside in the pipeline at one time. Figure 16-9 indicates
that processing by the EA unit for the second store instruction is postponed until
the memory write for the first store instruction has been initiated. This situation
is not a conflict or hazard, it is only a limitation of the hardware. The
guidelines associated with store instruction execution times includes a case for a
successive store condition. A penalty of 2 machine cycles has been included with
the execution time of the first store instruction. This penalty will decrease to
one machine cycle if one other instruction is executed between the store
instructions. No penalty exists if there are two or more intervening instructions.
The penalty for successive stores is applicable only for simple store instructions.

16.8 I UNIT HAZARD - MODIFICATION OF PREFETCHED INSTRUCTION

An I unit Cinstruction fetch unit) hazard is the result of a store instruction which
modifies memory in the immediate area-of the current instruction. The I unit can be
at most 22 memory locations ahead of the current instruction. If a store

16-8

oO Caused by consecutive store instructions within 2 instructions
o Detected & handled by hardware
O Due to existence of one address register for CPU stores

Example: LOC INSTR
W ST ADDR X
W+2 ' STADDRY) (2 cycles lost)
W+4 sraeeeeneneneons

(i i ' Successivey ! | i
Stores -4 >

BAW Detected ,; EAW+2

OX OXw,. Busy |OX
W Store ; We

OF OF
W W

OF Store Store OF Wen

Normal Normal
EXw Unused | Store | Unused | Store EXwa9

Store pending
register active

Unused due to timing

of the store instruction

Figure 16-9. Successive Stores

instruction writes to memory in the area from which the I unit may have already
prefetched instructions, then an I unit hazard exists. The actual detection
circuitry uses the range of IC-1 to IC+23 in order to indicate an I unit hazard.
Once a hazard has been detected, the entire pipeline is discarded and restarted from
the location following the current instruction, as indicated in Figure 16-10.

I unit hazards are detected on the 16 bit logical address, and not the 19 bit
Physical address. In order to guarantee proper operation with expanded memory
addressing, I unit hazards are detected on the 15 least significant bits of the
logical address. Addresses 7FFF and 0000 are considered to be contiguous, as are
addresses FFFF and 8000.

The I unit hazard circuitry is provided in order to guard against self-modifying
code. This circuitry forces a restart of the pipeline to guarantee that the proper
instructions, including modified instructions, are executed. However, it is
possible to modify a data location at the end of a program segment and cause an [
unit hazard. The I unit hazard circuitry cannot distinguish between memory used for
instructions as opposed to data. Therefore, any store within the indicated range
Will cause an I unit hazard condition whether it is real or not.

16.9 CONFLICT/HAZARD SUMMARY

All effects of the pipeline on instruction execution times have been included with
the indicated times except for register conflicts, store conflicts, and I unit

16-9

Oo Caused by a store into memory within the immediate area

of the current instruction (-1 <> PC <— +23)

© Forces a restart of the I-unit and pipeline

o Detected by hardware. Handled by microcode

I W

wl W

[er

Example: LOC INSTR

WwW ST ADDR+23
W+2 ----

IX

W+2

I weal W+2

EA

W+2

OX

W+2

| OF |
W | w+2

a ee ee
Ne

Microcode 2.25 us

le Lost due to restart 3 |

14 cycles @ 250 ns = 3.5 us .

Figure 16-10. I Unit Hazard

hazards. Below is a summary of the penalties involved with each.

Register Conflict

Store Conflict

I Unit Hazard

Number of Intervening Instructions

0 instr 1 instr 2 instr

-75 us ~-50 us -25 us

-50 us 25 us ----

Independent of Intervening Instructions

3.50 us

16-10

EX |

W+2

oe.

17.0 AP-1015 INSTRUCTION EXECUTION TIMES

All floating point execution times have been rounded up to the nearest multiple of
250 nanoseconds and are based on the following assumptions:

aff
Ms

Neither operand is zero, and for the long (64-bit) instructions neither hi
or low words of an operand is zero. .

All results will require normalization of 8 bits (2 hex digits).

All operands are normalized, hence prenormalization of the divisor in the
divide instructions is unnecessary.

For instructions requiring prealignment (Add, Subtract, Compare) the
difference in exponents will be 4.

Operands will not be the same signs (except for the COMPARE instructions
in which operands will have identical signs). /

17-1

INSTRUCTION EXECUTION TIME IN US

MMP NORMAL DOUBLE INDIRECTION AUTO AUTO

INSTRUCTION ADDRESSING XC=0 | XC=0 | XC=1 | xc=l1 STORAGE INDEXING
MODES C =o j| C =1 | C =0 {| C =1 | MODIFICATION

A RS -250 4.5 4.25 | 4.25 | 4.25 5.5 7.25
A SRS 250 — —_— — — — —
AE RS 2.50 6.75 | 6.5 6.5 6.5 7.5 9.0
AE SRS 2.50 es a — — — —
AED RS 6.50 10.5 | 10.25] 10.25] 10.25] 11.5 13.25
AEDR RR 6.25 — me — _— nee —
AER RR 2.25 _— —— — —_— — ——
AH RS 250 4.50 | 4.25 | 4.25 | 4.25 5.50 7.0
AH SRS .250 — — sd — — —
AHI RI -250 — — — — — —
AR RR .250 — —_— — — ~— —
AST RS -750 6.0 7.0 5.75 | 7.0 8.25 10.25
BAL RS 3.75 7.0 {10.0 6.75 110.0 8.0 9.5
BALR RR BT=3.50; BNT=4.50 — — — — — _—
BC RS BT=1.25; BNT=.250 4.25 | 7.25 | 4.0 7.25 5.25 6.25
BCB SRS .250 — —_— —— —_— — — ~
BCF SRS 250 — — — — — —
BCR RR 250 mE a — meme a cease

BCRE RR BT=5.75; BNT=.50 — — — — — —
BUT RS BT=1.75; BNT=.750 4.5 7.5 4.25 | 7.5 5.5 7.0
BLTB SRS BT=1.753; BNT=.750 — — — — — aon
BCTR RR BT=1.753; BNT=.750 — — — ——e — —
BIX RS BT=2.5; BNT=1.5 5.75 | 8.7 5.5 8.75 6.75 8.25
BVC RS BT=1.25; BNT=.50 4.0 7.0 3.75 | 7.0 5.0 6.5
BYCF SRS BT=1.25; BNT=.50 — —= — — — —
BVCR RR BT=1.25; BNT=.50 — — — — — —
c RS -250 4.5 4.25 | 4.25 | 4.25 5.5 7.25
Cc SRS .250 —— — — —— — —
CBL RR AVG. = 5.0 — — a —_ — —
CE RS 1.75 6.0 5.75 | 5.75 | 5.75 6.75 8.5
CED RS 5.75 9.75 | 9.3 9.5 9.5 10.75 12.5
CEDR RR 5.50 eee ~— oe on — —
CER RR 1.50 rae — a — — —_—
CH RS 250 4.50 | 4.25 | 4.25 | 4.25 5.50 7.0
CH SRS -250 — a —_— _—— —_— —
CHI RI .250 — — sonnei a —— ne
CIST SI 1.5 — —_ mere — — ——
CR RR .250 — ~~ snr a on —
CVFL RR 1.75 — — — ‘onus — —_
CVFX RR 2.25 a —— — —_— —_ —
D RS (R1 EVEN) AVG. = 4.925 9.05 | 8.8 8.8 8.8 10.05 11.8
D RS (R1 ODD) AVG. = 4.675 8.8 7.55 | 7.55 | 7.55 9.8 10.05
D SRS (R1 EVEN) AVG. = 4.925 — — — — — —
D SRS (R1 ODD) AVG. = 4.675 — — — — — —_—
DE RS 7.50 12 11.5 | 11.5 | 11.5 12.75 15.25
DE SRS 7.50 — — — — — —
DED RS 23.00 27.75| 27.75| 27.75] 27.75| 28.75 29.75
DEDR RR 22.75 — — — — ee —
DER RR 7.25 — — — wna omen
DIAG RS SEE POO —_ _— ee — — =
DR RR (RI EVEN) AVG. = 4.925 — — — — a ee
DR RR (R1 ODD) AVG. = 4.675 — — — — — —
TAL RS .50 4.0 5.0 3.75 | 5.0 6.25 8.0
TAL SRS 50 — — — — —— —
ICR RR COMMAND DEPENDENT ee — ome — — —
THL RS -50 4.75 | 4.50 | 4.50 | 4.50 5.75 7.25
ISPB RS (RI = 0) 5.625 8.0 9.0 7.75 | 9.0 10.25 12.0
ISPB RS (RI = 1) 5.625 8.0 9.0 7.75 | 9.0 10.25 12.0
ISPB RS (RI = 2) 5.625 8.0 9.0 7.75 | 9.0 10.25 12.0
ISPB RS (R1 = 3) 5.625 8.0 9.0 7.75 | 9.0 10.25 12.0

17-2

INSTRUCTION EXECUTION TIME IN US

MMP NORMAL DOUBLE INDIRECTION AUTO AUTO

INSTRUCTION ADDRESSING XC=0 | xx XC=1 | XC=1 STORAGE INDEXING
MODES Cc =0 | C =1 | Cc =0 | c =1 | MODIFICATION

ISPB RS (R1 = 5) 125 — «xj — «fj —— | — — —
ISPB RS (R1 = 6) 125 a a oan —
ISPB RS (R1 = 7) .125 we eee fee ee oo —
L RS ~250 4.5 4.25 | 4.25 | 4.25 | 5.5 7.25
L SRS 250 — — oa = ome omen
LA RS -250 &.0 5.0 3.75 | 5.0 6.25 8.90
LA SRS 2250 —o —= — — — =

LCR RR 50 a comme —
LDM RS 6.75 10.0 |10.0 |10.0 |10.0 | 10.25 10.25
LE RS 1.20 5.0 4.75 | 4.75 | 4.75 | 5.75 8.5
LE SRS 1.20 — «> — S«t — st — ones —_—
LECR RR. 1.00 —> sj — — «| ——st[| — oa —
LED RS 1.50 5.5 5.0 5.0 | 5.0 6.25 8.75
LER RR 1.00 — ome commans oo — —

LFLI RR -750 —_- S«j — Ss | —-sy | — — _
LFLR RR 750 = = — cae — me

LFXT RR - 750 commen — ums eae oe oem
LFXR RR 750 od — me vente = ——
LH RS -250 4.50 &.25 4.25 | 4.25 5.50 7.9
LH SRS ~250 — —«j — sj — —st — — —
LM RS 8.5 12.25 {13.25 |12.0 13.25 14.5 16.25
LPS RS 10.25 13.25 (14.25 [13.0 14.25 15.5 17.25
LR RR -250 — fi— fj —> St — —
LXA RR 3.50 (-1.25 for early out) / — ome — ee — —
LXA RS 3.50 (-1.25 for early out) | 6.50 | 6.25 | 6.25 | 6.25 | 6.50 5.25

jm RS (R11 EVEN) 2.40 6.53 | 7.53 | 6.28 | 7.53 |* 8.78 10.53
£ 9h RS (R1 00D) 2.15 6.28 7.28 6.03 7.28 | 8.53 10.28

f ; M SRS (R1 EVEN) 2.40 cxmne ao — — — oommeoe
XM SRS (R1 ODD) 2.15 — —«j —'_—s«s| — || — ~— —

ME RS (RI EVEN) 6.25 10.5 10.25; 10.25) 10.25; 11.5 13.25
ME RS (RI ODD) §.75 10.0 9.75 9.75 9.75 11.0 12.75
ME SRS (R1 EVEN) 5.75 — |— |;§— | — — —
ME SRS (R1 ODD) 5.75 <a mee — — ome =e
MED RS 19.00 22.5 22.25} 22.25] 22.25} 24.25 | 25.75
MEDR RR 18.50 =o cee memes ene oem oma

MER RR (R1 EVEN) 6.00 — me =e me a <n
MER RR (RI OOD) 5.50 come sees eee = <— —
MH RS 1.35 5.48 | 5.23 | 5.23 | 5:23 | 6.48 7.98
MH SRS 1.35 —_ |;}— |— | — — —
MHI RTI 1.35 oun a ee — mem —
MIH RS AVG. = 1.7 5.83 5.58 5.58 | 5.58 6.825 8.025
MR RR (R1 EVEN) 2.40 sonsmee << —= ome meee —

MR RR (RI 00D) 2.15 commis — omvem — comms —

MSTH SI 3.0 comes comemnte — =o aoe —

MVH RR (SRC-DEST=1) 9.541.754#N (-2.25 FOR OSR) ome ad = — aoe —

MVH RR (COUNT EVEN) 10.254.875#N (-2.25 FOR DSR)| —— omens <= — — commen

MVH RR (COUNT ODD) 12.0+.875%(N=1) (-2.25; DSR)| ——j~ | —— | —— | — — —_—
MVH RR (COUNT NEG) 7.5 (-2.25 FOR DSR) onensnas come seman — ome —

MVH RR (COUNT ZERO) | 7.75 (-2.25 FOR DSR) acme — — — — ——

MVS RS 4.75 9.25 | 9.0 9.0 9.0 10.5 11.75
N RS 2250 4.75 4.5 4.5 4.5 5.75 6.5
N SRS 250 mumns comme — — mmm —

NCT RR 1.05 + (.075 # N) exes oa me om cma —

NHT RTI 250 mame << —- omeeme oe —

NIST St 3.0 sme <— omens ame commen —

NR RR .250 we ef ee — —
NST RS e 750 6.0 7.0 5.75 7.0 8.25 10.25

0 RS 250 4.75 &.5 4.5 4.5 5.75 6.5

0 SRS ~250 ome rae — —— smeee —

_-.| ont RI 250 — |j— | — |j— | — —
(OR RR .250 — |/§— |;§— | — — —

17-3

INSTRUCTION EXECUTION TIME IN US

MMP NORMAL DOUBLE INDIRECTION AUTO AUTO

INSTRUCTION ADDRESSING XC=0 XC=0 xC=) XxC=1 STORAGE INDEXING

MODES Cc =0 Cc =1 Cc = Cc =1 MODIFICATION

RS 750 6.90 7.0 5.75 | 7.0 8.25 10.25

RR >4.25 BUT <22.5 (NO CUR DMA) a — oe —= one come

RS ~250 4.5 4.25 | 4.25 | 4.25 5.5 7.25

SRS .250 —— — — — — ——

SI 3.0 — — —— —o —_ =xmmee

RS 18.125 21.5 24.5 21.25 {24.5 22.5 24

RS 2.50 4.75 | 4.5 4.5 4.5 4.5 — 9.5

SRS 2.50 — — — — = —

RS 6.50 10.75; 10.5 10.5 10.5 11.5 13.5

RR 6.25 —— — — — me ——

RR 2.25 = — — —— = —

RS -250 4.50 4.25 | 4.25 | 4.25 5.75 7.25

SRS -250 oom omens =e =o one ——

RS 1.50 4.50 5.50 4.25 | 5.50 6.75 8.50

SeRs 1.50 oma et — a comm ——

SRS 1.0 + (0.25 # N)3; N>6 me cmecomnse — omen omene meme

SRS 0675 + (0.1 * N)3 Nol om om = ome sme <<

RR 5.25 — ame —— — — ~—ame

RR -250 meen oem a cme onrereaee —ame

SRS -650 + (0.1 = N)3 NO ed one — ee moma <==

SRS 1.0 + (0.25 +N); N>0 —o omen ome =e oncom —

SRS 1.0 + (0.3 * N)J$3 WN>0 oem =n ee a ome —

SRS 2.0 + (0.5 # N)3 WN<32 ems od oom oes ene —

SRS 2.0 + (0.5 * (N-32))3 N>=32 comme me ne = come a

RR 17.50 mace me conse me ssoomemems mena

SRS e650 + (0.1 # N)3 N>0 ~~ momen — sooo — =a

SRS 650 + (0.1 *&N)3 (150 =o omens conan onan come wooo

RS 704 10.63 |11.63 [10.38 /11.63 12.875 14.625

RS 1.0 mmm comes oma ome oxic comme

RS 0.50 4.75 5.75 | 4.5 5.75 7.9 9.0

SRS 0.50 oom cnesoace am omen ooo ame

RS 2.25 5.25 | 6.75 | 5.0 | 5.25 7.0 7.5

RS - 500 4.75 | 4.5 4.5 4.5 4.5 7.5

SRS -500 me — aa oomite oe cme

RS 1.00 5.25 5.0 5.0 5.0 5.9 7.5

RS -50 4.50 5.50 | 4.25 | 5.50 6.75 8.50

SRS 50 ee — ae a <n

RS 7.25 106.25 {11.25 {10.9 11.25 12.5 14.25

RR 2.50 comme — a oa a a

RS 2.50 6.50 8.0 6.25 8.0 8.25 8.75

RR 2.5 * (#% ELEMENTS TESTED) oom — ae — —- a

RS 20.25 22.75 123.75 |22.5 {23.75 25.9 26.75

SI 2.0 =e — — — —7 —

RS 3.0 5.75 5.50 | 5.50 | 5.50 | 6.75 8.25

SRS 3.0 ee — — — — commer

RS 1.75 5.25 5.0 5.9 5.0 6.25 7.75

SRS 1.75 — oe — emma same —

RI 1.0 —— = sem — —— —

RS 3.75 6.50 6.25 | 6.25 | 6.25 7.50 9.0

SI 3.0 moos — — meme — me

RS -250 &.75 4.50 | 4.50 | 4.50 5.75 7.50

SRS -250 — —— mee neem omen —

RI 2250 = — — <= =< —

SI 3.0 cmon — mon — —x —

RR -250 comame oe — — ome —_—

RS - 750 6.0 7.0 5.75 | 7.0 8.25 10.25

RR 1.0 soomten — — crams — —

SI 3.25 oe — — — — —

RS 1.50 4.50 5.50 | 4.25 | 5.50 6.75 8.50

SRS 1.50 oe — — — — —

RI -250 — a — oe omens —_—

17-4

Appendix |

Input/Output Processor (IOP) —
Principles of Operation for

Program-Controlled Inputs & Outputs

PCI/PCO POO

TABLE OF CONTENTS

Title

PCI/PCO COMMAND WORD FORMAT---------------------
PCO COMMAND WORD FORMAT SUMMARY----------~-----~~+~~

PCO FORMATS

DMA BURST------------~---~~~_~_-- ee Meee
FORCE OCTAL MIA BAD PARITY---------------____-----
FORCE DMA ADDRESS/DATA BAD PARITY -—---------------—--~---~-~~~__~____
FORCE QUEUE CONTROL BAD PARITY-------------_________..
FORCE IOP H-BUS BAD PARITY---------------_______.
DATA FLOW PARITY CHECK------------~----_-__o-
MIA TRANSMITTER--~--~---~~~-~~-----
MIA RECEIVER--~--~-~----~~--~~~----

INTERRUPTS—~--~~~-~---~---_-- RESET STATUS 1 (GO/NO GO)---------------______... LOAD MSC BUS Y---~-~--~-~~--~-~~~~---

PCI FORMATS

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

MIA TRANSMITTER STATUS----------~----____-_-__-_
MIA RECEIVER STATUS------------~---___---

PROCESSOR
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT

REGISTER
REGISTER
REGISTER
REGISTER D/GROUP

INTERRUPT REGISTER E/GROUP 5-----------________.
RM STATUS REGISTER-----—---~--~---~~-~~~-
DISCRETE INPUT A--------------~-~~~-----e
DISCRETE INPUTS (33-40)--------------_--_____
STATUS 1 (GO/NO GO)-------------~~----- ee

A/GROUP
B/GROUP 2-----~--~~--~-----_-____
C/GROUP 3---~--~~-~~---~~~~______

7A
7B
7C
7D

ll
13
16

(18
20
21
22
23
24
9)
ka

26
27
29

I-iii

PCI/PCO PRINCIPLES OF OPERATION

This document identifies the specific Program Controlled Input
and Output commands available to the Space Shuttle AP-1015S computer
user.

PCI/PCO COMMAND WORD FORMAT

BIT 0; COMMAND ID FIELD

—_
 oat Program Controlled Output (CPU Output)

Program Controlled Input (CPU Input)

BITS 1 Through 5; Subsystem SELECT FIELD

00001se Control/Monitor (CM)
00010: Redundancy Management (RM)
0010900: Data Flow (DF)
01000: Local Store (LS)
10000: Channel Control (CC)

BIT 6; HANDSHAKE CONTROL FIELD

0
1

No handshake required
Handshake required.

BIT 7 through 16; DATA SELECT FIELD

(See Separate section)

BITS 17 through 31; IGNORED.

NOTES :

1. The five-bit Subsystem Select Field must contain only the bit
specified in the format description for the desired subsystem
selected. Additional bits will cause the PCI/PCO data word to be
written to all the subsystems designated with associated loss of
IOP control. No attempts to use the hardware configuration should
be made since driving circuits are not sized to drive multiple
loads and will not operate reliably.

I-2

Handshaking for a PCI/PCO is required for several operations to .
allow the subsystem selected to complete an operation before the
PCI/PCO command function is implemented. The added operation is
accomplished by the IOP and requires no special programming of the
CPU. The handshaking operation prevents loss of control of the
IOP software because of possible configuration changes during the
PCI/PCO implementation.

OCTAL HE X

301010 00000 C104
300100 00000 C004
301400 00000 C180
301200 00000 C140
301020 00000 C108
301004 00000 C102
300002 00000 cool
301002 00000 C101
205010 00000 8504
204010 00000 8404
205020 00000 8508
204020 00000 8408
205040 00000 8510
204040 00000 8410
206100 00000 8620
207100 00000 8720
204200 00000 8440
210010 00000 8804
210011 00000 8804
210020 00000 8808
210040 00000 8810
210050 00000 8814
210060 00000 8818
222000 00000 9200
222010 00000 9204
(SEE WITHIN)
301001 00000 C100

I-4

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
8000
0000
0000
0000
0000
0000
0000

8000

PCO COMMAND WORD FORMAT SUMMARY

DMA BURST ENABLE
DMA BURST INHIBIT
FORCE OCTAL MIA BAD PARITY
FORCE DMA ADD/DATA BAD PARITY
FORCE QUEUE CONTROL BAD PARITY
FORCE IOP H-BUS BAD PARITY
DISABLE PARITY CHECK
ENABLE PARITY CHECK
MIA XMTR ENABLE
MIA XMTR DISABLE
MIA RCVR ENABLE
MIA RCVR DISABLE
DISCRETE OUTPUT SET
DISCRETE OUTPUT RESET
PROCESSOR HALT
PROCESSOR ENABLE
MASTER RESET
LOAD GO/NO-GO TIMER
TEST GO/NO-GO TIMER
TERM. LATCH CONTROL
LOAD TEST REGISTER
ENABLE INTERRUPTS
TEST ALL INTERRUPTS
RESET STATUS 1(GO/NO-GO)
LOAD MSC BUSY
LOAD LOCAL STORE
TEST DMA TIMER

OCTAL HEX

004000 00000 0400
004010 00000 0404
004020 00000 0408
004030 00000 040C
010000 00000 0800
010010 00000 0804
010020 00000 0808
010030 00000 080C
010040 00000 0810
010050 00000 0814
010060 00000 0818
010070 00000 O81C
020000 00000 1000
020010 00000 (1004
(SEE WITHIN)

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

PCI COMMAND WORD FORMAT SUMMARY

MIA XMTR STATUS
MIA RCVR
READ DISC.
PROCESSOR
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
INTERRUPT
RM STATUS
D.I.A. (1-

STATUS .

OUTPUT STATUS
HALT STATUS
REG.
REG.
REG.
REG.
REG.
REG.
32)

m
o
O
}

we
Pp

D.I.B. (33-40)
READ STATUS 1 (GO/NO-GO)
READ STATUS 4 (B/W)
READ LOCAL STORE

PCO FORMATS

DMA BURST

COMMAND WORD

FUNCTION OCTAL | HEX | DEVICE

DMA BURST INHIBIT 30001000000 C0040000 cc
: ENABLE 30101000000 C1040000

INHIBIT

|
NOT USED

TLTLOVOTOLOPLOLOLOPOPO;OPO;IjOIO;O} | fet yruryrdy | { | 0 1 567 1617 31

ENABLE

| NOT USED
ULTLOLOFOTOLOLTWOsOPOFOO;1pOyOyO] | te yyy 4 ii tt ft tt ft 0 1 567 1617. 31

DATA WORD

BITS

0 NOT USED. THESE PCO REQUIRE NO DATA WORD.
1 .

31

These command words provide control of the Direct Memory
Access capability to CPU main memory. When inhibited, the IOP will
not access memory using Burst Mode. The commands are provided to
allow CPU control of memory operations.

“I-6

PCO FORMATS

FORCE OCTAL MIA BAD PARITY

COMMAND WORD

FUNCTION OCTAL

HEX DEVICE
FORCE BAD PARITY TO 30140000000 C1800000 CC OCTAL MIA PAGES ,

ENABLE

NOT USED
“ATP {fof} O} 241 jo jo fo jo jojo; ojo} y yy yy PET eee ty
0] 567 16 17 : |

DATA WORD

BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.

31

This command forces bad Parity on all data transmitted fron the IOP to the OCTAL MIA pages. The MIA page checks Parity on all incoming command and data words.

This command can be reset by either Power on Reset, System Reset, or by issuing the PCO command "Disable Flow Parity Check".

PCO FORMATS

FORCE DMA ADDRESS/DATA BAD PARITY

COMMAND WORD.

FUNCTION OCTAL HEX DEVICE

FORCE BAD PARITY ON 30120000000 C1400000 CC
DMA ADD./DATA

ENABLE

oa ek Dee Os Oo Gl ol cl oc cl OO OO OC
i 5.6 7 ~ 16 17

DATA WORD

BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.

31

This command allows the operator to force bad parity on the DMA
address or data bits individually, in order to check out each of the two
parity checkers. To force bad parity on the DMA address only, a data
word containing an odd number of 1's must be written to an odd parity
address location with the above PCO active. To force bad parity on the
DMA data only, a data word containing an even number of 1's must be
written to an even parity address location with the above PCO active.

This command can be reset by either Power on Reset, System Reset,
or by issuing the PCO command "Disable Flow Parity Check". .

PCO FORMATS

FORCE QUEUE CONTROL BAD PARITY

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

FORCE BAD PARITY ON 30102000000 C1080000 CC
THE QUEUE CONTROL BITS

ENABLE

NOT USED

see epee oppo pepe e yet TEE EE
0] 5 6 7 16 17

DATA WORD

BITS
0 NOT USED. fTHIS PCO REQUIRES NO DATA WORD.

3]

This command forces bad parity on the local store address and
queue control bits.

This command can be reset by either Power on Reset, System Reset,
or by issuing the PCO command "Disable Flow Parity Check".

PCO FORMATS

FORCE IOP H-BUS BAD PARITY

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

FORCE BAD PARITY ON 30100400000 C1020000 CC
IOP H-BUS RECEIVED DATA

ENABLE

| NOT USED

LTP fo pO poppy opo po pepo oy Pe EEE EEE LY
0] 9 6 7 16 17

DATA WORD

BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.

31

This command forces bad parity on all data coming to the IOP via
the H-Bus (PCO’s or DMA’s).

This command can be reset by either Power on Reset, System Reset,
or by issuing the PCO command "Disable Flow Parity Check".

I-7C

PCO FORMATS

DATA FLOW PARITY CHECK

COMMAND WORD

FUNCTION OCTAL HEX DEVICE
ENABLE FLOW PARITY CHECK 30100200000 C1010000 CC DISABLE FLOW PARITY CHECK 30000200000 cC0010000 CC

ENABLE

. NOT USED
“LF TP | [2 Offa [Opojo jopojojoyrzyo} yy yy LITT Et il] | |
01 567 16 17

"DISABLE

NOT USED
SJELP FO POO fo fo joj ojo jopojojojzyo} y py py yy ao
01 567 16 17

DATA WORD

BITS
0 NOT USED. THIS PCO REQUIRES NO DATA WORD.

31

The Enable Flow Parity Check PCO command is necessary to start
the parity checking in the data flow following any event that disables
parity checking. Events that disable parity checking include Power On,
System Reset, and Disable Flow Parity Check PCO command. IOP Master
Reset does not alter the state of the parity checkers.

The Disable Flow Parity Check PCO command disables the parity
checkers. It also resets any parity generator which is forcing bad
parity in response to one of the "force bad parity" PCOs.

Parity is generated in four locations in the IOP in order to
detect single bit errors. Each of the four generators' has its ..
corresponding checker. In some cases because of the IOP bus Structure, |
a single checker will check two different data paths, All generators and checkers work on odd parity and can be enabled and disabled under
PCO control. All four checkers can be individually checked with the PCO
commands to force bad parity. If a parity error does occur in the IOP,
an external 1 interrupt is issued to the CPU and all BCE's and the MSC
are halted, all transmitter and receiver enables are disabled and the
discrete outputs are reset. The cause of this interrupt can be
determined by reading the IOP interrupt register B.

All incoming H-BUS transfers from the CPU such as DMA's and PCI/O's
have odd parity generated once it is received by the IOP. This data is
then checked in two locations. The SI page checks the data for correct
parity directly off the 'DEV OUT DATA BUS' and the IB page indirectly
checks the H-BUS parity when it checks parity for registers Rl, R2, R3.

Parity is generated for registers R4, R5, R6 which allows parity to
be checked on all DMA address and data words before being driven to the
CPU. R4, R5, R6 parity is also checked indirectly by the IB page when
it checks parity for registers Rl, R2, R3.

ee

On the IB page parity is generated for all data and command words
being sent to the octal MIA. Parity for this bus is then checked on the
MIA’s which sends an error message back to the IOP if any errors are
detected.

The Local Store address lines along with the Queue control bits also
have parity associated with them. This is both generated and checked on
the MC page. The data flow parity checkers, and bad parity generators
can be reset by either issuing the PCO command "Disable Flow Parity
Check" or by Power on Reset.

Data flow parity checking must be enabled for the self test processor to set an external 1 interrupt if it detects an error. If parity is disabled no error indication is made and the self test processor continues,

IOP Local Store requires initialization before parity can be turned
on. This is done on power on initialization, or after an IPL. Once a
parity error occurs, R2 bit 0 is forced (as with an interface parity
error in the AP10O1B), the MSC and BCEs are halted, all transmitters and
receivers are disabled, and the é¢iscrete outputs are reset. These are
the mechanisms used to inhibit further transmissions on any BCE, Any
parity error causes an External 1 (level B) interrupt to the CPU,

To resume MSC and BCE operation one of the following must occur:

1) Cycle power on the unit.
2) IPL the unit.

NOTE: For testing purposes it is possible to force errors and resume if
local store locations with bad parity are corrected and a Master Reset
PCO is issued to reset the IOP.

I-38

COMMAND WORD

PCO FORMAT

MIA TRANSMITTER

FUNCTION OCTAL HEX DEVICE

MIA TRANSMITTER DISABLE 20401000000 84040000 C/M
ENABLE 20501000000 85040000

DISEBLE

f |
NOT USED

THOLOPOLOUTPOLOLOPOFOLOFOITIO1O10f] 1 Tt trated |
0 1 5 6 7 1617 3

ENABLE

NOT USED
 , 010101041 J|ssosorerorra:orore si]

DATA WORD

0 =

1 =

enable.

disable.

No change of condition. Hardware does not respond.

Enable individual MIA transmitter if command word was

Disable individual MIA transmitter if command word was

These words are to contro] individual MIA transmitters to
provide IOP output control of system data buses. The data word is
used as a mask for configuring MIA transmitters.

BIT

0 NOT USED.

1 CHANNEL NO. 1 MIA TRANSMITTER

24 CHANNEL NO. 24 MIA TRANSMITTER

25

NOT USED

31

10

PCO FORMAT

MIA RECEIVER

COMMAND WORD

FUNCTION OCTAL HEX . DEVICE

MIA RECEIVER DISABLE 20402000000 84080000 C/M
ENABLE 20502000000 85080000

DISABLE

_

NOT USED
LTFOLOPOPOTTfJOZOLOsO;OsO;rOs;O;Olo} y 4 4 4 fr tt tt tet dd
0 1 5 67 1617 31

ENABLE

NOT USED
TEOPTOTOFOL 140 WLOLOTOFOF 1101 OF 010} ftttti ttt did’ttte

DNATA WORD

BIT

0 NOT USED. BIT IGNORED
4 CHANNEL NO. 1 MIA RECEIVER
2 CHANNEL NO. 2 MIA RECEIVER

23 No. 23

2u No. 24

25 NOT PRESENTLY USED. BITS IGNORED

34 .

Q = No Change of status

1 = Enable receiver if with enable command word*

1 = Disable receiver if with disable command word

*Should only be used when the associated BCE is in the Halt State.

These command and data words provide
condition of the MIA receivers for purposes of
data input. The data word is used as a mask
control.

Capability to control
Channel control and
for MIA configuration

e
e

&
an

¢
"

fe
4,

COMMAND WORD

PCO FORMAT

DISCRETE OUTPUT

FUNCTION OCTAL HEX DEVICE

DISCRETE OUTPUT RESET 20404000000 84100000 C/M
SET 20504000000 85100000

RESET

i | | | NOT USED |
TEOPOLTOLTOIT{O;O{ OTOL Ort OO; O;O;Oy | | eduraagy 1 i t td | 07 5 6 7 TOT7 3

SET

t | | NOT USED
THOLOLOPOT TOL TLO[O; OF 1; OPO; O;O;oy 4 4 y rt tt §€ t ¢ bt bt bt

DATA WORD

* = Hardwired to IOP internal circuitry. These DO's are not
available for scftware uss.

0 = No change

1 = Set discrete bit if command word is set.

1 = Reset discrete bit if command word is reset.

The data word is used as a mask to control the discrete outputs.
The discrete outputs are configured as differential

The pin connections to the IOP are indicated
for the true (T) and complement (C) outputs.

drivers.

PIT

0 (DO-0)

1 (DO-1)

2 (DO-2)

3 (DO-3) H
A
H
R
A
H
A
N
H
 J3-51

J3-63
J3-18
J3-29
J3-28
J3-40
J3-30

SPARE

SPARE

‘SPARE

SPARE

10

11

12

13

14

15

16

17

#18

19

#20

21

#22

23

#24

25

26

27

#28

29°

(DO—4)

(DO-5)

(DO—-6)

(DO-7)

(DO-8)

(DO-9)

(DO-10)

(DO-11)

(DO-12)

(DO-13)

(D0-14)

(DO-15)

(DO-16)

(DO-17)

(DO-18)

(DO-19)

(DO-20)

(DO-21)

(DO-22)

(DO0-23)

(DO0-24)

(DO-25)

(DO-26)

(DO-27)

(DO-28)

(D0-29)

A
F
P
H
A
H
A
H
A
H
R
A
H
A
A
H
A
N
H
A
H
A
N
A
H
A
N
H
A

A
H
R

A
H
A
H
A
H
A
H
A
H
A
H
A
N
A
H
A
N
A
H
A
H
A
N
A
H
A
H
A
A
H
R
A
W
A
N
H

A
I
A
 J3-19

J3-41
J3-52
J3-59
J 3-60
J3-49
J3-50
J3-36
J3-48
33-62
J3-61
J3=25
J3-37
J3-15
J3-26
J3-38
J3-39
J3-8
J3-16
J3-17
J3-27
J3-1
J3-2
J3-3
J3-9
J3-4
J3-10
J3-11
J3-5
J3-12
J3-6
J3-7
J3-13
J3-44
J3-43
J3-22
J3-14
J3-45
J3-33
J3-24
J3-23
J3-34
J3-35
J3-56
J3-55
J3-21
J3=-32
J3-20
J3-31
J3-46
J3-47
J3-42
J3-53

SPARE

SPARE

SPARE

I/O ACTIVE TALKBACK

SPARE

GPC READY TALKBACK

SPARE

SPARE

MM1 RESET

MM2 RESET

SPARE

SPARE

SPARE

SPARE

SPARE

SPARE

GPC SELF SYNC 1

SPARE

BFS RUN

SPARE

GPC SELF SYNC 2

SPARE

SPARE

SPARE

GPC SELF SYNC 3

SPARE

* 30 GPC ID (DO0-30) T J3-58
C J3-57

This bit is hardwired to a positive output source and
will provide a source voltage for GPC identification
in the system.

*31 IPL (DO-31) T J3-68

C J3-67

This bit when set (1) indicates that the IPL routine
is in progress. When reset (0), the bit indicates that the
IPL routine has not been requested or that it is complete
depending upon the time/event sequence.

* See I-13

High Speed Discretes

PCO FORMAT

CONFIGURE PROCESSORS

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

CONFIGURE HALT 20€ 10000000 86200000 C/M
PROCESSORS

ENABLE 20710000000 87200000

HALT

! | NOT USED
PTPOPOPOPOUT{TPOLOPOsTPOPOTOYO;O;Ot | | ttt ttt rttiti 4
07 5 67 1617 | | 37

ENABLE

|
1 | | | NOT USED |
TAOLOPOPFOP TP TP TWPOPOETPOLOLO;OrOrOy ¢ GF tutdtdtdtt etre

DATA WORD

These PCO's provide capability to force individual MSC and BCE
to the halt or operate states under GPC control. The data word is used
as a mask to control the appropriate BCE/MSC processor.

0 = No change

1 = HALT if accompanied by the HALT command word.

1 = ENABLE if accompanied by the ENABLE command word.

BIT

0 MSC

1 BCE NO. 1

2 2

23 23
24 | 24
25 SELF TEST

26 NOT USED. BITS IGNORED

31 eg

The 25th BCE processor also called the self-test processor, is not
associated with an I/O system bus. This processor executes diagnostic
microcode that can detect certain faults in the IOP. One major purpose
of the diagnostic microcode is to verify data flow paths in areas of the
IOP where parity is not present. Another is to test basic microcode
operations that normally occur during execution of the BCE #MOUT instruc- tion.

Unlike the other BCE processors, the self-test processor can be in
only one of two states, halt or enable. The halt state is entered after
any system reset, or after a ‘processor halt' PCO with the self-test bit
of the data word set. In this state the error detection Capabilities of
the self-test processor are disabled and the processor is reset to a
known condition. Exit from the halt state to the enable state can only
be accomplished by a 'processor enable' PCO with the self-test bit of
the data word set. In this state the error detection capabilities of
the self-test processor are enabled. The current state of the self-test
processor can be determined by the state of the self-test bit in the
stat5 (halt/enable) register. This register can be read with a 'read
processor halt status' PCI. Since there are only two states for the
self-test processor, the stat4 (busy/wait) register has no meaning for
processor 25 and the MSC has no control over processor 25's state.

If the self-test processor detects an error, and the Data Flow
Parity Checking is enabled, an external 1 interrupt is sent to the CPU,
the MSC and all BCEs are halted, all transmitters and receivers are
disabled, and the discrete Outputs are reset. The cause of this inter-
rupt can be determined by reading IOP interrupt register B. Both the
self-test bit of the statl (GO/NOGO) register, and processor 25's status
register have no meaning for the self-test processor.

The diagnostic microcode uses 5 full word memory locations during
execution. Location A4 is used to verify that the IOP can properly
store data into the main memory. Therefore this location must not be
store protected. Before the self-test can be enabled, locations A6—-AC
must be initialized to the full word constants shown in the table
below:

Memory Locations Used by the Self-Test Processor

ADDRESS DATA
O00A4 XXXXXXXX *This location must not be store

protected
OO0A6 . 33333333
000A8 OFOFOFOF
OOOAA OOFFOOFF

OO00AC OOO00OFFFF

Data from the five memory locations will be continuously fetched
from memory by the diagnostic microcode while the self-test processor is
enabled. Therefore these memory locations must not be altered.

Note: Diagnostic processor 25 should not be enabled while the macro
instruction "MSC self-test" is executing. MSC self-test modifies Proc
25's locations in Local Store which results in IOP diagnostic errors.

I-17

PCO FORMAT

MASTER RESET

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

MASTER RESET 20420000000 84400000 C/M

| |
| NOT USED |

THOLOTOTOTT(OPOFOETJOJO;O;O;OTOTO, | | tater ryay f { ft ft |
01 5 67 1617 31

DATA WORD

There is no data word associated with this command word.
following table indicates the hardware reset by this command word
the resulting condition.

REGISTER

STAT1 (GO/NOGO)

STATY (BUSY/WALT)

STATS (HALT/NO HALT)

XMIT ENABLE

RCVR ENABLE

CHANNEL

FAIL VOTE

TERMINATE CONTROL LAICHES

VOTER TEST

FAIL LATCH

TIME OUT LATCH

DISCRETE OUTPUTS

MASTER RESET
FUNCTION

RST=GO

RST-WAIT

RST=HALT
MSC/BCE

RST=DISABLE

RST-DISABLE

NC CHANGE

RST=NO FAIL

RST=NO TERMINATION

RST=OPERATIONAL DATA

NC CHANGE

NO CHANGE

RST=INACTIVE

The

and

INTERRUPT
-C/M IDLE
-TOP FAIL LTCH
-TIME OUT LTCH
-ROS PAR
-IOP FAULT
-ALL OTHER INTERRUPTS

WATCHDOG TIMER

SET
NO CHANGE
NO CHANGE
RESET
RESET
RESET

RST=ZERO COUNTER AND
INHIBIT COUNTING

19

PCO FORMAT

LOAD GO/NO-GO TIMER

COMMAND WORD

FUNCTION OCTAL HEX DEVICE
LCAD GO/NO-GO TIMER 21001000000 88040000 RM

| | | NOT USED |
LTFOPOLOLTI0f Of 0704010701 04 14 OF OF O Ptititltttt_ttuedqa¢y 0 7 567 1617 3°

DATA WORD

NOT USED. BITS IF SET ARE IGNORED.
2

@

20 GO/NO-GO TIMER 03

KH

tH He
1

YY

og

NO

Un

~
A
~
O
O
O
N
A
U
E
W
N
=
0

UJ

QO

ub

oo
k

LSB = 0.758 msec.

Data word used to load the Go/NO-GO timer in normal system operation. The timer scaling permits 3.145728 seconds maximum to timeout. Timeout sets a timeout latch which is used to drive the Computer Fail output. Once the timer has been reset, the counter will not operate until loaded via this PCo.

The timer is a countup device. The data loaded must be the twos
complement of the desired time. The leading bit positions are ignored
and may be set as a result of the complement operation if desired. A
data word of all zeros causes an interrupt after a full count (3.145728
sec). This PCO also resets the timeout latch.

PCO FORMAT

LOAD GC/NO-GO TIMER TEST

COMMAND WORD

FUNCTION OCTAL REX Co, DEVICE

LCAD GO/NO-GO TIMER TEST 21001100000 88048000 - RM

|

| | | | _ NOT USED |
PTPOPOPOPTAOLOPOLOLOLO;OL 011101011] | tt tt tt tl tt ta
074 567 1617 3°

DATA WORD

BIT

0 NOT USED. BITS IGNORED

19 e
20 GO/NO-GO TIMER BIT 0 MSB

21 1
22 2
23 3
24 4
25 5
26 6
27 7
28 | 8
29 9
30 10
31 11 LSB = 0.768 msec.

This PCO is used to load the Go/No-Go Timer with any chosen
value which is incremented by one low order bit and read with a PCI
(READ STATUS REGISTER) to determine the operating status of the timer.

The Terminate Output driver is permanently inhibited by the
hardware. .

The Terminate Output latch is reset after the time out
interrupt has been generated.

The timer is a countup device. The desired code loaded in the

data word must be the twos complement of the desired timeout value. A

data word of all zeros causes an interrupt after a full count. This PCO

also resets the timeout latch.

I-21

PCO FORMAT

CONFIGURE TERMINATION CONTROL LATCHES

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

COWFIGURE TERMINATION 21002000000 88080000 RM
CONTROL LATCHES

|
NOT USED

TFOLOTOTTIOJOPOLOLO;OJOLTOLO;OTO] | | tuted s | | ft tt dt
QO 1 > 6 7 1617 31

DATA WORD

BIT

0 NOT USED. BITS IGNORED

29 °
30 TIMEOUT TERMINATION LATCH
31 VOTER TERMINATION CONTROL LATCH

0 = Reset

1 = Set

These two bits permit control of the associated RM latches by
CPU software (PCO) for purposes of testing and to force error
indications (Computer Fail and IOP Transmission Termination) for CPU
detected faults. The error indications may be inhibited for self
testind.

e
e

g
a

k

COMMAND WORD

PCO FORMAT

LOAD TEST REGISTER

 140101041110 OPOPOPOLOETPOLOLO1OIO] | ttt dt tt tid titi

FUNCTION OCTAL HEX DEVICE

LOAD TEST REGISTER 21004000000 88100000 RM

| |
1 | NOT USED

0 1

DATA WORD

28
29
30
31

 7 1617/7 3

NOT USED. BITS IGNORED
@

e

VOTER TEST CONTROL

0 = Permit normal operation
1 = Inhibit normal inputs (perform test)

This bit inhibits the normal voter inputs (when set)
from the other IOP's and inhibits driving of the
Computer Fail latch and IOP Transmissions Termination
logic. This is used to test the RM voter logic.

VOTER TEST INPUT 1

&
W
h
y

Not failed test input
Failed test input

0
1

These bits are used to load a register to provide test inputs
to the voter logic for test purposes. Bit 27 (above) must be set to
prevent erroneous system failure indications.

The IOP Voter test hardware will respond to these test inputs
(Bits 28-31) or to the normal operational inputs. The Test Inputs and
Operational Inputs are logically OR‘ed. :

PCO FORMAT

INTERRUPTS
COMMAND WORD

FUNCTION OCTAL HEX DEVICE

TEST INTERRUPTS 21006000000 88180000 RM

ENABLE INTERRUPTS 21005000000 88140000 RM

FNABLE

| | NOT USED
PTFOPVOPLOLTIOLOFOPFOPFOL OL APOFTPOTOT oO; | tt tt tt tid titi ti
“oT 7 5 67 17 31

TEST
: |

{ | | NOT USED |
TFOPOPOL TOP OP;OLOL OPO; tsoroyoroy ft tt tt ti tttit tity
0 7 5 67 17 34

DATA WORD

BIT

0
. NOT USED. THESE PCO REQUIRE NO DATA WORD.

31

The TEST command word forces interrupt Registers A, B, D,

and E to set all interrupts as follows:

REG A BITS 0-5 (FCOO 0000)
REG B BITS 4&5 - (OCOO 0000)
REG D BIT 0 (8000 0000)
REG E BIT 0 (8000 0000)

The interrupts will stay set until the action described ~

below is taken. This permits self-testing of the interrupt detection

circuitry. The interrupt registers will not be reset by reading of

the registers as in normal operation.

| The ENABLE command must be issued after the TEST command

word to remove the test interrupt. After issuing this PCO, each of

the four registers must be read to reset them and to permit normal

operation.

Note: Test and Enable do not force the new parity interrupts.

PCO FORMAT

RESET STATUS 1 (GO/NO-GO)

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

RESET STATUS1 (GO/NO-GO) 22200000000 92000000 DF

| | f | an NOT USED
LTPOLOPTPOPOFTPOPOPOUO;OO;O;O;OIO] | ft ttt tttise terre

0 1 5 6 7 161/ 31

DATA WORD

These PCO's provide the capability (data Word is used as
Mask) to reset Status Register 1 to the normal or GO indicator. The
entire word must be configured for each application.

0
1

No Change
Reset Status

NOT USED BITS IGNORED

PCO FORMAT

LOAD MSC BUSY

COMMAND WORD

FONCTION OCTAL HEX DEVICE

LOAD MSC BUSY 22201000000 92040000 DF

| |
| | NOT USED |
TPOLOLTPOPOLAfOyYOJO;OVO;Or Tj O1rO1O] | tt tt tartare
0 5 67 1617 37

DATA WORD

No data word required.

This PCO command word forces a BUSY condition to the MSC. It
is required to start the micro-processing of MSC/BCE Operations after
system power-up and initialization.

I-26

PCO FORMAT

LOAD LOCAL STORE

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

LOCAL STORE LS

| | VARIES. SEE BELOW NOT USED
VEOUTIOTOFO; AT tert rtitril Pitti tt tt ttt et 04 5 6 7 1617 31

The 10(10) bits (7 through 16) associated with the device
select field for this command word varies depending upon the word
(location) loaded in Local Store. The command word provides access to
the Local Store area associated with the MSC functions, 24 BCE
functions, and Self-Testing of the IOP. The specific data stored in
each location is discussed in the MSC and BCE Principals of Operation
documents and involve that data required for initializing and
operating the MSC and BCE's,.

Bits 7 through 11

This 5-bit field is used te designate the MSC or BCE to which
the data word must be transferred as shown below: —

BITS 7 8 9 10 11

0 0 0 0 0 MSC REGION

0 0 0 0 1 BCE NO. 1 REGION

0 Q 0 1 0 BCE NO. 2 REGION

1 1 0 0 0 BCE NOG. 24 REGION

1 1 0 0 1 SELF TEST

Bits 12 and 13

This 2-bit field identifies the bank (A, B, or C) in Local
Store for the above defined MSC or BCE area to which the data word
must be transferred as indicated below.

I 27

BITS _12 13

0 0

0 1

1 0

Bits 14,15 and 16

This 3-bit field is
loaded. The resolution to
is completed. Banks A and B
four words required.

Bits 14 15 16

Q G 0

0 0 1

1 1 1

DATA WORD

BANK A

BANK B

BANK C

used te identify which word in a Bank is
a Single word is achieved when this field
use only Bits 1& and 16 to control the

LOCATICN 0

LOCATION 14

2

LOCATION 7

The single data word for this command must contain the data
word (18(10) bits) scaled to the LSB portion of the 32-bit data word
as indicated belcw.

PCO DATA
WORD BIT

I-28

0
1

13
14
15

31

LOCAL STORAGE
WORD BIT

NOT USED

0 MSB
1

17 LSB

PCO FORMAT

TEST DMA 8 MICRO SECOND TIMER-

COMMAND WORD

FUNCTIGN OCTAL HEX DEVICE

INHIBIT COMPLETION OF A 30100100000 C1008000 CHANNEL
DMA CYCLE

|
; :

TPULOPOPOPOPOP UM OPO;O;OrOloOroroiiy | ttitti tit tity |
074 5 6 7 1617 37

DATA WORD

BIT

0
. NOT USED. THIS PCO REQUIRES NO DATA WORD

31
The Test DMA 8 Microseccnd Timer command word causes the

channel to inhibit completion of a DMA cycle. This permits self-
testing of the DMA 8 microsecond timer and associated interrupt logic.
Only the first DMA cycle occurring after reception of the Test DMA 8
Microsecond Timer command word will be inhibited.

I-29

PCI FORMAT

READ MIA TRANSMITTER STATUS

COMMAND WORD

FUNCTION OCTAL HEX . DEVICE

READ MIA TRANSMITTER 00400000000 04000000 C/M
STATUS

|
| NOT USED |

OPOPOLOPOLTPOLOPO;Oz;oyoyo;oy,ojoj;O] | | i ttt pytetrrrtriay |
01 5 67 1617 >

DATA WORD

RIT

0 CHANNEL NO. 1 MIA TRANSMITTER
1 CHANNEL NO. 2 MIA TRANSMITTER

23 CHANNEL NO. 24 MIA TRANSMITTER
24 NOT USED. BITS, IF SET, ARE INVALID.

31 .

Transmitter disabled
Transmitter enabled co

n |

The PCI results in transfer, via the data word, of the config-
uration of the MIA enable register. |

ax
en
nn
in
nn

we

a
,

PCI FORMAT

READ MIA RECEIVER STATUS

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ MIA RECEIVER STATUS 00401000000 04040000 Cc/M

| : |
NOT USED

OLOPOHOTONTPOPOUOOFOLO1OItO1CIO] Tt tt tpt tt atti t aa O74 5 6 7 TeT7 1

DATA WORD

BIT

0 MIA CHANNEL NO. 1 RECEIVER
1 2

23 24
24 NOT USED. BITS, IF SET, ARE INVALID.

31 .

Receiver disabled

Receiver enabled

0
9

The PCI results in filling the data word with the contents
of the MIA receiver control register.

PCI FORMAT

READ DISCRETE OUTPUT STATUS

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ LISCRETE GUTPUT 00402000000 04080000 C/M
STATUS

|
i NOT USED

O(OLOFOPFOTT{Of;OLFOLOFOFO; AO; OFOLTO] | gt yuqay 4 if tt ttt
0 7 5 67 T617 31

DATA WORD

BIT

0 DISCRETE OUTPUT NO. 1
1 2

31 32

Discrete Output Disabled (OFF)
Discrete Output Enabled (ON) a=

>) oa

The PCI provides the capability to read the D.0O. register.

PCI FORMAT

READ PROCESSOR HALT STATUS

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ PROCESSOR HALT 00403000000 040C0000 C/i
STATUS

| | | NOT USED

OLFOLOLOLOPTPO;OPOPO;O;OLTIIO;O107] | Tt tttdttettrerire |
0 1 5 6 / 1617 31

DATA WORD

BIT

0 MSC

1 BCE No. 1

2 BCE No. 2

24 BCE No. 24
25 SELF TEST PROCESSOR
26 NOT PRESENTLY USED. BITS, IF SET, ARE INVALID.

31 °

0 Processor (MSC or BCE) Disabled
1 Processor Enabled

The PCI provides access to Status Register 5 (The Halt
Register). The data indicates the status (enabled or disabled) of
each BCE (25) and the MSC.

COMMAND WORD

PCI FORMAT

READ INTERRUPT REGISTER A/GROUP 1

FUNCTION OCTAL HEX DEVICE

READ INTERRUPT 01000000000 08000000 RM
REGISTER A

| —

! NOT USED |
O,O;OOI1]0 O1O07O{ O10 0101010107 | tt tt ttbtdert:tdret
0 4 7 1617 3"

DATA WORD

0
1

ow io
 4

"

|

Only the first 6 bits of this data word are valid since the
interrupt register contains 6 bits. The remainder of the data will be
zeros.

All bits in the interrupt register are set to zero when data
is transferred for this PCI command or when the CPU issues an ICR
“reset channel".

No interrupt
Interrupt

GO/NO-GO TIMER |
Timer has timed out and generated the interrupt.

IOP FAIL LATCH

The IOP has detected a failure (Computer Fail) that
effects capability of the machine. Signal originates in
the RM Voter logic and not from the IOP transmission
termination.

C/M IDLE

The IOP Control/Monitor logic is in the Idle mode and
available for further operations.

ROS PARITY ERROR

A parity error has occurred during transfer from IOP
Read Only Storage (ROS). |

uh IOP FAULT

This bit is set when a fault in the IOP timing
is detected.

5 SPARE

6 NOT USED. UNDEFINED

31 °

PCI FORMATS

READ INTERRUPT REGISTER B/GROUP 2

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ INTERRUPT 01001000000 08040000 RM REGISTER B

ENABLE

NOT USED
0/0 {0} 0) 1/0; 0 oe epee eet p pop OF PP PP ey ttt ft |
01 567 | - 16 «17 |

DATA WORD

The interrupt register read by this PCI contains 6 bits.
Therefore, the 6 MSB’s are valid and the remainder should be zeros.
Reading the interrupt reg for this data word causes the bits to be reset
to zero.

0 = No interrupt

] = interrupt

BITS

0 NOT USED
1 BITS 1,2,3 ARE PRIORITY ENCODED AS FOLLOWS: IF MULTIPLE
2 ERRORS OCCUR, ONLY THE HIGHEST PRIORITY EVENT WILL BE
3 ANNUNCIATED.

BIT

1 2 ERROR CONDITION

No error

(Lowest Priority) Dev out data parity error
R1,R2,R3, parity error
FB DMA add. or data parity error
MC queue control parity error
MIA parity error

(Highest Priority) Diagnostic Proc 25 error
Not used —

——
—
p
e

O
O

OC

m~
=

| O
O

-

=

CO
OC

m—~
O
e

O
w
e
n

O
r
e

©

4 Queue overflow, the overflow circuitry

31

has detected more than 64 requests in
the queue.

DMA 8H sec timeout, the 8 uw sec timer
has detected a DMA that has been in
process for more than 8 wu sec.

NOT USED. UNDEFINED.

PCI FORMAT

READ INTERRUPT REGISTER C/GROUP 3

COMMAND WORD

FUNCTION OCTAL ~-BEX | DEVICE

READ INTERRUPT 01002000000 08080000 RM
REGISTER C

|
, | NOT USED |

 OFOLOTOVTIOPOPOLOLOLOLOrtsO1O1O1O] | Tt ttt iri rerity 0 7

DATA WORD

 5 67 1617 =

The bits indicate which of the MSC generated interrupts are
The PCI transfer causes the bits in Register C to be reset.

No interrupt
interrupt

MSC PROGRAM INTERRUPT 1

12
NOT USED (ZEROS) UNAVAILABLE.

PCI FORMAT

READ INTERRUPT REGISTER D/GROUP 4

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ INTERRUPT 01003000060 080C0000 RM
REGISTER D

(|
NOT USED

POPOTOPOT TIO; OPO;OOVOFOF 11; 01010] | tt tte tttrtraidry

0 4 > 6 / 1617 31

DATA WORD

This PCI reads a four-bit register and the bits are reset asa
result of the PCI.

BIT

0 SPARE

1 NOT USED (ZEROS) UNAVAILABLE.

4

31

PCI FORMAT

READ INTERRUPT REGISTER E/GROUP 5

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ INTERRUPT 01004000000 08100000 RM
REGISTER E

| | |
! | NOT USED |

OPOLOPOLTPOPOPOPOLOLTOLTO;OLO1O1Of] | | Tit tiperetrit
0 1 5 6 7 1617 3°

DATA WORD

This is the read out of a four-bit register.

BIT

0 SPARE

I NOT USED (ZEROS) UNAVAILABLE.
2 .
3 P. S. OVER TEMPERATURE
4 CHARGER STATUS _ 0 = GOOD
5 BATTERY STATUS 1 = BAD

6)

. NOT USED. UNDEFINED.
31

Note: These errors do not generate interrupts and reading the

interrupt register does not reset the bits. They are used for
status only.

1-40

PCI FORMAT

READ FM STATUS REGISTER

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ RM STATUS REGISTER 01005000000 08140000 RM

4 |

| NOT USED
POPOPOTOTTIOLOPOLOLOLOT TOT O1O1OY Ett tt tt ttt tll

0 4 5 6 7 1617 31

DATA WORD

Filled from IOP RM status register to provide status of IOP
hardware voting logic and data output termination logic. This PCI
does not cause reconfiguration of the Status Register.

BIT

0 FAIL OR TIMEOUT LATCH

0 = NO FAILURE, NORMAL OPERATION

1 = FAILURE INDICATOR IS SET.

Indicates that RM has detected a failure and
set the failure iatch or that the watchdog
timer has timed out forcing the fail latch.
Also set during test modes.

7 PCO INHIBIT FAIL VOTE INPUTS FOR TEST

0 = NORMAL OPERATION

1 = PCO inhibiting voter inputs while IOP performs
RM logic self testing.

2 MSC INHIBIT FAIL VOTE OUTPUTS FOR TEST

0 = Normal operation

1 = MSC inhibiting fail voter output while IopP
performs self testing.

3 FATLURE VOTE 1 INPUT

4] tt
 |

10

11

12

13

14

FAILURE VOTE 2 INEUT

FAILURE VOTE 3 INPUT

FAILURE VOTE 4 INPUT

0 = NO FAILURE

1 FAILURE INDICATES

These bits represent the inputs from other IOP's each
representing a failure vote while this IOP is in normal
operation. The discretes, if set during test operation,
represent failure of the RM voter logic inputs. The
bits should be zero during RM self testing.

FAILURE VOTE 1 OUTPUT

FAILURE VOTE 2 OUTPUT

FAILURE VOTE 3 OUTPUT

FAILURE VOTE 4 OUTPUT

0 = NO FAILURE

Ne

1 FAILURE VOTE

These bits represent the output (before drivers and
output inhibit latches) of the RM software logic to the
other [IOP's. The register for these bits is set upon
PCO from the CPU by the MSC. The data represents output
to the other IOP's when in normal system operation.

TEST FAILURE VOTE 1 INPUT

TEST FAILURE VOTE 2 INPUT

TEST FAILURE VOTE 3 INPUT

TEST FAILURE VOTE 4& INPUT

0 = NO FATLURE

1 FAILURE INDICATED (TEST)

These bits represents the RM hardware voter inputs while
self testing. A bit set during normal system operation
will result in one invalid FAILED VOTE input.

VOTER FAIL LATCH

16

17

18

19

20
21
22

0 = NO FAILURE

1 = FAILURE INDICATED

This bit represents the latched output of the RM
hardware voter and in normal operation would indicate
Computer Failure. The bit is also set during test when
the hardware voter receives at least two of four inputs.
During test, this voter output is inhibited before
reaching the line driver.

TIMEOUT LATCH

0 NO TIME OUT

1 TIMEOUT REACHED

This bit indicates that the Watchdog Timer reached a
timeout condition. If in normal operation, the bit
would trigger the Computer Fail Latch. In test mode,
the signal is inhibited prior to the Computer Fail
Driver.

VOTER TERMINATION CCNTROL LATCH

TIMER TERMINATION CONTROL LATCH

0 = RESET

1 = SET

These bits represent the output of the respective
latches which are set and reset via PCI/PCO from CPU
software. The termination output driver is permanently
inhibited by the hardware.

LOP TRANSMISSION TERMINATION

0 NORMAL

1 TERMINATE

This bit indicates the status of the IOP transmission
termination logic. In the AP-101S IOP, the logic does
not disable discrete or databus outputs. :

GO/NO-GO TIMER Bit 0 (MSB)
1

2

23
24
25
26
27
28
29
30
31

Bits

=
A
O

0

O
N
I
N

M

&

W

a

(LSB) = 0.768 msec

20-31 represent the configuration
(GO/NO-GO) Timer. The data is available in
and during self testing.

normal

of the
system

Watchdog
Operation

e
n
e

a

af

FCT FORMATS

READ DISCRETE INPOT A

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ DISCRETE INPUT A

(1-32) 01006000000 08180000 DF

|
; {| NOT USED
OfFOLOLOPTPOP,OPOPO;O;Oi tT AOFOIO;O, | | ttt tt tye eis
0 7 5 6 7 1617 31

DATA WORD

In the following discrete definitions, GPC N is the GPC ID of GPC
self. This PCI provides means to transfer data from the IOP
Discrete Input register (32 bits) to the CPU.

0 = D.I. RESET

1 = D.I. SET

NOTF: All the DI's are software readable. Some also configure
hardware. Bit positions designated by * indicate those discrete
inputs which are hardwired to IOP functions and must not be changed
from the designated function due to internal or external wiring
changes. The discrete inputs are implemented with differential
receivers. The input pins are listed with each DI. The T represents
the true input pin and C indicates the complement inputs.

Bit

*0 HALT (DI-0) T g5-1
C J5-2

The setting of this bit indicates that the crew panel
switch has been set to 'HALT'. Receipt of this DI
causes the IOP to configure all processors to Halt
thereby prohibiting IOP operation. The CPU is held
in system reset by this discrete.

«1 STANDBY (DI-1) T J5-3

C J5-4

*2

*3

xy

*5

*6

*~7

10

11

This bit is set from a crew panel switch.
The IOP response TBD.

RUN (DI-2) T J5-5
C J5=-6

The bit is set from a crew panel switch.
The IOP response is TBD.

IPL (DI-3) T J5-7
C J5-14

Bit is set by crew panel switch. The IOP response is to
perform the Initial Program Loading using data from the
Mass Memory Unit as indicated below (DI-5, 6, 7, and 8).

MM1 IPL (DI-4) T J5-8
C J5=-9

The discrete is driven from the Orbiter systems network
and when set indicates that MM1 is to be used as source
for IPL.

MM2 IPL (DI-5) T J5-10
C J5-11

Same as bit 4 above except applies to No. 2
Mass Memory Unit.

MM1 READY (DI-6) T J5-12
Cc J5-13

This signal originates in No. 1 Mass Memory Unit and indicates,
when set, that No. 1 MMU is available for use.

MM2 READY (DI-7) Tf J5-15
C J5 -16

Same as bit 6 above except applies to No. 2 MMU.

(DI-8) T J5-17 GPC N+l1 IS BFS RUN GPC
C J5-18

(DI-9) T J5-19 GPC N+2 IS BFS RUN GPC
C J5-20

(DI-10) T J5-21 GPC N+3 IS BFS RUN GPC
C J5-22

(DI-11) T J5-23 GPC N+4 IS BFS RUN GPC
C J5-24

12

#13

14

15

17

18

19

20

21

22

Z23

24

25

26

July 16, 1987
Update

I/O TERMINATE A 10-13 (DI-12) fT 35-25
Cc J5=26

Receipt of this DI causes the I0P to inhibit the MIA transmitters thereby prohibiting the output of data On Channels 10-13 (MIA's 10-13).

INHIBIT CHANS. 14-17 AND 20-23 (DI-13) Tt 35-27

Cc J5=-28 Also called I/O terminate B discrete. |
Receipt of this DI- causes the IOP to inhibit MIA
transmitters 14-17 and 20-23.

(DI=-14) T J5-29 SPARE
Cc J5=-30

HISAM DUMP fT J3-66 SET BY ORBITER SWITCH TO INDICATE GPC DUMP
— CL J3-77 | REQUESTED

(DI=-16) T J3-89 SPARE

Cc J3-88

(DI-17) T J3-69 SPARE
Cc J3-70

(DI-18) T J3-79 SPARE
Cc J3-78

(DI-19) T J3-81SPARE
Cc J3-93

|

(DI-20) J3-80 GPC N+l DISCRETE OUTPUT BIT 20 (SYNC 1)
C J3=-91

(DI=-21) T J3-92 GPC N+2 DISCRETE OUTPUT BIT 20 (SYNC 1) Cc J3-104

(DI=22) T J3-114 GPC N+3 DISCRETE OUTPUT BIT 20 (SYNC 1) Cc J3-103

- (DI=-23) T J3-90 GPC N+4 DISCRETE OUTPUT BIT 20 (SYNC 1)
Cc J3=-102

(DI=-24) T J3-113 GPC N+l DISCRETE OUTPUT BIT 24 (SYNC 2) Cc J3=-121 ,

(DI=-25) T J3-128 GPC N+2 DISCRETE OUTPUT BIT 24 (SYNC 2)
C J3-112

(DI=-26) T J3-111 GPC N+3 DISCRETE OUTPUT BIT 24 (SYNC 2)
C J3=-101

27

28

29

30

31

(DI-27)

(DI-28)

(DI=-29)

(DI-30)

(DI=31)

Q
A
m

A
H

T J3-120 GPC N+4 DISCRETE OUTPUT BIT 24 (SYNC 2)
Cc J3-127

T J3-126 GPC N+l1 DISCRETE OUTPUT BIT 28 (SYNC 3)
C J3-119

T J3~99 GPC N+2 DISCRETE OUTPUT BIT 28 (SYNC 3)
C J3=-109 |

J3-118 GPC N+3 DISCRETE OUTPUT BIT 28 (SYNC 3)
J3-125

J3-124 GPC N+4 DISCRETE OUTPUT BIT 28 (SYNC 3)
J3-117

When N+ displacement > 5, subtract 5 from the result.

COMMAND WORD

PCI FORMAT

READ DISCRETE INPUTS B

FUNCTION OCTAL HEX nes DEVICE
READ DISCRETE INPUTS 01007000000 081c0000 RM (33-40)

|
| NOT USED

tor or ts 0f0 OfFO1J0/ 01011114 1, OF OF OF 1] tt tdtterudres ff | 0 5 6 7 1617 31

DATA WORD

CPU.

0 =

1 =

Bit

0 (DI-32)

1 (DI-33)

2 (DI-34)

3 (DI-35)

4 (DI-36)

5 (DI-37)

6 (DI-38)

7 (DI-39)

8 NOT USED.

31

This PCI provides the transfer of Discrete Inputs 33-40 to the

D.I. RESET

D.I. SET

T J3-74
Cc J3-75
T J3-116 c 33-123 O-2 GPC SELFS ID

T J3-122
C J3-107
T J3-96 BFS ENGAGE 1:
C J3-97 SET BY ORBITER BFS CONTROLLER
T J3-106BFS ENGAGE 2 ?WHEN BFS ENGAGE PUSH-BUTTON
C J3-115 IS DEPRESSED.
T J3-85 BFS ENGAGE 3
Cc J3-84
T J3-95
Cc J3-105(© AND 7. BFS CRT SELECT A AND B.
m J3-94 INDICATES CURRENT SETTING OF
Cc J3-83 ORBITER BFC CRT SELECT SWITCH,
UNDEFINED IF BFC CRT DISPLAY SWITCH

IS ON.

@

PCI FORMAT

READ STATUS 1 (GO/NO-GO)

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ STATUS 1(GO/NO-GO) 02000000000 10000000 DF

|
; | 2 NOT USED :

Q
o

JOLOTTPOLOZOFOLO;OFO;OTO;OVO1O10p | tt tdrtdttrarerdes

1 5 67 T6T7 3°

DATA WORD

The data word ccntains the GO/NO-GO status for each BCE and
MSC as determined by IOP BITE.

0 = NO-GO (ERROR)
1 = GO |

BIT

0 MSC
1 BCE NO. 1
2 BCE NO. 2

2u 24
25 NOT USED. UNDEFINED.

31 .

PCI FORMAT

READ STATUS 4 (BUSY/WAIT)

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ STATUS4 (BUSY/WAIT) 02001000000 10040000 DF

, |

| NOT USED
OfFOLOTTIOLOfOfOfO;O;OJO;OITIO1O10] | | | tre tpad gy i { f 0 7 5 67 1617 31

DATA WORD

The data word transfers the contents of Status Register 4 to
the CPU. The action provides indication of the MSC and BCF's
operating states.

0 = WAIT
1 = BUSY

BIT

0 HSC
1 BCE NO. 1

24 24
25 NOT USED. UNDEFINED.

31 °

PCI FORMAT

READ LOCAL STORE

COMMAND WORD

FUNCTION OCTAL HEX DEVICE

READ LOCAL STORS LS

{| | VARIES SEE BELOW |
OPCTUOVOrO; If | tetrtririt Ltt tirttitidi dl | 01 5 6 7 1617 31

The 10(10) bits (7 through 16) associated with the subsystem
select field for this command word varies depending upon the word
(location) loaded in Local Store. The command word provides access to
the Local Store area associated with the MSC function and the 24 BCE

functions of the IOP. The specific data stored in each location is
discussed in the MSC and BCE Principals of Operation documents and
involve that data required for initializing and operating the MSC and
BCE's.

Bits 7 through 11

This 5-bit field is used to designate the MSC or BCE from
which the data word must be transferred as shown below:

BITS 78 9 10.17

0 0 0 0 0 MSC REGION

0 0 oO o 17 BCE NO. 1 REGION

0 0 0 1 0 BCE NO. 2 REGION

1 14 0 0 9 BCE NO. 24 REGION

1 1 0 oO 7 SELF TEST PROCESSOR

Bits 12 and 13

This 2-bit field identifies the bank (A, B, or C) in Local Store for the above defined MSC or BCE area from which the data word must be transferred as indicated below.

BITS 12.13

0 0 BANK A

0 1 BANK B

1 0 BANK C

Rits 14,15 and 16

This 3-bit field is used to identify which word in a Bank is read. The resolution to a single word is achieved when this field is completed. Banks A and B use only Bits 15 and 16 to identify the four words required.

BITS 14 15 16

0 0 0 LOCATION 0

0 0 1 LOCATION 1

1 1 1 LOCATION 7

DATA WORD

The single data word for this command contains the data word
(18(10) bits) scaled to the LSB portion of the 32-bit data word as
indicated below.

PCO DATA _ LOCAL STORAGE
WORD BIT WORD BIT

0 UNDEFINED
1 °

13 °
14 0 MSB
15 1

31 17 LSB

Appendix II

Input/Output Processor (IOP) —.
Principles of Operation for
Master Sequence Controller

TABLE OF CONTENTS

section Page

1.0 MASTER SEQUENCE CONTROLLER--------------------------______-]
1.1 ADDRESSING, DATA, AND INSTRUCTION FORMATS------------------ 3
1.2 MSC REGISTERS-------------------------- Q
1.2.1 MSC PROGRAMMABLE REGISTER-----------------~--.--.--_- Q
1.2.2 MSC STATUS REGISTER-------------~-----~~---- Q
1.2.3 OTHER MSC VISIBLE REGISTERS---------------~----2-----__- 13
1.3 MSC INPLEMENTAT ION-------------------~-----~ 14.
2.0 GENERAL MSC OPERATION----------------------------_-_-_____- 16
2.1 HALT STATE---------------------------- 2-2, 16
2.2 WAIT STATE----------------------------~- 2 20
2.3 BUSY STATE---------------------------- 2]
2.4 ERROR MODES---------------------------- 23
3.0 MSC INSTRUCTIONS----------- woe een - eee ee 26
3.1 ACCUMULATOR/MEMORY INSTRUCTIONS---------------------------- 27
3.2 BRANCHING INSTRUCTIONS------- ween e--- ee 37
3.3 CONDITIONAL SKIP INSTRUCTIONS-------------~----------______ 45
3.4 BCE REGISTER LOAD INSTRUCTIONS------------~-------.------_- 4g
3.5 REGISTER OPERATIONS-----------------~--~~--2--- ee 52
3.6 REGISTER IMMEDIATE INSTRUCTIONS-----------~~------~-.---..- 67
3.7 REPEAT INSTRUCTIONS---------------------------------~---..- 79
3.8 SPECIAL INSTRUCTIONS---------------~--------- eee ene een ene Q]
4.0 EXTERNAL CALLS--------.~-----.2-----.--28 eonncecn- eeeeccaceaae ” Of

Appendix A

IOP MSC INSTRUCTION REPERTOIRE------------------ ee ene nee eee enn ene 1OF

IIl-iii

Figure

>

Ww
W

WW

WW

b
s

o
T

>

WW

Rh
@W

ff

—

II-iv

LIST OF FIGURES

Page

MSC-Computed Main Memory Addresses------------------------- 4

Basic MSC Instruction Formats--------------------------.-.- 5

Number Representation In MSC Accumulator------------------- 10

Number Representation In Index Register-------------------- 10

MSC Local Store Usage---- wetter nnn enn nnn nnn nnn nn---- ne 15

MSC States----------------------.------.------------- ==. 18

Sample Code Using @SEC TR eR ene ena nnn nnn een ne 65

@NIX Instruction Execution------------------------------..- 70

General Repeat Instruction Execution----------------------- 85

MSC Code To Call An External Call Routine------------------ 100

Table
OO

—t

CG
ww

Od
)

LIST OF TABLES

Page

MSC Characteristics-------------------- wenn nee n nn nee------- 9

MSC Long Format Modes-------------------------------------- 7

MSC Status Register-- 7

MSC States-------- one n nnn ne = 2 --------------- weeenn------ 19

TOP Errors Affecting MSC Operation------------------------- oA

List Of Register Operations-------------------------------- 53

Register Immediate Instruction----------------------------- 68

Repeat Instructions-- 8]

II-v

1.0 MASTER SEQUENCE CONTROLLER

The Master Sequence Controller (MSC) is a micro programmed
computer specifically tailored for I/0 Management within the Space
Shuttle General Purpose Computer (GPC). As such, it has extensive and
programmable capabilities for monitoring and controlling the basic I/0
operations performed by upwards to 24 Bus Control Elements (BCE's)
which are implemented in the baseline GPC. These capabilities include
setting up, scheduling, and initiating BCE programs, monitoring the
status of BCE operations, and communicating overall completion of

¢hese operations to the CPU.

Table 1.1 summarizes the characteristics of the MSC.

TI-1l

TYPE -

TABLE 1.1

“MSC CHARACTERISTICS

Single Accumulator I/O Management Computer
CONTROL STRUCTURE - Microprogrammed
PROGRAMMABLE
REGISTERS -

PROG RAM
VISIBLE
REGISTERS

INSTRUCTION
FORMATS -

INSTRUCTION -
REPERTOIRE

ADDRESSING
SPACE

ADDRESSING
MODES

DATA FORMAT

SPECTAL
FEATURES

II-2

32 Bit ACCUMULATOR (ACC)
18 Bit INDEX REGISTER (X)
18 Bit PROGRAM COUNTER (PC)

18 Bit STATUS REGISTER
25 Bit PROGRAM EXCEPTION REGISTER
25 Bit BUSY/WAIT REGISTER
24 Bit BCE-MSC INDICATORS

> Blt FAIL DISCRETES
12 Bit IOP PROGRAMMABLE INTERRUPT REGISTER.
18 Bit EXTERNAL CALL REGISTER

16 Bit SHORT/32 Bit LONG

47 SHORT FORMAT/10 LONG FORMAT
(NOT COUNTING ADDRESSING MODES)

131,072 32 Bit FULLWORDS/262,144 16 Bit HALFWORDS

IMHEDIATE, ABSOLUTE, INDEXED,
PC RELATIVE

SIGNED, TWO'S CCMPLEMENT INTEGER

INITIALIZE AND MONITOR BCEs.
RESPOND TO CPU REQUESTS TO
CHANGE PROGRAM (EXTERNAL CALL).

1.1 ADDRESSING, DATA AND INSTRUCTION FORMATS

The MSC may directly address up to 262,144 16-bit halfwords
or 131,072 32-bit fullwords. To achieve this, all main memory
addresses computed by the MSC are represented as 18-bit absolute
numbers, as pictured in Figure 1.1. The upper i7-bits (bits 0 through
16) represent the fullword location, and the lovest bit (bit 17) the
halfword portion of the addressed fullword. AO in this lower bit
refers to bits 0-15 of the 32-bit fullword; a1 refers to bits 16-31.
When used as a fullword address, bit 17 is ignored. Thus, H'276* and
H'277' refer to the same fullword.

All data referenced as numbers bv the MSC are treated as
Signed two's complement binary integers.

There are three basic instruction formats used by the MSC and
they are depicted in Figure 1.2.

Short format 1 is used primarily by instructions dealing with
memory and the MSC accumulator. It has the following fields:

Field Field Description

OP This 4-bit field defines the basic operation
to be performed by the MSC

I This bit serves either as an opcode extension
or as an index mode specification in address
generation

DISP This 11-bit field serves either as immediate
data or as a PC relative address displacement.

Short format 2 is used by the register operation, register
immediate, repeat, and conditional branching instruction classes. rt
has the following fields: |

Field Field Description

OP This 4Y-bit field defines the basic operation
class to be performed by the MSC

I . This bit serves either as an opcode extensicn
or as an index mode specification in address
generation

OPX This field is an extension of OP

DISP This field serves as either immediate data or
as a PC relative address displacement.

II-3

ITI-4

|

FULLWORD ADDRESS 1 HI

i iff] | { | | j{ { {| { {| jf f f
0 1617

H = Halfword Selector

Figure 1.1. mMSC-Computed Main Memory Addresses.

OP I DISP

| Lif tf | J} ft ft tl
0 3 4 5 15

I = Index Specification or OPX

(a) Short Format 1

; | |
QP Ti OPX ¢- DISP

Ltt it Litt fj td
0 3 4 5 7 8 15

I = Index Specification or OPX

(b) Short Format 2

| | | |
{ fri QP | DISP1 M DISP2

Tat |_| [| fj i fi fititt ti (
0 3 4 5 7 8 121314

Figure 1.2.

(c) Long Format

Basic MSC Instruction Formats.

II-5

Format 3 is used for all long 32-bit instructions, and has (
the following fields:

Field Field Description

OP This 3-bit field defines the basic operation
to be performed by the MSC

DISP1 This 5-bit field defines such things as _ BCE
numbers, short displacements, etc.

DISP2 This 18-bit field is used in conjunction with
T and M to generate both 18 bit main memory
addresses and immediate data.

I,M These two bits define the way that DISP2 is to
be used in formation of values used by the
instruction for main memory addresses and
immediate data.

Table 1.2 summarizes the use of I,M and DISP2.

Note that all long format instructions must be located on
even fullword boundaries. A long format instruction beginning on an
odd halfword boundary will result in a “Boundary Alignment" error oe
termination.

II-6

TABLE 1.2

MSC LONG FORMAT MODES

I M Effective Value

0 0 DISP2*

1 0 X¢#DIS P2*

0 1 (DISP2)
1 1 (X+DISP 2)

Mode

IMMEDIATE
INDEXED, IMMEDIATE
DIRECT

INDEXED, DIRECT

Parenthesis used around a quantity indicate that it is to be
treated as an 18-bit main memory fullword address (least-
Significant bit ignored) and that the effective value is
found in fullword.

NOTES:

x When the effective value is used as immediate data, the

most-Significant bit is sign-extended 14 places to the
Left

TI-7

1.2 MSC REGISTERS

1.2.1 MSC PROGRAMMABLE REGISTER

The MSC contains 3 registers under direct program control.
They are:

ACC - A 32-bit accumulator

X - An 18-bit index register

PC - An 18-bit Program Counter

The ACC is a 32-bit register capable of accumulating a
Fullword of data from memory. MSC instructions are available to load,
modify, test and store this register. The ACC is also used to
contain bit masks for status and polling applications.

Data representation of numbers held by the ACC is a signed,
*wo's complement, 32-bit integer, with the sign bit in bit 0 and the
binary point to the right of bit 31 (Pigure 1.3).

The Index register may be used both in generating 18-bit main
memory addresses and as a holding register for signed two's complement
18-bit integers. When treated as an address, it is formatted as in
Figure 1.1. When treated as a number, it is formatted as in Figure
1.4,

The Program Counter is an 18-bit register that indicates the.
Main memory halfword or fullword location of the MSC instruction
presently being executed. It is formatted as a standard 18-bit
address as in Figure 1.1.

1.2.2 MSC STATUS REGISTER

The status of the MSC is kept in the following three
registers:

1) MSC Busy/Wait Bit - Bit 0 of the IOP Busy/Wait Register. A
1 ain this bit indicates that the MSC is currently executing
a program located in main memory. A 0 indicates it is not
busy. This bit is set via a PCO from the CPU to activate the
MSC, and reset by the MSC upon completion of a progran.

2) MSC Program Exception Bit - bit 0 of the IOP Progran
Exception Register A 0 indicates that the MSC has encountered
some problem in the execution of an MSO program. A 1
indicates that no problems were encountered. This bit is
maintained by the MSC microcode.

II-8

3) MSC Status Register - An 18-bit register found in register C7
in the MSC segment of Local Store (See Figure 1.5). This
register contains copies of the MSC Busy/Wait bit and the MSC
Program Exception bit. If the latter bit is set, this
register also indicates the exact cause of the exception, as
indicated in Table 1.3. It is set automatically upon the
detecticn of an exception or as part of MSC execution of an
@REC instruction, and may be read by the MSC with a @LMS
instruction.

PROGRAMMING NOTE

1)

2)

3)

Status

The macro programmer can:

Reset STAT1 (Hardware register) via a PCO command.

Clear or change the MSC status register via a PCO command.

Reload the MSC status register using an @REC instruction.

Execution of any of the three cases above will alter the MSC
Register. To guard against their possible interference with

system operation the following principles should be adhered to:

1)

2)

3)

While the MSC is busy de not attempt to alter the STATI or
STAT4 Registers by using PCO commands.

While the MSC is busy do not attempt to change the MSC Status
Register via PCO's. |

Be aware that when the MSC returns from an external call
(@REC) the MSC Status Register is loaded.

II-g

iS} INTEGER

jf ft | | | | ft ft f{ tf f | f ft f f | [| f | jf | | | ff [| | |

0 1 31

S = Sign

Figure 1.3. Number Representation in MSC Accumulator

; |
1sf{ INTEGER

Lttt_t ft 1 1 tt it bt dd
0 1 17

S = Sign

Figure 1.4. Number Representation in MSC Index Register.

II-10

TABLE 1.3

MSC STATUS REGISTER

[s
{ RESERVED T | SIO{ LBP LBB ALIGN | ILL ERR | BUSY/ |]

{FP ERR] ERR{| ERP | | OP WAIT ;
0 89 10 11 12 13 14 15 16 17

Bit 17 STAT4Y bit 0 - The Busy/Wait bit for the MSC. It will
always be 1 while instructions are being executed.

Bit 16 .STAT1 bit 0 - The program exception bit for the MSC.
This bit will be set to one only if the execution of
some previous instructions resulted in an error of some
kind. Bits 15 through 8 catalog the exact error. This
bit is the inverse of the MSC program exception bit.

Bit 15* Illegal opcode. If set, this bit indicates that an
illegal opcode was encountered at some point in the past.

Bit 14% Boundary alignment error. If set, this bit indicates
that a long format instruction WaS encountered at an odd
halfword boundary.

Bit 13 LBB error. The BCE that was specified by a previous
@LBB instruction was busy or halted at the time the
instruction was executed, and consequently its Base
Register was not loaded.

Bit 12 LBP error. The BCE that was specified by a previous
@LEBP was busy or halted at the time the instruction was
executed, and consequently its Program Counter was not
loaded.

Bit 11 SIO error. A previous execution of an @SIO instruction
tried to set at least one BCE to busy that was already
busy.

Bit 10,2 Reserved.

Bit 8 Self test failure. The execution of a previous MSC self
test instruction detected a fault in the MSC.

*Note that the only way this bit could be set when an
@ILMS is executed is if this error condition was detected

II-11l

in the past, and the CEU restarted the MSC without
clearing the status word first. .

II-1l2

1.2.3 OTHER MSC VISIBLE REGISTERS

In addition to the register described above, there are
several other IOP registers that are acceesible by an MSC progran.
These registers include the:

oO Program Exception Register (STAT! Register) - a 25-bit
register containing one bit per processor. A O in bit
position i indicates that processor i (O=MSC,1-24=BCE) has
encountered some sort of exceptional condition. An exact —
description of the cause of the exception may be found in
processor(i)'s status register.

oO Busy/Wait Register - a 25-bit register containing one bit per
processcr. A 1 in bit position i indicates that processor (i)
is presently executing a program. A 0 indicates that the
processor is inactive.

° BCE-MSC Indicator Register - a 24-bit register containing one
bit per BCE. BCE(i) may set or reset bit (i) under BCE
program control (See #SIB, #RIB). Various BCE errors will
also set this bit to 1. The MSC ORBI instruction may reset
any of these bits. There is no hardware defined meaning for
these values. They may be used freely to indicate any
programmer specified convention. :

oO Fail Discrete Register - these discretes are grouped as a
Single register, and are used in the redundancy management
process to indicate failed GPC units.

O IOP Programmable Interrupt Register - this 12-bit register
may be set by the MSC to specify any combination of 12 CPU
interrupts. The exact meaning of each interrupt is
determined by convention between the MSC program and the CPU
interrupt handling progran.

oO External Call Register - this 18-bit register may be set by
the CPU to point to a program that it wishes the MSC to
execute. The MSC resets the register to zero when it has
Started the program. The Sample For External Call (@SEC)
instruction and section 4.0 should be referenced for
additional detail.

The Program Exception register may only be read. The
Busy/Wait and Fail discrete registers may be both read and set. The
BCE-MSC Indicator register may be read or reset. The IopP Programmabie
Interrupt Register may only be set. The External Call register may be
set by the CPU and reset by the MSC. |

TI-13

1.3 MSC IMPLEMENTATION

The MSC as implemented within the Iop consists of:

oO Segment 0 of Banks A,B and C of Local Store. This contains the ACC, xX, PC, Status Register, and all other working registers needed to implement the MSC instruction set.

O Bit 0 of the IOP Busy/Wait Register.

oO Bit 0 of the IoP Program Exception Register.

° Bit 0 of the Halt Register

O Microprogram Counter 0. This contains the ROS address of the next micro-instruction to be executed as part of the execution of the present MSC instruction.

As described in the AP-10]1S Design Workbook (IBM No. 85-C67-005), the operation of the MSC is time-shared with operations for the BCE's. This time-sharing is performed at the micro-instruction level, where the IOP executes one MSC micro-instruction from ROS (The one indicated by the MSC micro-progran counter) then a micro-instruction for several of the BCE's, followed by an MSC micro-instruction, etc. MSC micro-instructions normally occur at 2 microsecond intervals with the exception of every eighth MSC micro-instruction which occurs 2.5 microseconds after the proceding instruction. The only MSC-related operation carried on during non-MSC microcycles are memory operations, previously requested by MSC, and CPU-directed PCI/oO.

The general markup of the Local Store segment dedicated to the MSC is shown in Figure 1.5. All unlabelled words are reserved as temporary working registers during the execution of a Single MSC instruction. After each instruction, however, only the labelled contents are assumed to be properly maintained.

The PCI/O operations of reading or writing to any of these locations may occur at any time, although woiting into MSC local store while the MSC is busy will generally result in unpredictable MSc behavior.

II-14

PC

IH

IL

AL
ECR
ST

BANKA BANKB BANKC WORD

0

1

PC IH TL 2

AH AL | 3

&

5

ECR 6

ST 7

MSC Program Counter
MSC Index Register
Upper 16 bits:of present MSC instructions
(Right justified with Bits 0 and 1 ignored)
Lower 18 bits of last instruction word that
was read from memory. (Right justified with Bits 0
and 1 ignored)
Bits 0-15 of MSC accumulator (right justified
into local store. Bits 0,1 ignored).
Bits 16-31 of MSC accumulator (right justified as for AH)
External Call Register
Bits 0-17 of MSC Status Register (Right justified)

Figure 7.5. MSC Local Store Useage

II-15

2.0 GENERAL MSC OPERATION

During normal operation the MSC can be in one of three
States: Halt, Wait and Busy. In the Halt state the MSC is physically
restrained from performing any operations: in the Wait state the MSC
is awaiting a command to execute a program; and in the Busy state the
MSC is executing MSC programs from main store. Figure 2.1 and Table
2.1 summarize these states and the transitions between then.

Typical state transitions are as follows:

1) During any system or CPU-directed MSC reset, the MSC is in
the Halt state.

2) Upon release from the Halt state, the MSC enters the Wait
state

3) A sequence of PCO's from the CPU initializes the MSC, and
places it in the Busy state.

4) In the Busy state, the MSC is executing a program located in
main memory. It exits the Busy state only upon execution of
a Wait instruction, detection of an ‘invalid instruction, or
some NSC reset signal. In all but the latter case, the MSC
re-enters the Wait state; in the latter case it is forced to
the Halt state.

The two bits that indicate the current state of the MSC are
2ts Halt bit (Bit 0 of the IOP Halt register) and its Busy/Wait bit
(Bit O of the IOP Busy/Wait register). In addition, the MSC Progran
Exception bit indicates if the MSC has found an error during its last
period of time in the Busy state. If it has found an error, the MSC
Status Register contains a record of the error.

The following sections describe each state in detail.

2.1 HALT STATE

The primary purpose of the Halt state is two-fold:

1) Allow the external world to reset MSC Operation to aie known
condition.

2) Upon the detection of very serious I0P faults (such as
failure in the microstore) to isolate the MSC and prevent it
from performing potentially erroneous operations.

Entry and exit from the Halt state are controlled by tke
value of a single "MSC Halt" status bit which is part of the IOP Halt
Register. As long as this bit is set, the MSC microprogram counter is

II-16

forced to point to a micro-instruction +tha¢ performs no operation Other than clear the MSC Busy/Wait bit. The Halt bit may be set at any time, and effectively terminates anything that the MSC is doing.

II-17

 HALT

PCO TO | ‘\ ‘ol
ENABLE MSC RESET ,

IOP FAULT

PCO TO WAIT,
SET MSC INVALID INSTR.
BUSY

BUSY

Figure 2.1 MSC States

TI-18

WAIT

BUSY

TABLE 2.1

MSC STATES

ENTERED FROM STATE/WHEN

ANY STATE

HALT

BUSY

MASTER RESET

FAIL LATCH SET
FOR THIS GPC

PCO SPECIFYING
MSC HALT

PCO TO CLEAR
BIT

EXECUTION OF
"WAIT" INSTR

ILLEGAL OPCODE
BOUNDARY ALIGN-
MENT ERROR

PCO SETS BUSY/
WAIT BIT

ACTION TAKEN IN STATE

HARDWARE FPORCED
MICRO BRANCH TO DO

NOTHING
MICRO INSTRUCTION.

BUSY/WAIT, STATUS,
EXTERNAL CALL REGISTER,
AND PROGRAM EXCEPTION
BIT CLEARED UPON EXIT.

MONITOR BUSY/WAIT BIT
FOR TRANSITION TO BUSY

EXECUTE MSC PROGRAM
SET PROGRAM EXCEPTION
BIT AND STATUS WORD
UPON DETECTION OF
ANY PROBLEM

STATE
INDICATOR:

BUSY,
HALT WAIT

0 0

1 0

1 1

II-19

The signals that set the MSC Halt bit to0oO (halt MSC)
include:

1) BCE/MSC disable discretes or discrete input 0.

2) Power-up/down signal.

3) IOP detected serious errors such as ROM parity error or
timing failure.

u) A "Master Reset™ PCO from the CPU.

5) A "Halt Processor" PCO from the CPU with a 1in bit position
0.

The first four signal classes also halt all BCE's,

Exit from this state to the Wait state occurs only when the
following occurs:

1) "BCE Disable" discrete is reset.

2) Power-up sequence is complete.

and a CPU “Enable Processors" PCO with bit 0=1 is present.

Upor any exit from the Halt state, the MSC Program Exception
bit is set to 1 and the MSC Status Register is cleared to 0 to
indicate that no errors exist. The MSC also clears the Fxternal Call
register at this time.

202 WAIT STATE

In the Wait state, the MSC is prepared to be told to perform
an MSC precram. This Wait loop is implemented by a micro-routine that
monitors the status of the MSC Busy/Wait bit. The MSC remains in the
Wait state as long as this bit is reset to the "wait" value. Setting
this bit to a "busy" condition causes the MSC to transit to the Busy
State. This transition consists of using the present value of the
MSC*'s Program Counter as the starting address of an MSC program in
main store.

Entry to the Wait state occurs either upon exit from the Halt
State, as described above, or by a transition from the Busy state.
The MSC performs this latter transition when any of the following
occurs

IT-20

1) A "Wait" instruction is executed.

2) An instruction with an illegal Opcode is encountered.

3) A valid long format instruction is found Starting on an odd halfword boundary.

In the latter two cases, the following actions are performed prior to entering the Wait state:

1) The MSC Program Exception bit is set to 0.

2) The MSC Status Register is set to indicate the exact cause of
the error.

3) The MSC Program Counter is left pointing to the offending
instruction.

The Program Exception bit and Status Registers may also be set when cther errors are detected while the MSC is in the Busy state: in these cases, however, the MSC continues execution of the progran.

Exit from the Wait state is normally to the Busy state. This is done by the CPU via a sequence of PCO's; these typically include:

1) A “Load Local store" PCO to clear the MSC Status Register (if
set).

2) A “Reset Program Exception Register" PCO with a 1 in bit 0
(again used only when MSC has indicated an error) .

3) A "Load Local Store" pco to point to the start of the desired
MSC program in main store.

By A "Start MSC" PCO to set the MSC Busy/Wait bit.

Note that the first two are needed only to recover from an
NSC error, and the vthird is needed only if the MSC program counter
must be reset. They may not always be necessary, since the Wait instruction (@WAT), when executed, leaves the PC pointing to the next
sequential instruction, which in turn may be programmed as a_ simple
jump back to the beginning of the MSC program. In this case, the CPU
needs only to issue the "Start MSC" PCO to restart the MSC progran.

2.3 BUSY STATE

In the Busy state, the MSC is in the process of executing a
program out of main store. A value of 1 in the 0 bit of the IOP
Busy/Wait Register indicates this condition.

II-21

The Busy state may be entered only from the Wait state, as
described in the previous section. When the transaction occurs, the
MSC uses whatever value is presently in its Program Counter +o fetch
the first instruction from memory and start executing it. The MSC
continues executing instructions until either a Wait instruction or
some kind of invalid instruction is encountered. In either case, the
MSC transitions back to the Wait state, again as described in the
previous section.

While the MSC is in the Busy state, the CPU may execute any
PCI without problem. However, all PCO's that write into MSC Local
store should be carefully ccntrolled since the MSC is not aware that
this action has occurred, and the resulting MSC program execution may
be unpredictable.

II-22

2.4 ERROR MODES

During execution of an MSC program, the MSC may encounter one

or more errors. These errors may be due to either faulty programming
Or actual hardware faults. Many can be detected by the Iop
microprograms that support the MSC functions, and are reflected by the
setting of various status bits in the MSC Status Register and the MSC
Program Exception bit. If the error is serious enough, the MSC
terminates the instruction and enters the Wait state.

Table 2.2 summarizes all known errors that can affect SMSC

Operation; how they are detected; and the actions taken upon their
detection.

II-23

IOP ERKORS

ERROR

Illegal MSC
Instruction
Opcode

32 BIT MSC

Instruction
Starting on
Odd Boundary

Attempt to
Start Busy BCE,
or @STO with
ACC[0 }=1.

Attempt to

Load PC of
Busy BCE,

or @LBP with
BCE number=0.

Attempt to
Load Base of

Busy or halted BCE,.
Or @LBB with BCE
number=9.

DMA Parity Error During

Instruction Read

DMA Parity Error During

Data Read, .

DMA timeout,

Queue Overflow.

IOP Faults

IOP Microstore
Parity Error,Clock
Failure, watch-
dog timer time out,
or fail latch set.

TIi-24

TABLE 2.2

AFFECTING MSC OPERATION

DETECTED BY

Microcode

Microcode

Microcode

Microcode

Microcode

IOP Hardware

IOP Hardware

TOP Hardware

ACTION

Set MSC Program Exception
Bit, Set Status bits 15,
16, Enter Wait State

Set MSC Program Exception
Bit, Set Status Bits 14,
16. Enter Wait State

Set MSC Program Exception
Bit. Set Status Bits 11,
16. Continue Instruction.

Set MSC Program Exception
Bit. Set Status Bits 12,

16. Continue Instruction.

Set MSC Program Exception
Bit. Set Status Bits 13,
16. Continue Instruction.

Make up all O's instruc-
tion and give to MSC.
MSC will terminate with
"Tllegal Opcode"
Interrupt CPU.

No data is given to MSC.
MSC loops indefinitely.

Interrupt CPU.

MSC Halt bit set to 0, and
MSC enters halt state.
Interrupt CPU.

Error

Self Test detected

Msc fault

Self-Test generated

parity error.

Detected by

MSC Self-Test
Instruction

TOP Hardware

IOP Data Flow Hardware

Parity Error

NOTE: The MSC Program Excs

ZeTO.

Action

Set MSC program exception

bit. Set status bits 8,16.

Force all processors to the

Halt state, set Busy/Wait

bits of all processors to

Wait.

All BCE's and MSC are

Halted, CPU is interrupted,

Transmitter and receiver

enables for all BCE's are

disabled, and the discrete

outputs are reset.

ption bit registers an error when it is set to

[1-25

2.0 MSC INSTRUCTIONS

The following subsections include descriptions of the
instructions presently supported by the MSC. The format for the
description of each instruction is as follows: |

O The general name of each instruction appears in the upper
left of the first page describing that instruction.

O The assembler abbreviation appears in the upper right hand
corner.

oO The format of the instruction, including binary opcode
assignments and field designations.

O A table (where appropriate) relating addressing mode bits to
their effect on parameters used in the instruction execution,
and how these addressing modes are signalled to the
assembler.

O A textual description of the instruction and its uses.

These instructions are grouped into several classes with a
Short prologue at the beginning of each class. These classes include:

Paragraph

3.1 ACCUMULATOR/MEMORY INSTRUCTIONS

3.2 BRANCHING INSTRUCTIONS

3.3 CONDITIONAL SKIP INSTRUCTIONS

3.4 BCE REGISTER LOAD INSTRUCTIONS

3.5 MSC DIRECT REGISTER OPERATIONS

3.6 MSC REGISTER IMMEDIATE INSTRUCTIONS

3.7 REPEAT INSTRUCTIONS

3.8 SPECIAL INSTRUCTIONS

TI-26

3.1 ACCUMULATOR/MEMORY INSTRUCTIONS

The Accumulator/Memory Instruction set allows the 32-bit MSC Accumulator (ACC) to be modified DY arguments found in memory, and for copies of the ACC to be stored in memory. Most of these instructions
are short 16-bit formats of the form of Figure 1.2(a), and allow
either PC relative or indexed PC relative addressing. Long format
instructions of this class are as shown in Figure 1.2(c), and allow
absolute addressing of memory.

II-27

LOAD ACCUMULATOR
OL

FORMAT:

P|
iI | DISPLACEMENT

OP TjO{O| {it fi tt ft tf tlt
0 3 4 5 15

L Effective Address ("EA") INSTR Format

0 PC + Displacement OL ADDRESS
1 PC + Displacement + X aL ADDRESS (1)

NOTE:

1) PC refers to the updated program counter value - i.e.,
the address of the next instruction.

2) Bit 5 is the sign of the two's complement displacement
field. The range of the displacement is -1024 +0 +1023
halfwords.

3) X is the index register.

DESCRIPTION

The fullword operand addressed by EA is loaded into the
accumulator. The program counter is incremented by one.

II-28

ADD TO ACCUMULATOR @A

FORMATS:

TY] DISPLACEMENT |

~ LOPT011 Lit i ft tf tt
 0 3.4 5 15

Tt Effective Address ("EA") INSTR Format

0 PC + Displacement OA ADDRESS
1 PC + Displacement + X DA ADDRESS (1)

NOTE:

1) PC refers to the updated program counter value - 1.@.,
the address of the next instruction.

2) Bit 5 is the sign of the two's complement displacement
field. The range of the displacement is -1024 to +1023
halfwords.

3) X is the index register.

DESCRIPTION

| The fullword operand addressed by EA is added to the
accumulator. The program counter is incremented by one.

II-29

AND TO ACCUMULATOR aN

FORMAT?

|
VT | DISPLACEMENT |

OltTp110 {jf fj tf tf t ft ft
0 3 4 5 | 15

I Effective Address ("EA‘) INSTR Format

0 PC + Displacement @N ADDRESS
1 PC + Displacement + X aN ADDRESS (1)

NOTE:

1) PC refers to the updated program counter value - i.e.,
the address of the next instruction.

2) Bit 5 is the sign of the two's complement displacement
field. The range of the displacement is -1024 to +1023
halfwords.

3) X is the index register.

DESCRIPTION

The fullword operand addressed by EA is logically anded to
the accumulator. The program counter is incremented by one.

II-30

EXCLUSIVE OR ax

FORMAT:

7
Tf DISPLACEHENT

Opitiit Ltt jf tf tf tt |
0 3 4 5 15

I Effective Address ("EA") INSTR Format

0 PC + Displacement aX ADDRESS
1 PC + Displacement + X aX ADDRESS (1)

NOTE:
|

1) PC refers to the updated program counter value - i.e.,
the address of the next instruction.

2) Bit 5 is the sign of the two's complement displacement
field. The range of the displacement is -1024 to +1023
halfwords.

3) X is the index register.

DESCRIPTION

The fullword operand addressed by EA is Exclusive Orted with
the accumulator. The program counter is incremented DY one.

II-31

STORE ACCUMULATOR ast

FORMAT:

|
1T DISPLACEMENT

1j 010 {0 ty tf ft i ft tl
0 3 4 5 15

Tt Effective Address ("EA") INSTR Format

0 PC + Displacement aST ADDRESS
1 PC + Displacement + X - @ST ADDRESS (1)

NOTE:

t) PC refers to the updated program counter value - i.e.,
the adaress of the next instruction.

2) Bit 5 is the sign of the two's complement displacement
field. The range of the displacement is -1024 to +1023
halfwords.

3) X is the index register.

DESCRIPTION

A copy of the ccntents of the accumulator is stored in the
fullword specified by EA. The accumulator is unchanged. The program
counter is incremented by 1.

II-32

Q

t

ry
 LOAD ACC WITH FULLWORD

FORMATS

|
: iI (TI O] ADDRESS :
TEig it i TPO; OEOLOZO;O{O] fF | | | | | | Et TLE y_y_y_ ry yy
0 3 4 5 7 8 9 1213 14 31

1 EFFECTIVE ADDRESS (EA) INSTR Format?

0 Address _ OLF ADDRESS
1 Address+X @LF ADDRESS (1)

DESCRIPTION

This instruction loads the MSC Accumulator with a fullword
from the memory location whose address is defined above. [Ina
fullword lead (T=0), the least-significant bit of the effective
address is ignored.

II-33

Q

t
t

Ha

LOAD ACC WITH HALFWORD

FORMAT:

| | | |
iT THEO! ADDRESS

TUTTLE TT UU OLOPOTO;O;Ottt | Et ttt tt TTT pT tT TTY
0 3.4 5 7 8 9 1213 14 31

Tr EFFECTIVE ADDRESS (BA) INSTR Format

0 Address @LH ADDRESS
1 Addresst+X @®LH ADDRESS (1)

DESCRIPTION

This instruction loads the MSC Accumulator with a halfword
from the memory location whose address is defined above. Ina
halfword load (T=1), the effective address is used as a complete
halfword address. The addressed halfword is placed in the lower 16
bits of the MSC Accumulator, with the upper 16 bits Sign-extended.

PROGRAMMING NOTE:

In the above instruction format, any non-zero value in bits
8 thru 12 is treated as a valid "LOAD HALFWORD" Opcode.

TI-34

STORE ACC FULLWORD @STF

FORMATS

| |
: jz Ty OO} ' ADDRESS
TW141ttt 1 TLOpijOjoy;ojojyo { fj pyti tt | tittle te ft ey ft
0 3 4 5 78 9 1213 14 31

L EFFECTIVE VALUE E.V. INSTR Format

0 Address @STF ADDRESS
1 Address+tX : @STF ADDRESS (1)

DESCRIPTION

This instruction stores the MSC Accumulator into the memory
location whose address is defined above. Ina fullword store (T=0),
the least-significant bit of the effective address is ignored and the
entire MSC accumulator is stored in the addressed fullword.

II-35

STORE ACCUMULATOR HALFWORD @STH

PORMAT:

) i
! I TI9 ADDRESS |
dutptal daporttoororolt] | Pete LL ELL LE LL
0. 34 5 7 8 9 1213 14 31

i EFFECTIVE VALUE F.Y. TNSTR Format

0 ‘Address @STH ADDRESS
1 Address+tX @STH ADDRESS (1)

DESCRIPTION

This instruction stores the MSC accumulator into a memory
location whose address is defined above. In a halfword store, the
effective address is used as a complete halfword address. The lower
16 bits of the MSC Accumulator are stored in this halfword location.

PROGRAMMING NOTE:

In the above instruction format, any non-zero value in bits
8 thru 12 is treated as a valid "STORE HALFWORD" Opcode.

II-36

3.2 PRANCHING INSTRUCTIONS

MSC instructions are normally executed in sequential order.
A branch instruction allows a departure from this sequential
operation. The branches included in the MSC instruction set provide
mechanisms for conditional branches, unconditional branches and
subroutine calls, and returns from external calls (See Appendix A).

The conditional branches are short format instructions of the
form of Figure 1.2(b). This format provides an 8-bit Signed
displacement that is added to the Pc if the specified condition is
true.

The unconditional branches and subroutine calls are 32-bit
long format, as shown in Figure 1.2(c). These instructions provide an
absolute 18-bit address that is loaded into the MSC PC wher the
instruction is executed. As options, these addresses may be indexed
or used as pointers to fullwords in memory containing the addresses.
The latter option allows direct return from subroutines.

| The instruction to return from an external call loads the MSC
Accumulator, Index, and Status registers and in addition, causes the
MSC to branch to a new location.

The result of executing any branch instruction places a new
18-bit address in the MSC PC. This address points to the next
instruction to be executsd, and may point to either an even or odd
halfword boundary.

II-37

BRANCH ON ACCUMULATOR DBC

PORMAT:

| [conD.] DISPLACEMENT |
{ CODE

OTO;TUGyo; | | §f | j | | yyy
0 345 #78 15

Instruction Format

@BC CONDITION, ADDRESS

DESCRIPTION

This instruction selects the accumulator register to be
tested. If any of the three conditions specified by the condition
code field are true, the 8-bit two's complemented signed displacement
is added to the updated MSC program counter. This displacement has a
range from -128 to +127 halfword locations. Branches may be made to even or odd halfword locations.

| The three bits of the condition code field specify the
following tests:

Bit 5 - Register = 0
Bit 6 - Register < 0
Bit 7 - Register > 0

The following table summarizes all 8 combinations and the
resulting tests.

COND. CODE TEST EXTENDED MNEMONIC

0-000 FALSE - DO NOT BRANCH 22 -------+ -------
1-001 ACC > 0 @BP
2-010 ACC < 0 QBN
3-011 ACC # O @BNZ
4-100 ACC = 0 @BZ
5-101 ACC > 0 @BNN
6-110 ACC < 0 @BNP
7-111 TRUE - ALWAYS BRANCH @B

ITI-38

BRANCH ON INDEX OBXC

FORMAT:

| COND.§ DISPLACEMENT
CODE |

pOLTOTTIOLI jf jt tt
0 3.45 7 8 15

Tnstruction Format

@BXC CONDITION, ADDRESS

DESCRIPTION

This instruction selects the Index Register (sign extended
to 32 bits) to be tested. If any of the three conditions specified by
the condition code field are true in regard to the index register, the
B-bit two's complement signed displacement is added to the updated MSC
program counter. The displacement has a range from -128 to a +127
halfword locations. Branches may be made to even or odd halfword
locations. |

The three bits of the condition code field specify the
following tests:

Bit 5 - Register = 0
Bit 6 - Register < 0
Bit 7 = Register > 0

The following table summarizes all 8 combinations and the
resulting tests.

COND.CODE TEST EXTENDED MNEMONIC

0 - 000 FALSE - DO NOT BRANCH
1 - 001 x > 0 ®BXP
2 - 010 Xx < 0 @ BXN
3 - 011 X #0 @BXNZ
4 - 100 X= 0 @BXZ
5 - 101 X20 @ BXNN
6 - 110 x <0 DBXNP
7 = 111 TRUE - ALWAYS BRANCH

II-39

BRANCH UNCONDITIONAL aBU

FORMATS

| | |
{ I M ADDRESS

CTL TUT LOpOyog | ft ft ft jt J tf ft | tt ft t tt ft tl tl
0 3 4 5 78 121314 31

I M EFFECTIVE VALUE F.V. INSTR Format

0 0 Address @ BU ADDRESS
0 1 (Address) | aBUA ADDRESS
1 0 Address + X @ BU ADDRESS (1)
1 1 (Address + X) @BU® ADDRESS (1)

DESCRIPTION

The MSC program counter is loaded with the lower 18 bits of
the effective value. A branch to either an even or odd halfword is
permitted.

II-40

SUBROUTINE CALL @CALL

FORMAT:

| Tf DELTA M ADDRESS
TEigti ty GOyoyty | | { | [| | ft ft ft tt tit titi ttt i {|

0 345 #4278 721314 31

I M EFFECTIVE VALUE F.Y. INSTR Format

0 0 Address ~ @CALL DELTA,ADDRESS
0 1 (Address) | @CALL@ DELTA,ADDRESS
1 0 Address + X @CALL DELTA,ADDRESS (1)
1 1 (Address + X) @CALL® DELTA, ADDRESS (1)

DESCRIPTION

This instruction implements a subroutine call. The current
value of the MSC program counter plus the five bit positive integer
delta (bits 8-12) is stored in the fullword specified by the lower 18
bits of E.V. This quantity is zero padded on the left to fill the
entire fullword. The MSC program counter is then loaded with the sun
of the lower 18 bits of E.V. and two.

PROGRAMMING NOTE

This instruction is typically used to call a subroutine. A
typical subroutine sequence is: |

@CALL 4,SUB
+ ARGUMENT

FIRST INSTRUCTION AFTER RETURN

SUB +0 USED FOR RETURN ADDRESS
@

SUBROUTINE BODY

@BU® SUB SUBROUTINE RETURN

The effective value used in the subroutine call may be either
even or odd. With an odd address, the least-significant bit is
ignored when the return address is stored, but is considered when the

TI-41

branch is taken. Thus a @CALL 2,101 will cause the return address to _—
be stored in fullword 100, buta branch to 103 will be taken.

As with any instruction that writes information into memory,
the affected memory location must not be storage protected.

II-42

RETURN FROM EXTERNAL CALL aR}

FORMAT

|
i DISPLACEMENT

TpOrtyOy Tt td tt tt tC
0 3.4 5 15

I Effective Address ("EA") 2 INSTR Format

0 PCl + Displacement @REC Address
1 PCl + Displacement + X @REC Address (1)

NOTE:

1) FC is updated Pc, i.e. address of instruction following @REC.
2) FA is treated as a fullword address.

DESCRIPTION

This instructicn loads the MSC Status Fegister, Accumulator,
Index Register, and Program Counter from 4 consecutive fullwords
Starting at the memory location specified by FA. These registers are
loaded as follows:

Fullword Location Register

F.A. bits 14 to 31 MSC Status Register
-EeA. + 2, bits 0 to 31 MSC Accumulator
EeA. + 4, bits 14 tc 31 MSC Index Register
EeA. + 6, bits 14 to 31 MSC Program Counter

The load of the PC causes the MSC to branch to whatever
location was specified by the contents of location E.A. + 6.
Additionally the load of the Status Register also causes the MSC
Program Exception Bit (bit 0 of STAT 1 Register) to be set to match
the conditions indicated by bit 30 of the fullword addressed by E.A.
Tf bit 30 is 1, then the Program Exception Bit is set to 0 (error
logged into Status Register); if bit 30 is 0, then the Program
Exception bit is set to 1 (no errors).

PROGRAMMING NOTE

This instruction allows an orderly and complete return to a
program whose execution was suspended by the execution of a aSEC
(Sample for External Call) instruction with a non-zero Local Store
Register C6. The @SEC instruction should be seen for more detail on
this use.

II-43

t
x

An @REC may also be used to reload the MSC to a completely
known state. This allows an MSC program to completely reset all
registers including the Status Register, after it has found that, for
example, it executed a @SIO with a busy BCE. However, care must be
taken ain such circumstances to make what is placed into the Status
Register meaningful. Bit 31 of fullword addressed by FA must be 1 -=-
the MSC is still busy. Likewise, if bit 30 is 0, then all error
indication in bits 25 to 29 should be 0 also. If bit 30 is al, then
What is loaded into the r2st of the Status Register should indicate
the kind of error being flagged.

II-44

3.3 CONDITIONAL SKIP INSTRUCTIONS

MSC instructions are normally executed in sequential order.
A conditional skip instruction allows this normal sequential Operation
to be slightly modified. On the basis of some condition specified by
the instruction, one or more sequential instructions following the
conditional Skip may be ignored. Execution is resumed at the
instruction immediately following the skipped instructions.

IIT-45

TALLY AND SKIP ZERO @TSZ

FORMAT:

| I | DISPLACEMENT

1104041 { jf J f jf | ft ft
0 3 4 5 15

I Effective Address ("EA") INSTR Format

0 PC + Displacement @TSZ ADDRESS
1 PC + Displacement + X aTSZ ADDRESS (1)

NOTE:

1) PC refers to the updated program counter value - i.e.,
the address of the next sequential instruction.

2) Bit 5 is the sign of the two's complement displacement
field. The range of the displacement is -1024 to +1023
halfwords.

3) X is the index register.

DESCRIPTION

The fullword addressed by EA is incremented by one and
rewritten into memory at the same location (EA). If the incremented
value is zero, the next instruction is skipped (program counter
incremented by two). Otherwise, the program counter is simply
incremented by one. ;

PROGRAMMING NOTE:

AS with any instruction that writes information into memory,
the affected memory location (EA) must not be storage protected.

II-46

COMPARE @CT aC

FORMAT:

i |
ar M ADDRESS |

t1y4p1t1 14, 140) { | A ee
0 3 4 5 78 121314 3-

i i EFFECTIVE VALUE E.V. INSTR Format

0 0 Address*_ @crI VALUE
0 1 (Address) @C ADDRESS
1 0 Address + X* @CI VALUE(1)
4 7 (Address + X) ac ADDRESS (1)

ak This 18-bit quantity is treated as a two's complement number,
and the most-significant bit is sign extended 14 places to the left to
fill 32 bits.

DESCRIPTION

The 32-bit effective value is arithmetically compared to the
accumulator.

+2

+3

+4

The present program counter is incremented by:

if

If

If

ACC

Acc

Iil-47

TEST UNDER MASK @TMI, OTM

FORMATS:

{

I | yi ADDRESS |
Lm ee | | | | tt ttt tt tidett tf

0 3 4 5 78 121314 31

I i EFFECTIVE VALUE E.V. INSTR Format

0 0 Address* @TMI VALUE
0 1 (Address) @TM ADDRESS
1 0 Address + X* @TMI VALUE(1)
1 1 (Address + X) @TM ADDRESS (1)

* This 18-bit quantity is treated as a two's complement number,
and is right-justified with 14 leading 1's to fill 32 bits.

DESCRIPTION

The effective value is logically anded with the accumulator.
If the result is not zero, then the program counter is incremented by
3 (skip next halfword). Otherwise, the program counter is incremented
by two (execute next instruction). The original accumulator contents
are not changed by this instruction.

I1-48

3.4 BCE ReGISTER LOAD INSTRUCTIONS

The MSC is responsible for initializing Bus Control FElements
(BCE's) in the IOP. These operations include loading certain BCE
registers, and starting BCEs. The instruction to start a BCE (a@SI0o}
is listed under Register Operations. Those instructions listed in
this section allow the MSC to initialize BCE Base and PC registers.

These instructions are long formats (Figure 1.2(c)), that
specify which BCE is to be loaded, and an 18-bit absolute address +o
be loaded into the specified register. Options allow the number of
the BCE to be loaded to come from either the instruction or the Msc
Accumulator. Other options allow the 18-bit addresses +0 come
directly from the instruction or From the lower 18-bits of a fullword
from memory. Indexing may be specified +o facilitate table lookups of
these quantities.

II-49

LOAD BCE BASE REGISTER @LBB

FORMATS:

| ; ; |
| a | BCE # M ADDRESS
Tipit Ojii10} ft i tf f ji i ij J { { | | tf J | tf tf i tf

0 3 4 5 78 121314 31

L M EFFECTIVE VALUE F.V. - INSTR Format

0 0 Address OLBB BCE,ADDRESS
0 1 (Address) @LBB® BCE,ADDRESS
1 0 Address + X @LBB BCE,ADDRESS (1)
1 1 (Address + X) @LBBO® BCE,ADDRESS (1)

DESCRIPTION

Field "BCE NUMBER" (Bits 8 through 12) specifies a BCE
processor. If the field is non-zero, the field value selects the BCE.
If the field is zero, the lower 5 bits of the MSC accumulator, (Bits
27 +o 31) specify the desired BCE.

If the specified BCE is in the Wait State, the effective
value, computed according to the above table, is stored in +he BCF's
base register. If the specified BCE is busy or is halted, bit 13 in
the MSC status register is set, the MSC Program Exception bit is set
*o 0 (error), and nothing is done to the specified BCE processor.

In both cases, the MSC program counter is incremented by 2,
and the next seguential instruction is executed.

PROGRAMMING NOTE

The IOP interprets a BCE number of 0 as the MSC, and
consequently, if an @LBB instruction is executed with a final BCE
number of 0 (a possibility only if the ACC = 0), the MSC will test
itself and find itself busy. This results in the previously described
error action being taken.

II-50

LOAD BCE PROGRAM COUNTER @LBP

FORMAT:

_ :
{ qi | {BCE NO. M ADDRESS
Tipit OLitif | | ff fittiditit {tt tit { tf ttrttty

0 3 4 5 78 121314 31

tr M EFFECTIVE VALUE F.V. INSTR Format

0 0 Address @LBP BCE,ADDRESS
0 1 (Address) Q@LBP® BCE,ADDRESS
1 0 Address + X @LBP BCE,ADDRESS (1)
1 1 (Address ¢ X) @LBP@ BCE,ADDRESS (1)

DESCRIPTION

Field “BCE NUMBER" (Bits 8 through 12) specify a BCE
processor. If the field is non-zero, the field value selects the BCE.
If the field is zero, the lower 5 bits of the MSC accumulator (bits 27
to 31) specify the desired BCE.

If the specified BCE is in the Wait State, the effective
Value, computed according to the above table, is stored in that BCE's
program counter. If the specified BCE is busy or halted, bit 12 of
the MSC status register is set, the MSC Program Exception bit is set,
and nothing is done to the specified BCE processor.

In all cases, the MSC program counter is incremented by 2,
and the next sequential instruction is executed.

PROGRAMMING NOTE

The IOP interprets a BCE number of 0 as the MSC, and
consequently, if an @LBP instruction is executed with a final BCE number
of 0 (a possibility only if the ACC = 0), the MSC will test itself and
find itself busy. This results in the previously described error action
being taken. An @LBP to a currently executing or halted BCE causes an
MSC exception (bits 12, 16) but does not halt the MSC.

TI-5]

3.5 REGISTER OPERATIONS

The MSC instruction set includes a class of instructions that
allow the MSC to read or set various IOP registers, not all of which
are associated with the MSC. These registers include the Busy/Wait
register, the Program Exception Register, the BCE-MSC Indicators, the
MSC Status Register, the Fail Discretes, and the External Call
register.

All the Register Operations are 16-bit short Format
instructions of the form shown in Figure 1.2(b) with a common opcode
of 1110, and an I-bit of 0. Each Register Operation has a separate
OPX field, as shown in Table 3.1.

TI-52

TABLE 3.1

LIST OF REGISTER OPERATIONS

OPX OPERATION

0 LAR Load MSC ACC with specified IOP
register

1 SFD Set Fail Discrete Register by ORing
it with MSC accumulator bits 0,1,2,3
and 4,

2 RFD Reset Fail Discrete Register A 1 in
ACC Bit i will clear Fail Discrete
Register Bit i. A Q in the acc
Causes no change.

3 LMS Load MSC ACC with MSC Status Word.

4 STO Start BCE's by Orting accumulator
with busy/wait register (STATU). A
one in bit position i of the acc
will place BCEi in busy state.

5 XAX SWAP ACC AND X. The lower 18 bits
of ACC go into xX, and X is sign
extended to fill ACC.

6 SEC Sample for External Call. Check #SC
Local Store register C6. If non-
ZE€rO, save MSC register and branch
to specified progran.

7 RBI Reset BCE indicator. Reset the
specified BCE's indicator bit to 0.

TI-53°

LOAD MSC ACC. WITH AN IOP STATUS REGISTER @LAR

FORMAT:

| REG |
TAL TOLO;O,oyo! | | i

) 3 4 5 7 8

INSTR Format

O@LAR REGISTER

DESCRIPTION

program control,
determines which IOP

This instruction allows the MSC ACC to be loaded, under
with a specified IOP register. The REG field

register is involved. The following table
Summarizes the REG field assignments.

1 of

Zero

II-54

rd
 REG

0

7

2

3

LOP REGISTER

Program Exception Indicators - STAT 1

BCE-MSC Indicators

FAIL DISCRETES

BUSY/WAIT INDICATORS - STATS

In all cases, bit i of the indicated register goes into bit
the ACC. ACC bits with no corresponding IOP register bits are

filled.

Fail Discrete register bits are assigned as follows:

Bit O -
Bit 1-4
Bit 5-8
Bits 9-31

MSC inhibit Fail Discrete outputs
Input Fail Discretes 1-4
Output Fail Discretes 1-4
Zero

SET FAIL DISCRETES @SFD.

FORMAT:

;

| usessorovoras Ligcturyy
0 345 #78 1213. ~«+15

INSTR Format

aSFD

DESCRIPTION

This instruction allows the MSC ACC bits 0,1,2,3, and UY to be
logically OR'ed with the Fail Discrete register. Thus, a1in bit i
of the acc (i=1,2,3,4) will set the equivalent Fail Discrete bit. A
0 will cause no change. :

Setting bit 0 will inhibit the output of the four fail
discretes from bits 1-4 of the four Fail Discrete registers, but will
not affect the way these bits may be changed by OSFD or @RFD.

TI-55

x

oO
 RESET FAIL DISCRETES QR

FORMAT:

 TTT OLOyor tO; | | | ft tl
0 3 4 5 7 8 1213 15

INSTR Format

@ RFD

DESCRIPTION

This instruction allows the Fail Discrete Register to be
selectively reset. A 1 in MSC Accumulator bit i (i=0,1,2,3,4) will
cause bit iin the Fail Discrete Register to be reset. A 0 in the MSC
Accumulator causes no changed.

Resetting bit 0 of the Fail Discrete Register allows
activation of the four fail discretes from the Fail Discrete Register
bits 1-4,

II-56

LOAD ACC WITH MSC STATUS @LMS

FORMATS:

 LILTLTOLTOLO; tit | | | | ft ft YY

0

INSTR Format

@LMS

3 4 5

DESCRIPTION

program

word as

Bit

Bit

Bit

Bit

Bit

This

7 8 1213 15

instruction allows the MSC ACC to be loaded under
control, with the MSC status word. The format of this status
it is loaded into the ACC is as follows:

31

30

29

28

27

STAT4 bit 0 - The Busy/Wait bit for the MSc. rt will
always be 1 when this instruction is executed.

STAT? bit 0 - The Program Exception bit for the MSC.
This bit will be set to 1 only if the execution of some
previous instructions resulted in an error of some kind.
Bits 29 through 26 catalog the exact error. Note that
a 1 in this bit corresponds to a0 in bit 0 of the
Program Exception register. The converse is also true.

Illegal opcode. If set, this bit indicates that an
illegal opcode was encountered at some point in the
past. Note that the only way this bit could be set when
an @LMS is executed is if an illegal opcode was detected
in the past, and the CPU restarted the MSC without
clearing the status word first.

Boundary alignment error. If set, this bit indicates
that a long format instruction was encountered at an odd
halfword boundary.

LBB error. The BCE that was specified by a previous
@LBB instructicn was busy at the time the instruction
was executed, and consequently its Base Register was not
loaded.

TI-57

Bit

Bit

Bit

Bit

26

25

LBP error. The BCE that was specified by a previous
@LBP was busy at the time the instruction was executed,
and consequently its Program Counter was not loaded.

SIO error. A previous execution of a @SIO instruction
tried to set busy at least one BCE that was already
busy.

24,23 Reserved

22 Self-Test Fault. The execution of a previous MSC self
test instruction detected a fault in the MSc.

Bits 21-14 Reserved.

Bits 13-0 set to zero.

PROGRAMMING NOTE

part

11-58

of

instruction.

The MSC Status Register may be set to any desired value as
execution of a Return From External Call (@REC)

START I/0 @SIO

FORMAT:

|
ULI TIOTOPTsOyO; | tf | tf | ff
0 34 5 7 8 1213 15

INSTR Format

®SIO

DESCRIPTION

This instruction starts execution of BCE's by ORing the
Accumulator with the Busy/Wait register (STAT4). A 1in bit position
i of the ACC will place BCE(i) in a busy state.

If any of the BCE's designated by the ACC are already busy
(their bit in the Busy/Wait Register is already set) bit 11 of the MSC
Status Register is set and the MSC Program Exception bit is set.

In any case, the ACC is still OR*ted into STAT4Y and the next
Sequential instruction is executed.

PROGRAMMING NOTE

Bit 0O of STAT4 is the MSC Busy/Wait bit, and is set to 1
whenever the HSC is executing instructions. Consequently, execution
of this instruction with a 1 in bit 0 of the ACC will cause the error
Status bits to be set (Program Exception bit and Status Register bit
11). As before, execution continues with the next instruction.

Although an @SIO instruction will set a BCE's Busy/Wait bit
to busy within the time frame of the instructions' execution in the
MSC, the BCE will not necessarily begin immediate execution of the
first instruction.

Possible execution delays include:

1) The time required for the BCE to recognize that its Busy/Wait
bit is set (up to 16.5 usec).

2) The time required to bring out the PC and request the
instruction word from memory (up to 33 usec.)

II-59

3) Any time required for the memory read request to reach the
DMA channel, be read from memory and be returned to the ECE.

The last case delays the BCE setup only when it requires over 16 usecs
to be handled. This may occur whenever several BCE/MSC processors
have requested memory reads at the same time.

II-60

EXCHANGE ACC AND x @XAX

FORMAT:

ALI TPOLOTTO;1g | | fg ff |
0 3 4 5 7 8 1213 15

INSTR Format

OXAX

DESCRIPTION

This instruction allows a swap hetween ACC and X. The lower
18-bits of. the ACC go into X, and X is Sign extended to fill the acc.

II-61

SAMPLE FOR EXTERNAL CALL

FORMATS:

:
DELTA

TLTG TOPO UO; fF ft ft tt tf
0 4 5 7 8 15

INSTR Format

@SEC - ADDRESS

NOTE:

Address = PC + DELTA, where PC is updated Program Counter and
DELTA is an integer between -128 and 127.

DESCRIPTION:

In conjunction with the MSC instruction, Return from External
Call (@REC), this instruction allows the CPU to request that the MSC
Suspend execution of its present program and initiate a new one.
Further, the suspension of the present program is done in a fashion
that allows an orderly return to it once the CPU-designated program is
complete. The program specified by the CPU is termed an “external
call".

The point of communication between the MSC and the CPU is MSC
Local Store Register C6. To request a program to be executed, the CPU
loads C6 with the (fullword) address of the program's start in main
Memory. Whenever the MSC executes an @SEC it samples C6. If C6 is
zero, the MSC continues with the next instruction. The @SEC is a no-
Operation in this case.

If, however, the MSC finds a non-zero C6 when it executes an
@SEC, it takes the contents as a main memory address, and stores in
the 4 fullwords addressed by C6 the following quantities:

*Fullword C6 ~~ MSC Status Register right justified and padded
on left with O's.

Fullword C6 +¢ 2 -= MSC Accumulator

Fullword C6 + 4 -= MSC Index Register right justified and padded
on left with O's.

II-62

|e
 "*

ol
es

*If C6 is odd, registers are stored on EVEN word boundaries (Low Order
Address bit is ignored).

Fullword C6 + 6 -= MSC Program Counter plus DELTA right justified
and padded on left with O's. (pc is updated
PC, i1.€. points to next instruction after
@SEC.)

These quantities are used by @®REC at the end of the new program to
restore the MSC to its original condition.

After this, PC is loaded with C6 + 8, C6 is zeroed, the MSC
Status Register is set to 1 (busy but no errors) and the ssc Program
Exception bit (bit 0 of STAT 1) is set to 1 (no errors). The MSC thus
branches to the program beginning at C6 + 8 with a clean status. Any
errors made by the MSC while executing this new program will be
reflected in the tatus Register, but with no confusion with the
status of the original program. Note that if C6+8 points to an odd
halfword, the MSC will branch to that halfword.

The fullword at C6 + 6 contains the return address to the
program containing the @SEC. Adding the DELTA field to PC when the
Store is made allows the original program the eption of being informed
when an external call is actually taken. A 0 DELTA will always return
the MSC to the instruction immediately following the @SEC with the
result that the MSC program would never know when a call was taken.
A non-zero DELTA will return the MSC to a programmer-specified
location after the CPU specified program iS complete. This would
allow, for example, the original MSC program to update a timer or
clock to take into account the time Spent in. the CPU specified
program.

Once C6 has been zeroed, the CPU is free to reload it again
with another program address, which in turn will be accepted by the
MSC the next time it executes arn @SEC.

PROGRAMMING NOTE

Figure 3.1 lists a possible MSC program segment using @SEC's.
The @SEC at location 100 allows an external call from the CPU to be
accepted, but with a 0 DELTA, control will always return to 101.

Following 100 is a section of code that monitors the STAT 4
(Busy/ Wait) Register for a maximum of about 10 msec. This could be
done by a single @RAW with a time out count of about 300. However,
CPU issued external calls would be ignored for the entire 10 msec.
period. The segment shown here waits at most 1 msec. between @SFC's.
It executes a @RAW for about 1 msec. and then branches to 300 where an
@SEC permits the acceptance of a CPU-specified external call. If no
external call is present, the OTSZ at 301 increments a counter

TI-63

(initialized to -10) and returns to repeat the @RAW if less than 10
msec. have passed. If an external call is taken at 300, the non-zero
DELTA will cause the return from the call to be to location 310 where
the counter is decremented an extra time to account for time spent in
the external call. This can obviously be elaborated if more accurate
timing is required.

Also on Figure 3.1is an outline of a MSC program "PGM" that
may be started by an external call. The first four fullwords are
allocated to holding the MSC registers at the time of the @SEC. The
program to execute the desired function starts at PGM + 8 and ends
with the OREC PGM, which returns the MSC to the original progran.

Section 4.0, External Calls, contains further information on
the use of the @SEC instruction.

AS with any instruction that writes information into memory,
the affected memory locations (C6,C6+2,C6+4,C6+6) must not be storage
protected.

ITI-64

LOCATION

Main Program:

100

290 LOOP:
201

202

300 TIMECHECK:
301
302

303 TIMFOOT:

310 UPDATETIME:
311
312

Program specified

400 PGMs:
Gol

INSTRUCTION

O@SEC 0

aLiI -10
as COUNT

DRAW 30

@BC (0, TIMECHECK

Condition fulfilled

aS EC UPDATETIME

aTSZ COUNT

OBC QO, LOOP

Start of timeout
routine

O@TSZ COUNT

OBC O, TIMECHECK + 1]
OaBC O, TIMEOUT

by External Call

DS

Q@REC

Figure 3.1.

uF

COMMENT

Initialize REPEAT
Count.

Watch for some condition
-time out

Allow an interrupt
decrement timer
timer not zero yet

COUNT reached 0

An interrupt was taken,
decrement clock cone

extra time.

Allocate 4 fullwords of
Storage for MSC Registers

Execute desired function

PGM Return to original
MSC Program

Sample Code Using @SEC

II-65

RESET BCE INDICATOR @RBI

| BCE #
AILTEMOLOLI ti | i dt {|_|

0 3 4 5 7 8 1213 15

INSTR Format

@RBI BCE#

DESCRIPTION

This instruction resets the specified BCE's BCE/MSC indicator
bit to zero. For BCE i, this is bit i of the BCE/MSC indicator
register. If the BCE specified in the instruction word is zero, the
lower 5 bits of the MSC Accumulator (bits 27-31) indicate the desired
BCE. Oo

After resetting the specified indicator bit, the MSC
_increments its Program Counter by 1 and continues with the next
sequential instruction.

PROGRAMMING NOTE

No check is made as to whether or not the specified BCE
number is valid ({i.e., between 1 and 24). If the specified BCE does
not exist, this instruction is effectively a "no-operation".

TI-66

3.6 REGISTER IMMEDIATE INSTRUCTIONS

Many common programming sequences involve the use of small
constants in operations involving the MSC ACC and X registers. To
facilitate such operations without the penalty of constant references
to memory, the MSC instruction set includes a class of 16-bit short
format instructions that has, as part of the instruction, an 8=bit
Signed integer. All such instructions have the format shown in Figure
1.2(b), with an opcode of 1110 and an I-bit of 1. The OPX field
determines what is to be done with the constant found in bits 8
through 15 of the instruction. Table 3.2 lists the OPK fields and
their interpretation.

II-67

TI-68

TABLE 3.2

REGISTER IMMEDIATE

OPY

0 ONIX

1 aT AX

2 aT XI

3 @LXI

4 OTXA

FB aTI

6 @SAI

7 aLI

INSTRUCTION

OPERATION

Normalize and Increment X. The
ACC is shifted left until it
becomes < 0. Each time the ACC
is shifted xX is incremented by
the Immediate constant.

Taily Accumulator to X. Store
the sum of the Immediate and
ACC into X.

Tally X. Add Immediate to xX.
If result is < 0, skip next
instruction.

Load X Immediate. Load the x

register with the Immediate
constant.

The sum of the

Immediate

Tally X to ACC.
X register and the
constant is loaded into the

Accumulator.

Tally Accumulator Immediate.
The Immediate constant is added
to the ACC.

Subtract ACC from Immediate.
The Immediate constant minus
the Accumulator is loaded into
the Accumulator.

Immediate

into the

Load Immediate. The

constant is loaded

Accumulator.

NORMALIZE AND INCREMENT X @ NIX

FORMAT:

|
| IMMEDIATE = |

TTL TOLTO;O;O] ¢ | fy yy 4
0 u5 78 15

* Two's complement number between -128 and +127. Forms a 32-bit
constant by sign extending bit 8.

INSTR Format

ONIX IMM

DESCRIPTION

The NIX instruction shifts the ACC left until either the acc
Sign bit (bit 0) is one, or the ACC. equals zero. Each time the Acc
is shifted, the signed immediate value is added to the index register
X. The shift and increment operation is done before either test. If
the ACC. reaches zero, the index register is cleared. The following
figure flowcharts the operation of this instruction.

II-69

SHIFT

ACCUMULATOR

LEFT 1]

X = X + IMM

 No ONT No DV
ACC = 0 >< NS 0

Yes Yes

FETCH

NEXT

INSTRUCTION

U
Figure 3.2 @ NIX Instruction Execution

II-70

PROGRAMMING NOTE

A typical use of the NIX instruction would be to determine
which BCE's have set their NOGO bit. The following sequence performs
this process:

@LXI 0 “INITIALIZE X TO ZERO
@LAR 0 LOAD ACC WITH GO/NOGO BITS
@SAI -1 INVERT SO THAT: 1=ERROR, O=OK

LOOP: ONTX 1 FIND NEXT BAD BCE
@BC 4,DONE EXIT WHEN NO MORE

6

PROCESS BAD BCE.X REG. CONTAINS BCE NUMBER. NOTICE THAT
FIRST EXECUTION OF NIX BYPASSES MSC POSITION WITH INITIAL
SHIFT, AND ALL FUTURE WNIX's ELIMINATE BCE PROCESSED ON
“PREVIOUS ITERATIONS. |

@BU LOOP

II-71

TALLY ACC TO X @TAX

FORMAT:

| IMMEDIATE =
TLTUPALOLTOTOy1y | ft ft tl

0) 45 7 8 15

« Two's complement number. Between -128 and #127. Forms a 32-bit
constant by sign extending bit 8.

TNSTR Format

@TAX IMM

DESCRIPTION

The Lower 18 bits of the sum of the ACC and the IMM field is

stored in the Index Register (xX). An IMM value of 0 permits X to be
loaded directly from the ACC. The ACC is unchanged.

II-72

TALLY x OTXT

FORMATS

IMMEDIATE *
UPA TOL TOTO; f fT tl tt
0 BS 7 8 15

* Two's complement number. Between -128 and #127. Forms a 32-bit
constant by sign extending bit 8.

INSTR Format

aT XI TMM

DESCRIPTION

The TXI instruction allows the Index Register plus IMM to be
loaded back into xX. If the new X is < 0 the next halfword instruction
is skipped. (program counter incremented by 2). Otherwise, the next
halfword instruction is executed (program counter incremented by 1).

II-73

LOAD X IMMEDIATE @LXI

FORMATS?

| IMMEDIATE « |
Vy17 17071704141 { | {| | {| {j |
0 u 5 7 8 15

* Two's complement number. Between -128 and +127. Forms a 32-bit
constant by sign extending bit 8.

INSTR Format

@LXTI IMM

DESCRIPTION

The LXI instruction allows the data in IMM (sign extended to
18 bits) to be loaded into the Index Register (X). The MSC progran
counter is incremented by 1.

II-74

TALLY X TO ACC @QTXA

FORMATS?

IMMEDIATE *
TUTTO; iTi{OyO}] | | | Y | YY
9 45 7 8 15

« Two's complement number. Between -128 and +127. Forms a 32-bit
constant by sign extending bit 8. :

INSTR Format

O@TXA IMM

DESCRIPTION

The TXA instruction allows the X plus IMM to be stored in
ACC (Sign extended to 32 bits) IMM equal to zero allows Sign extended
X to be stored in ACC. X is treated as an 18-bit two's complement
number with the sign in its most-significant bit. The MSC progran
counter is incremented by 1. The contents of X are not changed.

TI-75

TALLY ACC IMMEDIATE @TI

FORMATS

|
IMMEDIATE *

TLL TOP tort | tT tl a
0 45 7 8 15

* Two's complement number. Between -128 and +127. Forms a 32-bit
constant by sign extending bit 8.

INSTR Format

@aTTI IMM

DESCRIPTION

The TI instruction allows ACC plus IMM (Sign extended to 32
bits) to be loaded in ACC. The MSC program counter is incremented by
1.

II-76

SUBTRACT ACC FROM IMM @SAT

FORMATS

IMMEDIATE *
TLILTTOT TWO} yt ft | tl ft ft
0 45 7 8 15

* Two's complement number. Between -128 and +127. Forms a 32-bit
constant by sign extending bit 8.

INSTR Format

@SAI IMM

DESCRIPTION

The SAI instruction allows the contents of the ACC to be
subtracted from IMM (sign extended to 32 bits) and loaded in acc. If
IMM is equal to zero, a two's complement of ACC is performed. If IMM
is equal to minus one, a one's complement of ACC is performed {each
bit is inverted). The MSC program counter is incremented by 1.

II-77

&)

tt
 eH LOAD ACCUMULATOR IMMEDIATE

FORMAT?

IMMEDIATE * |

LILI UOLtTi tit tt
0 4 5 7 8 15

* Two's complement number. Between -128 and #127. Forms a 32-bit
constant by Sign extending bit 8.

INSTR Format

@LI IMM

DESCRIPTION

The LI instruction allows the contents of IMM (signed
extended to 32 bits) to be loaded into ACC. The MSC program counter
1s incremented by 1.

II-78

3.7 REPEAT INSTRUCTIONS

One of the major tasks of the MSC is to monitor the BCEs. A typical MSC program involves initiating and starting some BCEs and
then waiting for the BCEs to complete their assigned tasks. The
Repeat Instructions perform this task directly, namely they wait until
a set of BCEs specified by the ACC reach some condition. In addition, they include a programmable time-out check to prevent then fron
waiting indefinitely if some BCE never reaches the desired state.

All Repeat instructions use the same 16-bit short formats (Figure 1.2(b)) with an Opcode of 1101. The lower 8-bits, bits 8 through 15, and the I-bit are used to compute a count of the maximnun time the instruction will Spend waiting. If the time is exceeded, the hext sequentiai instruction is executed. If the desired condition is reached before the time out, the next halfword instruction is skipped. Figure 3.3 diagrams the Operation of any Repeat.

A time out value of zero will cause the Repeat instruction to test once, and only once, for the desired condition. If the condition is true, the next instruction is Skipped. If the condition is false, the next instruction is executed.

A non-zero time out value will cause the specified test to be tried three times every 33 usec, or roughly, once every eight microseconds with 8 usec used to check for a time out. Every 33 usec the time out value is decremented, and the test is repeated until
either the time out value reaches zero or the desired condition is
reached.

A 33 usec period corresponds roughly to the rate at which a
BCE can transmit or receive aword of data. This allows’ the
programmer to estimate the time a Repeat should loop by analyzing how
Many data words are transferred through the MIA’s by the relevant
BCE’s before the desired condition is reached. This time out value
must also take into account the time required by BCE’s to fetch and
execute any non-transmit/receive instructions that might be present in
the BCE program. .

The OPX field determines exactly which condition will be tested. These conditions are listed in Table 3.3.

PROGRAMMING NOTES:

An accumulator value of 0 will cause both the @RAI and ORAW
to reach their specified conditions the first time that the test is
made. Consequently, the PC will be incremented by 2 and the next
halfword skipped. A zero accumulator will never allow an ORNI or OENW
to reach their repeat conditions. Consequently, each repeat will ioop

II-79

until the maximum repeat count is reached, at which point the next
sequential instruction is begun. |

Since processor 0 corresponds to the MSC, (which is busy
during instruction execution), the MSC execution of an ORAW
instruction will correspond to a loop until the maxinun repeat count
is reached.

11-80

TABLE 3.3

REPEAT INSTRUCTIONS

OPX CONDITION

000 @RAW Repeat until ail BCEs for which
there is a 1in the . ACC reset
their Busy/Wait bits to Wait.

001 @RNW Repeat until any BCEs for which
. there is a 1 inthe ACC reset

their Busy/Wait bits to Wait.

109 @RAI Repeat until all BCEs for which
there is a 1 in the ACC set
their BCE-MSC Indicators to 1.

101 @RNI Repeat until any of the BCEs
for which there is a 1 in the
ACC set their BCE=-MSC
Indicators to 1.

II-81

START
REPEAT

Tl = Minor Loop (33 usec) Timer

Tl — 8 usec

REPEAT No DECREMENT

COUNT=0 PB} REPEAT COUNT

Tl <— 33 usec

Yes
(Time-Out)

TI<—TI - FETCH
8 usec NEXT

| INSTRUCTION

SKIP

NEXT by

INSTRUCTION

lexrr]

Figure 3.3 General Repeat Instruction Execution

II-82

REPEAT UNTIL ALL INDICATORS O@RAT

FORMAT:

) OPX | COUNT
WLAVOP TT TWO;Ot tf tee ety |

0 345 78 15

Tt MAXIMUM REPEAT COUNT INSTR Format

0 Count ®RAI COUNT

1 X # Count @RAI COUNT(1)

DESCRIPTION

This instruction causes a delay in MSC program execution
until either:

1) All of a set of specified BCE's have set their BCE - MSC indicator bits to 1.

2) A maximum wait time has been reached.

T£ condition 1) is reached before the time out, the MSC skips the next
halfword instruction and resumes program execution. If the maxinun
wait time, as specified by the maximun repeat count, is reached first,
the MSC begins execution of the next halfword instruction.

The condition "are all specified BCE indicator bits set" is
tested by logically ANDING the MSC accumulator with the complement of
the BCE-MSC indicator register. If the result is all zeros, the
desired condition has been reached. |

The maximum wait time has a baSic resolution of 33
microseconds and is derived from the maxinun repeat count. In non-
index mode, the maximum repeat count of 255 corresponds to a maxinun
wait time of 8.4 milliseconds. In index mode, the maximum possible
count of 262143 corresponds to 8.65 seconds.

At the time this instruction is executed, the MSC accumulator
is presumed to contain a bit mask Specifying which BCE's are to be
involved in the test for the desired repeat condition. A 1in bits i
of the accumulator specifies that the status of BCE(i1) is to be
included in the test; a 0 indicator that BCE(i) can be ignored.

II-83

Figure 3.3 diagrams the exact operation of this and the other
Repeat instructions.

II-84

REPEAT UNTIL ALL WAITING ORAW

FORMAT:

If} opx COUNT
14140141 O,OOL ft tt ttt tf |

0 24 5 7 8 15

I MAXIMUM REPEAT COUNT INSTR Format

0 Count @RAW COUNT

1 X + Count @RAW COUNT (1)

DESCRIPTION

This instruction causes a delay in MSC program execution
until either:

1) All of a set of specified BCE's have set their bus y/wait
Status bits to "wait"

2) A maximum wait time has been reached.

Tf condition 1) is reached before the time ont, the MSC skips the next
halfword instruction and resumes program execution, If the maxinun
wait time, as specified by the maximum repeat count, is reached first,
the MSC begins execution of the next halfword instruction.

At the time this instruction is executed, the MSC accumulator
is presumed to contain a bit mask Specifying which BCE's are to be involved in the test for the desired repeat condition. A1lin bit i of the accumulator specifies that the status of BCE(i) is to be
included in the test; a 0 indicates that BCE(i) can be ignored.

The maximum wait time has a basic resolution of 33
microseccnds and .is derived from the maxinun Repeat count. In non-
index mcde, the maximum Repeat count of 255 corresponds to a maximum
wait time of 8.4 milliseconds. In index mode, the maximum possible
count of 262143 corresponds to 8.65 seccnds.

The condition “are all specified BCE's waiting" is tested bv
logically ANDING the MSC accumulator with STAT4 (the Busy/Wait
register), and testing for all zeros. A1in bit i of STATG indicates
~hat BCE(1) is busy; a G indicates that it is not. Tonsequently, if

II-85

the result of this “and" operation is ail zeros, then all the
specified BCE's will be in the desired state.

Figure 3.3 diagrams the exact operation of this and the other
Repeat instruction.

II-86

REPFAT UNTIL ANY INDICATORS . ORNI

FORMAT:

| (
{I} oPx | COUNT

TL1jO7 7) LUO; tf | f y y yy yy
0 345 #=7'8 15

I MAXIMUM REPEAT COUNT INSTR Format —

0 Count @RNI COUNT

1 X¥ + Count @RNI COUNT (1)

DESCRIPTION

This instruction causes a delay in MSC program execution
until either:

1) Any of a set of specified BCE's have set their BCF-MSsCc
indicator bits to 1 or,

2) A maximum wait time has been reached.

If condition 1) is reached before the time Out, MSC skips the next
halfword instruction and resumtes program execution. If the maxinun
wait time; as specified by the maxinun repeat count, is reached first,
the MSC begins execution of the next halfword instruction.

The condition "are any of the specified BCE indicators set"
is tested by logically ANDING the MSC accumulator with the BCE=-MSC
indicator register. If the result is non-zero, the desired condition
has been reached.

The maxinun wait time has a basic resolution of 33
microseconds and is derived from the maxinun Repeat count. In non-
index mode, the maximum Repeat count of 255 corresponds to a maximum
Wait time of 8.4 milliseconds. In index mode, the maximum possible
count of 262143 corresponds to 8.65 seconds.

At the time this instruction is executed, the MSC accumulator
is presumed to contain a bit mask Specifying which BCE's are to be
involved in the test for the desired repeat condition. Ad1in bit i

of the accumulator specifies that the status of BCE(i) is to be
included in the test; a 0 indicates that BCE(i) can be ignored.

II-87

Figure 3.3 diagrams the exact operation of this and the other
Repeat instructions.

II-88

REPEAT UNTIL ANY WAITING ORNW

FORMATS

I} OPX COUNT
TpE1j0 {1 OLOLt | t tty y ft ft

0 3 4 5 7 8 15

L — MAXIMUM REPEAT COUNT INSTR Format

0 — count . @RNW COUNT

1 X + Count QRNW COUNT (1)

DESCRIPTION

This instruction causes a delay in MSC program execution
until:

1) Fither any of a set of specified BCE's have set their
Busy/Wait status bits to "Wait" or,

2) A maximum wait time has been reached.

If condition 1) is reached before the time out, the MSC skips the next
halfword instruction and resumes program execution. If the maximun
wait time, as specified by the maximum repeat count, is reached first, the MSC begins execution of the next halfword instruction.

The condition "are any specified BCE's waiting" is tested by
logically ANDing the MSC accumulator with the complement of STAT4 (the
Busy/Wait register) and testing for non-zeros. A 1 in bit 1 of STATY
indicates that BCE(i) is busy; a 0 indicates that it is not busy.
Consequently, if the result of the above Operation is a non-zero
value, then at least one BCE from the set is not busy, and the condition is fuifilled.

The maximum wait time has a basic resolution of 33 microseconds and is derived from the maxinun Repeat count. In non-
index mode, the maximum Repeat count of 255 corresponds to a maximun
wait time of 8.4 milliseconds. In index mode, the maximum possible
count of 262143 corresponds to 8.65 seconds.

At the time this instruction is executed, the MSC accumulator is presumed to contain a bit mask Specifying which BCE's are to be
involved in the test for the desired repeat condition. A1in bit i

ITI-89

of the accumulator specifies that the status of BCE(i) is to be
included in the test; a 0 indicates that BCE(i) can be ignored.

Figure 3.3 diagrams the exact operation of this and the other
Repeat instructions.

II-90

3.8 SPECIAL INSTRUCTIONS

In addition to the instructions described earlier, the MSC instruction set includes a variety of instructions that place the MSC in the Wait state, delay MSC execution for program-settable periods of time, and cause an interrupt in the CPU. This section describes these instructions.

II-9l

&»
)

= Ho
e ty
 WATT

|
OpOPOroriy | tt tt t tt td

0 3 4 15

DESCRIPTION

This instruction causes the MSC to go inte the WAIT state
(bit O of STATY and bit 17 of the MSC Status Regiz:.er set to -ero).
No more instructions are executed. The MSC program counter is u. dated
to point to the next instruction. No other MSC register is changed.

PROGRAMMING NOTE

The MSC does not reference any of its Local Store registers
once it is in the Wait State. During this time, the CPU is ree to
PCO or PCI any MSC register. However, once the CPU performs a PCO (to
set +the MSC busy), the MSC will detect the setting of its busy bit
Within 2 microseconds, and will use whatever is in its PC as the
address of the first instruction. Therefore, once the MSC has been
set to busy, CPU PCOs to the MSC Local Store should be avoided.

Note that if there is no PCO to the MSC's PC (MSC Local Store
registe. A2), then the MSC will start with the first instruction .—
following the last #WAT instruction.

II-92

{r| COUNT |
TL 71010 Ppt it it tt

0

3.4 5 15

Tr Effective Count ("EC") INSTR Format

0 Displacement @DLY COUNT 1 X+Displacement @DLY COUNT (1)

NOTE:

1) Displacement is a positive number in the range 0 to 2047.

2) X refers to the index register.

DESCRIPTION

This instruction performs no Operation other than delaying *he execution of the next instruction. The tine period delayed is indicated by the 18-bit EC, with a resolution of 2 microseconds. The maximum délay is roughly .54 sec. At the end of this delay, the program counter is incremented by one, and the next instruction is executed.

Note that after every eighth MSC microcycle the time between MSC microcycles is 2-5, not 2, microseconds.

I{[-93

INTERRUPT CPU @INT |

FORMAT:

| jr | INTERRUPT LIST
OO, 11 ij jf | J ft |
0 2 345 15

Effective Interrupt List (EIL)

q

0 Interrupt List * @INT IL

1 X "OR" Interrupt List* @INT IL(1)

* Right justified and left padded by 7 zeroes.

INSTR Format

@INT INTERRUPT TEST

DESCRIPTION

This instruction loads the 12 bit IOP Interrupt Register C
and causes an interrupt to the GPC to be set if at least one of the
bits is a 1. Each bit in the least significant 12 bits of the
effective interrupt list corresponds to one of the 12 “IOP Program
Interrupts", In the table shown below, bit 0 is defined as the most
Significant bit of EIL, and bit 17 as the least significant bit. The
table lists the correspondence between EIL and the IOP progran
interrupts. Note that any combination between none and 12 of these
interrupts may be set simultaneously.

TOP PROGRAM INTERRUPT
EIL BIT INTERRUPT NO. LEVEL

17 12 16
16 | 11 | 16
15 10 16
14 , 9 16
13 8 16
12 7 16
11 6 16
10 5 16

II-94

09
08

06
05-00

a

NO

U
s
 &

UNASSIGNED

16
16
16
16

TI-95

2

W
 |

td

SELF TEST - MSC*

FORMATS

|
, | OPX COUNT
OyOCOI1FO} | | LJ tf tt ttt

0 3 4 5 7 8 15

TNSTR Format

@STP

NOTE:

1) The COUNT field is at a don't care state unless the OPX field

equals 001.

2) Use of the OPX field selects one of three tests as follows:

a) OPxX = 000 - Normal STP sequence

b) OPX = 001 = Queue-overflow test

c) OPX = 010 - ROS parity error test

d) OPX = O11 - Diagnostic Data Flow error test

DESCRIPTION

If OPX equals 000, this instruction initiates execution of a
special micro program to perform self tests on the hardware supporting
the MSC. These tests include checks of the:

1) MSC Local Store Registers

2) MSC Data Flow operations

3) Ability of MSC to read and write from memory

Wy Redundancy Management Fail discretes

5) IOP ROS parity circuit.

If any faults are detected, the MSC Program Exception bit is set to 0
(fault detected) and the MSC status registers bit 8 is set to 1 (Self
Test failure) ..

TI-96

In any case, after completion of these tests, the MSC updates its Program Counter by 1 and continues with the next instruction.

If OPX equals 001, the instruction performs a queue-overflow test by placing the number of memory requests specified by the count field in the queue. If the queue overflows, the channel interrupts the CPU and the request is lost. The program loops on this instruction.

If OPX equals 010, the instruction attempts to execute a bad parity microword. This sets the HALT bit of all processors and sets BUSY/WAIT to WAIT. |

If OPX equals 011, the Diganostic 25 Error Latch is set, causing an External 1 Interrupt to the CPU, with the appropriate interrupt code in the Group 2 Interrupt Register.

NOTE: Diagnostic Processor 25 Should not be enabled while self-test. 1s running. MSC self-test modifies Proc 25’s locations in local store which results in IOP diagnostic errors.

II-97

4.0 EXTERNAL CALLS

The HSC allows the CPU to reguest the MSC to suspend
execution of its current program and to start another program. When
this action is undertaken, the MSC saves enough information to allow
a full crestart of the displaced program at the point of suspension.
The stored information is similar to that stored by the CPU when it is
interrupted. However, unlike an interrupt, the CPU specified program
will only be recognized by the MSC at the discrete instances when the
MSC is executing a Sample For External Call (@SEC) instruction. The
CPU requested superseding program is termed an ‘external call’.

The contact point between the MSC and the CPU is the MSC
Local Store Location C6 - The External Call Register (ECR). When the
CPU wishes the MSC to perform an "external call", it should perform a
PCO to write the starting address of the requested program into the
MSC. If the MSC has been programmed to accept external calls, it will
periodically execute an @SEC that will sample the ECR. If it finds a
O in the ECR, it wilI continue with the next instruction. In this
case, the @SEC is equivalent to a "no operation".

If the MSC finds a non-zero ECR, it uses the value in the ECR
aS a memory address and stores its Accumulator, Index, Program
Counter, and Status Registers in the four words following this memory
address. It will also clear the Status Registers and Program
Exception bit of any error flags that they might contain. Program
execution begins at the fifth fullword after the ECR (ECR+8). The MSC {
will also clear the ECR to zero. Register storage is defined in this
document's description of the @GSEC instruction.

The clearing of the FCR by the MSC may be used by the CPU as
an indication that the MSC has accepted an external call, and that the
CPU is now free to PCO out a new external call address, if it so
desires. Any attempt by the CPU to PCO out a new external call before
the MSC resets the ECR to zero will result in at least one of the
external calls being lost. Therefore, the CPU should check that the
ECR is zero before PCO'ting a new external call address.

An externally called program may return to the original
program at any time by executing a Return from External Call (@REC)
instruction. This instruction reloads the MSC Accumulator, the
Program Counter, the Index Register, the Status Register, and the
Program Exception bit to the exact condition that they were in at the
time the original @SEC instruction accepted the External Call. This
allows the original MSC program to continue as if no external call had
been accepted.

The description of the @REC instruction indicates which
memory words are loaded into what MSC registers. .

II-98

The reason for clearing the MSC Status Register and Program Exception bit to an error free indication, after an @SEC has found a non-zero ECR and before entering the requested program, is to avoid confusing an original program error with any error the external call program may make. If the externally called program performs any erronecus operations (such as attempting to start a busy BCE) the error will be flagged in the Status Register and may be detected and diagnosed in the usual fashion. Yet, when the MSC returnS to the Original program, via an @REC, the Status Register will contain only the original program error indicators and none from the externally called program. The original Prograrp can proceed with no concern for Sorting out what, if any, errors it made and what, if any, errors any externally called program may have made.

As mentioned before, the MSC will accept external calls only when it executes @SECs, Consequently, if external calls are expected, the operational MSC programs should include periodic @SEC's in places where they will give timely response to an external call and yet not unduly delay the execution of the main function. Since an a@SEC normally acts as a no operation (or a @DLY 0), a convenient location for an @SEC would be just before a long. format instruction in a Situation where an extra short instruction is needed to align the long format instruction on a fullworad boundary.

The only place where an @SEC should be avoided is within the
body of an externally called program. In this situation, the CPU nay request a second execution of that same program before the first execution is complete. Since Storage is available for only one set of return information, acceptance of the second external call would destroy the return information from the first call.

An MSC program designed for external calls may also be called by another MSC program in a fashion Similar to that used for subroutines. The calling program would simulate an @SEC by
initializing PGM, PGM + 2, and PGM + 4 to whatever values it desires upon return, and then do a @CALL PGM + 6. The @CZALL will store the
return address at PGM + 6 and start execution at PCM + 8, just as @SEC does. Note, however, that upon return from the @REC the MSC Status Register and Program Exception bit will be set according to what is in Fullword PGM, which if not initialized correctly may not match the original status at the time of the call. Figure 4.1 diagrams a
segment of MSC code to do this Set-up properly. Note that three of these instructions can be eliminated if the contents of ACC and X are
of no cencern after return from PGH.

II-99

ast PGM + 2 Save the Accumulator
OTXA Zero

@sTt PGM + 4 Save the Index Register
@LMS
ast PGM Save the Status Register
O@CALL 2, PGM + 6 Start the routine

Figure 4.1. MSC Code to Call an “External Call" Routine

II-100

APPENDIX A

IOP MSC INSTRUCTION REPERTOIRE

NAME

Accumulator/Memory Operations

Load Accumulator
Add Accumulator
And Accumulator
Exclusive OR
Store Accumulator
Load Fullword
Load Halfword
Store Fullvord
Store Halfword

Branch Instructions

Branch on Accumulator
Branch on Index
Branch on Unconditional
Call Subroutine
Return from External Call

Conditional Skips

Tally and Skip Zero
Compare
Test Under Mask

BCE Register Loads

Load BCE Base

Load BCE PC

MNEMONICS

@L
@A
@N
@X
ast
@LF
@LH
@S TF
@S TH

@BC
@BXC
@BU
@C ALL
@REC

@TSZ
@CI, ac
O@TMI, @TM

@LBB
@LBP

FORMAT

Short

Short

Short

Short

Short

Long
Long
Long
Long

Short

Short

Long
Long

Short

Short
Long
LOng

Long
Long

II-37

II-38
II-39
II-40
II-41
II-43

II-45

II-46
II-47
II-48

II-49

II-50
II-51

II-101

IOP MSC Instruction Repertoire (Cont.)

II-102

asTP

NAME MNEMONTCS FORMAT PAGE

Register Operations II-52

Load IOP Status Register @LAR Short [I-54

Set Fail Discretes @SFD Short JII-55
Reset Fail Discretes @RFD Short II-56
Load MSC Status @LMS Short II-~-57
Start TI/0 @STo Short i-59

Exchange ACC and X @X AX Short II-61
Sample for External Calls @S EC Short II-62
Reset BCE Indicator @R BI Short II-66

Register Immediates II-67

Normalize and Increment X @NIX Short II-69
Tally ACC to xX O@TAX Short II-72
Tally X Immediate @T XI Short I1I-73
Load X Immediate @LXI Short I1I-74
Tally X to acc @TXA Short II-75
Tally ACC Immediate @T TI Short I1I-76
Subtract ACC from X @SAT Short I1I-77
Load ACC Immediate @LTI Short I1I-78

Repeat Instructions II-79

Repeat Until All Indicators @RAT Short II-83
Repeat Until All Waiting @RAW Short II-85
Repeat Jntil Any Indicators @R NI Short II-87
Repeat Until Any Waiting O@RNW Short II-89

Special Instructions II-91

Wait OWAT Short f[q]-92
Delay @DLY Short fy-93
Interrupt @INT Short fry-94

Self Test Short II-96

Appendix III

Input/Output Processor (IOP) —
Principles of Operation for

Bus Control Element

TABLE OF CONTENTS

section Page

1.0 BUS CONTROL ELEMENT----------------~--- ee]
1.1 FORMATS------------------------ 2+ - 4
1.17.1 BUS FORMATS-----------------.~------- 2 4
1.1.2 ADDRESSING AND INSTRUCTION FORMATS---------------------____ 7
1.2 BCE REGISTERS--------------------- 2 12
1.2.1 BCE PROGRAMMABLE REGISTER-------------------_----_-__ 12
1.2.2 BCE STATUS REGISTERS------------------------- 13
1.3 BCE IMPLEMENTATION-----------------~---- ee 17
2.0 GENERAL BCE OPERATION-----------------~~-- 4+ 19
2.] HALT STATE------------------------- 0 19
2.2 WAIT STATE-------------------------- 29
2.3 BUSY STATE------------------------- 2, 93
2.3.] BUSY STATE OPERATING MODES---------------------_.--_- 24
2.3.2 SUMMARY OF ERROR MODES-------------~------__--_-_ 24
3.0 BCE INSTRUCTIONS------------------~-~-- 2 22
3.1] BCE REGISTER INSTRUCTIONS-------------------~------- 29
3.2 BCE BRANCHING-------------~--------~-- 2 36
3.3 BCE TRANSMISSION INSTRUCTIONS------------------_.____...__ 4?
3.3.1] TRANSMIT COMMAND INSTRUCT IONS------------------~------ 42
3.3.2 TRANSMIT DATA INSTRUCTIONS----------------------_-_____ 42
3.3.3 TYPICAL BUS TIMING-GAPS BETWEEN OUTPUTS-----------------__. 43
3.3.4 ECHO BACK-------------------~---- 44
3.3.5 ERROR MODES-DISABLED MIA--------------------_---_ 47
3.3.6 ERROR MODES-EXCESSIVE CONCURRENCY--------------.---._______ 47
3.4 BCE RECEIVE DATA INSTRUCTIONS------------------------------ 58
3.4.1 MIA-MIA BUFFER-BCE OPERATION-----------------.-----.______. 58
3.4.2 RECEIVE DATA SETUP----------~-----------_- 65
3.4.3 ACCEPTANCE OF FIRST INPUT--------------.---_-_________ 66
3.4.4 ERROR CHECKS--------------------~------- 68
3.4.5 HANDLING OF GOOD INPUTS-----------------__--_-- 68
3.4.6 ERROR TERMINATION-FAULTY INPUT-------------------____._____ 69
3.4.7 ERROR TERMINATION-TIME QUT--------------~--------._.-_ 69
3.4.8 RECEPTION OF INTERMEDIATE WORDS-------------------___._____ 70
3.5 SPECIAL INSTRUCTIONS--------------~~-------- 77
4.0 LISTEN MODE---------------.------ eee 3]
4.1 SAMPLE OPERATION IN LISTEN MODE--------------------nnnnueee 3]
4.2 INITIALIZATION INTO LISTEN MODE---------------..- eraen----- 85
4.3 DIFFERENCES IN INSTRUCTION EXECUTION---------.--.-___.__.__ 5

Appendix A

IOP BCE INSTRUCTION REPERTOIRE---------------------_-_-_____--__
88

III-iii

Figure

P
W

W
W
W

WwW

wD

WwW

Ww

w

P
D

|

=|
5

o
s

L
o

7—

0

O
N

D
H

P
w

DP
—|

|=

HD
B

YW
P
y

—

IIlII-iv

LIST OF FIGURES

Page
BUS Message Formats-----------------------_._- meer enene-e- 6
BCE-Computed Main Memory Addresses----------------~----___- 8
Basic BCE Short Instructions Formats----------------------- 8
BCE Instructions-Long Formats--------------------------___- 9
BCE Local Store Usage----------------------------- 18
BCE States----------------------------- 2 21
Bit Times of Listen Command---------------------------____- 40
Wait For Index--------------------------------- +--+ 4]
Typical Transmit Sequence----------------------------- oo 45
MOUT Operation----------------------------- +--+ 57
MIA-MIA-Buffer-BCE Operation------------+-----------------. 69
#RDS, #RDLI, #RDL Setup------------------------------.____- 61
#MIN Setup--------------------------------2--- ee 62
Receive Data Algorithm-First Input----------------..- wecee- 63
Main Receive Loop----------------------------------- 2-8 64
Listen Mode Configuration-----------------------------.-W.- 83

f 4 . PeR
tL Qe. wet ee

KO LIST OF TABLES

Table Page
1.] BCE Characteristics------------------------ 2 3

1.2 BCE Status Register-------------------------- 2 14

2.1 summary of BCE-Related Errors----------------------_--_____ eo
3.1 Typical Gaps Between Command and Data Word---------------.- 46

3.2 _ Time To First Look At Data------------------------2-_ oo 67

4.1 Differences in Instruction Executions Due to BCE Mode------ 87

III-v

1.0 BUS CONTROL ELEMENT

The Bus Control Element (BCE) is a microprogrammed controller specifically tailored for management of I/O traffic on one of the Space Shuttle system busses. Within each IOP there is one BCE for | each system bus, for a total of 24 BCE®s, Each of these BCE's is Capable of independent program execution, data buffering to and fron memory, and communication with the MSc. Further, . each BCE is connected to itS own bus via its own Multiplexer Interface Adapter (MIA), which performs all parallel to serial and serial to parallel conversions. Table 1.1 summarizes the basic Characteristics of a BCE,

The major purpose of a BCE is threefold:

(1) Initiate transmission of commands to Subsystems on the
bus.

(2) Handie data coming back from a commanded subsysten.

(3) Fetch data to be sent to a commanded subsysten.

To Landie these tasks there are two classes of instructions | (transmit and receive), and two special operating modes (Command, and Listen) that are unique to the BCE.

The transmit instructions allow transmission of both commands and data to a Subsysten. When transmitting data a BCE/MIA pair
performs:

(1) Update of main memory buffer addresses.

(2) Conversion between 32 bit main memory data format and 25
+ Sync bit bus data format.

(3) Check on number of words to be transferred.

The receive commands allow a BCE to accept a stream of input data from a subsysten through its MIA. When receiving data a BCE
performs:

(1) Time outs on data arrival.

(2) Error checks on incoming data.

(3) Assembly into main memory 32 bit data format.

(4) Maintenance of main memory buffer addresses,

(5) Transferral of data to main memory.

(6) Check on number of words to be received.

III-1

The two operating modes that a BCE may be in influence the
way the BCE uses its bus. In Command mode, a BCE is master of its
bus, and is free to transmit both commands and data. This allows af
BCE to command a subsystem, receive data fron it, or transmit data to
it. In Listen mode a BCE monitors its bus for directions on how to
handle any data that might appear on the bus. In this mode a BCE may
only receive data, and may not transmit either commands or data. MThis
handles the common situation in the Space Shuttle where several TIOP's
and thus several BCE's may be connected to one bus. In such a
Situation only one BCE is allowed to issue subsystem commands, but all
BCE*s on that bus wish to receive copies of the resulting data. The
listening mode allows the command BCE to tell the others what data to
expect, and when to expect it.

III-2

TABLE 1.1

BCE CHARACTERISTICS

Type ~~ Programmable I/O traffic controller
Number -- One per bus, 24 BCE's per IOP
Control Structure -- Microprogranmed

Programmable Registers (per BCE)

18 Bit Base Register (BASE)
18 Bit Program Counter (PC)
18 Bit Maximum Time Out Register (MTO)

5 Bit Interface Unit Address Register (IUAR)
1 Bit BCE/MSC Indicator Bit

Other BCE Registers (pér BCE)

Bit Status Register |
Bit Program Exception Register (part of STAT 1)
Bit Busy/Wait Bit (part of STAT 4)
Bit MIA Transmitter Enable
Bit MIA Receiver Enable
Bit Identify Register

UJ

G
V

—
B

na
d

on

on
d

A)

Tnstruction Formats : 16 Bit Short/32 Bit Long/ 64 Bit Extended

Instruction Repertoire: 10 Short/5 Long/ 2 Extended

Addressing Space: 131,072 32 Bit Fullwords/262,144 16 Bit Halfwords

Addressing Modes: Immediate, PC relative, Base relative, Absolute

Special Operating Modes: Command, Listen

Bus Data Format: 25 + Sync Bit serial

IIlI-3

1.1 FORMATS

1.1.17 Bus Formats

There are four basic formats for data or commands carried over a system bus in serial form. These are pictured in Figure 1.1. They are all 28 bits long, with 3 bit times for sync, 24 bits of information, and 1 bit for word parity. These 28 bits are transmitted
at a Serial rate of 1 bit per microsecond. .

On transmission from an IOP to a subsystem, a BCE provides the middle 24 bits of information and an indication of the type of Syne to use -- either command or data sync. Command syne is used when
the 24 bits of information are to be treated as a command to be obeyed
by some subsystem. Data sync 1s used when a BCE has previously
conditioned a device, via a ccmmand, to accept a stream of data, and the word being put on the bus is a member of this strean.

Conversely, there are situations where a BCE may accept, through its MIA, words with either command or data Sync. In such cases the
MIA simply provides the type of Sync that a word had, the 24 bits of information present in the word, and appropriate error Signals. Command syne is recognized when a BCE is in the "Listening Mode" and
is expecting a command from another BCE connected to the Same bus. Data sync is accepted when a BCE is expecting to receive a stream of
data from a subsystem on the bus. This subsystem was previously
commanded to send this data by a message with command syne from some
BCE on the bus.

The contents of the 24 bits of information in a bus word
depends both on the sync type and the direction of transfer -- from a
BCE or to a BCE. In all cases the upper 5 bits contain an interface
unit address (IUA). When used in data words or commands to
subsystems, these 5 bits identify the subsystem on the bus who either originated the data or is to accept the command or data. In Listen
Mode commands, the BCE in one IOP sends to all other BCE's in the
other IOP's connected to this bus a command that has a "Common IOP
address". This special pattern is not used Dy any subsystem, and
allows a listening BCE to distinguish between listen commands and
commands to subsystems.

In data transfers the remaining 19 bits consist of 16 bits
of data (one half of a standard 32 bit main memory fullword) and 3
bits nominally containing the pattern 101. In BCE to subsystem data
transfers, this pattern never changes. However, the subsystem to BCE
data transfers, any variation in the 101 pattern indicates to the BCE
that the sending subsystem has encountered a problem, such as power,
invalid commands, etc.

In commands sent by a BCE to a subsystem, the format of the
lower 19 bits of information is subsysten dependent, and not discussed
further here. oO

JII-4

In Listen commands sent from one IOP to another, the 18 bits of
the information contain a 5 bit number representing a terminal or
subsystem on the BCE's bus and an 8 bit index into a table of BCE branch
addresses.

III-5

DATA | |
SYNC IUA | DATA {Pp

i | it | | @ ft dt | tf dt td tt tet tl td Ebon
0 23 7 8 2324 2627

(a) DATA FORMAT -- FROM BCE TO SUBSYSTEM

| DATA | an
(SYNC | IUA { DATA | iP |
fifyt jy iij?igf] | tt ttt tt { FS{ElVI

0 23 7 8 2324 2627

(b) DATA FORMAT -- FROM SUBSYSTEM TO BCE

[CMD i
{SYNC TUA | SUBSYSTEM COMMAND (>|

| rit i fg tit i tt -_tditdt ditt) tt i
0 23 7 8 2627

(c) COMMAND FOFMAT -- BCE TO SUBSYSTEM

| CMD § COMMON |
}SYNC § IOP ADDR | IUA INDEX iP |
1 ft f§ GOUTIOLOLO] | 1 get ft | i tt ti ttst

0 2 3 7 8 7374 1819 2627

(4) COMMAND FORMAT -- BCE TO BCE (LISTEN MODE)

IUA = INTERFACE UNIT ADDRESS

Figure 1.1. Bus Message Formats

III-6

A» 1.1.2 Addressing and Instruction Formats

A BCE may directly address up to 262,144 16-bit halfwords or
131,072 32-bit full words.* To achieve this, all main memory
addresses computed by the BCE are represented as 18-bit absolute
numbers, as pictured in Figure 1.2. The upper 17-bits (bits 0 through
16) represent the fullword location, and the lowest bit (bit 17) the
halfword portion of the addressed fullword. A 0 in this lower bit
refers to bits 0 - 15 of the 32-bit fullword; a 1 refers to bits 16 -
31. When used as a fullword address, bit 17 is ignored. Thus, H'276'
and H'277' refer to the same fullword.

There are four basic instruction formats used by the BCE and
they are depicted in Figures 1.3 and 1.4. Both data fullwords and
fullword instructions must reside at a fullword address.

*Note that the AP101S performs 19 bit addressing, and can address
924,288. halfwords. Only the first 256KHW of these, those where the
most significant CPU addressing bit = §, are addressable by the IOP.

IItI-7

FULLWORD ADDRESS H
pit | jf fj i t ft ft tt

0 1617

HALFWORD 9 6 I)

Figure 1.2. BCE-Computed Main Memory Addresses

OP M DISP
i jf { f{ if | | fj | ¢{] [| ff

0 34 5 15

M = INDEX SPECIFICATION OR OPX

(a) SHORT FORMAT 1

oO rg

3
 OQ Oo

ra W)

rg

0 2 3 7 8 15

(b) SHORT TRANSMIT/RECEIVE DATA FORMAT

Figure 1.3. Basic BCE Short Instruction Formats

III-8

FLHESTEY

Figure 1.4.

(Mj OP | | VALUE
TUTTI 1y I i { Lt { ti t?itilistttttittittis
0 345 78 737 3°

(a) STANDARD FORMAT

i |
(Mf oP SUBSYSTEM COMMAND

Tptptt4 | ii | Pits tit tttdt tt tt ttt ttt
0 345 7 8 31

(b) COMMAND INSTRUCTION FORMAT

0 345 7,8 1516 3]

1M} OP DISP TC

Ld1.1 i i i i i i i t i i i fi { u t ! q t

COMMAND

(c) EXTENDED FORMAT
BCE Instructions - Long Formats

IITI-9

Short format 1 is used primarily by instructions dealing with the BCE register. It has the following fields:

Field Field Description

OP This 4-bit field defines the basic Operation
to be performed by the BCE,

M This bit serves either as an Opcode extension
or aS an index mode specification in address
generation.

DISP This 11-bit field serves either as immediate
data or as a PC relative address displacement.

The PC used is the updated BCE Program Counter.

Short format 2 is used by instructions that transmit and
receive data. It has the following fields:

Field Field Description

OP This 3-bit field defines the basic operation
to be performed (data read or write).

TC Transfer Count. This field defines the number
of inputs or outputs to be handled.

DISP This 8-bit field serves as a displacement off
of the BCE's base register in the computation
of the main memory buffer addresses associated
with the I/O data.

Most long format instructions use long format 1 (Figure 1.4).
Long format provides the following fields:

Field Field Description

OP This 3-bit field defines the basic Operation
7 to be performed by the BCE.

VALUE This 18-bit address is used either for
immediate data cr as an address.

M This bit influences how the Value field is
used.

Long format 2 is used by the Transmit Command instruction to
provide 24 bits to be given to the MIA for command transmission.

Extended format 3 is used by the Message In/Out instructions
to specify Displacement, Transfer Counts and Commands.

III-10

In many BCE instructions the direct addressing mode includes
automatic indexing by twice the BCE’s. number. This allows BCE programs to be written in a table driven fashion, where the same BCE program can be used by many different BCE’s, and yet each BCE will use
a separate set of parameters in the programs execution. The
assembler recognizes "(1)" following a BCE operand as specifying the
BCE number indexing.

III-1l

CL4UE_LSCA

1.2 BCE REGISTERS

1.2.1 BCE Programmable Reqister

Each BCE contains several registers under direct program
control. They are;

BASE -- An 18-bit Base Register
PC -- An 18-bit Program Counter
MTO -- An 18-bit Maximum Time Out Register
IUAR -= A 5-bit Interface Unit Address Register ,
Indicator -- A i-bit indicator bit in the BCE/MSC Indicator

Register.

The BASE is used in locating I/0 buffers in main memory. All
such buffers are base-relative, allowing the same BCE program to be
used with different buffers by simply changing the Base before
entering the common program segment.

The Program Counter is an 18-bit register indicating the main
memory halfword or fullword location of the BCE instruction being
executed by this BCE. It should be emphasized that there is a
separate PC for each BCE, and that the contents of one PC need not
have any relation to the contents of a different PC in another BCE.

The Maximum Time Out Register is used primarily during the
reception of data to indicate the maximum time a BCE should wait for
a subsystem to respond to a command with the beginning of a stream of
input data. This time is defined as the "latency" of the subsysten.
Fallure of a subsystem to respond within this period of time results
in a BCE declared error conditicn. .

Tha Interface Unit Address Register contains the 5S-bit
subsystem address of the subsystem presently in communication with the
BCE. This address is derived when a command is issued by a BCE
(Figure 1.1(c)), and is used in the construction of data words to be
Sent to a subsystem (Figure 1.1(a)), and in checking for proper
Subsystem response when data words from a subsystem are being received
(Figure 1.1(b)).

The BCE/MSC Indicator Register has 1 bit associated with each
BCE. A BCE is free to set or clear this bit under program control.
The MSC can read all such bits and monitor when various BCE's have set
or cleared their bits. The MSC may also reset a BCE'sS Indicator bit
via an @RBI instruction. This provides a means for BCE's to signal to
the MSC the occurrence of various events such as execution of
listening mode programs.

The detection of various errors will also set a BCE's

Indicator bit to 1 (See Paragraph 2.2).

IITI-12

1.2.2 BCE Status Registers*

The modes and status of each BCE is recorded in the following

registers:

(1) BCE Busy/Wait Bit -- For BCE i this is bit i of the

Busy/ Wait Register (STAT 4). A 1in this bit indicates

that the BCE is busy executing a program located in main

memory. A O indicates it is not busy.

BCE Program Exception Bit -- For BCE i this is bit i of

the Program Exception Register (STAT 1). A 0 indicates

that the BCE has encountered some problem in the

execution of a BCE progtan. A 1 indicates that no

problem waS encountered. The Status Register associated

with that BCE contains 2a description of the cause of the

problem.

Transmitter Enable Bit -- For BCE/MIA i this is bit i of

the MIA Transmitter Enable Register. A 0 in this bit

prevents ‘the BCE from issuing a command or transmitting

data over the bus to which its MIA is connected. This

bit may be changed only by

(2)

(3)

a PCO from the CPU.

BCE/MIA i this is bit i of (4) Receiver Enable Bit -- For
Register. A Oin this bit the MIA Receiver Enable

prevents the MIA from transferring any data or n

i¢ receives on the bus to the BCE. This bit may be

changed only by a PCO from the CPU.

(S) BCE Status Register. Each BCE maintains a unique 32-bit

status register describing what, if any, errors the BCE

has encountered during the execution of a program.

Table 1.2 describes the format used in these registers.

(6) BCE Identity Register. Each BCE maintains a register

that contains twice its own BCE number. This register

is used in computing addresses during direct mode BCE

instruction. The register is set while the BCE is

leaving the Halt state and entering the Wait state, and

is not altered by the BCE at any other time.

*PROGRAMMING NOTE

The BCE Status Registers should not he changed via PCO

commands while the BCE is busy.

ITI-13

commands ="

TABLE 1.2

BCE STATUS REGISTER

H
A
W
N

O
A
H

o
o

X
M
T

G
A
P

 0

BIT

-31 = 30

27 - BTO

26 - TO

25 - ITO

24

23 - XMT

III-14

V I UA S

7 8 12131415 16

Reserved

T1ll egal Opcode

Boundary Alignment

Error

Block Time Out

Time Out

Initial Time Out

Reserved

Transmitter

Disabled

21 22 23 24 25 26 27 28 29 30 3:

This BCE encountered an illegal
instruction in the execution of :
progran.

This BCE encountered a long
format instruction on an 0odd
halfword boundary.

A Receive Data Instruction timed
out while waiting for an
interblock gap to end. This is.
a Modulo 512 word timeout *
mass memory operations.

A Receive Data Instruction timed
out while waiting for a data
word to arrive. This time out
occurred on data inputs other
than the first. See Sections
3.4.1 through 3.4.8 for receiver
error details.

A Receive Data Instruction timed
out while waiting for the first
input word to arrive. See
Sections 3.4.1 through 3.4.8 for
receiver error details.

At some point in the execution
of a Transmit Data. Message Out
or Message In instructions the
MIA associated with this BCE had
its transmitter disabled. fThis
bit also is set if the MIA was
found busy when it was time Co, -
initiate transmission of
command word or new data word.

22

21

20

15

14

12

ST

GAP

16

13

un

Self Test Error--A BCE Self Test Instruction

has detected a fault in

the BCE.

Gap of greater than 21.5 usec. occurred during
execution of a transmit
data instruction, or 5 usec
during a MOUT.

Reserved.

Syne Error -- While executing a Receive Data
Instruction, an input word
with command sync was
received. (See #RDS
Instruction)

Reserved

Subsystem Address -- This field is the logical
"OR" of the received sub-
system addresses of all
input words that were de-
tected to have errors

during execution of
previous Receive Data
Instrs.

SEV -~- This field is the logical "OR" of the
SEV bits of all input
words that were detected

to have errors during
execution of | previous
Receive Data Instruction.
The S and V_ bits were
inverted before the "OR",
Thus, any pattern other
than 101 will be recorded
in these bits.

Parity -- While executing a Receive Data
Instruction, an input word
with bad parity was
detected.

Signature Mismatch -- While executing a
Receive Data Instruction,
a mismatch between the

III-15

IlI-16

Reserved.

input's IUA and the BCE's
IUAR. The input IUA was
Simultaneously 'ORted into
bits 8 - 12 of the status
word.

1.3 BCE IMPLEMENTATION

Any BCE implemented within an IOP except BCE 25 (self-test) consists of:

(1) A segment of Local Store. This consists of 4 words from each of Banks A and B, and 8 words from Bank Cc.

(2) A bit in the Iop Busy/Wait Register.

(3) A bit in the Iop Program Exception Register.

(4) A bit in the IOP walt Register.

(5) A bit in the BCE-msc Indicator Register.

(€¢) The associated MIA.

buffer location in the MTA Buffer,

>
 (7)

(8) A bit in the mta Transmitter Enable Register.
3

(9) A bit in the MIA Receiver Enable Register.

(10) One of the Microprogram Counters. This contains the ROM address of the next micro instruction to be executed for this BCE.

AS described in the Iop Functional Description (IBM No. 7u- A31-016;), «he Operation of all BCR's ang the MSC is time-shared. Fach BCE executes its next microinstruction from ROS at intervals of One every 16.5 microseconds. During other periods of tine the only BCE-related operations Still carried on are previously requested memory Operations, MIA Teception/transmission of data, and cpy directed PCI/0.

The general makeup of a BCE's Local Store segment is shown in Figure 1.5. Several of these locations are BCE programmable registers, and several are accessible by the MSC. All local Store locations are available to the CPU via PCI and PCO. The msc cannot load BCE local store unless the BCE is in the wait state. In general, the CPU should not alter local store while the BCE is busy.

Self-test processor BCE 25 consists of:

(1) A segment of Local Store. This consists of 4 words from each of banks A and B and 8 words from bank C,

(2) A bit in the IOP halt register.

(3) One of the microprogram counters. This contains the ROM address of the next micro instruction to be executed for this BCE.

III-17

Pc
IH
ID
IL
MTO
BASE
ITUAR

BANK A BANK B BANK C

AND WR WR

RWC WR WR

PC IH IL

ID MTO BASE

WR

IUAR

STATUS HIGH

STATUS LOW

|
|

|
|

STATUS HIGH
STATUS

AND
RWC
WR

III-18

LOW

oil
H
o
t
t

oil

rogram Counter
High half of Instruction Register
BCE Identify Register
LOW Halt of Instruction Register
Max. Time Out Register
Base Register
Interface Unit Address Register
High Half of Status Register
Low Half of Status Register

Address of Next Data
Residual Word Count
Working Register

Figure 1.5. BCE Local Store Usage

2.0 GENERAL BCE OPERATION

During normal operation a BCE can be in one of three states: Halt, Wait and Busy. In the Halt state the BCE is physically restrained from performing any operations; in the Wait state the BCE is awaiting a command to execute a program; and in the Busy state the BCE is executing BCE programs from main store. Figure 2.1 Summarizes these states and the transitions between then.

Typical state transitions are as follows:

(1) During any system or CPU-directed BCE reset, the BCE is
in the Halt state.

(2) Upon release from the Halt State, the BCE enters the
Wait state.

(3) A Signal from the MSC initializes a BCE, and places it
in the Busy state.

(4) In the Busy state, the BCE is executing a progran located in main memory. It exits the Busy state only
upon execution of a Wait instruction, detection of an
invalid instruction or Operating error, or some reset Signal. In all but the latter case, the BCE re-enters
the Wait state; in the latter case it is forced to the
Halt state.

The two bits that indicate the current State of BCE i are its Halt bit (Bit i of the IOP Halt Register) and its Busy/Wait bit (Bit i of the IOP Busy/Wait Register). In addition, the BCE Program Exception bit indicates if the BCE found an error while in the Busy state. If it has found an error, the BCE Status Register contains a record of the exact error.

The following sections describe each state in detail.

2.1 HALT STATE

The primary purpose of the Halt state is two-fold:

(1) Allow the external world to reset BCE operation to a known condition.

(2) Upon the detection of very serious IOP faults (such as failure in the microstore) to isolate the BCE and
prevent it from performing potentially erroneous
Operations.

Entry and exit from the Halt state are controlled by the value of a single "BCE Halt" status bit which is part of the IOP Halt Register. There is one such bit for each BCE. As long as this bit is zero, the BCE microprogram counter is forced to point to a micro-

ITI-19

instruction that performs no operation other than clear the BCE
Busy/Wait bit. The Halt bit may be set to 0 at any time, and
effectively terminates anything that the BCE is doing.

The signals that set a BCE Halt bit to 0 (Halt) include:

(1) BCE/MSC disable discrete (CPU internal DO 1).

(2) Power-Up/Down Signal, Discrete Input 0 (HALT/System
Reset)

(3) IOP detected serious errors such as ROS parity error.

(4) <A Master Reset PCO from the CPU.

(5) A "Halt Processor" PCO from the CPU with a 1 in
position i (when BCE i is to be halted).

The first four signal classes halt all BCE's.

Exit from this state to the Wait state occurs only when the
following occurs:

(1) BCE halt is reset.

(2) Power-Up sequence is complete

and a CPU "Enable Processors" PCO with bit i (for BCE i) set to 1 is
present. The PC I/O manual (Appendix I) describes the PCO that
set/reset the Halt register.

Upon any exit from the Halt state, the BCE Program Exception
bit is set to one (no errors). The BCE Status Register is cleared to
all zeroes, and the BCE Identity Register is set to twice the BCE's
number.

Although a BCE's Halt bit may be changed at any time, it does
not affect the BCE's operation until the next time that the BCE
executes a microinstruction. Consequently, to guarantee that a BCE has
been halted, the BCE's Halt bit should be at 0 (halted) for a minimum
of 16.5 usec. before being reset to 1 (enabled). This will guarantee
that the BCE has truly been forced to the halt state for at least one
BCE microcycle.

For Similar reasons, a BCE should not be considered released
from the Halt state and in the Wait state the instant its Halt bit is
set to 1 (enabled). Release from the Halt state does not begin until
the first BCE microcycle after the Halt bit has been reset, and
continues for several BCE microcycles (about 100 usec.) as the BCE
resets its internal registers and prepares to enter the Wait state.
After this transition, the BCE will be in the Wait state, and will
perform as described in the next section.

III-20

HALT

PCO TO RESET ENABLE BCE \OP FAULT

WAIT, tO Seen INVALID INSTR.,
ERROR BUSY

 BUSY

Figure 2.1. BCE States

TII-21

2.2 WAIT STATE

In the Wait state, a BCE is prepared to be told to perform a
BCE prodqram. This wait loop is implemented by a micro-routine that
monitors the status of the BCE's Busy/Wait bit. The BCE remains in
the Wait state as long as its bit is reset to the "Wait" value (OQ).
When the MSC (via an SIO) sets this bit to busy, the BCE transits to
the Busy state. This transition consists of uSing the present value
of the BCE's Program Counter as the starting address of a BCE program
in main store.

Entry to the Wait state occurs either upon exit from the Halt
state, as described above, or by a transition from the Busy state. A
BCE performs this latter transition when any of the following occurs:

(1) A “Wait" instruction is executed.

(2) An instruction with an illegal opcode is encountered.

(3) A valid long format instruction is found starting on an
odd halfword boundary. ee .

(4) A significant error occurs. (such as in transmit or
receive data instruction).

In the final three cases, a BCE performs the following
actions before entering the Wait state:

(1) It sets its bit in the Program Exception Register (STAT
1) to QO.

(2) It sets its BCE-MSC Indicator bit to 1.

(3) It records the cause of the error in its own BCE status
register.

(4) It leaves the Program Counter pointing to the offending
instruction.

The BCE's Indicator bit is set, upon detection of an error,
to aid in handling programs where this bit is used to Signal completion
of some operation to the MSC (via a Repeat on Indicator instruction).

Exit from the Wait state is normally to the Busy state. MThis is
done, by the MSC, via a sequence of MSC instructions that can include:

1) A "Load BCE Base" instruction to set the BCE's Base
register.

2) A "Load BCE Program Counter" instruction to set the
BCE's Program Counter.

III-22

3) A "Start I/O" instruction to set the BCE's Busy Wait
bit.

Note that the CPU can perform the equivalent of the first two
functions via PCO's to the BCEts Local Store. Also, via PCO's, the CPU can reset the BCE's Status Register and Program Exception bit. The CPU cannot, however, directly set a BCE's Busy/Wait bit.

Note also that a BCE's Program Counter need not always be set before the MSC sets the BCE to busy, since the BCE Wait instruction (#WAT) when executed, leaves the PC pointing to the next sequential instruction. This next instruction may be programmed as a simple branch to the beginning of the next BCE program segment. In this case, the MSC need only execute an SIO instruction to restart the BCE at the next segment.

While a BCE is in the Wait state, the cpy may perform PCI/so activity without disturbing the BCE.

2.3 BUSY STATE

In the Busy state, BCE i is in the process of executing a program out of main store. A value of 1 in the ith bit of the IOP Busy/ Wait Register indicates this condition.

The Busy state may be entered only from the Wait state, as described in the previous section. When the transition occurs, the BCE uses the value in its Program Counter to fetch the first instruction from memory and start executing it. The BCE continues executing instructions until either a Wait instruction or some kind of invalid instruction is encountered. In either case, the BCE transitions back to the Wait state, again as described in the previous section.

Although an MSC OSIO instruction will set a BCE's Busy/Wait bit to busy within the time frame of the instruction's execution on the MSC, the BCE will not necessarily begin immediate execution of the first instruction. The rossible delays include:

° The time reguired for the BCE +o recognize that
its Busy/Wait bit is set (up to 16.5 usec.)

he time required to bring out the PC ana request
he instruction word fron memory (up to 33 usec)
n d,

oO Any time required for the memory read request to
reach the DMA channels, be read fron memory, and
be returned to the BCE,

ITI-23

The memory read request time delays the BCE setup only when
handling time exceeds 16 usec. This situation can occur when several
BCE/MSC processors have requested memory simultaneously.

While the BCE is in the Busy state, the CPU may execute any
PCI without problem. However, all PCO's that write into BCE Local
Store or Status Registers should be carefully controlled since the
processors are not aware that this action has occurred, and the.

resulting BCE program execution may be unpredictable.

2.3.1 Busv State Operating Modes

Once in the Busy state a BCE may operate ir one of two modes;
Command and Listen. In the Listen Mode the BCE's MIA receiver is
enabled, but the BCE's MIA transmitter is disabled. In Command mode
both transmitter and receiver are enabled.

The BCE Mode affects the way certain BCE instructions are
executed. In the Command Mode, a BCE is in command of its bus and is
free to transmit commands and data over the bus. A BCE in the Listen
Mode relies on a BCE in another IOP to issue the appropriate commands
to subsystems on the bus to perform the operations. Consequently, a
BCE in Listen mode will handle instructions that transmit commands in a
different manner than a BCE executing the same program in the command
mode. Additionally, a BCE in the Listen mode can use a Wait for Index
instruction as an instruction to wait for some other BCE in another IOP
to provide a signal as to what it should do. This signal is used by
the Listening BCE in a table-look up process to determine = an

appropriate BCE program for execution.

Section 4 describes the differences between Command Mode and

Receive Mode in greater detail.

2032 Summary of Error Modes

Table 2.1 summarizes all the errors detectable during a BCE
program and -the resulting actions. Separate columns indicate which,
if any status bits are set, and whether or not the BCE enters the wait
state. If any status bits are set, the BCE Program Exception bit is
also assumed set to 0, and the BCE/MSC Indicator bit is set to 1.

I11-24

TABLE 2.1

SUMMARY OF BCE-RELATED FRRORS

Action

Status Bit Wait State
Frror Detected By Set? Entered?

Illegal BCE Microcode Bit 29 Yes
Tnstruction

Long Format Microcode Bit 28 Yes
BCE

Instruction

on Odd

Boundary

Bad Command Microcode/ None No
Received in MIA
#WIX

DMA Channel Logic (see Illegal Instruction)
Parity Error
On Instruc-
tion Read

DMA IOP Hardware/ 21 Yes
Parity Error, Microcode
DMA Timeout,
or Queue

Overflow on

Data read for

Transmit Data
Instruction

DMA IOP Hardware None No
Parity Error,
DMA Timeout,
or Queue

Overflow on

other data
reads

ROS Parity
Error, Clock
Failure,

IOP Hardware No No

Other

Action

Command

ignored.
Walt continu2d.

Write all
0's into
Instruction
register
(illegal
opcodes) CPU
interrupt.

CPO Inter-
rupt

CPU Inter-

rupt. BCE
aqdoes not

receive
data.

- BCE Reset to

halt. CPU

Interrupt

ITI-25

Error

Self Test

Detected

BCE Fault

Excessive

Concurrency

resulting
.2 > 20 usec

transmit

data, or 5

usec in MOUT

Transmitter
Disabled
during
transmit
data

Transmitter

ausy too

long

Parity
Error on
input data,

Action

invalid Manchester,
or bit count error

Wrong SEV
“L1ts

Command

Syne in
Receive
Data

Wrong IDA
in incoming
data

Failure of
Subsysten
to respond
with data
(Ist word)

IilI-26

Status Bit
Detected By Set?

Bce Self Test Bit 22

Instruction

Microcode 21

Time out

Microcode 23

Test

Microcode 23
Test

MITA Y

Microcode/ 5,6,7
Hardware

Microcode 15

Microcode/ 3
Hardware

Microcode 25
time-out

Wait State Other

Entered? Action

No BCE Loops

Yes

Yes

Yes

Yes Save IUA

from data.

Data not

stored in

MIA Buffer.

Yes . “@ WW

Y es qf a

(See #RDS)

Y es A | a

Yes

Error Detected By

Microcode

time out

Excessive
interword
gap in
incoming
data

IOP Data Flow Hardware
Parity Error

MIA busy Microcode
_.. When asked

to transmit.

Status Bit

set?

26,27

None

Instruction
Specific

Action

Wait State
Entered?

Yes

No

Instruction
Specific

Other

Action

All BCE's and the
MSC are halted,
CPU is interrupted
and interrupt
register shows data
flow error trans-
mitter and receiver
enables for all
BCE's are disabled,
and the discrete
Outputs are reset

Note: See transmit
instructions de-
scription

IfI-27

3.0 BCE INSTRUCTIONS

The following pages include descriptions of the instructions
presently supported by each BCE. The format for the description of
each instruction is as follows:

0 The general name of each instruction appears in the
uppér left of the first page describing that
instruction.

oO The assembler abbreviation appears in the upper right
hand corner,

oO The format of the instruction, including binary opcode
assignments and field designations.

o A table (where appropriate) telating addressing mode
bits to their effect on parameters used in the
instruction execution, and how these addressing modes
are signalled to the assembler.

oO A textual description of the instruction and its uses.

Oo The minimum instruction execution time will not be
preSented here as it is supplied in Document No. 74-A31-
OO009;A.

Since the IOP is a multiprocessor with 25 BCEs and the MSC
requesting memory access independently of each other, it is possible
that a memory request from a BCE can be delayed due to the servicing
of earlier requests from other IOP processors. If these delays become
Significant (become greater than about 16.5 usec) then the BCE will be
forced to wait for the memory Operation to complete in increments of
16.5 usec. This will of course increase the instruction times.

These descriptions of instructions are grouped into several
separate classes with a short prologue at the beginning of each class.
These classes inciude:

Paragraph 3.1 BCE Register Operations

Paragraph 3.2 - Branching Instructions

Paragraph 3.3 - Transmit Instructions

Paragraph 3.4 = Receive Instructions

Paragraph 3.5 = Special Instructions

ITI-28

3.1 BCE REGISTER INSTRUCTIONS

The BCE instruction set has several instructions that allow
it to modify or store many of its registers. These registers include

the Maximum Time Out register, the BCE-MSC Indicator bit, the Base
register, and the Status register. In each case, the register
referred to by the instruction is the one owned by the BCE executing
that instruction.

The formats for these instructions are primarily 16 bits of
the form of Figure 1.3, with the exeception of the Load Base, which is
a long format instruction (Figure 1.4). The Load Time Out and Load
Base instructions use instruction bit 4 to indicate whether the
addressing of the data to be loaded into the appropriate register is
immediate or direct. For immediate, the data to be loaded is present
in the instruction itself; for direct the instruction determines the
address of the word containing data.

All instructions that have direct mode allow the specification of
indexing by the current BCE number in the computation of the memory
address to contain the status words. This permits the same
instruction to be used by many BCE's since the index by processor
number will construct a table of status words.

This group includes instructions to set or reset the BCE-MSC
indicator bits. These bits have no meaning to the hardware, but can
be read by MSC instructions, allowing them to be used as general-
purpose flags by the BCE and MSC programs.

III-29

LOAD TIME OUT REGISTER
#LTOL, #LTO

FORMAT

| Mi] COUNT/DISP
1104111 Liil | jf { yy 4
 0 3.4 5 15

M Effective Count INSTR. Format

0 TIMEOUT! #LTOI COUNT

1 (PC+DISP+2 x BCE#) 2 #L TO ADDRESS

NOTES:

1. Any value between 0 and 2047. This corresponds to time outs from 0 to 33.78 millisec.

2. The lower 18-bits of the fullword addressed by PC (updated) + displacement + 2 x BCE#. This allows any count between 0 and 262143, or 0 to 4.325 sec, |

DESCRIPTION

This instruction loads the Maxinun Time Out Register (MTO) with the Effective Count. This register is used by the Receive Data instructions to determine how long a BCE will wait for the first input word to arrive from a previously commanded subsystem. The resolution of this timeout count is 16.5 microseconds.

After loading the Maximum Tine Out register, the BCE increments its program counter by 1 and begins execution of the next sequential instruction.

PROGRAMMING NOTE

In direct mode, the computation of the effective address includes the number of the BCE executing the instruction. This allows many BCE's to execute the same BCE program, but, each one uses a time- Out parameter best suited for the subsystem with which they are communicating. Note that two times the BCE number gives a fullword index.

Listening BCEs may decrement the ITO value to zero and declare
an error before command BCEs, if the ITO value is borderline. A
listening BCE executing a #RDLI instruction will begin decrementing its
ITO value one 16.5 mS cycle after receiving the command issued by the
commanding BCE. A commanding BCE executing a #MIN instruction takes
three 16.5 ws cycles to begin decrementing its ITO value.

IITI-30

RESET INDICATOR BIT #RIB

 owl {| J J t jf jf | tf tf
0 45 15

INSTRUCTION FORMAT

RIB

DESCRIPTION

The BCE to MSC indicator bit associated with the BCE that is
executing this instruction is reset to 0. This bit will not change to
1 until either a Set Indicator Bit (SIB) instruction is executed Or,
the BCE error terminates some instruction at a later time. After this bit is reset, the BCE's program counter is incremented by 1, and BCE
program execution continues,

III-31

SET INDICATOR BIT | #SIB

VALTOriy | tt tt tt
0 3 4 15

INSTRUCTION FORMAT

#SIB

DESCRIPTION

The BCE to MSC indicator bit associated with the BCE that is
executing this instruction is set to 1. This bit will not Change to
O until either the BCE executes a Reset Indicator (#RIB) instruction
or the MSC executes a Reset BCE Indicator (@RBI) instruction with this
BCE's number. After this bit is set, the BCE's program counter is
incremented by 1, and BCE program execution continues.

III-32

STORE STATUS AND CLEAR
#SSC

an

‘M{ DISPLACEMENT

OLiTof1o ee ee ee ee ee
0 3 4 5 15

M Effective Address (EA) INSTR.Format

0 PC + DISP, #S SC ADDRESS

1 PC + DISP + 2XBCENO #SSC ADDRESS (1)

NOTES: 1. PC is the updated Bus Control FElement (BCE) Program
Counter, i.e. the address of the next sequential iastruction.

DESCRIPTION

This instruction stores the BCE's Status register in the Fullword location addressed by the Effective Address. The least Significant bit of EA (the halfword address) is ignored. After initiating the store Operation the BCE will then clear its status register and set its program execution bit (from STAT1) to 1 (GO). It will then increment its program counter by 1 and continue with execution of the next sequential instruction.

PROGRAMMING NOTE

In indexing mode the Computation of the effective address includes the number of the BCE that is executing this instruction. This allows many BCE's to use the Same BCE program, and yet store the Status from each BCE ina different location. Note that the BCE number is multiplied by 2 to give a fullwora index. —

IITI-33

STORE STATUS ASST

M} DISPLACEMENT

Op,ijos jot ft tf

0 3.4 5 15

M Effective Address (EA) INSTR.Format

0 PC + DISP. #SST ADDRESS

1 PC + DISP + 2XBCENO #S ST ADDRESS (1)

NOTES: 1. PC is the updated Bus Control Element (BCE) progran
counter, i.e., the address of the next sequential
instruction.

DESCRIPTION

This instructicn stores the BCE's status register in the
fullword location addressed by the Effective Address. The least
Significant bit of EFA (the halfword address) is ignored. After
initiating the store operation, the program counter is incremented by
1 and the next sequential instruction is begun.

PROGRAMMING NOTE

In indexing mode the computation of the effective address
includes the number of the BCE that is executing this instruction.
This allows many BCE's to use the same BCE program, and yet store the
status from each BCE in a different location. Note that the BCE
number is multiplied by 2 to give a fullword index.

III-34

LOAD BASE REGISTER
#LBR

| [My ADDRESS
Tf 14141 OlljOf | fg ft ft fot 4 Pittiitisl it yuqy ff | | 0 345 #73 1314 1

M EFFECTIVE ADDRESS INSTRUCTION FORMAT
0 Address #LBR Address

1 (Address + 2 x BCE#) #L BRA Address
DESCRIPTION

The 18 bit effective address is loaded into the current Bus Control Elements (BCE) Base Register. The associated program counter is incremented by two.

PROGRAMMING NOTE

tn direct mode the computation of the effective address includes the number of the BCE executing the instruction. This allows many BCE's to use the same Program but, each BCE will get a different Base register. Note that twice the BCE number gives a fullword index.

ITII-35

3.2 BCE BRANCHING

Th2 BCE instruction set includes instructions directing it to
reset its own Program Counter and execute instructions at locations
other than the next sequential one. As with the register class, these
instructions affect only the PC register belonging to the BCE
executing this instruction, and affects no other BCE.

This class of instruction includes an unconditional branch
instruction and an instruction that allows a Listen Mode BCE to
translate a Listen Command into a new Program Counter setting via a
table lookup.

ITII-36

sit
e

w C3
 BRANCH UNCONDITIONAL

UM | ADDRESS

TT tt Oi9iCf tT ttt tO} pt ttt dt ttt tl {| f tf 0 3 4 5 1 8 1314 31

M Effective Address (EA) INSTR. Format

0 ADDRESS #BU ADDRESS

1 (ADDRESS + 2 x BCE#) #BUO ADDRESS

DESCRIPTION

The 18 bit effective address is stored into the current Bus Control Elements (BCE) Program Counter. The next instruction is found
at this designated location, which may be on either a full or halfword
boundary.

PROGRAMMING NOTE

In direct mode, the computation of the effective address
includes the number of BCE executing the instruction. This allows many BC=E*s to use the same program and still retain the Capability to
branch to different segments as required for each BCE's operation.

Note that twice the BCE number gives a fullword index.

III-37

WAIT FOR INDEX

#WIX

FORMAT

DISPLACEMENT
OLOLTOLOE | t tees tut yt
0 45 15

INSTRUCTION FORMAT

#WIX Table

NOTE: Table = PC + Displacement, where PC is updated Program
Counter, and Displacement is integer between -1024 and
41023.

DESCRIPTION

This instruction places the BCE in a state where it will
monitor, through its MIA, the system bus to which it is attached for
commands from other IOPs. When it receives such a command, it uses
part of the command as an index into a table of branch addresses, and
branches to the indicated location. This procedure allows one BCE in
one IOP to signal to another BCE in a different IOP that it is time to
perform some BCE progran.

Figur? 3.2 diagrams operation of this instruction. The
Starting address of the table of branch addresses (one
address/fullword) is the sum of the updated PC (1 + address of present
#WIX) and the 11 bit Displacement field. This address is rounded up
by 1 if necessary to make it a fullword address (least Significant bit
= 0). After computing this address the BCE sets itself up to accept
from its MIA a bus word termed a "Listen Command" that has command
Syne and an Interface Unit Address of 0100 0 (in binary). |

The BCE then goes into a tight loop of monitoring the MIA
Buffer for a valid Listen Command. If at the entry to this loop, or
at any time during this loop, the BCE finds that it is not in Listen
Mode (i.e. its transmitter is enabled -- see Paragraph 4.1) then it
will exit the loop and enter the Wait State. If it stays in Listen
Mode, and finds a valid Listen Command, it exits the loop. The BCE
then places bits 14 to 18 of the command in its Interface Unit Address
Register (IUAR). It also adds the Index bits 19 to 26 to the Table.
address computed earlier. This 8 bit Index is right justified and
padded on the left by ten zero's when it is added to the 18 bit Table
address. Figure 3.1 diagrams the makeup of a Listen command.

This ‘computed address is used to reference a fullword in memory which
contains in bits 14 through 31 a branch address. These 18 bits are

III-38

then loaded into the BCE's pc, and execution of the indicated
instruction begun.

PROGRAMMING NOTES

If a #WIX is executed with the MIA’s transmitter enabled,
execution of the #WIX is equivalent to that for a #WAT, i.e., it resets
its Busy/Wait bit, updates its PC by 1, and goes into a.loop until the
MSC sets the bit back to l. If the #WIX is executed with the MIA’s
transmitter disabled, the PC is not updated and remains at the #WIX
instruction.

Tf the BCE is in Listen Mode, then during the entire time
that the BCE is waiting for a Listen Command the BCE's Busy/Wait bit
stays set to Busy. Thus any attempt by the MSC to execute a @LBB,
@LBP, or @SIO involving this BCE will not go through, and will result
in an MSC error and the setting of appropriate bits in the MSC Status
Register.

After execution of a #WIX, the BCE's IUAR has been set to
bits 14 to 18 of the received Listen Command. This permits the
BCE/IOP that placed the Listen Command on the bus to condition the
listening BCE(s) to accept data only from a certain subsysten.
Typically the commanding BCE sends this subsystem a command to return
a stream of data, which will then be picked up properly by not only
the commanding BCE but also those on the same bus that were
"listening" to the command BCE. Paragraph 4.1 should be referenced
for more complete d2tail.

III-39

CHD
SYNC

|_
|

|

 POTT91O10i | it ft
IUA INDEX 4 P

0

IITI-40

2 3 18

Figure 3.1.

1314 1819 2627

Bit Times of Listen Command

WAIT FOR
INDEX

TABLE <— PC + 1 + DISPLACEMENT
SET UP COMMON IOP ADDRESS

ENTER
WAIT STATE

XMTR
ENABLED?

LISTEN
COMMAND >—
HERE? NO

YES

SAVE IUA
IN IUAR

_t
READ MEMORY
AT TABLE +

INDEX

:
| PC< MEMORY |
CONTENTS. READ

| INSTRUCTION
AT PC,

EXECUTE NEXT
INSTRUCTION

Figure 3.2. Wait for index

III-4]

3.3 BCE TRANSMISSION INSTRUCTIONS

Each BCE in an IOP has the capability of directing its MIA to
initiate the transmission of a word over the associated bus. These
words may be either command or data words and when they are
transmitted over the bus they have the formats shown in Figure 1.1(a)
or (c). Out of these bits the BCE provides only the 24 information
bits 3 through 26 and an indication of whether the word is a ccmmand
or data word.

Command words are used to tell a subsystem to perform some
action such as, get setup to accept N words of data that will be
transmitted later. Since there can be many subsystems on a bus, each
command contains a 5-bit Interface Unit Address (IUA), bits 3-7 of a
bus command word, that specifies which subsystem should obey the

command.

Data words are typically sent after a command, and contain
the actual information that the BCE wants transferred to the
subsystem. For each bus word this information consists of a 16-bit
halfword from GPC memory. Surrounding this word are sync bits, a 5-
bit IUA, the pattern 101, and parity. The BCE provides the MIA with
just the IUA, the 16-bit data, and 101. The MIA adds the rest.

3.3.1 Transmit Command Instructions

The BCE instruction set contains instructions that direct the
transmission of both commands and data. The Transmit Command
instructions (#CMDI and #CMD) provides all 24 bits of command
information needed for the transmission of a single command word. The
Message Out Instruction provides both a command and the location of a
stream of data to be transmitted. The execution of such instructions
also sets the BCE's Interface Unit Address Register (IUAR) to whatever
IUA is specified in the command. The Message In (#MIN) instruction
combines both the transmission of a command and the reception of a
stream of returning data. These instructions behave differently in
Listen mode than in Command mode. The differences are described in
the instruction description and in Section 4.3.

3.3.2 Transmit Data Instruction

The Transmit Data instructions (#TDS, #TDLI, #TDL, and #MOUT)
specify the starting address of a buffer in memory and the number of
halfwords that are to be taken sequentially from this buffer and given
to the MIA for transmission as data. The subsystem to which this data
is directed is specified in the IUAR, which typically was set during
the transmission of the last command.

All buffer addresses for data transmission are Base register
relative. The instructions contain only a displacement (Sometimes
assumed to be zero) that is added to the Base to compute the buffer
Starting address. This implementation is particularly useful when I/0

III-42

buffer areas are formatted in exactly the same way (for example for
identical buffers containing torquing data for a set of identical
gyros). The same BCE program can be used to Output the data from any
of these buffers by appropriate initialization of the BCE's Base
register before the BCE is started at that program.

Base relative addressing also allows simultaneous use of the
Same BCE progam by several BCE's, Initializing each BCE's Base
register differently allows each BCE to transmit different data, while
using the same BCE progran.

Each Transmit Data instruction specifies the number of MeMNory
halfwords to be transferred. In all cases, the actual binary field
used to specify this transfer count is treated as a positive integer
that is numerically 1 less than the number of halfwords that will be
transferred. Thus, a count of 0 corresponds to a transfer of 1
halfwords; a count of 262,143 corresponds to a 262,144 transfer,

3.3.3 Typical Bus Timing - Gaps Between Outputs

A typical sequence of BCE instructions that transmit a set
of data to a subsystem consists of either a Transmit Command
instruction followed by a Transmit Data instruction or a Single
Message Out instruction. The resultant sequence of activity as seen
on the bus is pictured in Figure 3.3. Each bus word requires 28
microseconds for transmission - during which time the MIA is
considered busy - and is separated from the next bus word by a short
period of time during which the bus is inactive. These periods of
time are called "inter-word gaps". On Figure 3.3, the gap between the
ith and i+lst data words is denoted as g(i), where the gap between the
command and first data word is g(0).

Under normal operating conditions the gaps between data words
(g(i), i 21) transmitted by a BCE are 5 microseconds. The length of
gap g(0) depends on the instruction sequence used to transmit the
command. For a Message Out instruction this gap is fixed at 5
microseconds. For a Transmit Command instruction followed by a simple
transmit data instruction (non #MOUT), the gap g(0) depends on the
exact type of Transmit Command and the Transmit Data,
whether the first data word comes from an even or odd halfword, and
how long it takes to make all memory references between execution of
the Transmit Command and the Transmit Data. Assuming no delay due to
memory contention (See Error Modes - Excessive Concurrency), the gap
g(0) for such cases can be estimated from:

Time to execute all instructions between the Transmit Command
instruction and the Transmit Data instruction

+

TII-43

Time to set up the Transmit Data Instruction

- 12 usec

The time to set up any Transmit Data instruction is the time required to compute the address of the first word of data, to save the transfer count and to request and receive this first word. Table 3.1
summarizes some typical initial gaps and assumes no intervening
instructions and no delays due to memory contention.

Ideally, the gaps between data words (g(i), i21) transmitted
by a BCE is 5 usec. However, due to memory contention, this gap can
be either 5 or 21.5 usec with the transmit instructions #TDS, #TDL, and #TDLI. With #MOUT, this gap is fixed at 5 usec. If the BCE
cannot meet these constraints, the transmit instruction will fail, the
BCE will go to the WAIT State, set its "NOGO" bit in the program
exception register (STAT1), and set bit 21 in its status register.

3.3.4 Echo Back

Whenever a MIA transmits something it echos back into the MIA Buffer a copy of what is sent out. This copy stays in the MIA buffer until either it is overwritten by something else received or transmitted by the MIA or it is removed by the BCE during a Receive
Data Instruction.

Note that if one or more data words are transmitted, the last data word remains in the MIA buffer. A subsequent read data
instruction would mistake this word from the first data word and
probably time out waiting for what it thought was the second word. At least the data would be skewed one word to the right and the last word
would be lost.

This problem can be avoided by entering the halt state between the transmit and the receive instructions or by issuing a read of one word and discarding the data and then issuing the desired read
command.

The above situation does not create a programming problem in most BCE cperations, because in the usual case the word in the buffer when the data read is executed will be a command word, which the read microprogram will inspect and discard. One case in which the programmer must take into account the problem is that of mass memory write operations, where the IOP transmits 512 data words and then
receives a search Complete Word (SCW) which was automatically transmitted by the mass memory without a command word intervening. In this case the read of one word must be made to clear the buffer, then a read with delay to await the scw. The problem has also been reported to occur in DEU dump responses. The same avoidance technique
is effective here.

ITII-44

Typical Instructions

#CMDI —_—
#TDS 3,10

|

Base+10

2 sts

— BCE

MIA

== SERIAL DATA BUS

SUBSYSTEM

r28 secs
[command | 9°) —“Tpata p79) para oT 9(2) ‘Loata 3 793) “Toate a]
DATA BUS TIME >

9(i) = GAP FOLLOWING iTH DATA WORD

Figure 3.3. Typical Transmit Sequence

IITI-45

TABLE 3.1

TYPICAL GAPS BETWEEN COMMAND AND DATA WORD

Assuming 1st Assuming 1st
Data from Even Data from Odd
Addressed Addressed

Type of Transmit Data Halfword Halfword

#TDS 21.5 38
#TDLI 21.5 38
ETDL 38 54.5
#MOUT 5 N.A.

All Times in Microseconds

III-46

3.3.5 Error Modes - Disabled MIA

There are two aspects of general IopP Operation that are
outside the control of an individual BCE but that affects the
execution of a Transmit instruction. These are the condition of the
MIA'S transmitter and receiver (enabled or disabled), and the amount
of traffic through the IOP DMA channel due to pc I/O and DMA requests
from the MSC and other BCE's. The status of the MIA is controlled by
the Transmitter Enable and Receiver Enable bits in the Control
Monitor. These bits are set/reset strictly by the CPU via a PCO. The
transmitter must be enabled before a BCE will attempt to transmit
either commands or data. If the transmitter is disabled at any time
during the execution of a Transmit Data instruction (an error mode),
the BCE executing that instruction will terminate the transmission of
the rest of the data stream, set its Program Exception bit to 0 and bit 23 of its Status register and its BCE-MSC Indicator bit to 1, and
enter the Wait State. It is up to the MSC or CPU, by analysis of the
Program Exception register and Status Registers, to detect this error
and perform appropriate recovery.

A related error mode occurs if the MIA is still busy when the BCE has decidsad it is time to transmit another word of data. The
normal timing of a BCE makes this impossible unless either the MIA or
BCE has failed. Therefore, the termination is the same as for a disabled transmitter.

Execution of a Transmit Command instruction, with the
transmitter disabled, will not cause an error condition. This allows
the Listen Mode BCE's to execute the same programs segments that the
BCE/IOP in command executes. For example, a BCE must tell a subsysten
tO return some data but a listen BCE whose transmitters are disabled
Should ignore such commands and Simply continue to the following
receive instructions.

Note that this is particularly true of the Message In
instruction, where a Command mode BCE will transmit the command and a
Listen Mode BCE will go directly to the receive loop.

3.3.6 Error Modes - Excessive Concurrency

The IOP is functionally a multiprocessor with at least 25
separate processors (24 BCE's, 1 MSC), all of which can be generating
memory requests independently. Since there is only one DMA channel
and it can handle chnly one request at a time, these requests may stack
up, delaying the honoring of the later requests for significant
periods of time. If these requests were for data for a Transmit Data
instruction (#TDS, #TDLI, or TDL), and they were delayed beyond the
time at which the BCE wished to transmit them, then there could be
Significant periods of dead time on the bus between separate
transmission of bus data words. These dead times are called “inter-
word gaps", and if they become excessive they will cause the subsystem
at the receiving end to time out and declare the BCE to be at Fault.

ITIl-47

Consequently, a BCE in the middle of a Transmit Data loop will allow a
gap of at most 21.5 microseconds to occur between data words. Ifa
data request is not honored by the time a gap of 21.5 microseconds
has occurred since completion of the last data word transmission, then
the BCE executing the instruction terminates the transmission, sets
its Program Exception bit, its BCE-MSC Indicator, and bit 21 of its
Status register, and enters the Wait State. An MSC or CPU routine
must then handle recovery or retry as deemed appropriate.

A Message Out instruction provides more time for data read
requests to be handled and thus is less susceptible to excessive
concurrency than any of the simple Transmit Data instructions.
Consequently, a #MOUT instruction will error terminate in the above
fashion if it cannot maintain a 5 usec gap between all outputs in the
message including those between the command word and the first data
word. |

If the DMA Channel discovers a parity error when it is
honoring a memory request for a Transmit Data instruction, it inter-
rupts the CPU and terminates the request. This is reflected in the
BCE by the failure of the data to arrive on time, and consequently by
eventual execution of the time-out sequence described above.

Note that there is no time out check on the first data
request for #TDS, #TDLI, or #TDL, or command fetch on #MOUT, #MOUTE,
#MIN, or #MIN@. This can result in the instruction cycling indefinitely.

IITI-48

TRANSMIT COMMAND | #CMDI, #CMD

| |
| (<IUA IMMED | |

PUTT ATTOrti tio] ft tt tt teatet teat dada |i t{ f | jf ft 0 345 #78 T2T3 31

INSTRUCTION FORMAT (BIT 4 = 0)1,2

#CMDI IUA, IMMED

| ADDRESS
TUTTE TG TPT TOP O;O;O;O;OIO] | ttt ttpapadr sy i | | t ff
0 3.4 5 7 8 1314 31

INSTRUCTION FORMAT (BIT 4 = 1)

£CMDH . ADDRESS 83

NOTES:

1. IUA is the Interface Unit Address, a 5 bit quantity in the
range of 0 to 31. ,

2e Immed is a 19 bit constant.

3. Address + 2 x BCE# is the main storage location of a fullword
containing a 24 bit command, right justified.

DESCRIPTION

This instruction is used to send 24 bit commands to a
Subsystem on the serial bus connected to the current BCE's MIA. In
immediate mode (#CMDI) the command is found immediately in bits 8 thru
31 of the instruction. In direct mode (#CMD) the command is the lower
24 bits of the main store fullword computed from the address field
(Bits 14 thru 31) of the instruction. (The halfword addressing bit,
bit 31, is ignored). The format of the commands sent out by the MIA
is:

SYNC I 24 BIT COMMAND {P|
jl Ptiittttitdttt¢prtrttititpy ey yf

0 23 26 27

SYNC = COMMAND SYNC

P= PARITY

III-49

The actual transmission of the command depends on the BCE’s
associated MIA’s Transmitter being enabled and the MIA being not busy.
When the command is transmitted, the BCE IUAR is loaded with the
contents of the command’s IUA field (command bits 3-7). There is a
slight difference in the way the two OP codes handle the case where
either one of the required conditions are not met:

#CMD : if MIA busy is true or transmitter enabled is
false, no action is taken, no error condition is
set.

#CMDI: if MIA busy is true or transmitter enabled is
false, this OP code cycles and repeats the check
one time. If either condition exists at that
time, the command is also not transmitted. On this
OP code, the IUA register is loaded with the
command IUA. No error condition is set.

After execution of this instruction the BCE’s' program
counter is incremented by 2, and the next sequential instruction is
executed.

PROGRAMMING NOTES:

The start of the actual transmission of the command by the
MIA begins about 16 usec before the end of the instruction. Thus
execution of the next instruction following a #CMDI or #CMD begins
before the MIA has completed transmission of the command. If this
next instruction is a #CMDI, it will fail the MIA busy check and try
again, as described. This condition does not affect the 2nd check for
#CMDI or the check on #CMD.

For the #CMD instruction, the address of the command word
includes the number of the BCE executing the instruction. This allows
many BCE’s to execute the same BCE program, but at the same time it
allows each BCE to transmit a different command. Note that twice the
BCE number gives a fullword index.

III-50

TRANSMIT DATA SHORT | | TDS

 | | |
{ COUNT DISPLACEMENT

TyOsO! f jp fj iii tf ft tf
0 2 3 7 8 15

LNSTRUCTION FORMAT

#TDS COUNT, DISPLACEMENT

NOTES: Count has range 0 to 31. (1 less than the number of transfers)

Disp. has range of 0 to 255,

DESCRIPTION

This instruction directs the Bus Control Element (BCE) to
transmit a number of 16 bit memory halfwords (determined by the COUNT)
through the BCE's MIA to a subsystem attached to the MIA‘ts serial bus.
The location of the first halfword is the sum of the BCE Base Register
and the Displacement field. This may be any halfword location.
Succeeding output guantities come fron succeeding halfwords in memory.
Fach halfword is assembled by the BCE into the following format and

given to the MIA for transmission. (The MIA adds the syne and
parity). .

DATA{ IUA
| SYNC§ ADDRESS DATA Halfword | P

|i { tt Pettitt ttt ttt tt bt i104
0 2 3 7 8 2324 2627

P = PARITY

The Interface Unit address (IUA) is a copy of the current
contents of the Interface Unit Address Register (IUAR) which in turn
was loaded during the execution of the last #CMD instruction performed
by the BCE executing this #TDS. The value in the IUAR is thus the
last subsystem to which this BCE has sent or attempted to send a
command.

The number of. bus words actually sent is 1 more than the
number in the Count Field. Thus a Count of Y causes one memory
halfword to be transmitted; a count of 31 corresponds to 32 half
words.

Completion of data transmission is followed by incrementation
of the BCE's program counter by one, and execution of the following
instruction. : ,

III-51

If at any time during execution of this instruction, the BCE
is not able to keep the time gap between intermediate data words on
the bus to less than 21.5 microseconds, then bit 21 of the status
register is set, the BCE's Program Exception bit (STAT1) is set to 0,
the BCE-MSC Indicator is set to 1, the present instruction terminated,
and the Wait State entered. The cause of such gaps may be due to
memory contention that prevented a data read from being completed in
time, or a parity error when the DMA channel attempted to read the
data from memory for the BCE.

The instruction will also be error terminated (with bit 23 in
the Status Register set to 1) if the MIA transmitter is either
disabled or found busy when it was time to transmit a data word.
Either situation represents an error condition.

III=-52

TRANSMIT DATA LONG #TDLI, #TDL

| |
f i Mi COUNT/SADDRESS

P1777 141 TO10G tT ttt tO7 Tt ttt | Tt tl tlt dtp
0 3 4 5 78 1314 31

M EFFECTIVE TRANSFER COUNT INSTRUCTION FORMA

0 Bits 14 thru 31 of instruc- #TDLTI Count
tion (Count Field)

1 Bits 14 thru 31 of fullword #T DL Address
addressed by address field
plus 2 x BCE#.

DESCRIPTION

Execution of this instruction is the same as that for
Transmit Data Short, with the following exceptions: .

1. The displacement from the base is zero. The base must then .
point to the beginning of the buffer.

2 « The count of input words to be transmitted can range from 0
to 262143, and may be specified by either bits 14 thru 31 of
the instruction (#TDLI) or by bits 14 thru 31 of the main
Storage fullword addressed by bits 14 thru 31 of the
instruction (#TDL). In the second case the least Significant
bit of the address (the halfword selection) is ignored. In
either case the number of memory halfwords actually
transmitted is 1 more than the Effective Transfer Count.

3. After completion of the instruction, the BCE's program
counter is incremented by 2.

PROGRAMMING NOTE

For the #TDL instruction the address of the transfer count
includes the number of the BCE executing this instruction. This
allows many BCE's to execute the same program while at the same time
allowing each BCE to transmit a different number of outputs.

When a BCE is transmitting to BCEs in one or more IOPs, the
number of words transmitted may be limited by slight variations
between GPC oscillator frequencies. In order to preclude the
possibility of data loss for this reason and yet to satisfy system
requirements, an upper limit of 2048 words is recommended for GPC to
GPC transfers.

TII-53

MESSAGE OUT | #MOUT

INSTRUCTION FORMAT (Bit 4 = QO)

FORMAT (2 Words)

| DISPLACEMENT TRANSFER COUNT
ULAL TE TOUT Oya tt ttt ttt tT ttt
0 7 8 1516 31

24 BIT COMMAND

_ | IVA

0 3 4 5 71 8 12 13 3°
#MOUT Displacement, Transfer Count
#MOUTC IAU, Command

FORMAT (1 Word)

. | {
ti | | ADDRESS

UTM TTT TOE | | tf ft $OE tT | | ft | | tt td ata ad
0 3 4 5 7 8 1374 31

INSTRUCTION FORMAT (Bit 4 = 1)
MOUTA Address

NOTE: Displacement, Transfer Count found at Address +2 x BCE #;
Command found at Address + 48 + 2 x BCE #

DESCRIPTION

| This instruction initiates the transmission of a command
followed immediately by a stream of data. As such it performs in one
instruction approximately the same functions as a Transmit Command
(#CMDI or #CMD) followed by a Transmit Data (#TDS, #TDLI or #TDL).
The command followed by the data is termed a "message". |

Message Out comes in two formats, either of which allows
independent specification of the command to be sent, the number of
data words to be sent, and the location of the data buffer in main
memory. The first format consists of a 2 word instruction. The
second word contains all 24 bits of the command to be sent. The first
word contains an 8 bit Base relative displacement and a16 bit
Transfer Count. The Displacement may be any positive integer between
0 and 255, and is added to the present contents of the Base register
to form the address of the data buffer. Unlike #TDS, #TDLI, and #TDL

ITI-54

this address is assumed a fullword address -- the least significant
bit of the address is ignored. Consequently, the first data word to
be sent out will come from the upper half (bits 0 to 15) of the
selected fullword.

In this format the Transfer Count may be any positive integer
between 0 and 65535, and represents one less than the actual humber of
data halfwords to be taken fron memory and transmitted as data words
on the BCE's bus.

The second format allows automatic indexing by BCE number
into two tables providing basically the same information found in the
first format. Each table has 24 entries, one per BCE. Twice the
number of the BCE executing this instruction is used as an index SO
that the table entries are each fullwords.

The first table starts at ADDRESS +2, and contains the
Displacement and Transfer Count. For BCE i the table entry at ADDRESS
+ 2x i is formatted as:

DISPLACEMENT TRANSFER COUNT
ee | Piititttettttt ttt ttittrtprririy
0 “5 15 16 31

This allows a range of displacement between 0 and 2047 and a
transfer count between 0 and 65535. As before, however, the sum of
the Base and Displacement is treated as a fullword address.

The second table starts at ADDRESS + 50, and contains the 24
bit command. For BCE i the table entry at ADDRESS + 48 + 2 x i is
formatted as:

:

 | 24 BIT COMMAND
IUA

Litttstititittrrprprrprryprairtraidy 5 a: 1313 : >
 2

Operation of #MOUT is diagrammed in Figure 3.3. The Transfer
Count and Displacement are derived from the instruction, and are
followed by requests to read the memory words containing the commands
and the first fullword of data. After the command word has been read
from memory, the 5 bit IUA in the command (bits 8 to 12 of the memory
word containing the command) is saved in the BCFts IUAR, and the
command given to the MIA for transmission. .

After command transmission, the BCE goes into a loop that
transfers data words to the MIA for transmission at a rate of l per 33
usec. These data words consist of the 5 bit IUA found in the IUAR and

IITI-55

a half-word of data from memory assembled as in Figure 1.1(a). When
appropriate, the BCE also requests that new fullwords be read out of
memory into the BCE. These words contain data that is to be
transmitted later in the sequence. When the specified number of data
words has been given to the MIA, the BCE exits this loop, updates the
PC, and begins the next instruction.

As with any of the Transmit Data instructions, if the BCE
ever attempts to transmit a word but finds either its transmitter
disabled or its MIA busy at a time when it should be idle, the BCE

will terminate the #MOUT, set its Program Exception Bit to 0 (an

error has occurred), set its Status Register Bit 23 to 1, set its
BCE-MSC indicator, and enter the Wait State.

Also as in a Transmit Data instruction, a BCE will terminate
a #MOUT if it cannot maintain a controlled interword gap between
output words. However, the nature of #MOUT allows memory requests,
and data requests in particular, to be made much earlier than they
could in a Transmit Command/Transmit Data instruction sequence. This
reduces the effects of memory contention from other BCFs to the point
where only very exceptional conditions will interfere with a #MOUT
transmission. Consequently, a BCE will terminate a MOUT only when it
Cannot maintain an even 5 usec. gap between output words. This.
includes maintaining a 5 usec. gap between the command word and first
data word. When this gap cannot be maintained, the BCE sets its
Program Exception Bit to 0 (an error has occurred), sets bit 21 of the
Status Register sets its BCE-MSC indicator, and enters the Wait State.

As with any of the Transmit Data instructions, the BCE will
terminate in the same fashion if there is a problem in the DMA
interface when one of its data read requests is being handled, such as
a parity error or DMA hangup. The data from memory will never reach
“he BCE, and when the BCE reaches the point where that data is to be
+ransmitted, it will detect the absence of the data and terminate.

PROGRAMMING NOTE

The starting address for the data buffer can be no greater
than the maximum memory address minus three full words.

When a BCE is transmitting to BCEs in one or more IOPs, the
number of words transmitted may be limited by slight variations
between GPC oscillator frequencies. In order to preclude the
possibility of data loss for this reason and yet satisfy system
requirements, an upper limit of 2048 words is recommended for GPC to
GPC transfers.

III-56

C Mout) (#oure >)

7 7

REQUEST COMMAND WORD FROM REQUEST TWO FULL WORDS MEMORY LOCATION PC + 2 OF INFORMATION

; _|

COMPUTE STARTING DATA
ADDRESS, AND REQUEST

FIRST FULL WORD OF DATA

YES

TRANSMIT
COMMAND.
SAVE IUA

SET NO Ext DAT
STATUS $< var ABLE BITS

| ys

ENTER __TTRANSMIT DATA DECREMENT WAIT AND REQUEST TRANSFER STATE NEXT DATA COUNT

 Z| RANSFERN NO
COUNT = 0

START NEXT INSTRUCTION YES A

Figure 3.4. MOUT Operation | IITI-57

3.4 BCE RECEIVE DATA INSTRUCTIONS

Each BCE in an IOP has the capability of accepting, from its
MIA, data that has been placed on the bus by either a subsystem or
another GPC. When the data is on the bus, the data words are in the
format shown in Figure 1.1(b). After BCE processing, only the 16 bits
of data are saved and placed in memory. The BCE Receive Data
Instructions (#RDS, #RDLI, #RDL, and the Message In instruction #MIN)
tell the BCE how many such words to receive and the location in Memnory
where the resulting data should go.

The following paragraphs describe each phase of the execution
of a Receive Data instruction. This includes operation of the
interface between the BCE and its serial bus, setupo of a BCE Receive
Data instruction, reception of the first word of a data stream,
reception of intermediate words, and error handling. Figures 3.5
through 3.8 diagram the general outline of these procedures,

3.4.1 MIA-MTA Buffer-BCE Operation

A BCE obtains data from its system bus through its MIA and
MIA Buffer. The MIA (Multiplex Interface Adapter) performs the serial
to parallel conversions needed for the conversions between the Serial
bus format and the internal IOP parallel format. The MIA Buffer
serves as an intermediate storage register between the MIA and the
BCE. It is loaded by the MIA after the MIA has processed an input and
unloaded by the BCE when the BCE is ready to accept data.

Figure 3.5 diagrams the time relationship between the
bus/MIA, the MIA Buffer, and the BCE. Data words on the bus occupy 28
usec. During this time, the MIA (independent of the BCE) recognizes
the sync pattern, accepts the bits one at a time, and accumulates
parity on the incoming word. The 28th bit of the input is compared
with this accumulated parity for fault detection. The MIA is
considered busy in the interval from the detection of the sync pattern
until the time for this 28th bit has elapsed.

Upon reception of an entire word, the MIA transfers the
following data to its entry in the MIA Buffer:

1. The 24 bits of information from the word,

2 An indication of the kind of sync the word had (command
or data) and,

3. Whether or not parity matched.

This is the last contact the MIA has with the data.

It should be noted that the MIA requires from between 1 to 5
usec to transfer a word to the MIA buffer after the receipt of the
last bit.

ITI-58

The BCE operates asynchronously to the MIA, and samples the

MIA Buffer to ascertain when a new data input has arrived. It samples

the MIA Buffer only during either execution of a Receive Data or Wait

for:-Index instruction. This latter operation is described in Section

Q.

In either case the sampling process occurs at most once every

16.5 usec. When an entry is found in the MIA buffer, the BCE removes

it and performs whatever series of error checks are deemed necessary.

Note that once an entry is placed in tne MIA buffer it stays

there until either the BCE removes it or +he MIA overwrites it with a

new value.

IIy-59

"WIV
YO4

ONILIVM
LUIS

QNY
‘3AI393N

YOd
dN

13S
*(NIWE

VY
LON

JI)
AYOW3W

WONS
JATUYY

4
d001

3A1993Y
NIVW

—pI
OL

NOILONYLSNI
JAI309N

YO4
LIVM

|
CNYWNOD

—
~

LIWSNVUL
f

((____
-

——\
(
=

>)
3

sa
H
O

H
y
 J

o
s
n

i

G°9l
WLVU

|
vw
J
e
s
i
d
a
v

J
X
,

199

43448
VIW

B
I

yagana
vw

OL
UI4SNVUL

C
C

W

Sna/VIW
3)

Zvi
LYLVG

ONYWHOD

MIA-~MIA-Buffer-BCE Operation Figure 3.5.

III-60

 (+705, #011)

Figure 3.6.

 (“v0 —)

RQST WORD
FIRST DATA WITH TRANSFER

ADDRESS COUNT

| SAVE
TRANSEER FIRST DATA

COUNT ADDRESS

SAVE
TRANSFER

COUNT

= <om

Ist INPUT LISTEN
CMD MODE

(‘st INPUT-
LISTEN

#RDS, #RDLI, #RDL Setup

III-6]1

A2465564

Comm) (mine)

REQUEST
FIRST LISTEN

LISTEN TABLE MODE
_ ENTRY |

mp 1S 40 REQUEST
BOTH

RQST TT DERE : TABLE
SONNA ENTRIES
COMMAND
WORD | YES

SAVE FIRST
ADDRESS,
TRANSFER NOT HERE
COUNT

NOT HERE |

TRANSMIT

st WORD- > COMMAND
| STEN MODE)

TRANSMIT

COMMAND

‘G

SAVE FIRST
ADDRESS,
TRANSFER
COUNT

Ist WORD
OMMAND MODE

Figure 3.7. #MIN Setup

III-62

&
Sy

TE

ENTER
MAIN
RECEIVE
LOOP

COMMAND
MODE

SET TIMER

TO MTO

REGISTER

"TIME-OUT"
SET STATUS
AND ENTER

Figure 3.8.

-
=

GOOD /” DATA
N MIA BUFE-

DECREMENT

TIMER

®

Receive Data Algorithm-First Input

BAD

LISTEN
MODE

ISETS
STATUS.

CMD ENTERS
ae WAIT

STATE
YES 1.

SET TIMER
TO MTO
REGISTER

ENTER
MAIN
RECEIVE
LOOP

"TIME-OUT"
SET STATUS f§
AND ENTER
WAIT.

 SET
BAD |STATUS.

IN MIA BUFF-——HENTER
WAIT
[STATE.

DECREMENT

TIMER

III-63

MATAT DECREMENT
7 TRANSFER

MEMORY COUNT

INCREMENT
PC,

| WRITE
RQST FULLWORD NEXT Lh

INSTRUCTION MEMORY

i TIME OUT GOOD DATA

VY BAD DATA

} } |
SET STATUS. OR IN STATUS.
ENTER WAIT _ ENTER WAIT

STATE. STATE.

Figure 3.9. Main Receive Loop

III-64

_ 3.4.2 Receive Data setup

All Receive Data instructions specify:

1. The starting address of a buffer in memory in which the
incoming data should ke placed

26 The number of input words to be received.

Additionally, the Message In instruction Specifies the
command that shouid be sent to the Subsystem before data should be
expected in return.

The subsystem from which this BCE expects to receive data is
Specified in the IUAR.

This register could have been set ina variety of ways;
including:

1) A CPU PCO while the BCE was in Wait State

2) For a command mode BCE, the execution of an instruction that
included transmission of a command word (#CMDI, #CMD, #MIN
Or #MOUT).

3) For a Listen Mode BCE, reception of a Listen command while
the BCE was executing a Wait for Index instruction or the
execution of a #CMDI instruction.

All buffer addresses for data reception are Base register
relative. The instructions contain only a displacement (sometimes
assumed to be zero) that is added to the Pase to compute the huffer
starting address. This implementation is particularly useful when I/O
buffer areas are formatted in exactly the same way ‘for example for
identical buffers to contain data from a set of identical gyras). The
same BCE program can be used _ to input the data to any one of these
buffers by appropriate initialization of the BCE’s Base register
before the BCE is started at that Program. Both the BCE itself ‘via
an #LBR), the MSC (via an @LBB) and the CPU (‘via an PCO) can set any
BCE’s Base.

Base relative addressing also allows simultaneous use of the Same BCE program by several BCE's, Initializing each BCE*'s Base
register differently allows each BCE to receive different data into different buffers while using the same BCE program.

ITI-65

3.4.3 Acceptance of First Input

Once past setup, a BCE executing a Receive Data instruction
will begin watching its MIA Buffer for bus inputs from the MIA. A BCE
in Command mode will immediately start monitoring the MIA Buffer for
inputs with data sync. A BCE in. Listen Mode, however, will first
await an input with command sync and an IVA that matches the BCEts
IUAR. As demonstrated in Section 4, this procedure Synchronizes the
BCE/IOP that is commanding a subsystem to return data with a Listen
Mode BCE (in another IOP) that is waiting for the data to return.
Once a Listen BCE receives such a command it will begin waiting for
the first data word.

A BCE in either mode will not wait indefinitely for the first
input with data sync to arrive. Instead, once it starts waiting for a
data word, it initializes a timer to the value contained in the BCE’s
Maximum Time Out (MTO) register. This timer is then decremented every
16.5 usec until either the timer reaches 0, or the BCE finds something
in the MIA buffer. If the timer reaches zero first, the BCE
terminates the reception and enters the Wait state as described in
Paragraph 3.4.7 (with bit 25 in the Status Register set to 1).

Thus, if the MTO register has a value of N in it, the BCE
will lecck at most N + 1 times into the MIA Buffer before declaring a
timeout.

Table 3.2 lists each Receive Data instruction and the time
from the start of the instruction until the point where the BCE first
looks at the MIA Buffer and initializes the timer to MTO.

III-66

Instruction

#RDS, #RDLI

#RDL

#MIN

#MIN O

#RDS, #RDLI

#RDL

TABLE 3.2

TIME TO FIRST LOOK AT DATA

Mode

Command

Command

Command

Command

Listen

Listen

Listen

Listen

Minimum Time from

Start of Instruction
to First Look at MTA
Buffer

33 usec

49.5 usec

82.5 usec

99 usec

49.5 usec

66 usec

66 usec

66 usec

1. This is 65.5 usec after the BCE has handed the command
to the MIA for transmission.

2. This is 16.5 usec after the BCE has found a command
in the MIA Buffer.

3. These times may be increased if necessary read requests
are not handled within about 16 usec after they are made.

ITI-67

3.4.4 Error Checks

Upon receipt of an input from the MIA Buffer, the BCE performs a series of error checks, including:

1. Does the input word's IUA (bits 3-7 of Figure 1.1) match
that contained in the BCE's IUAR (bits 13-17 of the BCE's
Local Store cell cS.

2 Did the MIA detect a parity error.

3. Ate any of the input word's SEV bits other than 101.

a. Was the sync data and not command?

Tf all these error checks are Satisfied, then the data is
accepted. If any one condition is not satisfied, the input is not
accepted as a valid data word.

If the input is not the first input, the BCE error
terminates. If it is the first data input, the resultant processing is a function of the BCE's mode. A BCE in Listen Mode Will treat any discrepancy as an error and the BCE will terminate in the manner described in Paragraph 3.4.6. On the other hand, a BCE in command mode will check to see if the first input had command sync, and if so,
it will ignore the input, reset the timer to MTO, and await the first input. This procedure allows a BCE that has just transmitted a command to skip over the copy of that command that has been echoed
back by the MIA into the MTA Buffer. Note, however, that a second
input with command sync will be treated as an error.

If the problem with the input. is other than command sync, the BCE will error terminate regardless of its mode. |

3.4.5 Handling of Good Inputs

When a BCE has found an input in the MIA buffer that satifies
all of the above conditions, it extracts the 16 bits of data for
Storage in memory. If the data is destined for an even halfword
location, and if further data is expected, this halfword is saved
until the next input arrives. When it does, the two halfwords are
Combined and written as a fullword to memory.

If the data is the first to be received, and it is destined
for an odd halfword location, or it is the last input to be received,
and is destined for an even halfword, the BCE will do a halfword write
to store away the single 16 bits of data.

A BCE is ready to accept a new input 33 usec after
recognizing the previous one. This time includes the above
processing.

III-68

3.4.6 Error Termination - Faulty Input

A BCE that has detected a faulty data input will
terminate the reception and
enters the Wait State, it also performs the following tasks:

immediately.
will enter the Wait state. Before it

1. Into the high half of the BCE Status Register (bits 0 to 15)
the BCE or's in the following pattern.

forms 000

input.

RECEIVED |
MiP} SEV LUA 'Si

0740140 {_{ j jf jf [70{0
0 234 5 7 8 12 15

WHERE:

M = 14i1f there was a mismatch between the received
luterface unit address and the IUAR.

P= 1 if there was a detected parity error

SEV = the SEV bits from the input with the S and V bits
inverted. Thus, a valid SEV pattern -101-

in the above pattern.

IUA = the actual Interface Unit address from the

S = 1 1f the input had a command sync.

2. The BCE's Program Exception bit is set to 0 (error)

3. The BCE's BCE-$HSC Indicator bit is set to 1.

W. BCE Local Store register Al is left with a value
equal to the number of inputs not yet received (i.e.,
number of inputs not written to memory).

5. BCE Local Store register AO is left pointing to
the last halfword to receive good data.
on the first input, AO points to the beginning of the
buffer.

6. The BCE's Busy/Wait bit is resat to Wait.

3.4.7 Error Termination -

A BCE that has waited the prescribed period

Time Out

If the error

of tine

the

is

for a
data input wiii also error terminate to the Wait State in exactly the
same fashion that is used on faulty inputs except that the appropriate
BCE Status Register bit (either 25, 26, or 27) is set to 1.

III-69

3.4.8 Reception of Intermediate Words

After successful reception of the first word of a sequence,
a BCE will continue to look into its MIA Buffer for additional data
inputs until it has accepted the number indicated in the original
Receive Data instruction. As with the first input, the BCE will not
wait indefinitely. Unlike the first word, however, the time out
detection procedure is normally fixed and is not adjustable by the
programmer. This time is typically one additional IOP cycle, 16.5
usec. If the BCE does not find data in the specified time, the BCE
error terminates with Status Register bit 26 set to l.

The only exception to the above error termination is if a
timeout occurs and the number of inputs left to be received is an
integer multiple of 512. If it is, the BCE will set a timer to MTO
(as in the acceptance of the first input) and continue Waiting. This
procedure allows a BCE to recognize the inter-block gaps that occur
between every 512 words of an input stream from the Mass Memory ofr
Display Units. A timeout after this point has has been reached will
cause the BCE to error terminate with Status Register bit 27 set to 1.

Upon recognition of a data input before time runs out, a BCE
will perform the same error checks applied to the first input. Any
discrepancy regardless of the BCE's mode, will cause the BCE to error
Ferminate.

Data that meets all the above conditions is saved by the BCE
for transmission to memory, as described in paragraph 3.4.5.

III-70

RECEIVE DATA SHORT | #RDS

COUNT DISPLACEMENT

Optpit fj tt { ji fj ft ft tt
0 2 3 7 8 15

INSTRUCTION FORMAT

#RDS COUNT, DISP.

NOTES: Count has range of 0 to 31. (1 less than number of transfers)

Displacement has range of 0 to 255.

DESCRIPTION

This instruction directs the Bus Control Element (BCE) to
accept a-number of input words from its associated MIA, do af Variety
of checks on these words, and assemble them. into 32 bit memory
fullwords and place them in memory.

As received by the MIA each input word has the following

formats:

(DATA IUA | |
— sywe DATA (16 BITS) SEV {P

i | i i { | 1 i | { f tf tt t t td) dt | |
9 2 3 7 8 2324 2627

P = PARITY

ITUA = Interface Unit Address

Bits 0-7 and 24-27 are used only in the validity checks; bits 8-23
represent the 16 bits of data that are to be saved in main Memory.

Execution of this instruction is as described in paragraph
3.4.2 and in general proceeds as follows:

1. The input transfer count is extracted from the instruction.
This count represents 1 less than the number of input words
to be accepted, and these represent the number of 16 bit main
memory halfwords accepted. Thus a transfer count of @
corresponds to acceptance of 1 input. A transfer count of 31
corresponds to acceptance of 32 inputs.

2. The main memory address for the first input word is computed
from the sum of the present contents of the current BCEts
base register and the displacement field, bits 8 thru 15.

TII-71

III-72

This displacement may have any value in the range 0 to 255.
Note that this first address is the main memory halfword
address for the first piece of data, and may be either even
or odd.

The BCE monitors its MIA Buffer for data inputs. The
procedure used is as described in Paragraph 3.4.2. If any
Errors are detected, the BCE terminates the instruction and
enters the Wait State. The BCE's Program Exception Bit, BCE-
MSC Indicator bit, and Status Register are aiso set to

indicate the source of the problen.

Upon successful reception of all specified data words, and
their transfer to. memory, the BCE increments its Progran
Counter by 1 and begins the next instruction.

RECEIVE DATA LONG | #RDLI, #RDL

iM COUNT/ADDRESS (
Tap 4y1 Opirip titi tO} tet ttt ttt tT Tt tT tt
0 345 7 8 1314 31

{c
z EFFECTIVE TRANSFER COUNT INSTRUCTION FORMAT

0 Bits 14 thru 31 of instruc- #R DLI Count
tion (Count Field)

1 Bits 14 thru 31 of fullword #R DL Address
addressed by address field
plus 2 x BCE #

DESCRIPTION

Execution of this instruction is the same as that for Receive
Data Short, with the following exceptions:

1. The displacement from the base is zero. The base nust point
to the beginning of the buffer.

2. The effective count of input words to be received can range
from 0 to 262143, and may be specified by either bits 14 thru
31 of the instruction (#RDLI) or by bits 14 thru 31 of the
main storage fullword addressed by bits 14 thru 31 of the
instruction (#RDL). In the second case, the least
Significant bit of the address (the halfword selection) is
ignored. In either case the effective transfer count is one
less than the number of words to be received.

3. After completion of the instruction, the BCE's progran
counter is incremented by 2.

a. The setup time for #RDL is at least 49.5 usec, and may be
longer if contention for memory causes the access of the word
containing the transfer count to take longer than 16.5 usec.

For the #RDL instruction the address of the transfer count
includes the number of the BCE executing the instruction. This allows
many BCE's to execute the same program while at the same tine allowing
each BCE to receive a different number of inputs. Note that twice the
BCE number is a fullword index.

III-73

MESSAGE IN
¢MIN)

FORMAT (2 Words)

{ DISPLACEMENT TRANSFER COUNT
FTTTITPTIO(OTO] 1g | tt tbe bit tit € bt tt t tt ti

0 7 38 T5T6 31

24 BIT COMMAND |
{ IUA

fi tf tt td i i tf | fit tt ttitt tt titi ttt 0 7 5 T2ia 31

INSTRUCTION FORMAT (Bit 4 = 0)

#MIN Displacement, Transfer Count
#MINC IUA,COMMAND |

FORMAT (1 Word)

|
(| ADDRESS |
WATT TOTO ty ft tt ft tof ft tt tt tlt tlt tlt ECE
0 7 8 1314 31

INSTRUCTION FORMAT (Bit 4 = 1)

#MINO Address

NOTE: The displacement and transfer count are found at address
*2XBCE#. The command is found at address #+48+2XBCE#.

DESCRIPTION

This instruction initiates the transmission of a command to
a subsystem, and the acceptance of a stream of data returning in
response from that subsystem. As such, it performs in one
instruction approximately the same functions as a Transmit Command
(#CMDI or #CMD) followed by a Receive Data (#RDS, #RDLI, or #RDL).
The command followed by the returning data is termed a "message".

Message In comes in two formats, either of which allows
independent specification of the command to be sent, the number of
input words to be accepted, and the location of the data buffer in
memory where the incoming data should be stored. The. first #MIN
format consists of a two word instruction. The second word contains
all 24 bits of the command to be sent. The first word contains an 8

IIlI-74

bit Base relative displacement and a 16 bit Transfer Count. The Displacement may be any positive integer between 0 and 255, and is added to the present contents of the Base Register to form the address of the data buffer. The Transfer Count may be any positive integer between 0 and 65535, and represents one less than the actual number of data half-words to be received. |

The second #MIN format allows automatic indexing by BCE number into two tables providing basically the same information found in the first format. Each table has 24 entries, one per BCE, Twice the number of the BCE executing this instruction is used as an index
so that the table entries are each fullwords.

The first table starts at ADDRESS + 2, and contains the Displacement and Transfer Count. For BCE i the table entry at ADDRESS
+ 2x iis formatted as:

| DISPLACEMENT : TRANSFER COUNT
| {| ff | Pididti i Littftiid | | fttittttt it 0 4 5 1516 31

This allows a range of displacement. between 0 and 2047 and a Transfer Count between 0 and 65535.

The second table starts at ADDRESS + 50, and contains the 24 Dit command. For BCE ithe table entry at ADDRESS + 48 + 2 xi is
formatted as: |

24 BIT COMMAND
Pitti | Ped detettittttt ttt tata 0) 7 8 31

Execution of a #MIN depends on the current mode of the BCE -- Command or Listen. In Command mode a BCE is assumed master of the bus
connected to its MIA. Consequently, to receive data from some subsystem on that bus, the BCE must first issue a command telling the subsystem what type of data to return. The 24 bit command field in the #MIN contains the command. After issuing the command the BCE prepares to accept returning data.

In Listen mode, a BCE is not master of its bus, and must rely on some other BCE in another IOP to issue. the command to the subsysten. A BCE in Listen mode that executes a #MIN thus does not transmit the command part of the #MIN, but instead goes directly into a MIA input monitor loop. However, like a Receive Data instruction, a #MIN executed in Listen mode will not expect to see data. Instead it will wait until it sees that sone Other BCE/IOP has issued a command and only then prepare to accept input data. This difference
allows multiple BCE/IOPs connected to the Same bus to use the same

TII-75

July 16, 1987

Update .

routine to receive the same data from a Single subsystem, but with
only one BCE actually transmitting the commands to the subsystem.

An additional difference between the execution of a #MIN in
Command or Listen mode is the setting of the BCE's IUAR. In Command
mode the BCE's IUAR will be set from bits 8 to 12 of the instruction
word containing the command. In Listen mode, the IUAR is unchanged.
It is assumed that the BCE IUAR was previously set up to monitor the
appropriate subsystem address. See Section 4 for more detail on
Listen mode.

In either mode, once the command has been handled the BCE
enters the same reception algorithm used for all the Receive Data
instructions (see #RDS).

If the BCE attempts to transmit the command word but finds
either its transmitter disabled or its MIA busy, the BCE will termin-
ate the #MIN, set its Program Exception Bit to 0 (an error has occurr-
ed), set its Status Register Bit 23 to 1, set its BCE-MSC indicator,
and enter the Wait State.

IITI-76

3.5 SPECIAL INSTRUCTIONS

The BCE instruction set contains several instructions not
falling under any of the previously defined categories. These include
am instruction to delay the BCE for Specifiable periods of time, and
an instruction to cause the BCE to enter the Wait State.

IlI-77

i7~ 24 ra

DELAY #DLYI,#DLY

PORMAT

; ft
| M COUNT/ADDRESS

1111010 Lett ft Lit tt LL
0 3 4 5 15

M Eifective Count INSTR.Format

0 TIMEOUT? | 4DLYI Timeout

1 (PC+DISP+2XBCE#) 2 #DLY §§ Address

Notes;

1. Any value between 0 and 2047. This corresponds to delays
from 0 to 33.78 millisec.

2. The Lower 18-bits of the fullword addressed by PC(updated)+
Displacement. This allows any count between 0 and 262143, or
0 to 4.325 sec.

DESCRIPTION

This instruction simply delays the execution of the next
instruction. The time period delayed is a function of the Effective
Count, with a resolution of 16.5 microseconds per count.

At the end of this delay the program counter is incremented
by one, and the next instruction is executed.

PROGRAMMING NOTE

Each count of 1 represents a delay of 16.5 microseconds, the
execution time of a BCE micro instruction. Each count of 2 represents
a delay of 33 microseconds, the minimum time for a word transmission
over a serial bus.

For the #DLY instruction, the address of the word containing
the delay includes the number of the BCE executing the instruction.
This allows many BCE's to execute the same program while still
retaining the capability to delay for different periods. Note that
twice the BCE number is a fullword index.

III-78

WATT
#WAT

 OyOyOo{oyi1; | | | jf | | | ff
0 4 5 15

INSTRUCTION FORMAT

#WAT

DESCRIPTION

This instruction causes the Bus Control Element (BCE) that is
executing it to leave the busy state and enter the wait state. The
BCE's Busy/Wait bit (in STAT4) is set to 0 (WAIT). The BCE's Program
Counter is incremented by 1, but no further instructions are executed.
The BCE is reset to the busy state by the Master Sequence Controller
(MSC) only. Once in the Wait State, a BCE performs no actions other
than the monitoring of its Busy/Wait bit for a command to re-enter the
Busy State.

~~ Paragraph 2.2 describes transitions to and from the Wait
State in detail.

PROGRAMMING NOTE

While in the Wait State the BCE alters none of its
programmer-visible registers. Thus the CPU is free to change, via
PCIAO, any BCE register.

III-79

INSTRUCTION - SELF TEST | «#STP

M

|r

OLOTOLT {i) ft it
0 3 4 15

INSTRUCTION FORMAT

#STP FLAG

DESCRIPTION M=0

This instruction initiates execution of a special micro
program to perform self tests on the hardware supporting the Bus
Control Element that is executing this instruction. These tests
include checks of:

e BCE Local Store

@ BCE Data Flow Operations

® Ability of BCE to read and write from memory

® MIA wrap capability

S MIA Buffer

A flag of 0 causes all but the last two tests to be
performed. A flag of 1 causes all tests to be run.

If an error is detected, the BCE's Program Exception bit is
set to 0, bit 22 of the BCE Status Register is set to 1 (Self Test
failure). The PC is incremented by 1, and the next instruction is
executed.

Successful completion of this instruction causes the BCE to
increment its PC by 1 and continue with the next instruction.

DESCRIPTION M=1

This instruction initiates execution of a special micro
program to perform self test on the associated MIA Parity Checker.

Before execution of this instruction parity must be enabled and the
BCE executing this instruction must have its transmitter disabled. If
the transmitter is enabled the BCE will set no-go, go to wait and set
the BCE Status Register Bit 22 to 1. If the transmitter is disabled
the micro program will do a transmit. This will allow data to be sent
through the Parity Checking Circuitry, but will not be transmitted on
the Bus. If bad parity is detected an External 1 interrupt is
generated and the External 1 Status Register will indicate a MIA
Parity Error.

Note: It is recommended that this test be run both forcing and not

forcing bad parity to the MIA's so the Check Circuitry is

fully tested.

(This assembler mnemonic supports only the M=0 OP code.)

III-80

4.0 LISTEN MODE

In the Space Shuttle configuration there can be up to five
separate CPU/IOP pairs connected to the same set of busses. When
running in redundant mode, all CPU/IOPS want to receive exactly the
Same copies of all input data from relevant sensors so that the
resulting outputs should all match. This presents problems. First,
since a sensor in normal operation is tied to Only one bus, only one
TOP at a time can send it the requisite commands to return data. Any
attempt by two or more IOPs to send commands over the same bus at the
Same time results in interference and garbling of the bus signals.
Thus, if each IOP is to send a command to the same sensor telling it
to return data, there must be some definite time sequence that
prevents conflicts. Such sequencing is not only difficult to achieve,
but also makes it impossible to guarantee that exactly the same data
reaches each CPU/IOP.

The BCE Listening Mode solves this problen by allowing only
one BCE/ IOP to place subsystem commands on a bus, but at the same
time allow it to inform all other BCE/IOPS connected to the bus that
a certain subsystem is to be commanded and that they should set up to
handle the returning data. This technique not only eliminates the
sequencing problem mentioned above, but also allows all GPC/IOPs to
receive exactly the same data at exactly the same time.

The following paragraphs describe Listen Mode, first by
example and then in detail. Note that this is not the only method of
Listen Mode implementation.

Gel SAMPLE OPERATION IN LISTEN MODE

Figure 4.1 diagrams a configuration of redundant TOPs that
will use a Listen Mode to accept data from a single subsysten,
Subsystem M. Also included is a reference BCF program segment. The
BCE in GPC 1 is assumed to be configured in Command Mode. The
equivalent BCEs in GPCs 2, 3, and 4 are in Listen Mode. All BCES are
assumed in Wait State initially.

Before a BCE in Listen Mode can accept a command from another BCE in a separate GPC, it can be executing a #WIX instruction -- Wait
for Index. This instruction causes a BCE in Listen Mode to monitor
its bus for a command from another GPC. The only way a BCE can be
executing a #WIX is if its MSC has loaded the PC (via a @LBP or CPU
PCO) and started it (via a @SIO) ata memory location containing a
#WIX. Once a BCE has been started in this fashion, it will return to
the Wait State only when it has either executed a standard #WAT
instruction or it has encountered an error. Any attempt by the MSC to
change the operation of the BCE after it has been started will be
aborted, with error flags set in the MSC's status register.

Since the operational mode of a BCE in an operational
Sequence will very rarely be changed, the MSC in a GPC will initialize
its Listen Mode BCEs once after a reconfiguration, and will leave then
alone unless they execute a #WAT or error terminate. For this example

IilI-81 .

we assume that the BCEs in GPCs 2, 3 and 4 have been initialized to
execute a "WIX TABLE" instruction in the near past, and are now
watching their bus for a Listen Command.

At some point in time the MSC in GPC 1 will determine that it
is time to receive data from Subsystem M and that its BCE is in
Command Mode. The MSCS in the other GPCs will also come to the
conclusion at about the same time that it is time for Subsystem M to
give data, but since their BCEs are in Listen Mode, they do nothing
active to get it. To get the needed data, the MSC in GPC l
initializes its BCE to execute the program at location "START", When
the MSC executes a OSIO, the BCE in GPC l enters the Busy State and
begins execution at location START. The first instruction then tells
the BCE tc place on the bus a “Listen Command". This command is meant
for all BCEs on the bus that are in Listen Mode and are executing a
#WIX. It is distinguished from all other traffic on the bus by a
unique Interface Unit Address (IUA) not used by any subsystem. This
IUA is termed a "Common IOP Address", and in binary is 01000.

_TII-82

GPC 1 BCE

gPc 2 | pce J

GPC 3. | BCE

GPC 4 BCE -~———!

START

PGM2

TABLE

Figure 4.1.

SUBSYSTEM #M

BUS

ASSUMPTIONS:

BCE in GPC 1 in Command Mode.
BCE in GPC 2, 3, and 4 in Listen Mode.
All BCEs in Wait State

REFERENCE PROGRAM SEQUENCE

#CMDI

#DLYI
#DLYI
#MIN
#WIX

DC
DC
DC

IUA = Common IOP Address,
Device # = M, Index = 2.

IUA=M,...
Table

A (PGMO)
A (PGM1)
A (PGM2)

Listen Mode Configuration

 TII=83

When a BCE in Listen Mode detects a word on the bus that has
command syne and the Common IOP Address, they accept it and use the
information to set themselves to a new progran. The information in
his word consists of the number of the subsystem that will originate
the information, and an index into a table of branch address. The
beginning of the table is specified by the #WIX instruction. We
assume that all GPCs have the same programs located in memory so that
all listening BCES will reference the same table and pull out the same
branch address.

In this case the subsystem number in the Listen Command is M,
and the index points to entry 2 in the table. When the BCEs in GPCs
2, 3 and 4 receive the Listen Command, they save the value M in their
Interface Unit Address Register, and branch through the table to
location PGM2. This is a #MIN instruction, and since the BCEs are in
Listen Mode, instructs the BCEs to monitor the bus for the command
that the BCE in GPC 1 will eventually send to Subsystem M. When these
BCEs receive this command, they will begin monitoring the bus for the
returning data. |

After the BCE in GPC 1 has’ sent the Listen Command, it
executes some delay instructions to allow the Listening BCES time to
receive the command, interpret it, and get set up in #MIN. Two delay
instructions are listed in the sample program segment since both #CMDI
and #MIN must start on an even half word boundary. The amount of time
delayed must be based on an analysis of how long it takes the
Listening BCEs to get set up. |

After the delays, the BCE in GPC 1 executes the #MIN
instruction. Even though it is the same instruction executed by the
Listening BCEs, the fact that the BCE is in Command Mode causes a
different execution. The BCE will place on the bus the command to
Subsystem M, telling it to return the appropriate data. The BCE will

then prepare itself to handle this data.

When Subsystem M places its data on the bus, all four BCEs
are prepared to accept it, and consequently receive exactly the same
data at exactly the same time.

After successful reception of the data from Subsystem M, all
BCES execute the #WIX instruction. For the command BCE this is
equivalent to a #WAT, and the BCE re-enters the Wait State where it
will await another command from its own MSC. For the Listening BCEs,

the #WIX instruction simply places them back into a loop where they

are monitoring the bus for another Listen Command.

The above sequence obviously can be elaborated to include

multiple #MINS from the same subsystem, instructions to change the

Base or Time Out Register, or do other functions, such as set the BCE-

MSC indicator bits to indicate completion of a BCE Listen Program.

The extensions, however, are application dependent, and do not change
the basic operation described above.

III-84

One of the important aspects of this example is that the software stored in each computer is identical. The commanding and listening BCEs use exactly the same instructions to receive the same data from the same subsystem. Only the mode of the BCES was different.

4.2 INITIALIZATION INTO LISTEN MODE

Listen Mode is a mode of BCE operation, not a state. It affects how a BCE interprets instructions, but does not of itself represent a completely different state of BCE execution.

A BCE is in Listen Mode when its MIA transmitter is disabled and its receiver enabled. I+ may be changed at any time without harn while a BCE is in Halt state. Once a BCE is in Busy State, changing the mode of that BCE may cause indeterminant BCE actions. It is recommended practice that a BCE be halted before a mode change, and then enabled after the mode Change is complete. This will prevent any possible indeterminant BCE activity.

The signals that may change the MIA's Status are as follows:

1. CPU PCO's allow selective set/reset of each MIA's
transmitter and receiver.

2 XMIT Disable Discrete disables all MIA transmitters,

3. Input discrete 13 disables MIA transmitters 10-13.

au. Input discrete 14 disables MIA transmitters 14-17 and
20-23.

4.3 DIFFERENCES IN INSTRUCTION EXECUTION

A BCE enters the Busy State only from Wait and only when the MSC has executed a SIO. This transition is independent of the BCE's mode. The distinction between Listen and Command mode becomes Significant only after the BCE has entered the Busy State. As demonstrated in the previous example, this distinction reflects itself in how various instructions are executed. Table 4.1 summarizes those BCE instructions that are influenced by mode. Each difference is discussed separately in the following paragraphs.

The Wait for Index instruction (#WIX) was designed for Listen -Mode. In Command Mode #WIxX is equivalent to a Wait instruction -- a #WAT. In Listen Mode a #WIX places the BCE in a Loop where it is monitoring its MIA for a Listen Command (Interface Unit Address = 0 Il 0 0 0). When it receives such a command it branches through a table of addresses. The BCE stays in the Busy State during the entire Sequence, and will leave the Busy State only if it is halted, it receives a Listen Command that directs it eventually to ai #WAT. instruction, or it receives a Listen Command, starts executing .a program, but is stopped by an error from further execution.

III-85
ge, OY op pe eee
23 eet wee ;
+ a?) ee aah

™n Listen Mode a BCE's transmitter is not enabled.
Consequently, it is not able to transmit either commands or data.
This affects the execution of #CMDI, #CMD, #MIN, #MOUT, #TDS, #TDLI,

and #TDL. a

Any attempt by a BCE to execute a #MOUT, #TDS, #TDLI, or #TDL
while in Listen Mode will be met by arror terminating the BCE, i.e.
setting Status Bit 23, resetting the Program Exception Bit to 90, and
entering the Wait State. A BCE in Listen Mode should never be told to
transmit data. |

The .instructions #CMDI, #CMD, and #MIN are not error
terminated when executed by a BCE in Listen Mode. Instead, #CMDI and
#CMD are treated as no-ops (#CMDI sets the BCE IUAR), no error
indicators are set, and the BCE continues with the next instruction.
Likewise in #MIN the transmission of the command is suppressed -- the
BCE branches into its receive mode. The reason for this difference
is to allow the same program segments to be used by BCEs in both
Command and Listen Modes to receive the same data as demonstrated in
the example of Figure 4.1.

Execution of #RDS, #RDLI, #RDL, and the receive part of.#MIN
also differ between Command and Listen Mode, primarily in accepting
the first data input. In Command Mode, when these instructicas enter
the receive algorithm, they immediately start waiting for the first
data word, and timing out its arrival by decrementing a timer that had
been set to the value in the MTO Register. If the first input the BCE
finds in the MIA Buffer is a command, the BCE will discard the
command, reset the timer, and start looking for data again. This
allows +he BCE to ignore the command that was sent to the subsysten
but was also echoed back by the MIA to the BCE's MIA Buffer.

A BCE in Listen Mode goes through a different sequence.
Rather than immediately waiting for data, the BCE waits (indefinitely)
for a bus word having command sync, good parity, etc., and an IUA that
matches the BCE's IUAR. This command should be the command being sent
by the other BCE/IOP in Command Mode to the subsystem, telling it to
return data. The BCE uses the arrival of this command as a signal to
set its timers and start watching for arrival of the first input of
Jata. This allows the Listening BCE to accurately time out the first
data word, and detect if that word is excessively delayed in its

arrival.

After arrival of the first word all BCEsS use the same
reception algorithn.

ITI-86

BCE INSTRUCTION |

#WIx

_ #CMD

#CMDI
eng!

tee ve

lew S sce iE

eR, 2 * .
star 2 Fe ml 2

' ¢#MOUT
g -

es ae ae we as ahs

MY be ‘
e :
i mee OE way hee age

Beh: Ae gee By ek rye RB tthe Slee. ewe 2

“#TDS, ‘#TDLI, #TDL

TABLE 4.1

DIFFERENCES IN INSTRUCTION EXECUTIONS
DUE TO BCE MODE.

ed

. OP it

hed,
a

EXECUTION IN
COMMAND MODE |

Enter Wait State

Transmit Command

Transmit Command

Transmit Command,
Receive Data

Receive Data

Transmit Command,

Transmit Data

Transmit Data

fe ees

EXECUTION IN
LISTEN MODE

Wait for Listen Command
(Stay Busy)

No-operation

Suppress Command but
Load IUAR

Wait for Command,
Receive Data

Wait for Command,

Receive Data

set Error Bits, Enter

Wait State

set Error Bits, Enter
Wait State

NAME

RCE Register Operations

Load Time Out
Reset Indicator Bit
set Indicator Bit
Store Status and Clear
Store Status
Load Base

BCE Branching

Branch Unconditional
Wait for Index

BCE Transmit Instructions SL
aS ea esse vemensaram os

Transmit Command
Transmit Data Short
Transmit Data Long
Message Out

BCE Peceive Instructions SR SE
somes

Receive Data Short
Receive Data Long
Message In

special Instructions

Delay
Wait
Self Test

NOTE:

IITI-&88

APPENDIX A

#LTOI,
#R IB
#SIB
#SSC
#S ST
FL BR

#BU
#WIX

#CMDI,
#TDS
#TDLI,
#M OUT

#RDS
#RDLI,
#MIN

#DLYI,
#WAT
#STP

See Pigure 1.3 and 1.4 for Formats.

IOP BCE INSTRUCTION REPERTOIRE

MNEMONTC

#LTO

#CMD

#TDL

#RDL

#DLY

PORMAT

Short

Short

Short

Short
Short
Long

—)

4
4
ps
 f
s

Long

Short 1

Long

Short 2
Long
Long 2

Short 2
Long
Long 2

Short 1

Short 1

Short 1

Od

oe

GQ

bf

ITI-29

ITI-30
ITI-31
ITI-32
ITI -33
ITI-34
ITI-35

ITI-36

ITI-37
III~38

TII-42

ITI -51
ITI-53
III-54

III-58

ITI-71
III-73
IIlI-74

IliI-77

ITI-78 ©
IIiI-79
ITI-80

