## N/S^

NATIONAL AERONAUTICS and SPACE ADMINISTRATION
Lyndon B. Johnson Space Center
Houston, Texas 77058

## SPACE SHUTTLE PROGRAMS

0120

## PASS USER'S GUIDE

RELEASE: OI20
Date: $12 / 20 / 90$
BOOK: PASS User's Guide
Rev: 0

PASS USERS GUIDE
RELEASE OI 20
$\qquad$

TECHNICAL CONTENT APPROVED:

A.J. Marina, Manager Onboard Shuttle Software

```
RELEASE: Ol20
Date: 12/20/90
BOOK:

\section*{PREFACE}

This release of the PASS User's Guide has been prepared to assist users of the Primary Avionics Software System (PASS).

The organization and inclusion of material in this guide was arrived at by drawing upon experiences and technical expertise of the IBM personnel in the Avionics Software Engineering, Development, and Verification Departments and the Test \& Operations personnel in the SAIL, SMS, and at KSC. Thus, it is an attempt to produce a handbook which is constrained in volume, yet provides easy reference to a desired subject.

The preparers of this document solicit your comments and critiques. Please forward any suggestions, etc., to the PASS User's Guide Coordinator, Carla J. Yager, IBM Test and Operations, MC 6206A, 3700 Bay Area Blvd., Houston, Texas 77058-1199.

O
\(\qquad\)
\begin{tabular}{lll} 
RELEASE: & OI20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: 0
\end{tabular}

\section*{CHANGE PAGE CONTROL SHEET}
\begin{tabular}{ccc} 
Revision & Description & Date \\
0 & Total Publication for OI20 & \\
\(12 / 20 / 90\)
\end{tabular}
\begin{tabular}{llc} 
RELEASE: & OI20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: 0
\end{tabular}

\section*{CONTENTS}
1. INTRODUCTION ..... 1.1-1
1.1 PURPOSE ..... 1.1-1
1.2 SCOPE ..... 1.2-1
1.3 APPLICABLE DOCUMENTS ..... 1.3-1
1.4 FSW DELIVERABLES ..... 1.4-1
2. SYSTEM ..... 2.1-1
2.1 OVERVIEW ..... 2.1-1
2.2 MASS MEMORY ..... 2.2-1
2.2.1 GPC Memory Configuration ..... 2.2-1
2.2.2 Mass Memory Allocation ..... 2.2-1
2.3 SYSTEM INITIALIZATION ..... 2.3-1
2.3.1 Initial Program Load (IPL) Sequence ..... 2.3-2
2.3.1.1 IPL Sequence Failures ..... 2.3-2
2.3.1.2 No Display ..... 2.3-5
2.3.1.3 CAM Light ..... 2.3-5
2.3.2 DEU Load ..... 2.3-5
2.4 OPERATIONAL SEQUENCES ..... 2.4-1
2.4.1 OPS 0 ..... 2.4-4
2.4.1.1 Displays Available ..... 2.4-4
2.4.1.2 Basic Functions Available ..... 2.4-4
2.4.2 OPS GNC9 ..... 2.4-5
2.4.2.1 Displays Available ..... 2.4-5
2.4.2.2 Basic Functions Available ..... 2.4-6
2.4.3 OPS PL9 ..... 2.4-7
2.4.3.1 Displays Available ..... 2.4-7
2.4.3.2 Basic Functions Available ..... 2.4-7
2.4.4 OPS GNC1 ..... 2.4-8
2.4.4.1 Displays Available ..... 2.4-9
2.4.4.2 Basic Functions Available ..... 2.4-10
2.4.5 OPS GNC 2 ..... 2.4-10
2.4.5.1 Displays Available ..... 2.4-11
2.4.5.2 Basic Functions Available ..... 2.4-12
2.4.6 OPS GNC3 ..... 2.4-12
2.4.6.1 Displays Available ..... 2.4-13
2.4.6.2 Basic Functions Available ..... 2.4-13
2.4.7 OPS GNC6 ..... 2.4-14
2.4.7.1 Displays Available ..... 2.4-15
2.4.7.2 Basic Functions Available ..... 2.4-15
2.4.8 OPS GNC8 ..... 2.4-15
2.4.8.1 Displays Available ..... 2.4-15
2.4.8.2 Basic Functions Available ..... 2.4-16
2.4.9 OPS SM2/4 ..... 2.4-16
2.4.9.1 Displays Available ..... 2.4-17
2.4.9.2 Basic Functions Available ..... 2.4-18
2.5 ACTUATOR/HYDRAULIC ACTIVATION RESTRICTIONS ..... 2.5-1
3. CRT DISPLAYS ..... 3.1-1
3.1 MCDS/GPC ASSIGNMENT HIERARCHY ..... 3.1-2
3.2 STANDARD CRT DISPLAY PAGE ..... 3.2-1
3.3 OPS, SPEC, DISP PAGE HIERARCHY ..... 3.3-1
3.4 USER'S GUIDE DISPLAY FORMAT ..... 3.4-1
3.4.1 DISPLAY: XXXXIPL MENU ..... 3.4-3
3.4.2 DISPLAY: DEU STAND-ALONE SELF-TEST (DEU SAST) ..... 3.4-9

RELEASE: OI20 Date: 12/20/90
BOOK: PASS User's Guide ..... Rev: 0
3.5.1041 DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.1051 DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.1061 DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.2011(G) DISPLAY: UNIV PTG ..... 1
3.5.2011(S) DISPLAY: ANTENNA ..... 1
3.5.2021(G) DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.2021(S) DISPLAY: PL BAY DOORS ..... 1
3.5.3011 DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.3021 DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.3031 DISPLAY: XXXXX MANEUVER YYYYY ..... 1
3.5.3041 DISPLAY: ENTRY TRAJ 1 ..... 1
3.5.3042 DISPLAY: ENTRY TRAJ 2 ..... 1
3.5.3043 DISPLAY: ENTRY TRAJ 3 ..... 1
3.5.3044 DISPLAY: ENTRY TRAJ 4 ..... 1
3.5.3045 DISPLAY: ENTRY TRAJ 5 ..... 1
3.5.3051 DISPLAY: VERT SIT 1 ..... 1
3.5.3052 DISPLAY: VERT SIT 2 ..... 1
3.5.4011(S) DISPLAY: ANTENNA ..... 1
3.5.4021(S) DISPLAY: PL BAY DOORS ..... 1
3.5.6011 DISPLAY: XXXXXX TRAJ ..... 1
3.5.6021 DISPLAY: VERT SIT 1 ..... 1
3.5.6031 DISPLAY: VERT SIT 2 ..... 1
3.5.8011 DISPLAY: FCS/DED DIS C/O ..... 1
3.5.9011(G) DISPLAY: GPC MEMORY ..... 1
3.5.9011(P) DISPLAY: MASS MEMORY R/W ..... 1
4. DEDICATED DISPLAYS ..... 4.1-1
4.1 DATA PROCESSING SYSTEM (DPS) TALKBACKS ..... 4.1-1
4.2 COMPUTER ANNUNCIATION MATRIX ..... 4.2-1
4.3 CAUTION AND WARNING LIGHTS ..... 4.3-1
4.4 MASTER ALARM ..... 4.4-1
4.5 SM ALERT LIGHT ..... 4.5-1
4.6 REMOTE MANUPULATOR SYSTEM (RMS) INDICATORS ..... 4.6-1
4.6.1 RMS Master Alarm (Panel A8A1) ..... 4.6-1
4.6.2 RMS Mode Lights (Panel A8A1) ..... 4.6-1
4.6.3 RMS Auto SEQ Lights (Panel A8A1) ..... 4.6-1
4.6.4 RMS Caution Lights (Panel A8A1) ..... 4.6-1
4.6.5 RMS Brakes Indicator (Panel A8A1) ..... 4.6-1
4.6.6 RMS Safing Barber-Pole Indicator (Panel A8A1) ..... 4.6-1
4.6.7 RMS Software Stop Barber-Pole Indicator (Panel A8A1) ..... 4.6-1
4.6.8 Rate MIN Indicator (Panel A8A1) ..... 4.6-2
4.6.9 Rate Hold Indicator (Panel A8A1) ..... 4.6-2
4.6.10 Rate Scale Indicator (Panel A8A1) ..... 4.6-2
4.6.11 EE Rigid Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.12 EE Derigid Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.13 EE Close Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.14 EE Open Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.15 EE Capture Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.16 EE Extend Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.17 Shoulder Brace Release Barber-Pole Indicator (Panel A8A1) ..... 4.6-2
4.6.18 STBD RMS STO/LAT Indicators (Panel A8A2) ..... 4.6-3
4.6.19 STBD RMS Ready-For-Latch AFT/MID/FWD Barber-Pole Indicators (Panel A8A2) ..... 4.6-3
4.6.20 PORT RMS STO/LAT Indicators (Panel A8A2) ..... 4.6-3
4.6.21 PORT RMS Ready-For-Latch AFT/MID/FWD Barber-Pole Indicators (Panel A8A2) ..... 4.6-3
4.6.22 RMS Digital Display ..... 4.6-3
4.6.23 RMS Actual And Commanded Rates Indicator ..... 4.6-3
4.7 GNC DEDICATED DISPLAYS ..... 4.7-1
4.7.1 ATTITUDE DIRECTION INDICATOR (ADI) ..... 4.7-2
4.7.2 HORIZONTAL SITUATION INDICATOR (HSI) ..... 4.7-7Date:BOOK: PASS User's GuideRev: 0Rev:12/20/90
4.7.3 ALPHA MACH INDICATOR (AMI) ..... 4.7-12
4.7.4 ALTITUDE/VERTICAL VELOCITY INDICATOR (AVVI) ..... 4.7-20
4.7.5 SURFACE POSITION INDICATOR (SPI)
4.76
FLIGHT CONTROL SYSTEM (FCS) MODE STATUS LIGHTS ..... 4.7-22
4.7.7 REACTION CONTROL SYSTEM (RCS) ACTIVITY LIGHTS ..... 4.7-25
4.8 HEAD-UP DISPLAY (HUD) ..... 4.8-1
5. SWITCHES ..... 5.1-1
5.1 TABLE FORMAT ..... 5.1-1
5:2 DEU KEYBOARD ..... 5.2-1
6. FAULT ANNUNCIATION AND MESSAGES ..... 6.1-1
6.1 ANNUNCIATION ..... 6.1-1
6.2 MESSAGES ..... 6.2-1
7. GROUND/GPC INTERFACES ..... 7.1-1
7.1 LAUNCH DATA BUS ..... 7.1-1
7.1.1 LDB Protocol/Polling ..... 7.1-1
7.1.2 LDB Polling Controls ..... 7.1-1 ..... 7.1-1
7.1.3 LDB Mass Memory Operations ..... 7.1-2
7.1.4 LDB SSME Load Operations ..... 7.1-2
7.1.5 LDB Test Control Supervisor Operations ..... 7.1-2 ..... 7.1-2
7.1.6 Explicitly Coded Programs (ECP) ..... 7.1-5 ..... 7.1-5
7.1.6.1 Actuator Initialization (AI)
7.1-5
7.1-5
7.1.6.1.1 Control Interfaces
7.1-6
7.1-6
7.1.6.1.2 Limits
7.1.6.1.2 Limits ..... 7.1-14
7.1.6.1.3 Error Processing
7.1.6.1.3 Error Processing
7.1-14
7.1-14
7.1.6.1.4 Constraints/Assumptions
7.1.6.1.4 Constraints/Assumptions
7.1-14
7.1-14
7.1.6.2 Ramp Function Generator (RFG)
7.1.6.2 Ramp Function Generator (RFG)
7.1-14
7.1-14
7.1.6.2.1 Control Interfaces
7.1.6.2.1 Control Interfaces
7.1-17
7.1-17
7.1.6.2.2 Limits
7.1-17
7.1-17
7.1.6.2.3 Error Processing
7.1.6.2.3 Error Processing
7.1-17
7.1-17
7.1.6.2.4 Constraints/Assumptions
7.1.6.2.4 Constraints/Assumptions
7.1-19
7.1-19
7.1.6.3 Frequency Response Test (FRT) ..... 7.1-19
7.1.6.3.1 Control Interfaces
7.1.6.3.1 Control Interfaces
7.1-21
7.1-21
7.1.6.3.2 Limits
7.1-21
7.1-21
7.1.6.3.3 Error Processing
7.1-22
7.1-22
7.1.6.3.4 Constraints/Assumptions
7.1.6.3.4 Constraints/Assumptions ..... 7.1-22
7.1.6.4 Dedicated Display Checkout (DDCO) ..... 7.1-22
7.1.6.4.1 Control Interfaces
7.1-22
7.1-22
7.1.6.4.2 Limits
7.1-22
7.1-22
7.1.6.4.3 Error Processing
7.1.6.4.3 Error Processing
7.1-22
7.1-22
7.1.6.4.4 Constraints/Assumptions
7.1.6.4.4 Constraints/Assumptions
7.1-27
7.1-27
7.1.6.5 Multiple Actuator Test (MAT)
7.1-27
7.1-27
7.1.6.5.1 Control Interfaces
7.1-28
7.1-28
7.1.6.5.2 Limits
7.1.6.5.2 Limits
7.1-29
7.1-29
7.1.6.5.4 Constraints/Assumptions ..... 7.1-29
7.1.6.6 Body Flap Drive (BFD) ..... 7.1-29 ..... 7.1-29
7.1.6.6.1 Control Interfaces
7.1.6.6.1 Control Interfaces
7.1.6.6.2 Limits ..... 7.1-30
7.1.6.6.3 Error Processing ..... 7.1-30
7.1.6.6.4 Constraints/Assumptions ..... 7.1-31
7.1.6.7 Body Flap Monitor (BFM) ..... 7.1-31
7.1.6.7.1 Control Interfaces ..... 7.1-31
7.1.6.7.2 Limits ..... 7.1-31
7.1.6.7.3 Error Processing ..... 7.1-32
7.1.6.7.4 Constraints/Assumptions ..... 7.1-32 ..... 7.1-327.1.7 Launch Sequence Commands
\begin{tabular}{llll} 
RELEASE: & OI20 & Date: & 12/20/90 \\
BOOK: & PASS User's Guide & Rev: & 0
\end{tabular}
7.1.8 DEU Read Capability ..... 7.1-32
7.2 UPLINK ..... 7.2-1
7.2.1 Control Interfaces ..... 7.2-1
7.2.2 Software Interfaces ..... 7.2-1
7.2.2.1 NSP Data ..... 7.2-1
7.2.2.2 Validity Checking ..... 7.2-1
7.2.3 Uplink Commands ..... 7.2-3
7.2.3.1 Single-Stage Commands ..... 7.2-3
7.2.3.1.1 MDM Command ..... 7.2-5
7.2.3.1.2 Word-By-Word Correction ..... 7.2-6
7.2.3.1.3 Buffer Execute (Two-Stage) ..... 7.2-6
7.2.3.1.4 Buffer Clear (Two-stage or SPC) ..... 7.2-6
7.2.3.1.5 Uplink Activity Indicator ..... 7.2-7
7.2.3.2 Two-Stage Commands ..... 7.2-7
7.2.3.3 Time Executed Commands ..... 7.2-7
7.2.3.4 Payload Throughput ..... 7.2-7
7.2.4 Uplink Restrictions/Notes ..... 7.2-13
7.3 DOWNLIST ..... 7.3-1
7.3.1 FORMATS AND FORMATTER PROGRAMS ..... 7.3-3
7.3.2 FAULT SUMMARY PAGE ..... 7.3-7
7.3.3 DEU MESSAGES AND KEYBOARD LAYOUT ..... 7.3-10
8. DATA ANALYSIS ..... 8.1-1
8.1 GPC ERRORS ..... 8.1-1
8.1.1 GPC FAIL-TO-SYNCS ..... 8.1-1
8.1.2 GPC ERROR LOG (CZ2V_GPC_ERR_LOG) ..... 8.1-1
8.2 INPUT/OUTPUT (I/O) ERRORS ..... 8.2-1
8.2.1 I/O Related User Notes ..... 8.2-17
8.2.2 I/O Error Log (CZ2V_IO_ERR_LOG) ..... 8.2-17
8.3 DUMP ANALYSIS ..... 8.3-1
8.3.1 SYNC TRACE LOG ..... 8.3-1
8.3.2 WAIT STATE ..... 8.3-2
8.4 PASS MICROFICHE ..... 8.4-1
8.4.1 MASS MEMORY BUILD (MMBXXXX) ..... 8.4-1
8.4.2 MASS MEMORY PATCH ..... 8.4-1
8.4.3 MASS MEMORY DUMP (MMB) ..... 8.4-2
8.4.4 ILOAD REPORT (ILDMAP) ..... 8.4-2
8.4.5 PASS SYSTEM SOFTWARE ..... 8.4-2
8.4.6 APPLICATIONS SOFTWARE ..... 8.4-3
8.4.7 HALSTAT ..... 8.4-3
8.4.8 DISASSEMBLY (DASS) ..... 8.4-3
8.4.9 AUTODOC (AUTOMATIC DOCUMENTATION) ..... 8.4-3
8.4.10 INCLUDE LIBRARY (INCL80) ..... 8.4-4
8.5 MASS MEMORY DIRECTORY ..... 8.5-1
8.6 DEU IPL LOG TABLE (CZ2V_DEU_IPL_LOGTB) ..... 8.6-1
Appendix A. SUBJECT CROSS-REFERENCE ..... A-1
Appendix B. USER NOTES CROSS-REFERENCE ..... B-1
Appendix C. USER NOTES ..... C-1
Appendix D. COMPILER ERRORS ..... D-1
Appendix E. GPC ERROR MESSAGES ..... E-1
Appendix F. I/O ERROR MESSAGES ..... F-1
Appendix G. FAULT SUMMARY PAGE MESSAGES ..... G-1

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0Appendix H. DISTRIBUTION LISTH-1

\section*{RELEASE: OI20 \\ BOOK: PASS User's Guide \\ FIGURES}

\author{
Date: \(12 / 20 / 90\)
}

RELEASE: OI20 Date: ..... 12/20/90
BOOK: PASS User's Guide Rev: 0
3.3051 ..... 3.5.3051-1
3.3052 ..... 3.5.3052-1
3.8011 ..... 3.5.8011-1
3.9011(P) ..... 3.5.9011(P)-1
4-1. Computer Annunication Matrix (XAM) ..... 4.2-1
4-2. RMS Rate Meter ..... 4.6-4
4-3. ADI Unit ..... 4.7-3
4-4. HSI Display ..... 4.7-8
4-5. AMI Unit ..... 4.7-13
4-6. AVVI Unit ..... 4.7-17
4-7. Surface Position Indicator (SPI) ..... 4.7-20
6-1. Fault Message Format ..... 6.1-2
7.3-1 FSP Message Definition ..... 7.3-7
7.3-2 DEU Message Format ..... 7.3-10
7.3-3 MDCS Keyboard Layout ..... 7.3-12
8.1-1 GPC Error Word 5 ..... 8.1-2
8.2-1 I/O Errors Which May be Handled by Application Processes ..... 8.2-2
8.2-2 I/O Errors Handled By FCOS ..... 8.2-3
8.2-3 Example of Status Slot Layout ..... 8.2-4
8.2-4 Format of the Transaction Status Word ..... 8.2-5
8.2-5 Bypass/Commfault Words Description ..... 8.2-6
8.3-1 ..... 8.3-1
8.5-1 MASS Memory Directory Format ..... 8.5-2
8.6-1 DEU IPL LOG ENTRY ..... 8.6-1
RELEASE: OI20 Date: ..... 12/20/90BOOK: PASS User's Guide \(\quad\) Rev:
TABLES
2-1. MASS MEMORY PHASE/MEMORY CONFIGURATION ..... 2.2-2
2-2. GPC IPL SEQUENCE ..... 2.3-3
2-3. EXECUTION MATRIX ..... 2.4-1
2-4. NBAT TERMINOLOGY ..... 2.4-2
2-5. LEGAL OPS TRANSITIONS ..... 2.4-3
2-7. NBAT FOR P9 ..... 2.4-8
2-8. NBAT FOR G1 ..... 2.4-10
2-9. NBAT FOR G2 ..... 2.4-12
2-10. NBAT FOR G3 ..... 2.4-14
2-11. NBAT FOR G8 ..... 2.4-16
2-12. NBAT FOR S2/S4 ..... 2.4-18
2-13. PASS ACTUATOR INITIALIZATION (AEROSURFACES) ..... 2.5-2
2-14. PASS ACTUATOR INITIALIZATION (SSMEs) ..... 2.5-4
2-15. PASS ACTUATOR INITIALIZATION (OMS) ..... 2.5-6
2-16. PASS ACTUATOR INITIALIZATION (SRBS) ..... 2.5-9
3-1. CRITICAL FORMATS ..... 3.4-2
3.IPL-1 DISPLAY FUNCTIONS ..... 3.4-5
3.IPL-2 DISPLAY ITEMS ..... 3.4-8
3-2. CRT DISPLAYS ..... 3.5-1
3.000-1 DISPLAY FUNCTIONS ..... 3.5.000-2
3.000-2 DISPLAY ITEMS ..... 3.5.000-8
3.001-1 DISPLAY FUNCTIONS ..... 3.5.001-2
3.001-2 DISPLAY ITEMS ..... 3.5.001-8
3.002-1 DISPLAY FUNCTIONS ..... 3.5.002-2
3.002-2 DISPLAY ITEMS ..... 3.5.002-8
3.006-1 DISPLAY FUNCTIONS ..... 3.5.006-2
3.018-1 DISPLAY FUNCTIONS ..... 3.5.018-2
3.019-1 DISPLAY FUNCTIONS ..... 3.5.019-2
3.020-1 DISPLAY FUNCTIONS ..... 3.5.020-2
3.020-2 DISPLAY ITEMS ..... 3.5.020-5
3.021-1 DISPLAY FUNCTIONS ..... 3.5.021-2
3.021-2 DISPLAY ITEMS ..... 3.5.021-6
3.022-1 DISPLAY FUNCTIONS ..... 3.5.022-2
3.022-2 DISPLAY ITEMS ..... 3.5.022-6
3.023-1 DISPLAY FUNCTIONS ..... 3.5.023-2
3.023-2 DISPLAY ITEMS ..... 3.5.023-6
3.025-1 DISPLAY FUNCTIONS ..... 3.5.025-2
3.025-2 DISPLAY ITEMS ..... 3.5.025-5
3.033-1 DISPLAY FUNCTIONS ..... 3.5.033-2
3.033-2 DISPLAY ITEMS ..... 3.5.033-8
3.034-1 DISPLAY FUNCTIONS ..... 3.5.034-2
3.034-2 DISPLAY ITEMS ..... 3.5.034-5
3.040-1 DISPLAY FUNCTIONS ..... 3.5.040-2
3.040-2 DISPLAY ITEMS ..... 3.5.040-3
3.040-3 SENSOR SELF-TEST LIMITS ..... 3.5.040-4
3.041-1 DISPLAY FUNCTIONS ..... 3.5.041-2
3.041-2 DISPLAY ITEMS ..... 3.5.041-4
3.041-3 RGA LIMIT VALUES ..... 3.5.041-5
3.041-4 ADTA LIMIT VALUES ..... 3.5.041-5
3.042-1 DISPLAY FUNCTIONS ..... 3.5.042-2
3.042-2 DISPLAY ITEMS ..... 3.5.042-3
3.043-1 DISPLAY FUNCTIONS ..... 3.5.043-2
3.043-2 DISPLAY ITEMS ..... 3.5.043-4
3.044-1 DISPLAY FUNCTIONS ..... 3.5.044-2
RELEASE: OI20 Date: 12/20/90BOOK: PASS User's Guide Rev:
3.044-2 DISPLAY ITEMS ..... 3.5.044-3
3.045-1 DISPLAY FUNCTIONS ..... 3.5.045-2
3.045-2 DISPLAY ITEMS ..... 3.5.045-3
3.050-1 DISPLAY FUNCTIONS ..... 3.5.050-2
3.050-2 DISPLAY ITEMS ..... 3.5.050-5
3.051-1 DISPLAY FUNCTIONS ..... 3.5.051-2
3.051-2 DISPLAY ITEMS ..... 3.5.051-7
3.053-1 DISPLAY FUNCTIONS ..... 3.5.053-2
3.053-2 DISPLAY ITEMS ..... 3.5.053-4
3.060-1 DISPLAY FUNCTIONS ..... 3.5.060-2
3.060-2 DISPLAY ITEMS ..... 3.5.060-5
3.062-1 DISPLAY FUNCTIONS ..... 3.5.062-2
3.062-2 DISPLAY ITEMS ..... 3.5.062-5
3.064-1 DISPLAY FUNCTIONS ..... 3.5.064-2
3.064-2 DISPLAY ITEMS ..... 3.5.064-5
3.090-1 DISPLAY FUNCTIONS ..... 3.5.090-2
3.090-2 DISPLAY ITEMS ..... 3.5.090-4
3.094-1 DISPLAY FUNCTIONS ..... 3.5.094-2
3.094-2 DISPLAY ITEMS ..... 3.5.094-5
3.095-1 DISPLAY FUNCTIONS ..... 3.5.095-2
3.095-2 DISPLAY ITEMS ..... 3.5.095-5
3.099-1 DISPLAY FUNCTIONS ..... 3.5.099-2
3.100-1 DISPLAY FUNCTIONS ..... 3.5.100-2
3.100-2 DISPLAY ITEMS ..... 3.5.100-6
3.101-1 DISPLAY FUNCTIONS ..... 3.5.101-2
3.101-2 DISPLAY ITEMS ..... 3.5.101-3
3.101-3 SENSOR SELF-TEST LIMITS ..... 3.5.101-4
3.102-1 DISPLAY FUNCTIONS ..... 3.5.102-2
3.102-2 DISPLAY ITEMS ..... 3.5.102-4
3.102-3 RGA LIMIT VALUES ..... 3.5.102-5
3.102-4 ADTA LIMIT VALUES ..... 3.5.102-5
3.104-1 DISPLAY FUNCTIONS ..... 3.5.104-2
3.104-2 DISPLAY ITEMS ..... 3.5.104-8
3.105-1 DISPLAY FUNCTIONS ..... 3.5.105-2
3.105-2 DISPLAY ITEMS ..... 3.5.105-3
3.105-3 TCS ERROR CODES ..... 3.5.105-5
3.106-1 DISPLAY FUNCTIONS ..... 3.5.106-2
3.110-1 DISPLAY FUNCTIONS ..... 3.5.110-2
3.110-2 DISPLAY ITEMS ..... 3.5.110-3
3.111-1 DISPLAY FUNCTIONS ..... 3.5.111-2
3.111-2 DISPLAY ITEMS ..... 3.5.111-4
3.112-1 DISPLAY FUNCTIONS ..... 3.5.112-2
3.112-2 DISPLAY ITEMS ..... 3.5.112-4
3.113-1 DISPLAY FUNCTIONS ..... 3.5.113-2
3.113-2 DISPLAY ITEMS ..... 3.5.113-8
3.1011-1 DISPLAY FUNCTIONS ..... 3.5.1011-2
3.1041-1 DISPLAY FUNCTIONS ..... 3.5.1041-3
3.1041-2 DISPLAY ITEMS ..... 3.5.1041-7
3.2011(G)-1 DISPLAY FUNCTIONS ..... 3.5.2011(G)-2
3.2011(G)-2 DISPLAY ITEMS ..... 3.5.2011(G)-7
3.2011(G)-3 BODY VECTOR IC'S ..... 3.5.2011(G)-8
3.2011(S)-1 DISPLAY FUNCTIONS ..... \(3.5 .2011(\mathrm{~S})-2\)
3.2011(S)-2 DISPLAY ITEMS ..... 3.5.2011(S)-6
3.2021(S)-1 DISPLAY FUNCTIONS ..... 3.5.2021(S)-2
3.2021(S)-2 DISPLAY ITEMS ..... 3.5.2021(S)-5
3.3041-1 DISPLAY FUNCTIONS ..... 3.5.3041-3
3.3041-2 DISPLAY ITEMS ..... 3.5.3041-4
3.3051-1 DISPLAY FUNCTIONS ..... 3.5.3051-2
3.8011-1 DISPLAY FUNCTIONS ..... 3.5.8011-2
RELEASE: OI20 Date: 12/20/90 BOOK: PASS User's Guide
3.8011-2 DISPLAY ITEMS ..... 3.5.8011-5
3.9011(P)-1 DISPLAY FUNCTIONS ..... 3.5.9011(P)-2
3.9011(P)-2 DISPLAY ITEMS ..... \(3.5 .9011(\mathrm{P})-7\)
3.9011(P)-3 MMU REGISTER A \& B CONTENTS ..... 3.5.9011(P)-9
4.6-1 DEDICATED DISPLAY DATA ..... 4.6-5
4.7-1 DEDICATED DISPLAY AVAILABILITY MATRIX ..... 4.7-1
4.7.1-1 ADI DISPLAY DATA ..... 4.7-4
4.7.1-2 DEDICATED DISPLAY SWITCH CONTROLS ..... 4.7-5
4.7.1-3 DEDICATED DISPLAY DATA ..... 4.7-6
4.7.2-1 DEDICATED DISPLAY SWITCH CONTROLS ..... 4.7-9
4.7.2-2 DEDICATED DISPLAY DATA ..... 4.7-10
4.7.3-1 DEDICATED DISPLAY SWITCH CONTROLS ..... 4.7-14
4.7.3-2 DEDICATED DISPLAY DATA ..... 4.7-15
4.7.4-1 DEDICATED DISPLAY SWITCH CONTROLS ..... 4.7-18
4.7.4-2 DEDICATED DISPLAY DATA ..... 4.7-19
4.7.5-1 DEDICATED DISPLAY DATA ..... 4.7-21
4.7.6-1 DEDICATED DISPLAY DATA ..... 4.7-24
5-1. SWITCHES ..... 5.1-2
7.1-1 TCS OPERATOR CODE/MODE MATRIX ..... 7.1-4
7.1-2 AI MODE 0 (INITIAL) ..... 7.1-7
7.1-3 AI MODE 1 (PRECONDITIONING) ..... 7.1-8
7.1-4 AI MODE 2 (FERRY) ..... 7.1-9
7.1-5 AI MODE 3 (RAIN) ..... 7.1-10
7.1-6 AI MODE 4 (GRAVITY) ..... 7.1-11
7.1-7 AI MODE 5 (NULL) ..... 7.1-12
7.1-8 AI MODE 6 (TURNAROUND) ..... 7.1-13
7.1-9 ACTUATORS/DEVICE AVAILABLE FOR TEST AND INITIALIZATION ..... 7.1-15
7.1-10 POSITION AND RATE DRIVE COMMAND UNITS ..... 7.1-18
7.1-11 DEDICATED DISPLAY CHECKOUT CALL OPERATOR FORMAT ..... 7.1-23
7.2-1 UPLINK COMMAND HEADER BITS ..... 7.2-4
7.2-2 UPLINK OF CODES/MEMORY CONFIGURATION ..... 7.2-8
7.3-2 TOGGLE BUFFERS VS MEMORY CONFIGURATION ..... 7.3-4
7.3-3 DOWNLINK/DOWNLIST FORMATS AND TOGGLE BUFFERS ..... 7.3-5
7.3-4 DOWNLIST FORMATS IN DOWNLINK ..... 7.3-6
7.3-5 MAJOR FIELDS OF MESSAGES ..... 7.3-8
7.3-6 MAJOR FIELDS OF MESSAGES ..... 7.3-9
7.3-7 DEU KEYSTROKES ..... 7.3-11
8.1-1 GPC ERROR GROUP/CODE ..... 8.1-3
8.2-1 BUS NUMBERS ..... 8.2-19
8.2-2 BCE (1 THRU 24) STATUS WORD CONTENTS ..... 8.2-19
8.2-3 BCE (27) STATUS WORD CONTENTS ..... 8.2-22
8.2-4 BCE (28) STATUS WORD CONTENTS ..... 8.2-23
8.2-5 BCE (29) STATUS WORD CONTENTS ..... 8.2-24
8.2-6 BCE (30) STATUS WORD CONTENTS ..... 8.2-25
8.2-7 PASS FCOS I/O DEVICE IDs ..... 8.2-26
8.2-8 BCE ELEMENT NUMBER TABLE ..... 8.2-30

O

O

0

\section*{1. INTRODUCTION}

\subsection*{1.1 PURPOSE}

This User's Guide will provide the information necessary to operate and control the Primary Avionics Software System (PASS) indicated on the Change Control Page. This information is in accordance with, and fulfillment of, IRD 2a9. In addition, it will contain selected information to assist in resolution of questions pertaining to flight software performance.
-1 As such, this User's Guide has been written:
A. from a 'man-in-the-loop' viewpoint
B. so that it is easy to find specific information
C. to assist IBM T\&O personnel (and any other interested parties) in providing timely answers to FSW questions.
\begin{tabular}{ll|l} 
RELEASE: & Ol20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: & 0
\end{tabular}

\subsection*{1.2 SCOPE}

This User's Guide describes how the flight software is used; including how it is loaded, external interfaces to and from the man-in-the-loop, messages, and other pertinent information. A certain level of knowledge about PASS on the part of the user has been assumed. Information about interfaces with other software such as Back-up Flight Control, SIM FLIGHT, etc. is included only as it applies to PASS related topics. User's desiring additional information about specific topics should contact the T\&O personnel or IBM-Houston personnel.
\(\qquad\)

\subsection*{1.3 APPLICABLE DOCUMENTS}

The following documents form the basis from which information for the User's Guide was extracted.
\begin{tabular}{ll} 
Originator & Title \\
IBM & Software Design Specification \\
IBM & PASS Program Release Notice \\
NASA/JSC & OFT Computer Program Design Specification \\
NASA/JSC & Program Notes \\
NASA/JSC & MMU Program Release Notice \\
ROK & Functional subsystem Software Requirements
\end{tabular}


O
\(\qquad\)

RELEASE: OI20 Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

\subsection*{1.4 FSW DELIVERABLES}

The User's Guide will be released as a base document for each PASS OI release. Revisions will be made as required to reflect the current PASS being used.

RELEASE: OI20
BOOK: PASS User's Guide

Date: 12/20/90
Rev: 0

\section*{2. SYSTEM}

\subsection*{2.1 OVERVIEW}

This section of the User's Guide provides general information about the PASS System. Subsections and their intent are as follows:
-1 Mass Memory - a brief description of the contents of the Mass Memory Unit(s) and the format of the data.
-2 System Initialization - specifications of how to bring up each PASS System being supported; includes IPL, DEU LOAD, and any special limitations or instructions.
-3 Operational Sequences - a description of the Operational Sequences (OPS) and the legal transitions between them.

\subsection*{2.2 MASS MEMORY}

The Mass Memory Unit (MMU) is a device used to store all PASS software plus other programs which can be loaded via a GPC into a GPC or other orbiter hardware components. Information is stored in the MMU on magnetic tape. Each MMU is subdivided into three logical areas. Each area may contain a copy of the various pieces of orbiter software programs. Thus, each MMU contains three copies of PASS, referred to as "PASS, area \(1^{\prime \prime}\), PASS, area \(2^{\prime \prime}\), etc. The desired area to be loaded in the GPC is selectable via an IPL MENU display (see Section 3.4.1).

\subsection*{2.2.1 GPC Memory Configuration}

A GPC memory configuration may be loaded from a MMU via an IPL sequence (Section 2.3) or an OPS transition request (Section 2.4). (33749)

\subsection*{2.2.2 Mass Memory Allocation}

For a detailed MAP of mass memory allocation for various pieces of software, the user should refer to the Mass Memory Build listing for the appropriate release. This listing is part of the deliverable set for all releases except paper-patch releases (paper patches do not change the MAP). A table of mass memory phase versus memory configuration is provided in Table 2-1.
```

RELEASE: OI20
Date: 12/20/90
BOOK:

| TABLE 2-1. MASS MEMORY PHASE/MEMORY CONFIGURATION |  |  |
| :--- | :--- | :--- |
| PHASE | MEMORY |  |
| NO. | CONFIGURATION | DESCRIPTION |
|  |  |  |
| $1^{*}$ | N/A | GPC Bootstrap Loader and Mini-Directory |
| 2 | ALL | Resident System Software |
| 3 | $1,2,3,8,9$ | GNC Major Function Base (GNC-FB) |
| 4 | 1 | Ascent and Abort OPS (GNC 1/6-A) |
| 5 | 2 | On-Orbit OPS (GNC 2-A) |
| 6 | 3 | Entry OPS (GNC 3-A) |
| 7 | 8 | VU On-Orbit OPS (GNC 8) |
| 8 | 9 | VU Pre-Count OPS (GNC 9) |
| 9 | 6 | VU Checkout Function Base (VCO-FB) |
| 10 | 1 | Ascent and Abort OPS (GNC 1/6-B) |
| 11 | 3 | Entry OPS (GNC 3-B) |
| 12 | 6 | VU Mass Memory OPS (PL9) |
| 13 | 2 | On-Orbit OPS (GNC 2-B) |
| 14 | 4,5 | SM Function Base (SM-FB) |
| 15 | 4 | Orbit-Doors OPS (SM2) |
| 16 | 5 | Spacelab Support OPS (SM4); Reserved |
| 17,18 | N/A | Reserved for Growth |
| 19 | N/A | Payload Control Supervisor Sequences (PCS) |
| 20 | N/A | P/L Checkpoint; Reserved |
| 21 | N/A | SM Data Checkpoint |
| 22 | N/A | IMU Calibration Checkpoint |
| 23 | N/A | PDI Decom Format Load (DFL) |
| 24 | N/A | IDI Fetch Pointer Memory Load (FPL) |
| 25 | N/A | Telemetry Format Load (TFL) |
| 26 | N/A | GPC-STP/SW Loaders (GPC-STP, SSL, LOAD TBL) |
| $27-34$ | N/A | Subsystem Configuration Management (SCM) |
| $35-60$ | N/A | Roll-In-Displays |

* Not currently in the PASS Phase Table.

MEMORY CONFIGURATION TO PHASE CROSS REFERENCE

| MEMORY <br> CONFIGURATION | PHASE <br> NOS. |
| :--- | :--- |
|  |  |
| 1 | $2,3,4,10$ |
| 2 | $2,3,5,13$ |
| 3 | $2,3,6,11$ |
| 4 | $2,14,15$ |
| 5 | $2,14,16$ |
| 6 | $2,9,12$ |
| 8 | $2,3,7$ |
| 9 | $2,3,8$ |

### 2.3 SYSTEM INITIALIZATION

The software supports GPC initialization with two basic options. These basic options are defined as:
(1) the software support of the hardware/firmware IPL and (2) software support of non-IPL initialization.
-1 Hardware/Firmware IPL supporting software consists of a Bootstrap Loader (FCMBOOT), GPCIPL (which includes the Self Test Program (STP)), and the Systems Software Loader (FCMINSSL). FCMBOOT is loaded (from the MMU) by the IOP microcode upon IPL initiation. Upon moding the GPC from HALT to STBY, the Bootstrap Loader fetches GPCIPL and FCMINSSL from the MMU. If the fetch is successful, control of the CPU is passed to GPCIPL. GPCIPL passes control to the STP for a one cycle test. Upon completion of the STP without errors, GPCIPL gives control to the SSL. The SSL initiates loading of the selected PASS software system from the MMU.
-1.1 Non-IPL initialization is supported totally by the systems software.
-2 User Interface Software, utilizing FCOS facilities, provides for basic moding of the GPC and FCOS initialization after IPL. The definitions given below are broken into GPC moding and IPL categories, with GPC moding revolving around processing in response to the GPC MODE switch (HALT/STBY/RUN).
-3 The GPC MODE (HALT,STBY,RUN) and IPL switches are used to place the GPC into various on-line and off-line states and to control the IPL sequence. The "HALT" mode and IPL discrete are hardware functions.
-3.1 HALT mode - When in this mode, the GPC is in a hardware RESET controlled state. No software can be executed. Before execution of any software, the GPC must be powered on while in HALT.
-3.1.1 SLEEP mode - An AP-101S GPC will enter the SLEEP mode to conserve power if the following switch configuration exists for a period of 4.5 minutes:

Power Switch - ON
Mode Switch - HALT
IPL SEL SW - OFF
***** WARNING *****
A GPC in SLEEP mode will not IPL. If an MMU is selected on the IPL SEL SW and the IPL push button is depressed, the GPC will not respond.
The GPC can be removed from SLEEP mode by moving the mode switch from
HALT to STBY or by toggling the GPC power switch from ON to OFF to ON.
-3.2 STBY mode - When entered from HALT, this mode causes the hardware to be released from the RESET state giving control to the software. If IPL occurred, control will be given to the Bootstrap Loader program. For non-IPL mode switch transitions from HALT to STBY, control is passed to a HISAM dump function if DI13 and DI15 are TRUE. If HISAM is not requested, resident PASS software will perform preliminary initialization functions and loop in the cyclic switch monitor until moded to RUN. It should be noted that the power up of a GPC (previously loaded with PASS) must be accomplished in the HALT mode, or the PASS will immediately place the GPC into the WAIT state.

[^0]To temporarily remove a GPC from the common set (CS) or redundant set (RS) or in preparation for freeze dry sleep mode, the GPC should be moded from RUN to STBY, allowing a "MINIMUM" of three seconds for software recognition of the switch change and software cleanup. The GPC may then be moded back to RUN to rejoin the CS or moded to HALT for subsequent use. Unless adequate time is allowed for this process, the PASS cannot ensure a proper software initialization upon moding from HALT to STBY to RUN.
***** WARNING ${ }^{* * * * *}$
If more than one GPC is moded from RUN to STBY within a one second span, the GPCs moded to STBY can issue Fail Votes against GPCs remaining in the CS or RS. Therefore, when more than one GPC is being down moded from RUN to STBY, the user should delay approximately five seconds between successive actions.
Note: If a failure occurs during software execution in STBY or RUN, the GPC should be powered off in the failed mode (i.e., STBY or RUN). This allows the CPU microcode to perform put-a-way of CPU control data and registers which may be required to isolate the cause of the failure. The GPC should be dumped via the HISAM function before re-IPL or re-use.
-3.3 RUN mode - In this mode the GPC supports normal OPS-assigned vehicle operations. On transition from STBY to RUN, the PASS system services begin cyclic execution and the "OPS 0 " CRT display (if CRTs are on) will be GPC Memory.
-3.4 IPL - The IOP hardware initiates the hardware IPL sequence when this discrete input is detected while the GPC is in the HALT mode. The hardware sequence resets the IOP, stores a fixed pattern of " $\mathrm{C} 9 \mathrm{FB}^{\prime}$ in memory locations $0-1$ FFFF and "C6C6" in the remainder of the memory from locations 20000-7FFFF, and initiates a Mass Memory read of the bootstrap loader. Following the IPL, the CPU is left in the RESET state as described for the HALT mode.
-3.5 Due to potential ICC conflicts which could lead to CS/RS Fail-To-Syncs or other undesirable events, certain operations should be avoided when moding a GPC from STBY to RUN and during the 10 second wait after moding to RUN. (42433/46617)

### 2.3.1 Initial Program Load (IPL) Sequence

The following steps define a standard procedure which may be used to IPL a GPC (See Table 2-2). The steps assume no equipment (MMU, CRT, GPC, etc.) is powered on.
-1 If a "default" IPL is desired (that is, PASS, area 1 from the selected MMU is to be loaded), steps 6, 7, 9,12 should be omitted. If any other copy of PASS or any BFS is to be loaded, steps $6,7,9,12$ must be included.

### 2.3.1.1 IPL Sequence Failures

-1 Initial IPL - After the initial IPL (Ref. Step 10) and the MODE TB does not go B/P, one of two conditions exists:
(a) Hardware/Firmware problem: If system had IPLed prior, indications are a hardware problem. GPC should be dumped before proceeding.
(b) System has not IPLed (First attempt on new system): Problem could be (a) above or checksum bad. After trying different GPC, different MM, reloading MM, IPL prior system if hardware/firmware good, the problem is software and T\&O support should be used to determine problem and corrective action.
(c) Operational notes: If IPL sequence fails at this point (Step 10) GPC must be powered off, then on, for re-try. IBM engineer should be notified before re-try is attempted.

| TABLE 2-2. GPC IPL SEQUENCE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| \# | USER ACTION | PANEL | GPC HARDWARE | GPC SOFTWARE |
| 1 | Mass Memory <br> Power on - MMU1 <br> MMU2 | $\begin{aligned} & 014 \\ & 015 \end{aligned}$ | No Response | No Response |
| 2 | DEU(s) Power - STANDBY | C2A2 | No Response | No Response |
| 3 | Mass Memory IPL <br> Source Select to desired MMU | 06 | No Response | No Response |
| 4 | GPC to HALT mode | O6 | No Response | No Response |
| 5 | GPC Power - ON | 06 | No Response | No Response |
| 6 | BFC CRT display switch to ON (Menu IPL only) | C3A1 | No Response | No Response |
| 7 | BFC CRT SELECT switch to $1+2,2+3$, or 3+1 (Menu IPL only) | C3A1 | No Response | No Response |
| 8 | DEU(s) Power - ON (at least 30 seconds after step 2) | C2A2 | No Response | No Response |
| 9 | DEU LOAD - Push, then release ( $\mathrm{P} / \mathrm{R}$ ) (Menu IPL only) | O6 | No Response | No Response |
| 10 | GPC IPL - P/R (at least 2 minutes after step 1) | 06 | Drives mode TB-IPL; Fixed pattern stored in memory (C9FB from 0 -1FFFF, C6C6 from 20000-7FFFF); <br> Bootstrap loader read in from MMU; Mode TB reset to Barberpole <br> Note: No response if GPC in SLEEP mode | No Response |
| 11 | GPC to STBY mode | 06 | STBY discrete (DI01)-ON | Bootstrap fetches GPCIPL and SSL from MMU and passes CPU control to GPCIPL. |


| TABLE 2-2. GPC IPL SEQUENCE (Continued) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| \# | USER ACTION | PANEL | GPC HARDWARE | GPC SOFTWARE |
| 11 | (Continued) |  |  | STP executes one cycle; if successful, GPCIPL gives |
|  |  |  |  | If step 6 is done, GPCIPL loads DEU, selected in step 7, from MMU; IPL menu presented. (Go to step 12.) |
|  |  |  |  | If step 6 is not done, SSL loads PASS area 1 phase 2 into memory, sets mode TB-RUN. (Go to step 13.) Default load for an AP-101S GPC takes approximately 1 minute and 25 seconds from STBY to RUN talkback. |
| 12 | Select system to be loaded <br> (Menu IPL only) <br> 1 PASS Area 1 | KYBD | No Response | If PASS selected, system phase 2 loaded, Mode TB-RUN. |
|  | 3 PASS Area 2 <br> 5 PASS Area 3 <br> 2 BFS Area 1 <br> 4 BFS Area 2 <br> 6 BFS Area 3 |  |  | If BFS selected, the BSL2IPL menu will be presented. (Go to 14.) |
| 13 | GPC mode - RUN | 06 | RUN discrete (DI02)-ON | Enters OPS 0, presents GPC Memory display. (37517) |
|  |  |  |  | Note: To prevent ICC conflicts, wait 10 seconds after moding to RUN before doing any operations listed under the GPC mode discussion in Section 2.3-3. |
| 14 | Mass Memory - IPL <br> Source Select OFF | 06 | No Response | Removes mask to allow access of MMU. For BFS, present GPC Memory on CRT. |

RELEASE: OI20 Date: 12/20/90

BOOK: PASS User's Guide Rev: 0
-2 IPL Failure on Mode Switch - If the GPC mode switch is moved to STBY (Ref. Step 13) and Talkback (TB) hangs in Barberpole on a Default IPL or no IPL Menu is displayed, the GPC may be in the WAIT state (can be verified in a Lab). Causes for IPL hang in WAIT state are:
(a) Bootstrap Loader goes to WAIT if MM Source Select SW is off. (See Par. 2.3.1.3)
(b) Bootstrap Loader checksum failures ( 3 tries) could be caused by MM bus errors. (See Par. 2.3.1.3)
(c) STP Failure. Some STP failures do not cause a hard WAIT state, and GPC IPL will display the STP error message if the IPL is a menu IPL.
(d) SSL goes to WAIT if MM Source Select SW is off.
(e) SSL determines checksum error. Could be caused by MM bus errors, but unlikely since IOP Microcode and Bootstrap Loader were both successful on the same bus.
(f) Operational Notes:
-1 If IPL sequence fails with Mode TB BP, the GPC should be powered off before the Mode SW is moved back to HALT. This causes a microcode put-away of the current PSW and CPU reg contents if the memory PSA is unprotected at the time of the failure.
-2 A HISAM dump may or may not succeed dependent upon whether the failure occurred before the HISAM dump code in GPC IPL was loaded from MM. Do NOT re-IPL this GPC until the GPC is dumped unless its use is absolutely mandatory.

### 2.3.1.2 No Display

If GPC mode switch is placed to RUN after MODE TB RUN and OPS 0 display (GPC Memory) is not presented, the DEUs may require loading. Proceed to Section 2.3.2.

### 2.3.1.3 CAM Light

The Bootstrap Loader activates the IOP Watchdog (W/D) Timer to provide the user an indicator in case of Bootstrap fail. The maximum count of the IOP W/D timer is $3.14+$ seconds; however, the MMU position to read GPCIPL/SSL takes approximately 6 seconds, so the timer expires during the CPU loop waiting for the MM Ready discrete. (54012) The W/D Timer is reset and the CAM light extinguished at the successful conclusion of the Bootstrap Loader.

### 2.3.2 DEU Load

To load the Display Control Program (DCP) and Critical Format data into the DEU, place the DEU load switch (Panel O6) to LOAD and then OFF. This action causes FCOS to get the current DCP and Critical Format data off MM and place into the DEU. This action is restricted to initial OPS 0 (after IPL) or memory configuration 6 (OPS PL 9).
-1 When action is taken, the words DEU LOAD should be displayed in the lower left corner of the CRT being loaded. When load is complete, in the middle of the screen IPL COMPLETE will be flashed prior to GPC Memory (OPS 0) or MMU Read/Write (PL 9) being displayed. (37706)
-2 An entry is placed in the DEU IPL Log Table (see section 8.6) after each DEU load attempt to indicate the failure/success of the load.

O
$\square$

### 2.4 OPERATIONAL SEQUENCES

The FSW is divided into major segments called OPERATIONAL SEQUENCES (OPS). An operational sequence is defined to be that software required to support a pre-defined phase of a mission. Each operational sequence is a separate memory configuration (except OPS G6 which is in the same memory configuration as OPS G1).
-1 An OPS may be subdivided into Major Modes. The modes are subdivisions of the overall OPS all software for each mode is resident in the memory configuration of the OPS. The PASS is composed of nine OPS which are shown in the following Execution Matrix (Table 2-3). These OPS are contained in eight memory configurations; i.e., there are eight possible GPC memory loads from MM. (GNC OPS1 and OPS6 are in the same memory configuration.)

## TABLE 2-3. EXECUTION MATRIX


-2 Each Memory Configuration (MC) is composed of three or more Phases from the MMU. A request to initiate an OPS in a GPC (or set of GPCs) will result in the requested memory configuration being loaded into the GPC(s) either directly from the appropriate MMU or from another GPC which already contains the desired memory configuration (default). (15620/28353/36094/36549/37657/37660/39021/40622/51349/51373) (33268) (33299) (52779)
-3 For each OPS/memory configuration, the user must specify which GPC(s) is to participate and which data buses are to be commanded by which GPC in the MC. A default set of assignments has been defined for each MC and is commonly referred to as a Nominal Bus Assignment Table (NBAT). This Table is actually two tables: a GPC Reconfiguration Table (GRT), and a Bus Assignment Table (BAT). See Table 2-4 for a description of the NBAT terminology.

## TABLE 2-4. NBAT TERMINOLOGY

## CONFIG - Memory Configuration/OPS

GPC - ID(s) of GPC(s) in target set (GRT)
STRING - Identifies a pair of Flight Critical BUSes, including all LRUs attached to them. Pairs are FFn-FAn, where n can be 1-4.

PL $1 / 2$ - Payload buses (note that the same GPC will command both).
CRT - MCDS bus/GPC assignment. See Section 3.1 for a description of DEU assigment based on Major Function, OPS, etc.

LAUNCH - Assignment of the GSE polling buses (Launch Data Bus) to a GPC (does not initiate polling).

MMU - Assignment of MMU buses to GPC. Affects use of MMU for non-OPS transitions only.
-4 The NBAT for a specific MC may be changed via the GPC Memory display (refer to Section 3.5.000 for a detailed write-up on the display and its use). The default assignments are specified in the following paragraphs describing each OPS.
-5 When viewing GPC Memory display, the NBAT will indicate current desired assignments for the specified memory configuration. The actual bus assignments will match those specified by the NBAT only if an OPS Transition (or Mode Recall) has been requested for that memory configuration after the NBAT has been updated. The right most number will be the ID of the GPC assigned to command the entry. (25372) (28364) (36416) (37546) (55313)
-6 Due to Direct Memory Access (DMA) interference between the IOP and CPU, a FC string imbalance may cause synchronization problems. (52100)
-7 Transitions between OPS must generally be from the first or last mode of an OPS to the first mode of the next OPS. Table 2-5 defines the legal transitions between OPS which may be made in the PASS system. (28343/30780/36183/37501)

TABLE 2-5. LEGAL OPS TRANSITIONS

$A=$ AUTO TRANSITION
$C=$ COMBINED AUTO AND MANUAL
R = OPS/MODE RECALL SUPPORT
$S=$ SPECIAL, THRU OPS 0 ONLY

* GPC OPS 0 CAN BE FORCED FROM ANY OPS BY MOVING GPC MODE SW FROM RUN TO STBY THEN TO RUN; FROM MM 304 OR MM 602, TRANSITION TO OPS 0 PRIOR TO REACHING PRESCRIBED VELOCITY LIMITS WILL INHIBIT TRANSITIONS BACK TO A GNC OPS.
** THE LEGALITY OF THE SM4 OPS IS RECONFIGURABLE, THEREFORE THE TRANSITIONS TO AND FROM SM401 AND SM402 ARE LEGAL ONLY WHEN SM4 IS A VALID MEMORY CONFIGURATION.
*** THE AUTOMATIC TRANSITION MAY BE INHIBITED DURING CERTAIN CONTINGENCY ABORT SITUATIONS.


### 2.4.1 OPS 0

OPS 0 is active when no application functions are active. System level functions only are cyclically executing. The OPS is entered by keyboard request 'OPS 000 PRO' from OPS G201 or G901 or by moding the GPC from STANDBY to RUN (assuming power was applied in HALT). (39027)
-1 The memory configuration of OPS 0 is dependent upon how OPS 0 is entered. For entry from an IPL, only phase 2 (see Table 2-1) is present. In this configuration, the DEU load function may be utilized. Once the GPC has been transitioned to any OPS the DEU load function is not available in a subsequent OPS 0 . If entry to OPS 0 is via the keyboard from another OPS, the memory configuration of the previous OPS will be maintained; however, no functions of that OPS will be active.
-2 If a GPC is IPLed and moded to RUN and is the only GPC in run (determined by checking the sync discretes of the other four GPCs) it will assume command of all buses including DEUs $1-3$. If the GPC is a secondary one upon entry to OPS 0 from IPL, that is, another GPC is already in RUN, it will command no buses. DEUs will be commanded by the secondary GPC only if no DEU is commanded by any GPC already in the common set. (30138)

### 2.4.1.1 Displays Available

-1 SPEC 000 (GPC Memory) (OPS 0 Mode Display) - Provides GPC Reconfiguration Table (GRT), Bus Assignment Table (BAT) controls, GPC memory read/write capability, GPC memory dump capability, GPC freeze-dry load, downlist GPC selection, SYNC Trace/CAM reset, and I/O ERROR log clear.
-2 SPEC 001 (DPS Utility) - Provides MMU/Major Function selection, bus port assignments, uplink control, OPS transition overlay source selection, variable downlist parameter selection, SM checkpoint retrieval enable, and realtime command issuance. This SPEC is not available if GPC has memory configurations 1 or 3 resident.
-3 SPEC 002 (TIME) - Provides selection of GMT or MET, timer and/or tone controls, MTU update capability (both GMT and MET), MET reset, MTU accumulator/GPC sync, and time source selection. This SPEC is not available if GPC has memory configurations 1 or 3 resident.
-4 SPEC 006 (GPC/Bus Status) - Monitors GPC mode, bus assignments and status. No item entries.
-5 SPEC 099/Fault Summ Key (Fault) - Provides a historical summation of the most recent CLASS 2 and 3 CRT messages. The most recent message appears at the Top. The display supports the last 15 messages generated, the oldest of the messages disappears as newer messages are generated. The display may be called by the Fault Summ key or by SPEC 99 PRO. SPEC 99 PRO reinitializes the page and blanks all messages.

### 2.4.1.2 Basic Functions Available

-1 Fault Summary Page - Displays the last 15 CLASS 2 and 3 error messages. No item entries. (Available in all OPS).
-2 DEU Load - Available only in initial OPS 0 memory configuration. (33643)
-3 LDB Polling - Polling will be maintained in OPS 0 if it was active in a previous OPS, subject to constraints specified in section 7.1.
-4 Downlist - The OPS 0 downlist format is 20.
-5 GRT and BAT (NBAT) - OPS 0 does not have an NBAT. GPCs brought to OPS 0 by moding to RUN will assume control of buses as stated earlier. GPCs transitioned to OPS 0 from another OPS will simply retain any buses commanded in the previous OPS. The exception to this is the transition of a redundant set OPS G9 to OPS 0. In this case, the Flight Critical buses (strings 1-4)
will collapse to the lowest ID GPC going to OPS 0 . Note that this applies only to strings 1-4. Other string/bus assignments will be preserved into OPS 0 .

### 2.4.2 OPS GNC9

OPS G9 provides software support for vehicle checkout and pre-launch countdown. It is initiated by entering 'OPS 901 PRO' on an MCDS keyboard whose major function is GNC. The OPS may be entered from OPS 0 or from OPS G101 (if prior to SRB ignition). The OPS may be exited to OPS G101 or OPS 0 .
-1 Upon initiation, the application software attempts a BITE TEST 4 read (read of discretes) of each MDM in order to initialize output buffers to the current state of the MDMs. (44724)
-2 OPS G9 may be active in a single GPC (Simplex) or multiple GPCs (Redundant). Some of the functions available in G9 are limited to operation in a simplex mode only. (34665) (47311) (52102) (37551) (41533) (25197) (100702)

### 2.4.2.1 Displays Available

-1 SPEC 000 (GPC Memory) (OPS G9 mode display) - See 2.4.1.1-1
-2 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-3 SPEC 002 (TIME) - See 2.4.1.1-3
-4 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-5 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5
-6 SPEC 062 (PCMMU/PL COMM) - Provides Telemetry Format Loads (TFL) for PCMMU, control of PCMMU fixed or programmable format, and I/O reset of PCMMU (valid only in OPS SM2). Also provides controls for the Payload Data Interleaver (PDI) DECOM loads, DECOM FDA (valid only in OPS SM2). Finally, provides for I/O Reset of the Payload Signal Processor (PSP).
-7 SPEC 100 (GTS Display) - Provides controls for Housekeeping Data Acquisition (HDA), MEC critical commands, LDB polling. Also provides test support for: the Computer Annunciation Matrix (CAM), Dedicated Display checkout, RJD toggle tests. (51250). This SPEC provides selection of downlist formats and elevon limits. Finally, the one-time transfer of data from PASS to BFS is initiated through this SPEC.
-8 SPEC 101 (Sensor Self-Test) - Provides the capability to test the Microwave Scan Beam Landing System (MLS), TACAN, Radar Altimeter (RA), and Accelerometer Assembly (AA).
-9 SPEC 102 (RCS/RGA/ADTA Test) - Provides the capability to test the Reaction Control System (RCS), Rate Gyro Assembly (RGA), and Air Data Transducer Assembly (ADTA).

- 10 SPEC 104 (GND IMU CNTL/MON) - Provides the controls to activate, calibrate, and align the Inertial Measurement Units (IMUs). Also provides the capability to preserve the results of a calibration on Mass Memory.
-11 SPEC 105 (TCS Control) - Provides the capability to call Test Control Supervisor (TCS) Sequences from Mass Memory, execute them and monitor the text outputs.
-12 SPEC 106 (Manual Controls) - Provides display of Flight Control controllers (RHC, THC, trim switches, etc.) outputs.
-13 SPEC 110 (Bus/BTU Status) - Provides status of Buses and Bus Terminal Units (BTUs).
RELEASE: OI20 Date: 12/20/90


## BOOK:

-14 SPEC 112 (GPC/BTU I/F) - Provides testing of MDMs and other DPS hardware units. Level 1 and Level 2 tests may be done on either port (of multi-port devices). (30072) (41008) (41533)
-15 SPEC 113 (Actuator Control) - Provides control and monitoring of the position of aerosurfaces, SSME, OMS, and Body Flap actuators by utilizing the capabilities of the Ramp Function Generator (RFG) and Body Flap Drive (BFD) functions. It also supports initiation of all Actuator Initialization (AI) modes and the Body Flap Monitor (BFM) avoidance and interference checks. The SPEC allows inhibiting of OMS power discrete parameter output; the selective replacement of position limit values for SRB, Elevon, and Speedbrake actuators; the limiting of the Multiple Actuator Test (MAT) plateau segment duration and modification of the RFG rate limit.

### 2.4.2.2 Basic Functions Available

-1 LDB Polling - Polling is initially off upon entry to OPS G9 if it has not been turned on elsewhere. The status will be maintained during the OPS and across OPS transitions. (25187) (47292) (48500)
-2 Downlist - The default downlist format is 44 . Also available via SPEC 100 are formats 42, 46, 53, 60,97 , and 99 . Once selected, a format remains until a subsequent selection of another format or an OPS transition is made. An OPS Mode Recall will reselect format 44. (25197)
-3 Housekeeping Data Acquisition - HDA is automatically enabled upon transition to G9.
-4 GRT and BAT (NBAT) - The default assignments for G9 are:

TABLE 2-6. NBAT FOR G9

MEM/BUS CONFIG
1 CONFIG 9 (G9)
2 GPC $\underline{1} \underline{2} \underline{4} \underline{\theta}$

| STRING | 1 | 7 | $\underline{1}$ |
| ---: | ---: | ---: | :--- |
| 2 | 8 | $\underline{2}$ |  |
| 3 | 9 | $\underline{3}$ |  |
| 4 | 10 | $\underline{4}$ |  |
| PLL | $1 / 2$ | 11 | $\underline{1}$ |
|  |  | $\underline{1}$ |  |
| CRT | 1 | 12 | $\underline{1}$ |
| 2 | 13 | $\underline{2}$ |  |
| 3 | 14 | $\underline{3}$ |  |
| 4 | 15 | $\underline{\theta}$ |  |
|  |  | $\underline{1}$ |  |
| LAUNCH | 1 | 16 | $\underline{1}$ |
|  | 2 | 17 | $\underline{2}$ |
| MM | 1 | 18 | $\underline{1}$ |
|  | 2 | 19 | $\underline{2}$ |

### 2.4.3 OPS PL9

OPS P9 provides the capability to load and/or modify the Mass Memory Unit(s). It also provides the avenue for loading SSME controllers from Mass Memory via LDB commands. The OPS is initiated by entering 'OPS 901 PRO' on an MCDS keyboard whose major function is PL. The OPS may be entered only from OPS 0 and must be exited to OPS 0 . (47853)
-1 OPS P9 must be run in a single GPC. It may be the only GPC active or may be in Common Set with other active GPCs in major function(s) other than PL.

### 2.4.3.1 Displays Available

-1 OPS P9 mode display (MMU Read/Write) - Provides capability to read and/or write MMU data. (15651) It also provides the capability to dump MMU data via Downlist and to compare MMU data between the two MMU's.
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 002 (TIME) - See 2.4.1.1-3
-5 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-6 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5
-7 SPEC 100 (GTS Display) - See 2.4.2.1-7 - Only HDA and LDB control options valid.
-8 SPEC 110 (Bus/BTU Status) - See 2.4.2.1-13
-9 SPEC 111 (SL Memory Dump) - Provide control and monitor function for SL computer memory dumps.

### 2.4.3.2 Basic Functions Available

-1 DEU Load - Load display control program (DCP) into DEU. (33643) (36728)
-2 LDB Polling - Polling status will be maintained upon entry to PL9. Status may be changed via SPEC 100 in PL9.
-3 Downlist - If the PL9 GPC is the active downlister at OPS initialization, the downlist format will be 52. If the PL9 GPC is not the active downlister at OPS initialization, the downlist format will be 48.
-4 SSME Load - Available through LDB command to load SSME controllers. Note that the default NBAT below is not compatible with this function. The PL9 GPC must control strings 1-3 in order to load SSMEs.
-5 Capability 1 (MMU LOAD and DUMP) and Capability 2 (UPF Patch) MMU Functions.
-6 GRT and BAT (NBAT) - The default assignments for P9 are:

TABLE 2-7. NBAT FOR P9

| MEM/BUS CONFIG |  |
| :---: | :---: |
| 1 CONFIG $\underline{6}$ (P9) |  |
| 2 GPC 02 | 000 |
| STRING 1 | 7 0 |
| 2 | 8 - |
| 3 | 90 |
| 4 | $10 \underline{0}$ |
| PL 1/2 | 110 |
| CRT 1 | $12 \underline{2}$ |
| 2 | 132 |
| 3 | $14 \underline{0}$ |
| 4 | 15 ? |
| LAUNCH 1 |  |
| 2 | 17 0 |
| MM 1 | 18 ? |
|  | 19 2 |

### 2.4.4 OPS GNC1

OPS G1 provides software support for launch countdown and ascent to orbital conditions. The memory configuration also includes all software required to support a Return-to-Launch-Site (RTLS) abort, although such an abort is controlled by another OPS. OPS G1 is initiated by entering 'OPS 101 PRO' on an MCDS keyboard whose major function is GNC. The OPS may only be entered from OPS G9. It may be exited back to G9 (if transition is done before SRB ignition), to OPS 0, G2, G3, G601, or G602. Exit points and options are dependent upon the major mode currently active. (37514) (45748)
-1 Upon initiation, the application software attempts a BITE TEST 4 read of each MDM in order to insure output buffers match the MDMs. In the event of a failure of the read (two consecutive I/O errors), the set/reset discrete pairs are all set to zero to prevent change in the MDM(s) failing the read.
-2 Between the start of OPS G1 and APU start (HPU start for SRBs), the ascent DAP cyclically commands the SRB, SSME, and aerosurface actuators to the prelaunch positions shown in the first IN column for OPS 101 in Tables 2-13, 2-14, and 2-16. (37551)
-3 OPS G1 is composed of six major modes: (36015)
-3.1 101-Active from entry into OPS until either SRB ignition, or a return to OPS G9 is initiated (prior to SRB ignition). (37551) This mode controls the final countdown, utilizing an automated sequence from -28 seconds to SRB ignition. It will be automatically exited to mode 102 when SRB ignition is commanded.
-3.2 102 - Active from SRB ignition until SRB separation. This mode controls STS flight through tower clear through pitch over, etc. It may be exited by an automatic advance to mode 103 due to SRB SEP commanded, or manually to OPS G601 (RTLS abort). Transition to G601 will not occur until SRB separation is complete.
-3.3 103-Active from commanded SRB separation until manual selection of mode 104, manual selection OPS G601, or completion of ET separation maneuver which causes automatic moding to mode 104. (46511)
-3.4 104 - Active from selection until manual selection of OPS G602 or mode 105 or OPS G301. This mode provides controls for the first OMS maneuver. (50776) (25108)
-3.5 105 - Active from selection until manual selection of mode 106 or OPS G301 (entry). This mode provides controls for the second OMS maneuver. (45739) (45751) (53428)
-3.6 106-Active from selection until manual selection of OPS G201 (orbit) or G301.

### 2.4.4.1 Displays Available

-1 Mode displays:
-1.1 Ascent Trajectory is a monitor only display for modes 101-103.
-1.2 Maneuver is a control display for modes 104-106. It provides the capability to plan and execute maneuvers with either OMS or RCS. It also allows selection of AOA or ATO aborts.
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-5 SPEC 018 (GNC SYS SUMM 1) - Provides monitor of selected GNC data: RCS, Aerosurface, Controllers, DPS, and NAVAIDs. Display function only - may be brought up by SYS SUMM key.
-6 SPEC 023 (RCS) - This display provides controls for the RCS and OMS system.
-7 SPEC 050 (HORIZ SIT) - Provides graphic representation of orbiter position and heading. Provides controls for Programmed Test Inputs (PTI), runway selection, wind profile selection, navigation state vector controls, and NAVAIDs. (42650)
-8 SPEC 051 (Override) - Provides software overrides for flight critical switches: Abort mode selection, ET separation, ET umbilical door closing, vent door controls, entry roll mode selection, RCS manifold valve. Provides the capability to reselect/deselect IMUs, ADTAs, and automatic hydraulic system management; the capability to select entry FCS elevon schedule, body bending filters, and one of three atmosphere models; and the capability to inhibit and/or enable ascent abort dumps, the orbiter propellant dump, the Major Mode 304 OMS dump, the OMS/RCS interconnect function, the AFT RCS dump, and the FWD RCS dump. Also provides the capability to change the maximum SSME throttle level, the AFT RCS dump duration, and the FWD RCS dump duration.
-9 SPEC 053 (Controls) - This display provides the capability to perform the aerosurface secondary actuator check in OPS G3. It provides the ability to control AA, RGA, and surface feedback RM. It also provides status indicators for the aerosurface and SSME actuator secondary ports in OPS G1, G3, and G6.
-10 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5

| RELEASE: | OI20 |
| :--- | :--- |
| BOOK: | PASS User's Guide |

### 2.4.4.2 Basic Functions Available

-1 LDB Polling - Polling state will be maintained across G9 to G1 transition. In G1 only SACS commands are valid. Additionally, if SRB I/O was not started in G9, it will be initiated on LDB1. If SRB I/O was active, it will be maintained in G101-102. LDB polling will be terminated at SRB ignition; SRB I/O will be terminated at SRB separation. (29949)
-2 Downlist - OPS G1 downlist is format 21.
-3 Guidance - Guidance algorithms provide commands from SRB ignition through the entire OPS to achieve the nominal orbital conditions or selected abort conditions.
-4 Navigation - Navigation provides a vehicle state vector based on IMU data. (52101)
-5 Flight Control - The flight control system converts guidance commands into hardware commands based on available engines, etc. (37545) (37569) (37570) (44248)
-6 Redundant Set Launch Sequencer (RSLS) - RSLS maintains status of launch countdown by monitoring a predefined set of parameters for failure and subsequent declaration of a count hold. The RSLS also accepts commands from the ground Launch Processing System (LPS) to control the count. (25074/25184) (37537) (38765/39740)
-7 GRT and BAT (NBAT) - The default assignments for Gl are:

TABLE 2-8. NBAT FOR G1

MEM/BUS CONFIG
1 CONFIG 1 (G1)
2 GPC $1 \underline{2} \underline{3} \underline{0}$

| STRING | 1 | 7 | $\underline{1}$ |
| ---: | ---: | ---: | :--- |
| 2 | 8 | $\underline{2}$ |  |
| 3 | 9 | $\underline{3}$ |  |
| 4 | 10 | $\underline{4}$ |  |
| PL | $1 / 2$ | 11 | $\underline{1}$ |
|  |  |  |  |
| CRT | 1 | 12 |  |
| 2 | 13 | $\underline{2}$ |  |
| 3 | 14 | $\underline{3}$ |  |
| 4 | 15 | $\underline{0}$ |  |
|  |  |  |  |
| LAUNCH | 1 | 16 | $\underline{1}$ |
| 2 | 17 | $\underline{2}$ |  |
| MM | 1 | 18 | $\underline{1}$ |
| 2 | 19 | $\underline{2}$ |  |

### 2.4.5 OPS GNC 2

OPS G2 provides on-orbit vehicle control and maneuver capability. It is initiated by entering 'OPS 201 PRO' on an MCDS keyboard whose major function is GNC. The OPS may be entered from OPS G106 (nominally), OPS 0, OPS G801, or OPS G301. It may be exited to OPS G801, OPS G301, or OPS 0. Entry and exit is always to/from major mode 201. (37551) (37569) (42640) (48777) (52111)

```
RELEASE: OI20
-1 OPS G2 is composed of two major modes:
-1.1 201 - Active from manual entry into OPS until manual exit to either mode 202 or another OPS. This mode supports on-orbit COAST operations. (37551) (52101)
-1.2 202 - Active from manual entry from mode 201 until manual exit back to mode 201. Provides MANEUVER execution capability. (55307)
-2 In Major Mode 201, the OEX Advanced Autopilot experiment (AAPS) may be activated thru the AAPS SETUP display SPEC 32 via an item entry. When AAPS is active, the two BF AUTO/MAN lamps on the eyebrow panels will be illuminated. The AAPS is deactivated thru SPEC 32 via Item Entry, by depression of either BF AUTO/MAN PBI, automatically upon an IMU failure, or upon exiting MM201.

\subsection*{2.4.5.1 Displays Available}
-1 Mode displays:
-1.1 Universal Pointing in mode 201 provides controls for vehicle attitude control with respect to the ADI inertial reference frame.
-1.2 Orbit Maneuver in mode 202 provides controls for doing OMS maneuvers in orbit.
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 002 (TIME) - See 2.4.1.1-3
-5 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-6 SPEC 018 (GNC SYS SUMM 1) - See 2.4.4.1-5
-7 SPEC 019 (GNC SYS SUMM 2) - Similar to SPEC 018. Provides monitor of RCS and OMS fuel and jets.
-8 SPEC 020 (DAP CONFIG) - This display provides selection of Digital Auto Pilot (DAP) parameters.
-9 SPEC 021 (IMU Align) - This display provides control of IMUs for selection, alignment, etc. (37549/44246)
-10 SPEC 022 (S TRK/COAS CNTL) - This display provides controls for star tracker moding, operation and IMU alignment data.
-11 SPEC 023 (RCS) - See 2.4.4.1-6
- 12 SPEC 025 (RM Orbit) - This display provides data from hand controllers and the capability to select/deselect individual contacts.
-13 SPEC 033 (REL NAV) - This display provides monitoring of rendezvous parameters and controls for rendezvous navigation.
-14 SPEC 034 (Orbit TGT) - This display provides the capability to set up maneuvers for rendezvous.
-15 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5

\subsection*{2.4.5.2 Basic Functions Available}
-1 LDB Polling - Although in flight no LDB polling is available, the polling state will be maintained upon entry to OPS G2.
-2 Downlist - OPS G2 downlist format is 22 .
-3 GRT and BAT (NBAT) - The default assignments for G2 are:

TABLE 2-9. NBAT FOR G2
MEM/BUS CONFIG
1 CONFIG \(2(\mathrm{G} 2)\)
\(2 \mathrm{GPC} 12 \underline{2} \underline{0}-\)
\begin{tabular}{rr|rr} 
STRING & 1 & 7 & \(\frac{1}{2}\) \\
& 2 & 8 & \(\underline{2}\) \\
& 3 & 9 & \(\underline{1}\) \\
4 & 10 & \(\underline{2}\) \\
PL & \(1 / 2\) & 11 & \(\underline{0}\) \\
& & & \\
CRT & 1 & 12 & \(\underline{1}\) \\
& 2 & 13 & \(\underline{2}\) \\
& 3 & 14 & \(\underline{0}\) \\
4 & 45 & \(\underline{2}\) \\
& & & \\
LAUNCH & 1 & 16 & \(\underline{0}\) \\
& 2 & 17 & \(\underline{0}\) \\
MM & 1 & 18 & \(\underline{1}\) \\
2 & 19 & \(\underline{2}\)
\end{tabular}

\subsection*{2.4.6 OPS GNC3}

OPS G3 provides vehicle control from pre-deorbit burn through landing and roll-out. It is initiated by entering 'OPS 301 PRO' on an MCDS keyboard whose major function is GNC. The OPS may be entered from OPS G104, G105, G106, G201, G801, or OPS 0 . It may be exited to OPS 0 , or to G9 from major mode 305 or to G201 from major mode 301. (37062) (37545) (37569) (41184) (41238/43357) (55328)
-1 OPS G3 performs discrete initialization as described for G9 (see section 2.4.2) and G1 (see section 2.4.4).
-2 OPS G3 is composed of five major modes: (36015)
-2.1 MM 301 - Pre-Deorbit Coast: Active from manual entry into OPS G3 until manual exit to MM 302 or to MM201. This mode monitors and controls the vehicle during coasting flight prior to initiation of the Deorbit Maneuver OMS burn. (46510) (52101)
-2.2 MM 302 - Active from manual entry from MM 301 until manual exit to MM 303 or 301 (at least some specified length of time before deorbit maneuver OMS ignition). This mode configures the vehicle for entry and provides control for the deorbit maneuver preparation and execution. (50776)
-2.3 MM 303 - Pre-Entry Monitor: Active from manual entry until manual exit to MM 304 or back to MM 301. Provides vehicle control from the end of the deorbit maneuver until an entry interface is reached. (36479)
-2.4 MM 304 - Entry: Active from manual entry until Terminal Area Energy Management (TAEM) interface conditions are met, upon which an auto-advance to MM 305 occurs. A manual advance to MM 305 may also be done if the Earth Relative Velocity is less than or equal to a specified value. This mode is designed to fly the vehicle in the required flight profile from entry interface to TAEM interface. (37551) On entry to MM 304, the FSW ramps the speedbrake from 10 degrees to 0 degrees without regard to feedbacks. (35047) (37551)
-2.5 MM 305-TAEM/LANDING: Active from entry until manual selection of OPS G9. This mode positions the vehicle for the approach to the runway and dissipates any excess energy which may accumulate during the descent from orbit. (39417) (44248)

\subsection*{2.4.6.1 Displays Available}
-1 Mode displays:
-1.1 301-303 - XXXXX Maneuver YYYYY display. See 2.4.4.1-1.2 (45603/45604)
-1.2 304 - Entry Trajectory is a five-page display. Each page provides navigational and guidance information for a predefined portion of the entry trajectory allowing for a comparison of the vehicle's progression to planned entry profiles and to the guidance trajectory. (37551)
-1.3 305 - Vertical Situation is a two-page display providing vehicle longitudinal information including altitude, altitude dissipation rate, and energy state during TAEM.
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-5 SPEC 018 (GNC SYS SUMM 1) - See 2.4.4.1-5
-6 SPEC 021 (IMU Align) - See 2.4.5.1-9 (37549/44246)
-7 SPEC 022 (S TRK/COAS CNTL) - Major Mode 301 only. See 2.4.5.1-10
-8 SPEC 023 (RCS) - See 2.4.4.1-6
-9 SPEC 050 (HORIZ SIT) - See 2.4.4.1-7
-10 SPEC 051 (Override) - See 2.4.4.1-8
-11 SPEC 053 (Controls) - See 2.4.4.1-9
-12 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5

\subsection*{2.4.6.2 Basic Functions Available}
-1 LDB Polling - Although in flight no LDB polling is available, the polling state will be maintained upon entry to G3.
-2 Downlist - OPS G3 downlist format is 23 .
-3 GRT and BAT (NBAT) - The default assignments for G3 are:

TABLE 2-10. NBAT FOR G3

MEM/BUS CONFIG
1 CONFIG \(\underline{3}^{(G 3)}\)
2 GPC \(\underline{1} \underline{2} \underline{4} \underline{0}\)
\begin{tabular}{|c|c|}
\hline STRING 1 & 71 \\
\hline 2 & 82 \\
\hline 3 & 93 \\
\hline 4 & 104 \\
\hline PL 1/2 & \(11 \underline{1}\) \\
\hline CRT 1 & 121 \\
\hline & 13 2 \\
\hline 3 & 14 3 \\
\hline 4 & 15 - \\
\hline LAUNCH 1 & 161 \\
\hline 2 & \(17 \underline{2}\) \\
\hline MM 1 & 181 \\
\hline 2 & 19 2 \\
\hline
\end{tabular}

\subsection*{2.4.7 OPS GNC6}

OPS G6 provides a Return-to-Launch-Site (RTLS) abort capability. It is initiated either by selection via cockpit switch or by entering 'OPS 601 PRO' or 'OPS 602 PRO' on an MCDS keyboard whose major function is GNC. The OPS may be entered from OPS G103 or G104 (or G102 once SRB SEP occurs). It may be exited to OPS 0 , or to OPS G901 from major mode 603. (25108) (37545)
-1 OPS G6 is composed of three major modes:
-1.1 601 - Entered as a result of a keyboard entry or switch selection during OPS G102 or G103. Performs vehicle control during the powered stages of an RTLS. Exited to mode 602 by either keyboard input or automatically at completion of ET separation. (46520)
-1.2 602 - Entered as a result of keyboard request from mode 601 or OPS G104 or automatically from mode 601. Performs vehicle control during the initial glide portion of the return (similar to OPS G304). Exited to mode 603 automatically when velocity is less than a prescribed limit or when mode 603 manually requested via keyboard and velocity is less than a prescribed limit. (46515) The automatic transition may be inhibited during certain contingency abort situations.
-1.3 603-The final phase of RTLS controls the vehicle through touchdown and rollout. Entered from mode 602; exited only to OPS G901.
\begin{tabular}{ll} 
RELEASE: & OI20 \\
BOOK: & PASS User's Guide
\end{tabular}

BOOK: PASS User's Guide
Rev: 0

\subsection*{2.4.7.1 Displays Available}
-1 Mode displays

> 601 - same as G1011
> 602 - same as G3051
> 603 - same as G3052
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-5 SPEC 018 (GNC SYS SUMM 1) - See 2.4.4.1-5
-6 SPEC 050 (HORIZ SIT) - See 2.4.4.1-7
-7 SPEC 051 (Override) - See 2.4.4.1-8
-8 SPEC 053 (Controls) - See 2.4.4.1-9
-9 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5

\subsection*{2.4.7.2 Basic Functions Available}
-1 LDB Polling - The polling state upon entry to RTLS (OFF in flight) will be maintained.
-2 Downlist - OPS G6 downlist format is 21 . Note that this is no change from OPS G1.
-3 GRT and BAT (NBAT) - The RTLS OPS uses the G1 NBAT (See Table 2-8 in section 2.4.4.2-7).

\subsection*{2.4.8 OPS GNC8}

OPS G8 provides the capability to check out NAVAID and Flight Control sensors while in orbit. The OPS may be entered from G201 only and is initiated by 'OPS 801 PRO' on an MCDS keyboard whose major function is GNC. The OPS may be exited to OPS 0 or to G201 or to G301. It may be executed in a single GPC or in a Redundant Set. (37551) (37569) (42640) (48777) (52111)

\subsection*{2.4.8.1 Displays Available}
-1 Mode display (8011) - FCS/Dedicated Display Checkout. Provides the capability to test dedicated displays, mode/sequencing lights, and control the aerosurface actuator test.
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 002 (TIME) - See 2.4.1.1-3
-5 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-6 SPEC 018 (GNC SYS SUMM 1) - See 2.4.4.1-5
-7 SPEC 019 (GNC SYS SUMM 2) - See 2.4.5.1-7
-8 SPEC 023 (RCS) - See 2.4.4.1-6
-9 SPEC 040 (Sensor Test) - This display achieves the same function as SPEC 101 on the ground (see 2.4.2.1-7), and adds selection filter/redundancy management manipulation capability.
-10 SPEC 041 (RGA/ADTA/RCS) - This display achieves the same function as SPEC 102 on the ground (see 2.4.2.1-8), and adds selection filter/redundancy management manipulation capability.
-11 SPEC 042 (Switch/Surf) - This display provides visual indication of FCS switch contacts and allows selection filter input manipulations. (30526)
- 12 SPEC 043 (Controllers) - This display provides visual indication of FCS controller and panel trim switches and body flap slew switch contacts.
-13 SPEC 044 (Switches) - This display provides visual indication of FCS push-button indicator contacts.

\subsection*{2.4.8.2 Basic Functions Available}
-1 LDB Polling - Polling state will be maintained upon entry to OPS G8.
-2 Downlist - OPS G8 downlist format is 32 .
-3 GRT and BAT (NBAT) - The default assignments for G8 are:

TABLE 2-11. NBAT FOR G8

MEM/BUS CONFIG
1 CONFIG \(\underline{8}\) (G8)
2 GPC \(\underline{1} \underline{0} \underline{0} \underline{0}\)
\begin{tabular}{|c|c|}
\hline STRING 1 & 71 \\
\hline 2 & 82 \\
\hline 3 & 91 \\
\hline 4 & 102 \\
\hline PL 1/2 & 11 - \\
\hline CRT 1 & 12 l \\
\hline 2 & 132 \\
\hline 3 & 14 - \\
\hline 4 & \(15 \underline{2}\) \\
\hline LAUNCH 1 & 16 - \\
\hline 2 & 17 - \\
\hline MM 1 & 18 1 \\
\hline 2 & \(19 \underline{2}\) \\
\hline
\end{tabular}

\subsection*{2.4.9 OPS SM2/4}

OPS SM2/4 provides the capability to monitor orbiter systems on orbit and provide annunciation of detected failures. The OPS also provides the capability to open and close the Payload Bay Doors and to modify the Mass Memory Units. (35743)
-1 The OPS consists of two major modes: S201/S401 is the basic mode entered upon selection of the OPS and provides automatic or manual S-Band and Ku-Band antenna system controls. The OPS is initiated by entering 'OPS \(201 \mathrm{PRO}^{\prime} /\) 'OPS \(401 \mathrm{PRO}^{\prime}\) on an MCDS keyboard whose major function is SM. The OPS may be exited to OPS 0 or any of the SM major modes (e.g., 202/402). Major mode 202/402 provides controls for automatic or manual manipulation of the payload bay
\begin{tabular}{ll|c} 
RELEASE: & Ol20 & Date: \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}
doors. The major mode is entered by keyboard input of 'OPS \(202 \mathrm{PRO}^{\prime} /{ }^{\prime} \mathrm{OPS} 402 \mathrm{PRO}^{\prime}\) on an MCDS keyboard whose major function is SM. It may be exited to OPS 0 or any of the SM major modes (e.g., 201/401) and only if the Payload Bay Door operation is in STOP mode.
-2 The SM2/SM4 may be executed only in a single GPC. It may be run concurrently with GPCs in GNC OPS.

\subsection*{2.4.9.1 Displays Available}
-1 Mode displays
-1.1 S201/S401: Antenna Management provides controls for the S-Band and Ku-Band antenna systems; it also provides pertinent data on antenna performance.
-1.2 S202/S402: Payload Bay Doors provides controls to open and close the Payload Bay Doors; it also provides latch status.
-2 SPEC 000 (GPC Memory) - See 2.4.1.1-1
-3 SPEC 001 (DPS Utility) - See 2.4.1.1-2
-4 SPEC 002 (TIME) - See 2.4.1.1-3
-5 SPEC 006 (GPC/Bus Status) - See 2.4.1.1-4
-6 SPEC 060 (SM Table Maint) - Provides capability to: Change parameter values, FDA limit values; enable/inhibit FDA either totally or by specific parameter; initiate an SM checkpoint write to Mass Memory.
-7 SPEC 062 (PCMMU/PL COMM) - See 2.4.2.1-6
-8 SPEC 064 (SM Ground Checkout) - Provides capability to modify certain SM processes to enhance vehicle turnaround and test processing.
-9 SPEC 066 (Environment) - Display function only of cabin environment parameters.
-10 SPEC 067 (Electric) - Display function only of the status of electrical power and distribution system.
-11 SPEC 068 (Cryo/Fuel Cells) - Display function only of fuel cells and cryogenic system status.
-12 SPEC 076 (COMM/RCDR) - Display function only of the communication system and flight recorder status.
-13 SPEC 078 (SM SYS SUMM 1) - Display function only of selected SM parameters which summarize systems monitored by SM.
-14 SPEC 079 (SM SYS SUMM 2) - Display function of more selected SM parameters.
-15 SPEC 085 (Mass Memory R/W) - See 2.4.3.1-1. Limited to Phase/Load Blocks less than 2048 halfwords in length.
-16 SPEC 086 (APU/HYD) - Display function only of APU system parameters.
-17 SPEC 087 (HYD Thermal) - Display function only of hydraulic thermal conditions.
-18 SPEC 088 (APU/ENVIRON THERM) - Display function only of thermal conditions of the APUs and flash evaporator systems.
-19 SPEC 089 (PRPLT THERMAL) - Display function only of thermal conditions of the OMS and RCS propellant systems.
-20 Payload Displays - TBD.

Date: 12/20/90
Rev: 0
-21 SPEC 099/Fault Summ Key (Fault) - See 2.4.1.1-5

\subsection*{2.4.9.2 Basic Functions Available}
-1 LDB Polling - Polling state will be maintained upon entry to OPS S2/4.
-2 Downlist - OPS S2 downlist format is 24 and S4 downlist format is 25 .
-3 GRT and BAT (NBAT) - The default assignments for S2/4 are:

TABLE 2-12. NBAT FOR S2/S4
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MEM/BUS CONFIG 1 CONFIG 4(S2)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MEM/BUS CONFIG}} \\
\hline & & & \\
\hline \(2 \mathrm{GPC} 0{ }^{0}\) & \(\underline{0} \underline{0}\) & 2 GPC 0 0 & \(\underline{0} \underline{0}\) \\
\hline STRING 1 & 70 & STRING 1 & 70 \\
\hline 2 & \(8 \underline{0}\) & 2 & 8 - \\
\hline 3 & 90 & 3 & \(9 \underline{0}\) \\
\hline 4 & 10 - & 4 & \(10 \underline{0}\) \\
\hline PL 1/2 & 114 & PL 1/2 & 114 \\
\hline CRT 1 & 124 & CRT 1 & 124 \\
\hline 2 & 134 & 2 & 134 \\
\hline 3 & \(14 \underline{0}\) & 3 & 144 \\
\hline 4 & \(15 \underline{4}\) & 4 & 15 - \\
\hline LAUNCH 1 & 164 & LAUNCH 1 & 160 \\
\hline 2 & 17 - & 2 & 17 0 \\
\hline MM 1 & 184 & MM 1 & 184 \\
\hline & 194 & 2 & 194 \\
\hline
\end{tabular}

\subsection*{2.5 ACTUATOR/HYDRAULIC ACTIVATION RESTRICTIONS}

In either a test or flight environment, the difference between the actual position of the actuators when they are powered up, relative to the command position being issued to them by the FSW, can result in a hazardous vehicle situation. (37551)
-1 The initial position is set by the FSW to an expected value for each major mode transition and at specific flight events. Should the sequence of events in either ground operations or flight be different than that used to initialize the actuators, vehicle damage could be encountered. To preclude damage to the vehicle, the following tables define the initialization for all actuators at events and major mode changes.
-2 The tables present the actuator commands that are generated by the FSW for aerosurfaces, SSMEs, OMS, and SRBs on entry to major modes or at events that result in a change to the commands. Some of the changes are a function of processing requests by crew inputs. The footnotes to the tables explain the conditions causing the changes.
-3 The tables show the command values issued on entry to the event or major mode and the command values present after the event occurs or major mode initialization. The command values shown are placed in the GNC cyclic output buffers and are continuously issued to the actuators until the major mode is changed, an event occurs, or a DAP starts outputting flight control commands. The command values shown are in engineering units.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TRANSITION/
EVENT & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G301-G303 } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G304-G305 } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { OPS } \\
\text { G601-G603 } \\
\hline
\end{gathered}
\]} \\
\hline ACTUATOR & IN & OUT & IN & OUT & IN & OUT \\
\hline LIB & MFB & THERM & FDBK & \[
\begin{aligned}
& \text { AEROJET DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& \text { GRTLS DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] \\
\hline LOB & MFB & THERM & FDBK & AEROJET DAP CMD VALUES & 0.0 & GRTLS DAP CMD VAlUES \\
\hline RIB & MFB & THERM & FDBK & AEROJET DAP CMD VALUES & 0.0 & GRTLS DAP CMD VAlUES \\
\hline ROB & MFB & THERM & FDBK & AEROJET DAP CMD VAlUES & 0.0 & \[
\begin{aligned}
& \text { GRTLS DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] \\
\hline RUD & FDBK & THERM & FDBK & AEROJET DAP CMD
VALUES & 0.0 & \[
\begin{aligned}
& \text { GRTLS DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] \\
\hline SB & FDBK & THERM & FDBK & AEROJET DAP CMD VALUES & -9.9 & GRTLS DAP CMD VALUES \\
\hline BF & FDBK & THERM & FDBK & AEROJET DAP CMD VALUES & 0 & GRTLS DAP CMD VALUES \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{TABLE 2-14. PASS ACTUATOR INITIALIZATION (SSMEs)} \\
\hline TRANSITION/
EVENT & \multicolumn{2}{|l|}{OPS G9} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G101 }(1,7) \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\operatorname{G101}(2,7)
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { OPS } \\
& \text { G102 }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G103(3) } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G104(4) }
\end{gathered}
\]} \\
\hline ACTUATOR & IN & OUT \\
\hline P1 & AI & LAST COMMAND VALUES & \[
\begin{aligned}
& \text { LAST OPS } 9 \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & 0.0 & 0.0 & 0.0 & 0.0 & \[
\begin{aligned}
& \hline \text { ASC DAP } \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & ASC DAP CMD values & 0.0 & 0.0 & 0.0 \\
\hline P2 & AI & LAST COMMAND VALUES & LAST OPS 9 CMD vALUES & 0.0 & 0.0 & 0.0 & 0.0 & \[
\begin{aligned}
& \text { ASC DAP } \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ASC DAP } \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & \(-10.0\) & -10.0 & -10.0 \\
\hline P3 & AI & \[
\begin{aligned}
& \text { LAST } \\
& \text { COMMAND } \\
& \text { VALUES }
\end{aligned}
\] & LAST OPS 9 CMD VALUES & 0.0 & 0.0 & 0.0 & 0.0 & \begin{tabular}{l}
ASC DAP \\
CMD \\
VALUES
\end{tabular} & ASC DAP CMD VALUES & -10.0 & -10.0 & -10.0 \\
\hline Y1 & AI & LAST COMMAND values & \begin{tabular}{l}
LAST OPS 9 CMD \\
values
\end{tabular} & 0.0 & 0.0 & 0.0 & 0.0 & \[
\begin{aligned}
& \text { ASC DAP } \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ASC DAP } \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & 0.0 & 0.0 & 0.0 \\
\hline Y2 & AI & LAST COMMAND VALUES & LAST OPS 9 CMD VALUES & 0.0 & 0.0 & -3.5 & -3.5 & ASC DAP CMD VALUES & ASC DAP CMD VALUES & -3.5 & -3.5 & -3.5 \\
\hline Y3 & AI & LAST COMMAND VALUES & LAST OPS 9 CMD VALUES & 0.0 & 0.0 & +3.5 & +3.5 & ASC DAP CMD VALUES & \[
\begin{aligned}
& \text { ASC DAP } \\
& \text { CMD } \\
& \text { VALUES }
\end{aligned}
\] & +3.5 & +3.5 & +3.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TABLE 2-14. PASS ACTUATOR INITIALIZATION (SSMEs) (Continued)} \\
\hline TRANSITION/
EVENT & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G105-G305 }
\end{gathered}
\]} & \multicolumn{2}{|l|}{OPS
G601-G602} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { OPS } \\
& \text { G602(5) }
\end{aligned}
\]} & \multicolumn{2}{|l|}{OPS
G601(6)} \\
\hline ACTUATOR & IN & OUT & IN & OUT & IN & OUT & IN & OUT \\
\hline P1 & 0.0 & 0.0 & ASC DAP CMD
VALUES & 0.0 & 0.0 & 0.0 & \[
\begin{aligned}
& \text { ASC DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] & 0.0 \\
\hline P2 & -10.0 & \(-10.0\) & ASC DAP CMD VALUES & -10.0 & -10.0 & -10.0 & ASC DAP CMD VALUES & -10.0 \\
\hline P3 & -10.0 & \(-10.0\) & ASC DAP CMD VALUES & -10.0 & -10.0 & -10.0 & ASC DAP CMD VALUES & -10.0 \\
\hline Y1 & 0.0 & 0.0 & ASC DAP CMD VALUES & 0.0 & 0.0 & 0.0 & ASC DAP CMD VALUES & 0.0 \\
\hline Y2 & -3.5 & -3.5 & ASC DAP CMD VALUES & -3.5 & -3.5 & -3.5 & ASC DAP CMD VALUES & -3.5 \\
\hline Y3 & +3.5 & +3.5 & ASC DAP CMD VALUES & +3.5 & +3.5 & +3.5 & ASC DAP CMD VALUES & +3.5 \\
\hline \multicolumn{9}{|l|}{Notes:} \\
\hline \multicolumn{9}{|l|}{1. MPS SLEW check, which is initiated via ground inputs, commands SSMEs to start position on completion of SLEW test. If SLEW check not performed, SSMEs are commanded to start position on Event 6 (GO FOR AUTO SEQUENCE START).} \\
\hline \multicolumn{9}{|l|}{2. SSMEs are commanded to launch position at event 18A (MPS thrust \(>90 \%\) ) if no changes to HYD-FAILS have occurred.} \\
\hline \multicolumn{9}{|l|}{3. Note the dump position is equivalent to the STOW position.} \\
\hline \multicolumn{9}{|l|}{4. At termination of LH2 dump (EVENT 43A), the SSMEs are commanded to the STOW position. Note the dump position is equivalent to the STOW position.} \\
\hline \multicolumn{9}{|l|}{5. For contingency abort (OPS 104 to OPS 602 transition), MM initialization commands SSMEs to STOW on entry to 602.} \\
\hline \multicolumn{9}{|l|}{6. For fast SEP in OPS 102, ET SEP sequencer sets SSME STOW flag and SSMEs are STOWed in OPS 601 on reaching zero thrust.} \\
\hline \multicolumn{9}{|l|}{7. When a recycle count is requested, the SSMEs are moved from wherever they are (i.e., either the launch or start positions) to the gravity positions. Note gravity position is null.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TABLE 2-15. Pass actuator initialization (OMS)} \\
\hline TRANSITION/
EVENT & \multicolumn{2}{|l|}{OPS} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G101-G104(1) } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { START } \\
\text { 1ST OMS BURN } \\
\text { EVENT } 37
\end{gathered}
\]} & \multicolumn{2}{|l|}{1ST OMS BURN
EVENT 42} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TRIM FOR 2ND OMS } \\
& \text { BURN 44A (2) }
\end{aligned}
\]} \\
\hline ACTUATOR & IN & OUT \\
\hline LP & AI & +5.91 & +5.89 & +0.4 & +0.4 & \[
\begin{aligned}
& \hline \text { TRANS } \\
& \text { DAP CMD }
\end{aligned}
\]
VALUES & \[
\begin{aligned}
& \hline \text { TRANS } \\
& \text { DAP CMD } \\
& \hline
\end{aligned}
\]
VALUES & LAST OMS 1 BURN TRANS DAP CMD
VALUES & LAST OMS BURN TRANS DAP CMD
VALUES &  \\
\hline LY & AI & +7.29 & +6.44 & -5.75 & -5.75 & TRANS
DAP CMD
VALUES & \[
\begin{aligned}
& \text { TRANS } \\
& \text { DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] & LAST OMS 1 BURN TRANS DAP CMD VALUES & LAST OMS
BURN
TRANS
DPAP CMD
VALUES &  \\
\hline RP & AI & +5.91 & +5.89 & +0.4 & +0.4 & TRANS DAP CMD VALUES & TRANS DAP CMD values & \begin{tabular}{l}
LAST OMS 1 BURN TRANS \\
DAP CMD \\
VALUES
\end{tabular} & LAST OMS BURN TRANS DAP CMD VALUES & \[
\begin{aligned}
& \text { SECOND } \\
& \text { OMS } \\
& \text { BURN } \\
& \text { TRIM } \\
& \text { CMDS }
\end{aligned}
\] \\
\hline RY & AI & -7.29 & -6.44 & +5.75 & +5.75 & TRANS DAP CMD VALUES & \[
\begin{aligned}
& \text { TRANS } \\
& \text { DAP CMD } \\
& \text { VALUES }
\end{aligned}
\] & LAST OMS BURN TRANS DAP CMD VALUES & LAST OMS BURN TRANS DAP CMD VALUES & \[
\begin{aligned}
& \text { SECOND } \\
& \text { OMS } \\
& \text { BURN } \\
& \text { TRIM } \\
& \text { CMDS }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TABLE 2-15. PASS ACTUATOR INITIALIZATION (OMS) (Continued)} \\
\hline TRANSITION/
EVENT & \multicolumn{2}{|l|}{START
2ND OMS BURN
EVENT 46} & \multicolumn{2}{|l|}{2ND OMS BURN EVENT 48} & \multicolumn{2}{|l|}{TRIM FOR DEORBIT
EVENT E10(2)} & \multicolumn{2}{|l|}{START DEORBIT EVENT E12} \\
\hline ACTUATOR & IN & OUT & IN & OUT & IN & OUT & IN & OUT \\
\hline LP & SECOND OMS BURN TRIM CMDS & TRANS DAP CMD VALUES & TRANS DAP CMD VALUES & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & \begin{tabular}{l}
LAS'T \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP CMD VALUES \\
\hline LY & SECOND OMS BURN TRIM CMDS & TRANS DAP CMD VALUES & TRANS DAP CMD VALUES & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP CMD VALUES \\
\hline RP & SECOND OMS BURN TRIM CMDS & TRANS DAP CMD VALUES & TRANS DAP CMD VALUES & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP CMD VALUES \\
\hline RY & SECOND OMS BURN TRIM CMDS & TRANS DAP CMD VALUES & TRANS DAP CMD VALUES & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & \begin{tabular}{l}
LAST \\
OMS \\
BURN \\
TRANS \\
DAP CMD \\
VALUES
\end{tabular} & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP DEORBIT TRIM CMDS & TRANS DAP CMD VALUES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{TABLE 2-15. PASS ACTUATOR INITIAI IZATION (OMS) (Continued)} \\
\hline \[
\begin{aligned}
& \text { TRANSITION/ } \\
& \text { EVENT }
\end{aligned}
\] & \multicolumn{2}{|l|}{DEORBIT BURN
EVENT E14} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G303 } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G601-G603(3) } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { OPS } \\
\text { G602-G603(4) }
\end{gathered}
\]} \\
\hline ACTUATOR & IN & OUT & IN & OUT & IN & OUT & IN & OUT \\
\hline LP & TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & +5.89 & +5.89 & +5.89 & +5.89 & -0.86 \\
\hline LY & TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & +6.44 & +6.44 & +6.44 & +6.44 & +6.44 \\
\hline RP & TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & \(+5.89\) & + 5.89 & + 5.89 & +5.89 & -0.86 \\
\hline RY & TRANS DAP CMD VALUES & LAST DEORBIT BURN TRANS DAP CMD VALUES & \begin{tabular}{l}
LAST DEORBIT \\
BURN TRANS \\
DAP CMD \\
VALUES
\end{tabular} & -6.44 & -6.44 & -6.44 & -6.44 & -6.44 \\
\hline \multicolumn{9}{|l|}{Notes:} \\
\hline \multicolumn{9}{|l|}{1. OMS trim for first OMS burn is accomplished in OPS 104 prior to Event 36A. The trim values shown correspond to I-LOADed values and are commanded by the TVC Command SOP. The trim values may be changed via crew inputs.} \\
\hline \multicolumn{9}{|l|}{2. OMS trim values can be changed by the crew or uplink prior to each OMS burn.} \\
\hline \multicolumn{9}{|l|}{3. STOW values shown for OPS 6 are valid for all transitions from OPS 1 prior to MM \(104(102 \rightarrow 601\) contingency and intact, and \(103 \rightarrow 601\) intact).} \\
\hline \multicolumn{9}{|l|}{4. Values shown for OPS 6 valid if the abort is selected post MECO and contingency dump selected by crew. Otherwise, the OMS engines are left in STOW positions as shown for inputs.} \\
\hline
\end{tabular}

RELEASE: OI20
BOOK: PASS User's Guide


Date: 12/20/90
Rev: 0

BOOK: PASS User's Guide
Rev: 0

\section*{3. CRT DISPLAYS}

The Space Shuttle orbiter is equipped with four Multi-Function Cathode-Ray Tube Display Systems (MCDS) - three are in the forward part of the cockpit and one is in the aft mission specialist station. The CRT immediately in front of the commander (left side) is referred to as CRT 1 or Left CRT. The CRT immediately in front of the pilot (right side) is referred to as CRT 2 or Right CRT. The remaining forward CRT is between the commander and pilot and is referred to as CRT 3 or Center CRT. The aft CRT is referred to as CRT 4 or Aft CRT.
-1 Each MCDS is controlled by a power switch, a "Major Function" switch, two BFS switches and a keyboard.
-1.1 The power switch is a three position switch:
OFF - No power is available to MCDS.
STBY - Power is applied to internal MCDS circuits. At least 30 seconds of STBY for warm-up should be allowed before proceeding.
ON - Power is applied to CRT and video is established.
-1.2 The Major Function switch is also a three position switch:
GNC - The MCDS will be controlled by a GPC in which Guidance, Navigation, and Flight Control or Vehicle Utility Prelaunch functions are being executed.
SM - The MCDS will be controlled by a GPC in which Systems Management functions are active.

PL - The MCDS will be controlled by a GPC in which Vehicle Utility functions for Mass Memory Unit operations are active.
-1.3 The BFC CRT Display switch is an On/Off switch. If On, PASS will not command the MCDS.
-1.4 The BFC CRT Select switch is a 3 position switch used in conjunction with the On state of the BFC CRT Display switch (if that switch is Off the BFC CRT Select switch is ignored by PASS). The three positions are:
\(1+2-\) BFS Commands MCDS 1 (PASS relinquishes control of MCDS 1)
\(2+3\) - BFS Commands MCDS 2
\(3+1\) - BFS Commands MCDS 3
(If BFS is engaged it assumes command of the second number MCDS; e.g., \(1+2\), BFS would command MCDS 1 and 2 if engaged.)
-1.5 There are two keyboards forward which support the forward three CRTs, and an aft keyboard for the aft CRT. In the case of the forward keyboards, selection of keyboard/CRT combination is made via two switches. The commander's keyboard select switch controls the left keyboard and allows selection of the left or center CRT. The pilot's keyboard select switch controls the right keyboard and allows selection of the right or center CRT. Care should be taken to avoid having both switches selected to the center CRT. The keyboard keys are defined in section 5 .
-2 Messages may be sent via the Launch Data Bus (LDB) or uplink to the GPC(s), the equivalent of an MCDS message (hence, referred to as DEU-Equivalents). Any such message sent to a particular GPC from a specified DEU must have the same major function specified as the actual DEU. For DEU-Equivalent messages, the syntax is the responsibility of the issuer. (55006) Such messages can be sent to a GPC even if the specified DEU is powered off. (27521) (36329/37637) Care should be taken to insure the GPC specified in the message is in command of the DEU specified. If a RESUME message is sent to a GPC for a DEU commanded by some other CS GPC or which has been isolated, an ILLEGAL ENTRY message will appear (52780).
-3 An MCDS may be IPL'ed or loaded by a GPC in initial OPS 0 (See section 2.3.1) or OPS P901. The DEU IPL is done via a toggle switch on panel 06 which is taken to LOAD then released. At this point the CRT is blanked, followed by DEU LOAD in the lower left corner, followed by IPL COMPLETE in the center. This will flash, then a big X will appear and then the appropriate display (GPC Memory in OPS 0 , Mass Memory Read/Write in PL9) will replace the big X. (37542)

\subsection*{3.1 MCDS/GPC ASSIGNMENT HIERARCHY}

For all buses except the MCDS buses, GPC/Bus combinations are fixed at entry into an OPS and are based on the Bus Assignment Table. The MCDS buses are assigned to GPCs according to a predetermined hierarchy. The assignment is determined at any OPS transition, Major Function switch change, GPC/CRT keyboard entry, or BFC CRT Select switch manipulation.
-1 The MCDS assignment is done in 3 steps:
-1.1 The MCDS will be assigned to the GPC specified in the Bus Assignment Table (or GPC/CRT entry) if the Major Function switch is GNC and the GPC is in the redundant set. If the specified GPC is not in a redundant set, the MCDS will be assigned to the lowest ID GPC in the redundant set.
- 1.2 The MCDS will be assigned to a simplex GPC with the major function active that matches the Major Function switch.
-1.3 If neither (1) or (2) are satisfied, the current GPC controlling the MCDS will be retained.
-2 The MCDS assignments may be shifted between GPCs by the use of "GPC/CRT XY EXEC" input on a keyboard where X is the GPC ID and Y is the MCDS number. If \(\mathrm{X}=0\) is specified, the MCDS will be isolated; that is, no GPC will command it and a big " X " will appear on the CRT. (37512)
-3 If the DEU to be distributed is currently controlled by the BFS no transmitter change will be invoked until the control of the DEU is returned to the PASS. At that time the DEU will be distributed according to the above hierarchy.
-4 A GPC/CRT assignment may appear to fail if the request is to move the MCDS from an active software function/major function match to a mis-match. For example, if a GPC is active in GNC and controlling an MCDS whose Major Function switch is GNC and an attempt is made to give the MCDS to a GPC with SM active, the MCDS will be given to the requested GPC for one cycle only then will return to the GNC GPC due to the major function considerations. This most frequently occurs at addition of a GPC to the common set when it is desired to assign an MCDS to the OPS 0 GPC. Before a GPC/CRT may be entered, the Major Function switch must be placed to a non-active Major Function. For example, if two GPCs are in common set and active in GNC and SM and a third GPC is added to the common set (OPS 0), the MCDS Major Function switch must be placed to PL before it can be assigned to the OPS 0 GPC. (37511)
-5 Reassignment of an MCDS should be done only when it is not being used for keyboard inputs.

\subsection*{3.2 STANDARD CRT DISPLAY PAGE}

A standard CRT page format depicts generic fields to be displayed on each display page called up by an operator. These fields and their functions are described as follows (see Figure 3-1):
A. Four-digit field used to designate the major OPS.
B. Three-digit field designating the specialist function which overlays the OPS.
C. Three-digit field identifying the display page which overlays OPS or SPEC.
D. Eighteen-character alphanumeric field reserved for the title of the page being displayed. Depending upon the OPS, portions of the title may be dynamic.
E. A two-character field for displaying uplink activities (invoked by the GPC uplink switch). The characters UL are displayed flashing.
F. One-character field which identifies the GPC that is driving the display page.
G. Twelve-character alphanumeric field which displays mission time (MT), either mission elapsed time (MET) or GMT as specified on the TIME display, in days ( 3 digits)/hours ( 2 digits): minutes ( 2 digits): seconds ( 2 digits).
H. Twelve-character alphanumeric field used to display CRT time (CRT Timer). This field is driven by the source corresponding to the Major Function select switch, is shown only when a timer is activated via the TIME display, and is the same format as G. (45609/47317)
I. Three-character alphanumeric field used to display BFS when the BFS is the source of the display. A stippled (dotted) background is used on the display format to highlight background nomenclature and/or foreground data fields that are supported and driven only by BFS.
J. Line 25 is reserved for outputting CRT messages.
K. Two-character numeric field reserved for displaying the total number of messages in the queue waiting to be processed.
L. Line 26 is reserved for the scratch pad line which is used to echo the keyboard entries made by the crew and for display of DEU detected error messages.
```

RELEASE: OI20
BOOK: PASS User's Guide


Figure 3-1. Standard Display Page

### 3.3 OPS, SPEC, DISP PAGE HIERARCHY

As indicated in sections $3.2 \mathrm{~A}, \mathrm{~B}$, and C above, the basic ordering of "layers" of CRT images is OPS, SPEC, DISPLAY. At transition into an OPS, all CRTs with Major Function of the OPS will display the OPS/Mode display. Requesting a SPEC overlays the OPS display with the desired SPEC. Requesting a display only function (DISP) overlays the SPEC display with the desired DISPLAY. A subsequent RESUME will return the underlying SPEC display and another RESUME will return the underlying OPS display. Two SPEC functions are allowed to be active per Major Function.
-1 Requests on the same level are not stacked. That is, a SPEC request followed by a second SPEC request results in termination of the first SPEC before the second SPEC is initiated. A subsequent RESUME will return to the OPS display, not the first SPEC. (25396) (33754) (37503)
-2 A failed SPEC may be RESUMEd by one of two methods: an OPS transition may be requested (which will automatically cancel it); or a DEU-Equivalent RESUME message may be sent to the GPC controlling the failed DEU.

O

O

### 3.4 USER'S GUIDE DISPLAY FORMAT

The PASS contains over 70 CRT and 100 TEXT and GRAPHICS displays for presentation via keyboard request. Each display will be presented with the following information:
A. Display name.
B. Availability, which OPS.
C. Purpose of the display in a short description.
D. Picture of the CRT image.
E. Display Functions table which describes functional capability of display.
F. Display Items table which lists ITEMs versus functional capability.
-1 Since the available CRT displays change from mission to mission and since each display is an entity unto itself, presentation of the material in this section will be as follows:
A. Section, Figure, or Table number will be specified by the display number.
B. Each display will be paginated by 3.5.+ Display number + page (for example, GPC Memory will be 3.5.000-1, 3.5.000-2, etc.).
-2 Table 3-2 lists the CRT displays available in PASS.
-3 Notes concerning displays will usually appear at the place most applicable in the Display Purpose, Display Function/Item tables. However, notes of a broad nature concerning displays will be found here.
-3.1 Several of the display logouts were made assuming numerical values would be positive only. No room for a sign (+ or - ) was allowed. (45822)
-3.2 There is a known 1.2 micro-second window during which the DEU is susceptible to invalid keycodes input from the keyboard adapter unit.
-4 In order to save GPC memory space, several display formats are offloaded to the Display Electronics Unit's (DEU's). These display formats are called Critical Formats and are listed in Table 3-1.

RELEASE: Ol20
BOOK: PASS User's Guide

TABLE 3-1. CRITICAL FORMATS

## MEMORY

CONFIGURATION

ALL
1, 2, 3, 8
2, 3
2, 3
2, 3, 8
1, 3
1, 3
ALL
1
1, 2, 3
3
1, 3

### 3.4.1 DISPLAY: XXXXIPL MENU

-1 AVAILABILITY: Only during GPC IPL, see Section 2.3, System Initialization.
-2 PURPOSE: The IPL Menu display provides the user with the capability to select different GPC software loads and provides access to the GPC Self-Test Program (STP) and the Real Time Processor (RTP) functions of the GPCIPL program during self-test operation. With this display, the user has the capability to run STP or RTP and has the means to control and monitor memory purge operations for the DEU, MMU, and/or GPC. The display consists of 2 pages.


Figure 3. IPL (1)

```
RELEASE: OI20
Date: 12/20/90
```

GPCIPL MENU (2)XX X DDD/HH:MM:SS
DDD/HH:MM:SS
17 DEU FORMAT LOAD $\underline{X} \quad$ STP/PURGE CYC CNT XXXXX ERROR/MSG CODE XXX
Start grc self test 18x ERROR/MSG CODE CNT XXXX STOP GPC SELF TEST 19X TOTAL ERR/MSG CNT XXXX Start deu self test 20X MSGS STILL IN LIST XXX

|  | MCDS | BITE |
| :--- | :--- | :--- |
|  |  | MODE XXXX |
|  |  | BSR1 XXXX |
|  |  |  |
| STOP STP ON ERROR | BSR2 XXXX |  |
| CONTINUE STP ON ERROR | $24 X$ | SWSW XXXX |

INHIBIT CKPT LOAD 26X

OLD PSW XXXX XXXX XXXX XXXX
REGISTER 0-3 $\quad$ XXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
SET 0 4-7 $\quad$ XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
REGISTER 0-3 3 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
SET 1 1 4-7 $\quad$ XXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
FLOATING 0-3 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
PT REGS 4-7 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
MAJ=XXXXX MIN=XX SCHEDWRD=XXXXXXXX CLOCK1=XXXXX
(XX)

Figure 3. IPL (2)

| TABLE 3. IPL-1 DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | Display Call-Up |  |  |
|  | Initial Page 1 | None | The initial IPL MENU page is presented on a CRT during IPL of a GPC following procedures in Section 2.3. Basic requirements are: |
|  |  |  | 1 - BFC CRT Switch ON. <br> 2 - BFC CRT Select Switch in proper position for desired CRT. <br> 3 - GPC IPL'ed and taken to STANDBY with DEU LOAD outstanding. |
|  |  |  | At display call-up, the title will be "GPC IPL MENU (1)." Also at display call-up, a flashing message will be on the message line and MSGS STILL IN LIST will be 2 for nominal case. A MSG RESET key entry twice will remove the two nominal messages <br> (GPCIPL AA.BB.CC.DD.EE LOADED, DCP AA.BB.CC.DD.EE LOADED). |
|  | Page 2 and Subsequent Page 1's | SYS SUMM | The page 2 title is "GPCIPL MENU (2)." Repeated input of SYS SUMM key will toggle between page 1 and page 2 . |
| 2 | GPC Software Load Selection | ITEM N EXEC | Causes software loader (SSL or BSL) to fetch requested software from selected MMU for GPC load. For PASS, $\mathrm{N}=1,3$, or 5 for MMU area 1,2 or 3 respectively. Upon entry, an * will be driven by the selected ITEM (For BFS, $\mathrm{N}=2,4$ or 6 for MMU area 1,2 , or 3 respectively). |
| 3 | GPC Self-Test |  | One cycle of the GPC self-test program is automatically done when the GPC is moded to STANDBY. The upper right corner of the display provides self-test information: |
|  |  |  | STP/PURGE CYCLE COUNT <br> Number of times GPC self-test/purge program has executed. |
|  |  |  | ERROR/MSG CODE <br> Hex code for error message currently on message line. |
|  |  |  | ERROR/MSG CODE COUNT <br> Number of errors of the type shown by ERROR/MSG CODE which have been generated. |

TABLE 3. IPL-1 DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
|  | GPC Self-Test (Cont'd) |  | TOTAL ERR/MSG COUNT <br> Total number of errors sensed. |
|  |  |  | MSGS STILL IN LIST <br> Number of messages remaining in list to be viewed. |
|  |  |  | On page 2 of IPL MENU, detailed data taken at the time of the current error is shown. This data includes the old PSW, general and floating point registers, and major/minor cycle information. |
|  |  | ITEM 24 EXEC | Stop self-test execution on error. (lab use only) |
|  |  | ITEM 25 EXEC | Let self-test execution continue on error (mutually exclusive with ITEM 24). (lab use only) |
|  |  | ITEM 18 EXEC | Start cyclic self-test of GPC. Will continue to run (assuming no errors) until terminated. |
|  |  | ITEM 19 EXEC | Stop cyclic self-test of GPC. |
| 4 | DEU Format Load | ITEM 17 EXEC | Load the DEU with a selected format load which consists of static background Format Control Words (FCWs) to be used at a later time. |
| 5 | DEU Self-Test Control | ITEM 20 EXEC | Start Stand-Alone Self-Test Program (SASTP) of DEU (refer to section 3.4.2 for a detailed write-up). |
|  |  |  | NOTE: Execution of the DEU self-test is terminated by the RESUME key or the DEU LOAD switch on panel O6. |



| TABLE 3. IPL-2 DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Load PASS, Area 1 into GPC |  |  |  | 2 |  |
| 2 | Load BFS, Area 1 into GPC |  |  |  | 2 |  |
| 3 | Load PASS, Area 2 into GPC |  |  |  | 2 |  |
| 4 | Load BFS, Area 2 into GPC |  |  |  | 2 |  |
| 5 | Load PASS, Area 3 into GPC |  |  |  | 2 |  |
| 6 | Load BFS, Area 3 into GPC |  |  |  | 2 |  |
| $\begin{aligned} & 7- \\ & 16 \end{aligned}$ | Not Currently Supported |  |  |  |  |  |
| 17 | Load DEU Format |  |  |  | 4 |  |
| 18 | Start Cyclic GPC Self-Test |  |  |  | 3 |  |
| 19 | Stop Cyclic GPC Self-Test |  |  |  | 3 |  |
| 20 | Start DEU SASTP |  |  |  | 5 |  |
| $\begin{aligned} & 21- \\ & 23 \end{aligned}$ | Not supported, do not use. |  |  |  |  |  |
| 24 | Stop Cyclic GPC Self-Test on Error. Lab use only. |  |  |  | 3 |  |
| 25 | Continue Cyclic GPC Self-Test on Error. Lab use only. |  |  |  | 3 |  |
| 26 | IMU Checkpoint Data Load |  |  |  |  | Allows the user to inhibit loading of IMU checkpoint data from MMU into the BFS GPC. |
| 27 | Select Purge Option |  |  |  | 6 |  |
| 28 | Start Purge Option |  |  |  | 6 |  |
| 29 | Stop Purge Option |  |  |  | 6 |  |

### 3.4.2 DISPLAY: DEU STAND-ALONE SELF-TEST (DEU SAST)

-1 AVAILABILITY: During Non-Default IPL Only
-2 PURPOSE: The DEU Stand-Alone Self-Test Display is used to check out the basic functions of the MCDS. The display for the DEU stand-alone self-test is nonstandard. This test is run independently of other functions. The only contact with the GPC is polling, so that the test may be terminated. The display does not include OPS, SPEC, or DISP page numbers. It does not include the standard title line, the GPC indicator, the mission elapsed time, the event timer, the tutorial line, the fault line, or the scratch-pad line. It cannot be overlain. This display is invoked via the IPL MENU.


Figure 3.DEU

### 3.4.2.1 NORMAL OPERATION

The following descriptions pertain mainly to normal operation of the test and describe the patterns to be observed when nothing is malfunctioning. Static elements of the display are described 3.4.2.1-1 through 3.4.2.1-9. Dynamic elements are described in 3.4.2.1-10 through 3.4.2.1-15. Interactive control features of the display are described in 3.4.2.1-16 through 3.4.2.1-18.
-1 At the top of the display, the lower-case Roman letters, of normal size and at bright intensity level, appear in the sentence:
pack my box with five dozen liquor jugs
-2 On the second line, offset 3 spaces to the left under the first line, the upper-case Roman letters, of normal size and at normal intensity level, appear in the sentence:

## PACK MY BOX WITH FIVE DOZEN LIQUOR JUGS

-3 On the third line, offset to the left under the second line, at bright intensity level and normal size, the following characters appear in groups of five separated by spaces:

Left bracket, centered dot, overscore, upper left dot (or degree sign), right bracket; space, left paren, exclamation mark, sinusoid, check mark, right paren; space, upper double dot, query mark, upper centered dot, upper vertical half line, upper double dot; space, up arrow, ampersand, apostrophe, comma, down arrow; space, right arrow, period, slash, colon, left arrow; space, right arrow head, semicolon, right horizontal half line, underscore, left arrow head.
-4 Below the third line of text is a square with sides 0.7383 inch in length, oriented horizontally and vertically and drawn with normal intensity. Within the square is a dynamic display of rotating vectors described in 3.4.2.1-15.
-5 At the left side of the display is an arrangement of four concentric circles with respective diameters of 0.2872 inch, 0.8204 inch, 1.7364 inches, and 2.1876 inches. All circles are written with normal intensity. The second smallest ( 0.8204 inch diameter) is dashed, and the other three are drawn with solid lines. A capital letter X, at normal intensity and 0.125 inch high, is written so its center coincides with the largest circle at the top $\left(0^{\circ}\right)$. Another such capital X is on the largest circle at the right side $\left(90^{\circ}\right)$. Within the arrangement of circles is a dynamic display of rotating and revolving letters described in 3.4.2.1-14.
-6 Two parallel lines run diagonally across the screen from the lower left corner to the upper right corner at an angle of 35.54 degrees to the horizontal. The lines are 0.8980 inch apart and each passes 0.4490 inch from the center of the screen. Both lines are of normal intensity, the upper line is dashed, the lower line is solid, and both lines run to the edges of the screen, except that the solid line does not enter a text line at the bottom of the display.
-7 At the left side of the screen, under the array of concentric circles and to the left of the dashed diagonal line, there is an area that should be blank unless the blanking feature is malfunctioning. If the letter writing is working, but the blanking is not, the following legend appears in this area:

> BLK
> (FAIL)
-8 About the center of the screen is an array of tick marks for checking focus and resolution. The tick marks are short, straight line segments from the symbol generator character matrix. To the left of screen center are 33 vertical tick marks 0.0273 inch apart in a horizontal array. To the right of screen center are 34 marks in such an array. Above the center of the screen are 33 horizontal tick
marks 0.0273 inch apart in a vertical array. Below screen center are 34 marks in such a vertical array.
-9 All 128 defined symbol elements of the DEU are displayed. In addition to upper- and lower-case letters in the top two lines and the symbols in the third line, the numerals and other symbols are displayed in the left part of the bottom (scratch-pad) line, as follows:

```
0123456789\pm:-= #%><*
```

These characters are written at normal size. The numerals are displayed at normal intensity. The mathematical symbols in the bottom line are displayed at bright intensity. The 20 remaining characters are written in an array five characters high and four characters wide below and to the right of the array of resolution marks. These 20 characters are various lower and upper case Greek letters, del (upside-down capital delta), TACAN symbol (an outline Y with all three arms of equal length and angle), diamond, and plan and elevation outlines of the Space Shuttle.
-10 Below and to the right of the four-by-five array of Greek and special characters is an array of horizontal lines of varying brightness. There are ten horizontal lines, the shortest being 0.0068 inch long and the longest being 3.5000 inches long. Successive lines double in length ( $0.0068,0.0137$, $0.0273,0.0547,0.1094,0.2188,0.4375,0.8750,1.7500,3.5000$ ). All ten lines are spaced vertically equidistant, and right ends are vertically aligned and connected with a vertical line. The five shortest of these ten lines are displayed at normal intensity and flashing. The five longest of these ten lines are displayed with continuously varying intensity from zero to maximum and continusously varying back to zero. This intensity variation occurs with a period of approximately 2.33 seconds.
-11 Above the array of Greek letters and special symbols and the array of flashing and variable-intensity lines there is a small square (from the symbol generator character matrix) which travels continuously back and forth in a horizontal line (between the center and the right edge of the screen). The center-to-center distance of the extreme positions of this square is 3.3975 inches. This square is displayed at normal intensity and travels back and forth at a rate of 0.374 inch per second. A complete cycle requires approximately 18.62 seconds.
-12 From the rightmost position of the horizontally moving square, there is a similar vertically moving square. The extreme positions of the vertically moving square are (1) the rightmost position of the horizontally moving square and (2) a position 0.8613 inch directly above the first position. This square is displayed at normal intensity and travels up and down at a rate of 0.374 inch per second. A complete cycle requires approximately 4.63 seconds. Every fourth cycle, this square coincides at the bottom of its travel with the horizontally moving square at its right most position.
-13 Between the diagonal lines drawn across the screen from lower left to upper right, there is a spinning "bug" consisting of 16 lines in a sunburst array, rotating about a center which moves up and to the right. The lines begin 0.2051 inch from the center of rotation and extend another 0.2051 inch outward. The array of lines rotates at 53.17 degrees per second, while the center moves up and to the right (along an incline of 35.54 degrees to the horizontal) at a rate of 1.536 inches per second. The pattern does not appear to be a rolling wheel, but rather an emblem at the center of a rolling wheel with about four times the diameter. Immediately following the upward transit, the bug reverses direction and appears to roll and slide down the hill at the same rate it moved up. Then it starts up again. The complete cycle takes approximately 26.48 seconds.
-14 In the array of circles at the left of the screen are two patterns revolving about the center within the annulus defined by the two large circles. The first patterns consists of the capital letters AB , with the A having a height of 0.150 inch and the B having a height of 0.125 inch. The A and B each remain upright, while they revolve around their common center at the same rate the pattern revolves about the center of the circles. Thus the B leads the A around the circle in a clockwise direction. The second patterns consists of the capital letters CD, with the C having a height of 0.150 inch and the D having a height of 0.125 inch. The entire pattern rotates at the same rate, it revolves (clockwise), so that the bottom of the letters is toward the center of the circles and they are read in the order CD when viewed from the center of the circles. There is also a 0.125 -inch capital X at the common center of these circles, which rotates about its own center at the same rate the AB and CD
patterns revolve. The common rate of revolution and rotation of the $\mathrm{AB}, \mathrm{CD}$, and X patterns is approximately 33.84 degrees per second. The rotation cycle takes about 10.64 seconds to complete.
-15 Within the square box described in 3.4.2.1-4 is a rotating array of lines (boxed windmill). Two lines intersect at right angles in the center of square. When they are in the horizontal and vertical positions, they bisect the sides of the square. In the 45 -degree position, they form the diagonals of the square. At all times, these rotating lines extend to the sides of the square, but not beyond. The array rotates counter clockwise at a variable rate. Near the position as diagonals, the rotation rate is approximately 3.15 degrees per second. Near the position perpendicular to the sides of the square, the rotation rate is approximately 6.30 degrees per second. Every 90 degrees of rotation the pattern repeats. This 90 -degree rotation takes approximately 18.2 seconds.
-16 Within the angle defined by the two small squares moving, respectively, left and right, up and down, there is a small block of significant text. The top line of this text block contains the legend KBUA followed initially by two asterisks(*s). The second line contains the legend KBUB followed initially by two asterisks $($ s $)$. These lines are for checking operation of the keyboard associated with the display. If the display is on the center CRT, one line is used for each of the two keyboards that may be connected to the CRT. The keys are coded from 00 through 31, from left to right and top to bottom. As any key is depressed, its number appears on the display and remains until another key is depressed. This display of key codes goes on right along with key sequences that activate the status test. On the next line an encoding of the position of the Major Function switch is shown to the right of the letters MF as GNC, SM, or PL. The position of the Major Function switch may be changed for testing purposes. On the next line is a reminder for activation of the BITE test and indication of when it is in progress.

- 17 On the right portion of the bottom line of the display, the word STATUS appears, followed by a pattern of four groups of four hexadecimal digits indicating the status of the BITE register. The digits are initially blank while the condition of the DEU is being assessed by the program. The status is then displayed. The normal display is:

8200800080000000
If the DEU has just been reloaded, for such reason as initial startup or a power transient, the last group of four digits, instead of being 0000 , will be 2000 . The BITE test can be activated by entering ITEM 1 EXEC. While the test is in progress, an asterisk $\left(^{*}\right)$ appears to the right of TEST 1. When the test is completed, the asterisk (*) is removed and the new condition of the BITE registers is shown following the word STATUS in the bottom line of the display. Following Test 1, the STATUS display should be:

82768080 A000 0000
The dynamic portions of the display continue uninterrupted while this testing is in progress.
-18 To terminate the DEU stand-alone self-test display, the Major Function switch must be in the same position it was in when the self-test was initiated while the RESUME key is entered. If the Major Function switch is not set properly, the word ERR appears beside the Major Function indicator on the display and flashes. ERR remains flashing, until a key is depressed on the keyboard or until the position of the Major Function switch is changed; then the error message disappears.

### 3.5 DISPLAYS

Table 3-2 is a listing of the CRT displays in this section.

| TABLE 3-2. CRT DISPLAYS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CRT | MF | TITLE | CRT | MF | TITLE |
| 000 | ALL | GPC MEMORY (Also G9011) | 097 | S | PL RETENTION |
| 001 | ALL | DPS UTILITY | 099 | ALL | FAULT |
| 002 | ALL* | TIME | 100 | G,P | GTS DISPLAY |
| 006 | ALL | GPC/BUS STATUS | 101 | G | SENSOR SELF TEST |
| 018 | G | GNC SYS SUMM 1 |  |  | (pre-flight) |
| 019 | G | GNC SYS SUMM 2 | 102 | G | RCS/RGA/ADTA TEST |
| 020 | G | DAP CONFIG | 104 | G | GND IMU CNTL/MON |
| 021 | G | IMU ALIGN |  |  | (pre-flight) |
| 022 | G | S TRK/COAS CNTL | 105 | G | TCS CONTROL |
| 023 | G | RCS | 106 | G | MANUAL CONTROLS |
| 025 | G | RM ORBIT | 110 | G,P | BUS/BTU STATUS |
| 033 | G | REL NAV | 111 | P | SL MEMORY DUMP |
| 034 | G | ORBIT TGT | 112 | G | GPC/BTU I/F |
| 040 | G | SENSOR TEST | 113 | G | ACTUATOR CONTROL |
| 041 | G | RGA/ADTA/RCS | 1011 | G | XXXXXX TRAJ |
| 042 | G | SWITCH/SURF | 1021 | G | XXXXXX TRAJ |
| 043 | G | CONTROLLERS | 1031 | G | XXXXXX TRAJ |
| 044 | G | SWITCHES | 1041 | G | XXXXX MNVR YYYYY |
| 045 | G | NWS CHECK | 1051 | G | XXXXX MNVR YYYYY |
| 050 | G | HORIZ SIT | 1061 | G | XXXXX MNVR YYYYY |
| 051 | G | OVERRIDE | 2011 | G | UNIV PTG |
| 053 | G | CONTROLS | 2021 | G | ORBIT MNVR EXEC |
| 060 | S | SM TABLE MAINT | 2011 | S | ANTENNA |
| 062 | G,S | PCMMU/PL COMM | 2021 | S | PL BAY DOORS |
| 064 | S | SM GROUND CHECKOUT | 3011 | G | DEORB MNVR COAST |
| 066 | S | ENVIRONMENT | 3021 | G | DEORB MNVR EXEC |
| 067 | S | ELECTRIC | 3031 | G | DEORB MNVR COAST |
| 068 | S | CRYO SYSTEM | 3041 | G | ENTRY TRAJ 1 |
| 069 | S | FUEL CELLS | 3042 | G | ENTRY TRAJ 2 |
| 076 | S | COMM/RCDR | 3043 | G | ENTRY TRAJ 3 |
| 077 | S | EVA-MMU/FSS | 3044 | G | ENTRY TRAJ 4 |
| 078 | S | SM SYS SUMM 1 | 3045 | G | ENTRY TRAJ 5 |
| 079 | S | SM SYS SUMM 2 | 3051 | G | VERT SIT 1 |
| 085 | S | MASS MEMORY R/W | 3052 | G | VERT SIT 2 |
| 086 | S | APU/HYD | 4011 | S | ANTENNA |
| 087 | S | HYD THERMAL | 6011 | G | XXXXXX TRAJ |
| 088 | S | APU/ENVIRON THERM | 6021 | G | VERT SIT 1 |
| 089 | S | PRPLT THERMAL | 6031 | G | VERT SIT 2 |
| 090 | S | PCS CONTROL | 8011 | G | FCS/DED DIS C/O |
| 094 | S | PDRS CONTROL | 9011 | G | GPC MEMORY |
| 095 | S | PDRS OVERRIDE | 9011 | P | MASS MEMORY R/W |
| 096 | S | PDRS STATUS |  |  |  |

[^1]
### 3.5.000 DISPLAY: GPC MEMORY

-1 AVAILABILITY: OPS Display - OPS 0 and G9; SPEC 000 in all OPS.
-2 PURPOSE: The GPC Memory display provides general system level controls. These are: updating the GRT (GPC reconfiguration table); updating the BAT (Bus Assignment Table); modification/display of GPC memory; dump (via downlist -FMT 90) of GPC memory; selection of GPC to be Downlisted; loading of a GPC with a given memory configuration without execution (freeze-dry); resetting of I/O error log, CAM status, and SYNC TRACE log; ENABLE/DISABLE of the downlist of a non-prime OPS O GPC; ENABLE/DISABLE OPS 3 UPLINK; and Mass Memory area selection by major function. (37536)


Figure $\mathbf{3 . 0 0 0}$

| TABLE 3.000-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 1 | Display Call-Up | OPS 000 PRO | OPS 0 is also forced by GPC Mode Switch action (RUN-HALT/STANDBY-RUN). (35513) (37427) |
|  |  | OPS 901 PRO | With MCDS Major Function = GNC causes transition to GNC 901. |
|  |  | SPEC 000 PRO | Upon display initialization the major function active in the GPC controlling the MCDS will be shown at the right of READ/WRITE. Valid indications are GNC, SM, and PL. (37516) |
| 2 | GPC <br> Reconfiguration <br> Table (GRT) <br> Update | ITEM $1+$ X EXEC | X is desired memory configuration number (must be input before items 2-19): (37427) |
|  |  |  | $\begin{array}{lll} 1-\text { G1 } & 4-\text { SM2 } & 7-\text { NA } \\ 2-\text { G2 } & 5-\text { SM4 } & 8-\text { G8 } \\ 3-\text { G3 } & 6-\text { PL9 } & 9-\text { G9 } \end{array}$ |
|  |  |  | Upon entry of ITEM 1, GRT \& BAT reflect current values for the selected MC. (37506/104403) |
|  |  | ITEM $\mathrm{N}+\mathrm{M}$ EXEC | N is item number 2-6. M must be corresponding GPC number (use in MC target set) or 0 (do not use GPC in MC): |
|  |  |  | ITEM GPC ITEM GPC <br> $2-1$ $5-4$ <br> $3-2$ $6-5$ <br> $4-3$  |
|  |  |  | Note: Normally, GPC reconfiguration and bus assignment occur on OPS Transitions (or OPS Mode Recall) based on Items 2-19. On an OPS Transition from G1 to G3, the active G1 DPS configuration shall be used to determine the G3 DPS configuration, but only if the G3 GRT/NBAT (Items 2-19) have not been changed during G1. |
| 3 | Bus Assignment Table Update | ITEM $1+\mathrm{X}$ EXEC | See entry for GRT update (function 2). |


| TABLE 3.000-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 4 | GPC Memory <br> Display/Modification | ITEM $\mathrm{N}+\mathrm{M}$ EXEC | N is item number for selected string/bus (7-19); M is GPC which will command bus (string) in selected MC ( 0 will leave bus with no commander). <br> NOTE: Normally, GPC reconfiguration and bus assignment occur on OPS Transitions (or OPS Mode Recall) based on Items 2-19. On an OPS Transition from G1 to G3, the active G1 DPS configuration shall be used to determine the G3 DPS configuration, but only if the G3 GRT/NBAT (Items 2-19) have not been changed during G1. |
|  |  | ITEM 20 EXEC | Selects unprotected memory for display/writing to (default value). (37547) |
|  |  | ITEM 21 EXEC | Selects protected memory for display/writing to. Selection causes CODE to flash. <br> ITEMs 20 and 21 are mutually exclusive. Selection of either will cause the display to be reinitialized. |
|  |  | ITEM $26+$ ABB EXEC | Select desired engineering units for display of data (31987) (default is HEX): ```\(\mathrm{A}=1-16 \mathrm{bit} /\) fixed 2-32 bit float. B = 00 - No conversion (display units in memory, not HEX) 01 - NM from ft 02 - NM from Kft 03 - ft from NM 04-Kft from NM 05 - ft/ \(/ \mathrm{sec}^{2}\) from G's 06 - deg/sec from Mrad/sec 07 - deg from Arc-sec 08 - \(\mathrm{ft} / \mathrm{sec}^{2}\) from Micro-G 09 - deg from rad 10 - Kft from ft``` |
|  |  | ITEM 27 EXEC | Select HEX for display (default) - Mutually exclusive with ITEM 26. |


| TABLE 3.000-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 5 | Bit Set/Reset | $\begin{aligned} & \text { ITEM } 28+\mathrm{XXXXX} \\ & \text { EXEC } \end{aligned}$ | HEX address of memory to display ( $0-3$ FFFF) (software constraint). Entry causes cyclic updating of current value in ACTUAL column. If ITEM 26 entered and $\mathrm{A}=2$, address must be even. ITEMS $30,32,34,36$, and 38 may also be used to enter addresses. |
|  |  | ITEM 24 EXEC | Optional; Causes the next 5 addresses after the address specified via ITEM 28 to be displayed. At least one address must have been entered previously. |
|  |  | $\begin{aligned} & \text { ITEM } 29+\text { XXXX } \\ & \text { EXEC } \end{aligned}$ | HEX value to be entered in memory address specified by ITEM 28 . ITEMs 31, 33, 35, 37, and 39 correspond to ITEMs $30,32,34,36$, and 38. |
|  |  | ITEM 25 EXEC | Modifies memory by placing desired value into specified address. (55501) ACTUAL will equal desired unless the address is updated again by other software computations. |
|  |  |  | If ITEM 20 selected, address(es) must already be unprotected. |
|  |  |  | Address/Data must be entered as pairs prior to write. |
|  |  | ITEM 22 EXEC | Select bit set function. |
|  |  | ITEM 23 EXEC | Select bit reset function (Mutually exclusive with ITEM 22). One to six half-words may be modified at any one time by specifying appropriate addresses. |
|  |  | $\begin{aligned} & \text { ITEM } 28+\text { XXXXX } \\ & \text { EXEC } \end{aligned}$ | Specify address of word where bit resides (Optional ITEM 24 may be used to specify 5 additional consecutive addresses). |
|  |  | $\text { ITEM } 29+\text { XXXXX }$ | The 4-HEX digit value is a mask for bit(s) to be set or reset. A ' 1 ' in the mask bit will cause the corresponding bit in the specified word to be set or reset. |
|  |  | ITEM 25 EXEC | Set or Reset bits. |

Rev: 0

\left.| TABLE 3.000-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |$\right]$


| TABLE 3.000-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 8 | Freeze Dry GPC | ITEM $45+$ XX EXEC <br> ITEM $46+\mathrm{X}$ EXEC | Freeze Dry: Load a GPC memory with a selected Memory Configuration but do not begin execution of it. |
|  |  |  | $\mathrm{XX}=$ desired MC (1-9, except 7). |
|  |  |  | $\mathrm{X}=$ GPC number to be loaded (1-5). GPC selected must be in common set (NOT redundant set). Selected GPC must be in OPS 0 . MCDS used to make entries must be commanded by selected GPC. |
|  |  | ITEM 47 EXEC | Causes MC to be loaded. Current MC in GPC is displayed in STORE MC = XX on display. When $\mathrm{XX}=$ selected MC, load is complete. |
| 9 | Error Logs/SYNC <br> Trace Reset | ITEM 48 EXEC | Causes: <br> SYNC Trace Log to be restarted. All U-FAIL votes of GPC to be reset. I/O Error Log to be cleared. |
|  |  |  | All GPC(s) in a redundant set receiving the ITEM will take the specified actions. In common set, each GPC must have ITEM 48 EXEC entered on an MCDS keyboard being commanded by that GPC in order to clear the logs, etc. |
| 10 | OPS 0 D/L <br> ENA/DIS <br> (Non-Prime GPC) | ITEM 49 EXEC | OPS 0 is initialized with the D/L disabled. Execution of ITEM 49 enables the D/L and causes an asterisk to be displayed next to the 49. Subsequent executions of ITEM 49 will alternately DISABLE/ENABLE the downlist. |
| 11 | OPS 3 UPLINK | ITEM 50 EXEC | ENABLE/DISABLE OPS 3 UPLINK (toggle item). When ENABLED, this item allows OPS 3 Entry Memory Uplink to occur. It is initialized DISABLED and is valid only after overlay failure. |
|  |  | ITEM 51 EXEC | Initializes the resident MC and phase to reflect MC 3. Valid only when Item 50 is ENABLED. |
| 12 | Mass Memory Area Selection | ITEM $52+\mathrm{X}$ EXEC | $\mathrm{X}=$ Mass Memory Area (1-3) from which subsequent PL memory overlays are obtained. |

TABLE 3.000-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| :---: | :---: | :---: | :---: |
|  |  | ITEM 53+X EXEC | $\mathrm{X}=$ Mass Memory Area (1-3) from which subsequent GNC memory overlays are obtained. |
|  |  | ITEM $54+\mathrm{X}$ EXEC | $\mathrm{X}=$ Mass Memory Area (1-3) from which subsequent SM memory overlays are obtained. |
|  |  |  | Notes on items 52-54: |
|  |  |  | 1. It is possible to load an OPS from a different area on mass memory by using these items. It may be appropriate to select MMU/MMU as the source of the overlay (Item 10 on the DPS Utility SPEC 001) to force mass memory access. In this case, both major function base and program overlay may be obtained from the specified mass memory area. |
|  |  |  | 2. Item 53 must be consistent in all participating GNC GPCs when performing a GNC OPS transition. If this is not the case, and MMU/GPC errors are present during the OPS transition, it is possible to obtain a "mixed" overlay (i.e., MFB from a different MM area than the program overlay). |


| TABLE 3.000-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Memory Configuration Number | 1 | 9 |  | 2,3 | CZ2V_OPS_MC <br> 5,7 not valid |
| 2 | GPC 1 Selection | 0 | 1 |  | 2 | $\begin{aligned} & \text { CZ2V_GPC_NO } \\ & \text { Only } 0,1 \text { valid } \end{aligned}$ |
| 3 | GPC 2 Selection | 0 | 2 |  | 2 | Only 0,2 valid |
| 4 | GPC 3 Selection | 0 | 3 |  | 2 | Only 0,3 valid |
| 5 | GPC 4 Selection | 0 | 4 |  | 2 | Only 0,4 valid |
| 6 | GPC 5 Selection | 0 | 5 |  | 2 | Only 0,5 valid |
| $7-$ 19 | String/GPC <br> Assignment | 0 | 5 |  | 3 | CZ2B_STRING_MC |
| 20 | Select DATA Mode |  |  |  | 4 | CDJB_ITEM_INPUT(1) Items $\overline{2} 0$ \& $2 \overline{1}$ |
| 21 | Select CODE Mode |  |  |  | 4 | CDJB_ITEM_INPUT(2) Exclusive |
| 22 | Set Bit |  |  |  | 5 | CDJB_ITEM_INPUT(3) |
| 23 | Reset Bit |  |  |  | 5 | CDJB_ITEM_INPUT(4) |
| 24 | Sequential Addresses |  |  |  | 4,5 |  |
| 25 | Write to GPC Memory |  |  |  | 4,5 |  |
| 26 | Select Engineering Units | 100 | 210 |  | 4 | CDJV_SCALE <br> See function 4 for valid values |
| 27 | Select HEX display |  |  |  | 4,5 | CDJB_ITEM_INPUT(8) |
| $\begin{aligned} & 28- \\ & 38 \end{aligned}$ | GPC Memory Address to Display <br> (28, 30, 32, 34, 36, 38) | 00000 | 3FFFF | HEX | 4,5 | CDJ_ADD_ID(1 thru 6) |
| $\begin{aligned} & 29- \\ & 39 \end{aligned}$ | Desired value/mask $(29,31,33,35,37,39)$ | 0000 | FFFF | HEX | 4,5 | CDJ_DESIRED (1 thru 6) |
| 40 | GPC Memory Dump Start Address | 00000 | 3FFFF | HEX | 6 | CDWV_MAIN_MEM_DMP_PRT |
| 41 | Number or words of GPC to dump | 1 | 262144 | DEC | 6 | CDWV_MAIN_MEM_DMP_LEN |


| TABLE 3.000-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 42 | Number of words/downlist frame | 16 | 128 | DEC | 6 | CDWV_MAIN_MEM_CM_WRDS_FRM See Function 6 for valid values. |
| 43 | Initiate Downlist Dump |  |  |  | 6 |  |
| 44 | Downlisting GPC Selection | 1 | 5 |  | 7 | CZ2V_GPC_P |
| 45 | Select freeze-dry <br> MC for GPC | 1 | 9 |  | 8 | Except 5,7 |
| 46 | Select GPC for freeze-dry | 1 | 5 |  | 8 | CDJV_FD_MC |
| 47 | Initiate freeze-dry load |  |  |  | 8 | CDJV_FD_MC |
| 48 | Error Log Reset |  |  |  | 9 |  |
| 49 | OPS 0 Enable |  |  |  | 10 |  |
| 50 | OPS 3 UPLINK |  |  |  | 11 | CZ2B_ENA_BOOTSTRAP Bit 16 |
| 51 | OPS 3 <br> INITIALIZATION |  |  |  | 11 |  |
| 52 | PL MM AREA | 1 | 3 |  | 12 | CDJV_MM_AREA\$(1) |
| 53 | GNC MM AREA | 1 | 3 |  | 12 | CDJV_MM_AREA\$(2) |
| 54 | SM MM AREA | 1 | 3 |  | 12 | CDJV_MM_AREA\$(3) |

$\qquad$
$\qquad$

Date: 12/20/90
Rev: 0

### 3.5.001 DISPLAY: DPS UTILITY

-1 AVAILABILITY: SPEC 001 in all OPS.
-2 PURPOSE: The DPS Utility SPEC function provides system level controls: MMU/major function assignments; MDM/string port selection; uplink controls; memory configuration overlay source/bus selection; variable downlist parameter selection; SM checkpoint retrieval control; direct command output to MDMs; G3 Archive; LDB Enable/Disable capability; and maintenance ground checkout options. (37536)


Figure 3.001

TABLE 3.001-1. DISPLAY FUNCTIONS

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | Display Call-up | SPEC 001 PRO | SPEC call-up is legal in all OPS. (37427) |
| 2 | MMU/Major Function Assignment | ITEM N EXEC | Each major function may be assigned a MMU to be used for memory configuration overlays and other MMU accesses (TFL loads, checkpoints, etc.). The following matrix shows N for major function versus MMU: |
|  |  |  |  MMU 1 MMU 2 <br> GNC 1 2 <br> SM 3 4 <br> PL 5 6 <br> OPS 0 7 8 |
|  |  |  | Selections are mutually exclusive; e.g., selection of MMU 2 for $\mathrm{GNC}(\mathrm{N}=2)$ removes selection of MMU $1(\mathrm{~N}=1)$. The default selection is MMU 1 for all major functions. Selection(s) are maintained across OPS transitions (for nominal cases). The status of each MMU is indicated by RDY (ready for access) or BSY (Off, just powered on less than 34 sec. ago; In use; or Busy, cannot accept a new access request) immediately below the MMU assignment matrix. (37420) |
| 3 | MDM/String Port Assignment | ITEM M EXEC | Flight critical string MDMs are dual port devices and the two ports are selectable on a string by string basis. The following matrix shows M for string versus port (a string is a pair of one forward and one aft MDM): |
|  |  |  | String Primary Port Secondary Port <br> 1 15 16 <br> 2 17 18 <br> 3 19 20 <br> 4 21 22 |
|  |  |  | Payload buses are similarly selected. Primary selection is $\mathrm{M}=23$, secondary is $\mathrm{M}=24$. All port selections are maintained across OPS transitions. |



| TABLE 3.001-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- |



| TABLE 3.001-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
|  |  | ITEM 49 EXEC | Enables/Disables G3 Archive Retrieve. This item permits the user to retrieve the G3 program overlay from upper GPC memory on a subsequent G3 OPS Transition. <br> Notes: <br> 1. The source of the G3 program overlay shall always be the mass memory area indicated by the GNC MM AREA (Item 53 on GPC/Memory Display). <br> 2. Items 48 and 49 are mutually exclusive. Whenever the user attempts to select either item while the other is already enabled, the other item will revert to the disabled state. <br> 3. Upon successful completion of the G3 Archive Load, Item 48 shall be disabled, and Item 49 shall be enabled. If the G3 Archive Load was unsuccessful, Item 48 shall remain enabled and Item 49 shall remain disabled. <br> 4. Item 48 is mutually exclusive with Item 11 on the DPS Utility Spec. An ILLEGAL ENTRY message shall be annunciated whenever the user attempts to enable either item when the other is already enabled. <br> 5. Item 48 is valid in G9 only, and Item 49 is valid in G1, G2, G8, and OPS 0. Execution of any of these items in any OPS except as specified shall result in rejection of the input, and the output of a Class 5 ILLEGAL ENTRY message. |
| 11 | LDB ENA/DIS | ITEM 50 EXEC | Provide the capability of Enabling/Disabling LDB. Successive executions of Item 50 will alternately Enable/Disable LDB Polling. <br> Note: Item 50 is valid only in OPS G9, P9, and Post IPL OPS 0. Execution of this item in any OPS except as specified shall result in rejection of the input, and the output of a Class 5 ILLEGAL ENTRY message. |
| 12 | Ground Checkout | ITEM 51 EXEC <br> ITEM 52 EXEC | Inhibits/Enables LDB Polling in the SM Major Function only. Initial state is enable, and item toggles. <br> Enables/Inhibits SM Ground Checkout OPS. Initial state is inhibit (toggle item). |



| TABLE 3.001-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Assign MMU1 to GNC |  |  |  | 2 | $\begin{aligned} & \mathrm{CZ2B}_{\text {Default }} \mathrm{MM} \text {-MF } \end{aligned}$ |
| 2 | Assign MMU2 to GNC |  |  |  | 2 |  |
| 3 | Assign MMU1 to SM |  |  |  | 2 | Default |
| 4 | Assign MMU2 to SM |  |  |  | 2 |  |
| 5 | Assign MMU1 to PL |  |  |  | 2 | Default |
| 6 | Assign MMU2 to PL |  |  |  | 2 |  |
| 7 | Assign MMU1 to OPS 0 |  |  |  | 2 | Default |
| 8 | Assign MMU2 to OPS 0 |  |  |  | 2 |  |
| 9 | Select GPC as source, MMU bus for MC |  |  |  | 4 | CZ2B_DPS_STATUS Default |
| 10 | Select MMU as source, MMU bus for MC |  |  |  | 4 | CZ2B_DPS_STATUS |
| 11 | Select GPC as source, LDB bus for MC |  |  |  | 4 | CZ2B_DPS_STATUS |
| 12 | Enable SM Checkpoint Retrieval |  |  |  | 6 | CZ1B_CKPT_RETRV_ENA |
| 13 | Define Realtime Command |  |  |  | 7 | CDJB_RTC_IPT <br> See function 7 definition |
| 14 | Send Realtime Command |  |  |  | 7 |  |
| 15 | Select Primary Port, String 1 |  |  |  | 3 | $\underset{\text { Default }}{\text { CZ2B_MODE }}$ |
| 16 | Select Secondary Port, String 1 |  |  |  | 3 | CZ2B_MODE |
| 17 | Select Primary Port, String 2 |  |  |  | 3 | $\underset{\text { Default }}{\mathrm{CZ2B}_{\text {I }} \mathrm{MODE}}$ |
| 18 | Select Secondary Port, String 2 |  |  |  | 3 | CZ2B_MODE |
| 19 | Select Primary Port, String 3 |  |  |  | 3 | $\underset{\text { Default }}{\mathrm{CZ2B}_{-} \mathrm{MODE}}$ |


| TABLE 3.001-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 20 | Select Secondary Port, String 3 |  |  |  | 3 | CZ2B_MODE |
| 21 | Select Primary Port, String 4 |  |  |  | 3 | $\underset{\text { Default }}{\mathrm{CZ2B}_{\text {I }} \text { MODE }}$ |
| 22 | Select Secondary Port, String 4 |  |  |  | 3 | CZ2B_MODE |
| 23 | Select Primary Port, PL $1 / 2$ |  |  |  | 3 | $\begin{aligned} & \text { CZefault }_{\text {Den }}^{\text {MODE }} \end{aligned}$ |
| 24 | Select Secondary Port, PL $1 / 2$ |  |  |  | 3 | CZ2B_MODE |
| $\begin{aligned} & 25- \\ & 34 \end{aligned}$ | Variable Downlist Parameter | 0000 | FFFF | HEX | 5 | CDJV WORD_AREA 9EE4 Default |
| 35 | Uplink Control-Auto |  |  |  | 8 | CZ1B_D_UL_CNTL |
| 36 | Uplink Enabled |  |  |  | 8 | $\underset{\text { Default }}{\text { CZ1B_D_UL_CNTL }}$ |
| 37 | Uplink Inhibited |  |  |  | 8 | CZ1B_D_UL_CNTL |
| 38 | IPL SOURCE SWITCH MASK |  |  |  | 9 | $\begin{aligned} & \text { CZ2B_MMU_IPL_SW_MASK } \\ & \text { Bit } 16_{-} \end{aligned}$ |
| $\begin{aligned} & 39-1 \\ & 47 \end{aligned}$ | Null Items (Not Used) |  |  |  |  |  |
| 48 | G3 ARCHIVE LOAD |  |  |  | 10 | $\begin{aligned} & \text { CZ2B_G3ARCH_STAT } \\ & \text { Bit } 15 \end{aligned}$ |
| 49 | G3 ARCHIVE RETRIEVE |  |  |  | 10 | CZ2B_G3ARCH_STAT |
| 50 | LDB Enable/Disable |  |  |  | 11 |  |
| 51 | SM GSE Inhibit |  |  |  | 12 |  |
| 52 | SM Ground Checkout ENA |  |  |  | 12 |  |
| 53 | GNC Ground Checkout ENA |  |  |  | 12 |  |
| 54 | BFC RUN Discrete Enable |  |  |  | 12 | CZ2B_DPS_ITEMS Bit 8 |
| 55 | ALT PL9 Toggle Buffer |  |  |  | 12 | CZ2B_DPS_ITEMS Bit 9 |

O

O

O

```
RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0
```


### 3.5.002 DISPLAY: TIME

-1 AVAILABILITY: SPEC 002 in G9, PL9, SM2/4, G2, and G8.
-2 PURPOSE: The TIME SPEC function provides selection of displayed time (GMT or MET), control of CRT timers, updating of the MTU, and selection of the time source used by the GPC(s). (37536) (45609/47317)


MTU
24 GMT $\Delta[+X X X X / X X: \underline{X X}: \underline{X X} . \underline{X X X}$
28 MET $\triangle[H X X X / \underline{X X}: \underline{X X}: \underline{X X} . \underline{X X X}$ UPDATE 32

MET RESET 33

| GPC TIME | GMT |  | GPC |
| :---: | :---: | :---: | :---: |
|  |  | \|TRY | 1 XX |
| MTU ACCUM 1 | \| $X X X / X X: X X: X X . X X X S$ | 34 | $2 X X$ |
| 2 | $X X X / X X: X X: X X, X X X S$ | 35 | 3 XX |
| 3 | $X X X / X X: X X: X X . X X X S$ | 36 | $4 X X$ |
| GPC | $X X X / X X: X X: X X, X X X S$ | 37 | $5 X X$ |

TIME SYNC 38

Figure 3.002

| TABLE 3.002-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 1 | Display Call-up | SPEC 002 PRO | SPEC Call-up is valid except in OPS G1/6 \& G3. (37427) |
| 2 | Select Type of Time for CRT | ITEM 1 EXEC | Selects Greenwich Mean Time (GMT) for display as time in the upper right corner of all displays. Format is DDD/HH:MM:SS. Default selection upon PASS initialization. |
|  |  | ITEM 2 EXEC | Selects Mission Elapsed Time (MET) for display as time (same format as GMT). MET will automatically be reset to 000/00:00:00 at SRB ignition. |
| 3 | CRT Timer Controls |  | The capability exists to display a time counter immediately below the time displayed in function 2. A single timer/major function is available. Three types of counts are available: manual, start-at (wait until some mission time to start), and count-to (start now and count to specified mission time). (37504) |
|  | Manual Timer | $\begin{aligned} & \text { ITEM } 9 \pm \mathrm{HH} \pm \mathrm{MM} \\ & \pm \text { SS EXEC } \end{aligned}$ | The values specified are hours, minutes, seconds desired in the timer. <br> The sign of the lowest non-zero item (ITEM 9 = hours, ITEM $10=$ minutes, ITEM $11=$ seconds) is taken as the entire sign; thus $-01+10+00$ is -1 hr .10 min . or -70 min . Default value is 00:00:00. |
|  |  | ITEM 12 EXEC | Start the timer. If the time entered is negative, the timer will count down to zero, then start counting up. If the timer entered is positive, the timer will start counting up. |
|  | Start-At | $\begin{aligned} & \text { ITEM } 14+\mathrm{HH}+\mathrm{MM} \\ & + \text { SS EXEC } \end{aligned}$ | The mission time (ignoring days) entered by ITEMs $14-16$ is compared to the current mission time. When the specified mission time is reached, the CRT timer will start counting at the value specified via ITEMs 9-11, and ITEMs 9-11, 14-16 will be blanked. |
|  |  |  | NOTE: If an OPS transition is made to an OPS where TIME is not a valid SPEC before the specified mission time is reached, the time will be nullified, i.e., the request will be cancelled. |


| TABLE 3.002-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 4 | Count-to | $\begin{aligned} & \text { ITEM } 17+\mathrm{HH}+\mathrm{MM} \\ & + \text { SS EXEC } \end{aligned}$ | Upon receipt of the keyboard message, the input mission time is subtracted from the current mission time and the delta is displayed. The timer will then count down to zero, at which point ITEMs 17-19 will be blanked, and the timer will begin to count up. |
|  | Timer stop | ITEM 13 EXEC | In all three cases, the timer may be stopped by entering ITEM 13. |
|  | Alert Tone(s) Control |  | Two mission times may be specified at which to sound an alert tone. |
|  |  | $\begin{aligned} & \text { ITEM } 3+\mathrm{HH}+\mathrm{MM} \\ & + \text { SS EXEC } \end{aligned}$ | At the specified mission time, an alert tone will be sounded and ITEMs $3-5$ will be blanked. |
|  |  | $\begin{aligned} & \text { ITEM } 6+\text { HH + MM } \\ & + \text { SS EXEC } \end{aligned}$ | Identical to first entry (ITEMs 3-5). |
|  |  | $\begin{aligned} & \text { ITEM } 20 \pm \mathrm{HH} \pm \mathrm{MM} \\ & \pm \text { SS EXEC } \end{aligned}$ | Specifies the value of the CRT timer (see function 3) at which an alert tone is to be sounded. The sign of the first non-zero field entered determines the sign of the value. A value in the past relative to the CRT timer value will cause an immediate alert. |
|  |  | ITEM 23+SS EXEC | Specifies the duration (in seconds) of the alert tone. The default is 1 . |
|  |  |  | Transition to an OPS where TIME is not a valid SPEC will nullify all alert tone inputs. |
| 5 | Master Timing <br> Unit (MTU) <br> Update |  |  |
|  | GMT Update | $\begin{aligned} & \text { ITEM } 24 \pm \text { DDD } \\ & \pm \mathrm{HH} \pm \mathrm{MM} \pm \text { SS.SSS } \\ & \text { EXEC } \end{aligned}$ | ITEMS 24-27 are used to enter a delta to be applied to the current MTU GMT value. The entire delta will take the sign of the lowest ITEM number which is non-zero. |
|  |  | ITEM 32 EXEC | This causes the GMT to be updated by the specified delta. (29284/40620) |
|  | MET Update | $\begin{aligned} & \text { ITEM } 28 \pm \text { DDD } \\ & \pm \mathrm{HH} \pm \text { MM }+ \text { SS.SSS } \\ & \text { EXEC } \end{aligned}$ | ITEMs 28-31 are used to enter a delta to be applied to the current MTU MET value. The entire delta will take the sign of the lowest ITEM number which is non-zero. |


| TABLE 3.002-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 6 | MET Reset <br> GPC Time Source Selection | ITEM 32 EXEC | This causes the MET to be updated by the specified delta. The actual update may take up to two minutes to occur. A second MET update should not be attempted until the first actually occurs. <br> NOTE: ITEMs 24-27 and 28-31 are mutually exclusive sets. |
|  |  | ITEM 33 EXEC | The MTUs MET and all common set GPCs MET will be reset to 000/00:00:00.000 immediately. |
|  |  |  | The values of each MTU accumulator and the internal GPC time are displayed in DDD/HH:MM:SS.SSS. Also, the time source for each GPC in the common set is shown at the far lower right of the CRT. Codes are A1-A3 for the MTU accumulators and 1-5 for GPCs 1-5. (36544) (37517) |
|  |  | ITEM 34 EXEC | All GPCs in common set will attempt to use MTU accumulator 1 . |
|  |  | ITEM 35 EXEC | Try MTU accumulator 2. |
|  |  | ITEM 36 EXEC | Try MTU accumulator 3. |
|  |  | ITEM 37 EXEC | Try the internal GPC timer of the lowest ID GPC in the common set. |
| 7 | Time Source Synchronization | ITEM 38 EXEC | The MTU GMT is reset, all GPCs in common set are forced to the time in the lowest ID GPC, the MTU GMT is updated to the time in the lowest ID GPC, and finally, the GPC selects MTU accumulator 1 as the time source. The actual time synch may take up to two minutes to occur. Other activities should be suspended until it occurs. |


| TABLE 3.002-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select GMT for Mission Time |  |  |  | 2 |  |
| 2 | Select MET for Mission Time |  |  |  | 2 |  |
| 3 | Alert 1 Hours | 00 | 23 | HR | 4 | CAAV_TM_ITEM_I(3) |
| 4 | Alert 1 Minutes | 00 | 59 | MIN | 4 | CAAV_TM_ITEM_I(4) |
| 5 | Alert 1 Seconds | 00 | 59 | SEC | 4 | CAAV_TM_ITEM_I(5) |
| 6 | Alert 2 Hours | 00 | 23 | HR | 4 | CAAV_TM_ITEM_I(6) |
| 7 | Alert 2 Minutes | 00 | 59 | MIN | 4 | CAAV_TM_ITEM_I(7) |
| 8 | Alert 2 Seconds | 00 | 59 | SEC | 4 | CAAV_TM_ITEM_I(8) |
| 9 | Timer Hours | -23 | $+23$ | HRS | 3 | CAAV_TM_ITEM_I $(9)$ |
| 10 | Timer Minutes | -59 | $+59$ | MIN | 3 | CAAV_TM_ITEM_I(10) |
| 11 | Timer Seconds | -59 | + 59 | SEC | 3 | CAAV_TM_ITEM_I(11) |
| 12 | Start Manual Timer |  |  |  | 3 |  |
| 13 | Stop Any Type Timer |  |  |  | 3 |  |
| 14 | Timer - Mission Time Hrs | 00 | 23 | HR | 3 | CAAV_TM_ITEM_I(14) |
| 15 | Timer - Mission Time Min | 00 | 59 | MIN | 3 | CAAV_TM_ITEM_I(15) |
| 16 | Timer - Mission Time Sec | 00 | 59 | SEC | 3 | CAAV_TM_ITEM_I(16) |
| 17 | Timer - Mission Time Hrs | 00 | 23 | HR | 3 | CAAV_TM_ITEM_I(17) |
| 18 | Timer - Mission Time Min | 00 | 59 | MIN | 3 | CAAV_TM_ITEM_I(18) |
| 19 | Timer - Mission Time Sec | 00 | 59 | SEC | 3 | CAAV_TM_ITEM_I(19) |
| 20 | Alert Mission <br> Time - Hrs | 00 | 23 | HR | 4 | CAAV_TM_ITEM_I(20) |


| TABLE 3.002-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 21 | Alert Mission <br> Time - Min | 00 | 59 | MIN | 4 | CAAV_TM_ITEM_I(21) |
| 22 | Alert Mission <br> Time - Sec | 00 | 59 | SEC | 4 | CAAV_TM_ITEM_I(22) |
| 23 | Set Duration of Alert Tone | 00 | 99 | SEC | 4 | CAAV_TM_ITEM_I(23) Default is 1 |
| 24 | GMT Delta Days | -399 | + 399 | DAYS | 5 | CAAV_TM_GMT_DELT(I) |
| 25 | GMT Delta Hours | -23 | +23 | HRS | 5 | CAAV_TM_GMT_DELT(I) |
| 26 | GMT Delta Minutes | -59 | + 59 | MIN | 5 | CAAV_TM_GMT_DELT(I) |
| 27 | GMT Delta Seconds | -59.999 | +59.999 | SEC | 5 | CAAV_TM_GMT_SEC |
| 28 | MET Delta Days | -399 | + 399 | DAYS | 5 | CAAV_TM_MET_DELT(J) |
| 29 | MET Delta Hours | -23 | +23 | HRS | 5 | CAAV_TM_MET_DELT(J) |
| 30 | MET Delta Minutes | -59 | + 59 | MIN | 5 | CAAV_TM_MET_DELT(J) |
| 31 | MET Delta Seconds | -59.999 | +59.999 | SEC | 5 | CAAV_TM_MET_SEC |
| 32 | DO GMT/MET Update |  |  |  | 5 | May take up to two minutes |
| 33 | Reset MET |  |  |  | 5 |  |
| 34 | MTU Accumulator 1 Try |  |  |  | 6 |  |
| 35 | MTU Accumulator 2 Try |  |  |  | 6 |  |
| 36 | MTU Accumulator 3 Try |  |  |  | 6 |  |
| 37 | GPC Time Try |  |  |  | 6 |  |
| 38 | Time Source Synchronization |  |  |  | 7 | May take up to two minutes |

Date: 12/20/90 BOOK:

### 3.5.006 DISPLAY: GPC/BUS STATUS

-1 AVAILABILITY: SPEC 006 in all OPS.
-2 PURPOSE: The GPC/BUS STATUS display is a display function only; i.e., no keyboard entries are defined. It provides status information on GPC and data bus health plus current commander information.

| XXXX/XXX/006 |  | GPC/BUS STATUS |  |  | XX X DDD/HH:MM:SS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | M:SS |
| GPC | 1 S | 2 S | 3 S | 4S | 5 S |  |
| MODE | XXXX | XXXX | XXXX | XXXX | XXXX |  |
| OPS | XX | XX | XX | XX | XX |  |
| STRING 1 FF | XS | XS | XS | XS | XS |  |
| FA | XS | XS | XS | XS | XS |  |
| 2 FF | XS | XS | XS | XS | XS |  |
| FA | XS | XS | XS | XS | XS |  |
| 3 FF | XS | XS | XS | XS | XS |  |
| FA | XS | XS | XS | XS | XS |  |
| 4 FF | XS | XS | XS | XS | XS |  |
| FA | XS | XS | XS | XS | XS |  |
| PL 1 | XS | XS | XS | XS | XS |  |
| 2 | XS | XS | XS | XS | XS |  |
| LAUNCH 1 | XS | XS | XS | XS | XS |  |
| 2 | XS | XS | XS | XS | XS |  |
| CRT 1 | XS | XS | XS | XS | XS |  |
| 2 | XS | XS | XS | XS | XS |  |
| 3 | XS | XS | XS | XS | XS |  |
| 4 | XS | XS | XS | XS | XS |  |
|  |  |  |  |  |  | (XX) |

Figure 3.006

| TABLE 3.006-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 1 | Display Call-Up | SPEC 006 PRO | Available in all OPS. This is a display function only. |
| 2 | GPC Status |  | The GPC health is indicated by either blank (good) or a down arrow (failed) for each GPC. |
|  |  |  | The GPC Mode Switch is shown for each GPC. If the majority of the GPCs in the SPEC 006 DEU commander's common set see zero sync discretes from a GPC, then HALT is displayed for that GPC; otherwise, RUN is displayed. |
|  |  |  | The current OPS of each GPC in common set with SPEC 006 DEU commander is shown. The first character denotes the major function active (G, S, P); the second character is the OPS number. For GPC(s) in HALT/STBY, the last non-zero OPS active is shown. |
| 3 | Bus Status |  | An * is placed in the appropriate GPC column for each bus on the display to denote the commander of the bus. A status indicator of good (blank) or bypassed/failed (down arrow) is shown. |

### 3.5.018 DISPLAY: GNC SYS SUMM 1

-1 AVAILABILITY: SPEC 018 in G1, G2, G3, G6, G8, or SYS SUMM Key.
-2 PURPOSE: This display is one of two pages for overall monitoring of the Orbiter GNC systems configuration and operational status. The second page is applicable during the orbit phase. The status information presented allows sufficient detail for a crew member to determine the required response to a GNC caution and warning alarm. The display presents a summary of Aerosurface Status, RCS Manifold Jet Status, RCS manifold isolation valve position and status Flight Control Channel Status, GPC and Flight Critical MDM Status, and Navigation Sensor Status.

| xxxx/xxX/018 |  | GNC S | YS SUMM |  | XX X DDD/HH:MM:SS <br> DDD/HH.MM.SS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RCS JETIS SOL <br> MANFFAILVLV  |  | SURF | POS | MOM | DPS 12345 |
| F1XXX | XXS | L OB | XXX.XS | XXS | GPC S S S S |
| 2 xxx | XXS | IB | XxX. XS | XXS | MDM FF S S S S |
| 3 XXX | XXS | R IB | xxx.xS | XXS | FA S S S S |
| 4 XXX | XXS | 0B | XxX. XS | XXS |  |
| 5 XXX | XXS | AIL | XxX. X |  |  |
| L1 XXX | XXS | RUD | XXX. X |  | FCS CH 1234 |
| 2 XXX | XXS | SPD BRK | XxX. x |  | S S S S |
| 3 XXX | XXS | BDY FLP | $x x x . x$ |  |  |
| 4 XXX | XXS |  | XxXXXX |  |  |
| 5 XXX | XXS |  |  |  | NAV 1234 |
| R1 1 XXX | XXS |  |  |  | IMU S S S |
| 2 XXX | XXS | CNTLR | 123 |  | ACC S S S S |
| 3 xxx | XxS | RHC L | S S S |  | RGA S S S S |
| 4 XXX | XXS | R | R S S S |  | TAC S S S |
| 5xxx | XXS | A | A S S S |  | MLS S S S |
|  |  | THC L | S S S |  | ADTA S S S S |
|  |  |  | A S S S |  |  |
|  |  | SBTC L | S S S |  |  |
|  |  |  | R S S S |  |  |
|  |  |  |  |  | ( XX ) |

Figure 3.018

| TABLE 3.018-1. DISPLAY FUNCTIONS |  |
| :--- | :--- | :--- | :--- |

TABLE 3.018-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
| 4 | Hand Controller Status |  | The current hinge moment on the elevons is displayed as percent of maximum allowed. When the hinge moment exceeds maximum, an up arrow status indicator is displayed. For the body flap and speedbrake, positions are displayed as percent: <br> Speedbrake - $100 \%$ is full deflection. <br> Body flap - $0 \%$ equals -11.71 degrees and $100 \%$ equals +22.55 degrees. <br> The body flap pilot valve status is displayed as follows: <br> Blank - Normal operation <br> Hold 2 - No body flap command is present but a body flap position change is detected by software. (Hold 2 reflects that Channel 2 is commanded in the opposite direction of the failure.) <br> Hold 1 - The Hold 2 action did not correct problem (Channel 2 commands are removed and Channel 1 is commanded in the opposite direction of the failure.) <br> Cycle - Neither Hold 1 or Hold 2 corrected problem. <br> Fail - This is displayed when the flight control commanded direction is not followed or if a hold commanded direction is not followed (body flap moves in opposite direction). <br> OPS1: None <br> OPS2: RHC Left Right Aft THC Left Aft <br> OPS3: RHC Left Aft THC Left SBTC Left Right <br> OPS6: RHC Left Right THC Left SBTC Left Right <br> OPS8: RHC Left Right Aft THC Left Aft |

TABLE 3.018-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
|  |  |  | Status indicators: Blank - Normal operation Down Arrow - Manual deselection or failure $\quad$ detected by RM |


| 5 | GPC Fail Status |
| :--- | :--- |
| 6 | MDM Fail Status <br> 7 |
| Flight Control <br> Channels |  |

Presented when:
a. Two members of a common set cast fail votes against another GPC.
b. A GPC has a fail indicator against itself.

- When a set of two GPCs SYNC fail with each other, no down arrows are presented.
- Fail status indicator reset occurs when the CAM output discretes are reset.

An MDM failure is manifest by either all of the elements referencing that MDM being bypassed or a hard error occurring on the MDM return word I/O request.

Bus masks are set against I/O strings commanded by a failed GPC after SYNC fail has occurred.
Note that the opinion of the remaining members of the set and the failed GPC will be different, each will mask the other's buses.

In the case of a two GPC set which has failed, each will mask and present down arrows against the data buses commanded by the other.

Status indicators are driven as follows: (37567)
Blank - No failures
Down
Arrow - Failure (Port bypass)
M - I/O error, data missing
For the following OPS, these components are included in the status report:

OPS1 - SRB (tilt and rock) MPS (pitch and yaw)
AERO (elevons, speedbrake, rudder)
OPS3 - AERO
OPS6 - AERO

| TABLE 3.018-1. DISPLAY FUNCTIONS (Continued) |  |
| :---: | :--- | :--- | :--- |

$\qquad$
$\qquad$

### 3.5.019 DISPLAY: GNC SYS SUMM 2

-1 AVAILABILITY: SPEC 019 in G2, G8, or SYS SUMM Key Twice.
-2 PURPOSE: This display is the primary format for monitoring Orbit GNC systems operational status during the orbit phase. The data and status information presented provides sufficient detail for a crew member to respond to GNC caution and warning alarms. The display presents RCS consumables data and its status and the manifold jet status; and the OMS consumables data and its status.

( $x$ )

Figure 3.019

| TABLE 3.019-1. DISPLAY FUNCTIONS |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


| TABLE 3.019-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 3 | OMS Propulsion System |  | ISOL VLV position: <br> OP - open <br> CL - closed <br> I/O status of valves: <br> M - MDM or BCE commfault <br> ? - dilemma detected by software <br> Blank - normal operation <br> NOTE: When an M is displayed the current valve status (OP or CL) will continue to be displayed. <br> The following parameters will be displayed in PSIA for the left and right pods: <br> a. Helium <br> b. Oxidizer <br> c. Fuel tank pressures <br> d. Nitrogen regulator <br> e. Nitrogen tank pressures <br> f. Engine oxidizer <br> g. Fuel inlet pressures <br> Position of left and right engine nitrogen pressure valves: <br> OP - open <br> CL - closed <br> Left and right one and two engine bipropellant valve positions are displayed in percent open. <br> Left and right oxidizer and fuel quantities are displayed in percent. <br> Status indicators: <br> a. Helium tank pressure and fuel tank pressure: <br> 1. Down arrow - pressure below the lower limit <br> 2. M - missing data <br> 3. Blank - normal operation |


| TABLE 3.019-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |

### 3.5.020 DISPLAY: DAP CONFIG

-1 AVAILABILITY: SPEC 020 in OPS G2.
-2 PURPOSE: The On-Orbit DAP Configuration display provides the crew with the capability to review and change the selected DAP parameters listed below:

DAP load A and B
Translation pulse size
Rotation discrete rate
Pulse size
Compensations
Attitude and rate deadbands
Jet option and control acceleration
Principal axis inertias
Alternate Jet Mode Parameters


Figure 3.020

| TABLE 3.020-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 1 | SPEC Call-Up | SPEC 020 PRO | Orbit DAP configuration, SPEC is available in G2. |
| 2 | Translation pulse size | $\begin{aligned} & \text { ITEM } 1+\text { X.XX } \\ & \text { EXEC } \\ & \text { ITEM } 15 \text { + X.XX } \\ & \text { EXEC } \end{aligned}$ | Specifies the desired velocity delta resulting from a single manual translation pulse command for DAP load A (Item 1) and DAP load B (Item 15). <br> NOTE: The pulse size is specified in feet per second. |
| 3 | Rotation discrete rate | $\begin{aligned} & \text { ITEM } 2+\text { X.XXX } \\ & \text { EXEC } 3+\text { X.XXX } \\ & \text { ITEM } \\ & \text { EXEC } \\ & \text { ITEM } 16+\text { X.XXX } \\ & \text { EXEC } \\ & \text { ITEM } 17 \text { + X.XXX } \\ & \text { EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the desired rotational rate to be achieved for a discrete rate manual command or an AUTO maneuver for DAP load A. <br> Normal and Vernier Jets; specifies the desired rotational rate to be achieved for a discrete rate manual command or an AUTO maneuver for DAP load B. |
| 4 | Pulse Size | $\begin{aligned} & \text { ITEM } 4+\text { X.XX } \\ & \text { EXEC } 5+\mathbf{X . X X X} \\ & \text { ITEM } \\ & \text { EXEC } \\ & \text { ITEM } 18+\text { X.XX } \\ & \text { EXEC } \\ & \text { ITEM } 19+\text { X.XXX } \\ & \text { EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the rotational rate resulting from a single manual rotational pulse command for DAP load A. <br> Normal and Vernier Jets; specifies the rotational rate resulting from a single manual rotational pulse command for DAP load B. |
| 5 | Compensations | $\begin{aligned} & \text { ITEM } 6+. \text { XX } \\ & \text { EXEC } 7+. X X X \\ & \text { ITEM } \\ & \text { EXEC } \\ & \text { ITEM } 20+. X X \\ & \text { EXEC } \\ & \text { ITEM } 21+. X X X \\ & \text { EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the allowable rotation rate for a given axis resulting from a rate command about another axis for DAP load A. <br> Normal and Vernier Jets; specifies the allowable rotation rate for a given axis resulting from a rate command about another axis for DAP load B. <br> NOTE: Rotation parameters are specified in degrees per second. |
| 6 | Attitude Deadbands | $\begin{aligned} & \text { ITEM } 8+\text { XX.XX } \\ & \text { EXEC } \\ & \text { ITEM } 9+\text { XX.XXX } \\ & \text { EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the attitude deadbands used in the phase plane for DAP load A. |


| TABLE 3.020-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 7 | Rate Deadbands | $\begin{aligned} & \text { ITEM } 22+\text { XX.XX } \\ & \text { EXEC } \\ & \text { ITEM } 23+ \\ & \text { XX.XXX EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the attitude deadbands used in the phase plane for DAP load B. <br> NOTE: The attitude deadbands are |
|  |  | $\begin{aligned} & \text { ITEM } 10+\text { X.XX } \\ & \text { EXEC } \\ & \text { ITEM } 11+. X X X \\ & \text { EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the rate deadbands used in the phase plane for DAP load A. |
|  |  | $\begin{aligned} & \text { ITEM } 24+\text { X.XX } \\ & \text { EXEC } \\ & \text { ITEM } 25+. X X X \\ & \text { EXEC } \end{aligned}$ | Normal and Vernier Jets; specifies the rate deadbands used in the phase plane for DAP load B. <br> NOTE: The rate deadbands are specified in degrees per second. |
| 8 | Jet Option | ITEM $12+\mathrm{X}$ EXEC | Pitch attitude control for DAP load A. |
|  |  | ITEM $26+\mathrm{X}$ EXEC | Pitch attitude control for DAP load B. |
|  |  | ITEM $13+\mathrm{X}$ EXEC | Yaw attitude control for DAP load A. |
|  |  | ITEM $27+$ X EXEC | Yaw attitude control for DAP load B. <br> The jet option is specified as a coded integer: |
|  |  |  | 1-Selects the normal jet option <br> 2 - Selects the nose only jet <br> 3 - Selects the tail only jet |
| 9 | Control Acceleration | ITEM $14+\mathrm{X}$ EXEC | Selects the control acceleration for DAP load A. |
|  |  | ITEM $28+\mathrm{X}$ EXEC | Selects the control acceleration for DAP load B. <br> The control acceleration selection is specified as a coded integer to select either nominal (normal/Alt/vernier) or alternate (vernier or Alt) acceleration values: |
|  |  |  | 0 - Selects the nominal control <br> 1 - Alternate 1 (vernier/Alt jets) <br> 2 - Alternate 2 (vernier/Alt jets) <br> 3 - Alternate 3 (vernier/Alt jets) <br> 4 - Alternate 4 (vernier/Alt jets) <br> 5 - Alternate 5 (vernier/Alt jets) |


| TABLE 3.020-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 10 | Principle Axis Inertias | $\begin{aligned} & \text { ITEM } 29 \text { + X.XXX } \\ & \text { EXEC } \\ & \text { ITEM } 30 \text { + X.XXX } \\ & \text { EXEC } 31+\text { X.XXX } \\ & \text { ITEM } \end{aligned}$ | Specifies the thruster rotational accelerations about the principle axis (X, Y, Z). <br> NOTE: The inertia values are specified in MEGA-Slugs $/ \mathrm{Ft}^{2}$. |
| 11 | Alternate Jet Mode | $\begin{aligned} & \text { ITEM } 32+\text { X.XXX } \\ & \text { EXEC } \\ & \text { ITEM } 33+\text { X EXEC } \end{aligned}$ | Alternate Jets; specifies the rate limit in $\mathrm{deg} / \mathrm{sec}$ used in the phase planes. <br> Allows for the selection of one of two control modes with Alt jets selected: <br> 1: Nose and tail jets <br> 3: Tail only jets <br> NOTE: Selection of " 2 " shall result in an ILLEGAL ENTRY message and rejection of the entry. |
|  |  | ITEM $34+\mathrm{X}$ EXEC | Selection of the maximum number of primary jets allowed to be fired simultaneously while in Alternate Primary Mode. |
|  |  | $\underset{\text { EXEC }}{\text { ITEM } 35+X . X X}$ | Selection of the maximum duration of each jet firing in seconds while in the Alternate Primary Mode. |
|  |  | $\underset{\text { EXEC }}{\text { ITEM } 36+\text { XX.XX }}$ | Selection of the minimum time delay in seconds between jet firings while in the Alternate Primary Mode. <br> NOTE: Caution should be exercised when using Items 34 to 36 . Incorrect combinations could result in excessive RMS loadings. |


| TABLE 3.020-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Translation Pulse Size | 0.010 | 5.000 | $\begin{aligned} & \mathrm{FT} / \mathrm{SEC} \end{aligned}$ | 2 | CGCV_ARY_TRANS_PULSE\$1 |
| 2 | Rotation <br> Discrete Rate for Primary Jets | 0.050 | 2.000 | $\begin{aligned} & \text { DEG// } \\ & \text { SEC } \end{aligned}$ | 3 | CGCV_ARY_MNVR_RATE\$(1,1) |
| 3 | Rotation Discrete Rate for Vernier Jets | 0.002 | 1.000 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 3 | CGCV_ARY_MNVR_RATE $\$(1,2)$ |
| 4 | Pulse Size for Primary Jets | 0.040 | 1.000 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 4 | CGCV_ARY_ROT_PULSE\$(1,1) |
| 5 | Pulse Size for Vernier Jets | 0.001 | 0.500 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 4 | CGCV_ARY_PULSE\$(1,2) |
| 6 | Rotation Compensation for Primary Jets | 0.000 | 0.990 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 5 | CGCV_ARY_COMP_THRESHOLD\$(1,1) |
| 7 | Rotation Compensation for Vernier Jets | 0.000 | 0.999 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 5 | CGCV_ARY_COMP_THRESHOLD\$(1,2) |
| 8 | Attitude Deadbands used in the phase plane for DAP load | 0.100 | 40.00 | DEG | 6 | CGCV_ARRAY_DB\$(1,1) |
| 9 | Attitude Deadbands used in the phase plane for DAP load | 0.010 | 40.00 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 6 | CGCV_ARRAY_DB\$(1,2) |
| 10 | Rate <br> Deadbands used in the phase plane for DAP load | 0.100 | 5.000 | $\begin{aligned} & \text { DEG// } \\ & \text { SEC } \end{aligned}$ | 7 | CGCV_ARRAY_RATE_LIMIT\$(1,1) |
| 11 | Rate <br> Deadbands used in the phase plane for DAP load | 0.010 | 0.500 | $\begin{aligned} & \text { DEG// } \\ & \mathrm{SEC} \end{aligned}$ | 7 | CGCV_ARRAY_RATE_LIMIT\$(1,2) |


| TABLE 3.020-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 12 | Jet Selection for Pitch Attitude Control | 1 | 3 |  | 8 | CGCV_A_NOM_NOSE_TAIL_PITCH\$1 |
| 13 | Jet Selection for Yaw Attitude Control | 1 | 3 |  | 8 | CGCV_A_NOM_NOSE_TAIL_YAW\$1 |
| 14 | Control <br> Acceleration <br> Alternate <br> (Vernier or Alt <br> Jets) | 0 | 5 |  | 9 | CGCV_ARY_PAYLOAD_EXTENDED\$1 |
| 15 | Same as 1 |  |  |  |  | CGCV_ARY_TRANS_PULSE\$2 |
| 16 | Same as 2 |  |  |  |  | CGCV_ARY_MNVR_RATE\$(2,1) |
| 17 | Same as 3 |  |  |  |  | CGCV_ARY_MNVR_RATE $\$(2,2)$ |
| 18 | Same as 4 |  |  |  |  | CGCV_ARY_ROT_PULSE\$(2,1) |
| 19 | Same as 5 |  |  |  |  | CGCV_ARY_ROT_PULSE\$(2,2) |
| 20 | Same as 6 |  |  |  |  | CGCV_ARY_COMP_THRESHOLD\$(2,1) |
| 21 | Same as 7 |  |  |  |  | CGCV_ARY_COMP_THRESHOLD\$(2,2) |
| 22 | Same as 8 |  |  |  |  | CGCV_ARRAY_DB\$(2,1) |
| 23 | Same as 9 |  |  |  |  | CGCV_ARRAY_DB\$(2,2) |
| 24 | Same as 10 |  |  |  |  | CGCV_ARRAY_RATE_LIMIT\$(2,1) |
| 25 | Same as 11 |  |  |  |  | CGCV_ARRAY_RATE_LIMIT\$( 2,2 ) |
| 26 | Same as 12 |  |  |  |  | CGCV_A_NOM_NOSE_TAIL_PITCH\$2 |
| 27 | Same as 13 |  |  |  |  | CGCV_A_NOM_NOSE_TAIL_YAW\$2 |
| 28 | Same as 14 |  |  |  |  | CGCV_ARY_PAYLOAD_EXTENDED\$2 |
| 29 | Principal X axis Moments of Inertia | 0.750 | 1.000 | MEGA- <br> SLG/FT ${ }^{2}$ | 10 | CGCV_PRINCIPAL_INERTIA\$1 |


| TABLE 3.020-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 30 | Principal Y axis Moments of Inertia | 6.000 | 8.000 | MEGA- $\mathrm{SLG} / \mathrm{FT}^{2}$ | 10 | CGCV_PRINCIPAL_INERTIA\$2 |
| 31 | Principal Z axis Moments of Inertia | 6.000 | 8.000 | MEGASLG/FT ${ }^{2}$ | 10 | CGCV_PRINCIPAL_INERTIA\$3 |
| 32 | Specifies the rate limit used in the phase plane with Alt Jets selected | 0.050 | 5.000 | $\begin{aligned} & \text { DEG/ } \\ & \text { SEC } \end{aligned}$ | 11 | CGCV_ALT_PRIMARY_RATE_LIMIT |
| 33 | Alternate <br> Primary Jet <br> Option with <br> Alt Jets <br> selected | 1 | 3 |  | 11 | CGCV_ALT_PRIMARY_JET_OPTION |
| 34 | Maximum <br> Number of <br> Primary Jets <br> During <br> Alternate <br> Primary Mode | 1 | 3 |  | 11 | CGCV_ALT_PRIMARY_MAX_JETS |
| 35 | Maximum Jet on Time During Alternate Primary Mode | 0.08 | 9.99 | SEC | 11 | CGCV_ALT_PRIMARY_ON_TIME |
| 36 | Minimum <br> Delay Time <br> Between Jet <br> Firings for <br> Alternate <br> Primary Mode | 0.00 | 99.99 | SEC | 11 | CGCV_ALT_PRIMARY_DELAY_TIME |

## O

O

Date: 12/20/90
BOOK:
PASS User's Guide
Rev: 0

### 3.5.021 DISPLAY: IMU ALIGN

-1 AVAILABILITY: SPEC 021 in OPS G2 and G3.
-2 PURPOSE: This display provides the capability to monitor and control the IMU hardware and software mode of operation during the Orbit, Deorbit, and Entry phases of flight. The capability to control and monitor the alignment of the IMU's while on-orbit or prior to the deorbit maneuver is also provided.


Figure 3.021

| TABLE 3.021-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 021 PRO | Valid only in OPS G2 (MM201) and G3 (MM301, MM302, MM303, MM304). (45166) (47741/47752) |
| 2 | IMU Mode Control | ITEM N EXEC | $\mathrm{N}=21,22$, or 23 : Causes the respective IMU to be commanded to the STANDBY mode of operation. An asterisk will be displayed next to the Item to indicate that the IMU is in this mode of operation. The asterisk will be blanked if the IMU is commanded to the OPERATE mode (Items 4, 5, 6). Only the IMU heater circuits remain powered ON in this mode. This is the default mode of operation when the system is initialized prior to launch. (37522) |
|  |  | ITEM N EXEC | $\mathrm{N}=4,5$, or 6: Causes IMU 1, 2,3 respectively to be commanded to the OPERATE mode of operation. An asterisk will be displayed next to the Item to indicate that the IMU is in this mode of operation. The asterisk will be blanked if the IMU is commanded to the STANDBY mode (Items 1, 2, 3). All IMU circuits are powered ON in this mode of operation. This is the normal mode of operation in OPS2 and OPS3. |
| 3 | IMU RM Selection Filter Control | ITEM N EXEC | $\mathrm{N}=7,8$, or 9 : Causes IMU 1, 2,3 respectively to be deselected from IMU RM selection filter processing. An asterisk will be displayed next to the Item and a down arrow displayed next to the IMU number to indicate that the IMU has been deselected. <br> Re-execution of the Item will cause the IMU to be selected for IMU RM processing and the asterisk and arrow to be blanked. Automatic selection filter changes by IMU RM will also be displayed. |
| 4 | IMU Selection For Alignment | ITEM N EXEC | $\mathrm{N}=10,11$, or 12 : Causes $\operatorname{IMU} 1,2,3$ respectively to be selected for alignment. An asterisk will be displayed next to the Item to indicate that the IMU has been selected. Re-execution of an Item will cause the IMU to be deselected from alignment and the asterisk to be blanked. Execution of an Item during an alignment will result in an ILLEGAL ENTRY message. Initial state will be no IMU selected. |

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{TABLE 3.021-1. DISPLAY FUNCTIONS (Continued)} <br>
\hline \# \& FUNCTION \& $$
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
$$ \& NOTES <br>
\hline 5 \& IMU Alignment Option Selection \& ITEM 13 EXEC

ITEM $14+\mathrm{N}$
EXEC
I

ITEM 15 EXEC \& | Selects the STAR to IMU alignment option. An asterisk will be displayed next to Item 13 to indicate that this option is selected. This option utilizes data obtained from the Star Trackers or COAS to compute the inertial reference for the alignment. ENA will be displayed next to ALIGN on the display when the Star Tracker SOP determines proper data are available for alignment. The display will be initialized with this option selected. This option will be automatically selected after all alignments complete. |
| :--- |
| $\mathrm{N}=1,2$, or $3:$ Selects the IMU to IMU alignment option and specifies the IMU ( $\mathrm{N}=1,2,3$ ) to be used as the reference for the alignment. This option utilizes data from the specified IMU $(\mathrm{N})$ to compute the inertial reference for alignment. An ILLEGAL ENTRY message will be displayed if the specified reference $\operatorname{IMU}(\mathrm{N})$ is not in the operate mode. |
| Selects the Matrix to IMU alignment option. An asterisk will be displayed next to Item 15 to indicate that this option is selected. This option utilizes data obtained from the Star Trackers or COAS to update the flight software referenced IMU cluster position data. ENA will be displayed next to ALIGN on the display when the Star Tracker SOP determines proper star data are available. (37522) | <br>

\hline 6 \& IMU Alignment Execution \& ITEM 16 EXEC \& | Executes the IMU alignment option specified by Items $13,14,15$. An asterisk will be displayed next to Item 16 while the IMU alignment option is executing. When the alignment completes or is terminated the asterisk is blanked. An |
| :--- |
| ILLEGAL ENTRY message will be displayed if: |
| - A STAR or Matrix alignment is executed without proper star data; ENA not displayed next to ALIGN on the display. |
| - A STAR or Matrix alignment is executed in MM 302, 303, 304, 305. |
| Execution of any alignment causes the Star Trackers to be moded to TERM/IDLE. The IMU ALIGN display can be overlaid without effecting an alignment that is in progress. | <br>

\hline
\end{tabular}

| TABLE 3.021-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 7 | IMU Alignment Terminate | ITEM 17 EXEC | Terminates an IMU alignment that is in progress. |
| 8 | Navigation Delta Velocity Threshold Input | ITEM 18 + NNNNNNN EXEC | Inputs the delta velocity threshold, in micro-Gs, above which On-Orbit Navigation (OPS2 only) incorporates IMU sensed velocity changes into state vector propagation. An ILLEGAL ENTRY message will be displayed and input value rejected if this Item is executed in OPS3. The current displayed value will be maintained across all OPS transitions. |
| 9 | Mass Memory Read of IMU Calibration Data | ITEM 19 EXEC | Will execute a read of IMU calibration data from the mass memory unit. An asterisk will be displayed next to Item 19 to indicate that the read is in progress. An ILLEGAL ENTRY message will be displayed if any other Item entry is made while the read is in progress. |
| 10 | IMU Masking | ITEM N EXEC | Execution of Item $\mathrm{N}=24,25$, or 26 will cause the IMU SOP to compute a mask for all bites present on IMUs 1,2 , or 3 , respectively, at the time of item entry. Re-execution of the same item terminates bite masking. If a new bite is experienced while masking is in effect, it is not automatically masked; it can be masked by terminating and then reactivating masking. Execution of the mask item will have no effect when masking is not active and there are no bites on the IMU. An asterisk displayed next to the item number indicates that masking is in effect. |
| 11 | Display of IMU <br> Sensed Accelerations |  | The data displayed under ACC indicates the IMU sensed accelerations in feet per second squared in the inertial coordinate frame of reference. |
| 12 | Display of IMU Angles |  | The data displayed under ANG and next to X , $\mathrm{Y}, \mathrm{Z}$ indicates the current Body-to-Inertial Euler angles in degrees as computed for each IMU. <br> The data displayed under ANG and next to delta- X , delta- Y , delta- Z indicates the current IMU misalignment in degrees as computed for each IMU. This data is computed on a cyclic basis from the time that an IMU alignment option is selected until the alignment completes or is terminated, at which time the angles are zeroed. |

TABLE 3.021-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
| :--- | :--- | :--- | :--- |
| 13 | Display of IMU Bite <br> Masks |  | A bite summary word is displayed to the left of <br> the mask item number for each IMU. It is <br> displayed as a four character hexadecimal <br> number, with "0000" and "FFFC" indicating the <br> "No Bite" and "All Bites On" conditions, <br> respectively. The bite summary word is not <br> affected by execution of the mask item entry. |


| TABLE 3.021-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | NULL |  |  |  |  |  |
| 2 | NULL |  |  |  |  |  |
| 3 | NULL |  |  |  |  |  |
| 4 | IMU 1 in OPERATE |  |  |  | 2 | CGBB_MFF_SEG2_DSCRT12\$(1;1) |
| 5 | IMU 2 in OPERATE |  |  |  | 2 | CGBB_MFF_SEG2_DSCRT12\$(2;1) |
| 6 | IMU 3 in OPERATE |  |  |  | 2 | CGBB_MFF_SEG2_DSCRT12\$(3;1) |
| 7 | SELECT/DESELECT <br> IMU 1 for RM |  |  |  | 3 | CGAV_IMU_FAIL\$(14) |
| 8 | SELECT/DESELECT IMU 2 for RM |  |  |  | 3 | CGAV_IMU_FAIL\$(15) |
| 9 | SELECT/DESELECT IMU 3 for RM |  |  |  | 3 | CGAV_IMU_FAIL\$(16) |
| 10 | SELECT IMU 1 for ALIGNMENT |  |  |  | 4 | CGZB_ALIGN_IMU_WD\$(2) |
| 11 | SELECT IMU 2 for ALIGNMENT |  |  |  | 4 | CGZB_ALIGN_IMU_WD\$(3) |
| 12 | SELECT IMU 3 for ALIGNMENT |  |  |  | 4 | CGZB_ALIGN_IMU_WD\$(4) |
| 13 | SELECT STAR <br> ALIGNMENT <br> METHOD |  |  |  | 5 | CGZB_ALIGN_OPT\$(1) |
| 14 | SELECT IMU/IMU ALIGNMENT OPTION | 1 | 3 | None | 5 | CGZV_IMU_IMU_REF_NUM |
| 15 | SELECT MATRIX <br> ALIGNMENT OPTION |  |  |  | 5 | CGZB_ALIGN_OPT\$(3) |
| 16 | EXECUTE IMU <br> ALIGNMENT |  |  |  | 6 | CGZB_IN_ALIGN\$(1) |
| 17 | TERMINATE IMU ALIGNMENT |  |  |  | 7 | CGZB_IMU_TERM_FLG\$(1) |
| 18 | UPDATE NAV DELTA VELOCITY THRESHOLD | 0 | $\begin{aligned} & 99999 \\ & 999 \end{aligned}$ | $\begin{aligned} & \text { Micro } \\ & \text { Gs } \end{aligned}$ | 8 | CGZV_IMU_NAV_ACC_THRESH |


| TABLE 3.021-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 19 | EXECUTE MASS MEMORY READ OF IMU DATA |  |  |  | 9 | CGZB_IMU_FLG_WD\$(1) |
| 20 | NULL |  |  |  |  |  |
| 21 | IMU 1 in STANDBY |  |  |  | 2 | CGBB_MFF_SEG2_DSCRT12\$(1;1) |
| 22 | IMU 2 in STANDBY |  |  |  | 2 | CGBB_MFF_SEG2_DSCRT12\$(2;1) |
| 23 | IMU 3 in STANDBY |  |  |  | 2 | CGBB_MFF_SEG2_DSCRT12\$(3;1) |
| 24 | $\begin{aligned} & \text { EXECUTE IMU } 1 \\ & \text { BITE } \\ & \text { MASK/UNMASK } \end{aligned}$ |  |  |  | 10 | CGZB_I_MASK_CMD\$(1) |
| 25 | $\begin{aligned} & \text { EXECUTE IMU } 2 \\ & \text { BITE } \\ & \text { MASK/UNMASK } \end{aligned}$ |  |  |  | 10 | CGZB_I_MASK_CMD\$(2) |
| 26 | EXECUTE IMU 3 BITE <br> MASK/UNMASK |  |  |  | 10 | CGZB_I_MASK_CMD\$(3) |

$\qquad$

Date: 12/20/90
Rev: 0

### 3.5.022 DISPLAY: S TRK/COAS CNTL

-1 AVAILABILITY: SPEC 022 in OPS G2 and G3(MM301).
-2 PURPOSE: SPEC 022 provides for STAR TRACKER moding and control, and data and controls for COAS (Crew-Optical Alignment System) sightings and calibrations. The SPEC is valid in OPS 2 and MM 301 only of OPS 3. (30767) (35151)


Figure 3.022

| TABLE 3.022-1.DISPLAY FUNCTIONS |  |  |  |
| :--- | :--- | :--- | :--- |
| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |


| TABLE 3.022-1. DISPLAY FUNCTIONS (Continued) |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


| TABLE 3.022-1. DISPLAY FUNCTIONS (Continued) |  |
| :--- | :--- | :--- | :--- | :--- |

TABLE 3.022-1. DISPLAY FUNCTIONS (Continued)


| TABLE 3.022-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select - Y Self Test |  |  |  | 2 | CGZV_KYBD_CMD\$(2) |
| 2 | Select -Z Self Test |  |  |  | 2 | CGZV_KYBD_CMD\$(1) |
| 3 | Select - Y Star Track |  |  |  | 2 | CGZV_KYBD_CMD\$(2) |
| 4 | Select - Z Star Track |  |  |  | 2 | CGZV_KYBD_CMD\$(1) |
| 5 | Select -Y Target Track |  |  |  | 2 | CGZV_KYBD_CMD\$(2) |
| 6 | Select -Z Target Track |  |  |  | 2 | CGZV_KYBD_CMD\$(1) |
| 7 | Break - Y Tracking |  |  |  | 2 | CGYB_BRK_TRK\$(2;) |
| 8 | Break -Z Tracking |  |  |  | 2 | CGYB_BRK_TRK\$(1;) |
| 9 | Put - Y in Term/Idle |  |  |  | 2 | CGZV_KYBD_CMD\$(2) |
| 10 | Put -Z in Term/Idle |  |  |  | 2 | CGZV_KYBD_CMD\$(1) |
| 11 | Select - Y Star ID | 0 | 110 |  | 3 | CGZV_ID_ARR\$(2) |
| 12 | Select - Z Star ID | 0 | 110 |  | 3 | CGZV_ID_ARR\$(1) |
| 13 | Select -Y Threshold | 0 | 3 |  | 3 | CGZV_ID_ARR\$(5) |
| 14 | Select - Z Threshold | 0 | 3 |  | 3 | CGZV_ID_ARR\$(4) |
| 15 | Force - Y Shutter Open |  |  |  | 3 | CGZB_SHUTTER\$(2) |
| 16 | Force - Z Shutter Open |  |  |  | 3 | CGZB_SHUTTER\$(1) |
| 17 | Select Current Star Data for Alignment Data |  |  |  | 5 | CGZB_SELECT\$(1) |
| 18 | Select Previous Star Data |  |  |  | 5 | CGZB_SELECT\$(2) |
| 19 | Select Previous Star Data |  |  |  | 5 | CGZB_SELECT\$(3) |
| 20 | Clear Star Data |  |  |  | 5 | CGZB_ID_FLAG\$(9) |
| 21 | Select Star ID for COAS | 1 | 110 |  | 6 | CGZB_ID_ARR\$(3) |
| 22 | Select COAS Sight Mode |  |  |  | 6 | CGZV_COAS_MODE_MFE |
| 23 | Accept Last Mark Data |  |  |  | 6 | CGZV_ID_FLAG\$(10) |



O

### 3.5.023 DISPLAY: RCS

-1 AVAILABILITY: SPEC 023 in OPS G1/6, G2, G3, and G8.
-2 PURPOSE: The RCS display provides the crew with the capability of selecting a desired RCS pod for display. The display allows for monitoring and controlling jet RM, monitoring RCS system data, OMS XFEED (Interconnect) line pressures and manifold valve status and override, and controlling OMS/RCS interconnect. It also allows the crew to select/deselect jets for use by the DAP.


Figure 3.023


| TABLE 3.023-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
|  |  |  | XX = Odd numbers, 9 to 39 under JET DES column. A jet may be deselected automatically by RM, or manually, by executing the item number associated with that jet. An asterisk $\left(^{*}\right)$ is displayed next to the item number of any jet deselected. Entering an item with an asterisk next to it will clear the asterisk and select the jet. Entering an item with no asterisk will drive an asterisk and deselect that jet. <br> $Y Y=$ Even numbers, 8 to 38 under DES INH column. Resets the failed jet. If the item has an asterisk, clears the asterisk and enables RM. If the item has no asterisk, drives an asterisk, inhibits RM and reorders the PTY column. <br> NOTE: Items 22, 23, 34 and 35 are not valid when left or right RCS data is displayed. <br> PTY Column: Displays priority of the primary jets on the selected pod. A jet's priority may be changed by executing a deselect inhibit item (8-38) even). The deselect inhibited jet will have last priority within its group. Jets having a lower priority than the DES INH jet will now be bumped up to the next highest priority. Deselect inhibiting a jet already having last priority or a vernier jet has no effect on priority values. |
| 4 | JET FAIL LIMIT | ITEM 4+X EXEC | Change the limit on the maximum number of jets which RM may automatically deselect from the availability table for the pod displayed. |
| 5 | OMS/RCS Interconnect |  | OMS PRESS ENA: Provides for gauging of OMS propellant used by RCS and for auto OMS ullage pressure maintenance. (46526) Not available in OPS G1/6 or G3. |
|  |  | ITEM 5 EXEC ITEM 6 EXEC ITEM 7 EXEC | Initiate Left OMS to RCS interconnect. Initiate Right OMS to RCS interconnect. <br> Terminate interconnect. (39591) |


| TABLE 3.023-1. DISPLAY FUNCTIONS (Continued) |  |
| :--- | :--- | :--- | :--- |

TABLE 3.023-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
| :--- | :--- | :--- | :--- |
| 8 | JET RESET | ITEM XX EXEC | XX = 40 to 44, OVRD Column: Execution <br> of these items allows the user to override the <br> valve position determined by RM and <br> displayed in the STAT Column. <br> XFEED P: Crossfeed pressure (PSIA) for the <br> left and right RCS Systems. <br> Status characters - Blank, M. <br> Execution of this item allows manual resetting <br> of failed jets not deselected providing the <br> isolation valve is off. |


| TABLE 3.023-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | RCS Forward |  |  |  | 2 | CGZB_RCS_SELECT\$1 |
| 2 | RCS Left |  |  |  | 2 | CGZB_RCS_SELECT\$2 |
| 3 | RCS Right |  |  |  | 2 | CGZB_RCS_SELECT\$3 |
| 4 | Jet Fail Limit | 0 | 9 |  | 4 | CGZV_JET_FAIL_LIM Initially I-Loaded |
| 5 | Left OMS Interconnect |  |  |  | 5 | CGZB_OMS_PRESS_ENA\$1 |
| 6 | Right OMS Interconnect |  |  |  | 5 | CGZB_OMS_PRESS_ENA\$2 |
| 7 | OMS Interconnect terminate |  |  |  | 5 | CGZB_OMS_PRESS_ENA\$3 |
| 8 | Jet 1 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$1 |
| 9 | Jet 1 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$1 |
| 10 | Jet 2 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$2 |
| 11 | Jet 2 RM SEL/DES |  |  |  | 3 | CGZB_JET DES\$2 |
| 12 | Jet 3 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$3 |
| 13 | Jet 3 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$3 |
| 14 | Jet 4 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$4 |
| 15 | Jet 4 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$4 |
| 16 | Jet 5 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$5 |
| 17 | Jet 5 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$5 |
| 18 | Jet 6 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$6 |
| 19 | Jet 6 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$6 |
| 20 | Jet 7 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$7 |
| 21 | Jet 7 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$7 |
| 22 | Jet 8 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$8 |
| 23 | Jet 8 RM SEL/DES |  |  |  | 3 | CGZB_JET_DES\$8 |
| 24 | Jet 9 RM AUTO/INH |  |  |  | 3 | CGZB_RM_INH\$9 |



O

O

O

```
RELEASE: OI20
Date: 12/20/90 BOOK: PASS User's Guide
Rev: 0
```


### 3.5.025 DISPLAY: RM ORBIT

-1 AVAILABILITY: SPEC 025 in OPS G2.
-2 PURPOSE: This Specialist Function provides the crew with a means to monitor and control the selection filters for the Translation and Rotation Hand Controllers (THC and RHC) and to inhibit/enable Switch Redundancy Management (SW RM) processing.


Figure 3.025

| TABLE 3.025-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 025 PRO | The RM ORBIT SPEC is available in OPS G2. |
| 2 | Forward THC TX data for LRUs 1, 2 and 3 |  | Provides the crew with data to monitor the forward THC positive and negative X output. |
| 3 | Forward THC TY data for LRUs 1, 2 and 3 |  | Provides the crew with data to monitor the forward THC positive and negative Y output. |
| 4 | Forward THC TZ data for LRUs 1, 2 and 3 |  | Provides the crew with data to monitor the forward THC positive and negative Z output. |
| 5 | Forward THC TX channel status for LRUs 1, 2 and 3 |  | Provides the crew with a status indication for the X channel. |
| 6 | Forward THC TY channel status for LRUs 1, 2 and 3 |  | Provides the crew with a status indication for the Y channel. |
| 7 | Forward THC TZ channel status for LRUs 1, 2 and 3 |  | Provides the crew with a status indication for the Z channel. |
| 8 | Forward THC deselect/select for LRUs 1, 2 and 3 | ITEM 1 EXEC ITEM 2 EXEC ITEM 3 EXEC | Specific item numbers in the DES column provide the crew with manual control of the RM selection filters. |
| 9 | AFT THC TX data for LRUs 1, 2 and 3 |  | Provides the crew with data to monitor the AFT THC positive and negative X output. |
| 10 | AFT THC TY data for LRUs 1, 2 and 3 |  | Provides the crew with data to monitor the AFT THC positive and negative Y output. |
| 11 | AFT THC TZ data for LRUs 1, 2 and 3 |  | Provides the crew with data to monitor the AFT THC positive and negative $Z$ output. |
| 12 | AFT THC TX channel status for LRUs 1, 2 and 3 |  | Provides the crew with a status indication for the X channel. |
| 13 | AFT THC TY channel status for LRUs 1, 2 and 3 |  | Provides the crew with a status indication for the Y channel. |
| 14 | AFT THC TZ channel status for LRUs 1, 2 and 3 |  | Provides the crew with a status indication for the Z channel. |


| TABLE 3.025-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 15 | AFT THC deselect/select for LRUs 1, 2 and 3 | ITEM 4 EXEC ITEM 5 EXEC ITEM 6 EXEC | Specific item numbers in the DES column provide the crew with manual control of the RM selection filters. <br> NOTE: For the THC the status indicator displays an M to indicate missing data and a down arrow ( $\downarrow$ ) for a failed component. |
| 16 | Left RHC 1, 2 and 3 roll commands |  | Provides the crew with transducer data corresponding to the Roll rotational commands. |
| 17 | Left RHC 1, 2 and 3 Pitch commands |  | Provides the crew with transducer data corresponding to the Pitch rotational commands. |
| 18 | Left RHC 1, 2 and 3 <br> Yaw commands |  | Provides the crew with transducer data corresponding to the Yaw rotational commands. |
| 19 | Right RHC 1, 2 and 3 Roll commands |  | Provides the crew with transducer data corresponding to the Roll rotational commands. |
| 20 | Right RHC 1, 2 and <br> 3 Pitch commands |  | Provides the crew with tranducer data corresponding to the Pitch rotational commands. |
| 21 | Right RHC 1, 2 and 3 Yaw commands |  | Provides the crew with tranducer data corresponding to the Yaw rotational commands. |
| 22 | AFT RHC 1, 2 and 3 Roll commands |  | Provides the crew with transducer data corresponding to the Roll rotational commands. |
| 23 | AFT RHC 1, 2 and 3 Pitch commands |  | Provides the crew with transducer data corresponding to the Pitch rotational commands. |
| 24 | AFT RHC 1, 2 and 3 Yaw commands |  | Provides the crew with transducer data corresponding to the Yaw rotational commands. <br> NOTE: The displayed data represents the sensed controller commands, scaled in precent of full deflection ( 0 to 99 ). |
| 25 | Left, Right and AFT 1, 2 and 3 Roll, Pitch and Yaw Status |  | Provides the crew with a status indication for Roll, Pitch and Yaw. |



| TABLE 3.025-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | THC L1 deselect |  |  |  | 8 | CGZB_THC_ASTER\$1 |
| 2 | THC L2 deselect |  |  |  | 8 | CGZB_THC_ASTER\$2 |
| 3 | THC L3 deselect |  |  |  | 8 | CGZB_THC_ASTER\$3 |
| 4 | THC A1 deselect |  |  |  | 15 | CGZB_THC_ASTER\$4 |
| 5 | THC A2 deselect |  |  |  | 15 | CGZB_THC_ASTER\$5 |
| 6 | THC A3 deselect |  |  |  | 15 | CGZB_THC_ASTER\$6 |
| 7 | RHC L1 deselect |  |  |  | 26 | CGRV RM DATA BASE. CGRB_STATUS_\$2(15;13) |
| 8 | RHC L2 deselect |  |  |  | 26 | CGRV RM DATA BASE. CGRB_STATUS_\$ $\$(15 ; 14)$ |
| 9 | RHC L3 deselect |  |  |  | 26 | CGRV RM DATA BASE. CGRB_STATUS_\$ $\mathbf{2}(15 ; 15)$ |
| 10 | RHC R1 deselect |  |  |  | 27 | CGRV RM DATA BASE. CGRB_STATUS_\$2(12;13) |
| 11 | RHC R2 deselect |  |  |  | 27 | CGRV RM DATA BASE. CGRB_STATUS_\$2(12;14) |
| 12 | RHC R3 deselect |  |  |  | 27 | CGRV RM DATA BASE CGRB_STATUS_\$2(12;15) |
| 13 | RHC A1 deselect |  |  |  | 28 | CGRV RM DATA BASE. CGRB_STATUS_\$2(18;13) |
| 14 | RHC A2 deselect |  |  |  | 28 | CGRV_RM_DATA_BASE. CGRB_STATUS_\$2(18;14) |
| 15 | RHC A3 deselect |  |  |  | 28 | CGRV RM DATA BASE. CGRB_STATUS_\$2(18;15) |
| 16 | Switch RM Inhibit |  |  |  | 29 | CGZB_28FLAG_WD1\$2 <br> For Items 7 thru 15 data may change by Keyboard input or software processing. |

### 3.5.033 DISPLAY: REL NAV

-1 AVAILABILITY: SPEC 033 in OPS G2.
-2 PURPOSE: The Relative Navigation Specialist function provides the crew with data and control for onorbit Navigation (NAV), particularly for Rendezvous, Station-Keeping and Payload handling. This is provided by data on the state vectors, manual control of the NAV filter, and by the capability to select the Navigation sensor from Star Tracker, Rendezvous Radar, or Crew Optical Alignment Sight (COAS). Data is also provided on translational thrust.


Figure 3.033

TABLE 3.033-1. DISPLAY FUNCTIONS

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | SPEC Call-Up | SPEC 033 PRO | The REL NAV SPEC is available only in OPS G2. Items 4 and 13 are valid only if Rendezvous Navigation (RNDZ NAV) has been enabled by executing Item 1 . |
| 2 | Relative Motion Data |  | This quadrant of the display (upper left) provides state data from 2 sources: navigation (NAV) and rendezvous radar (RR). |
|  |  | ITEM 4 EXEC | SV SEL: This item selects PROP or FLTR as the source of navigated relative state data. |
|  |  |  | NAV Column: The left column (under Item 4) displays 6 current navigated state parameters, when RNDZ NAV is enabled. The 6 parameters are: |
|  |  |  | RNG: This display shows the line-of-sight (LOS) range, in thousands of feet ( K ft ), between the Orbiter and the target vehicle. |
|  |  |  | R : This shows range rate (closing rate) between the 2 vehicles, in feet per second ( fps ). A negative sign indicates a closing rate, and positive an opening rate. |
|  |  |  | $\theta$ : This shows the angle between the local horizontal plane and the projection of the Orbiter tracking body vector (selected on UNIV PTG DISPLAY, 2011) on the orbital plane. |
|  |  |  | Y: Out-of-plane position is the perpendicular distance between the Orbiter and the target, in thousands of feet. Positive is along the negative angular momentum vector of the target. |
|  |  |  | Ydot: Out-of-plane velocity is the rate at which the Orbiter is moving relative to the orbital plane of the target (in fps), positive along the negative angular momentum vector. <br> NODE: Time of next nodal crossing, in MET - hr:min:sec. |

TABLE 3.033-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
|  |  |  | RR XXXX: The right column displays 6 radar parameters. Next to the value of each radar parameter is its status; ( $\downarrow$ ) - loss of good data; (M) - commfault or the radar is in COMM (communication) MODE; (Blank) for data good. The 6 parameters are: <br> RNG: LOS range ( Kft ) between vehicles. <br> $\dot{\mathrm{R}}$ : Range rate - plus for opening, minus for closing. <br> EL: Elevation of the radar antenna gimbal; positive towards +X Orbiter axis (Pitch). <br> AZ: Azimuth (Roll) of the radar antenna gimbal; positive towards -Y Orbiter axis. <br> $\omega \mathrm{P}$ : Inertial pitch angle rate in milliradians/sec. positive towards +X Orbiter axis. <br> $\omega \mathrm{R}$ : Roll inertial angle rate in milliradians per second; positive toward the -Y Orbiter axis. <br> XXXX (in heading of right column): This indicates the status of the Radar System. Status acronyms available are: <br> STST: Self test in progress. Self test overrides any of the following status indicators. <br> COMM: KU-Band antenna is in the communication (two-way signaling) MODE. <br> GPC: The antenna pointing and search are under control of the GPC. Manual slew is inhibited. <br> GDSG: GPC designate position, for antenna steering switch, puts antenna pointing and inertial stabilization under GPC control. <br> ATRK: Indicates AUTO on antenna steering switch. Antenna pointing done by manual slew switches. <br> MSLW: MAN SLEW (manual slew) position antenna pointing switch. Manual slew will do antenna pointing. |

RELEASE: OI20 Date: $12 / 20 / 90$

TABLE 3.033-1. DISPLAY FUNCTIONS (Continued)
\(\left.\left.\left.$$
\begin{array}{|l|l|l|l|}\hline \text { \# } & \text { FUNCTION } & \begin{array}{l}\text { KYBD } \\
\text { ENTRY(S) }\end{array} & \begin{array}{l}\text { NOTES }\end{array} \\
\hline \begin{array}{ll}\text { Rendezvous } \\
\text { Navigation Sensor } \\
\text { Selector and } \\
\text { Navigation }\end{array} & & \begin{array}{l}\text { FILTER: Provides the controls necessary to } \\
\text { select the rendezvous navigation angle sensor. } \\
\text { Also, provides data, status and control for } \\
\text { onorbit RNDZ NAV. The angle data is only } \\
\text { for the NAV sensor selector. }\end{array} \\
\text { The sensors available are mutually exclusive. } \\
\text { The item selected will be indicated by an } \\
\text { asterisk, and are: }\end{array}
$$\right\} $$
\begin{array}{l}\text { S TRK: Star Tracker will be selected the first } \\
\text { time this display is called. }\end{array}
$$\right\} \begin{array}{l}RR: Rendezvous Radar is selected. <br>

COAS: Crew Optical Alignment Sight is\end{array}\right\}\)| ITEM 12 EXEC |
| :--- |
| selected. |
| STAT XXXXXXXXX: Indicates the status |
| of the currently selected STRK - blank, ST |
| FAIL, ST PASS, TRK, NO TARGET, HI |
| RATE, Out of Field of View (OUT FOV). |
| ITEM 13 EXEC |

TABLE 3.033-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
|  |  |  | RESID: The residuals are formed by subtracting the navigation-estimated value of the parameter from the sensor-observed value of the measurement. The parameter residuals displayed are for range ( RNG ) range rate ( $\dot{\mathrm{R}}$ ); plus 2 other parameters, which differ from sensor to sensor. <br> RATIO: The residual ratio displayed is computed by RNDZ NAV, and used for editing bad data. <br> MARK HIST: The number of NAV marks both accepted (ACPT) and (REJ) rejected by the navigation filter. <br> These counters are zeroed when: <br> a. a state vector is changed. <br> b. a state vector transfer is performed. <br> c. RNDZ NAV is first enabled. <br> d. the covariance matrix is reinitialized. <br> e. after a delta velocity burn. <br> f. the input data sensor is changed. |

A down arrow ( $\downarrow$ ) is driven next to the REJ data when the number of marks rejected is greater than the I-loaded value.

EDIT OVRD: Provides capability to control the way the NAV filter handles data. These 3 controls - auto (AUT), inhibit (INH), and force (FOR), are mutually exclusive.

ITEM XX EXEC XX = 17 to 25 . An asterisk is driven under the appropriate column next to the parameter number. An asterisk will be driven after a time delay which depends on the navigation processing rate.

INH: The inhibit numbers will be automatically selected when this display is first called. The INH function allows residual and ratio calculations, but inhibits updating of state and MARK Rejection Counter parameters.

AUT: Allows automatic processing of data in NAV filter.


| TABLE 3.033-1. DISPLAY FUNCTIONS (Continued) |  |
| :--- | :--- | :--- | :--- |$|$| FYBD |
| :--- |
| \# |


| TABLE 3.033-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Enable and Disable RNDZ NAV |  |  |  | 4 | CGZB_REL_NAV_FLG_WD1_LFE\$6 Appearance and disappearance of the asterisk has a time delay which is dependent on the NAV sequence processing rate. |
| 2 | KU-Band Antenna Enable |  |  |  | 5 | CGZB KU ANT_CMD RNDZ̄ NAV̄ must be enabled. |
| 3 | Enable/Inhibit the incorporation of measurements into the NAV filter |  |  |  | 6 | CGZB_REL_NAV_FLG_WD1_LFE\$7 RNDZ NAV must be enabled and must be MM202. |
| 4 | State Vector Select |  |  |  | 2 |  |
| 5 | Powered Flight Navigation OnOrbit (AVG G) on/Off |  |  |  | 8 | CGZB_REL_NAV_FLG_WD1_LFE\$1 Legal only in MM201. |
| 6 | $\Delta \mathrm{V}$ Components Reset |  |  |  | 9 | CGZV_DVXYZ |
| 7 | $\Delta \mathrm{V}$ Magnitude Reset |  |  |  | 10 | CGZV_DVTOT |
| 8 | SV Transfer from Filtered State to Propagated State |  |  |  | 10 | RNDZ NAV must be enabled. Mutually exclusive with items $9,10,11$ and 16. |
| 9 | SV Transfer from Propagated State to Filtered State |  |  |  | 10 | RNDZ NAV must be enabled. <br> Mutually exclusive with items $8,10,11$ and 16. |
| 10 | State Vector (SV) Transfer from Orbiter to Target |  |  |  | 10 | CGZB_REL_NAV_FLG_WD1_LFE\$3 RNDZ NAV must $\bar{b} e$ enabled. Mutually exclusive with items 8, 9, 11 and 16. |
| 11 | SV Transfer from Target to Orbiter |  |  |  | 10 | CGZB_REL_NAV_FLG_WD1_LFE\$4 RNDZ $N A V$ must $\bar{b}$ e enabled. Mutually exclusive with items $8,9,10$ and 16. |
| 12 | Select Star Tracker as RNDZ Angle Sensor |  |  |  | 3 | CGZV_ST_RR_COAS Items $\overline{12}, \overline{3}, 14$ are mutually exclusive. |
| 13 | Select Rendezvous Radar as RNDZ Angle Sensor |  |  |  | 3 | CGZV_ST_RR_COAS |



### 3.5.034 DISPLAY: ORBIT TGT

-1 AVAILABILITY: SPEC 034 in OPS G2.
-2 PURPOSE: The Orbit Targeting Specialist Function provides the crew with data for and control of successive maneuvers in a rendezvous sequence. These are provided through display of maneuver data and the capability to initialize and control maneuvers. Additionally, a time homogeneous orbiter state vector is displayed and updated every two seconds for use by the crew. (60511)


Figure 3.034

TABLE 3.034-1. DISPLAY FUNCTIONS

| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
| :--- | :--- | :--- | :--- |
| 1 | SPEC Call-Up | SPEC 034 PRO | Item entries on this SPEC are legal only when <br> supported by Rendezvous Navigation <br> (SPEC 033). |
| Maneuver Target <br> Data Display |  | MNVR: The data displayed across the top are <br> the target solution parameters on which a a <br> maneuver is based. The parameters are Target <br> ID number. Impulsive Ignition Time (TIG) in <br> the past is indicated by an asterisk (*). |  |
|  |  | TIG: Maneuver ignition time in MET, shown as <br> days/hours:minutes:seconds. |  |


| TABLE 3.034-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- |


| TABLE 3.034-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 15 | Calculate the first maneuver solution | ITEM 28 EXEC | COMPUTE T1: Execution of this item calculation of the first maneuver (T1) of a 2 maneuver sequence, and display of the results in the MNVR section at the head of this display. An asterisk will be driven by this time until computations complete. Parameters used here are specified under the INPUTS section. INPUTS not specified will be computed and displayed. The CRT clock will automatically start countdown to the next TIG when the solution is found for COMPUTE T1, or COMPUTE T2. (52763) |
| 16 | Calculate the second Maneuver solution | ITEM 29 EXEC | COMPUTE T2: Execution of this item initiates calculation of the second of maneuvers. (See \#15 above) |
| 17 | Current Orbiter State Vector data display |  | The ORBITER STATE is the current time homogeneous M50 Orbiter State Vector and time tag. The parameters are: <br> 1. The time tag of the orbiter state vector in GMT shown as: days/hours:minutes:seconds. <br> 2. The orbiter M50 position components $\mathbf{X}, \mathrm{Y}$, and $\mathrm{Z}(\mathrm{Kft})$. <br> 3. The orbiter M50 velocity components VX, VY, and VZ (Kft/Sec). <br> Although the Orbiter State Vector is refreshed every 2 seconds, it is only recomputed every 4 seconds. |


| TABLE 3.034-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Target ID | 1 | 40 |  |  | CGZV_PROX_TGT_SET_NO |
|  | TIG time of the first 2 maneuvers: |  |  |  |  |  |
| 2 | days | 0 | 9 | days | 5 | CGZV_ORB_TGT_TIME.D_H_M_S\$(1;1) |
| 3 | hours | 0 | 23 | hours | 5 | CGZV_ORB_TGT-TIME.D_H_M_S\$(1;2) |
| 4 | minutes | 0 | 59 | min | 5 | CGZV_ORB-TGT-TIME.D_H_S\$(1;3) |
| 5 | seconds | 0 | 59 | sec | 5 | CGZV_ORB_TGT_TIME.D_H_M_S\$(1;4) |
| 6 | Elevation angle to Target | 0 | 359.99 | deg | 6 | CGZV_ORB_TGT_DISP_EL_ANG |
|  | Orbiter relative position: | -999.99 | +999.99 | Kft | 7 |  |
| 7 | X Component |  |  |  |  | CGZV_DISP_T1_X\$1 |
| 8 | Y Component |  |  |  |  | CGZV-DISP-T1-X $\$ 2$ |
| 9 | Z Component |  |  |  |  | CGZV_DISP_T1_X ${ }^{-}$ |
|  | Orbiter relative velocity: | -999.99 | +999.99 | fps | 7 |  |
| 10 | X Component |  |  |  |  | CGZV_DISP_T1_XD\$1 |
| 11 | Y Component |  |  |  |  | CGZV_DISP-T1-XD\$2 |
| 12 | Z Component |  |  |  |  | CGZV_DISP_T1_XD\$3 |
|  | TIG time of the second 2 |  |  |  |  |  |
|  | impulse |  |  |  |  |  |
|  | maneuvers: |  |  |  |  |  |
|  | days | 00 | 9 | days | 8 | CGZV_ORB_TGT_TIME.D_H_M_S\$(2;1) |
| 14 | hours | 00 | 23 | hours | 8 | CGZV_ORB_TGT_TIME.D_H_M_S $\$(2 ; 2)$ |
| 15 | minutes | 00 | 59 | min | 8 | CGZV_ORB_TGT-TIME.D_H_M_S\$(2;3) |
| 16 | seconds | 00 | 59 | sec | 8 | CGZV_ORB_TGT_TIME.D_H_M_S ${ }_{\text {- }}(2 ; 4)$ |
| 17 | Transfer time | -300 | +300 | min | 9 | CGZV_ORB_TGT_DISP_DT |
|  | Desired orbiter relative position at T2 TIG: | -999.99 | +999.99 | Kft | 10 |  |
| 18 | X Component |  |  |  |  | CGZV_ORB_TGT_DISP_T $\$ 1$ |
| 19 | Y Component |  |  |  |  | CGZV_ORB-TGT-DISP-T2\$2 |
| 20 | Z Component |  |  |  |  | CGZV_ORB_TGT_DISP_T2\$3 |
|  | BASE TIME: |  |  |  |  |  |
| 21 | days | 0 | 9 | day | 11 | CGZV_ORB_TGT_TIME.D_H_M_S\$(3;1) |
| 22 | hours | 0 | 23 | hours | 11 | CGZV_ORB_TGT-TIME.D_H_M_S $\$(3 ; 2)$ |
| 23 | minutes | 0 | 59 59 | min | 11 | CGZV_ORB_TGT_TIME.D_H_M_S\$(3;3) |
| 24 | seconds | 0 | 59 | sec | 11 | CGZV_ORB_TGT_TIME.D_H_M_S\$(3;4) |



Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

### 3.5.040 DISPLAY: SENSOR TEST

-1 AVAILABILITY: SPEC 040 in OPS G8.
-2 PURPOSE: The On-Orbit Sensor Self-Test display provides the capability to initiate sensor self test of Microwave Scan Beam Landing System (MLS), TACAN, Radar Altimeter, and Accelerometer Assembly (AA) and review the results. It also provides the capability to select/deselect LRU(s) for selection filter/RM processing.

```
XXXX/040/ SENSOR TEST XX X DDD/HH:MM:SS
                                    DDD/HH:MM:SS
            DES STAT RNG AZ EL
        MLS 1 1X XXXX XX.XS mX.XXS X.XXS
        2 2X XXXX XX.XS \pmX.XXS X.XXS
        3 3X XXXX XX.XS \pmX.XXS X.XXS
            DES STAT RNG AZ
        TAC 1 4X XXXX X.XS XXX.XXS
        2 5x XXXX X.XS XXX.XXS
        3 6X XXXX X.XS XXX.XXS
            DES STAT ALT
        RA 1 7X XXXX XXXXS
            2 8X XXXX XXXXS
                DES Y Z
            AA 1 9X mXX.XS \pmXX.XS
            2 10X \pmXX.XS \pmXX.XS
            3 11X \pmXX.XS \pmXX.XS
            4 12X \pmXX.XS \pmXX.XS
            START 13X STOP 14X
```

Figure 3.040

| TABLE 3.040-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 040 PRO | Sensor Self-Test is available only in OPS G8. Data is cyclically updated unless in testing. (see function 3.) |
| 2 | Sensor Selection/ <br> Deselection for Selection Filter/RM | ITEM N EXEC | Enables/Disables selected sensor for selection filter/RM. $\mathrm{N}=1-12$ as follows: (Operates as a flip/flop.) <br> 1. MLS 1 <br> 7. Radar Alt 1 <br> 2. MLS 2 <br> 8. Radar Alt 2 <br> 3. MLS 3 <br> 9. Accel. Assm. 1 <br> 4. TACAN 1 10. Accel. Assm. 2 <br> 5. TACAN 2 11. Accel. Assm. 3 <br> 6. TACAN 3 12. Accel. Assm. 4 <br> An * present represents DISABLED. <br> For $\mathrm{N}=1-3$, an * present may also represent failure. |
| 3 | Test Controls: Start | ITEM 13 EXEC | Start self-test of all LRUs. <br> NOTE: <br> 1. Data is frozen on display at completion of test until test is terminated via ITEM 14. <br> 2. Test status is shown at completion of test as blank if good, or $\downarrow$ if failed low, or $\uparrow$ if failed high. STAT columns (except AAs) show blank (good), OFF (LRU has no power), or BITE (hardware failure). <br> 3. Table 3.040-3 defines test values for LRUs. |
|  | Disable | ITEM 14 EXEC | Terminate self-test. Restarts cyclic updating of LRU data and clears status indications. Must be entered after any test started before another test may be attempted. |


| TABLE 3.040-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | MLS 1 SELECT |  |  |  | 2 | MFE_CGRB_STATUS_2\$(2;13) |
| 2 | MLS 2 SELECT |  |  |  | 2 | MFE-_CGRB_STATUS_2\$(2;14 |
| 3 | MLS 3 SELECT |  |  |  | 2 | MFE_CGRB_STATUS_2\$(2;15) |
| 4 | TACAN 1 SELECT |  |  |  | 2 | CGRB_TAC_FAIL\$(1;5) |
| 5 | TACAN 2 SELECT |  |  |  | 2 | CGRB_TAC_FAIL\$(1;6) |
| 6 | TACAN 3 SELECT |  |  |  | 2 | CGRB_TAC_FAIL\$(1;7) |
| 7 | RA 1 SELECT |  |  |  | 2 | CGRB_STATUS_2\$(1;13) |
| 8 | RA 2 SELECT |  |  |  | 2 | CGRB_STATUS_2\$(1;14) |
| 9 | AA 1 SELECT |  |  |  | 2 | CGRB_STATUS_2\$(24;13) |
| 10 | AA 2 SELECT |  |  |  | 2 | CGRB_STATUS_2\$(24;14) |
| 11 | AA 3 SELECT |  |  |  | 2 | CGRB_STATUS_2\$(24;15) |
| 12 | AA 4 SELECT |  |  |  | 2 | CGRB_STATUS_2\$(24;16) |
| 13 | START SELF TEST |  |  |  | 3 | CNS_SPEC_040_SF(13) CGEB_VN9-ACTIVATE CNS_MLS_C̄YCLIC |
| 14 | TERMINATES SELF TEST |  |  |  | 3 | CNS_SPEC_040_SF(14) <br> CNS_MLS_CYCLIC <br> CNS SPEC 040 CYCLIC |


| TABLE 3.040-3. SENSOR SELF-TEST LIMITS |  |  |  |
| :--- | :--- | :--- | :--- |
| DESCRIPTION | LOW | HIGH | UNITS |
| MLS Range | 15.0 | 15.4 | NM |
| MLS Elevation | 5.9 | 6.1 | DEG |
| MLS Azimuth - High Mode | 2.9 | 3.1 | DEG |
| MLS Azimuth - Low Mode | -3.1 | -2.9 | DEG |
| TACAN Range | 0.0 | 0.5 | NM |
| TACAN Azimuth | 177.5 | 182.5 | DEG |
| Radar Altimeter | 900 | 1100 | FT |
| Accel. Assembly -Y | 14.4 | 17.8 | FT/SEC ${ }^{2}$ |
| Accel. Assembly -Z | 57.7 | 71.1 | FT/SEC ${ }^{2}$ |
|  |  |  |  |

### 3.5.041 DISPLAY: RGA/ADTA/RCS

-1 AVAILABILITY: SPEC 041 in OPS G8.
-2 PURPOSE: The On-Orbit RGA/ADTA/RCS Test display is used to activate and control the execution of sensor self tests of the Rate Gyro Assemblies (RGA), the Air Data Transducer Assembly (ADTA), and the Reaction Control System (RCS). It allows the users to select and deselect two test modes on each LRU: High, or Low.

(XX)

Figure 3.041

| TABLE 3.041-1. DISPLAY FUNCTIONS |  |
| :--- | :--- | :--- | :--- |


| TABLE 3.041-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- |$|$| KYBD |
| :--- |
| \# |



| TABLE 3.041-3. RGA LIMIT VALUES |  |  |  |
| :--- | ---: | ---: | ---: |
| DESCRIPTION | LOW | HIGH | UNITS |
| ROLL RATE |  |  |  |
| HIGH | 18.88 |  |  |
| LOW | -21.12 | -18.88 | DEG/SEC |
| PITCH RATE |  |  |  |
| HIGH | 9.44 | 10.56 | DEG/SEC |
| LOW | -10.56 | -9.44 | DEG/SEC |
| YAW RATE |  |  |  |
| HIGH | 9.44 | 10.56 | DEG/SEC |
| LOW | -10.56 | -9.44 | DEG/SEC |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| TABLE 3.041-4. ADTA LIMIT VALUES |  |  |  |
| :---: | :---: | :---: | :---: |
| DESCRIPTION | LOW | HIGH | UNITS |
| STATIC PRESS HI ALT LO ALT | $\begin{array}{r} 0.023 \\ 24.887 \end{array}$ | 0.815 24.889 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| $\begin{aligned} & \text { CTR ALPHA PRESS (PAC) } \\ & \text { HI ALT } \\ & \text { LO ALT } \end{aligned}$ | $\begin{array}{r} 5.473 \\ 29.531 \end{array}$ | 5.477 29.531 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| LWR ALPHA PRESS (PAL) HI ALT <br> LO ALT | 1.708 14.713 | 1.712 14.717 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| UPR ALPHA PRESS (PAU) HI ALT <br> LO ALT | 2.740 21.708 | 2.744 21.712 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| TOTAL TEMP HI ALT LO ALT | $\begin{array}{r} 173.56 \\ 18.50 \end{array}$ | $\begin{array}{r} 173.60 \\ 18.54 \end{array}$ | $\begin{aligned} & \text { DEG C } \\ & \text { DEG C } \end{aligned}$ |

O

O

### 3.5.042 DISPLAY: SWITCH/SURF

-1 AVAILABILITY: SPEC 042 in OPS G8.
-2 PURPOSE: The RM SWITCHES/SURFACES Feedback display provides the crew with indications of the closed contacts sensed in the FCS channel and mode switches and displays the sensed outputs of the feedback transducers for the aerosurfaces. The display provides controls for deselection and selection of sets of switch contacts or switch strings as candidates for the selection
filter. (30526) filter. (30526)

| Xxxx/042/ |  | SWITCH/SURF |  |  |  | XX X DDD/HH:MM:SS DDD/HH:MM:SS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  | PRIDE | DES |  | ORIDE | DE DES |  |  |  |
|  | 11 XS | 1X |  | XS | 7X |  |  |  |
|  | 2 XS | 2X |  | XS | 8X |  |  |  |
| FCS | 3 XS | 3x | 3 | XS | 9X |  |  |  |
| CH | 21 XS | 4X | 41 | XS | 10X |  |  |  |
|  | 2 XS | 5x | 2 | XS | 11 X |  |  |  |
|  | XS | 6X | 3 | XS | 12x |  |  |  |
| CSS ${ }^{\text {aU }}$ |  |  |  |  |  | SPD BRKBDY FLP |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | L 1 XS XS | XS | XS | XS |  | XS XS | XS |  |
|  | 2 XS X | XS |  | XS |  | XS XS | XS | 14X |
|  | 3 XS XS | XS | XS | XS |  | XS XS | XS |  |
|  | R 1 XS XS | XS |  | XS |  | XS XS | XS |  |
|  | 2 XS XS | XS |  | XS |  | XS XS | XS |  |
|  | $3 \times 5 \times$ | XS |  | XS |  | XS XS | XS |  |
|  |  |  |  |  |  |  | SPD BD |  |
|  | L OB | L IB | R I | IB | R OB | XXX. XSXXXS XXS 19 C |  |  |
| SURF | $1 \times X X . X S X X X . X S$ $2 \times x x . X S x x x$. XS |  | XXX. XS XXXX. XS |  |  |  |  |  |
|  |  |  | XXX. XSXXXX . SS |  |  | XXX. XSX | xxs XxS | S20x |
|  | $3 \times \mathrm{XXX.XSXXXX.XS}$ |  | XXX.xS\|xxx.xS |  |  | XXX. XSX | XXS XXS | s21x |
|  | $4 \times X X . \mathrm{XSXXX}$. XS |  | Xxx. xsxxx.xs |  |  | XXX. XSX | XxS XXS | s22x |

(XX)

Figure $\mathbf{3 . 0 4 2}$

| TABLE 3.042-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 042 PRO | The SWITCH/SURF display is available only in OPS G8. For all outputs an M is displayed if the signal is missing. Items 1 through 22 reverse the selection state of the associated contact or string. An asterisk (*) beside the item number indicates that the associated contact sets or switch string is deselected. The selection filters are not active during OPS 8 , but the selected candidate configuration is maintained for transition to OPS 3. |
| 2 | FCS CH Switches | ITEM N EXEC | $\mathrm{N}=1-3,4-6,7-9$, and $10-12$; controls the selection/deselection of the 1,2 or 3 set of switch contacts for the triple redundant FCS CH switches. An * next to the item number indicates the contact has been either manually or automatically (by RM) deselected. <br> When any redundant contact of the four FCS channel switches is sensed to be in the override position, an asterisk (*) is shown in the corresponding position under ORIDE. |
| 3 | FCS Mode Switches | ITEM N EXEC | $\mathrm{N}=13-15$ and 16-18; controls the selection/deselection of the 1,2 or 3 set of switch contacts for the triple redundant L and R FCS MODE switches. An asterisk (*) next to the item number indicates the contact has been either manually or automatically (by RM) deselected. |
| 4 | SURF Switches | ITEM N EXEC | $\mathrm{N}=19,20,21$ and 22 ; controls the selection/deselection of the four feedback transducer strings for the elevons, rudder, speedbrake and body flap aerosurfaces. An asterisk ${ }^{(*)}$ ) next to the item number indicates the string has been manually deselected by the crew. It will not indicate a deselection by RM. <br> Elevon and rudder feedbacks are displayed in degrees while speedbrake and body flap feedbacks are percentages. <br> In addition to M for missing data, status indicators will be output as follows: <br> a. Elevons <br> 1) U-trailing edge of the elevon is up. <br> 2) D - trailing edge of the elevon is down. <br> b. Rudder <br> 1) $R$ - trailing edge of the rudder is to the right. <br> 2) L - trailing edge of the rudder is to the left. |


| TABLE 3.042-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select/deselect Contact Set 1 for FCS CH1 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(4:13) |
| 2 | Select/deselect Contact Set 2 for FCS CH1 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(5:13) |
| 3 | Select/deselect Contact Set 3 for FCS CH1 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(6:13) |
| 4 | Select/deselect Contact Set 1 for FCS CH2 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(4:14) |
| 5 | Select/deselect Contact Set 2 for FCS CH2 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(5:14) |
| 6 | Select/deselect Contact Set 3 for FCS CH2 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(6:14) |
| 7 | Select/deselect Contact Set 1 for FCS CH3 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(4:15) |
| 8 | Select/deselect Contact Set 2 for FCS CH3 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(5:15) |
| 9 | Select/deselect Contact Set 3 for FCS CH3 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(6:15) |
| 10 | Select/deselect Contact Set 1 for FCS CH4 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(4:16) |
| 11 | Select/deselect Contact Set 2 for FCS CH4 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(5:16) |
| 12 | Select/deselect Contact Set 3 for FCS CH4 Switch |  |  |  | 2 | CGRB_ORB_TRIPLE_SF_STAT\$(6:16) |


| TABLE 3.042-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 13 | Select/deselect Contact Set 1 for FCS MODE L Switch |  |  |  | 3 | CGRB_RM_SW_DISPLAYS\$(1) |
| 14 | Select/deselect Contact Set 2 for FCS MODE L Switch |  |  |  | 3 | CGRB_RM_SW_DISPLAYS\$(2) |
| 15 | Select/deselect Contact Set 3 for FCS MODE L Switch |  |  |  | 3 | CGRB_RM_SW_DISPLAYS\$(3) |
| 16 | Select/deselect Contact Set 1 for FCS MODE R Switch |  |  |  | 3 | CGRB_RM_SW_DISPLAYS\$(4) |
| 17 | Select/deselect Contact Set 2 for FCS MODE R Switch |  |  |  | 3 | CGRB_RM_SW_DISPLAYS\$(5) |
| 18 | Select/deselect Contact Set 3 for FCS MODE R Switch |  |  |  | 3 | CGRB_RM_SW_DISPLAYS\$(6) |
| 19 | Select/deselect Feedback Transducer String 1 for SURF Switch |  |  |  | 4 | CGRB_RM_SW_DISPLAYS\$(7) |
| 20 | Select/deselect <br> Feedback Transducer String 2 for SURF Switch |  |  |  | 4 | CGRB_RM_SW_DISPLAYS\$(8) |
| 21 | Select/deselect Feedback Transducer String 3 for SURF Switch |  |  |  | 4 | CGRB_RM_SW_DISPLAYS\$(9) |
| 22 | Select/deselect Feedback Transducer String 4 for SURF Switch |  |  |  | 4 | CGRB_RM_SW_DISPLAYS\$(10) |

### 3.5.043 DISPLAY: CONTROLLERS

## -1 AVAILABILITY: SPEC 043 in OPS G8.

-2 PURPOSE: The RM CONTROLLERS specialist function provides the means to monitor data and control the selection filters for Rotation and Translation Hand Controllers (RHC and THC), Speed Brake (SPD BRK) and Rudder Pedal (RUD PED) controller, RHC and Panel (PNL) trim switches, and Body Flap (BDY FLP) slew switches. In the Deselect (DES) columns, specific item numbers allow manual selection or deselection of the associated sensor. An asterisk (*) indicates deselection, a blank, selection. The items operate like a flip flop (select or deselect). (37692)


Figure 3.043

| TABLE 3.043-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 12 | SPEC Call Up <br> Translation Hand Controller Matrix | SPEC 043 PRO | This display is only available in OPS G8. |
|  |  |  | THC - The triple redundant transducer $(1,2,3)$ data for each THC (L and A) are displayed for TX (X-axis), TY (Y-axis), and TZ (Z-axis). A $(+)$ or $(-)$ character indicates the sensed THC command, and a Blank indicates no sensed command. <br> Status characters - Good (Blank), Commfault (M), Dilemma (?), Failed ( $\downarrow$ ). |
|  |  | ITEM X EXEC | $\mathrm{X}=1-6$ : Allows set/reset of the deselect signal for the indicated THC channel. Reset is indicated by an asterisk (*) in the DES column. <br> Two item entries are required to reset a failed component (deselect then select the THC channel). |
| 3 | Speed Brake Controller Matrix |  | SPD BK - The triple redundant transducer $(1,2,3)$ data for each SPD BK ( $L$ and $R$ ) are displayed as percent ( + or,- 0 to 99 ). Status characters - Good (Blank), Commfault (M). |
|  |  | ITEM X EXEC | $\mathrm{X}=7$-12: Allows select/deselect of the indicated SPD BK transducer. Deselect is indicated by an asterisk ( ${ }^{*}$ ) in the DES column. |
| 4 | Rudder Pedal Controller Matrix |  | RUD PED - The triple redundant transducer $(1,2,3)$ data for each RUD PED (L or R) are displayed as percent ( R or $\mathrm{L}, 0$ to 99 ). Status Characters - Good (Blank), Commfault (M). |
|  |  | ITEM X EXEC | $\mathrm{X}=$ 13-18: Allows select/deselect of the indicated RPTA. Deselect is indicated by an asterisk (*) in the DES column. |
| 5 | Body Flap Matrix |  | BDY FLP - The double redundant contacts (1, 2) for each slew switch ( $L, R$ ) are displayed for UP (Up), and DN (Down). An asterisk (*) is displayed in the appropriate columns. Status characters - Good (Blank), Commfault (M). |
|  |  | ITEM X EXEC | $X=19-22:$ Allows select/deselect of the indicated Body Flap slew switch. Deselect is indicated by an asterisk (*) in the DES column. |


| TABLE 3.043-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- |


| TABLE 3.043-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select/Deselect forward THC1 from Select Filter |  |  |  | 2 | CGZB_THC_ASTER\$(1) |
| 2 | Select/Deselect forward THC2 from Select Filter |  |  |  | 2 | CGZB_THC_ASTER\$(2) |
| 3 | Select/Deselect forward THC3 from Select Filter |  |  |  | 2 | CGZB_THC_ASTER\$(3) |
| 4 | Select/Deselect aft THC1 from Select Filter |  |  |  | 2 | CGZB_THC_ASTER\$(4) |
| 5 | Select/Deselect aft THC2 from Select Filter |  |  |  | 2 | CGZB_THC_ASTER\$(5) |
| 6 | Select/Deselect aft <br> THC3 from Select Filter |  |  |  | 2 | CGZB_THC_ASTER\$(6) |
| 7 | Select/Deselect left SPDBK1 from Select Filter |  |  |  | 3 | CGRV RM DATA BASE. CGRB_STATUS_2 $2 \overline{\$}(9 ; 13)$ |
| 8 | Select/Deselect left SPDBK2 from Select Filter |  |  |  | 3 | CGRV_RM_DATA BASE. CGRB_STATUS_2 $2 \overline{\$}(9 ; 14)$ |
| 9 | Select/Deselect left SPDBK 3 from Select Filter |  |  |  | 3 | CGRB RM DATA BASE. CGRB_STATTUS_2 $2 \overline{\$}(9 ; 15)$ |
| 10 | Select/Deselect right SPDBK1 from Select Filter |  |  |  | 3 | CGRB RM DATA BASE. CGRB_STATUS_2 $2 \overline{\$}(11 ; 13)$ |
| 11 | Select/Deselect right SPDBK2 from Select Filter |  |  |  | 3 | CGRB RM DATA BASE. CGRB_STATUS_2馬 $11 ; 14$ ) |
| 12 | Select/Deselect right SPDBK 3 from Select Filter |  |  |  | 3 | CGRB_RM DATA BASE <br>  |
| 13 | Select/Deselect left RPTA1 from Select Filter |  |  |  | 3 | CGRB_RM DATA BASE. CGRB_STATUS_2 $\overline{\$}(8 ; 13)$ |
| 14 | Select/Deselect left RPTA2 from Select Filter |  |  |  | 3 | CGRB_RM_DATA BASE. CGRB_STATUS_2§( $8 ; 14)$ |


| TABLE 3．043－2．DISPLAY ITEMS（Continued） |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃ | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME／NOTES |
| 15 | Select／Deselect left RPTA3 from Select Filter |  |  |  | 3 | CGRB＿RM＿DATA BASE． CGRB＿STATUS＿2̄ $(8 ; 15)$ |
| 16 | Select／Deselect right RPTA1 from Select Filter |  |  |  | 3 | CGRB＿RM DATA BASE． CGRB＿STATTUS＿2 $\mathbf{\$ ( 1 0 ; 1 3 )}$ |
| 17 | Select／Deselect right RPTA2 from Select Filter |  |  |  | 3 | CGRB＿RM DATA BASE． CGRB＿STATUS＿2 $2 \overline{\$}(10 ; 14)$ |
| 18 | Select／Deselect right RPTA3 from Select Filter |  |  |  | 3 | CGRB＿RM＿DATA＿BASE． CGRB＿STATUS＿2解 $10 ; 15$ ） |
| 19 | Select／Deselect left <br> Body Flap 1 from Select <br> Filter |  |  |  | 4 | CGRB＿SW＿SF\＄（7：5） |
| 20 | Select／Deselect left Body Flap 2 from Select Filter |  |  |  | 4 | CGRB＿SW＿SF\＄（8：5） |
| 21 | Select／Deselect right <br> Body Flap 1 from Select Filter |  |  |  | 4 | CGRB＿SW＿SF\＄（7：7） |
| 22 | Select／Deselect right Body Flap 2 from Select Filter |  |  |  | 4 | CGRB＿SW＿SF\＄（8：7） |
| 23 | Select／Deselect left RHC1 from Select Filter |  |  |  | 5 | CGRB＿RM＿DATA BASE． CGRB＿STATUS＿2馬 $15 ; 13$ ） |
| 24 | Select／Deselect left RHC2 from Select Filter |  |  |  | 5 | CGRB＿RM＿DATA BASE． CGRB＿STATUS＿2 $2 \overline{\$}(15 ; 14)$ |
| 25 | Select／Deselect left RHC3 from Select Filter |  |  |  | 5 | CGRB＿RM DATA BASE． CGRB＿STATUS＿2需 $15 ; 15$ ） |
| 26 | Select／Deselect right RHC1 from Select Filter |  |  |  | 5 | CGRB＿RM＿DATA＿BASE． CGRB＿STATUS＿2 $\overline{\$}(12 ; 13)$ |
| 27 | Select／Deselect right RHC2 from Select Filter |  |  |  | 5 | CGRB＿RM DATA BASE． CGRB＿STATUS＿2 $\overline{\$}(12 ; 14)$ |


| TABLE 3.043-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 28 | Select/Deselect right RHC3 from Select Filter |  |  |  | 5 | CGRB RM DATA BASE. CGRB_STATUS_2̄̄(12;15) |
| 29 | Select/Deselect aft RHC1 from Select Filter |  |  |  | 5 | CGRB RM DATA BASE. CGRB_STATUS_2 $2 \overline{\$}(18 ; 13)$ |
| 30 | Select/Deselect aft RHC2 from Select Filter |  |  |  | 5 | CGRB RM DATA BASE. CGRB_STATUS_2̄̄(18;14) |
| 31 | Select/Deselect aft RHC3 from Select Filter |  |  |  | 5 | CGRB RM DATA BASE. CGRB_STATUS_2 $2 \overline{\$}(18 ; 15)$ |
| 32 | Select/Deselect left RHC TRIM1 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(7:1) |
| 33 | Select/Deselect right RHC TRIM2 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(8:1) |
| 34 | Select/Deselect right THC TRIM1 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(7:11) |
| 35 | Select/Deselect right THC TRIM1 |  |  |  | 6 | CGRB_SW_SF\$(8:11) |
| 36 | Select/Deselect left PNL TRIM1 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(7:15) |
| 37 | Select/Deselect left PNL TRIM2 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(8:15) |
| 38 | Select/Deselect right PNL TRIM1 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(7:21) |
| 39 | Select/Deselect right PNL TRIM2 from Selection Filter |  |  |  | 6 | CGRB_SW_SF\$(8:21) |

### 3.5.044 DISPLAY: SWITCHES

-1 AVAILABILITY: SPEC 044 in OPS G8.
-2 PURPOSE: The Switches display provides a means for the crew to monitor the status of the switch contacts of the Entry Roll Mode switch. It also provides for crew selection of switch contacts to be used as candidates in the Switch RM Selection Filter. (37692)


Figure 3.044

TABLE 3.044-1. DISPLAY FUNCTIONS

| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| :---: | :--- | :--- | :--- |
| 1 | SPEC Call-Up | SPEC 044 PRO | The Switches display is available only in OPS <br> G8. An asterisk (*) will be displayed to <br> indicate that the contact closed position has <br> been sensed. An M will be displayed if the <br> signal data is missing. Items 1 through 4 are <br> used to select/deselect sets of switch contacts <br> to be used as candidates by the RM selection <br> filter. An asterisk (*) next to the item number <br> indicates deselection or failure. SF is not <br> active during OPS G8, but the SF <br> configuration established by the crew during <br> OPS G8 is maintained for transitions to other <br> memory configurations. |
| 2 | ENTRY ROLL | ITEM X EXEC | X = 1-4: Controls selection/ deselection of <br> the sets of switch contacts for the quadruply <br> redundant ENTRY ROLL MODE switch. <br> Contact parameters provide the status for the |
| LGAIN (LOW GAIN) and NO YJET |  |  |  |


| TABLE 3.044-2. DISPLAY ITEMS |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |  |
| 1 | Select Contact Set 1 for <br> ENTRY ROLL <br> MODE Switch <br> Select Contact Set 2 for <br> ENTRY ROLLL <br> MODE Switch <br> Select Contact Set 3 for <br> ENTRY ROLL <br> MODE Switch <br> Select Contact Set 4 for <br> ENTRY ROLLL <br> MODE Switch |  |  |  | 4 | CGRB_ERM_SF\$(1:13) |  |

Date: 12/20/90
Rev: 0

### 3.5.045 DISPLAY: NWS CHECK

-1 AVAILABILITY: SPEC 045 in OPS G8.
-2 PURPOSE: The On-Orbit Nose Wheel Steering Check Display provides the capability to control the enable and position commands to the nosewheel steering system. It also allows for the monitoring of the nosewheel steering enable discretes, servo currents, nosewheel strut position data, NWS-activated discretes and the NWS mode switch discretes.
This display allows the user to detect NWS faults during on orbit checkout to ensure the selection of a good nosewheel channel.


Figure $\mathbf{3 . 0 4 5}$

| TABLE 3.045-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 1 | SPEC Call-Up | SPEC 045 PRO | The NWS Check Display is available in OPS G8 only. |
| 2 | ENABLE | ITEM 1 EXEC | Test response of Enable Valve Driver. Selection of this item causes the NWS Enable Commands to be set to TRUE and the NWS Position Commands to be set to zero. |
| 3 | RIGHT TURN | ITEM 2 EXEC | Test response of Nosewheel Steering System to a positive position command (right turn). Selection of this item causes the NWS Enable Commands to be set to FALSE and the NWS Position Commands to be set to a predefined positive value. |
| 4 | LEFT TURN | ITEM 3 EXEC | Test response of Nosewheel Steering System to a negative position command (left turn). Selection of this item causes the NWS ENABLE Commands to be set to FALSE and the NWS Position Commands to be set to a predefined negative value. |
| 5 | STOP | ITEM 4 EXEC | Terminates any previously selected NWS check function. Selection of this item causes the NWS Enable Commands to be set to False and the NWS Position Commands to be set to zero volts. |


| TABLE 3.045-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select Enable |  |  |  | 2 | $\begin{aligned} & \text { CVNB_ITEM SELECT\$(1) } \\ & \text { MSID }=\text { V } 99 \overline{\mathrm{X}} 4122 \mathrm{X} \end{aligned}$ |
| 2 | Select Right Turn |  |  |  | 3 | $\begin{aligned} & \text { CVNB_ITEM_SELECT\$(2) } \\ & \text { MSID }=\text { V } 99 \overline{\mathrm{X}} 4123 \mathrm{X} \end{aligned}$ |
| 3 | Select Left Turn |  |  |  | 4 | $\begin{aligned} & \text { CVNB_ITEM SELECT\$(3) } \\ & \text { MSID }=\text { V } 99 \overline{\mathrm{X}} 4124 \mathrm{X} \end{aligned}$ |
| 4 | Select Stop |  |  |  | 5 | $\begin{aligned} & \text { CVNB_ITEM SELECT\$(4) } \\ & \text { MSID }=\text { V } 99 \overline{\mathrm{X}} 4125 \mathrm{X} \end{aligned}$ |

### 3.5.050 DISPLAY: HORIZ SIT

-1 AVAILABILITY: SPEC 050 IN OPS G1/6 and G3.
-2 PURPOSE: The Horizontal Situation Spec provides a graphic display of orbiter position and heading relative to the Heading Alignment Cone, altimeter setting control, TAL/Landing site runway and TACAN station designation control, glideslope ground intercept redesignation control, entry point indicator and control, HAC designation and control, Nav filter update displays and controls, ADTA to G\&C control, TACAN data status and mode selection, PTI status and control, HUD format selection, speedbrake mode selection, and normal acceleration data. (50085)


Figure $\mathbf{3 . 0 5 0}$

| TABLE 3.050-1. DISPLAY FUNCTIONS |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |  |  |  |  |  |


| RELEASE: | OI20 |
| :--- | :--- |
| BOOK: | PASS User's Guide |


| TABLE 3.050-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 8 | TAEM Targeting Control | ITEM 6 EXEC | Enables the runway approach to be toggled from an overhead approach to a straight-in approach in case of high winds or low energy. (42650) Valid in MM 101, 304, 305, 602,603. Indicators are provided for GNC and the left HSI to identify whether left or right HAC is the target point. |
|  |  | ITEM 7 EXEC | Caused TAEM guidance to switch between nominal (NEP) and minimum (MEP) entry points. |
|  |  | ITEM 8 EXEC | Selects the nominal (low winds) or closer to runway (high winds) glide slope ground intercept point. Switching must be done before TAL/AL interface. |
| 9 | NAV DELTA State Update | $\underset{\mathbf{X X X X X X}}{\text { EXEC }}$ | $\mathrm{N}=10,11,12$. Enter desired delta position components in runway coordinates. |
|  |  | $\underset{\text { XXXX EXEC }}{\text { ITEM }}$ | $\mathbf{M}=13,14,15$. Enter desired delta velocity components in runway coordinates. (37981) |
|  |  | ITEM 16 EXEC | Causes the execution of the delta NAV updates using the values entered in ITEMs $10-15$ or state update via ITEM 18. |
|  |  | ITEM $18 \pm$ XXXX EXEC | Enter desired time delta to update state vector. Legal in OPS G3 only. |
| 10 | NAV Sensor Data Control | ITEM N EXEC | $\mathrm{N}=19$ - 27. ITEMs 19, 22 and 25 enable automatic use of TACAN, DRAG, and ADTA data, respectively. ITEMs 20,23 and 26 inhibit the use of data by NAV. (37577) ITEMs 21, 24 and 27 force use of data. An indication of how well the NAV estimate and sensor agree is given by the residuals, which represent their difference. The ratio and its status tell whether a data type is being incorporated into the state vector. |
| 11 | ADTA Control to Guidance and Flight Control | ITEM 28 EXEC | ITEM 28 provides auto transition from NAV derived to ADTA data. |
|  |  | ITEM 29 EXEC | Inhibits use of ADTA data. |
|  |  | ITEM 30 EXEC | Forces use of ADTA data. |


| TABLE 3.050-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 12 | TACAN Data and Control | ITEM XX EXEC | $\mathbf{X X}=31,32$ or 33: Toggle select/deselect status of TACANS 1,2 and 3, respectively. (39372) (45703) (37693) <br> XX $=34$ or 35: Cause TACAN data to be displayed in absolute or delta values. Range, azimuth, station ID and status information are supplied for each TACAN. |
| 13 | Head Up Display Format Selection | $\begin{aligned} & \text { ITEM } 37+X \\ & \text { EXEC } \\ & \text { ITEM } 38+X \\ & \text { EXEC } \end{aligned}$ | ITEMs are used to enter the format number for display on the left and right HUDs. Valid in MM 304, 305, 602, 603. <br> NOTE: Selection of Format 2 will result in ILLEGAL ENTRY message and rejection of the input. |
| 14 | Normal Acceleration Data |  | Data is displayed in G's adjacent to shuttle symbol. Represents either total load factor (MM 304) or NZ (MM 305, 602, 603). Symbol will flash when acceleration exceeds ILOADed limit. |
| 15 | Display Graphics |  | The graphics portion of the display consists of a fixed orbiter symbol, three dynamic position predictor circles ( $20,40,60$ seconds in the future), tic marks representing TAEM spiral at $80^{\circ}, 270^{\circ}$, and $360^{\circ}$ of travel, heading alignment cone (HAC), a runway touchdown point circle, and a linear extension from the touchdown point to the HAC intersection point. The HAC and runway symbols move relative to the fixed orbiter symbol. (50085) |
| 16 | Speedbrake Mode Selection | ITEM 39 EXEC | Toggles SHORT and NOM speedbrake control logic modes. Valid in OPS G3 and in OPS G6 down to the transition to Approach and Landing Guidance phase. |


| TABLE 3.050-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Inhibit/Enable PTI |  |  |  | 2 | CGCB_PTI_EXEC |
| 3 | Select Primary <br> Runway |  |  |  | 6 | CGNB_PRI_SEL |
| 4 | Select Secondary Runway |  |  |  | 6 | CGNB_SEC_SEL |
| 5 | Select TACAN <br> Station |  |  |  | 7 | CGNB_TPC_CHANGE |
| 6 | Switch from an Overhead to a Straight-In Approach |  |  |  | 8 | CGZB_HS_MF_FLAGWD |
| 7 | Switch from <br> Nominal (NEP) <br> Entry Point to <br> Minumum Entry <br> Point (MEP) |  |  |  | 8 | CGZB_ENTRY_POINT_SWITCH |
| 8 | Select Intercept Point Closer to Runway Nominal |  |  |  | 8 | CGZB_GNC_INTERCEPT_CMD |
| 9 | Input BARO Altimeter Setting Corrected to Mean Sea Level | 27.00 | 35.00 | In Hg | 3 | CGZV_BARO |
| 10 | X | -999999 | +999999 | FT | 9 | CGNV_DR_RW\$1 |
| 11 | Y | -999999 | +999999 | FT | 9 | CGNV_DR_RW\$2 |
| 12 | Z | -999999 | +999999 | FT | 9 | CGNV_DR_RW\$3 |
| 13 | X | -9999 | +9999 | $\begin{aligned} & \mathrm{FT} / \mathrm{S} \\ & \mathrm{SEC} \end{aligned}$ | 9 | CGNV_DV_RW\$1 |
| 14 | Y | -9999 | +9999 | $\begin{aligned} & \mathrm{FT} / \mathrm{SEC} \\ & \mathrm{SEC} \end{aligned}$ | 9 | CGNV_DV_RW\$2 |
| 15 | Z | -9999 | +9999 | $\begin{aligned} & \text { FT/ } \\ & \text { SEC } \end{aligned}$ | 9 | CGNV_DV_RW\$3 |


| TABLE 3.050-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 16 | Execute the Delta NAV Update Entered in ITEMs 10-15 or Execute the NAV State State Vector Update Entered in Item 18 |  |  |  | 9 | CGZB_DO_DELTA_T_UPDATE |
| 17 | Null Entry |  |  |  |  |  |
| 18 | Enter Delta Time Update for NAV State Vector Update | -99.99 | +99.99 | SECS | 9 | CGNV_DELTA_T |
| 19 | Enable Auto Use of TACAN Data to NAV |  |  |  | 10 | CGNV_TACAN_AIF |
| 20 | Inhibit Use of TACAN Data by NAV |  |  |  | 10 | CGNV_TACAN_AIF |
| 21 | Force Use of TACAN Data by NAV |  |  |  | 10 | CGNV_TACAN_AIF |
| 22 | Enable Auto Use of DRAG Data by NAV |  |  |  | 10 | CGNV_DRAG_AIF |
| 23 | Inhibit Use of DRAG Data by NAV |  |  |  | 10 | CGNV_DRAG_AIF |
| 24 | Force Use of DRAG Data by NAV |  |  |  | 10 | CGNV_DRAG_AIF |
| 25 | Enable Auto Use of ADTA Data by NAV |  |  |  | 10 |  |
| 26 | Inhibit Use of ADTA Data by NAV |  |  |  | 10 | CGNV_BARO_AIF |
| 27 | Force Use of ADTA Data by NAV |  |  |  | 10 | CGNV_BARO_AIF |


| TABLE 3.050-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 28 | Enable Auto Use of ADTA Data Instead of NAV Derived Data to Guidance and Flight Control |  |  |  | 11 | CGZV_AIR_DATA_AIF |
| 29 | Inhibit Use of ADTA Data to G\&C |  |  |  | 11 | CGZV_AIR_DATA_AIF |
| 30 | Force Use of ADTA Data to G\&C |  |  |  | 11 | CGZV_AIR_DATA_AIF |
| 31 | Deselect/Select TACAN 1 |  |  |  | 12 |  |
| 32 | Deselect/Select TACAN 2 |  |  |  | 12 |  |
| 33 | Deselect/Select TACAN 3 |  |  |  | 12 |  |
| 34 | Display Absolute <br> TACAN Data |  |  |  | 12 | CGZB_TAC_MODE |
| 35 | Display Delta TACAN Data |  |  |  | 12 | CGZB_TAC_MODE |
| 36 | Null Entry |  |  |  |  |  |
| 37 | Input Left HUD <br> Format | 0 | 7 |  | 13 | CGZV_HUD_L_FORMAT |
| 38 | Input Right HUD Format | 0 | 7 |  | 13 | CGZV_HUD_R_FORMAT |
| 39 | Select Speedbrake Control Logic Mode |  |  |  | 16 | CGGB_I_SHORT_RW |
| 40 | Select TAL Site | 1 | 25 |  | 4 | GFK_TAL_AREA_INDEX |
| 41 | Select Landing Site | 1 | 25 |  | 5 | CGNB_NEW_AREA |

### 3.5.051 DISPLAY: OVERRIDE

## -1 AVAILABILITY: SPEC 051 IN OPS G1/6 AND G3.

-2 PURPOSE: This SPEC gives the crew the capability to deselect or reselect an ADTA, or IMU LRU or Hydraulic System to solve an RM dilemma or to force RM to consider a previously deselected LRU. It provides the crew the capability to open or close the vent doors during OPS 3 and 6. It also provides the crew the capability to select the desired SW mode for the following dedicated switch failures: ABORT SW, ET SEP SW, ET UMB DR SW, and ENTRY ROLL MODE SW. It also provides the crew capability to override any RCS MANF VLV MICRO SW dilemma which causes RM to set the MANF VLV STATUS to CLOSED. In addition, it allows the crew the capability to inhibit the ascent abort dumps during OPS $1 / 6$; inhibit or enable the orbiter propellant dump during OPS $1 / 6$; to inhibit or enable the MM304 OMS dump; and to inhibit or enable the OMS/RCS Interconnect Function during OPS $1 / 6$ and OPS 3. In OPS 3, the Override Display also allows the crew to select the entry FCS elevon schedule, the body bending filters, and one of three atmosphere models. During OPS $1 / 6$ and OPS 3, the display monitors the OMS time to go, the AFT dump time and the FWD RCS dump. The crew may also input a different AFT RCS dump duration or FWD RCS dump duration. The SPEC also allows the crew to change the maximum SSME throttle level. (37570)


Figure 3.051

| TABLE 3.051-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 051 PRO | The Override SPEC is available in GNC OPS $1 / 6$ and 3 only. |
| 2 | Backup Abort Mode for TAL and ATO | ITEM 1 EXEC | Allows the crew to select a TAL abort. This item is allowed only in MM 103 and MM 104. (41168) |
|  |  | ITEM 2 EXEC | Allows the crew to select an ATO abort. This item is allowed only in MM's 102-104. |
|  |  | ITEM 3 EXEC | Allows the crew to initiate the abort selected. <br> NOTE: Item 3 is not valid unless Item 1 or 2 has been entered. |
| 3 | Maximum Throttle | ITEM 4 EXEC | This item allows the crew to change the Maximum SSME Throttle level and to rescale the SBTC to the new throttle level. |
| 4 | OMS/RCS <br> Interconnect <br> Function | ITEM 5 EXEC | This item allows the crew to enable or inhibit the OMS/RCS Interconnect function. The characters INH ICNCT 5 or ENA ICNCT 5 will be displayed next to ITEM 5 dependent on the current state of the function. |
|  |  |  | NOTE: During a Contingency Dump or confirmed second main engine failure, the OMS/RCS Interconnect Function is automatically enabled. At this time the text on the display will read CONT ICNCT ENA. Execution of Item 5 during a Contingency Dump or confirmed second main engine failure, will result in an Illegal Entry Message. |
| 5 | OMS Time To Go |  | Amount of time required to dump OMS propellant in seconds. <br> NOTE: Prior to MECO with the Abort Control Sequencer not activated, the OMS Dump TTG will be blanked. |
| 6 | Orbiter Propellant Dump ARM | ITEM 6 EXEC | In OPS $1 / 6$, allows the crew to prepare to initiate an Orbiter Propellant Dump. In OPS 3, allows the crew to prepare to initiate a MM 304 OMS Dump. An asterisk (*) next to Item 6 indicates Orbiter Dump preparation in OPS $1 / 6$ or OMS Dump preparation in OPS 3. |


| TABLE 3.051-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 7 | Orbiter Propellant Dump START | ITEM 7 EXEC | In OPS $1 / 6$, this item allows the crew to initiate an Orbiter Propellant Dump. In OPS 3, allows the crew to initiate an OMS Dump. Asterisks by both Item 6 and 7 indicate the Orbiter Dump is in progress. |
| 8 | Orbiter Propellant Dump STOP | ITEM 8 EXEC | Allows the crew to stop an Orbiter Propellant Dump in OPS $1 / 6$; to inhibit ascent abort dumps in OPS $1 / 6$; to stop the MM 304 OMS Dump in OPS 3. An asterisk ( ${ }^{*}$ ) next to Item 8 indicates the Orbiter Dump is not in progress in OPS $1 / 6$; the ascent abort dumps are not in progress in OPS 1/6; and the MM 304 OMS Dump is not in progress in OPS 3. <br> NOTE: No asterisk (*) next to Items 6, 7, 8 indicates that an ascent abort OMS Dump is in progress. |
| 9 | Orbiter Propellant Dump Control Characters |  | CONT DUMP will be displayed during OPS $1 / 6$. OMS DUMP will be displayed during OPS 3 . |
| 10 | AFT RCS DUMP FUNCTION | ITEM 13 EXEC | Allows the crew to enable or inhibit the AFT RCS Dump. The characters ENA or INH will be displayed next to ITEM 13 dependent on the current state of the function. <br> NOTE: Once the AFT and FORWARD RCS dump counters have begun incrementing, the counters are not reset under any circumstances (even if the crew inputs a new dump duration). |
| 11 | AFT RCS DUMP TIME | $\underset{\text { EXEC }}{\text { ITEM }} 14+\mathrm{XXX}$ | Allows the crew to change the AFT RCS Dump Time. <br> NOTE: An AFT RCS Dump may be initiated in MM 304 by inputting a non-zero dump duration via Item 14 and enabling the dump via Item 13. |
| 12 | FWD RCS DUMP FUNCTION | ITEM 15 EXEC | Allows the crew to enable or inhibit the FWD RCS Dump. The characters ENA or INH will be displayed next to Item 15 dependent on the current state of the function. <br> NOTE: Once the AFT and FORWARD RCS dump counters have begun incrementing, the counters are not reset under any circumstances (even if the crew inputs a new dump duration). |


| TABLE 3.051-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 13 | FWD RCS DUMP TIME | $\underset{\text { EXEC }}{\operatorname{ITEM}} 16+\mathbf{X X X}$ | Allows the crew to change the FWD RCS Dump Time. <br> NOTE: A FWD RCS Dump may be initiated in MM 304 by inputting a non-zero dump duration via Item 16 and enabling the dump via Item 15. |
| 14 | Select Auto Elevon Schedule | ITEM 17 EXEC | Allows crew to command the aerojet DAP to use an auto elevon schedule. |
| 15 | Select Fixed Elevon Schedule | ITEM 18 EXEC | Allows crew to command the aerojet DAP to use a fixed elevon schedule. |
| 16 | Select Nominal Body Bending Filters | ITEM 20 EXEC | Allows crew to command the aerojet DAP to use nominal body bending filters. |
| 17 | Select Alternate Body Bending Filters | ITEM 21 EXEC | Allows crew to command the aerojet DAP to use alternate body bending filters. <br> NOTE: Items $17,18,20$, and 21 are valid in OPS 3 only. |
| 18 | Nominal <br> Atmospheric Model <br> Select Command | ITEM 22 EXEC | Allows the crew to select the nominal atmospheric model. An asterisk (*) indicates nominal selection. |
| 19 | Cold Polar Atmospheric Model Select Command | ITEM 23 EXEC | Allows the crew to select the cold polar atmospheric model. An asterisk ( ${ }^{*}$ ) indicates cold polar selection. |
| 20 | Hot Polar Atmospheric Model Select Command | ITEM 24 EXEC | Allows the crew to select the hot polar atmospheric model. An asterisk (*) indicates hot polar selection. <br> NOTE: Items 22, 23 and 24 are valid in OPS 3 only. |
| 21 | I/O Fail Status for IMU's 1, 2 and 3 |  | A parameter status column is provided after each LRU ID number that shall be blank for normal operation, display a down arrow ( $\downarrow$ ) for an RM declared failure or crew deselection, display a question mark (?) for an RM dilemma or an M for missing data. |
| 22 | Failure Indicator (BITE) for IMU's 1 , 2 and 3 |  | The STAT column allows display of the output of Built-in-Test Equipment (BITE) status (hardware and software). Blank for normal operation or BITE for a problem. |


| TABLE 3.051-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :--- | :--- | :--- | :--- |



| TABLE 3.051-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Backup TAL Abort Selected |  |  |  | 2 |  |
| 2 | Backup ATO Abort Selected |  |  |  | 2 |  |
| 3 | Backup Initiate Abort Command |  |  |  | 2 |  |
| 4 | Maximum Throttling Command |  |  |  | 3 |  |
| 5 | OMS/RCS Interconnect Function |  |  |  | 4 |  |
| 6 | Orbiter Propellant <br> Dump Arm Command |  |  |  | 6 |  |
| 7 | Orbiter Propellant Dump Start Command |  |  |  | 7 |  |
| 8 | Orbiter Propellant <br> Dump Stop Command |  |  |  | 8 |  |
| 13 | AFT RCS Dump Function |  |  |  | 10 |  |
| 14 | AFT RCS Dump Time |  |  | SEC | 11 |  |
| 15 | FWD RCS Dump Function |  |  |  | 12 |  |
| 16 | FWD RCS Dump Time |  |  | SEC | 13 |  |
| 17 | Auto Elevon Schedule Selected |  |  |  | 14 |  |
| 18 | Fixed Elevon Schedule Selected |  |  |  | 15 |  |
| 20 | Nominal Body Bending Filters Selected |  |  |  | 16 |  |
| 21 | Alternate Body Bending Filters Selected |  |  |  | 17 |  |
| 22 | Nominal Atmospheric Model Select Command |  |  |  | 18 |  |


| TABLE 3.051-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 23 | North Polar <br> Atmospheric Model <br> Select Command |  |  |  | 19 |  |
| 24 | South Polar Atmospheric Model Select Command |  |  |  | 20 |  |
| 25 | IMU 1 Select/Deselect Command |  |  |  | 24 |  |
| 26 | IMU 2 Select/Deselect Command |  |  |  | 24 |  |
| 27 | IMU 3 Select/Deselect Command |  |  |  | 24 |  |
| 28 | PRL System 1 AUT/MAN Select |  |  |  | 26 |  |
| 29 | PRL System 2 AUT/MAN Select |  |  |  | 26 |  |
| 30 | PRL System 3 AUT/MAN Select |  |  |  | 26 |  |
| 31 | PRL System 1 Select/Deselect Command |  |  |  | 27 |  |
| 32 | PRL System 2 Select/Deselect Command |  |  |  | 27 |  |
| 33 | PRL System 3 Select/Deselect Command |  |  | SEC | 27 |  |
| 34 | ADTA 1 Select/ <br> Deselect Command |  |  |  | 32 |  |
| 35 | ADTA 3 Select/Deselect Command |  |  |  | 32 |  |
| 36 | ADTA 2 Select/Deselect Command |  |  |  | 32 |  |
| 37 | ADTA 4 Select/Deselect Command |  |  |  | 32 |  |

TABLE 3.051-2. DISPLAY ITEMS (Continued)

| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | Backup ET SEP Auto Command |  |  |  | 33 |  |
| 39 | Backup ET SEP <br> Manual Command |  |  |  | 33 |  |
| 40 | Backup ET Umbilical Doors Close Command |  |  |  | 34 |  |
| 41 | RCS Manifold Status Override |  |  |  | 35 |  |
| 42 | Entry Switch Override |  |  |  | 36 |  |
| 43 | All Vent Doors Open Command |  |  |  | 37 |  |
| 44 | All Vent Doors Close Command |  |  |  | 38 |  |

### 3.5.053 DISPLAY: CONTROLS

-1 AVAILABILITY: SPEC 053 IN OPS G1/6 and G3.
-2 PURPOSE: The Controls display allows the crew to perform the aerosurface secondary actuator check in OPS G3. It provides the ability to control AA, RGA, and surface feedback RM and allows the crew to monitor the status of aerosurface and SSME actuator secondary ports.


Figure 3.053

```
RELEASE: OI20
BOOK: PASS User's Guide
```

Date: 12/20/90
Rev: 0

| TABLE 3.053-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 053 PRO | The Controls SPEC is available in OPS G1/6 and G3. |
| 2 | Select Channel 1 | ITEM 1 EXEC | Select Channel 1 for SEC ACT CK. Legal in MM301 - MM303 only. |
| 3 | Select Channel 2 | ITEM 2 EXEC | Select Channel 2 for SEC ACT CK. Legal in MM301 - MM303 only. |
| 4 | Select Channel 3 | ITEM 3 EXEC | Select Channel 3 for SEC ACT CK. Legal in MM301 - MM303 only. |
| 5 | Select Channel 4 | ITEM 4 EXEC | Select Channel 4 for SEC ACT CK. Legal in MM301 - MM303 only. |
| 6 | Start Secondary Actuator Check | ITEM 5 EXEC | Issues hardover command to aerosurfaces on selected actuator channel. Illegal entry if no channel has been selected or if not in MM301 MM304. |
| 7 | Terminate Secondary Actuator Check | ITEM 6 EXEC | Will terminate the secondary actuator check in progress. Also, a check on a channel can be terminated by selecting another channel using Item 1, 2, 3, or 4. Item 6 is legal in MM301 MM303 only. |
| 8 | Change Polarity of Secondary Actuator Check | ITEM 7 EXEC | Alternately defines whether a positive or negative secondary actuator check is performed. Legal in MM301 - MM303 only. |
| 9 | Issue Port Bypass Command | $\underset{\text { EXEC }}{\text { ITEM } 8+X Y}$ | Issues port bypass command on port XY where $\mathrm{X}=1-6$ (Aerosurface) and $\mathrm{Y}=1-4$ (Port). |
| 10 | Issue Port Reset Command | $\underset{\text { EXEC }}{\text { ITEM } 9+X Y}$ | Issues port reset command on port XY where $\mathrm{X}=1-6$ (Aerosurface) and $\mathrm{Y}=1-4$ (Port). |
| 11 | Deselect/Reselect AA on LRU 1 | ITEM 10 EXEC | Deselect/Reselect AA on LRU 1 as selection filter candidate. |
| 12 | Deselect/Reselect AA on LRU 2 | ITEM 11 EXEC | Deselect/Reselect AA on LRU 2 as selection filter candidate. |
| 13 | Deselect/Reselect AA on LRU 3 | ITEM 12 EXEC | Deselect/Reselect AA on LRU 3 as selection filter candidate. |
| 14 | Deselect/Reselect AA on LRU 4 | ITEM 13 EXEC | Deselect/Reselect AA on LRU 4 as selection filter candidate. |
| 15 | Deselect/Reselect <br> RGA on LRU 1 | ITEM 14 EXEC | Deselect/Reselect RGA on LRU 1 as selection filter candidate. |


| TABLE 3.053-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 16 | Deselect/Reselect RGA on LRU 2 | ITEM 15 EXEC | Deselect/Reselect RGA on LRU 2 as selection filter candidate. |
| 17 | Deselect/Reselect RGA on LRU 3 | ITEM 16 EXEC | Deselect/Reselect RGA on LRU 3 as selection filter candidate. |
| 18 | Deselect/Reselect RGA on LRU 4 | ITEM 17 EXEC | Deselect/Reselect RGA on LRU 4 as selection filter candidate. |
| 19 | Deselect/Reselect SURF FDBK on LRU 1 | ITEM 18 EXEC | Deselect/Reselect SURF FDBK on LRU 1 as selection filter candidate. |
| 20 | Deselect/Reselect SURF FDBK on LRU 2 | ITEM 19 EXEC | Deselect/Reselect SURF FDBK on LRU 2 as selection filter candidate. |
| 21 | Deselect/Reselect SURF FDBK on LRU 3 | ITEM 20 EXEC | Deselect/Reselect SURF FDBK on LRU 3 as selection filter candidate. |
| 22 | Deselect/Reselect SURF FDBK on LRU 4 | ITEM 21 EXEC | Deselect/Reselect SURF FDBK on LRU 4 as selection filter candidate. |
| 23 | Aerosurface Port Status |  | A STAT field is provided for each aerosurface secondary actuator channel. A blank indicates normal operation, a down arrow indicates a failure or bypass and an ' M ' indicates missing data. |
| 24 | SSME Port Status |  | A STAT field is provided for each SSME actuator port. A blank indicates normal operation, a down arrow indicates a failure, and an ' $M$ ' indicates missing data. |


| TABLE 3.053-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select Channel 1 |  |  |  | 2 |  |
| 2 | Select Channel 2 |  |  |  | 3 |  |
| 3 | Select Channel 3 |  |  |  | 4 |  |
| 4 | Select Channel 4 |  |  |  | 5 |  |
| 5 | Start Secondary Actuator Check |  |  |  | 6 |  |
| 6 | Terminate Secondary Actuator Check |  |  |  | 7 |  |
| 7 | Change Polarity of SEC ACT CK |  |  |  | 8 |  |
| 8 | Issue Port Bypass Command | 11 | 64 |  | 9 |  |
| 9 | Issue Port Reset Command | 11 | 64 |  | 10 |  |
| 10 | Deselect/Reselect AA on LRU 1 |  |  |  | 11 |  |
| 11 | Deselect/Reselect AA on LRU 2 |  |  |  | 12 |  |
| 12 | Deselect/Reselect AA on LRU 3 |  |  |  | 13 |  |
| 13 | Deselect/Reselect AA on LRU 4 |  |  |  | 14 |  |
| 14 | Deselect/Reselect RGA on LRU 1 |  |  |  | 15 |  |
| 15 | Deselect/Reselect RGA on LRU 2 |  |  |  | 16 |  |
| 16 | Deselect/Reselect RGA on LRU 3 |  |  |  | 17 |  |
| 17 | Deselect/Reselect RGA on LRU 4 |  |  |  | 18 |  |
| 18 | Deselect/Reselect SURF FDBK on LRU 1 |  |  |  | 19 |  |

TABLE 3.053-2. DISPLAY ITEMS (Continued)

| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | Deselect/Reselect SURF <br> FDBK on LRU 2 <br> Deselect/Reselect SURF <br> FDBK on LRU 3 <br> Deselect/Reselect SURF <br> FDBK on LRU 4 |  |  |  | 20 |  |

### 3.5.060 DISPLAY: SM TABLE MAINT

-1 AVAILABILITY: SPEC 060 in OPS SM2/4.
-2 PURPOSE: The SM Table Maintenance SPEC provides the user an interface to display and/or update SM Table Maintenance values; change SM special processing constants; initiate checkpoint of changed values; and inhibit/enable the SM fault detection and annunciation function.


| TABLE 3.060-1. DISPLAY FUNCTIONS |  |  |
| :--- | :--- | :--- | :--- |


| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| :---: | :---: | :---: | :---: |
| 5 | Display/Change Current Values of Backup C\&W Limits | ITEM 10 EXEC | Inhibits annunciation of an out-of-limit condition for specified parameter. |
|  |  | $\underset{\text { EXEC }}{\text { ITEM }} 11 \pm \text { XX.X }$ | Changes low limits for backup C\&W. (See function 3 for inputs) |
|  |  | $\begin{aligned} & \text { ITEM } 12 \pm \text { XX.X } \\ & \text { EXEC } \end{aligned}$ | Changes high limits for backup C\&W. (See function 3 for inputs) |
| 6 | Out-of-Limits <br> Annunciation <br> Enable/Inhibit <br> (Backup C\&W) | ITEM 13+ N EXEC | $\mathrm{N}=1-15$ (see function 4). |
|  |  | ITEM 14 EXEC | Enables backup C\&W annunciation for specified parameter. |
|  |  | ITEM 15 EXEC | Inhibits backup C\&W annunciation for specified parameter. |
| 7 | SM Special Processes Constants Change | $\begin{aligned} & \text { ITEM } 16+ \\ & \text { XXXXXX EXEC } \end{aligned}$ | Enable display of a specified SM special process constant. |
|  |  |  | - Current value of specified parameter is displayed adjacent to ITEM 17. <br> Seven digit parameter ID is entered according to table listed under function 2. <br> - Refer to SM Level C FSR JSC 19590 tables for current list of valid SM constants. |
|  |  | $\underset{\text { EXEC }}{\operatorname{ITEM}} 17 \pm \mathbf{X X} . X$ | Entry allows a change of constant value to be used for specified parameter. |
| 8 | SM Checkpoint Initiation and Status | ITEM 18 EXEC | Item entry will initiate a checkpoint write of the current GPC table maintenance values to the MMU assigned to SM. Successful transfer of TM values will be indicated by a status of GOOD. In addition, the GMT indicated next to checkpoint as DDD/HH:MM:SS will show time of latest successful update. If transfer is unsuccessful, status will indicate FAIL. |


| TABLE 3.060-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :--- | :--- | :--- | :--- |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 9 | Fault Detection <br> Annunciation <br> Operation | ITEM 19 EXEC | Enables fault detection annunciation of SM <br> parameters currently enabled. |
| 10 | ITEM 20 EXEC | Inhibits fault detection annunciation of SM <br> parameters currently enabled. Upon SM <br> initialization, FDA will be enabled. <br> Status |  |
| Uplink Indicator |  |  |  |

TABLE 3.060-2. DISPLAY ITEMS

| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Selects Parameter ID to be Displayed | 0000000 | 9999999 | Dec | 2 | CSTV_ITEM_I <br> Refer to conversion table in function 2 for converting MSID numbers to parameter ID. |
| 2 | FDA Set 1 Low Limit |  |  | * | 3 | CSTV_ITEM_S <br> *All limit values are input as decimal quantities, and analog and digital parameter limits are entered in the units defined for that parameter. |
| 3 | FDA Set 1 Hi Limit |  |  | * | 3 | CSTV_ITEM_S |
| 4 | FDA Set 2 Low Limit |  |  | * | 3 | CSTV_ITEM_S |
| 5 | FDA Set 2 Hi Limit |  |  | * | 3 | CSTV_ITEM_S |
| 6 | FDA Set 3 Low Limit |  |  | * | 3 | CSTV_ITEM_S |
| 7 | FDA Set 3 Hi Limit |  |  | * | 3 | CSTV_ITEM_S |
| 8 | Alert Noise Filter Value | 1 | 15 | Dec | 4 | CSTV_ITEM_S |
| 9 | Enable FDA |  |  |  | 4 | STS_ITEM_NO |
| 10 | Inhibit FDA |  |  |  | 4 | STS_ITEM_NO |
| 11 | Backup C\&W Low Limit |  |  | * | 5 | CSTV_ITEM_S |
| 12 | Backup C\&W Hi Limit |  |  | * | 5 | CSTV_ITEM_S |
| 13 | Backup C\&W Noise Filter Value | 1 | 15 | Dec | 6 | CSTV_ITEM_I |
| 14 | Enable FDA |  |  |  | 6 | STS_ITEM_NO |
| 15 | Inhibit FDA |  |  |  | 6 | STS_ITEM_NO |
| 16 | SM Constant ID |  |  | * | 7 | CSTV_ITEM_I |
| 17 | SM Constant Value Scalar Discrete Integer Double Scalar | $\begin{gathered} 0 \\ -32768 \end{gathered}$ | $\stackrel{1}{32767}$ | * | 7 | CSTV_ITEM_S |


\left.| TABLE 3.060-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |  |  |
| 18 | Checkpoint Initiate |  |  |  | 8 | STS_ITEM_NO |  |  |
| 20 | FDA Enable | FDA Inhibit |  |  |  | 9 |  |  |
| STS_ITEM_NO |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| STS_ITEM_NO |  |  |  |  |  |  |  |  |$\right]$

### 3.5.062 DISPLAY: PCMMU/PL COMM

-1 AVAILABILITY: SPEC 062 in OPS SM2/4 and OPS G9.
-2 PURPOSE: The PCMMU/Payload Communication display provides controls for the Pulse-Code Modulation Master Unit (PCMMU), Payload Signal Processor (PSP), and Payload Data Interrogator (PDI).


Figure 3.062

TABLE 3.062-1. DISPLAY FUNCTIONS

| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
| :--- | :--- | :--- | :--- |
| 1 | SPEC Call-Up | SPEC 062 PRO | The PCMMU/PL COMM SPEC is available <br> only in OPS SM2/4 and OPS G9. In OPS G9 <br> ITEMs 5, 8, 14-17 are invalid. In OPS S2/4 <br> ITEM 18 is invalid. Before any load functions <br> may be done, the SM Common Buffer status <br> (shown in upper left corner of CRT) must be <br> RDY. If BSY, loads will be rejected. (37584) <br> Select FIXED downlink format (129). |
| PCMMU Format <br> Selection | ITEM 1 EXEC | ITEM 2 EXEC <br> Select SOFT (programmable) downlink format |  |
| (format ID will be the last 64 and 128 KB format |  |  |  |
| loaded in the PCMMU function 3) since |  |  |  |
| power-up of the PCMMU). |  |  |  |
| NOME: |  |  |  |


| TABLE 3.062-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
|  |  | ITEM 4 EXEC | Load selected format. <br> NOTE: <br> a. Display will show status of load - RUN while load is in progress; FAIL or CPLT when it is completed. <br> b. If an OPS transition is initiated during the load, the load will be terminated and the status will be FAIL. <br> c. If a RESUME is requested during the load (or another SPEC is requested) the load process will continue to completion and the appropriate status will be shown. <br> d. The status is maintained for display when the SPEC is recalled. <br> e. Load attempt will be rejected with ILLEGAL ENTRY if SM common buffer indicates BSY on CRT. |
| 4 | PCMMU I/O Reset | ITEM 5 EXEC | Attempt to restore communication with the <br> PCMMU. This function is not valid in OPS G9. |
| 5 | Payload Signal <br> Processor (PSP) I/O <br> Reset | ITEM 6 EXEC | Attempt to restore communication between PSP1 and payload. |
|  |  | ITEM 7 EXEC | Attempt to restore communication between PSP2 and payload. <br> NOTE: <br> a. ITEMs 6 and 7 are mutually exclusive. <br> b. Data fields on display are driven with valid data only in OPS SM2/4. <br> c. This is not a standard I/O Reset; the Bypass Indicator is reset, but the transaction counter is not reset. If the PSP was previously bypassed and an I/O error is encountered on the first attempted read, the PSP will be bypassed again. |
| 6 | Payload Data Interrogator (PDI) Controls | ITEM 8 EXEC | Attempt to restore communication with PDI Switch Matrix (illegal in OPS G9). (55302) |
|  |  | $\begin{aligned} & \text { ITEM } 9+X \\ & \text { EXEC } \end{aligned}$ | Select DECOM to be loaded (X=1-4 for DECOMs, $\mathrm{X}=5$ selects Fetch Pointer Memory FPM). |

TABLE 3.062-1. DISPLAY FUNCTIONS (Continued)


| TABLE 3.062-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select FIXED Format <br> (129) - PCMMU |  |  |  | 2 | Switch on panel C3 must be in GPC position. |
| 2 | Select Soft <br> Format-PCMMU |  |  |  | 2 | Switch on panel C3 must be in GPC position. |
| 3 | Select Format ID to Load in PCMMU | 1 | 254 |  | 3 |  |
| 4 | Load Selected Format in PCMMU |  |  |  | 3 | ITEMs 3 \& 18 required prior to ITEM 4. |
| 5 | I/O Reset of PCMMU |  |  |  | 4 | Not valid in OPS G9. |
| 6 | I/O Reset of PSP 1 |  |  |  | 5 |  |
| 7 | I/O Reset of PSP 2 |  |  |  | 5 |  |
| 8 | I/O Reset of PDI |  |  |  | 6 | Not valid in OPS G9. |
| 9 | Select PDI DECOM to Load | 1 | 5 |  | 6 |  |
| 10 | Select Format to Load in Selected DECOM | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | $\begin{gathered} 31 \\ 999 \end{gathered}$ |  | 6 | Valid range for DFL. Valid range for FPM. |
| 11 | Load Selected Format in DECOM |  |  |  | 6 |  |
| 12 | Select Payload as Input Source | 0 | 6 |  | 6 |  |
| 13 | Start Interface Between Selected Payload and DECOM |  |  |  | 6 |  |
| 14 | Enable FDA for DECOM 1 |  |  |  | 6 | Not valid in OPS G9. |
| 15 | Enable FDA for DECOM 2 |  |  |  | 6 | Not valid in OPS G9. |
| 16 | Enable FDA for DECOM 3 |  |  |  | 6 | Not valid in OPS G9. |
| 17 | Enable FDA for DECOM 4 |  |  |  | 6 | Not valid in OPS G9. |
| 18 | Select GPC to do TFL | 1 | 5 |  | 3 | Not valid in OPS SM2/4. |

```
RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0
```


### 3.5.064 DISPLAY: SM GROUND CHECKOUT

-1 AVAILABILITY: SPEC 064 in OPS SM2/4.
-2 PURPOSE: The SM Ground Checkout SPEC provides the ability to modify certain SM processes to enhance vehicle turnaround and test processing. Item entries are provided to: enable/inhibit FDA processing; enable/inhibit FDA annunciation; select and load downlist formats; enable/inhibit special process outputs; resume processing of the SM OPS; and perform RMS functions that (1) select/deselect constants for turnaround, reinstall, singularity, and joint rate limit processes, (2) select joints and attenuation limits, and (3) select an arm ID with predetermined joint biases.

XXXX/064/ SM GROUND CHECKOUT XX X DDD/HH:MM:SS
DDD/HH:MM:SS
XxXXXXXXXXXXXXXXX

|  | ENA | INH |
| :--- | ---: | ---: |
| FDA | $2 X$ | $3 X$ |
| PL ANNUN | $4 X$ | $X$ |
| SM ANNUN | $5 X$ | $X$ |

PROCESS INH/ENA
PL ANNUN 4 XX
S P 0/P 15 X

DOWNLIST
6 SEL FMT $\quad \underline{X}$
LOAD 7X
RMS TOOLS
SOFT STOP/REACH
TURNAROUND 8X
REINSTALL 9X
SINGULARITY 10X
JOINT
RATE LIMIT 11X
12 JOINT SEL $\underline{X}$
13 ATTEN LIM $\bar{x} X$
14 ARM SELECT XXX
OPS ACTIVATE $1 X$

Figure 3.064


| TABLE 3.064-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
|  | SOFT <br> STOP/REACH <br> TURNAROUND | ITEM 8 EXEC | This item selects/deselects turnaround values for the software stops and reach limits of the RMS arm. This is a toggle item. An asterisk will be displayed next to this item when the turnaround values are selected. A blank will be displayed if the original values are selected. Item 8 and Item 9 are mutually exclusive. A request to select one of these items while the other item is already selected will be rejected with a Class 5 error message. |
|  | REINSTALL | ITEM 9 EXEC | This item selects/deselects reinstallation values for the software stops and reach limits of the RMS arm. This is a toggle item. An indicator next to this item displays the current status of this item ( $*=$ reinstallation values, blank $=$ original values). Item 8 and Item 9 are mutually exclusive (see item 8). |
|  | SINGULARITY | ITEM 10 EXEC | This item is used to select/deselect the Elbow Pitch singularity joint bias value for the RMS arm. It sets the Elbow Joint bias value to preclude annunciation conditions. This is a toggle item. When selected, an asterisk (*) is displayed adjacent to the item number. Reentry of item 10 blanks the status indicator (*) and restores the singularity joint bias value to a nominal predefined flight support value. <br> Note: Item 14 selection overrides the item 10 function and blanks the item 10 status indicator $\left(^{*}\right)$ if item 10 is selected prior to item 14. |
|  | RATE LIMIT | ITEM 11 EXEC | This item selects/deselects checkout coarse joint rate limits for the unloaded RMS arm for all six joints. This is a toggle item. An indicator next to this item displays the current status of this item ( ${ }^{*}=$ predefined values, blank $=$ original values). |
|  | JOINT SEL | $\begin{aligned} & \text { ITEM } \\ & \text { EXEC } \end{aligned}$ | This item is used to select a joint of the RMS arm. This item will be rejected with a Class 5 error message if the input value is not valid. (Valid input range is 1 through 6.) When the input value is valid, the selected joint and its current attenuation value shall be displayed next to Item 13. If the SM GROUND CHECKOUT ENABLE discrete is enabled, the item value will default to 1 upon OPS initialization. |


| TABLE 3.064-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
|  | ATTEN LIM | $\begin{aligned} & \text { ITEM } 13+\mathbf{X X} \\ & \text { EXEC } \end{aligned}$ | This item is used to change the attenuation limit of the selected RMS joint. This item will be rejected with a Class 5 error message if the input value is not valid. (Valid input range is 0 through 15.) When the input value is valid, the new attenuation value shall be displayed. |
|  | ARM SELECT | $\underset{\text { EXEC }}{\operatorname{ITEM}} 14+\mathbf{X X X}$ | This item is used to load the joint biases associated with an RMS arm ID. This item will be rejected with a Class 5 error message if the arm ID is invalid or if the RMS software is executing. Valid arm ID selections are 201, 301, and 303. When the arm ID is valid, the arm ID is displayed, the singularity item is overridden, and the joint biases associated with the arm ID are loaded for use by the RMS software. If the SM GROUND CHECKOUT ENABLE discrete is enabled, the ARM SEL data field will be blanked at OPS transition. |
| 5 | Process INH/ENA |  | Execution of special process outputs may be controlled. |
|  | S P O/P | ITEM 15 EXEC | This item is used to enable/disable the cyclic output of the following functions: <br> 1. Antenna Management <br> 2. Fuel Cell Purge <br> 3. Hydraulic Fluid Temp. Control <br> 4. Standby $\mathrm{H}_{2} \mathrm{O}$ Coolant Loop Control <br> This is a toggle item. An asterisk (*) is displayed next to this item when execution of special process outputs is inhibited. |
| 6 | OPS Activate | ITEM 1 EXEC | This item is used to complete scheduling of SM processes for the SM OPS. Executing this item will complete activation of the SM OPS. |


| TABLE 3.064-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Activate SM OPS |  |  |  | 6 |  |
| 2 | Enable FDA |  |  |  | 2 |  |
| 3 | Inhibit FDA |  |  |  | 2 |  |
| 4 | Enable/Inhibit Payload Annunciation |  |  |  | 2 |  |
| 5 | Enable/Inhibit Systems <br> Management <br> Annunciation |  |  |  | 2 |  |
| 6 | Select Downlist Format ID | 24 | 26 |  | 3 |  |
| 7 | Load Selected Downlist Format (Item 6) |  |  |  | 3 |  |
| 8 | Select/Deselect Turnaround Software Stop \& Reach Limit Values for RMS Arm |  |  |  | 4 | Mutually Exclusive with Item 9 |
| 9 | Select/Deselect Reinstallation Software Stop \& Reach Limit Values for RMS Arm |  |  |  | 4 | Mutually Exclusive with Item 8 |
| 10 | Select/Deselect the Singularity Joint Bias Value for the RMS Arm |  |  |  | 4 |  |
| 11 | Select/Deselect Checkout coarse rate limits for all six joints of the unloaded RMS arm. |  |  |  | 4 |  |
| 12 | Select a joint of the RMS arm. | 1 | 6 |  | 4 |  |
| 13 | Select the attenuation limit of a selected RMS joint. (Item 12.) | 0 | 15 |  | 4 |  |
| 14 | Select an RMS arm ID with predetermined joint biases. |  |  |  | 4 | Valid arm ID selections are 201, 301, and 303. |

TABLE 3.064-2. DISPLAY ITEMS (Continued)

| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Enable/Disable the <br> Cyclic Output of Special <br> Process Functions |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

### 3.5.066 DISPLAY: ENVIRONMENT

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.067 DISPLAY: ELECTRIC

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

RELEASE: OI20
BOOK: PASS User's Guide

### 3.5.068 DISPLAY: CRYO SYSTEM

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

RELEASE: OI20
BOOK: PASS User's Guide
Date: $12 / 20 / 90$
Rev: 0

### 3.5.069 DISPLAY: FUEL CELLS

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.076 DISPLAY: COMM/RCDR

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.077 DISPLAY: EVA-MMU/FSS

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.078 DISPLAY: SM SYS SUMM 1

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.079 DISPLAY: SM SYS SUMM 2

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.085 DISPLAY: MASS MEMORY R/W

-1 AVAILABILITY: SPEC 085 in OPS SM2/4.
-2 PURPOSE: See page $3.9011(\mathrm{P})$-1 for a description of the Mass Memory Read/Write Display.

### 3.5.086 DISPLAY: APU/HYD

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.087 DISPLAY: HYD THERMAL

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.088 DISPLAY: APU/ENVIRON THERM

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.089 DISPLAY: PRPLT THERMAL

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.090 DISPLAY: PCS CONTROL

-1 AVAILABILITY: SPEC 090 in OPS SM2/4.
-2 PURPOSE: The PCS CONTROL display is a specialist function display that is available in OPS SM2 and SM4. This display provides the crew the capability to call, schedule, execute, and interactively control the execution of payload control sets and sequences that are mass memory resident. In addition this function provides the capability to display text messages and status of the sequences currently scheduled.

(XX)

Figure 3.090

TABLE 3.090-1. DISPLAY FUNCTIONS

| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | SPEC Call-Up | SPEC 090 PRO | The PCS CONTROL SPEC is available in OPS SM2 and SM4. |
| 2 | SET ID | ITEM $1+$ NN EXEC | Provides the crew with the ability to recall SET NN into the memory, if the set is not in memory. The set number NN is flight and function dependent. (Note: 2) |
| 3 | SEQ ID | ITEM $2+$ NN EXEC | Provides the crew with the ability to call SEQ NN in the SET shown. <br> (Notes: 3, 4, 5) |
| 4 | START GMT | $\begin{aligned} & \text { ITEM 3+ DDD + HH + } \\ & \text { MM + SS EXEC } \end{aligned}$ | Provides the crew with the ability to update sequence start time. (Notes: 3, 6, 7) |
| 5 | HOLD STEP | ITEM 7 + NNN EXEC | Provides the crew with the ability to update the hold step. The sequence will hold its execution at the specified hold step number. (Notes: 3, 6, 8) |
| 6 | ENABLE | ITEM 8 EXEC | Provides the crew with the ability to: <br> a) Enable execution of the sequence at a pre-set start time (if GMT in item 3 is in the future), or <br> b) Execute the sequence immediately if the GMT is present or past. <br> (Notes: 3, 6, 7, 10, 11) |
| 7 | HOLD | ITEM 9 EXEC | Provides the crew with the ability to hold the sequence at the next valid hold step. <br> (Notes: 3, 6, 13) |
| 8 | TERMINATE | ITEM 10 EXEC | Provides the crew with the ability to: <br> a) If running, sequence will go to safing step and continue to last step if safing step was defined, or <br> b) Cancels immediately. (Notes: 3, 6) |
| 9 | RESUME | ITEM 11 EXEC | Provides the crew with the ability to resume the sequence after a hold. (Notes: $3,6,14$ ) |
| 10 | STEP | ITEM $14+$ NNN EXEC | Provides the crew with the ability to call up a specific step in the sequence selected to modify the delay time per items 15 and 16 . (Notes: 1, 3, 6) |
| 11 | DELAY | $\begin{aligned} & \text { ITEM } 15+\text { MM }+ \text { SS } \\ & \text { EXEC } \end{aligned}$ | Provides the crew with the ability to update the delay time by entering the delay time as minutes and seconds. (Notes: 1, 3, 6, 9) |


| TABLE 3.090-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 12 | TERM ALL | ITEM 12 EXEC | Provides the crew with the ability to terminate all selected sequences. |
| 13 | CLEAR TEXT | ITEM 13 EXEC | Provides the crew with the ability to clear the text message area. |
| 14 | SET NAME |  | Displays the name of the currently selected set. |
| 15 | SEQUENCE NAME |  | Displays the name of the currently selected sequence. |
| 16 | SEQUENCE <br> NUMBER |  | Displays sequence ID and call number (i.e., IDNN) of a currently selected sequence. |
| 17 | $\begin{aligned} & \text { SEQUENCE } \\ & \text { STATUS } \\ & \text { INDICATION } \end{aligned}$ |  | Displays sequence status of the form XXXX. <br> (Note: 15) |
| 18 | SEQUENCE NAME |  | Displays sequence name. |
| 19 | GMT |  | Displays the start GMT of the selected sequence. |
| 20 | $\begin{aligned} & \text { SEQUENCE } \\ & \text { NUMBER } \end{aligned}$ |  | Displays sequence ID and call number as function 16 of the sequence writing the text message. |
| 21 | STEP NUMBER |  | Displays the step number in the sequence writing the text message. |
| 22 | TEXT |  | Displays the text message from the sequence. |
| 23 | CURRENT <br> ERROR STOP |  | Displays the step number the error was on. |
| 24 | CURRENT <br> ERROR CODE |  | Displays the current error code in the range 0-6. (Note: 16) |


| TABLE 3.090-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | SET ID NUMBER | 01 | 99 |  | 2 |  |
| 2 | SEQUENCE ID NUMBER | 1 | 9999 |  | 3 |  |
| 3 | START GMT DAYS | 0 | 400 |  | 4 |  |
| 4 | START GMT HOURS | 0 | 24 |  | 4 |  |
| 5 | START GMT MINUTES | 0 | 60 |  | 4 |  |
| 6 | START GMT SECONDS | 0 | 60 |  | 4 |  |
| 7 | HOLD STEP <br> NUMBER | 0 | 999 |  | 5 |  |
| 8 | ENABLE |  |  |  | 6 |  |
| 9 | HOLD |  |  |  | 7 |  |
| 10 | TERMINATE |  |  |  | 8 |  |
| 11 | RESUME |  |  |  | 9 |  |
| 12 | TERMINATE ALL SEQ |  |  |  | 12 |  |
| 13 | CLEAR TEXT AREA |  |  |  | 13 |  |
| 14 | STEP NUMBER | 1 | 999 |  | 10 |  |
| 15 | DELAY TIME MINUTES | 0 | 59 |  | 11 |  |
| 16 | DELAY TIME SECONDS | 0 | 59 |  | 11 |  |

## NOTES:

1 Functions 10-11 (ITEMs 14-16) must be entered prior to ITEM 8 EXEC (Enable).
2 Set must be resident in mass memory or a class 5 error will be generated.
3 Set must be selected (ITEM 1) prior to this entry.
4 Sequence must be valid for this set or a class 5 error will be generated.
5 Use NNXX form where NN is sequence number and XX is the incremental number of times the sequence was called in the range $01-99$ (if more that 99 times will wrap to 01 ) when recalling a previously selected sequence.
6 Sequence must be selected (ITEM 2) prior to this entry.
7 If start time (ITEM 4) has passed, the sequence will begin execution when enabled (ITEM 8).
8 Step must have been predefined as a valid (hold) step or a class 5 error will be generated.
9 Step number (ITEM 14) must be entered prior to this entry.
10 A maximum of 10 sequences may be selected at one time provided they are all in the selected set.
11 Sequence must be unenabled to be enabled or a class 5 error will be generated.
12 Sequence cannot be cancelled from terminate or error state or a class 5 error will be generated.
13 Sequence cannot be held except from the active, exception, or inactive states or a class 5 error will be generated.
14 Sequence cannot be resumed from any state except hold or a class 5 error will be generated.
15 Valid status codes are as follows:
Blank unenabled or not executing after cancel
ACT executing normally or after a hold was resumed
ERR executing after an error
TERM terminating
EXCP executing after an exception
ENA not executing after a resume or not executing
HOLD not executing after a hold
SSPD not executing after an error
16 Error codes are as follows:
$0 \quad$ No error
1 I/O error
2 Sequence active at start time
3 Illegal arithmetic operation was attempted
4 Unused
5 Payload communication software was not enabled
6 Payload communication software transmission error

### 3.5.094 DISPLAY: PDRS CONTROL

-1 AVAILABILITY: SPEC 094 in OPS SM2.
-2 PURPOSE: This specialist function provides crew control over RMS software functions. It also provides the capability to monitor the RMS retention latches to verify that the manipulator is in a stowed or deployed position.


OPR CMD MODES
END POS END ATT 24 PL INIT ID $\underline{X X}$

19 Y $H \times X X X \quad 22$ Y $\Psi X X X \quad$ CMD CK 25 XXXX
20 Z $\boldsymbol{H} X X X X \quad 23$ R $H X X X X$

RMS STO/DPLY
26 WR RANGE $\underline{X}$
SHLD $X X X X$
AUTO BRAKE CK 27X
RMS LAT/REL/RDY
AFT $X \times \times \times \times \times$
MID $X \times \times \times \times \times$
FWD $\times \times \times \times \times \times$

Figure 3.094

TABLE 3.094-1. DISPLAY FUNCTIONS

| \# | FUNCTION | $\begin{aligned} & \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | SPEC Call-Up | SPEC 094 PRO | PDRS CONTROL is available in either OPS SM2 or SM4. (25384) (44990) |
| 2 | Arm Selection RMS SEL |  | Display text for the position of the arm select switch on the D and C panel. Displays OFF, PORT, or STBD. |
|  | RMS PWR |  | Display text for the status of the RMS Power Switch. Displays OFF, PRI, or B/U. |
|  |  | ITEM X EXEC | $\mathrm{X}=1$ or 2: Selection of either arm as available for initialization. Items 1 and 2 are mutually exclusive with 1 being the default selection when the SPEC is first brought up. |
| 3 | Payload ID <br> Selection | $\underset{\text { EXEC }}{\operatorname{ITEM}} 3+\mathrm{XX}$ | Used for selection of the ID of the Payload to be handled by RMS. Initially zero. |
| 4 | END Effector ID Selection | ITEM $4+\mathrm{X}$ EXEC | Provides selection capability for the ID of the END effector to be used by the arm selected. Initially 1. |
| 5 | MCIU I/O <br> Selection | ITEM X EXEC | $\mathrm{X}=5$ or 6 : Provides the capability to initiate or terminate I/O communication with the MCIU. Items 5 and 6 are mutually exclusive with 6 being the default when the SPEC is first brought up. |
| 6 | Soft Stop Limits | ITEM X EXEC | $\mathrm{X}=7$ or 8 : Provides the capability to enable or inhibit the software stop limits. Initially enabled; if INHIBIT is selected the soft stop limits will be automatically enabled at mode change (except in single mode when the RMS is in software stop condition). |
| 7 | Auto Braking | ITEM X EXEC | $\mathrm{X}=9$ or 10 : Provides the capability to enable or inhibit the auto brake function of the consistency check. Initially the auto brake is enabled. |
| 8 | Position Encoder Check | ITEM X EXEC | $\mathrm{X}=11$ or 12 : Provides the capability to enable or inhibit the position encoder check function. Initially the position encoder is enabled. |


| TABLE 3.094-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 9 | Auto Sequence Selection | $\begin{aligned} & \text { ITEM NN }+X X \\ & \text { EXEC } \end{aligned}$ | Provides the capability to select 4 of up to 20 auto sequences stored in main memory for execution. The execution of any of the entered auto sequences is determined by the setting of the mode switch on the $D$ and $C$ panel. ITEM entry mode switch position corresponds as follows: <br> Initially values are $1,2,3$, and 4 for items 13,14 , 15 , and 16 respectively. |
| 10 | Start Point <br> Selection | $\underset{\text { EXEC }}{\text { ITEM }} 17+\mathrm{XXX}$ | Provides the capability to start an auto sequence at any of its prestored points. Initially blanked. |
| 11 | END Effector <br> Position | $\begin{aligned} & \text { ITEM NN + XXXX } \\ & \text { EXEC } \end{aligned}$ | $\mathrm{NN}=18,19$, or 20 : Used to describe the $\mathrm{X}, \mathrm{Y}$, Z coordinates of the point of resolution for an operator commanded auto sequence in the ORBITER Body Axis Reference frame. (42318) |
| 12 | END Effector Attitude | $\begin{aligned} & \text { ITEM NN + XXX } \\ & \text { EXEC } \end{aligned}$ | $\mathrm{NN}=21,22$, or $23:$ Used to describe the pitch, yaw, and roll coordinates of the point of resolution for an operator commanded auto sequence. (42318) An item 22 (Yaw) value GT 90 degrees and LT 270 degrees is rejected and an "ILLEGAL ENTRY" message is displayed. Item 22 values LT 0 or GT 360 are also rejected. |
| 13 | Payload Initiation Identification | $\begin{aligned} & \text { ITEM } 24+\mathrm{XX} \\ & \text { EXEC } \end{aligned}$ | Provides the capability to change the Payload ID which the software will assume is attached to the RMS when validating the desired point of resolution (entered via items 18-23). |
| 14 | Command Check | ITEM 25 EXEC | Used to verify that the point described in items 18-23 is within the reach limits of the arm selected. Does not verify that the path that the arm must travel to arrive at the point is either safe or desirable. |


| TABLE 3.094-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 15 | Wrist Roll Range | $\begin{aligned} & \text { ITEM } 26+\mathrm{X} \\ & \text { EXEC } \end{aligned}$ | Provides the capability to correct the wrist roll range value in the event $I / O$ is lost and the wrist roll is moved. Values with these corresponding ranges are as follows: |
| 16 | Auto Brake Check | ITEM 27 EXEC | Used to verify that the auto brake circuitry will apply the brake. After execution, the brake indicator on panel A8A1 should be on and an asterisk should be displayed next to item 27. <br> NOTE: The brake switch should be off while performing this check. Otherwise, the results are inconclusive. |


| TABLE 3.094-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Port Arm Selected |  |  |  | 2 | CRGV_ARM_INIT_DISP |
| 2 | STBD Arm Selected |  |  |  | 2 | CRGV_ARM_INIT_DISP |
| 3 | PL ID Selection | 0 | 5 |  | 3 | CRGV_DISP_PYLD ID CRGV_RMS_PL_ID $\$ 1$ CRGV_RMS_PL_ID\$2 |
| 4 | Select End Effector | 1 | 2 |  | 4 | CRGV DISP EE ID CRGVRMS EEID\$1 CRGV_RMS_EE_ID\$2 |
| 5 | Initiate MCIU I/O |  |  |  | 5 | CRAB_MCIU_IO |
| 6 | Terminate MICU Communication |  |  |  | 5 | CRAB_MCIU_IO |
| 7 | Enable Soft Stops |  |  |  | 6 | CRAB_SOFT_STOP_ENABLE |
| 8 | Inhibit Soft Stops |  |  |  | 6 | CRAB_SOFT_STOP_ENABLE |
| 9 | Enable Auto Brakes |  |  |  | 7 | CRAB_CONSIS_FLAG |
| 10 | Inhibit Auto Brakes |  |  |  | 7 | CRAB_CONSIS_FLAG |
| 11 | Enable Position Encoder Checks |  |  |  | 8 | CRAB_ENCOD_ENA_INH_FLAG |
| 12 | Inhibit Position Encoder Checks |  |  |  | 8 | CRAB_ENCOD_ENA_INH_FLAG |
| 13 | Select Sequence for Auto Mode 1 | 1 | 20 |  | 9 | CRGV_AUTO_SEQ_ID\$1 <br> Maximum value determined by the number of sequences in memory. |
| 14 | Select Sequence for Auto Mode 2 | 1 | 20 |  | 9 | CRGV_AUTO_SEQ_ID\$2 |
| 15 | Select Sequence for Auto Mode 3 | 1 | 20 |  | 9 | CRGV_AUTO_SEQ_ID\$3 |
| 16 | Select Sequence for Auto Mode 4 | 1 | 20 |  | 9 | CRGV_AUTO_SEQ_ID\$4 |
| 17 | Select Start Point | 1 | 199 |  | 10 | CRGV_AUTO_SEQ_STR_PT |
| 18 | Select POR X Coord. |  |  | inch | 11 | CRAV_POR_COR_DESIRED\$1 <br> (Note: 1) |
| 19 | Select POR Y Coord. |  |  | inch | 11 | $\underset{\text { (Note: }}{\substack{\text { CRAV_POR_COR_DESIRED } \\ \text { 2 }}}$ |


| TABLE 3.094-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 20 | Select POR Z Coord. |  |  | inch | 11 | CRAV_POR_COR_DESIRED\$3 <br> (Note: $\overline{1}$ ) |
| 21 | Select POR Pitch Coord. | 0 | +359 | Deg | 12 | CRAV_POR_COR_DESIRED\$4 (Note: $\overline{1}$ ) |
| 22 | Select POR Yaw Coord. | $\begin{gathered} 0 \\ +270 \end{gathered}$ | $\begin{aligned} & +90 \\ & +359 \end{aligned}$ | Deg | 12 | CRAV_POR_COR_DESIRED\$5 <br> (Note: $\overline{1}$ ) |
| 23 | Select POR Roll Coord. | 0 | +359 | Deg | 12 | CRAV_POR_COR_DESIRED\$6 (Note: $\overline{1}$ ) |
| 24 | Select PL Init ID | 0 | 5 |  | 13 | $\begin{aligned} & \text { CRAV_DISP_PL_INIT } \\ & \text { CRAV_PL_INIT } \end{aligned}$ |
| 25 | Check Validity of Selected POR |  |  |  | 14 | CRAV_OPR_CMD_CK_INDEX Display Text to indicate validity of POR selected. Displays either 'GOOD' or 'FAIL'. |
| 26 | Select WR Range | 1 | 6 |  | 15 | CRAV WRR RANGE\$1 CRAV_WRR_RANGE\$2 |
| 27 | Auto Brake Command |  |  |  | 16 | CRAB_ALL_BRAKES_REQ_LP |

## NOTE:

1 See entry in display function table for input limit checks.

### 3.5.095 DISPLAY: PDRS OVERRIDE

-1 AVAILABILITY: SPEC 095 in OPS SM2 and SM4.
-2 PURPOSE: This specialist function provides the crew with the ability to override the RMS Mode Select Switch, the RMS Joint Select Switch, the Rate Selection Switch, and the Auto Sequence Proceed/Stop Switch, to reassign the Single/Direct Drive Switch, to toggle the Loaded Rate Limit Flag, to allow operation of the RMS in the MPM stowed position, and to change the sense of the translational or rotational hand controllers (THC, RHC).


Figure 3.095

| TABLE 3.095-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-up | SPEC 095 PRO | PDRS Override is available in either OPS SM2 or SM4. RMS software must be active for complete override processing. |
| 2 | Mode Override | ITEM 1 EXEC | Toggle the capability to override the RMS Mode Select switch and the Mode Enter push button. |
|  |  | ITEM X EXEC | Override the RMS Mode Select Switch with the X mode requested if Item 1 is selected. X items are mutually exclusive and range from 2-12 as follows: |
|  |  |  | X MODE X MODE <br> 2 Orbiter Unloaded 8 Auto 1 <br> 3 Single 9 Auto 2 <br> 4 End Effecter 10 Auto 3 <br> 5 Orbiter Loaded 11 Auto 4 <br> 6 Payload <br> 7 Operator Commanded |
|  |  |  | While Item 1 is deselected, Items 2-12 are inhibited and will reflect the actual position of the RMS Mode Select Switch as sensed by the FSW. |
|  |  |  | Data in the IND column shall reflect the mode selected indicator lights on the RMS Displays and Controls panel. |
|  |  | ITEM 13 EXEC | Mimic the Mode Enter push button. <br> While Item 1 is deselected or if mode select Items 2-12 are all deselected, Item 13 is inhibited. |
| 3 | Loaded Rates Toggle | ITEM 14 EXEC | Toggle the current state of the loaded rate limit flag. |
| 4 | Stowed OPS <br> Toggle | ITEM 15 EXEC | Toggle the capability to enable or disable RMS Stowed operations. |
| 5 | Single/Direct Drive Reassign Toggle | ITEM 16 EXEC | Toggle the capability to reassign the Single/Direct Drive Switch to the Auto Sequence Stop/Proceed Switch. Inhibited if Item 29 has been selected. |
| 6 | Joint Override | ITEM 17 EXEC | Toggle the capability to override the RMS Joint Select Switch. |


| TABLE 3.095-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
|  |  | ITEM X EXEC | Override the RMS Joint Select Switch with the X joint requested if Item 17 is selected. X items are mutually exclusive and range from 18-25 as follows: <br> While Item 17 is deselected, Items 18-25 are inhibited and will reflect the actual position of the RMS Joint Select Switch as sensed by the FSW. |
| 7 | Rate Override | ITEM 26 EXEC ITEM X EXEC | Toggle the capability to override the RMS Rate Select Switch. <br> Override the RMS Rate Select Switch with the X rate requested if Item 26 is selected. X items are mutually exclusive and range from 27-28 as follows: <br> Upon selection of Item 26, Item 27 shall be automatically selected and Item 28 shall be automatically deselected. <br> While Item 26 is deselected, Items 27-28 are inhibited and will reflect the actual position of the RMS Rate Select Switch as sensed by the FSW. |
| 8 | Auto Override | ITEM 29 EXEC | Toggle the capability to override the RMS Auto Sequence Stop/Proceed Switch. Inhibited if Item 16 has been selected. |

Date: 12/20/90
Rev: 0

| TABLE 3.095-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 9 |  | ITEM X EXEC | Override the RMS Auto Sequence Stop/Proceed Switch with the X Item requested if Item 29 is selected. <br> While Item 29 is deselected, Items 30-31 are inhibited. |
|  | Axis Change Toggle | ITEM 32 EXEC | Toggle the capability to change the sense of the translational or rotational hand controllers. |
|  | THC Change | ITEM 33 EXEC | Toggle the capability to change or restore the original sense of the translational hand controller if Item 32 is selected. Inhibited if Item 32 is deselected. <br> Upon selection or deselection of Item 32, Item 33 shall be automatically deselected. |
|  | RHC Change | ITEM 34 EXEC | Toggle the capability to change or restore the original sense of the rotational hand controller if Item 32 is selected. Inhibited if Item 32 is deselected. <br> Upon selection or deselection of Item 32, Item 34 shall be automatically deselected. |




RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

### 3.5.096 DISPLAY: PDRS STATUS

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

### 3.5.097 DISPLAY: PL RETENTION

Reference SM FSSR JSC-19590-XXX(XXX = Flight Number), Section 6.

```
RELEASE: OI20 Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0
```


### 3.5.099 DISPLAY: FAULT

-1 AVAILABILITY: SPEC 099 (or FAULT SUMM KEY) in all OPS.
-2 PURPOSE: The Fault Summary Page (FSP) presents the last 15 Caution \& Warning messages output by PASS to the DEU message line.

| XXXX/XXX/099 | fault | XX X DDD/HH:MM:SS DDD/HH:MM:SS |
| :---: | :---: | :---: |
| CRT FAULT | C/W | GPC TIME |
| ID |  |  |
|  | xxxx $\quad \mathrm{x}$ | xxxxx $x x x / x x: x x: x x$ |
|  | Xxxx | xxxxx $x$ xx/xx: xx : xx |
| XxX | XXXX | Xxxxx $x x x / X X: X X: X X$ |
| XxX XxXXXXXXXX | XXXX | XXXXX XXX/XX: XX : XX |
| XXX XXXXXXXXXX | XXXX | XXXXX XXX/XX: XX : XX |
| XXX XXXXXXXXXX | XXXX | XXXXX $\mathrm{XXX} / \mathrm{XX}$ : XX : XX |
| XXX XXXXXXXXXX | XXXX X | XXXXX XXX/XX:XX: XX |
| xxx ${ }^{\text {xxxxxxxxx }}$ | xxxx $\quad \mathrm{x}$ | XxxXX XXX/XX: XX : XX |
| XXX XXXXXXXXXX | XxXX $\quad \mathrm{x}$ | XXXXX XXX/XX: XX : XX |
| XXX XXXXXXXXXX | XXXX X | XXXXX XXX/XX:XX: XX |
| xxx ${ }^{\text {xxxxxxxxxx }}$ | xxxx $\quad x$ | xxxxx $x x x / X x: x x: x x$ |
| XXX XXXXXXXXXX | XXXX X | XXXXX XXX/XX:XX: XX |
| XXX XXXXXXXXXX | XXXX X | XXXXX XXX/XX: XX: XX |
| xxx ${ }^{\text {xxxxxxxxx }}$ | XxxX X | xxxxx xxx/xx: $x \mathrm{x}$ : xx |
|  | xxxx $\quad$ x |  |
| XXX XXXXXXXXXX | XXXX X | XXXXX XXX/XX:XX: XX |

(XX)

Figure 3.099

TABLE 3.099-1. DISPLAY FUNCTIONS

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | Display Call-Up | FAULT SUMM | The FSP is always available. Entry of the FAULT SUMM key presents the display of the latest 15 C and W messages. |
| 2 | Display Data |  | CRT ID: A 3 character ID of a SPEC function where detailed data related to the message may be found. |
|  |  |  | FAULT: The major/minor text of the message (See Section 6 for a list of PASS messages). |
|  |  |  | $\mathrm{C} / \mathrm{W}: \quad \begin{aligned} & \text { An } * \text { indicates the message is a class } 2 \\ & \text { error (See Section 6). }\end{aligned}$ |
|  |  |  | GPC: Indicates which GPC(s) logged the message. The GPC ID of each GPC generating the message is shown. |
|  |  |  | TIME: The MET when the message was generated. |
| 3 | FSP Clear | SPEC 099 PRO | The FSP is cleared of all messages. The display page is still on the CRT. The user will notice a blink of the messages as they are cleared. |

### 3.5.100 DISPLAY: GTS DISPLAY

-1 AVAILABILITY: SPEC 100 in OPS G9 and P9.
-2 PURPOSE: The General Test Support (GTS) display provides the following vehicle checkout functions:

Housekeeping data acquisition (HDA) control
CAM testing
Downlist format selection
LDB polling control
PASS/BFS data transfer
RJD toggle testing
Dedicated display unit testing
MEC critical command control
Elevon limit selection
Space Lab Communications


Figure 3.100

TABLE 3.100-1. DISPLAY FUNCTIONS

| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
| :--- | :--- | :--- | :--- |


| TABLE 3.100-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 5 | Launch Data Bus Control (GSE Poll) | ITEM 14 EXEC | This is a flip-flop item; first entry turns on polling, second entry turns off polling, etc. (an asterisk, *, present signals polling is on). <br> a. Polling status maintained across OPS transition. <br> b. Polling initiation is always attempted on LDB1. |
| 6 | PASS One Time <br> Transfer of Data to BFS | ITEM 15 EXEC | Causes a predefined set of data to be transferred from the PASS GPC(s) to the BFS GPC. Entries on BFS displays are required in conjunction with this item to accomplish the transfer. (38748) <br> The one-shot transfer of IMU calibration data from the PASS to the BFS in OPS G9 is not interprocess protected. If IMU SOP calibration procedure or a MM read is in the process of updating the calibration data, then a set of non-homogeneous data could be sent to the BFS. <br> Preflight Cal A (the last IMU SOP procedure to change the calibration data sent to the BFS) or a MM read of IMU calibration data must be completed before the one-shot is initiated. The correct procedure for the day of flight is: <br> a. Perform MM read of IMU checkpoint data. <br> b. Perform attitude determination. <br> c. Wait for TERM/IDLE. <br> d. Perform Preflight Cal A. <br> e. Wait for TERM/IDLE. <br> f. Perform Gyrocompass Alignment. <br> g. Initiate one-shot. <br> h. Wait for gyrocompass CPLT to appear on GND IMU CNTL/MON display (the asterisk will still be beside GYROCOMP). <br> i. PRO into OPS G1. |
| 7 | Reaction Jet Driver <br> (RJD) Toggle Test | ITEM 16 EXEC | Initiate simultaneous commands to 44 RCS jets for toggle test. (48423) |
|  |  | ITEM 17 EXEC | Stop toggle test. |
| 8 | Dedicated Display Checkout | ITEM 18 EXEC ITEM 19 EXEC | Select forward displays for test (default). (51250) <br> Select aft displays for test. (ITEMs 18 and 19 are mutually exclusive.) |


| TABLE 3.100-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 9 |  | ITEM 20 EXEC | Select HIGH test: Drive all units to a pre-defined set of high values. |
|  |  | ITEM 21 EXEC | Select LOW test: Drive all units to a pre-defined set of low values. |
|  |  | ITEM 22 EXEC | Select FLAG test: All units will remain at current reading with mechanical flags (where applicable) extended. |
|  |  | ITEM 24 EXEC | Select DRIVE test: All units are driven at nominal flight rates through entire range in continuous drive. |
|  |  |  | NOTE: ITEMs $20,21,22$, and 24 are mutually exclusive. A selected test must be stopped (ITEM 23) before another test may be selected. |
|  |  | ITEM 23 EXEC | Terminate selected test. |
|  | Master Events | ITEM 25 EXEC | Enable issuance of critical commands to MEC. |
|  | Critical Command Control | ITEM 26 EXEC | Inhibit issuance of critical commands to MEC (default). |
| 10 | Elevon Limit Selection | ITEM 27 EXEC | Select horizontal limits for elevons and set drive rate beyond soft-stop to $1 / 4 \mathrm{PCM}$ for all actuators. |
|  |  | ITEM 28 EXEC | Select vertical limits for elevons and set drive rate beyond soft-stop to 0 PCM for all actuators. |
|  |  | ITEM 29 EXEC | Select I-Loaded OWPS limits for elevons and set drive rate beyond soft stop to I-Loaded value (default). |
| 11 | Spacelab Computer | ITEM 30 EXEC | Enable polling on Channel A of the SSC SL computer. |
|  |  | ITEM 31 EXEC | Enable polling on Channel B of the SSC SL computer. |
|  |  | ITEM 32 EXEC | Disable polling for SSC SL computer. |
|  |  | ITEM 33 EXEC | Enable an MDM return command header test on the SSC. The result of the test is displayed as FAIL or Blank for good. |

TABLE 3.100-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
|  |  | ITEM 34 EXEC | Enable an MDM return message test to be performed on the SSC. The result of the test is displayed as FAIL or Blank for good. |
|  |  | ITEM 35 EXEC | Enable polling on Channel A of the EXC SL computer. |
|  |  | ITEM 36 EXEC | Enable polling on Channel B of the EXC SL computer. |
|  |  | ITEM 37 EXEC | Disable polling for EXC SL computer. |
|  |  | ITEM 38 EXEC | Enable an MDM return command header test on the EXC. The result of the test is displayed as FAIL or Blank for good. |
|  |  | ITEM 39 EXEC | Enable an MDM return message test to be performed on the EXC. The result of the test is displayed as FAIL or Blank for good. |
|  |  |  | NOTE: For items 30-32 and 35-37 an (*) indicator will be displayed after the number of the selected item controls. Items 30,31 and 32 are mutually exclusive for the SSC. Items 35, 36 and 37 are mutually exclusive for the EXC. Items 30-39 are valid only in G9. |


| TABLE 3.100-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | HDA Enable |  |  |  | 2 | CZIV_D_ITEM_NO |
| 2 | HDA Inhibit |  |  |  | 2 | CZIV_D_ITEM_NO |
| 3 | Select GPC1 as Voter in CSL Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 4 | Select GPC2 as Voter in CSL Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 5 | Select GPC3 as Voter in CSL Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 6 | Select GPC4 as Voter in CSL Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 7 | Select GPC5 as Voter in CSL Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 8 | Select I-FAIL of Test GPC |  |  |  | 3 | CZIV_D_ITEM_NO |
| 9 | Select Test GPC for CSL Test | 1 | 5 |  | 3 | CZIV_D_ITEM_I |
| 10 | Start CSL/RML Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 11 | Stop CSL/RML Test |  |  |  | 3 | CZIV_D_ITEM_NO |
| 12 | Select Downlist Format | 42 | 99 |  | 4 | CVAV_GTS_DL_FMTID |
| 13 | Load Selected Downlist Format |  |  |  | 4 | CZIV_D_ITEM_NO |
| 14 | LDB Polling Control |  |  |  | 5 | VGT_GSE_POLLS(2) |
| 15 | PASS/BFS Data |  |  |  | 6 | See function 6 for restrictions. |
| 16 | Start RJD Test |  |  |  | 7 |  |
| 17 | Stop RJD Test |  |  |  | 7 |  |
| 18 | Select Forward DDUs |  |  |  | 8 | CVAV_FWD_AFT |
| 19 | Select Aft DDUs |  |  |  | 8 | CVAV_FWD_AFT |
| 20 | Select HIGH Test |  |  |  | 8 | CVDV_DDCO_INDEX |
| 21 | Select LOW Test |  |  |  | 8 | CVDV_DDCO_INDEX |



BOOK: PASS User's Guide

### 3.5.101 DISPLAY: SENSOR SELF-TEST

-1 AVAILABILITY: SPEC 101 in OPS G9.
-2 PURPOSE: The Preflight Sensor Self-Test (SST) display provides the capability to initiate sensor self-test of microwave scan beam landing system (MLS), TACAN, radar altimeter, and accelerometer assembly (AA) and review the results.


Figure 3.101


| TABLE 3.101-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | MLS 1 SELECT |  |  |  | 2 | CVS_TEST_TABLE CVS_TEST-ENA(1) ITEMS 1 through 12 are mutually exclusive with ITEM 14. |
| 2 | MLS 2 SELECT |  |  |  | 2 | CVS_TEST_ENA(2) |
| 3 | MLS 3 SELECT |  |  |  | 2 | CVS_TEST_ENA(3) |
| 4 | TACAN 1 SELECT |  |  |  | 2 | CVS_TEST_ENA(4) |
| 5 | TACAN 2 SELECT |  |  |  | 2 | CVS_TEST_ENA(5) |
| 6 | TACAN 3 SELECT |  |  |  | 2 | CVS_TEST_ENA(6) |
| 7 | RA 1 SELECT |  |  |  | 2 | CVS_TEST_ENA(7) |
| 8 | RA 2 SELECT |  |  |  | 2 | CVS_TEST_ENA(8) |
| 9 | AA1 SELECT |  |  |  | 2 | CVS_TEST_ENA(9) |
| 10 | AA2 SELECT |  |  |  | 2 | CVS_TEST_ENA(10) |
| 11 | AA3 SELECT |  |  |  | 2 | CVS_TEST_ENA(11) |
| 12 | AA4 SELECT |  |  |  | 2 | CVS_TEST_ENA(12) |
| 13 | START MANUAL TEST |  |  |  | 3 | CVS_ITEM_NO_A |
| 14 | START AUTO TEST SEQ |  |  |  | 3 | CVS_ITEM_NO_A |
| 15 | TERMINATES SELF TEST |  |  |  | 3 | CVS_STIMULI_TYPE_IND |
| 16 | INHIBIT ALL |  |  |  | 4 | CVS DEVICE TABLE CVS_DEV_ENA(1 to 4) |


| TABLE 3.101-3. SENSOR SELF-TEST LIMITS |  |  |  |
| :--- | ---: | ---: | :---: |
| DESCRIPTION | LOW | HIGH | UNITS |
| MLS Range | 15.0 | 15.4 | NM |
| MLS Elevation | 5.9 | 6.1 | DEG |
| MLS Azimuth - High Mode | 2.9 | 3.1 | DEG |
| MLS Azimuth - Low Mode | -3.1 | -2.9 | DEG |
| TACAN Range | 0.0 | 0.5 | NM |
| TACAN Azimuth | 177.5 | 182.5 | DEG |
| Radar Altimeter | 900 | 1100 | FT |
| Accel. Assembly -Y | 14.4 | 17.8 | FT/SEC ${ }^{2}$ |
| Accel. Assembly -Z | 57.7 | 71.1 | FT/SEC ${ }^{2}$ |

### 3.5.102 DISPLAY: RCS/RGA/ADTA TEST

-1 AVAILABILITY: SPEC 102 in OPS G9.
-2 PURPOSE: The Preflight RCS/RGA/ADTA Test display is used to activate and control the execution of sensor self tests of the Reaction Control System (RCS), Rate Gyro Assemblies (RGA), and the Air Data Transducer Assemblies (ADTA). It allows the users to select and deselect three test modes on each LRU: High, Low, and High/Low modes.

| XXXX/102/ |  | RCS/RGA/ADTA |  | TEST XX | $\begin{aligned} & \mathrm{X} \times \mathrm{DDD} / \mathrm{HH} \\ & \mathrm{DDD} / \mathrm{HH} \end{aligned}$ | :MM:SS <br> :MM:SS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RCS DRIVERS |  |  |  |  |  |  |
|  | RJDF 1X |  |  | $X$ START | T TEST | 4X STAT | XXXX |  |
|  | RJDA-A 2X | CONT |  | 5X JET | XXX |  |
|  | -B 3X | X TERM |  | 6 STEP | $X$ |  |
| SENSORS |  |  |  | TEST CONTROL: |  |  |
|  |  |  |  |  | HIGH STAR | RT 15X |
|  | ENA STAT | R | P | $Y$ | LOW START | 16X |
| R1 | 7X XXXX | $\pm X X . X S$ | $\pm X X . X S$ | $\pm X X . X S$ | AUTO SEQ | 17X |
| G2 | 8X XXXX | $\pm X X . X S$ | $\pm X X . X S$ | $\pm X X . X S$ | TERM | 18X |
| A3 | 9X XXXX | $\pm X X . X S$ | $\pm X X . X S$ | $\pm X X . X S$ |  |  |
| 4 | 10X XXXX | $\pm X X . X S$ | $\pm X X . X S$ | $\pm X X . X S$ | INH ALL | 19X |
| ENA STAT |  | $\mathrm{P} \alpha \mathrm{C}$ | PS | $\mathrm{P} \alpha \mathrm{U}$ | $\mathrm{P} \alpha \mathrm{L}$ | TT |
| A1 | 11X XXXX | XX. XXXS X | XX. XXXS | XX. XXXS | XX. XXXS XXX | XXX. XXS |
| D3 | 12X XXXX XX | XX. XXXS XX | XX. XXXS | XX. XXXS | XX. $\mathrm{XXXS} \times \mathrm{X}$ | XXX. XXS |
| T2 | 13X XXXX XX | XX. XXXS XX | XX. XXXS | XX. XXXS | XX. XXXS $X X X$ | XXX. XXS |
| A | 14X XXXX X | XX. XXXS X | XX. XXXS | XX. XXXS | XX. $X X X X S$ X | XXX. XXS |

Figure 3.102


TABLE 3.102-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
|  |  | ITEM 18 EXEC | NOTE: <br> 1. Once a test is started Item entries 7-19 are illegal until it has completed. <br> 2. Data is frozen on display at completion of test until test is terminated. <br> 3. Test status is shown at completion of test as Blank if good or $\downarrow$ if failed low; or $\uparrow$ if failed high. STAT columns show Blank (good) or SMRD (RGA) or BITE (ADTA) for hardware failure. <br> 4. Table 3.102-3 defines test values for sensors. <br> Terminate self-test, restarts cyclic updating of sensor LRU data and clears status indicators. Must be entered after test started before any other sensor entries accepted. Will be rejected if test is still in progress. |
| 6 | Sensor Deselection | ITEM 19 EXEC | Deselects all sensor LRUs on page. Entry will be rejected if a test has been started (ITEM 15, 16,17) and has not been terminated (ITEM 18). |


| TABLE 3.102-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select RCS RJDF |  |  |  | 2 | CVS_ITEM_STATUS_2(1) |
| 2 | Select RCS RJDA-A |  |  |  | 2 | CVS_ITEM_STATUS_2(2) |
| 3 | Select RCS RJDA-B |  |  |  | 2 | CVS_ITEM_STATUS_2(3) |
| 4 | Initiate RCS Test |  |  |  | 3 | CVS_ITEM_NO_B |
| 5 | Continue RSC Test |  |  |  | 3 | CVS_ITEM_NO_B |
| 6 | Terminate RCS Test |  |  |  | 3 | CVS_ITEM_NO_B |
| 7 | Select RGA 1 For Test |  |  |  | 4 | CVS TEST TABLE <br> CVS_TEST_ENA_1(1) |
| 8 | Select RGA 2 For Test |  |  |  | 4 | CVS_TEST_ENA_1(2) |
| 9 | Select RGA 3 For Test |  |  |  | 4 | CVS_TEST_ENA_1(3) |
| 10 | Select RGA 4 For Test |  |  |  | 4 | CVS_TEST_ENA_1(4) |
| 11 | Select ADTA 1 For Test |  |  |  | 4 | CVS_TEST_ENA_1(5) |
| 12 | Select ADTA 2 For Test |  |  |  | 4 | CVS_TEST_ENA_1(6) |
| 13 | Select ADTA 3 For Test |  |  |  | 4 | CVS_TEST_ENA_1(7) |
| 14 | Select ADTA 4 For Test |  |  |  | 4 | CVS_TEST_ENA_1(8) |
| 15 | Select High Test Mode |  |  |  | 5 | CVS_HI_LO_AUTO |
| 16 | Select Low Test Mode |  |  |  | 5 | CVS_HI_LO_AUTO |
| 17 | Select Auto Test Mode |  |  |  | 5 | CVS_SEQ_AUTO_IND |
| 18 | Disable The Sensor <br> Self-Test |  |  |  | 5 | CVS_STIMULI_TYPE_IND_2 |
| 19 | Deselected The Sensors <br> That Were Selected For Test |  |  |  | 6 | CVS_DEVICE_TABLE <br> CVS_TEST_ENA_1(1 to 2) |


| TABLE 3.102-3. RGA LIMIT VALUES |  |  |  |
| :---: | :---: | :---: | :---: |
| DESCRIPTION | LOW | HIGH | UNITS |
| ROLL RATE HIGH LOW | 18.88 -21.12 | 21.12 -18.88 | $\begin{aligned} & \text { DEG/SEC } \\ & \text { DEG/SEC } \end{aligned}$ |
| PITCH RATE HIGH LOW | $\begin{array}{r} 9.44 \\ -10.56 \end{array}$ | 10.56 -9.44 | $\begin{aligned} & \text { DEG/SEC } \\ & \text { DEG/SEC } \end{aligned}$ |
| YAW RATE HIGH LOW | $\begin{array}{r} 9.44 \\ -10.56 \end{array}$ | 10.56 -9.44 | DEG/SEC |


| TABLE 3.102-4. ADTA LIMIT VALUES |  |  |  |
| :---: | :---: | :---: | :---: |
| DESCRIPTION | LOW | HIGH | UNITS |
| STATIC PRESS HI ALT LO ALT | $\begin{array}{r} 0.023 \\ 24.887 \end{array}$ | $\begin{array}{r} 0.815 \\ 24.889 \end{array}$ | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| CTR ALPHA PRESS (PAC) HI ALT <br> LO ALT | 5.473 29.527 | 5.477 29.531 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| LWR ALPHA PRESS (PAL) HI ALT LO ALT | 1.708 14.713 | 1.712 14.717 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| UPR ALPHA PRESS (PAU) HI ALT LO ALT | 2.740 21.708 | 2.744 21.712 | $\begin{aligned} & \text { IN HG } \\ & \text { IN HG } \end{aligned}$ |
| TOTAL TEMP HI TEMP LO TEMP | $\begin{array}{r} 173.56 \\ 18.50 \end{array}$ | $\begin{array}{r} 173.60 \\ 18.54 \end{array}$ | $\begin{aligned} & \text { DEG C C } \\ & \text { DEG C } \end{aligned}$ |

BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

### 3.5.104 DISPLAY: GND IMU CNTL/MON

-1 AVAILABILITY: SPEC 104 in OPS G9.
-2 PURPOSE: The Ground IMU Control/Monitor display supports ground IMU operations including calibrations, alignments, MMU Reads/Writes of IMU data, and inertial and TERM/IDLE processing. (17176/25221)

| XXXX/104/ | GND IMU CNTL/MON | XX | X | DDD/HH:MM:SS |
| :--- | :---: | :---: | :---: | :---: | ---: | :--- |
| DDD/HH:MM:SS |  |  |  |  |


| 0 | XXX. $X X$ | XXX. XX | XXX. XX | ATT DET 19X |
| :---: | :---: | :---: | :---: | :---: |
| M | XXX. XX | XXX. XX | XXX. $X X$ | HNGR CAL A 20X |
| I | XXX. XX | XXX. XX | XXX. XX | B 21X |
| IR | XXX. $X X$ | XXX. XX | XXX. XX | C 22X |
| $V \mathrm{X}$ | $\pm X X . X X$ | $\pm X X . X X$ | $\pm X X . X X$ | PREFLT CAL 23X |
| $Y$ | $\pm X X . X X$ | $\pm X X . X X$ | $\pm X X . X X$ | GYROCOMP 24X |
| Z | $\pm X X . X X$ | $\pm X X . X X$ | $\pm X X . X X$ | XXXX XXXX |
| VRSS | XX. XX | XX. XX | XX. XX | INERTIAL 25X |
|  |  |  |  | PLAT POS 26X |
| B HDW | XXXX | XXXX | XXXX | TERM/IDLE 27X |
| I S/W | XX | XX | XX |  |
| TSTAT | XX | XX | XX | $\begin{aligned} & 28 \text { MM WRITE } \frac{X}{X} \\ & \text { READ } 29 X \end{aligned}$ |
| PWR ON | X | X | $X$ | MM STATUS XXXX |
| I/0 | S | S | S |  |
| STBY | 10X | 11X | 12X | 30 SITE SEL $\underline{X}$ |
| OPER | 13X | 14X | 15X | ACTUAL $X X X$ |

Figure 3.104



| TABLE 3.104-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
|  |  | ITEM 25 EXEC <br> ITEM 26 EXEC <br> ITEM 27 EXEC | Inertial Processing - Holds the inertial alignment, after CPLT displayed beneath ITEM 24 (true inertial is attained at the Platform Release event at T-12 seconds in the launch countdown sequence). <br> NOTE: <br> 1) Inertial processing may also be initiated via OPS 1 PRO from OPS G9; likewise for transitions from OPS G9 to OPS G2 or G3 (via OPS 0). <br> 2) Inertial processing may be terminated via $T / I$ request (ITEM 27), IMU Power-Off, or Standby request (ITEM 10-12). <br> Platform Positioning - Provides capability to maneuver the platform to manually selected positions (function 2); order rotations is roll, pitch, azimuth ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ). <br> Terminate/Idle - Represents the default or quiescent, state of IMU SOP processing entered when any other submode is terminated; IMU torque and slew commands are zeroed. <br> NOTE: At least one IMU must be in Operate in order to make a legal T/I request. <br> General Submode Notes: <br> 1) Calibrations and Att. Det. automatically return to T/I, upon completion. <br> 2) Submode operations may be terminated at any time, via ITEM 27 EXEC (return to T/I). <br> 3) Submode requests are valid only under the following conditions: <br> a) All selected IMUs are in T/I mode (except when requesting $\mathrm{T} / \mathrm{I}$ or Inertial mode); <br> b) At least one IMU is Selected and in Operate (at least two for HC-B and HC-C). <br> c) A Mass Memory Operation (with IMU checkpoint data) cannot be in progress. |


| TABLE 3.104-1. DISPLAY FUNCTIONS (Continued) |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |


| TABLE 3.104-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- |


| TABLE 3.104-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
|  |  |  | 2) Software - reflects IMU SOP BITE data processing to detect accelerometer/gyro out-of-limits conditions. (Nominal Value: ' 00 ' - i.e., no failures detected see IMU SOP FSSR for further details.) NOTE: High-order bit is never On. <br> 3) Composite Status - reflects temperature and pressure conditions of each IMU, as well as In-Operate status. (Nominal Value: ' $3 \mathrm{~F}^{\prime}$ - i.e., temperatures and pressure readings satisfactory, and IMU In-Operate; ' 2 F ' - temperature, pressure okay, but IMU in Standby.) <br> NOTE: Two high-order bits are never On. <br> - Power On Indication - displays ' ${ }^{\prime \prime}$ ' when power is applied to each IMU; displays blanks when power is off. <br> - I/O Commfault Indication - displays ' $\mathbf{M}$ ' for missing I/O data; displays Blanks when normal I/O data present, or when IMU is off. (43940/50235/56091) |


| TABLE 3.104-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Desired Cluster-To-NB <br> Roll Angle (IMU1) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(1,1) |
| 2 | Desired Cluster-To-NB <br> Pitch Angle (IMU1) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(2,1) |
| 3 | Desired Cluster-To-NB <br> Azimuth Angle (IMU1) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(3,1) |
| 4 | Desired Cluster-To-NB <br> Roll Angle (IMU2) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(1,2) |
| 5 | Desired Cluster-To-NB <br> Pitch Angle (IMU2) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG $\$(2,2)$ |
| 6 | Desired Cluster-To-NB Azimuth Angle (IMU2) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(3,2) |
| 7 | Desired Cluster-To-NB <br> Roll Angle (IMU3) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(1,3) |
| 8 | Desired Cluster-To-NB <br> Pitch Angle (IMU3) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(2,3) |
| 9 | Desired Cluster-To-NB <br> Azimuth Angle (IMU3) | 000.00 | 360.00 | Deg | 2 | CGUV_DC_NB_ANG\$(3,3) |
| 10 | Command IMU 1 to Standby |  |  |  | 3 | CGBB_OUT12_HFF_SEG3_ DSCRT4\$(1;10) |
| 11 | Command IMU 2 to Standby |  |  |  | 3 | CGBB_OUT12_HFF_SEG3_ DSCRT4 $\$(2 ; 10)$ |
| 12 | Command IMU 3 to Standby |  |  |  | 3 | CGBB_OUT12_HFF_SEG3_ DSCRT4\$(3;10) |
| 13 | Command IMU 1 to Operate |  |  |  | 4 | CGBB_OUT12_HFF SEG3_ DSCRT4\$(1;10) |
| 14 | Command IMU 2 to Operate |  |  |  | 4 | CGBB_OUT12_HFF_SEG3_ DSCRT4\$(2;10) |
| 15 | Command IMU 3 to Operate |  |  |  | 4 | CGBB_OUT12_HFF_SEG3 DSCRT4 $\$(3 ; 10)$ |
| 16 | Select IMU 1 for SOP <br> Processing |  |  |  | 5 | CGMB_IMU_SEL_DFG\$1 |
| 17 | Select IMU 2 for SOP <br> Processing |  |  |  | 5 | CGMB_IMU_SEL_DFG\$2 |


RELEASE: O120 Date: $12 / 20 / 90$

BOOK: PASS User's Guide Rev: 0

### 3.5.105 DISPLAY: TCS CONTROL

-1 AVAILABILITY: SPEC 105 in OPS G9.
-2 PURPOSE: The TCS CONTROL display is a specialist function that is available in OPS G9. This display provides the capability to call, execute, and interactively control the execution of Test Sequences that are Mass Memory resident. In addition, this function provides the capability to display text messages from Mass Memory resident or ground originating sequences and to monitor Test Sequence progress.

| XXXX/105/ | TCS CONTROL $\begin{array}{r}x X \times \text { DDD/HH:MM:SS } \\ \text { DDD/HH:MM:SS }\end{array}$ |
| :---: | :---: |
| 1 SELECT ID XX | x Name xxxxxxxx ECP ERROR XXX |
| MM READ 2 XXXX | STATUS $X X X X X$ ERROR CODE $X X X$ |
| STEP XXXXX | TIME XX:XX:XX BITE XXXX |
| STOP 3 | 4 STOP AT $\underline{X X X X X X}$ CANCEL 5 |
| RESUME 6 | 7 RSM AT $\underline{X X X X X X}$ CLEAR MSGS 8 |
| time | TEXT |
| xx:xx: XX |  |
| XX:XX: XX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| XX:XX: XX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| XX:XX:XX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| xx: $x$ : xx | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| XX:XX: XX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| xx:XX: $x$ x |  |
| XX:XX: XX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| XX:XX:XX | XxXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| $x \mathrm{x}: \mathrm{XX}$ : XX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| $x X: X X: X X$ | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| $x \mathrm{x}: \mathrm{xx}$ : xx |  |
| Xx: $x$ : $x$ x | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| $x \mathrm{x}: \mathrm{xx}$ : xx |  |
| $x x: x x: x x$ |  |

Figure 3.105

| TABLE 3.105-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 105 PRO | The TCS control display is available only in OPS G9. |
| 2 | TCS Sequence Selection and Load | $\underset{\text { EXEC }}{\text { ITEM } 1+X X}$ | Selects sequence XX for execution. <br> 1 - VFBB4 BF POSTLAND SUPPORT <br> 2-VFB84 RAIN DRAIN <br> 3-VFB89 VENTS PURGE <br> 4-VFB85 SSME FERRY <br> 5-VFB88 AEROSURF FERRY <br> 6 - VFM01 VENTS FERRY <br> 7 - VFB79 MDM BSR <br> 8 - VFBF3 POSTLAND-SSME NULLING <br> 9 - VFD08 POSTLAND-OMS GN2 VENTING <br> 10-VFE03 POSTLAND-MPS CONFIGURE |
|  |  | ITEM 2 EXEC | Reads sequence from MM and loads it into the sequence buffer and initiates execution. If successful status = CPLT. OPS transitions are inhibited while sequence is being loaded. |
| 3 | Stop and Cancel Sequence | ITEM 3 EXEC | Causes sequence to stop after completing the current step. Status $=$ SPND. |
|  |  | $\text { ITEM } 4+\mathrm{XXXX}$ | Causes sequence to stop when the specified step (XXXXX) is reached, main sequence only. Step XXXXX displayed. |
|  |  | ITEM 5 EXEC | Causes the main sequence to be cancelled. |
| 4 | Resume Sequence | ITEM 6 EXEC | Causes initiation of the sequence at the next step. Status $=$ RUN . |
|  |  | $\begin{aligned} & \text { ITEM } 7+\mathrm{XXXXX} \\ & \text { EXEC } \end{aligned}$ | Causes a stopped or suspended sequence to resume at the step number specified. $\text { Step }=\mathbf{X X X X X}$ |
| 5 | Clear MSGS | ITEM 8 EXEC | Causes the text messages and associated times that are currently being displayed to be blanked. |


| TABLE 3.105-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Selects a Sequence for Execution | 1 | 84 | DEC | 2 |  |
| 2 | Reads and Executes the Sequence Identified in ITEM 1 |  |  |  | 2 |  |
| 3 | Causes Execution to Stop at the end of the Current Step |  |  |  | 3 |  |
| 4 | Causes Execution to Stop When the Specified Step is Reached, Main Sequence Only | 0 | 32763 | DEC | 3 |  |
| 5 | Terminates the Sequence and Clears it from the Display and Buffer |  |  |  | 3 | A remote text indicator of END is driven to display. |
| 6 | Resumes a Suspended Sequence at the Next Step |  |  |  | 4 | A remote text indicator of RUN is driven to display. |
| 7 | Resumes a Suspended <br> Sequence at the Specified Step | 0 | 16383 | DEC | 4 |  |
| 8 | Clears Out All the Messages on the Display Together with Their Associated Time Tags |  |  |  | 5 |  |

-3 The following additional notes are provided to further define status fields, etc., on SPEC 105.
-3.1 Display parameter definition - The following parameters are driven to the display as a result of sequence execution. The parameters are driven to the display for sequences called from the TCS CONTROL SPEC.
-3.1.A Step XXXXX - The decimal equivalent of the current operator step number. If the sequence is suspended by a stop (or stop-at) or TCS error (refer to CPDS SS-P-0002-150, OFT LDB Software Interface Requirements), the next step number is displayed.
-3.1.B Status XXXX - A remote text indicator with the following characteristics is driven:
RUN - A RUN indicator is displayed when the sequence is in memory, resolved, and is in nonsuspended execution.
SPND - A suspend indication is displayed any time the sequence is suspended by a TCS error or stopped by a TCS operator.
END - An END indicator is displayed when the end operator is processed (either by normal or TCS cancel termination).
-3.1.C Error code XXX - The decimal equivalent of the error code is displayed when an error is encountered by TCS. Error codes, conditions and sequence execution shall be the same as specified in CPDS SS-P-0002-150 (OFT LDB Software Interface Requirements). The error code field is blanked upon a RESUME or CANCEL item entry. See Table 3.105-3 for error codes.
-3.1.D BITE XXXX - The hexadecimal equivalent of the TCS/call program error response RW 8 is displayed upon TCS processing of an error. The BITE field is blanked upon a RESUME or CANCEL item entry.
-3.1.E Time XX:XX:XX - The Greenwich Mean Time (GMT) time of day (HR:MIN:SEC) of the error is displayed upon TCS processing an error. The time field is blanked upon a RESUME or CANCEL item entry.
-3.1.F Time XX:XX:XX/text - The text entry data from the text operators and text operator execution time is displayed from the latest 15 text operators in a pushdown fashion. The 16th oldest text entry is discarded sequentially. All text operators (with onboard destinations) are displayed on this display, regardless of whether they result from execution of sequences under the control of the LDB or the TCS CONTROL display function. (14474)
-3.1.G ECP error XXX - The decimal equivalent of the Explicitly-Coded Program (ECP) error code is displayed when a CALL program error is encountered. The error codes and conditions are the same as specified in Section 7.1.6. The ECP error code field is blanked upon the start of a new ECP.
-3.2 TCS Control Display Function Description
-3.2.A Initialization - When the SPEC is called, the display is initialized blank except for the text messages and for the conditions described in item B below. When the display is initialized, the latest text messages (up to 15) are displayed. That is, the text message entries are constructed independently of whether or not the TCS CONTROL display function is active, so that any time the display is called, the text entries reflect the results of all (LDB and SPEC) TCS text operators (with onboard destinations) that have been executed since initialization of TCS or since the clear message (Item 8) has been entered.

## TABLE 3.105-3. TCS ERROR CODES

## DECIMAL NO. MESSAGE

0

1
2

3

4

5

6

7

8

9

Spare.
A worker task is not available or the sequence specified is not active.
Too many sequences requested.
Illegal OP code 7 request (GPC select).
User attempted to resume a sequence that was not stopped.
TCS MEC command interlock violation attempted.
Nonzero BITE.
Illegal arithmetic operation attempted.
Unable to honor OP Code 6 request or OP Code 5 .
Spare.
Nonexistent step number specified.
Sequence is not on mass memory.
Nonexistent sequence specified.
GPC port/BTU is invalid.
Format or information for operator code is incomplete or illegal.
Invalid operator code.
Explicitly-coded program busy or not found or buffer is not available.
I/O error encountered.
Mass memory sequence request/retrieval/miscompare.
Payload communications software not enabled.
Payload communications software transmission error.
-3.2.B Cleanup - When the TCS CONTROL SPEC is deselected, the cleanup results in a TCS CANCEL to the sequence, if the sequence was called via the TCS CONTROL SPEC. In the event TCS sequence processing is suspended awaiting for the sequence response buffer to be transmitted to the ground, the cancellation of the sequence can be delayed until sequence processing starts up again. If the TCS CONTROL SPEC is re-entered before the sequence has cancelled, the display will reflect the status of the sequence prior to SPEC transition. Also, Items 1-7 will be rejected as ILLEGAL ENTRY until the sequence has cancelled. When the END operator is processed by the sequence (or upon CANCEL Item entry), the display function blanks all parameter fields, with the exception that the STATUS remote text that is driven to END.
-3.2.C Sequence operation - Only one main sequence at a time can be run from the TCS CONTROL SPEC. Subsequences can be referenced by the main sequence, but the display interaction with the user is with the main sequence only. Once a sequence is called (ITEM 2 EXEC), the sequence must run to completion (processing of the main sequence END operator) or a TCS CANCEL (Item 5) must be entered before another sequence ID can be entered.
-3.3 Error processing - Error processing shall make use of the standard TCS error codes for user errors and errors associated with TCS execution. An appropriate TCS error code shall be driven for the following:
-3.2.A Input of sequence ID for which the corresponding MTSD entry has binary zeros for the name.
-3.2.B Attempting to call a sequence from MM if sufficient buffers are not available.
-3.2.C Entry of resume (or resume-at) if the sequence is not suspended.
-3.2.D Any other errors fielded by TCS as defined in CPDS SS-P-0002-150, OFT LDB Software Interface Requirements.
-3.4 The TCS Control SPEC will generate an ILLEGAL ENTRY message for the message line (class 5) if the user attempts the following:
-3.2.A An item entry of 1 through 7 while a previous item entry ( 1 through 7 ) process is in progress.
-3.2.B An item entry of 1 through 7 during TCS processing of the priority change operator (operator code 24).
-3.2.C Input of sequence ID greater than 64 or equal to zero.

```
RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0
```


### 3.5.106 DISPLAY: MANUAL CONTROLS

-1 AVAILABILITY: SPEC 106 in OPS G9.
-2 PURPOSE: The MANUAL CONTROLS display is available in OPS G9 only. The display function provides the capability to test the GPC interface with switch contacts and transducers associated with the trim switches, body-flap switches, rotational and translational hand controllers, Speed Brake Thrust Controllers (SBTC), and Rudder Pedal Transducer Assemblies (RPTA). When SPEC 106 is active, all outputs from the controllers to the data buses are inhibited; i.e., movement of a controller or switch will result only in display of the data.

| XXXX/XXX/106 MANUAL CONTROLS | XX X DDD/HH:MM:SS |
| ---: | ---: |
| DDD/HH:MM:SS |  |


(XX)

Figure 3.106

TABLE 3.106-1. DISPLAY FUNCTIONS

| \# | FUNCTION | $\begin{aligned} & \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| :---: | :---: | :---: | :---: |
| 1 | SPEC Call-Up | SPEC 106 PRO | The manual controls display is available only in OPS G9. HDA must be active to collect dynamic data for processing and display. |
| 2 | Switch and Transducer Data |  | Rotational Hand Controllers (RHC): Data is displayed as percent of deflection (0-99\%). |
|  |  |  | Left - L Three channels each of <br> Right - $R$ roll ( R ), pitch ( P ), and <br> Aft - A yaw (Y) displayed. |
|  |  |  | Speed Brake Thrust Controller (SBTC) and Rudder Pedal Transducers Assemblies (RPTA): Three channels each for left and right hand stations. Data is displayed as percent of deflection (0-99\%). |
|  |  |  | Trim Switches - Roll, pitch and yaw axes. Two channels each for left-hand and right-hand panel switches and for left-hand and right-hand RHC switches (no RHC yaw trim switches). Data is displayed as + or - . |
|  |  |  | Body Flap Switches - Two channels each for left and right stations. <br> Displayed data is U (up) or D (down). <br> Translation Hand Controllers - $\mathrm{X}, \mathrm{Y}$, and Z axes. Three channels each for forward and aft stations. Data is displayed as + or - . |

### 3.5.110 DISPLAY: BUS/BTU STATUS

-1 AVAILABILITY: SPEC 110 is available in OPS G9 and OPS P9 only.
-2 PURPOSE: The BUS/BTU status display provides information about the health of LRUs. It may only be requested when only one GPC is in RUN. All other GPCs must be in HALT.


Figure 3.110

| TABLE 3.110-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 1 | Display Call-Up | SPEC 110 PRO | The BUS/BTU status display is available in OPS G9 and OPS P9 only. |
| 2 | Port Selection | ITEM 1 EXEC ITEM 2 EXEC | Select primary port status for display (default). <br> Select secondary port status for display. |
| 3 | GPC Status |  | MODE - Always R for RUN <br> MC - Memory Configuration in GPC (9-G9 or 6-P9) <br> MF - Major Function currently active (GN or PL) - NOTE, 2nd field is always blank <br> CPU - Duty cycle of CPU in percent |
| 4 | Bus Status |  | For each bus shown, a count of four types of sensed errors is shown. The count ranges 0-9, rolls over, and is active only when the display is active, and is initialized to 0 for each call-up. <br> Type of errors are: <br> B: Count of Digital Data Bus errors: <br> Time out (other than 1st word), parity, MIA mismatch, SYNC, SEV, block timeout. <br> T: Count of initial time out (1st word errors). <br> O: Count of output errors: transmitter disabled, gap. <br> P: Count of program errors: self-test illegal OP code, boundary alignment, MSC time out, DMA instruction-read parity, DNA data-read parity. |


| TABLE 3.110-2. DISPLAY ITEMS |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |  |  |
| 1 | Select Primary Port |  |  |  | 2 |  |  |  |
| 2 | Select Secondary Port |  |  |  | 2 |  |  |  |

Date: 12/20/90

### 3.5.111 DISPLAY: SL MEMORY DUMP

-1 AVAILABILITY: SPEC 111 in OPS P9.
-2 PURPOSE: The Spacelab Computer Memory Dump Display is a specialist function that is available in OPS P9. This display provides control and monitoring functions for the dumping of data from the spacelab computers.

XXXX/111/ SL MEMORY DUMP XX X DDD/HH:MM:SS
SM COM BUFF XXX
DDD/HH:MM:SS
SL COMP SEL
SS $1 X$
EXP 2X
SL COUPLER
SEL A 3X
B 4X
5 START ADD $\underline{X X X X}$
6 LENGTH $\quad \underline{X X X X X}$
DUMP 7 XXXX
WORDS ACQ XXXXX
FAIL RHW XXXX
AW XXXXX
LAST ADD XXXX

Figure 3.111

| TABLE 3.111-1. DISPLAY FUNCTIONS |  |  |  |
| :--- | :--- | :--- | :--- |
| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |




### 3.5.112 DISPLAY: GPC/BTU I/F

-1 AVAILABILITY: SPEC 112 in OPS G9.
-2 PURPOSE: The GPC/BTU Interface display provides the capability to test the interfaces between a GPC and the Bus Terminal Units (BTUs) connected to it. Two levels of testing are available: Level 1 provides a basic wrap test between the GPC and selected BTUs; Level 2 provides a high resolution test of the selected BTUs as well as the wrap test.
XXXX/112/ GPC/BTU I/F XX X DDD/HH:MM:SS

BTU SELECTION TEST STATUS
FF1 1X PCMMU 12X XXXX MDM OUTPUT TEST
2 2X MMU1 $13 X$ BTU ITEM XX MODULE XX
3 3X 2 14X STEP XXXXXX
4 4X MEC1 15X RDW XXXX ANALOG OUTPUTS
FA1 5X 2 16X BCE STAT RG $0 \pm X . X X 1 \pm X . X X$
$26 X$ EIU1 17X XXXXXXXX $2 \pm X . X X \quad 3 \pm X . X X$
$37 \mathrm{X} \quad 2$ 18X $4 \pm \mathrm{X} . \mathrm{XX} 5 \pm \mathrm{X} . \mathrm{XX}$
$48 \mathrm{X} \quad 3$ 19X PORT SEL 1 31X $6 \pm \mathrm{X} . \mathrm{XX} 7 \pm \mathrm{X} . \mathrm{XX}$
PF1 9X DDU 20X $232 X 8 \pm X . X X ~ 9 \pm X . X X$
2 10X MCIU 21X
CMD 22X
SRB 23X
ALL DES
MDMS 11X ALL 24X
LEVEL 1 25X
TEST LEVEL 2 26X MDM OUTPUT 27X
CONTROL TERMINATE 28
CONTINUE 29
$10 \pm X . X X 11 \pm X . X X$
$12 \pm X . X X 13 \pm X . X X$
$14 \pm X . X X 15 \pm X . X X$
DISCRETE OUTPUTS
CHANNEL 0 XXXXXX
CHANNEL 1 XXXXXX
CHANNEL 2 XXXXXX

BTU CYCLIC BITE 30X

Figure 3.112

|  |  | ABLE 3.112-1. DI | PLAY FUNCTIONS |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 1 | SPEC Call-Up | SPEC 112 PRO | The GPC/BTU I/F display is available in redundant set in OPS G9 with the exception of the PCMMU test which is executed with GPC in SIMPLEX. |
| 2 | Bus Terminal Unit Selection | ITEM N EXEC | Select BTUs to be tested ( $\mathrm{N}=1-10,12-23$ ). $(41008)(41533)$ |
|  |  | ITEM 11 EXEC | Select all MDMs. |
|  |  | ITEM 24 EXEC | Deselect all BTUs. <br> NOTE: <br> a. No non-MDM BTU may be selected if any MDM is selected. |
|  |  |  |  |
|  |  |  | b. Only one non-MDM BTU may be selected at a time. |
|  |  |  | c. ITEM 11, when input, will deselect any non-MDM selected. |
|  |  |  | d. No change may be made when a test is in progress or suspended. |
| 3 | Port Selection | ITEM 31 EXEC | Select port 1 of BTU(s) being tested. |
|  |  | ITEM 32 EXEC | Select port 2 of BTU(s) being tested (mutually exclusive ITEMs). |
| 4 | Test Controls | ITEM 25 EXEC | Initiate level 1 test. |
|  |  | ITEM 26 EXEC | Initiate level 2 test. |
|  |  | ITEM 27 EXEC | Initiate MDM output test. (30072) |
|  |  |  | NOTE: When test is initiated, TEST STATUS on display is driven to ACT. If an error causes the test to be suspended the STEP, RDW, and (possibly) BCE STAT REG are displayed. Normal completion sets TEST STATUS = CPLT. |
|  |  | ITEM 29 EXEC | Optional - required only if test is suspended. Resume test which was suspended (illegal otherwise). Upon entry, STEP, RDW and BCE STAT REG are blanked. |


| TABLE 3.112-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
|  |  | ITEM 28 EXEC | Optional - Terminate test which is in progress or suspended (illegal otherwise). TEST STATUS <br> $=$ CPLT; other data blanked. <br> NOTE: The user should refer to requirements document SS-P-0002-550, Section 4.2 for detailed data which may be displayed for various LRUs/steps, etc. |
| 5 | BTU Cyclic BITE Read | ITEM 30 EXEC | This is a flip/flop switch. Upon first entry, a cyclic read at a 1.92 sec rate of all MDM BITEs is initiated. Data is downlisted at 1 HZ rate. Reads continue until terminated by ITEM 30 again, or an OPS transition is initiated. |


| TABLE 3.112-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select FF1 MDM |  |  |  | 2 | Selection of any MDM for Level 2 test with any IMU in |
| 2 | Select FF2 MDM |  |  |  | 2 | other than STANDBY will |
| 3 | Select FF3 MDM |  |  |  | 2 | message. |
| 4 | Select FF4 MDM |  |  |  | 2 |  |
| 5 | Select FA1 MDM |  |  |  | 2 |  |
| 6 | Select FA2 MDM |  |  |  | 2 |  |
| 7 | Select FA3 MDM |  |  |  | 2 |  |
| 8 | Select FA4 MDM |  |  |  | 2 |  |
| 9 | Select PF1 MDM |  |  |  | 2 |  |
| 10 | Select PF2 MDM |  |  |  | 2 |  |
| 11 | Select all MDMs |  |  |  | 2 |  |
| 12 | Select PCMMU |  |  |  | 2 | Selection of PCMMU for test |
| 13 | Select MMU1 |  |  |  | 2 | ENTRY message if GPCs are other than SIMPLEX. |
| 14 | Select MMU2 |  |  |  | 2 |  |
| 15 | Select MEC1 |  |  |  | 2 |  |
| 16 | Select MEC2 |  |  |  | 2 |  |
| 17 | Select EIU 1 |  |  |  | 2 |  |
| 18 | Select EIU 2 |  |  |  | 2 |  |
| 19 | Select EIU 3 |  |  |  | 2 |  |
| 20 | Select DDU |  |  |  | 2 |  |
| 21 | Select MCIU |  |  |  | 2 |  |
| 22 | Select CMD |  |  |  | 2 |  |
| 23 | Select SRB |  |  |  | 2 |  |
| 24 | Deselect all BTUs |  |  |  | 2 |  |
| 25 | Initiate Level 1 Test |  |  |  | 4 |  |
| 26 | Initiate Level 2 Test |  |  |  | 4 |  |



| RELEASE: | OI20 | Date: $\quad 12 / 20 / 90$ |
| :--- | :--- | :--- |
| BOOK: | PASS User's Guide | Rev: 0 |

### 3.5.113 DISPLAY: ACTUATOR CONTROL

## -1 AVAILABILITY: SPEC 113 in OPS G9.

-2 PURPOSE: The Actuator Control display provides control and monitoring of the positioning of an aerosurface, SSME, OMS, and body flap actuators by utilizing the capabilities of the ramp function generator (RFG) and body flap drive (BFD) functions. It also supports initiation and termination of all actuator initialization (AI) modes and the body flap monitor (BFM) avoidance and interference checks; the inhibiting of OMS power discrete parameter output; the selective replacement of position limit values for SRB, elevon, and speedbrake actuators; the selective inhibiting of RFG and FRT collision avoidance and interference checks; the limiting of the multiple actuator test (MAT) plateau segment duration and modification of the RFG rate limit.


Figure 3.113



| TABLE 3.113-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :--- | :--- | :--- | :--- |
| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |


| TABLE 3.113-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 7 | Stop Actuator Positioning | ITEM 32 EXEC | The first entry of ITEM 32 will cause movement of the selected actuator or AI mode to stop, enable status indicating stop active, and remove the ITEM 31 status. It will also inhibit entry of ITEMs 22-28 and 31 until a second entry of ITEM 32 is made. The second entry of ITEM 32 will enable ITEM 22-28 and 31 entries, blank the rate and final position fields, deselect the last actuator or AI mode and remove the ITEM 22-28 and 32 statuses. <br> Entry of ITEM 32 without an active SPEC initiated actuator positioning process will result in an ILLEGAL ENTRY message. |
| 8 | Body Flap Monitor Select/Deselect | ITEM 33 EXEC | Entry will activate/deactivate execution of body flap monitor (BFM) function depending on the last state (active/inactive) of the BFM process. The item status is displayed when BFM is active. |
| 9 | SRB and Nosewheel Actuator Select/Deselect | ITEM 34 EXEC | The first entry of ITEM 34 causes SRB and nosewheel actuator MDMs to be commanded in AI modes 0 and 1 and enables item status. A second entry of ITEM 34 causes these actuator MDMs to be excluded from AI commanding and removes the item status. |
| 10 | Rudder/Speedbrake <br> MAT Interference <br> Bypass | ITEM 35 EXEC | The first entry of ITEM 35 causes rudder/speedbrake interference check to be bypassed in the MAT function and enables item status. A second entry of ITEM 35 enables the interference check and removes item status. |
| 11 | Rudder/Speedbrake RFG and FRT Interference Bypass | ITEM 36 EXEC | The first entry of ITEM 36 causes rudder/speedbrake interference check to be bypassed in the RFG and FRT functions and enables item status. A second entry of ITEM 36 enables the interference checks and removes item status. |
| 12 | 40 msec MAT Plateau Select | ITEM 37 EXEC | The first entry of ITEM 37 causes MAT plateau duration to be set at 40 msec and enables item status. A second entry of ITEM 37 returns the plateau duration to its original value and removes item status. |


| TABLE 3.113-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 13 | RFG Collision Avoidance Bypass | ITEM 38 EXEC | The first entry of ITEM 38 causes collision avoidance and SSME1/OMS pods clearance checks to be bypassed in the RFG functions and enable item status. A second entry of ITEM 38 enables these checks and removes the item status. |
| 14 | FRT Collision Avoidance Bypass | ITEM 39 EXEC | The first entry of ITEM 39 causes collision avoidance in the FRT function to be bypassed and enables item status. A second entry of ITEM 39 enables FRT collision avoidance checks and removes item status. |
| 15 | OMS Power Discretes Bypass | ITEM 40 EXEC | ITEM 40 inhibits output of the OMS power discretes by the actuator ECP functions and inhibits the resultant out of tolerance error codes from the AI function for OMS actuators. This item is initialized to the inhibit state during the OPS G9 initialization process and item status is enabled (*). An entry of ITEM 40 enables the output of OMS discretes, re-enables the AI function error processing and removes the item status. |
| 16 | SRB Software Stop Limits Select | ITEM 41 EXEC | The first entry of ITEM 41 causes the SRB software stop limits to replace the high and low position limits for SRB actuators and enables the item status. A second entry of ITEM 41 returns SRB limits to original values and removes item status. |
| 17 | Elevon High Position Limit Select | ITEM 42 EXEC | The first entry of ITEM 42 causes the elevon high position limits to be replaced and enables item status. A second entry of ITEM 42 returns these limits to their original values and removes the item status. |
| 18 | Speedbrake Low <br> Position Limit Select | ITEM 43 EXEC | The first entry of ITEM 43 causes the speedbrake low position limit to be replaced and enables the item status. A second entry of ITEM 43 returns this limit to its original value and removes the item status. |
| 19 | 0.5 PCM Counts RFG Rate Limit Select | ITEM 44 EXEC | The first entry of ITEM 44 causes the RFG function rate limit to be set at 0.5 PCM counts and enables the item status. A second entry of ITEM 44 returns RFG rate limit to its original value and removes the item status. |

TABLE 3.113-1. DISPLAY FUNCTIONS (Continued)

| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
| :--- | :--- | :--- | :--- |
|  |  | Displayed data: The pressure in psia for <br> hydraulic systems 1, 2, and 3 is displayed to the <br> left of ITEM 33, body flap monitor <br> select/deselect. <br> The open/close position of the main engine <br> (ME) isolation valves is displayed to the left of <br> ITEM 34, SRB and nosewheel actuator <br> select/deselect. A 'C' will be displayed after the <br> number 1, o or 3 for each of the isolation valves <br> that are in the closed position. A Blank is <br> displayed after the number if the valve is in the <br> open position. <br> NOTE: Values displayed for CMD, POS, <br> FAIL, ABCD, HYD PR 12 2, 3, Md ME ISO V V <br> 123 are updated cyclically at 2 Hz. |  |


| TABLE 3.113-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select Speedbrake Actuator |  |  |  | 2 |  |
| 2 | Select Rudder Actuator |  |  |  | 2 |  |
| 3 | Select LIE Actuator |  |  |  | 2 |  |
| 4 | Select RIE Actuator |  |  |  | 2 |  |
| 5 | Select LOE Actuator |  |  |  | 2 |  |
| 6 | Select ROE Actuator |  |  |  | 2 |  |
| 7 | Select SSME 1P <br> Actuator |  |  |  | 2 |  |
| 8 | Select SSME 1Y <br> Actuator |  |  |  | 2 |  |
| 9 | Select SSME 2P <br> Actuator |  |  |  | 2 |  |
| 10 | Select SSME 2Y <br> Actuator |  |  |  | 2 |  |
| 11 | Select SSME 3P Actuator |  |  |  | 2 |  |
| 12 | Select SSME 3Y <br> Actuator |  |  |  | 2 |  |
| 13 | Select OMS RPA Actuator |  |  |  | 2 |  |
| 14 | Select OMS RPS Actuator |  |  |  | 2 |  |
| 15 | Select OMS RYA Actuator |  |  |  | 2 |  |
| 16 | Select OMS RYS Actuator |  |  |  | 2 |  |
| 17 | Select OMS LPA Actuator |  |  |  | 2 |  |
| 18 | Select OMS LPS Actuator |  |  |  | 2 |  |
| 19 | Select OMS LYA Actuator |  |  |  | 2 |  |


| TABLE 3.113-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 20 | Select OMS LYS <br> Actuator |  |  |  | 2 |  |
| 21 | Select Body Flap Actuator |  |  |  | 2 | All 3 Body Flap actuators selected. |
| 22 | Select and Start AI Mode 0 |  |  |  | 3 |  |
| 23 | Select and Start AI Mode 1 |  |  |  | 3 |  |
| 24 | Select and Start AI Mode 2 |  |  |  | 3 |  |
| 25 | Select and Start AI Mode 3 |  |  |  | 3 |  |
| 26 | Select and Start AI Mode 4 |  |  |  | 3 |  |
| 27 | Select and Start AI Mode 5 |  |  |  | 3 |  |
| 28 | Select and Start AI Mode 6 |  |  |  | 3 | ITEMS 1 through 28 are mutually exclusive. |
| 29 | Actuator Rate Select | 0.0 | +99.99 | $\begin{aligned} & \mathrm{deg} / \\ & \mathrm{sec} \end{aligned}$ | 4 |  |
| 30 | Actuator Final Position Select | -99.99 | +99.99 | deg | 5 |  |
| 31 | Start Actuator Positioning |  |  |  | 6 |  |
| 32 | Stop Actuator/AI <br> Positioning |  |  |  | 7 |  |
| 33 | Body Flap Monitor Select/Deselect |  |  |  | 8 |  |
| 34 | SRB and Nosewheel MDMs <br> Select/Deselect |  |  |  | 9 |  |
| 35 | Rudder/Speedbrake MAT Interference Bypass |  |  |  | 10 |  |


| TABLE 3.113-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 36 | Rudder/Speedbrake RFG and FRT Interference Bypass |  |  |  | 11 |  |
| 37 | 40 msec MAT Plateau Select |  |  |  | 12 |  |
| 38 | RFG Collision Avoidance Bypass |  |  |  | 13 |  |
| 39 | FRT Collision Avoidance Bypass |  |  |  | 14 |  |
| 40 | OMS Power Discretes Bypass |  |  |  | 15 |  |
| 41 | SRB Software Stop <br> Limits Select Active Inactive | $\begin{aligned} & -512 \\ & -460 \end{aligned}$ | $\begin{aligned} & 511 \\ & 460 \end{aligned}$ | PCM <br> PCM | 16 |  |
| 42 | Elevon High Position <br> Limit Select Active Inactive |  | $\begin{aligned} & 511 \\ & 480 \end{aligned}$ | PCM <br> PCM | 17 |  |
| 43 | Speedbrake Low Position Limit Select Active Inactive | $\begin{aligned} & -512 \\ & -344 \end{aligned}$ |  | PCM <br> PCM | 18 |  |
| 44 | 0.5 PCM Counts RFG Limit Select |  |  |  | 19 |  |

## -3 NOTES:

-3.1 Termination of the SPEC function causes the following actions:
a. Uncompleted positioning of an individually selected actuator will be terminated. SPEC initiated BFD and RFG processes are cancelled.
b. The BFM and AI processes are unaffected by SPEC termination.
-3.2 The following display fields are blanked by SPEC termination:
a. ITEM status for items 1 through 21.
b. ITEM status for items 31 and 32
c. RATE
d. FINAL POSITION
e. Direction of Movement
-3.3 The following display fields are unaffected by SPEC initialization:
a. ITEM status for items 22 through 28
b. ITEM status for items 33 through 44
c. ECP ERROR
d. STATUS
e. CMD values
f. POSN values
g. FAIL status columns
h. HYD PR values
i. ME ISO V.
-3.4 If an actuator rate of $0.0 \mathrm{deg} / \mathrm{sec}$ is entered, the RFG will execute until cancelled by entry of ITEM 32, Test Control Supervisor (TCS) cancel operator, SPEC termination, or OPS transition.
-3.5 Items 35-44 inhibit normal FC limits and collision avoidance checks. Use of these items should be limited to those unique situations where inhibiting these built in limits and checks poses no danger of damage to the orbiter.

### 3.5.1011 DISPLAY: XXXXXX TRAJ

-1 AVAILABILITY: OPS G1 DISPLAY (MM101, 102, 103) and OPS G6 DISPLAY (MM601).
-2 PURPOSE: The XXXXXX TRAJ display provides the crew with trajectory and guidance information during ascent and manual aborts. The central plot displays range vs. altitude rate. At abort initiations, the mode selected (AOA, ATO, RTLS, TAL) is indicated as part of the title as follows:

## XXXXXX Title

| LAUNCH | MM101 |
| :--- | :--- |
| AOA or ASCENT | MM102 |
| ATO, TAL, or ASCENT | MM103 |
| RTLS | MM601 |

AOA or ASCENT
ATO, TAL, or ASCENT
RTLS

## Major Mode

MM101
MM102

MM601


Figure 3.1011

| TABLE 3.1011-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \\ & \hline \end{aligned}$ | NOTES |
| 1 2 | Display Call-Up <br> Display Data | OPS 101 PRO | This entry activates the LAUNCH TRAJ display. Thereafter, automatic mode transitions bring up Displays 1021, 1031, 6011. (37551) Display 6011 can also be brought up manually. <br> In the upper left corner of the plot space are these entries: <br> GUID - the value of the guidance status parameter (GUID) appears at RTLS selection (MM601). GUID provides an indication of the status of the guidance solution prior to powered pitcharound. The value of GUID is blank, a mnemonic or a 3 digit integer. <br> a) Prior to RTLS selection the field is blanked. <br> b) At RTLS selection GUID INIT will be displayed until initialization is complete. <br> c) When guidance has converged and the vehicle progresses to the powered pitcharound point, GUID displays the percent deviation of the predicted final mass from the RTLS mass target. This numeric value will decrement to zero as the pitcharound point is approached. <br> d) If guidance is unconverged or powered pitcharound has been delayed due to an attitude violation GUID INHB will be displayed to indicate powered pitcharound is inhibited. <br> e) At the beginning of powered pitcharound GUID PPA will be displayed and the field will be frozen. <br> TMECO - predicted time of Main Engine Cutoff, in MET. <br> PRPLT - propellant left in ET, in percent. <br> $\mathrm{PC}<50$ - flashes double overbright when SRB chamber pressure is less than 50 psi. <br> SEP INH - flashes double overbright <br> a) in MM102, when SRB Auto SEP is inhibited; this occurs when RGA rates, or dynamic pressure ( $\overline{\mathbf{q}}$ ) exceed limits. |


| TABLE 3.1011-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 3 | Axes of Graph <br> Plots |  | b) in MM103, when ET AUTO SEP is inhibited; this occurs if either the angle of attack ( $\alpha$ ) the side-slip angle ( $\beta$ ), or RGA rotation rates exceed limits. <br> In the upper right corner $(X=38, Y=3)$ a double overbright flashing alpha " $F$ " will be displayed when guidance enters the fine countdown mode during RTLS. <br> Horizontal axis - the scale across the top is Glide Range Potential ( $\Delta \mathrm{R}$ ); this is the horizontal component of relative velocity, indicated by " $\nabla$." On this axis are vertical bars (tick marks), indicating where certain events are expected to occur: <br> PD tickmark - nominal 2 engine RTLS powered pitchdown. <br> PD 3 tickmark - pitchdown for a 3 engine RTLS. <br> Vertical axis - the scale on the left side is the DELTA HDOT scale. This is the HDOT from navigation minus a reference HDOT, which yields a change in vertical velocity. <br> The central plot (curved line) is the RTLS abort trajectory (altitude $(\mathrm{H})$ vs. the horizontal component of relative velocity). ATO and RTLS indicate abort regions. <br> The following symbols indicate vehicles states: <br> $\Delta$ - A moving, overbright triangle shows current vehicle state from navigation. <br> 0-2 moving, overbright circles show the predicted vehicle states, 10 and 20 seconds in the future. <br> 2 lines - 1 above and 1 below the central plot, are $\overline{\mathrm{q}}$ constraints. Below the lower line, $\overline{\mathrm{q}}>10$ psf . Above the upper line, $\overline{\mathrm{q}}<2 \mathrm{psf}$. These are ET separation constraints and are not mission dependent. <br> - a moving overbright right pointing triangle, to the left of the DELTA HDOT scale represents current DELTA HDOT. This flashes if the value is off-scale. <br> The right most curve is the nominal ascent profile. |


| TABLE 3.1011-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :--- | :--- | :--- | :--- |
| \# | FUNCTION | KYBD <br> ENTRY(S) | NOTES |
|  |  |  | The line to the left of the nominal ascent line is <br> for the engine out at liftoff case. |

RELEASE: OI20 Date: 12/20/90BOOK: PASS User's Guide
Rev:

### 3.5.1021 DISPLAY: XXXXXX TRAJ

-1 AVAILABILITY: OPS G1 DISPLAY for MM102.
-2 PURPOSE: This display is identical to that described for MM101, refer to section 3.5.1011-1. (45176)

RELEASE: OI20

BOOK: PASS User's Guide

### 3.5.1031 DISPLAY: XXXXXX TRAJ

-1 AVAILABILITY: OPS G1 DISPLAY for MM103. (40556)
-2 PURPOSE: This display is identical to that described for MM101, refer to page 3.5.1011-1. (45176)

| RELEASE: | Ol20 |
| :--- | :--- |
| BOOK: | PASS User's Guide | | Date: |
| :---: |
| 12/20/90 |
| Rev: |

### 3.5.1041 DISPLAY: XXXXX MANEUVER YYYYY

-1 AVAILABILITY: DISPLAY for GNC MM104, 105, 106, 202, 301, 302 and 303.
-2 PURPOSE: This display provides a means of entering maneuvers utilizing the OMS and RCS propulsion, evaluating their effects on the trajectory, and adjusting parameters, as necessary. It also assists the crew in maneuver setup, maneuver monitoring, and is used for trimming burn residuals when required. Selection of the active gimbal drive system and initiation of the automatic check of the active gimbal drive systems is also provided. Actual engine gimbal angle readouts are provided to monitor TVC operation and status.
-2.1 In Major Modes 104 and 105, the display provides the crew with the capability to declare an AOA or ATO abort as well as an override of the automatic target selection. The capability to change the type of abort desired is also provided. In MM105, the display provides the crew with an indication that the targeting for the AOA OMS 2 burn is complete by flashing 'OPS 301 PRO' in the body of the display. In OPS 3 only, it provides the crew the additional capability to execute and terminate: 1) a burnoff of forward RCS propellant for center-of-gravity control, and 2) the simultaneous motion of all aerosurfaces for hydraulic fluid thermal conditioning. In OPS 1 and 3, when guidance mode is PEG 4, or in OPS 2 when guidance mode is LAMBERT, the values of VGO_LVLH components are displayed for items 19-21.
-3 TITLE: The title of this display is partially dynamic due to the number of maneuvers it must support. For Major Mode 104, the following titles will be driven on the display:

| XXXX／／XxX | XXXXX MNVR YYYYY XX X DDD／HH：MM：SS |  |
| :---: | :---: | :---: |
| OMS BOTH 1X |  | DDD／HH：MM：SS |
| L 2XS | BURN ATT | XXXX |
| R 3XS | 24 R XXX | $\triangle$ VTOT XXXX．X |
| RCS SEL $4 X$ | $25 \mathrm{P} \times \mathrm{XXX}$ | TGO $X X: X X$ |
| 5 TV ROLL XXX | 26 Y XXX |  |
| TRIM LOAD | MNVR 27X | VGO $X \pm X X X X$ ．$X X$ |
| 6 P ［ XX ． X |  | $Y \pm X X X, X X$ |
| 7 LY HX．${ }^{\text {d }}$ | REI XXXX | $Z \pm X X X . X X$ |
| 8 RY EX． X | TXX XX：XX |  |
| 9 WT XXXXXX | GMBL | HA HP |
| 10 TIG | L R | TGT XXX $\pm$ XXX |
| XXX／XX：XX：XX． X | $P \pm X . X S \pm X . X S$ | CUR XXX $\pm$ XXX |
| TGT PEG 4 | $Y \pm X . X S \pm X . X S$ |  |
| 14 C1 XXXXX |  |  |
| 15 C2 HX． $\mathrm{HXXXX}^{\text {2 }}$ | PRI 28X 29X | 35 ABORT TGT XX |
| 16 HT XXX．${ }^{\text {PXX }}$ | SEC 30X 31X |  |
| 17 日T XXX．${ }^{18 X X}$ | OFF 32X 33X | FWD RCS |
| 18 PRPLT $⿴ 囗 十$ XXXXX |  | ARM 36X |
| TGT PEG 7 | GMBL CK 34X | DUMP 37X |
| $19 \triangle V X$ HXXXXX． X |  | OFF 38X |
| $20 \triangle V Y$ HXXXX．X | XXXXXXX | SURF DRIVE |
| $21 \triangle V Z \quad 4 X X X X, X$ |  | ON 39X |
| XXXX 22／TIMER 23 |  | OFF 40X |
|  |  | （ XX ） |

Figure 3.1041

| TABLE 3.1041-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 1 | Display Call-Up | OPS 104 PRO | Good only in MM103. (44206) |
|  |  | OPS 105 PRO | Good only in MM104. |
|  |  | OPS 106 PRO | Good only in MM105. (55121) |
|  |  | OPS 202 PRO | Good only in MM201. (44206) |
|  |  | OPS 301 PRO | Good only in OPS 0 , MM104,105,106, 201,301,302,303,801. (44206) |
|  |  | OPS 302 PRO | Good only in MM301. |
|  |  | OPS 303 PRO | Good only in MM302. |
| 2 | Select Engines for Burn |  | A down arrow is displayed in the parameter status column when threshold for chamber pressure $\Delta \mathrm{V}$ are exceeded. (37564) |
|  |  | ITEM 1 EXEC | Selects both OMS. (55314) |
|  |  | ITEM 2 EXEC | Selects left OMS. |
|  |  | ITEM 3 EXEC | Selects right OMS. |
|  |  | ITEM 4 EXEC | Selects RCS. |
| 3 | Desired TV Roll Angle | $\begin{aligned} & \text { ITEM } 5+\mathrm{XXX} \\ & \text { EXEC } \end{aligned}$ | The desired Local Roll Angle at Ignition ( $0=$ Heads Up). |
| 4 | Desired OMS Engine Trim Attitudes | ITEM $6 \pm$ X. ${ }^{\text {P EXEC }}$ | OMS Gimbal Pitch. (39371) (37564) |
|  |  | ITEM 7 $\pm$ X.X EXEC | OMS Gimbal Left Yaw. |
|  |  | ITEM $8 \pm$ X.X EXEC | OMS Gimbal Right Yaw. |
| 5 | Orbiter Weight | $\begin{aligned} & \text { ITEM } 9+\mathrm{XXXXXX} \\ & \text { EXEC } \end{aligned}$ | Orbiter WT in lbs. (37593)(44892) |
| 6 | PEG4 Maneuver <br> Targeting <br> Information | $\underset{\text { EXEC }}{\text { ITEM }} 10+\mathrm{XXX}$ | TIG days in MET. (37564) (37585) (41148) |
|  |  | $\underset{\text { EXEC }}{\text { ITEM } 11+X X}$ | TIG hours in MET. |
|  |  | $\begin{aligned} & \text { ITEM } 12+\mathrm{XX} \\ & \text { EXEC } \end{aligned}$ | TIG minutes in MET. |



| TABLE 3.1041-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 12 | Initiate Automatic Maneuver to Desired Burn Attitude | ITEM 27 EXEC | An asterisk will appear during the maneuver. (55325) |
| 13 | OMS Gimbals Selection Controls | ITEM 28 EXEC | Select primary active gimbal drive system on left side. |
|  |  | ITEM 29 EXEC | Select primary active gimbal drive system on right side. |
|  |  | ITEM 30 EXEC | Select secondary active gimbal drive system on left side. |
|  |  | ITEM 31 EXEC | Select secondary active gimbal drive system on right side. |
|  |  | ITEM 32 EXEC | Remove power from the left OMS gimbal drive system. |
|  |  | ITEM 33 EXEC | Remove power from the right OMS gimbal drive system. (14444) |
|  |  |  | NOTES: <br> a) PRI, SEC, and OFF are mutually exclusive; <br> b) A down arrow will be driven next to pitch and yaw displays for an FDI gimbal actuator failure. A commfault will invoke a M which has priority over a down arrow. |
| 14 | Perform OMS Gimbal System Check | ITEM 34 EXEC | Initiates an automatic TVC check of the active gimbal drive systems in all major modes where display is available. (37561) |
| 15 | Select AOA or ATO Abort | ITEM 35 EXEC | NOTES: Illegal entry if: <br> 1) Execution of Abort TGT Item except in MM104, MM105; <br> 2) Entry of Abort TGT ID $\neq 1$ or $3-5$ in MM104; <br> 3) Entry of Abort TGT ID $\neq 1-12$ in MM105; <br> 4) Entry of Abort TGT ID while OMS burn is enabled or in progress. |
| 16 | FRCS Fuel Dump Controls | ITEM 36 EXEC ITEM 37 EXEC ITEM 38 EXEC | Provides capability to arm, dump and turn off forward RCS propellant burnoff in OPS 3 only. <br> NOTE: OFF is mutually exclusive with ARM and DUMP |



| TABLE 3.1041-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Select Both OMS |  |  |  | 1 | CGZB_MNVR_DISP_FLAGWD2\$2 CGRB_INIT OMS ENGINE FDI CGZV_PROX_SYS_IND_FLĀG (OPS $\overline{3}$ only) ( $\overline{3} 7564$ ) (45749) |
| 2 | Select Left OMS |  |  |  | 1 | CGZB_MNVR_DISP_FLAGWD2 $\$ 3$ $\mathrm{CGZV}^{-}$PROP $\overline{\mathrm{S}} \mathrm{YS}$ IND FLAG (OPS $\overline{3}$ only) ( $\overline{3} 7564 \overline{4}$ (45749) |
| 3 | Select Right OMS |  |  |  | 1 | CGZB_MNVR_DISP_FLAGWD2\$4 CGZV-PROP $\bar{S} Y \mathrm{~S}$ IND FLAG (OPS $\overline{3}$ only) ( $\overline{3} 7564$ ) (45749) |
| 4 | Select RCS |  |  |  | 1 | CGZB_MNVR_DISP_FLAGWD2\$5 $\mathrm{CGZV}^{-}$PROP $\overline{\mathrm{S} Y S}$ IN̄D FLAG (OPS $\overline{3}$ only) ( $\overline{3} 7564$ ) (45749) |
| 5 | Enter TV <br> Roll Angle | 0 | 359 | Deg | 3 | OPS 2 only |
| 6 | Enter OMS Pitch Trim | -9.9 | +9.9 | Deg | 4 | CGCV_OMS_PITCH_TRIM_HFE CGCV_OMS_PITCH_TRIM_MFE (37564) (45749̄) |
| 7 | Enter OMS <br> Left Yaw <br> Trim | -9.9 | +9.9 | Deg | 4 | CGCV_OMS_YAW_TRIM_HFE\$1 CGCV-OMS_YAW_TRIM_MFE\$1 (37564) (45749) |
| 8 | Enter OMS <br> Right Yaw <br> Trim | -9.9 | +9.9 | Deg | 4 | CGCV_OMS_YAW_TRIM_HFE\$2 CGCV-OMS_YAW_TRIM_MFE\$2 (37564) (45749 ) |
| 9 | Enter Orbiter Weight | 100000 | 999999 | LBS | 5 | $\underset{(45749)}{\text { CGZV_WEIGHT_DISP }}$ |
| 10 | $\begin{aligned} & \text { Enter TIG } \\ & \text { Days } \end{aligned}$ | 0 | 365 | Days | 6 | $\begin{aligned} & \text { CGZV_TIG_DAY_DISP } \\ & (37564)_{(45749)}^{(1)} \end{aligned}$ |
| 11 | Enter TIG <br> Hours | 0 | 23 | Hours | 6 | $\begin{aligned} & \text { CGZV_TIG_HRS_DISP } \\ & (37564)_{(45749)} \end{aligned}$ |
| 12 | Enter TIG <br> Minutes | 0 | 59 | Min | 6 | $\begin{aligned} & \text { CGZV_TIG_MIN_DISP } \\ & (37564)_{(45749)} \end{aligned}$ |
| 13 | Enter TIG <br> Seconds | 0 | 59.9 | Sec | 6 | CGZV_TIG_SEC_DISP <br> (37564) (45749) (465526) |
| 14 | Enter <br> Intercept of Target Line (Cl) | 0 | 99999 | FPS | 6 | $\underset{(45749)}{\text { CGZV_TIG_INTERCEPT_DISP }}$ |


| TABLE 3.1041-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 15 | Enter Slope of Target Line (C2) | -9.9999 | +9.9999 |  | 6 | $\underset{(45749)}{\text { CGZV_TGT_SLOPE_DISP }}$ |
| 16 | Enter Target Altitude | 000.000 | 999.999 | NM |  | CGZV_TGT_ATTITUDE_DISP (45749) |
| 17 | Enter Target Angle | 0 | 359.9 | Deg | 6 | $\begin{aligned} & \text { CGZV TGT_THETA_DISP } \\ & (45749) \end{aligned}$ |
| 18 | Enter <br> PRPLT to be burned and Fuel Wasting Direction | -99999 | +99999 | LBS | 7 | CGZV_WEIGHT_OM2_TOBE_BURNED CGZV_FUEL_WĀSTING_DIRECTION CGZV-TGT_PRDLT_WT (45749) |
| 19 | Enter TGT <br> External <br> Delta <br> Velocity in X <br> Direction | -9999.9 | +9999.9 | FPS | 8 | $\begin{aligned} & \text { CGZV_EXTERN_DELTA_V_DISP\$1 } \\ & (37564)(45749) \end{aligned}$ |
| 20 | Enter TGT <br> External <br> Delta <br> Velocity in Y <br> Direction | -9999.9 | +9999.9 | FPS | 8 | $\begin{aligned} & \text { CGZV_EXTERN_DELTA_V_DISP\$2 } \\ & (37564)(45749) \end{aligned}$ |
| 21 | Enter TGT <br> External Delta Velocity in Z Direction | -9999.9 | +9999.9 | FPS | 8 | $\begin{aligned} & \text { CGZV_EXTERN_DELTA_V_DISP\$3 } \\ & (37564)(45749) \end{aligned}$ |
| 22 | Perform Targeting for a Burn |  |  |  | 9 | $\begin{aligned} & \text { CGZV_TIG_MFE } \\ & \text { CGZB_LOADFLASH } \\ & \text { CGGV_MASS_MFE } \\ & (45749) \end{aligned}$ |
| 23 | Start CRT <br> Event Timer Countdown to TIG |  |  |  | 10 | CZ1_EVT_CONTROL\$(2;16) ICC-CZ1V_EVT_ZERO_GMT2 CZlV̄_EVT_ZERO_GMTT\$2 (45749) Automatic in MM104 (37591) |
| 24 | Enter Desired <br> ADI Roll <br> Attitude <br> Angle | 0 | 359 | Deg | 11 | $\begin{aligned} & \text { CGZV_VEH_ROLL } \\ & \text { OPS 301, 302, } 303 \\ & \text { (45749) } \end{aligned}$ |


| TABLE 3.1041-2. DISPLAY ITEMS (Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 25 | Enter Desired ADI Pitch Attitude Angle | 0 | 359 | Deg | 11 | CGZV_VEH_PITCH OPS 3011, 302, 303 (45749) |
| 26 | Enter Desired ADI Pitch Attitude Angle | 0 | 359 | Deg | 11 | CGZV_VEH_YAW <br> OPS 3011, 302, 303 <br> (45749) |
| 27 | Initiate <br> Automatic <br> Maneuver to <br> Desired <br> Attitude |  |  |  | 12 | (55325) |
| 28 | Select <br> Primary Left OMS Gimbal Drive System |  |  |  | 13 | CGKV_L_OMS CHAN CGZB-MNVR DISP FLAG2\$9 CGRB_OMS_FDI_FLAGS_HFE\$1 CGRB_OMS_FDI_FLAGS_HFE $\$ 2$ |
| 29 | Select <br> Primary <br> Right OMS <br> Gimbal Drive <br> System |  |  |  | 13 | CGKV_R_OMS_CHAN CGZB M CGRB_OMS_FDI_FLAGS HFE $\$ 3$ CGRB_OMS_FDI_FLAGS_HFE\$4 |
| 30 | Select <br> Secondary <br> Left OMS <br> Gimbal Drive <br> System |  |  |  | 13 | CGKV_L_OMS_CHAN CGZB_MNVR DISP_FLAG2 $\$ 10$ CGRB_OMS_FDI_FLAGS_HFE\$1 CGRB_OMS_FDI_FLAGS_HFE\$2 |
| 31 | Select <br> Secondary <br> Right OMS <br> Gimbal Drive <br> System |  |  |  | 13 | CGKV_R OMS CHAN CGZB-M̄̄VR DISP FLAG2\$13 CGRB_OMS_FDI_FLAGS_HFE\$3 CGRB_OMS_FDI_FLAGS_HFE $\$ 4$ |
| 32 | Power Down Left OMS Gimbal Drive System |  |  |  | 14 | CGKV_L_OMS_CHAN CGZB_MNVR_DISP_FLAG2\$11 |
| 33 | Power Down Right OMS Gimbal Drive System |  |  |  | 14 | CGKV_R OMS_CHAN CGZB_M̄̄NV_DISP_FLAG2\$14 |



## -4 SUBNOTES:

-1 Maneuver display responses to target loads. (37573)
-2 OMS TVC feedback reinitialized on OPS transition. (37123)
-3 Uplinked bad engine IDs are not ignored on CRT. (38163)
-4 Weight initialization required for in-flight IPL. (41148)
-5 Some values of TIG seconds displayed as "60.0". (52759)
-6 Illegal entry on transition to MM104. (40556)
-7 Orbit OPS transition or mode recall during attitude maneuver. (57385)

### 3.5.1051 DISPLAY: XXXXX MANEUVER YYYYY

-1 This display is defined in section 3.5.1041 (53428)
-2 For Major Mode 105, the following titles will be driven on the display:
OMS 2 MNVR EXEC
ATO 2 MNVR EXEC AOA MNVR TRANS


勺y，

### 3.5.1061 DISPLAY: XXXXX MANEUVER YYYYY

-1 This display is defined in section 3.5.1041.
-2 For Major Mode 106, the following titles will be driven on the display:
OMS 2 MNVR COAST
ATO 2 MNVR COAST

### 3.5.2011(G) DISPLAY: UNIV PTG

-1 AVAILABILITY: OPS Mode Display in OPS G2, MM 201.
-2 PURPOSE: The Universal Pointing display provides the crew with the capability to monitor orbit and vehicle attitude data, to command automatic attitude control through four different options. The four control options are: Maneuver, Track, Rotate, and Cancel.


Figure 3.2011(G)

| TABLE 3.2011(G)-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :--- | :--- | :--- |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 1 | Display Call-Up | OPS 201 PRO | Entered on KYBD, this command causes <br> transition to OPS G2, MM 201, if the <br> major function switch is in the GNC <br> position. |
| Estimated time of <br> Completion of <br> Current Maneuver |  | CUR MNVR COMPL: This data shows <br> in hours, minutes, and seconds of MET the <br> estimated time of completion of the current <br> maneuver, track, or rotation option. The <br> time displayed will be frozen whenever the <br> attitude comes within 1.1 times the DAP <br> attitude deadband about the desired <br> attitude, or DAP LVLLH mode is selected <br> while a maneuver is in progress. |  |
| Start-Up Time |  |  |  |


| TABLE 3.2011(G)-1. DISPLAY FUNCTIONS (Continued) |  |
| :--- | :--- | :--- | :--- |$|$| \# |
| :--- | FUNCTION $\quad$ KYBD ENTRY(S) | NOTES |
| :--- |



| TABLE 3.2011(G)-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | KYBD ENTRY(S) | NOTES |
| 9 | Coordinates of an Earth-relative Target | ITEM $11 \pm$ <br> XX.XXX EXEC <br> ITEM $12 \pm$ <br> XXX.XXX EXEC <br> ITEM $13 \pm$ <br> XXXXX.X EXEC | LAT (latitude), LON (longitude), and ALT (altitude), measured with respect to the Fisher ellipsoid, are the input parameters which locate an Earth-relative target (TGT ID $=3$ ). When this ID is input, these 3 parameters flash until the data is loaded, a control option selection is made or the TGT ID is changed. These data are initialized to zeroes. |
| 10 | Body Vector for Vehicle Pointing | ITEM $14+\mathrm{X}$ EXEC | Select a pointing vector for TRK, or an axis of rotation for ROT. The BODY VECT IDs are listed in Table 3.2011-3. Is initialized to $1(+X$ axis). |
| 11 | Selectable Body Pointing Vector Components | ITEM $15+$ <br> XXX.XX EXEC <br> ITEM 16+ <br> XXX.XX EXEC | $P$ (pitch), and $Y$ (yaw), in degrees, are the components of the selectable BODY <br> VECTOR (ID=5) for ITEM 14. Entering ITEM $14+5$ causes $P$ and $Y$ to flash until the data is entered, the BODY VECT ID is changed, or a new control option is entered. These data are initialized to zeroes. |
| 12 | Orbiter Orientation about the Pointing Vector | $\begin{aligned} & \text { ITEM } 17+ \\ & \text { XXX.XX EXEC } \end{aligned}$ | OM (omicron) is the angle for 3 axis tracking (TRK). Omicron is the angle between two planes. These planes are formed by the negative angular momentum vector and the Orbiter to target vector, and that formed by the +Y axis and body pointing vector. OM flashes if 3 -axis tracking is selected and a BODY VECT ID is entered, until the data is entered or the control option selection is made. OM is initialized to zero. |
| 13 | Attitude Monitor Control |  | Controls the kind of attitude data presented in the attitude data matrix. |
|  | - | ITEM $22+\mathrm{X}$ EXEC ITEM 23 EXEC | Select the attitude axis for which data will be displayed. Choices are: <br> 1 - Present data relative to the standard Orbiter body axis. Display +X next to the 1 input. <br> 2 - Present data relative to an axis rotated $180^{\circ}$ about the Z Orbiter body axis (i.e., about $-X$ ). Display $-X$ right of the input. <br> Initialized with $1+\mathrm{X}$ as the data displayed. <br> ${ }^{-}$ERR TOT, total attitude error. |

TABLE 3.2011(G)-1. DISPLAY FUNCTIONS (Continued)
$\left.\begin{array}{|l|l|l|l|}\hline \text { \# } & \text { FUNCTION } & \text { KYBD ENTRY(S) } & \text { NOTES } \\ \hline & & \text { ITEM 24 EXEC } & \begin{array}{l}\text { ERR DAP, digital auto pilot attitude error. } \\ \text { These selections are mutually exclusive. }\end{array} \\ & & & \begin{array}{l}\text { The choice selected is indicated by an '\&'. } \\ \text { The selected error drives the ADI. } \\ \text { Total attitude errors are obtained by } \\ \text { differencing the current and required } \\ \text { attitudes, with respect to the eigen axis. } \\ \text { Displayed Attitude } \\ \text { Parameters Matrix }\end{array} \\ & & \begin{array}{l}\text { The DAP attitude error is obtained by } \\ \text { differencing the DAP desired and the DAP } \\ \text { estimated current attitudes. (15194) }\end{array} \\ \text { Four functions of ROLL, PITCH, and } \\ \text { YAW (the column headings) are displayed. } \\ \text { (58926) } \\ \text { The Current (CUR) and required (REQD) } \\ \text { attitudes are displayed. ADI inertial Euler } \\ \text { angles Attitude Errors (ERR) are described } \\ \text { in the previous function number. Attitude } \\ \text { rates (RATE) are obtained from the DAP } \\ \text { state estimator. }\end{array}\right\}$

| TABLE 3.2011(G)-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
|  | MNVR OPTION |  |  | 3 |  |  |
|  | START TIME: |  |  | \% |  |  |
| 1 | days | 0 | 365 | $\because$ |  | CGZV_UP_START_TIME.D_H_M_S $\$ 1$ |
| 2 | hours | 0 | 123. | \% |  | CGZV-UP-START-TIME. ${ }^{-} \mathrm{H}_{-}^{-} \mathrm{M}_{-}^{-}$\$ $\$ 2$ |
| 3 | minutes | 0 | - 59 | - |  | CGZV_UP-START_TIME.D_H_M_S ${ }^{-}$ |
| 4 | seconds | 0 | 59 |  |  | $\mathrm{CGZV}_{-}^{-} \mathrm{UP}_{-}^{-} \mathrm{START}_{-}^{-T I M E . D}{ }_{-}^{-} \mathrm{H}_{-}^{-} \mathrm{M}_{-}^{-} \mathbf{S} \$ 4$ |
| 5 | MNVR Roll Angle | 0 | 359.99 | deg | 5 | CGZV_AUTO_ATT_ANGLES\$1 |
| 6 | MNVR Pitch Angle | 0 | 359.99 | deg | 5 | CGZV_AUTO_ATT_ANGLES\$2 |
| 7 | MNVR Yaw Angle | 0 | 90.00 | deg | 5 | CGZV_AUTO_ATT_ANGLES\$3 |
| 8 | TGT ID | 1 | 110 |  | 7 | CGZV_TGT_ID |
| 9 | Right Ascension | 0 | 359.999 | deg | 8 | CGZV_RA_DEC\$1 |
| 10 | Declination | -90 | +90 | deg | 8 | CGZV_RA_DEC\$2 |
| 11 | Latitude | -90 | +90 | deg | 9 | CGZV_LAT_LON_ALT\$1 |
| 12 | Longitude | -180 | + 180 | deg | 9 | CGZV_LAT_LON_ALT\$2 |
| 13 | Altitude | -3444 | 20000 | nm | 9 | CGZV_LAT_LON_ALT\$3 |
|  |  |  |  |  |  | Measured from the Fisher ellipsoid rather than the actual Earth's surface, the altitude may be minus. |
| 14 | Body Vector | 1 | 5 |  | 10 | CGZV_BV_ID |
| 15 | Body Pitch | 0 | 359.99 | deg | 11 | CGZV_AUTO_ATT_ANGLES\$4 |
| 16 | Body Yaw | $\begin{gathered} 0 \\ 270 \end{gathered}$ | $\begin{gathered} 90, \\ 359.99 \end{gathered}$ | deg | 11 | CGZV_AUTO_ATT_ANGLES\$5 |
| 17 | Omicron | 0 | 359.99 | deg | 12 | CGZV_AUTO_ATT_ANGLES\$6 |
| 18 | MNVR |  |  |  | 4 | CGZV_FUT_OPT_Y |
| 19 | TRK |  |  |  | 4 | CGZV_FUT_OPT_Y |
| 20 | ROT |  |  |  | 4 | CGZV_FUT_OPT_Y |
| 21 | CNCL |  |  |  | 4 | CGZV_CUR_OPT_Y |
| 22 | Axis Monitor Indicator | 1 | 2 | 13 |  | CGZV_MON_AXIS |
| 23 | Total Attitude Error |  |  |  | 13 | CGZV_28_FLAG_WD1\$1 |
| 4 | DAP Attitude Error |  |  |  | 13 | CGZV_28_FLAG_WD1\$1 |

RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

TABLE 3.2011(G)-3. BODY VECTOR ID'S

## Body Vector ID's

1
2
3
4
5

Axis
$+\mathrm{X}$

- X

Passive Thermal Control.
Selectable, in ITEMs 15, 16, (and possibly 17).

### 3.5.2011(S) DISPLAY: ANTENNA

-1 AVAILABILITY: OPS Mode Display in OPS SM2/4, MM201/401.
-2 PURPOSE: The Antenna Management display provides control of the GPC automatic antennna management sequence for the S-Band and KU-Band antenna systems. It also provides a means of monitoring the antenna systems and their associated electronics.


Figure 3.2011(S)

| TABLE 3.2011(S)-1. DISPLAY FUNCTIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 1 | Display Call-Up | OPS 201 PRO <br> OPS 401 PRO | Entered on an MCDS with major function in SM. (55343) |
| 2 | KU-Band Radar Range Estimate Selection | ITEM N EXEC | Controls the range estimate value output to the KU-Band antenna. <br> $\mathrm{N}=$ <br> 1- Select automatic computation of range value. This is the default option. <br> 2 - Select minimum range value of 2400 feet. |
| 3 | KU-Band Radar Threshold Selection | ITEM N EXEC | Provides the capability to switch the radar detection threshold environment. <br> $\mathrm{N}=$ <br> 3 - Select fixed radar threshold high noise environment. <br> 4 - Select variable radar threshold for low noise environment. This is the default option. |
| 4 | KU-Band SCAN <br> Warn Selection | ITEM N EXEC | Provides the capability to enable or disable a function in the KU-Band system which terminates the transmit power to the antenna whenever the antenna's main beam is pointed at the obscuration zone. <br> $\mathrm{N}=$ <br> 5 - Enable KU-Band system function such that transmit power is supplied only as long as the antenna beam is outside the obscuration zone. <br> 6 - Disable KU-Band system function such that tramsmit power is supplied regardless of whether the antenna beam is inside or outside the obscuration zone. |
| 5 | KU-Band Radar Self Test | ITEM 7 EXEC | Provides the capability to initiate or terminate the radar self test function. |
| 6 | I/O Reset KU | ITEM 8 EXEC | Provide the capability to initiate communication between the GPC and the KU-Band system. |


| TABLE 3.2011(S)-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- | :--- |


| TABLE 3.2011(S)-1. DISPLAY FUNCTIONS (Continued) |  |  |
| :--- | :--- | :--- | :--- | :--- |

TABLE 3.2011(S)-1. DISPLAY FUNCTIONS (Continued)
$\left.\begin{array}{|c|c|c|l|}\hline \text { \# } & \text { FUNCTION } & \begin{array}{l}\text { KYBD } \\ \text { ENTRY(S) }\end{array} & \text { NOTES } \\ \hline & & \begin{array}{l}\text { ANT HEMI - Selected Hemi-Antenna: } \\ \text { UP - Upper }\end{array} \\ \text { LO - Lower }\end{array}\right\}$

| TABLE 3.2011(S)-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | KU-Band Radar Range Estimate AUTO |  |  |  | 2 | CSMB_RADAR_RANGE_EST\$1 |
| 2 | KU-Band Radar Range Estimate MINIMUM |  |  |  | 2 | CSMB_RADAR_RANGE_EST\$2 |
| 3 | KU-Band <br> Radar <br> Threshold - <br> FIXED |  |  |  | 3 | CSMB_RADAR_THRESHOLD |
| 4 | KU-Band <br> Radar <br> Threshold - <br> VARIABLE |  |  |  | 3 | CSMB_RADAR_THRESHOLD |
| 5 | KU-Band SCAN WARN - ENABLE |  |  |  | 4 | CSMB_KUBAND_SCAN_WARN |
| 6 | KU-Band SCAN WARN - OVERRIDE |  |  |  | 4 | CSMB_KUBAND_SCAN_WARN |
| 7 | KU-Band Radar Self Test INITIATE/ TERMINATE |  |  |  | 5 | CSMB_RADAR_SELF_TEST_INIT |
| 8 | I/O Reset KU |  |  |  | 6 | CPCB_PCI_DATA\$(4:9) |
| 9 | KU-Band <br> TDRS <br> Selection - <br> AUTO |  |  |  | 7 | CSMB_KUBAND_TDRS_SEL\$1 |
| 10 | KU-Band <br> TDRS <br> Selection - <br> West |  |  |  | 7 | CSMB_KUBAND_TDRS_SEL\$2 |
| 11 | KU-Band TDRS Selection - East |  |  |  | 7 | CSMB_KUBAND_TDRS_SEL\$3 |
| 12 | S-Band TDRS Selection AUTO |  |  |  | 9 | CSMB_SBAND_TDRS_SEL\$1 |

TABLE 3.2011(S)-2. DISPLAY ITEMS (Continued)

| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | S-Band TDRS <br> Selection - <br> West |  |  |  | 9 | CSMB_SBAND_TDRS_SEL\$2 |
| 14 | S-Band TDRS <br> Selection - East |  |  |  | 9 | CSMB_SBAND_TDRS_SEL\$3 |
| 15 | Ground Station Selection AUTO |  |  |  | 10 | CSMB_SBAND_SITE_SEL\$1 |
| 16 | Ground Station Selection NEXT |  |  |  | 10 | CSMB_SBAND_SITE_SEL\$2 <br> Selection used, then reverts to AUTO |
| 17 | GPC S-Band Antenna Select ENABLE |  |  |  | 11 | CSMB_SBAND_AUTO_SEL\$1 |
| 18 | GPC S-Band Antenna Select INHIBIT |  |  |  | 11 | CSMB_SBAND_AUTO_SEL\$2 |
| 19 | GPC S-Band Antenna TDRS Mode Override |  |  |  | 12 | CSMB_SBAND_TDRS_OVERRIDE |

### 3.5.2021(G) DISPLAY: XXXXX MANEUVER YYYYY

-1 This display is defined in section 3.5.1041.
-2 For Major Mode 202, the following title will be driven on the display:
ORBIT MNVR EXEC

### 3.5.2021(S) DISPLAY: PL BAY DOORS

-1 AVAILABILITY: OPS Mode Display in OPS SM2, MM 202.
-2 PURPOSE: The Payload Bay Doors display is presented upon moding into SM 202 and provides control for opening and closing the Orbiter payload bay doors.


Figure 3.2021(S)


| TABLE 3.2021(S)-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 4 | Manual PBD Open/Close | ITEM 15 EXEC <br> TTEM 16 EXEC <br> ITEM 17 EXEC | Open PBD in a predefined sequence automatically. <br> Stop PBD operations currently in work. <br> Close PBD in a predefined sequence automatically. <br> NOTE: <br> In either case (PBD switch or keyboard entry), suspension of a sequence by STOP may be resumed from stopping point by reselection of OPEN or CLOSE. When the entire selected sequence is complete, auto mode is deselected. <br> Door manipulation is accomplished by a combination of MCDS keyboard entries and the PBD switch. <br> Before any of the manual select items may be entered the PBD switch/override must be in STOP. <br> Once a manual latch group has been selected, additional groups may be selected regardless of PBD switch/override position. <br> Groups may be deselected only when PBD switch/override position is STOP. <br> For each latch/door group, status is displayed as follows (in addition to for failure): <br> OP - open <br> CL - closed <br> - off nominal micro-switch configuration but does not necessarily prevent completion of sequence. <br> M - missing data <br> Blank - latch/door in transient between open and close. |


| TABLE 3.2021(S)-1. DISPLAY FUNCTIONS (Continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| \# | FUNCTION | $\begin{aligned} & \hline \text { KYBD } \\ & \text { ENTRY(S) } \end{aligned}$ | NOTES |
| 5 | Micro-Switch Status | ITEM N EXEC | Select latch/door to be opened manually where $\mathrm{N}=$ <br> 4 - center latches 5-8 <br> 5 - center latches 9-12 <br> 6 - center latches 1-4 <br> 7 - center latches 13-16 <br> 8 - Starboard (right) forward latches <br> 9 - Starboard aft latches <br> 10 - Starboard doors <br> 11 - Port (left) forward latches <br> 12-Port aft latches <br> 13 - Port doors <br> The status of the micro-switch is displayed as 0 for open and 1 for close. In the latch group, contacts A \& B status given for close (C) and Open (O). For the doors, five switch statuses are shown: C - close; RA, RB, RC-ready to latch; O-open. |


| TABLE 3.2021(S)-2. DISPLAY ITEMS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | DEFINITION | MIN | MAX | UNIT | FN | HAL NAME/NOTES |
| 1 | Apply AC Power |  |  |  | 2 | CSBB_POWER_ON_OFF_SELECT_- |
| 2 | Remove AC <br> Power |  |  |  | 2 | CSBB_POWER_ON_OFF_SELECT_ |
| 3 | Auto Mode |  |  |  | 3 | CSBB_AUTO_MODE_SELECT ${ }_{\text {ITEM } \overline{\$}(1)}$ |
| 4 | Manual, C5-8 |  |  |  | 4 | CSBB_MANUAL_MODE_SELECT_- |
| 5 | Manual, C9-12 |  |  |  | 4 | CSBB_MANUAL_MODE_SELECT_- |
| 6 | Manual, C1-4 |  |  |  | 4 | CSBB_MANUAL_MODE_SELECT_ |
| 7 | Manual, C13-16 |  |  |  | 4 | $\underset{\text { CSBB_MANUAL_MODE_SELECT_- }}{\text { ITEM\$(5)- }}$ |
| 8 | Manual, Right Fwd. Latches |  |  |  | 4 | $\text { CSBB_MANUAL_MODE_ } \underset{\text { ITEMECT_(6) }}{\text { SELECT }}$ |
| 9 | Manual, Right Aft. Latches |  |  |  | 4 | CSBB_MANUAL_MODE_SELECT |
| 10 | Manual, Right Doors |  |  |  | 4 | CSBB_MANUAL_MODE_SELECT_- |
| 11 | Manual, Left Fwd. <br> Latches |  |  |  | 4 | $\underset{\text { ITEM }}{\text { CSBB_MANUA_ }}$ |
| 12 | Manual, Left Aft. Latches |  |  |  | 4 |  |
| 13 | Manual, Left Doors |  |  |  | 4 | CSBB_MANUAL_MODE_SELECT_- |
| 14 | Override PBD Switch |  |  |  | 3 | CSBB_SWITCH_BYPASS_ITEM |
| 15 | Open PBD |  |  |  | 3 | CSBB_PBD_OPEN_ITEM |
| 16 | Stop PBD |  |  |  | 3 | CSBB_PBD_STOP_ITEM |
| 17 | Close PBD |  |  |  | 3 | CSBB_PBD_CLOSE_ITEM |
|  |  | * |  |  |  |  |

```
RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0
```


### 3.5.3011 DISPLAY: XXXXX MANEUVER YYYYY

-1 This display is defined in section 3.5.1041.
-2 For Major Mode 301, the following title will be driven on the display:
DEORB MNVR COAST

### 3.5.3021 DISPLAY: XXXXX MANEUVER YYYYY

-1 This display is defined in section 3.5.1041.
-2 For Major Mode 302, the following title will be driven on the display: DEORB MNVR EXEC
(D)

RELEASE: OI20
BOOK: PASS User's Guide

Date: 12/20/90
Rev: 0

### 3.5.3031 DISPLAY: XXXXX MANEUVER YYYYY

-1 This display is defined in section 3.5.1041.
-2 For Major Mode 303, the following title will be driven on the display:
DEORB MNVR COAST


```
\[
y \leqslant y+\gamma \quad 4
\]
```

O

### 3.5.3041 DISPLAY: ENTRY TRAJ 1

-1 AVAILABILITY: OPS Mode Display in OPS G3, MM 304.
-2 PURPOSE: The ENTRY TRAJECTORY displays constitute the mode displays for major mode 304, presenting navigational and guidance information to the crew from entry interface to TAEM interface. The fixed background is mission-dependent and designed to allow the crew to monitor the vehicle's progression compared to planned entry profiles and the guidance trajectory.
-3 ENTRY TRAJ 1 is automatically driven at the start of Major Mode 304. As relative velocity decreases ENTRY TRAJ 1 is replaced by ENTRY TRAJ 2, then by ENTRY TRAJ 3, and then by ENTRY TRAJ 4. When the energy over weight ratio reaches a predetermined mission-dependent value, ENTRY TRAJ 4 is replaced by ENTRY TRAJ 5. The display background consists of two fixed vertical tape scales and à mission-dependent central plot containing various lines and numbers. The alpha (angle of attack) vertical tape scale and the drag vertical tape scale are on the left of the display. The central plot lines are of two types: (1) nominal guidelines (solid lines) and (2) constant nominal drag acceleration lines (dashed lines). These lines are plotted as a function of range and relative velocity. The constant nominal drag acceleration lines are labeled with the drag value the line represents. The guidelines are not labeled. The central plot also contains nominal altitude rate values that correspond to the altitude rates required to guide the shuttle trajectory parallel to the guidelines when the actual drag acceleration is matched to the nominal value. A shuttle profile symbol is dynamically displayed to represent the current range and relative velocity. A square box is dynamically displayed to represent the guidance range and relative velocity. Each of these dynamic symbols has a maximum of six trailer symbols representing previous positions. A shuttle trailer (triangle symbol pointed left) is placed at the shuttle's current position every 28.8 seconds ( 15 entry guidance cycles). While entry guidance is active a guidance trailer (dot) is placed at guidance's current position the same time a shuttle trailer is placed on the display. There are two dynamic symbols driven on the vertical drag tape scale: (1) reference drag (arrow pointed left), and (2) actual drag (triangle pointed left). There are two dynamic symbols driven on the alpha vertical tape scale: (1) actual angle of attack (triangle pointed right) and commanded angle of attack (arrow pointed right). The dynamic symbols on the alpha and drag vertical tape scales will flash according to the following: when a symbol reaches an off-scale position, the symbol will flash and will remain in the off-scale position; when the commanded angle of attach symbol and the actual angle of attack differ by more than two degrees, the actual angle of attack symbol will flash. Also, items are displayed: (1) the shuttle character and the phugoid bank scale will flash when the heading error exceeds the maximum and the heading error and the bank angle are in the same direction (15177), (2) dynamic pressure ( $\overline{\mathrm{q}}$ ), (3) altitude rate correction term (H BIAS), (4) reference altitude rate (H REF), (5) aileron or rudder trim, (6) reference roll angle (ROLL REF), (7) commanded roll angle (CMD), (8) lateral accel trim, and (9) selected AA lateral trim.


Figure 3.3041



### 3.5.3042 DISPLAY: ENTRY TRAJ 2

-1 AVAILABILITY: OPS Mode Display in OPS G3, MM 304.
-2 PURPOSE: This display automatically replaces the ENTRY TRAJ 1 display when relative velocity decreases below a predetermined, mission-dependent value and remains until automatically replaced by ENTRY TRAJ 3. Otherwise this display is identical to ENTRY TRAJ 1 (section 3.5.3041).


Figure $\mathbf{3 . 3 0 4 2}$

$\because \geqslant$

### 3.5.3043 DISPLAY: ENTRY TRAJ 3

-1 AVAILABILITY: OPS Mode Display in OPS G3, MM 304.
-2 PURPOSE: This display automatically replaces the ENTRY TRAJ 2 display when relative velocity decreases below a predetermined, mission-dependent value and remains until automatically replaced by ENTRY TRAJ 4. The shuttle and guidance trailer symbols are placed on the display every 15.36 (8 entry guidance cycles) instead of every 28.8 seconds. Otherwise this display is identical to ENTRY TRAJ 1 (section 3.5.3042).


Figure $\mathbf{3 . 3 0 4 3}$

### 3.5.3044 DISPLAY: ENTRY TRAJ 4

-1 AVAILABILITY: OPS Mode Display in OPS G3, MM 304.
-2 PURPOSE: This display automatically replaces the ENTRY TRAJ 3 display when relative velocity decreases below a predetermined, mission-dependent value and remains until automatically replaced by ENTRY TRAJ 5. The mission-dependent central plot of lines and numbers are plotted as a function of range and energy over weight. The shuttle symbol, six shuttle trailer symbols, guidance symbol, and six guidance trailer symbols are plotted as a function of range and energy over weight. Otherwise this display is identical to ENTRY TRAJ 3 (section 3.5.3043).


Figure 3.3044

### 3.5.3045 DISPLAY: ENTRY TRAJ 5

-1 AVAILABILITY: OPS Mode Display in OPS G3, MM 304.
-2 PURPOSE: This display automatically replaces the ENTRY TRAJ 4 display when energy over weight reaches a predetermined, mission-dependent value. The shuttle profile symbol remains fixed once TAEM interface conditions are reached. Otherwise this display is identical to ENTRY TRAJ 4 (section 3.5.3044).


Figure $\mathbf{3 . 3 0 4 5}$

### 3.5.3051 DISPLAY: VERT SIT 1

-1 AVAILABILITY: OPS Mode Display in OPS G3 and G6, MM 305, 602, and 603.
-2 PURPOSE: The Vertical Situation Displays, VERT SIT 1 and VERT SIT 2, are the OPS displays for major modes 305, 602 and 603. The shuttle symbol is displayed on an Alpha-mach profile during MM 602 and within a set of mission dependent flight and TAEM guidance profiles during MM 603 and MM 305. VERT SIT 1 is automatically driven at the start of major modes 305 and 602. As the vehicle altitude drops below approximately 30,000 feet, VERT SIT 1 is replaced by VERT SIT 2. A shuttle profile symbol is displayed to represent vehicle longitudinal information. The altitude dissipation rate is indicated by rotating the shuttle profile character. On the right side of the display are vertical scales for energy over weight and pitch attitude. A triangle pointer represents the current vehicle energy state. Tick marks are used to represent nominal energy state and the guidance energy limits. The triangular pointer will flash during S-turns or when TAEM guidance is being redesignated to MEP. The OTT downmode energy state is displayed with a left pointing arrow. When the range to the runway is less than I-loaded limit, the display of the OTT Downmode energy symbol will be blanked. A triangle is also used to represent the current vehicle pitch attitude. The pitch attitude is scaled as a function of the pitch profiles for flight at a dynamic pressure of 300 psf and for flight at maximum lift over drag. The actual and commanded speedbrake position are displayed in percent just to the left of the pitch scale. Also, displayed are the selected AA lateral acceleration in g's the lateral acceleration trim in g's, the aileron trim in degrees, the rudder trim in degrees, and the pullout normal acceleration in G's. At the top left of the display is the Bailout Mode status. BAILOUT is flashed when the Bailout Mode is armed, but not engaged. When the Bailout Mode is engaged, BAILOUT is displayed, but not flashed. BAILOUT is blanked at all other times.


Figure 3.3051

```
RELEASE: OI20
Date: 12/20/90
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{8}{|c|}{ TABLE 3.3051-1. } & DISPLAY FUNCTIONS \\
\hline \# & FUNCTION & \begin{tabular}{l} 
KYBD \\
ENTRY(S)
\end{tabular} & NOTES \\
\hline 1 & Display Call-Up & \begin{tabular}{l} 
OPS 305 PRO \\
OPS 602 PRO \\
OPS 603 PRO
\end{tabular} & \begin{tabular}{l} 
Keyboard entry automatically activates the \\
Vertical Situation display. This display is a \\
monitor function only.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.5.3052 DISPLAY: VERT SIT 2}
-1 AVAILABILITY: OPS Mode Display in OPS G3 and G6, MM 305 and 603.
-2 PURPOSE: This display automatically replaces VERT SIT 1 as the orbiter passes through 30,000 feet in altitude and remains until major mode 305 (or 603) is exited. A/L will be displayed and flashing when TAEM terminate and auto-land begins. Otherwise this display is identical to VERT SIT 1 (section 3.5.3051). (60313)


Figure \(\mathbf{3 . 3 0 5 2}\)

\subsection*{3.5.4011(S) DISPLAY: ANTENNA}
-1 AVAILABILITY: OPS Mode Display in OPS SM4, MM 401.
-2 PURPOSE: This display is identical to that defined for Antenna Management in SM2 in section 3.5.2011(S).

RELEASE: OI20 Date: 12/20/90
BOOK: PASS User's Guide Rev: 0

\subsection*{3.5.4021(S) DISPLAY: PL BAY DOORS}
-1 AVAILABILITY: OPS Mode Display in OPS SM4, MM 402.
-2 PURPOSE: This display is identical to that defined for Payload Bay Doors in SM2 in section 3.5.2021(S).
BOOK: PASS User's Guide
Rev: 0

\subsection*{3.5.6011 DISPLAY: XXXXXX TRAJ}
-1 AVAILABILITY: OPS Mode Display in OPS G6, MM 601.
-2 PURPOSE: This display is identical to that described for MM 101, refer to section 3.5.1011.

\subsection*{3.5.6021 DISPLAY: VERT SIT 1}
-1 AVAILABILITY: OPS Mode Display in OPS G6, MM 602.
-2 PURPOSE: The VERT SIT 1 display for RTLS is identical to that defined for OPS G3, MM 305, in section 3.5.3051.

\subsection*{3.5.6031 DISPLAY: VERT SIT 2}
-1 AVAILABILITY: OPS Mode Display in OPS G6, MM 603.
-2 PURPOSE: The VERT SIT 2 display for RTLS is identical to that defined for OPS G3, MM 305, in section 3.5.3052.

AS 3


\subsection*{3.5.8011 DISPLAY: FCS/DED DIS C/O}
-1 AVAILABILITY: OPS Mode Display in OPS G8, MM 801.
-2 PURPOSE: The FCS/Dedicated Display Checkout display provides control for testing of the aerosurfaces while in orbit, preparatory to entry. It also provides controls for testing of the dedicated displays.

(XX)

Figure 3.8011
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{TABLE 3.8011-1. DISPLAY FUNCTIONS} \\
\hline \# & FUNCTION & \[
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
\] & NOTES \\
\hline 1 & Display Call-Up & OPS 801 PRO & \begin{tabular}{l}
Must be entered on MCDS keyboard with GNC major function. At initiation of the OPS, forward DDU is selected (see function 2, ITEM 1), and a positive polarity for secondary actuator check is selected (See function 7, ITEM 20). \\
NOTE: If a test is in progress and a SPEC is requested, the test will continue to execute to its completion. If another OPS (G2) is requested any test active will be terminated.
\end{tabular} \\
\hline \multirow[t]{7}{*}{2} & \multirow[t]{7}{*}{Dedicated Display Checkout} & ITEM 1 EXEC & Select forward displays for test (default). \\
\hline & & ITEM 2 EXEC & Select aft displays for test. (ITEMs 1 and 2 are mutually exclusive.) \\
\hline & & ITEM 3 EXEC & Select HIGH test: Drive all units to a pre-defined set of high values. \\
\hline & & ITEM 4 EXEC & Select LOW test: Drive all units to a pre-defined set of low values. \\
\hline & & ITEM 5 EXEC & Select FLAG test: All units will remain at current reading with mechanical flags (except HSI power) extended. \\
\hline & & & NOTE: ITEMS 3-5 are mutually exclusive. \\
\hline & & ITEM 6 EXEC & Terminate selected test. \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{FCS Mode Light Checkout} & ITEM 7 EXEC & Causes both right and left FCS mode lights to be illuminated. Lights are AUTO and CSS lamps for pitch and roll/yaw control axes, and AUTO/MAN lamps for speedbrake and bodyflap. \\
\hline & & ITEM 8 EXEC & Extinguish all lamps. \\
\hline 4 & Powered-Flight NAV Control & ITEM 9 EXEC & This is a flip/flop item which initiates or terminates the average G navigation algorithm for powered flight on-orbit. \\
\hline 5 & Bodyflap Pilot Valve Control & ITEM N EXEC & \(\mathrm{N}=12-14\) for bodyflap valves \(1-3\) respectively. All 3 are initially enabled. Item is a flip/flop; an * present denotes valve is deselected (or inhibited). Status is denoted ENA or INH. \\
\hline
\end{tabular}

TABLE 3.8011-1. DISPLAY FUNCTIONS (Continued)
\begin{tabular}{|c|c|c|c|}
\hline \# & FUNCTION & \[
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
\] & NOTES \\
\hline \multirow[t]{5}{*}{6} & \multirow[t]{5}{*}{Aerosurface Drive Test (ADT)} & \multirow[t]{5}{*}{\begin{tabular}{l}
ITEM 10 EXEC \\
ITEM 11 EXEC
\end{tabular}} & Causes output of cyclic commands to left inboard and outboard elevons, right inboard and outboard elevons, rudder, speedbrake, and bodyflap. Commands are triangular waveform. Continues until crew input (ITEM 11) stops the test. \\
\hline & & & \begin{tabular}{l}
Terminates the alternating drive test (if active) and positions aerosurfaces for entry. \\
NOTE: ITEM 10 is NOT required before ITEM 11.
\end{tabular} \\
\hline & & & Displayed Data: The commanded and actual position (selected feedback) along with status is shown for each aerosurface. The elevons and rudder are in degrees, the speedbrake in percent of full deflection. For the bodyflap, command is UP or DN, position is percent of full deflection. \\
\hline & & & The sign of deflection on the elevons is displayed as U or D ; the rudder is L or R . For positive polarity (see function 7), a positive command will result in a negative deflection and thus a D and L ; a negative command will result in a positive deflection and thus a U and R . For negative polarity the results are reversed; positive command will yield U and R , negative command will yield D and L . \\
\hline & & & The status is driven during the drive test (ITEM 10) by computing the delta between command and position. If the tolerance ( 2 degrees) is exceeded, a down arrow is displayed. A bypass status to each channel of each surface is also displayed (blank is good, down arrow is bypassed). \\
\hline 7 & Secondary Actuator Check & ITEM 20 EXEC & Optional Item: Selects positive or negative polarity for test. Initial condition is positive.
(35572/44250/46503) \\
\hline & & ITEM N EXEC & \begin{tabular}{l}
\(\mathrm{N}=15-18\) for channels \(1-4\) respectively. Selection of item will cause hardover command to all aerosurfaces on selected channel, secondary port. Command will remain until crew removes it with selection of another channel or a STOP \\
(ITEM 19). Upon selection, all statuses in selected channel column (right side of CRT) should show \(\downarrow\).
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{TABLE 3.8011-2. DISPLAY ITEMS} \\
\hline \# & DEFINITION & MIN & MAX & UNIT & FN & HAL NAME/NOTES \\
\hline 1 & \begin{tabular}{l}
Select \\
Forward DDUs
\end{tabular} & & & & 2 & CGZB_ACT_IT_ASTERISK\$(1) \\
\hline 2 & \begin{tabular}{l}
Select AFT \\
DDU (ADI)
\end{tabular} & \% 3 & & & 2 & CGZB_ACT_IT_ASTERISK\$(2) \\
\hline 3 & \begin{tabular}{l}
Select HIGH \\
Test Mode
\end{tabular} & & & & 2 & CGZB_ACT_IT_ASTERISK\$(3) \\
\hline 4 & \begin{tabular}{l}
Select LOW \\
Test Mode
\end{tabular} & & , & & 2 & CGZB_ACT_IT_ASTERISK\$(4) \\
\hline 5 & \begin{tabular}{l}
Select FLAG \\
Test Mode
\end{tabular} & & & & 2 & CGZB_ACT_IT_ASTERISK\$(5) \\
\hline 6 & Stop Test & & & & 2 & CGZB_ACT_IT_ASTERISK\$(6) \\
\hline 7 & \begin{tabular}{l}
Start FCS \\
Mode Lamp Test
\end{tabular} & & & & 3 & CGZB_ACT_IT_ASTERISK\$(7) \\
\hline 8 & \begin{tabular}{l}
Stop FCS \\
Mode Lamp \\
Test
\end{tabular} & & & & 3 & CGZB_ACT_IT_ASTERISK\$(8) \\
\hline 9 & Average G NAV Control & & & & 4 & \\
\hline 10 & Start ADT & & & & 6 & CVYB_DISP_ITEM_ASTERISK\$(1) \\
\hline 11 & Stop ADT & & & & 6 & CVYB_DISP_ITEM_ASTERISK\$(2) \\
\hline 12 & Bodyflap Valve 1 Control & & & & 5 & CVYB_DISP_ITEM_ASTERISK\$(5) \\
\hline 13 & \begin{tabular}{l}
Bodyflap \\
Valve 2 \\
Control
\end{tabular} & & & & 5 & CVYB_DISP_ITEM_ASTERISK\$(6) \\
\hline 14 & \begin{tabular}{l}
Bodyflap \\
Valve 3 \\
Control
\end{tabular} & & & & 5 & CVYB_DISP_ITEM_ASTERISK\$(7) \\
\hline 15 & \begin{tabular}{l}
Secondary \\
Actuator Channel 1 Check
\end{tabular} & & & & 7 & CVYB_DISP_ITEM_ASTERISK\$(8) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{TABLE 3.8011-2. DISPLAY ITEMS (Continued)} \\
\hline \# & DEFINITION & MIN & MAX & UNIT & FN & HAL NAME/NOTES \\
\hline 16 & Secondary Actuator Channel 3 Check & & & & 7 & CVYB_DISP_ITEM_ASTERISK\$(9) \\
\hline 1 & Secondary Actuator Channel 3 Check & & & & 7 & CVYB_DISP_ITEM_ASTERISK\$(10) \\
\hline 18 & Secondary Actuator Channel 4 Check & & & & 7 & CVYB_DISP_ITEM_ASTERISK\$(11) \\
\hline 1 & \begin{tabular}{l}
Stop \\
Secondary \\
Actuator \\
Check
\end{tabular} & & & & 7 & CVYB_DISP_ITEM_ASTERISK\$(12) \\
\hline 20 & \begin{tabular}{l}
Select \\
Polarity for Actuator Check
\end{tabular} & & & & 7 & \\
\hline 2 & Set Secondary Actuator Bypass & 11 & 64 & & 8 & \\
\hline 2 & \begin{tabular}{l}
Reset \\
Secondary \\
Actuator \\
Bypass
\end{tabular} & 11 & 64 & & 8 & \\
\hline
\end{tabular}

\subsection*{3.5.9011(G) DISPLAY: GPC MEMORY}
-1 AVAILABILITY: OPS Mode Display for OPS G9.
-2 PURPOSE: See section 3.5 .000 for description.

\section*{RELEASE: OI20}

Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

\subsection*{3.5.9011(P) DISPLAY: MASS MEMORY R/W}
-1 AVAILABILITY: OPS Mode Display for OPS P9 or SPEC 85 in OPS SM2 or SM4.
-2 PURPOSE: The Mass Memory Read/Write display provides the capability to read, modify, and dump (via downlist) the MMUs on-board. It also provides the capability to compare data from both MMUs.
-3 WARNING: No MMU write (ITEM 50 EXEC) shall be done without proper authorization within the procedures of the sites where MMUs reside.


Figure 3.9011(P)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TABLE 3.9011(P)-1. DISPLAY FUNCTIONS} \\
\hline \# & FUNCTION & \[
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
\] & NOTES \\
\hline \multirow[t]{4}{*}{1} & \multirow[t]{4}{*}{Display Call-Up} & OPS 901 PRO & Entered on a Keyboard/DEU with major function in PL, causes transition to OPS P9, MM 901 \\
\hline & & SPEC 85 PRO & Entered on a Keyboard/DEU with major function in SM and assigned to a GPC in OPS S2/4. The CRT will be driven with data based on requested operations, whether from the ground via LDB (capability 2 only) or on-board via keyboard. Information supplied below will contain some LDB references in addition to CRT data. \\
\hline & & & NOTE: Before any MMU operations may be initiated, the SM common buffer must be available. This is indicated by RDY in the upper left corner of the CRT (SM COM BUFF). A status of BSY will cause all ITEM entries to be rejected. Once a MMU sequence has been started (read of loadblock), the buffer will remain BSY until: \\
\hline & & & \begin{tabular}{l}
1. Entire sequence is complete (write to both MMUs). \\
2. Completion of an RPL only read (phase \(=0\), loadblock \(=1\) ). \\
3. Completion of a MMU to MMU compare. \\
Also, DEU loads in PL-9 should not be done when MMU has the buffer BSY (DEU load program does not check buffer status). Finally, simultaneous ground and on-board MMU operations must be avoided to prevent inadvertent contamination of MMU contents.
\end{tabular} \\
\hline 2 & MMU Selection & ITEM N EXEC & \(\mathrm{N}=40\) for MMU1, 41 for MMU2 (default is neither selected). Upon selection the selected MMU's status registers are displayed in HEX in lower right corner of CRT as REGISTER A \& B (see Table 3.9011(P)-3 for a detailed description of the contents). Selection is mutually exclusive. Either MMU may be selected, regardless of which one the GPC was IPL'ed from. (37420) (55345) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{TABLE 3.9011(P)-1. DISPLAY FUNCTIONS (Continued)} \\
\hline \# & FUNCTION & \[
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
\] & NOTES \\
\hline 3 & Software System Selection & \[
\begin{aligned}
& \text { ITEM } 42+X X \\
& \text { EXEC }
\end{aligned}
\] & \begin{tabular}{l}
Provides ID of software element desired from MMU. ID's are: \\
1- PASS Area 1 \\
2- PASS Area 2 \\
3- PASS Area 3 \\
4-BFS \\
5- DEU \\
6 - SSME \\
7 - TCS Sequences \\
0 - Test \& Graphics \\
NOTE: For ID's 4-7 \& 0, MMU area selection is done by phase number (ITEM 43).
\end{tabular} \\
\hline 4 & Select Loadblock & \[
\begin{aligned}
& \text { ITEM } 43+\text { XXX } \\
& \text { EXEC } \\
& \text { ITEM } 44+\mathrm{XXX} \\
& \text { EXEC }
\end{aligned}
\] & \begin{tabular}{l}
Specify phase to be operated on. Refer to a MMU directory for valid phases. (37529) \\
Specify loadblock to be operated on. Refer to a MMU directory for valid loadblocks. \\
WARNING: If in S2/4 (SPEC 85), the specified loadblock cannot be more than 2048 halfwords in length. \\
NOTE: Input of ITEM 43 or 44 causes data fields for ITEMs 1-39, 45-47 to be blanked. Selection of phase 0 , loadblock 1 selects the Revision Patch Log (RPL). Upon doing a read of the RPL, the MM version will be displayed in the lower right corner of the CRT.
\end{tabular} \\
\hline 5 & Loadblock Operations & ITEM 48 EXEC & \begin{tabular}{l}
Modification of a MMU requires a sequence of read, merge, write. \\
Begins read of selected phase/loadblock from selected MMU into the buffer. At entry of request, STATUS on CRT will indicate progress as follows: \\
IP - Read is in progress. \\
CPLT - Access complete without error. \\
ERR - An error occurred during operation. (14474)
\end{tabular} \\
\hline
\end{tabular}

TABLE 3.9011(P)-1. DISPLAY FUNCTIONS (Continued)
\begin{tabular}{|c|c|c|}
\hline \# & FUNCTION & \[
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
\] \\
\hline & & ITEMS \(45+\) DDDDD EXEC \\
\hline
\end{tabular}

At completion (assuming no error), the loadblock checksum will be displayed at the bottom of the second column. If an error occurs, the ERROR CODE will identify type (also LDB code):

1-MMU I/O error.
2 - Unresolved phase/loadblock (not found).
3 - Configuration control information incorrect.
4 - Word-by-Word compare error.
5 - Checksum failure on read.
6 - Deleted.
7- Loadblock length violation.
8 - MMU version violation.
To re-try the read, simply reenter ITEM 48 EXEC. Also, SM COMM BUFF indicates BSY and will stay on as noted earlier.

Specify offset (decimal) into loadblock of first contiguous word to be changed. Entry causes data fields for ITEMs 1-39 and 46 to be blanked.

ITEM 46 + WW
Specify the number (decimal) of contiguous EXEC

ITEM 47 + PPPP EXEC words to be changed (1-39). Upon entering of this data, the CRT will be updated to show the current value of the location(s) to be patched.

Specify the patch ID (HEX) to be placed in the RPL when the write to MMU is done. This must be entered before a MERGE request (ITEM 49). Also, use of a patch ID more than once is not recommended. Use of a patch ID of 0000 with a write request will cause the VIOLATE status on the CRT to read YES.

ITEM \(\mathrm{N}+\mathrm{XXXX}\) EXEC

ITEM 49 EXEC
Specify data to be placed on mass memory, \(\mathrm{N}=1-39, \mathrm{XXXX}\) is HEX data to be placed on MMU. Desired data will be displayed on CRT next to N .

Cause patch data to be merged into loadblock in GPC buffer (the number of patch data's entered must be the same as specified by ITEM 46 for the MERGE to be successful). STATUS on CRT will be driven as specified earlier for ITEM 49 EXEC (IP, then CPLT or ERR). If successful, the checksum is updated to the new value.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ TABLE 3.9011(P)-1. DISPLAY FUNCTIONS (Continued) }
\end{tabular}\(|\)\begin{tabular}{ll}
\hline & \\
\hline & FUNCTION
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{TABLE 3.9011(P)-1. DISPLAY FUNCTIONS (Continued)} \\
\hline \# & FUNCTION & \[
\begin{aligned}
& \hline \text { KYBD } \\
& \text { ENTRY(S) }
\end{aligned}
\] & NOTES \\
\hline \multirow[t]{4}{*}{7} & \multirow[t]{4}{*}{MMU Dump via Downlist} & ITEM M EXEC & Select MMU to read and dump (see function 2). \\
\hline & & \[
\underset{\text { EXEC }}{\operatorname{ITEM}} 42+\mathrm{X}
\] & Select software system ID (0-7) (see function 3). \\
\hline & & \[
\begin{aligned}
& \text { ITEM } 43+\text { PPP } \\
& \text { EXEC }
\end{aligned}
\] & Select phase to dump. \\
\hline & & ITEM 52 EXEC & \begin{tabular}{l}
This will cause the selected phase/loadblock to be read into the buffer then dumped via downlist. \\
WARNING: This will cause the downlist format ID to change from 52 (or 48) to 91 .
\end{tabular} \\
\hline \multirow[t]{8}{*}{8} & \multirow[t]{8}{*}{MMU To MMU Copy} & ITEM M EXEC & Select MMU to read from. \\
\hline & & \[
\begin{aligned}
& \text { ITEM } 42+\mathrm{X} \\
& \text { EXEC }
\end{aligned}
\] & Select software system ID (0-7) (see function 3). \\
\hline & & \[
\begin{aligned}
& \text { ITEM } 43+\text { PPP } \\
& \text { EXEC }
\end{aligned}
\] & Select phase to copy. \\
\hline & & \[
\begin{aligned}
& \text { ITEM } 44+\text { LLL } \\
& \text { EXEC }
\end{aligned}
\] & Select loadblock to copy. \\
\hline & & ITEM 48 EXEC & Read selected loadblock. \\
\hline & & ITEM M EXEC & Select the other MMU to write to; i.e., if first \(M=40\), second would be 41 and vice versa. \\
\hline & & \[
\begin{aligned}
& \text { ITEM } 47+\text { PPPP } \\
& \text { EXEC }
\end{aligned}
\] & For Configuration Control. \\
\hline & & ITEM 50 EXEC & Write loadblock to MMU. Status indicators done as before. (15651) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{TABLE 3.9011(P)-2 DISPLAY ITEMS} \\
\hline \# & DEFINITION & MIN & MAX & UNIT & FN & HAL NAME/NOTES \\
\hline \[
\begin{aligned}
& 1- \\
& 39
\end{aligned}
\] & Desired Data for MMU Patch & 0000 & FFFF & HEX & 5 & \\
\hline 40 & Select MMU1 & & & & 2,
\(6-8\) & \\
\hline 41 & Select MMU2 & & & & \[
\begin{aligned}
& 2, \\
& 6-8
\end{aligned}
\] & \\
\hline 42 & Select Software System ID & 0 & 7 & & \[
\begin{aligned}
& 3, \\
& 6-8
\end{aligned}
\] & \\
\hline 43 & Phase & 0 & 999 & DEC & \[
\begin{aligned}
& 4, \\
& 6-8
\end{aligned}
\] & \\
\hline 44 & Loadblock & 0 & 999 & DEC & \[
\begin{aligned}
& 4, \\
& 6-8
\end{aligned}
\] & \\
\hline 45 & Offset into Loadblock & 0 & 16384 & DEC & 5 & In S2/4 MAX is 2048. \\
\hline 46 & Number of Words to Patch & 0 & 39 & DEC & 5 & Sum of offset and number of words cannot exceed 16384. (2048 in S2/4) \\
\hline 47 & Patch ID & 0001 & FFFF & HEX & 5 & \\
\hline 48 & Read Loadblock & & & & 5-8 & Must have valid ITEM 40-44. \\
\hline 49 & Merge Desired Data & & & & 5 & \\
\hline 50 & Write Loadblock & & & & 5,8 & \\
\hline 51 & MMU Compare & & & & 6 & \\
\hline 52 & Dump MMU & & & & 7 & \\
\hline
\end{tabular}

TABLE 3.9011(P)-3. MMU REGISTER A \& B CONTENTS

BIT

6

REGISTER A
Power Transient
File Address Not Equal
Command error
Write Protect Violation
Invalid Op Code

\section*{REGISTER B}

Data Count Word Low
Read Tape Data Dropout
Read Check Assurance Lost
Read Tape Parity Error
MIA Invalid Manchester Code
Command Received When Not Ready
EOF Block Count Zero
EOF No Search Address Compare
Malfunction
BOT Sensed
EOF Sensed
Power Supply Out of Tolerance
Bit Count Error
Parity Error
Invalid 101 Check
MIA Data/Address Error

\section*{4. DEDICATED DISPLAYS}

In the User's Guide the definition of dedicated display encompasses lights, meters, and other indicators (such as talkbacks, etc.) which provide the user with visual data or notification other than that provided via the MCDS system as defined in Section 3.

\subsection*{4.1 DATA PROCESSING SYSTEM (DPS) TALKBACKS}

GPCs and MCDSs have mechanical indicators (talkbacks) to provide a visual notification of status. For GPCs, the talkbacks are located on panel 06 ; for MCDSs, the talkbacks are located on the CRT enclosure plate immediately below the screen.
-1 For GPCs, each talkback is a mechanical plate driven to various states behind a viewing lens. Talkbacks and positions are as follows:

MODE: IPL - The IPL pushbutton has been pressed and the micro-code is loading the Bootstrap Loader (FCM BOOT) from MMU. (If present for more than 15 seconds, indicates an IPL Hang condition.)

Barberpole - (Gray/Black striped) - The GPC is idle due to mode switch position (in STBY for PASS, or HALT for PASS or BFS), IPLing, or failure.

RUN - The GPC is actively processing in PASS or BFS.

OUTPUT: Barberpole

Grey - The IOP transmitters are enabled and the software is performing outputs to flight critical buses.
-2 MCDS talkbacks are CORN-FLOWERS - a round disk of 3 white and 3 black wedges has a second round disk over it with 3 wedges removed. In the non-error state, the cover disk hides the white wedges of the first disk so that the indicator is all black. When tripped, the cover disk rotates clockwise to reveal the white wedges. It is reset (assuming the cause for tripping has been corrected) by rotating the cover counter-clockwise. Each MCDS has a display-unit (DU) talkback and a display electronics unit (DEU) talkback.

\subsection*{4.2 COMPUTER ANNUNCIATION MATRIX}

The Computer Annunciation Matrix is a 5X5 set of lights located on panel O1. Figure 4-1 illustrates the matrix.
-1 The rows represent the voting GPCs, the columns represent failed GPCs. Each PASS GPC votes on itself and the other GPCs containing PASS and operating in either a Common or Redundant Set. If an off-diagonal light is illuminated, it means the voting computer for that row has issued a fail vote against the computer corresponding to the GPC column. Any diagonal light means that the computer has issued a fail vote against itself or two or more GPC's have issued failed votes against the computer. (55300)


Figure 4-1. Computer Annunciation Matrix (CAM)

\subsection*{4.3 CAUTION AND WARNING LIGHTS}

The C\&W lights are an 8X5 matrix (multicolored) located on panel F7. These lamps are illuminated when a failure of a specific nature is detected. Failures are annunciated when either a predetermined (hardware) limit has been exceeded or FSW detects a failure.
-1 Failures annunciated by FSW are:
\begin{tabular}{|c|c|}
\hline BKUP C/W & When software has detected a class 2 fault in the C\&W. \\
\hline GPC & When a GPC has set its I-FAIL. \\
\hline \[
\begin{aligned}
& \text { FCS } \\
& \text { SATURATION }
\end{aligned}
\] & When position of elevon exceeds limit or hinge moment greater than maximum. \\
\hline IMU & When IMU redundancy management detects an IMU dilemma. \\
\hline RGA/ACCEL & When AA or RGA FDIR encounters a dilemma condition. \\
\hline LEFT RHC & When RHC FDIR encounters a left RHC dilemma condition. \\
\hline \[
\begin{aligned}
& \text { RIGHT/AFT } \\
& \text { RHC }
\end{aligned}
\] & When RHC FDIR encounters an AFT or Right RHC dilemma condition. \\
\hline FCS CHANNEL & When a failure has been detected in one of the four FCS channels. \\
\hline AIR DATA & When ADTA RM encounters a dilemma condition. \\
\hline RCS JET & When RCS RM detects failure in the forward, left, or right RCS jets. \\
\hline FWD RCS & When a high/low tank pressure or leak condition is detected in the FWD RCS FU/OX tanks. \\
\hline LEFT RCS & Same as for FWD RCS. \\
\hline RIGHT RCS & Same as for FWD RCS. \\
\hline OMS TVC & When OMS RM detects a left or right OMS gimbal failure. \\
\hline LEFT OMS & When a left OMS high/low OX/FU tank pressure is detected or Chamber Pressure Fail indication occurs. \\
\hline RIGHT OMS & Same as for left ones. \\
\hline
\end{tabular}

O

0

\subsection*{4.4 MASTER ALARM}

The master alarm lamps are located on panels F2 and F4 and are illuminated and the C\&W tone annunciated for predefined conditions. When software detects a fault in the Caution and Warning category, the signals are sent to the CW electronics unit to light the Master Alarm lights and turn on the C\&W tone. The tone and Master Alarm lights are extinguished by depressing the Master Alarm PBI (with no software interface).

\subsection*{4.5 SM ALERT LIGHT}

The SM Alert light is located on panel F7 and is illuminated when the FSW detects a fault in the Alert category. It is turned off by depressing the ACK or MSG RESET key on the keyboard.



\subsection*{4.6 REMOTE MANUPULATOR SYSTEM (RMS) INDICATORS}

The RMS has several dedicated indicators to show the health of the ARM and status of its components. The presence of the RMS is mission dependent; thus, for some flights the indicators will not be available.

\subsection*{4.6.1 RMS Master Alarm (Panel A8A1)}

The light illuminates and a caution and warning tone is annunciated for predefined conditions. The tone and light remain on until the Master Alarm button is depressed. (41533)

\subsection*{4.6.2 RMS Mode Lights (Panel A8A1)}

These 12 lights are used to indicate which mode the RMS system is in (TEST, OPR CMD, AUTO 1, AUTO 2, AUTO 3, AUTO 4, ORB ONL, ORB LD, END EF, PAYLOAD, SINGLE, or DIRECT).

\subsection*{4.6.3 RMS Auto SEQ Lights (Panel A8A1)}

Two lights are available for auto sequence execution (READY, IN PROG). The Ready Light indicates that the GPC is ready to execute the auto sequence. The In Progress light indicates that the GPC is executing the auto sequence. (42263)

\subsection*{4.6.4 RMS Caution Lights (Panel A8A1)}

These lights indicate that a problem has occurred. The MCIU light indicates that a failure has occurred in the MCIU. The DERIGIDIZE light indicates that the end effector has derigidized without being commanded to do so (called an uncommanded derigidigation). The ABE light indicates that a failure has occurred in the arm based electronics. The RELEASE light indicates that the end effector has released the grapple fixture without being commanded to do so (called an uncommanded release). The GPC DATA light indicates that invalid data was transmitted by the orbiter GPC to the MCIU and the RMS Safing routine has begun executing. The SINGULAR light indicates that the configuration of the arm is approaching an arm singularity condition. The CHECK CRT light indicates that a failure message is on the orbiter CRT. The CONTR ERR light indicates joint abnormal conditions that may not be detected by BITE. The REACH LIM light indicates that one of the joints is close to its reach limit. The STBD TEMP light indicates that the temperature of a unit within the starboard arm is outside its safe operating range. The PORT TEMP light indicates that the temperature of a unit within the port arm is outside its safe operating range.

\subsection*{4.6.5 RMS Brakes Indicator (Panel A8A1)}

ON indicates that all brakes are on. OFF indicates that all brakes are off.

\subsection*{4.6.6 RMS Safing Barber-Pole Indicator (Panel A8A1)}

The gray indicates that safing is not in progress. The barber pole indicates that safing is in progress.

\subsection*{4.6.7 RMS Software Stop Barber-Pole Indicator (Panel A8A1)}

The gray indicates that a stop has not been commanded by the GPC. The barber pole indicates that a software stop has occurred.

\subsection*{4.6.8 Rate MIN Indicator (Panel A8A1)}

ON indicates that the vernier speed has been selected. OFF indicates that the coarse speed has been selected.

\subsection*{4.6.9 Rate Hold Indicator (Panel A8A1)}

ON indicates that rate hold was commanded and has been implemented by the GPC. OFF indicates that the rate hold function is not in effect.

\subsection*{4.6.10 Rate Scale Indicator (Panel A8A1)}

The gray indicates that the effective scales are as shown on the translational rate meter. X1O indicates that all readings should be multiplied by 10 for an actual reading.

\subsection*{4.6.11 EE Rigid Barber-Pole Indicator (Panel A8A1)}

The gray indicates the end effector is rigidized. The barber pole indicates the end effector is not rigidized.

\subsection*{4.6.12 EE Derigid Barber-Pole Indicator (Panel A8A1)}

The gray indicates the end effector is between the zero tension point and the fully extended position (i.e., the EE is derigidized). The barber pole indicates the end effector is between the zero tension point and the fully rigidization position (i.e., the EE is not derigidized).

\subsection*{4.6.13 EE Close Barber-Pole Indicator (Panel A8A1)}

The gray indicates that the capture mechanism is closed. The barber pole indicates that the capture mechanism is open or between the two states.

\subsection*{4.6.14 EE Open Barber-Pole Indicator (Panel A8A1)}

The gray indicates that the capture mechanism is in the fully open position. The barber pole indicates that the capture mechanism is closed or between the two states.

\subsection*{4.6.15 EE Capture Barber-Pole Indicator (Panel A8A1)}

The gray indicates that the snares of the end effector have been driven against the grapple fixture and have come to rest. The barber pole indicates that the end effector has not captured a payload grapple pin.

\subsection*{4.6.16 EE Extend Barber-Pole Indicator (Panel A8A1)}

The gray indicates the end effector is fully extended. The barber pole indicates the end effector is somewhere between the rigidized and the extended positions.

\subsection*{4.6.17 Shoulder Brace Release Barber-Pole Indicator (Panel A8A1)}

The gray indicates that the shoulder brace has been unlatched. The barber pole indicates that the shoulder brace is still latched.
\begin{tabular}{ll} 
RELEASE: OI20 & Date: \(12 / 20 / 90\) \\
BOOK: PASS User's Guide & Rev: 0
\end{tabular}

\subsection*{4.6.18 STBD RMS STO/LAT Indicators (Panel A8A2)}

These flags indicate the stow/deploy status of the arm and the status of the RMS retention latches. STO, indicates that the arm is in a stowed position. DEP, indicates that the arm is in a deployed position. LAT, indicates that the three RMS retention latches are latched. REL, indicates that the three RMS retention latches are released.

\subsection*{4.6.19 STBD RMS Ready-For-Latch AFT/MID/FWD Barber-Pole Indicators (Panel A8A2)}

The gray indicates that the particular retention fitting is in position for latching. The barber pole indicates that the particular retention fitting is not in position for latching.

\subsection*{4.6.20 PORT RMS STO/LAT Indicators (Panel A8A2)}

These flags indicate the stow/deploy status of the arm and the status of the RMS Retention latches. STO, indicates that the arm is in a stowed position. DEP, indicates that the arm is in a deployed position. LAT, indicates that the three RMS Retention latches are latched. REL, indicates that the three RMS Retention latches are released.

\subsection*{4.6.21 PORT RMS Ready-For-Latch AFT/MID/FWD Barber-Pole Indicators (Panel A8A2)}

The gray flag indicates that the particular retention fitting is in position for latching. The barber pole indicates that the particular retention fitting is not in position for latching.

\subsection*{4.6.22 RMS Digital Display}

These three readouts display RMS status information based on the position of the parameter select rotary switch. The readouts have four digits and a sign. The parameters available for display are: TEST, POSITION X/Y/Z, ATTITUDE P/Y/R, JOINT ANGLE, VEL X/Y/Z, RATE P/Y/R, TEMP LED/ABE/ID PORT, and STBD.

\subsection*{4.6.23 RMS Actual And Commanded Rates Indicator}

The rate indicator on panel A8A1 displays actual and commanded rates. The indicator is shown in Figure 4-2. On the left of the scale, the ACT indicates the actual speed of the end effector along the resultant vector of the coordinate system in effect. The right side of the meter, labeled CMD, indicates the commanded speed of the end effector along the resultant vector of the coordinate system in effect. These values represent feet per second. The tape behind the pointers is fixed and the pointers in the meter will move up and down for the correct meter reading. To find out whether or not the values shown need to be multiplied by ten, the SCALE indicator (discussed in Section 4.6.10) must be considered. If the scale indicator is gray, the pointer values are correct. If the scale indicator shows a X1O, then the readings should be multiplied by ten.


Figure 4-2. RMS Rate Meter
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.6-1. DEDICATED DISPLAY DATA} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
METER: \\
RMS Rate Indicator
\end{tabular}} & \multicolumn{3}{|c|}{VALID OPS/MODES: 201, 202, 401, 402} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline ACTUAL & & Actual Rate of RMS & FPS & \[
\begin{aligned}
& 0,0.25^{*} \\
& 0,2.5
\end{aligned}
\] \\
\hline COMMAND & & Command rate of RMS & FPS & \[
\begin{aligned}
& 0,0.25^{*} \\
& 0,2.5
\end{aligned}
\] \\
\hline
\end{tabular}
*Selection of limits based on scale indicator (4.6.10).

\subsection*{4.7 GNC DEDICATED DISPLAYS}

Allows the crew to monitor continuous presentations of time critical flight parameters, an independent means of monitoring automatic flight control performance, and the flight data necessary for manual override of vehicle control. Additionally, the Dedicated Display lamps permit the crew to status the flight control mode, entry/landing events, and reaction control system activity.
-1 The Dedicated Displays consist of the following meters and lights:
- Attitude Director Indicator (ADI)
- Horizontal Situation Indicator (HSI)
- Alpha/Mach Indicator (AMI)
- Altitude/Vertical Velocity Indicator (AVVI)
- Surface Position Indicator (SPI)
- Flight Control System Mode Status Lights
- Reaction Control System Activity Lights
- Head-Up Display (HUD)
-2 The ADI, HSI, AMI, and AVVI are driven by a Display Driver Unit (DDU); the HUD by a Head-Up Display Electronics unit (HUDE), and the SPI and lights by the Multiplexer/Demultiplexer (MDM). However, the DDU, HUDE and MDM all receive their data from the flight software. Availability of the various meters and lights throughout the major modes are shown in Table 4.7-1.


\subsection*{4.7.1 ATTITUDE DIRECTION INDICATOR (ADI)}

The ADI displays:
- Orbiter roll, pitch, yaw attitude via gimballed ball
- Attitude errors via three meter-position needles
- Attitude rates via three meter-position pointers
- Condition of indicators
-1 All ADI displays are FLY-TO indications (i.e., directions in which the crew should maneuver the vehicle). For condition of the indicators, an OFF flag signifies when one or more of the attitude ball positioning signals is invalid. For the attitude error and rate indicators, the needle or pointer is stowed (out-of-view) upon occurrence of an invalid signal.
-2 Three ADIs are installed in the Shuttle vehicle; one each in the commander, pilot, and aft stations. Additionally the aft station includes a sense switch for more control of the aft ADI display. The two forward ADIs are supported throughout the entire mission, while the aft ADI is active only during on-orbit operations. Additionally, the three ADIs may be tested during on-orbit checkout via the FCS/Dedicated Display Checkout Spec Function.
-3 The ADI quantities displayed are updated at different rates, depending on the parameter and operational mode.
-4 The ADI indicators are shown in Figure 4-3.
-5 Roll attitude is displayed as clockwise/counterclockwise movement of the gimballed ball with the angle indicated on the circular scale enclosing the ball. Pitch attitude is displayed as up/down movement, with the angle read as a horizontal scale of the ball. Yaw attitude is displayed as sidewise movement, with the angle read as a vertical scale of the ball. A more positive angle on an axis will drive the attitude ball in the following manner: roll, counterclockwise; pitch, downward; and yaw, left. Attitude information is derived with respect to a reference frame, which is predefined during entry/landing. During ascent and on-orbit operations, reference frame selection is provided by the ADI ATTITUDE switch. In conjunction with the attitude switch REF position an attitude reference switch further defines reference frame selection. The reference frame in effect for an operational mode is shown in Table 4.7.1-1.
-6 The roll attitude error is indicated by a needle which moves along the top of the gimballed ball about an outer scale on the plate enclosing the ball. The pitch attitude error is indicated by a needle which moves up and down the right side of the ball about an outer scale on the plate; and the yaw error needle moves across the bottom of the ball.
-7 A positive polarity signal will drive its associated needle in the following direction: roll error, left; pitch error, down; yaw error, left. The error data displayed is dependent upon the operational mode, as shown in Table 4.7.1-1. Further, the magnitude of the displayed data is controlled by the error scale selection switch.
-8 The roll attitude rate is displayed by a pointer and scale above the gimballed ball. The pointer moves left/right. The pitch attitude rate is displayed by a pointer and scale located to the right of the ball. This pointer moves up/down. The yaw attitude rate pointer and scale are below the attitude ball, with the pointer moving left/right. A positive polarity signal will drive its associated pointer in the following direction: roll rate, right; pitch rate, up;yaw rate, right. The rate data displayed is dependent upon the operational mode, as specified in Table 4-1. Similarly for the error data, the magnitude of the displayed data is controlled by the rate scale selection switch. (37538)
-9 The following notes document various mannerisms exhibited by the various needles and flags of the ADI:
-9.1 The ADI rotation rates may be much higher than the actual body rates whenever the yaw angle approaches 90 degrees. (39408)
-9.2 The ADI pitch error needle becomes very sensitive as time-to-go (tgo) becomes small during +4 x RCS maneuvers. (37562)
-9.3 The ADI yaw error needle is sensitive during fuel wasting maneuvers (OPS 3). This sensitivity is usually most noticeable near cutoff shortly before the PEG thrust pointing commands are frozen (tgo \(=6\) seconds). Typically the yaw needle will diverge suddenly or appear to jump near a tgo of 6 seconds. (37559)
-9.4 The ADI error needles will not automatically use the OPS 202 PEG guidance solution as their attitude reference. (46512)
-9.5 When both OMS engines are shut off prematurely via ARM/PRESS switch and guidance is not yet converged to RCS solution, commanded body attitude task uses last OMS thrust direction value and I-loaded RCS trim value. (46505)
-9.6 Current GNC PASS software does not withdraw the RCS jets associated with a powered-off Reaction Jet Driver Assembly (RJDA) from the Flight Control usage availability; consequently, those jets may be commanded to fire by the on-orbit DAP. In that event, the on-orbit DAP will compute an expected attitude rate in its state estimator logic and will pass that value to the ADI for display. (42085)
-9.7 The ADI needles will be stowed if guidance remains uncoverged for 5 cycles (approximately 10 seconds). (51805/51807)
-9.8 Pre-launch ADI reference (37528) (37538)


Figure 4-3. ADI Unit
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 4.7.1-1. ADI DISPLAY DATA} \\
\hline & OPS 1 & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { OPS } 2 \\
\hline \text { ON-ORBIT }
\end{gathered}
\]} & \multicolumn{5}{|c|}{OPS 3/OPS 6} \\
\hline \multirow[t]{3}{*}{DISPLAY} & \multirow[t]{3}{*}{ASCENT} & & \multicolumn{2}{|l|}{PRE ENTRY} & ENTRY & TAEM & ENTRY \({ }^{\text {a }}\) TAEM \({ }^{\text {a }}\) ( TOUCHDOWN \\
\hline & & & \multicolumn{2}{|l|}{301,302,303} & 304 & 305 & 305 \\
\hline & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
<\times \text { SEC } \\
\text { AFTER } 602
\end{gathered}
\]} & \[
\begin{gathered}
\text { X SEC } \\
\text { AFTER } 602
\end{gathered}
\] & \multicolumn{2}{|l|}{603} \\
\hline \multirow{3}{*}{ATTITUDE} & \multicolumn{3}{|l|}{INERTIAL REFERENCE FRAME} & \[
\begin{aligned}
& \hline \mathrm{R} \\
& \mathrm{O} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
\] & \multicolumn{3}{|c|}{LOCAL HORIZONTAL} \\
\hline & \multicolumn{3}{|r|}{STORED REFERENCE FRAME} & \begin{tabular}{l} 
P \\
\hline I \\
T \\
C \\
H \\
\hline
\end{tabular} & \multicolumn{3}{|c|}{LOCAL VERTICAL, TOPODETIC} \\
\hline & \multicolumn{3}{|c|}{LOCAL VERTICAL, LOCAL HORIZONTAL FRAME} & \begin{tabular}{l} 
H \\
\hline \\
A \\
W
\end{tabular} & \multicolumn{3}{|c|}{FIXED AT ZERO} \\
\hline \multirow{5}{*}{ERRORS} & \multirow{5}{*}{LAUNCH GUIDANCE COMMAND ERRORS} & \multirow[b]{5}{*}{\begin{tabular}{l}
ON-ORBIT GUIDANCE COMMAND ERRORS TOTAL OR DAP \\
ERROR AS SELECTED ON UNIV PTG
\end{tabular}} & \multirow{5}{*}{\begin{tabular}{l}
DIGITAL \\
AUTOPILOT COMMAND ERRORS
\end{tabular}} & \begin{tabular}{l} 
R \\
\hline O \\
L \\
L
\end{tabular} & BANK GUIDANCE & ROLL ATTITUDE ERROR & ROLL ATTITUDE ERROR \\
\hline & & & & \multicolumn{3}{|r|}{602 ALPHA 602 NZ HLD} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { SLAPDOWN } \\
& \text { PITCH } \\
& \text { RATE } \\
& \text { ERROR }
\end{aligned}
\]} \\
\hline & & & & \begin{tabular}{l} 
P \\
\hline I \\
T \\
C \\
H \\
\hline
\end{tabular} & AOA GUIDANCE ERROR & \begin{tabular}{l}
NORMAL \\
ACCELERATION ERROR
\end{tabular} & \\
\hline & & & & \begin{tabular}{l} 
H \\
\hline Y \\
A \\
W \\
\hline
\end{tabular} & \multicolumn{3}{|c|}{ESTIMATED SIDESLIP ERROR} \\
\hline & & & & \begin{tabular}{|l|}
\hline R \\
\hline O \\
L \\
L \\
\hline
\end{tabular} & \multicolumn{3}{|c|}{STABILITY ROLL RATE} \\
\hline \multirow[t]{2}{*}{RATES} & \multirow[t]{2}{*}{\begin{tabular}{l}
BODY \\
RATES
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
BODY \\
RATES
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
BODY \\
RATES
\end{tabular}} & \begin{tabular}{l} 
P \\
\hline P \\
I \\
T \\
C \\
H \\
\hline
\end{tabular} & \multicolumn{3}{|c|}{FILTERED PITCH RATE} \\
\hline & & & & \begin{tabular}{l} 
H \\
\hline Y \\
A \\
W \\
\hline
\end{tabular} & \multicolumn{3}{|c|}{STABILITY YAW RATE} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{TABLE 4.7.1-2. DEDICATED DISPLAY SWITCH CONTROLS} \\
\hline METER: ADI & VALID OPS/MODES: All GNC Flight OPS/Modes \\
\hline SWITCH
POSITION & DEFINITION \\
\hline Commander ADI Attitude & Switch is forced to LVLH in major modes \(304,305,602\), and 603 by PASS. \\
\hline INRTL & Display roll, pitch, and yaw with respect to the inertial reference frame. \\
\hline LVLH & Display roll, pitch, and yaw with respect to the local vertical, local horizontal reference system. \\
\hline REF & Display roll, pitch, and yaw with respect to a pre-defined reference frame: body frame if Attitude Reference PBI is on; or stored ADI reference if it is not. \\
\hline Commander Attitude Reference Select & Push-button which selects either the stored reference frame or body frame as the reference system for ADI data when ADI Attitude switch is in REF. Flip/flop to choose between the two. \\
\hline \begin{tabular}{l}
Commander ADI \\
Error
\end{tabular} & Displays roll, pitch, and yaw errors. \\
\hline HIGH & Full scale deflection \(=10\) degrees, except pitch in MM 305 \(=1.25 \mathrm{~g}\) (normal acceleration). \\
\hline MED & Full scale deflection \(=5\) degrees, except pitch in \(\mathrm{MM} 305=1.25 \mathrm{~g}\). \\
\hline LOW & Full scale deflection \(=1\) degree, except pitch in MM \(305=.5 \mathrm{~g}\). \\
\hline Commander ADI & Displays roll, pitch, and yaw rates. \\
\hline HIGH & Full scale deflection \(=10\) degrees . \\
\hline MED & Full scale deflection \(=5\) degrees . \\
\hline LOW & Full scale deflection \(=1\) degree . \\
\hline Pilot & All pilot switches are identical to the commander's. \\
\hline AFT & All AFT switches are identical to the commander's. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.7.1-3. DEDICATED DISPLAY DATA} \\
\hline \multicolumn{2}{|l|}{METER: ADI} & \multicolumn{3}{|l|}{VALID OPS/MODES: All GNC Flight OPS/Modes} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline Roll & All & Roll angle with respect to selected reference frame. & Deg & 0,360 \\
\hline Pitch & All & Pitch angle with respect to selected reference frame. & Deg & 0,360 \\
\hline Yaw & All & Yaw angle with respect to selected reference frame. NOTE: In MM 304-305 and MM 602-603, the selected reference frame is forced to LVLH and \(\mathrm{Yaw}=0\). & Deg & 0,360 \\
\hline \multirow[t]{3}{*}{Roll Error} & HIGH & Delta in roll between actual and commanded (see Table 4.7.1-1). & Deg & \(-10,+10\) \\
\hline & MED & Same. & Deg & \(-5,+5\) \\
\hline & LOW & Same. & Deg & \(-1,+1\) \\
\hline \multirow[t]{3}{*}{Pitch Error} & HIGH & Delta in pitch between actual and commanded (see Table 4.7.1-1), except in MM 305 (TAEM). & \[
\begin{aligned}
& \text { Deg } \\
& \text { g's }
\end{aligned}
\] & \[
\begin{aligned}
& -10,+10 \\
& -1.25, \\
& +1.25
\end{aligned}
\] \\
\hline & MED & Same. & \[
\begin{aligned}
& \text { Deg } \\
& \mathrm{g}^{\prime} \mathrm{s}
\end{aligned}
\] & \[
\begin{aligned}
& -5,+5 \\
& -1.25, \\
& +1.25
\end{aligned}
\] \\
\hline & LOW & Same. & \[
\begin{aligned}
& \text { Deg } \\
& \text { g's }^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& -1,+1 \\
& -.5,+.5
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Yaw Error} & HIGH & Delta in yaw between actual and commanded (see Table 4.7.1-1), except in MM 304-305 and MM 602-603, fixed zero. & Deg & \(-10,+10\) \\
\hline & MED & Same. & Deg & \(-5,+5\) \\
\hline & LOW & Same. & Deg & \(-1,+1\) \\
\hline \multirow[t]{3}{*}{Roll Rate} & HIGH & Rate at which vehicle is rotating about the roll axis. & Deg/Sec & \(-10,+10\) \\
\hline & MED & Same. & Deg/Sec & \(-5,+5\) \\
\hline & LOW & Same. & Deg/Sec & -1, +1 \\
\hline \multirow[t]{3}{*}{Pitch Rate} & HIGH & Rate at which vehicle is rotating about the pitch axis. & Deg/Sec & \(-10,+10\) \\
\hline & MED & Same. & Deg/Sec & \(-5,+5\) \\
\hline & LOW & Same. & Deg/Sec & \(-1,+1\) \\
\hline
\end{tabular}

\subsection*{4.7.2 HORIZONTAL SITUATION INDICATOR (HSI)}

The HSI provides the crew with a pictorial view of the vehicle position with respect to various navigation points, and a visual perspective of GNC parameters including directions, distances, and course/glidepath deviations. The information presented constitutes the minimum necessary for manual vehicle control. The data sources and computational software associated with manual control enable the crew to independently monitor and assess the GNC automatic mode. Finally, the HSI provides real-time diagnosis and correction of problems through status flags, which permit the crew to select good input sources and inhibit bad sources from the automatic mode.

Two HSIs and their associated switches are installed in the cockpit; one each in the commander and pilot stations. The HSIs are supported during entry/landing and during powered flight in ascent/RTLS. They may be tested during on-orbit checkout by the Dedicated Display Checkout program when activated by the FCS/DED DISP C/O display.

The two HSIs are supported independently by the HSI 3.125 Hz Processing program. During ground checkout, the two HSIs may be tested by the Dedicated Display Checkout Cyclic I/O Processor of the Vehicle Utility Software.

The HSI displays the following information:
- magnetic heading
- selected course
- course deviation
- glide slope deviation
- primary and secondary bearing
- primary and secondary distance
- validity flags

The nomenclature for the HSI is shown in Figure 4-4.
\(-1,2\) The compass card displays the magnetic heading, which is read as the value on the card under the fixed lubber line. For a zero heading, the compass card is positioned at 0 degrees ( N ). The compass card rotates counterclockwise as the heading increases.
-3 The course pointer, which rotates along the inside edge of the compass card, displays the selected course. The selected course is read as the value on the compass card at the tip of the course pointer. For a zero course input, the pointer is positioned at the lubber line regardless of the compass card position, since the pointer is driven relative to the HSI case. The course pointer rotates clockwise as the course input increases.
-4 Course deviation is reflected in movement of the course deviation bar located between the course pointer and the reciprocal course pointer. If the deviation input to the meter is zero, the bar will be aligned with the pointers. As the vehicle deviates left of the selected course, the deviation bar will deflect right of the course pointer to direct a command to fly right. A vehicle deviation right of course will cause a left displacement of the bar. The deviation angle is defined by the position of the bar relative to the dots of the scale.
-5 Glide slope deviation is exhibited by the position of the glide slope deviation pointer on the right side of the HSI. Displacement of the vehicle above the glide slope causes the pointer to deflect downward, corresponding to a command to fly down. Similarly, displacement below the glide slope causes an upward deflection of the pointer. The distance above or below the glide slope is determined by the position of the pointer with respect to the dots of the scale.
-6 The primary ( P ) and secondary \((\mathrm{S})\) bearing pointers rotate along the outside edge of the compass card and present bearing information relative to the compass card when the card is positioned by heading data. When the bearing input is zero, the pointer will be positioned at the lubber line, regardless of the card position. An increase in bearing causes the pointer to rotate clockwise. The bearing angle is read as the value on the compass card coincident with the pointer.
-7 The primary and secondary distance wheel indicators (PRI MILES/SEC MILES) in the upper corners of the HSI provide a measurement of the distance between the vehicle and various navigation points. The display range of these indicators is 0000 to 3999 miles. (30139)
\(-8,9,10\) To signify validity of the instrument and indicators, the following flags are provided on the HSI:
- OFF, power off or low power (less than 20 watts)
- BRG, heading and primary/secondary bearing may be invalid
- GS, glide slope deviation display invalid
- Barberpole, PRI/SEC MILES invalid

For the parameters described above, in major modes \(304,305,602\) and 603 , two other entities affect both their meanings and values: the software, and the data source used for the computation of the parameters. Software selection is controlled by the HSI Select Mode switch, major mode, and altitude above the runway; data source selection is controlled by the HSI Select Source switches and the associated TACAN or MLS controls. The HSI switch controls are defined in Table 4.7.2-1 and the meaning of the parameters with respect to the Mode Switch Setting is defined in Table 4.7.2-2.
During major modes 101-103 and 601, the HSI is used to provide the crew with lateral directional data.


Figure 4-4. HSI Display

\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ TABLE 4.7.2-2. DEDICATED DISPLAY DATA }
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.7.2-2. DEDICATED DISPLAY DATA (Continued)} \\
\hline \multicolumn{2}{|l|}{METER: HSI} & \multicolumn{3}{|l|}{VALID OPS/MODES: 101-103, 601-603, 304, 305} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline \multirow{5}{*}{\begin{tabular}{l}
Course \\
Deviation
\end{tabular}} & A/L & Same as primary bearing. & Deg & 0,360 \\
\hline & ASCENT & Inertial sideslip angle using inertial velocity WRT the air mass. & Deg & 0,360 \\
\hline & ENTRY & Not computed ( \(=0\) ). & & 0,0 \\
\hline & TAEM & Deviation from extended runway centerline. & Deg & \(-10,+10\) \\
\hline & A/L & Deviation from extended runway centerline. & Deg & \[
\begin{aligned}
& -2.5 \\
& +2.5
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Glide Slope \\
Deviation
\end{tabular}} & ASCENT & Not computed. & & 0,0 \\
\hline & ENTRY & Not computed. Flag for GSI set invalid. & & \\
\hline & TAEM & Vertical deviation from TAEM guidance reference altitude. & FT & \[
\begin{aligned}
& -5000 \\
& +5000
\end{aligned}
\] \\
\hline & A/L & Vertical deviation from linear segment reference altitude. Not computed after final flare. & FT & \[
\begin{aligned}
& -1000 \\
& +1000
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Compass Card} & ASCENT & Yaw attitude WRT the orbital insertion plane. & Deg & 0,360 \\
\hline & ENTRY & Magnetic heading of vehicle earth relative velocity vector. & Deg & 0,360 \\
\hline & TAEM & Magnetic heading of body X-axis. & Deg & 0,360 \\
\hline & A/L & Magnetic heading of body X-axis. & Deg & 0,360 \\
\hline \multirow[t]{4}{*}{Selected Course} & ASCENT & Heading of vehicle relative to runway. & Deg & 0,360 \\
\hline & ENTRY & Same as compass card. & Deg & 0,360 \\
\hline & TAEM & Same as compass card. & Deg & 0,360 \\
\hline & A/L & Same as compass card. & Deg & 0,360 \\
\hline
\end{tabular}

\subsection*{4.7.3 ALPHA MACH INDICATOR (AMI)}

The AMI displays the following flight parameters to the crew:
- angle of attack
- vehicle acceleration
- vehicle mach/velocity
- equivalent airspeed
- condition of indicators
-1 The AMI is shown in Figure 4-5.
-2 On the AMI, the left-most scale, ALPHA, indicates the angle of attack in degrees. The angle is read as the value on the scale opposite a movable pointer. Left of center, the scale, ACCEL, indicates the vehicle acceleration in feet per second square or G's; right of center, M/VEL indicates Mach number or velocity in \(M\) or feet per second; and right-most, EAS indicates equivalent air speed in knots. The ACCEL, M/VEL, and EAS scales consist of moving tapes behind fixed lubber lines. The vehicle acceleration, mach number or velocity, and equivalent air speed are read as the value on the associated scale at the lubber line.
-3 In Entry, the AMI data are affected by the source of information. For input to the AMI, the AIR DATA switch selects left or right air data probe, or navigation derived data as the source. For air data probe selection to be meaningful, the appropriate air data probe deployment switch must be engaged. In Ascent, the AMI data source is Guidance and the air data probe deployment switch has no effect on the AMI.
-4 Each of the four AMI scales includes a mechanically spring loaded flag which indicates its condition. A flag will appear when there is a malfunction in the indicator or invalid data is received. If all four flags are displayed, a power failure condition exists.
-5 One AMI and its associated AIR DATA switch are located in the commander station of the Shuttle; another AMI and switch in the pilot station. The AIR DATA PROBE deployment switches are located on panel C3 of the forward lower center station. The AMIs are active during ascent and entry/landing and may be tested during on-orbit checkout via the FCS/Dedicated Display Checkout SPEC. The AMI parameters are updated at the following rates:
\begin{tabular}{ll} 
Control word & 1.04 Hz \\
Angle of attack & 6.25 Hz \\
Vehicle acceleration & 6.25 Hz \\
Mach number/velocity & 6.25 Hz \\
Equivalent air speed & 1.04 Hz
\end{tabular}
-6 The two AMIs are driven independently during Entry by the AMI/AVVI Processor and are individually tested during ground checkout by the Dedicated Display Checkout Cyclic I/O Processor of the Vehicle Utility software. In Ascent, the two AMIs are driven from the same data.
-7 The AMI switch controls and display data are defined in Tables 4.7.3-1 and 4.7.3-2, respectively.


Figure 4-5. AMI Unit

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.7.3-2. DEDICATED DISPLAY DATA} \\
\hline \multicolumn{2}{|l|}{METER: AMI} & \multicolumn{3}{|l|}{VALID OPS/MODES: \(102,103,304,305,601-603\)} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline \multirow[t]{4}{*}{ALPHA} & LEFT & Angle of Attack from left ADTA. & DEG & \(-18,+60\) \\
\hline & NAV & Computed Angle of Attack from selected ADTA data if valid, otherwise, NAV data. & DEG & \(-18,+60\) \\
\hline & RIGHT & Angle of Attack from right ADTA. & DEG & \(-18,+60\) \\
\hline & & Guidance derived Angle of Attack in MM 102 and 103. & DEG & \(-18,+60\) \\
\hline \multirow[t]{3}{*}{ACCEL} & & Guidance derived vehicle acceleration in MM 304, after WOW in MM 305 and 603. & \(\mathrm{ft} / \mathrm{sec}^{2}\) & \[
\begin{aligned}
& -50 \\
& +100
\end{aligned}
\] \\
\hline & & Normal Accel. from AA in MM 602, prior to WOW in MM 305 and 603. & \(\mathrm{ft} / \mathrm{sec}^{2}\) & \[
\begin{aligned}
& -50 \\
& +100
\end{aligned}
\] \\
\hline & & Total load (in g's) in MM 102, 103, and 601. & \(\mathrm{ft} / \mathrm{sec}^{2}\) & \[
\begin{aligned}
& -50 \\
& +100
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{MACH/VEL} & LEFT & MACH or velocity from left ADTA data in MM 304, 305, 602, and 603. & \[
\mathrm{MACH}
\]
\[
\mathrm{Kft} / \mathrm{sec}
\] & \[
\begin{aligned}
& 0,4 \\
& 4,27
\end{aligned}
\] \\
\hline & NAV & MACH or velocity from selected ADTA in MM 304, 305, 602, and 603. & \begin{tabular}{l}
MACH \\
\(\mathrm{Kft} / \mathrm{sec}\)
\end{tabular} & \[
\begin{aligned}
& 0,4 \\
& 4,27
\end{aligned}
\] \\
\hline & RIGHT & MACH or velocity from right ADTA data in MM 304, 305, 602, and 603. & \begin{tabular}{l}
MACH \\
\(\mathrm{Kft} / \mathrm{sec}\)
\end{tabular} & \[
\begin{aligned}
& 0,4 \\
& 4,27
\end{aligned}
\] \\
\hline & & Guidance derived MACH in MM 102, 103, and 601. & \begin{tabular}{l}
MACH \\
\(\mathrm{Kft} / \mathrm{sec}\)
\end{tabular} & \[
\begin{aligned}
& 0,4 \\
& 4,27
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{EAS} & LEFT & Equivalent Air Speed from left ADTA. & Knots & 0,500 \\
\hline & NAV & EAS from selected ADTA or if in rollout use relative velocity. & Knots & 0,500 \\
\hline & RIGHT & EAS from right ADTA. & Knots & 0,500 \\
\hline & & Guidance derived EAS in MM 102, 103, and 601. & Knots & 0,500 \\
\hline
\end{tabular}

\subsection*{4.7.4 ALTITUDE/VERTICAL VELOCITY INDICATOR (AVVI)}

The AVVI displays the following flight parameters to the crew:
- vertical acceleration
- vertical velocity
- barometric altitude
- radar altitude
- condition of indicators
-1 The AVVI is shown in Figure 4-6.
-2 On the AVVI, the left-most scale, ALT ACCEL, indicates the vertical acceleration in feet per second square. The acceleration is read as the value on the scale opposite a movable pointer. Left of center, the scale, ALT RATE, indicates vertical velocity in feet per second; right of center, ALT indicates barometric altitude in feet and right-most, RDR ALT indicates radar altitude in feet. The ALT RATE, ALT, and RDR ALT scales consist of moving tapes behind fixed lubber lines. The vertical velocity, barometric altitude, and radar altitude is read as the value on the associated scale at the lubber line. The barometric altitude is commonly referred to as the indicated altitude. In Ascent, only the ALT and ALT Rate Scales are used; in Entry all scales are used.
-3 In Entry, the AVVI data are affected by the sources of information. For input to the AVVI, the AIR DATA switch selects left or right air data probe, or navigation derived data as one source of information; and the RADAR ALTM switch selects radar altimeter 1 or 2 as the other source of information. For the radar altimeter selection to be meaningful, the radar altimeter power switches must be engaged; for air data source selection, the appropriate air data probe deployment switch must be enabled. It should be noted that radar altimeter controls affect only the radar altitude indication. In Ascent, the data is not affected by these switches.
-4 To indicate its condition, each indicator of the AVVI includes a mechanically spring loaded flag. The flag will appear when a malfunction in the indicator or invalid data is received. If all four flags are displayed, a power failure condition exists.
-5 One AVVI and its associated air data source and radar altimeter selection switches are located in the commander station of the Shuttle; another AVVI and its control switches in the pilot station. The AIR DATA PROBE deployment switches are located on panel C3 of the forward lower center station and the RADAR ALTIMETER power switches, on panel 08 of the forward right overhead station. The AVVIs are active during ascent and entry/landing and may be tested during on-orbit checkout via the FCS/Dedicated Dispaly Checkout SPEC. The AVVI parameters are updated at the following rates:
\begin{tabular}{ll} 
Control word & 1.04 Hz \\
Vertical acceleration & 6.25 Hz \\
Vertical velocity & 6.25 Hz \\
Indicated (barometric) altitude & 6.25 Hz
\end{tabular}
-6 The two AVVIs are driven independently during Entry by the AMI/AVVI Processor and are individually tested during ground checkout by the Dedicated Display Checkout Cyclic I/O Processor of the Vehicle Utility software. In Ascent, the two instruments are set the same.
-7 The AVVI switch controls and display data are defined in Tables 4.7.4-1 and 4.7.4-2, respectively.


Figure 4-6. AVVI Unit

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.7.4-2. DEDICATED DISPLAY DATA} \\
\hline \multicolumn{2}{|l|}{METER: AVVI} & \multicolumn{3}{|l|}{VALID OPS/MODES: \(101-103,602,603,304,305\)} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Altitude \\
Acceleration
\end{tabular}} & & Ascent: Not computed. & & 0,0 \\
\hline & & Vertical vehicle acceleration computed by User Parameters. & FPSS & \[
\begin{aligned}
& -12.75, \\
& +12.75
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Radar Altitude} & & Ascent: Not computed. & & 0,0 \\
\hline & RA-1 & Radar altitude based on data from radar altimeter 1. & FT & \[
\begin{aligned}
& 0,500 \\
& 500,9000
\end{aligned}
\] \\
\hline & RA-2 & Same as RA-1 except radar altimeter 2 is used. & FT & \[
\begin{aligned}
& 0,500 \\
& 500,9000
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Altitude} & & Ascent: Vehicle altitude computed by User Parameters. & FT & \[
\begin{array}{r}
-1100 \\
100 \mathrm{~K}
\end{array}
\] \\
\hline & LEFT & Vehicle altitude based on left ADTA data (WRT mean sea level). & FT & \[
\begin{array}{r}
-1100 \\
100 \mathrm{~K}
\end{array}
\] \\
\hline & NAV & Vehicle altitude based on NAV derived parameters (WRT ellipsoid). & FT & \[
\begin{array}{r}
-1100, \\
100 \mathrm{~K}
\end{array}
\] \\
\hline & RIGHT & Vehicle altitude based on right ADTA data (WRT mean sea level) & FT & \[
\begin{array}{r}
-1100 \\
100 \mathrm{~K}
\end{array}
\] \\
\hline \begin{tabular}{l}
Altitude \\
Rate
\end{tabular} & & Rate computed by User Parameters, based on major mode. & FPS & \[
\begin{aligned}
& -2940, \\
& +2940
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{4.7.5 SURFACE POSITION INDICATOR (SPI)}

The SPI displays the position of the vehicle control surfaces and the GNC speedbrake command which include:
- position of the elevons
- position of the body flap
- position of the rudder
- position of the aileron
- speedbrake position and command
- condition of the indicators
-1 The SPI is shown in Figure 4-7.
-2 Only one SPI is installed on a vehicle, and is located in the center of Panel F7 of the forward crew station. The SPI may be tested during ground checkout via Spec 100.
-3 The position of the elevons is indicated by the leftmost four scales labeled ELEVONS-DEG. The left outboard and inboard positions are depicted by the two scales adjacent to the letter \(L\) and the right inboard and outboard positions, by the two scales adjacent to the letter R. Elevon position is measured as an angle up or down from a level position, with positive polarity in the downward direction. Thus, maximum negative elevon indication corresponds to the full up position; maximum positive, to the full down position.
-4 BODY FLAP \% indicates body flap position as a percentage of the full amount that the body flap can extend from the vehicle body. RUDDER DEG is the angular position of the rudder, left or right, of a center position. AILERON_DEG is the angular position of the aileron, left or right, of a center position. The aileron position is calculated as the difference between the average left and right elevon positions. SPEEDBRAKE \% indicates the degree the speedbrake is deployed and is measured as a percentage of full deployment. COMMAND indicates the deployment, as a percentage of maximum capability, as requested by the crew. Each indicator on the SPI consists of a fixed scale and a movable pointer.
-5 To indicate the condition of the SPI, a single validity flag is provided. An OFF flag will be displayed upon loss of power, failure of a channel, or error in a signal.
-6 No controls are provided which directly affect the display. The SPI display data is defined in Table 4.7.5-1.


Figure 4-7. Surface Position Indicator (SPI)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.7.5-1. DEDICATED DISPLAY DATA} \\
\hline \multicolumn{2}{|l|}{METER: SPI} & \multicolumn{3}{|l|}{VALID OPS/MODES: 301-305, 602, 603} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline Elevons
\[
\begin{aligned}
& \text { LOB } \\
& \text { LIB } \\
& \text { RIB } \\
& \text { ROB }
\end{aligned}
\] & & \begin{tabular}{l}
Selected elevon position feedback. \\
Left outboard elevon \\
Left inboard elevon \\
Right inboard elevon \\
Right outboard elevon
\end{tabular} & Deg & \[
\begin{aligned}
& -36.5 \\
& +21.5
\end{aligned}
\] \\
\hline Rudder & & Selected rudder position feedback. & Deg & \[
\begin{aligned}
& -27.1 \\
& +27.1
\end{aligned}
\] \\
\hline Body Flap & & Body flap position
\[
(-15.825 \text { deg to }+26.675 \mathrm{deg})
\] & \% & 0,100 \\
\hline Speedbrake & & Selected speedbrake position ( 0 to 98.6 degrees). & \% & 0,100 \\
\hline Speedbrake & & Computed speedbrake command from guidance or flight control. & \% & 0,100 \\
\hline Aileron & & Aileron position (delta between elevons). & Deg & \(-5,+5\) \\
\hline
\end{tabular}

\subsection*{4.7.6 FLIGHT CONTROL SYSTEM (FCS) MODE STATUS LIGHTS}

The FCS mode status lights indicate the control mode in which the FCS is currently operating. The FCS lights display the manner in which controls are developed for the following type of commands:
- pitch
- roll/yaw
- speedbrake
- body flap
-1 Two sets of FCS status lights are installed on a Shuttle vehicle on the cockpit glare shield; one on Panel F2 at the commander station, the other on Panel F4 at the pilot station. Switches which control the lights are located in the following areas: on the glare shield, integrated with the lights as push-button indicators; commander body flap switch on forward panel L2; pilot body flap switch on forward center panel C3; commander/pilot RHC's; and commander/pilot SBTC's.
-2 The FCS mode status lights are normally driven by the Aerojet or GRTLS DAP Recon during entry/landing, by the Mode/Sequence Lights Test during on-orbit check, and by Ascent Recon during ascent.
-3 For pitch and roll/yaw, each has associated with it two lights: AUTO and Control Stick Steering (CSS). AUTO denotes automatic mode of operation, in which the RCS jets are fired and/or aeroforce effectors are deflected or thrust vector controls actuators are deflected in response to G\&N inputs and feedback signals from vehicle motion sensors. Manual commands are inhibited; but manual surface trim is allowed. The CSS light indicates an augmented command mode of operation, in which the RCS jets are fired and/or aeroforce effectors are deflected or thrust vector control actuators are deflected in response to crew manual inputs, and the response is augmented by feedback signals from vehicle motion sensors to enhance control response and/or stability. Automatic G\&N commands are inhibited during CSS.
-4 The AUTO light is illuminated at both stations, and mode engaged, by depression of either of two switches, which is integrated with its light as a pushbutton indicator (PBI). The CSS lights are illuminated by depression of either of their associated PBIs, or upon takeover by either rotational hand controller. Selection of one mode will cause the lights of the other mode to be extinguished, and the other mode to be deselected. If AUTO and CSS modes are simultaneously requested, CSS will take precedence. The FCS is initialized in the CSS mode.
-5 The following interpretations apply for the specific selection:

\section*{PITCH}

AUTO - control to alpha command from Entry Guidance, and to normal acceleration command from TAEM and AL Guidance; control of pitch rate during slapdown static load relief; ascent control to body axis attitude rate and error commands from Guidance/Control Steering Interface (GC_STEER).

CCS - augmented control to RHC pitch rate command.
ROLL/YAW
AUTO - control to roll angle command from guidance during Entry, TAEM, and AL; control to wings level command during flatturn and subsequent landing; for nosewheel steering control to yaw rate command from AL guidance during rollout and velocity less than 155 kt ; ascent control to body axis attitude rate and error commands from GC_STEER.
CCS - augmented control to RHC roll rate command; for nosewheel steering, direct control from RPTA commands during rollout and non-zero velocity less than the limit.
RELEASE: OI20 \(\quad\) Date: \(12 / 20 / 90\)
BOOK: PASS User's Guide Rev: 0
-6 For speedbrake and body flap, each has an associated AUTO/MAN light. AUTO signifies that these effectors are deflected in response to G\&N inputs; MAN, the effectors are deflected directly in response to manual inputs. In AUTO mode, manual commands are inhibited, just as automatic G\&N commands are inhibited in MAN mode.
-7 The AUTO portions of the SPD BK/THROT lights at both crew stations are illuminated when the speedbrake automatic mode is selected as a result of depressing the switch feature of a speedbrake PBI. The MAN portion of a speedbrake light is illuminated by depressing the takeover switch of a speedbrake/thrust controller (SBTC). A MAN light will only illuminate at the station selecting the mode, while the entire annunciator light at the other station is extinguished. At system initialization, the commander MAN lamp will be lit to indicate commander control of the speedbrake.
-8 The AUTO portion of the BODY FLAP lights at both crew stations illuminate when the automatic mode has been selected by depressing the switch of a bodyflap PIB on the glareshield when both BODYFLAP switches (on panels 12 and C 3 ) are in the AUTO/OFF position.
-9 The MAN lights will illuminate when the manual mode has been selected by positioning any BODY FLAP switch off the center (AUTO/OFF) position. Such action will also cause the AUTO lights to extinguish. The MAN body flap PBIs will be lit at system initialization.
-10 The operations in effect during a mode are summarized below for the speedbrake and bodyflap PBIs:

SPD BK/THROT
AUTO - control to deflection command from guidance during TAEM and AL; and from Fc during Entry.

MAN - control to deflection command from SBTC.
BODY FLAP
AUTO - control to null elevator trim command; at auto-flare, retract upon guidance command, subject to proper speedbrake condition.

MAN - control to discrete rate command from crew.
-11 Aerosurface (Elevons, Rudder, Speedbrake, Body Flap) controls are either automatic (for load relief) or locked (for minimum drag) during Ascent.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 4.7.6-1. DEDICATED DISPLAY DATA} \\
\hline \multicolumn{2}{|l|}{METER: FCS Mode Lamps} & \multicolumn{3}{|l|}{VALID OPS/MODES: 304, 305, 601-603} \\
\hline INDICATOR & \[
\begin{aligned}
& \hline \text { SWITCH } \\
& \text { POSITION }
\end{aligned}
\] & DESCRIPTION & UNITS & LIMITS \\
\hline \begin{tabular}{l}
Left Auto \\
Pitch \\
Right Auto \\
Pitch \\
Left Auto \\
ROLL/YAW \\
Right Auto \\
ROLL/YAW \\
Left CSS \\
Pitch \\
Right CSS \\
Pitch \\
Left CSS \\
ROLL/YAW \\
Right CSS \\
ROLL/YAW \\
Left Body \\
Flap Manual \\
Right Body \\
Flap Manual \\
Left Body \\
Flap Auto \\
Right Body \\
Flap Auto \\
Left \\
Speedbrake \\
Auto \\
Right \\
Speedbrake Auto
\end{tabular} & & \begin{tabular}{l}
Shows status of FCS modes. \\
Lamp ON \(=\) selected, OFF \(=\) deselected.
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.7.7 REACTION CONTROL SYSTEM (RCS) ACTIVITY LIGHTS}

The RCS activity lights indicate the presence of RCS commands. However, under certain conditions, aileron or elevator rate saturation is displayed. Only one set of lights is on a Shuttle vehicle. The set is located on the commander panel F6.
-1 The RCS activity lights are supported by the Reaction Control System Activity Lights Processor during entry/landing.
-2 The RCS activity lights are identified by the label RCS COMMAND, and are comprised of the ROLL L/R, YAW L/R, and PITCH U/D lamps. The yaw indicator lights are active as long as termination of yaw jets is not signalled. Illumination of the yaw left lamp indicates a yaw jet command in the negative sense; and of the yaw right lamp, in the positive sense. Darkness of both yaw lamps indicates the absence of a yaw jet command.
-3 The roll indicator lights assume different meanings, as determined by the magnitude of the GN\&C dynamic pressure. When the pressure is below that at which roll jet deactivation occurs, illumination of the roll left lamp indicates a roll jet command in the negative sense and illumination of the roll right lamp indicates a command in the positive sense. When the dynamic pressure exceeds a specified value, illumination of both roll jet lamps indicates three or more yaw jets have been commanded.
-4 The pitch indicator lights assume different meanings as determined by the magnitude of the GN\&C dynamic pressure. When the pressure is below that at which pitch jet deactivation occurs, illumination of the pitch down lamp indicates a pitch jet command in the negative sense and illumination of the pitch up lamp indicates a pitch jet command in the positive sense. When the dynamic pressure exceeds a specified value, illumination of both pitch jet lamps indicates an aileron or elevator rate saturation condition has occurred.
-5 On orbit, in OPS2 and OPS8, the RCS activity lights always indicate jet firing status. During normal operations, lamps are lit as jets are commanded; and processing is performed by the orbit digital autopilot (GFF). During OEX Advanced Autopilot operations, all six lights are illuminated whenever a jet is fired; and processing is performed by the OEX DAP.
-6 No controls are provided for directly modifying the operation of the RCS activity lights.

O
\(\qquad\)

O
RELEASE: OI20 Date: \(12 / 20 / 90\)

BOOK: PASS User's Guide Rev:

\subsection*{4.8 HEAD-UP DISPLAY (HUD)}

The HUD is designed to provide the crew with information required to accomplish precise and repeatable manual approaches and landings. There are two HUD units in the cockpit and each is operated independently of the other. The information provided by the HUD is superimposed on the out-the-window view. This is accomplished by projecting data on transparent screens located in front of the commander and pilot stations.
-1 The HUD is primarily used in MM305 and 603, with some information available in MM304 and 602. OPS 8 and 9 both provide checkout capability.
-2 Several different display formats are available on each HUD. The format to be displayed is selected using the Horizontal Situation Display, item 37 for the commander and item 38 for the pilot. Each HUD unit also has a declutter switch which is generally used to reduce the amount of data displayed on a given format. However, after the lowest level of declutter is reached, the next operation of the declutter switch reintroduces the existing format in its entirety.
-3 The possible HUD formats are as follows:
-3.1 Format 0 . This format blanks the display when selected.
-3.2 Format 1. This is the Approach and Landing format. It provides situation data including current altitude, airspeed, pitch and roll angle, normal acceleration, speedbrake position, a graphic display of the run-way, steep and shallow aimpoints, and a velocity vector symbol which indicates the direction the vehicle is moving. Post weight-on-wheels (WOW) the data includes the brake deceleration, ground speed and aileron load balancing. Also displayed are guidance references for altitude, flare, and speedbrake position along with a guidance symbol which depicts the direction to which the orbiter must be flown to satisfy the GPC derived guidance solution. Also available post WOW are guidance references for brake deceleration and aileron load balancing. Messages for landing gear, guidance phase, MLS, body flap, and CCS are displayed as they occur.
-3.3 Format 2. (DELETED)
-3.4 Format 3. (TBD)
-3.5 Format 4. (TBD)
-3.6 Format 5. (TBD)
-3.7 Format 6. This is the Test Format and is used to provide a check of the HUD system integrity by exercising the display symbology.

\section*{5. SWITCHES}

This section lists all cockpit switches which are utilized by PASS. The switches are listed alphabetically by the nomenclature used in the orbiter cockpit. (37692)

\subsection*{5.1 TABLE FORMAT}

The table format is defined as follows:
SWITCH Name of switch.
TYP The type of switch (may be used in combinations).
K - Knob
L - Latched
M - Momentary
R - Rotary
PBI - Push button indicator (back-lighted)
PB - Push button
T - Toggle
Th - Thumbwheel
PNL Orbiter cockpit panel where switch is located.
OPS The valid OPS/major modes where switch is used.
FREQ Frequency of switch read.
MSID The MSIDs assigned to the switch contact(s) as read by PASS.
STATE The position(s) the switch may be placed in.
DEFINITION Use of the switch/state in PASS.
-1 There is a class of multiposition cockpit switches which is used to control spacecraft hardware via either the GPC/MDM path or an independent (external to the GPC/MDM's) direct hard-wire path. (46513)




\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DISPLAY \\
ELEC- \\
TRONICS \\
UNIT 1 \\
DISPLAY \\
ELEC- \\
TRONICS \\
UNIT 2
\end{tabular}} & MT & 06 & & & & LOAD & \\
\hline & MT & 06 & & & & LOAD & \\
\hline \begin{tabular}{l}
DISPLAY \\
ELEC- \\
TRONICS \\
UNIT 3
\end{tabular} & MT & 06 & & & & LOAD & \\
\hline \begin{tabular}{l}
DISPLAY \\
ELEC- \\
TRONICS \\
UNIT 4
\end{tabular} & MT & 06 & & & & LOAD & \\
\hline \multirow[t]{3}{*}{ENTRY ROLL MODE} & T & L2 & \[
\begin{aligned}
& 304 \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K6314X \\
V72K6315X \\
V72K6316X \\
V62K6317X
\end{tabular} & \[
\begin{aligned}
& \text { LO } \\
& \text { GAIN }
\end{aligned}
\] & Causes use of early entry roll control gains. \\
\hline & & & & & \begin{tabular}{l}
V72K6320X \\
V72K6321X \\
V72K 6322 X \\
V72K6323X
\end{tabular} & \[
\begin{aligned}
& \text { NO } \\
& \text { Y } \\
& \text { JET }
\end{aligned}
\] & Causes use of late entry roll control gains. \\
\hline & & & & & & AUTO & Causes use of blended early/late control gains. \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ET } \\
& \text { SEPARA- } \\
& \text { TION }
\end{aligned}
\]} & T & C3 & \[
\begin{aligned}
& \text { 102, } \\
& 103, \\
& 305, \\
& 601- \\
& 603
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K6201X \\
V72K6202X \\
V72K6203X
\end{tabular} & MAN & Enables use of ET Separation PB to manually separate the SRBs. If PB is not depressed, separation will not occur. Also enables use of SEP PB to set the WOW and WONG discretes in 305 and 603. \\
\hline & & & & & & AUTO & \\
\hline \[
\begin{aligned}
& \text { ET } \\
& \text { SEPARA- } \\
& \text { TION }
\end{aligned}
\] & PB & C3 & \[
\begin{aligned}
& 102, \\
& 103, \\
& 601- \\
& 603, \\
& 305
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K6205X \\
V72K6206X \\
V72K6207X
\end{tabular} & PRESS & When ET Separation Switch is in MAN, this PB will initiate manual separation (fast separation can be initiated in 102 and 601). In 305 and 603 it causes the WOW and WONG discretes to be set. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline \[
\begin{aligned}
& \text { ET } \\
& \text { UMBILI- } \\
& \text { CAL DOOR } \\
& \text { MODE }
\end{aligned}
\] & LT & R2 & & & & \begin{tabular}{l}
GPC \\
GPC/ \\
MAN
\end{tabular} & \\
\hline \multirow[t]{3}{*}{```
FCS
CHANNEL
1 SWITCH
```} & \multirow[t]{3}{*}{MT} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{\begin{tabular}{l}
101- \\
104, \\
301- \\
305, \\
601- \\
603, \\
201, \\
202, \\
801
\end{tabular}} & \multirow[t]{3}{*}{6.25} & \multirow[t]{3}{*}{V72K3170X V72K3171X V72K3172X} & OVERRIDE & Enables Channel 1 actuator operation to continue even after a failure is detected. (37567) \\
\hline & & & & & & AUTO & Allows a channel bypass to occur when a failure is detected. \\
\hline & & & & & & OFF & Allows channel bypass, but override capability is lost. \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
FCS \\
CHANNEL \\
2 SWITCH
\end{tabular}} & \multirow[t]{3}{*}{MT} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 101- \\
& 104, \\
& 301- \\
& 305, \\
& 601- \\
& 603, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & \multirow[t]{3}{*}{6.25} & \multirow[t]{3}{*}{\begin{tabular}{l}
V72K3179X \\
V72K3176X \\
V72K3178X
\end{tabular}} & \begin{tabular}{l}
OVER- \\
RIDE
\end{tabular} & Enables Channel 2 actuator operation to continue even after a failure is detected. (37567) \\
\hline & & & & & & AUTO & Allows a channel bypass to occur when a failure is detected. \\
\hline & & & & & & OFF & Allows channel bypass, but override capability is lost. \\
\hline \begin{tabular}{l}
FCS \\
CHANNEL \\
3 SWITCH
\end{tabular} & \multirow[t]{3}{*}{MT} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 101- \\
& 104, \\
& 301- \\
& 305, \\
& 601- \\
& 603, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & \multirow[t]{3}{*}{6.25} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { V72K3183X } \\
& \text { V72K 3180X } \\
& \text { V72K3182X }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
OVER- \\
RIDE \\
AUTO
\end{tabular}} & Enables Channel 3 actuator operation to continue even after a failure is detected. (37567) \\
\hline & & & & & & & Allows a channel bypass to occur when a failure is detected. \\
\hline & & & & & & OFF & Allows channel bypass, but override capability is lost. \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline MAIN ENGINE SHUTDNRIGHT & PB & C3 & \[
\begin{aligned}
& 102, \\
& 103, \\
& 601
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K0095X } \\
& \text { V72K0096X }
\end{aligned}
\] & PRESS & Causes shutdown enable and shutdown commands to be issued to SSME-3. \\
\hline \begin{tabular}{l}
MANUAL MODE \\
ROTATION \\
PITCH \\
ACCEL
\end{tabular} & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K2824X \\
V72K2825X \\
V72K6464X \\
V72K6465X
\end{tabular} & PRESS & Same as ROLL ACCEL (substituting pitch axis for roll axis). \\
\hline \begin{tabular}{l}
MANUAL MODE \\
ROTATION \\
PITCH \\
DISC \\
RATE
\end{tabular} & PBI & C3
A6 & \[
\begin{aligned}
& 103- \\
& 106 \\
& 301- \\
& 303, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K2822X } \\
& \text { V72K2823X } \\
& \\
& \text { V72K6460X } \\
& \text { V72K6461X }
\end{aligned}
\] & PRESS & Same as ROLL DISC RATE (substituting pitch axis for roll axis). \\
\hline MANUAL MODE ROTATION PITCH PULSE & PBI & C3
A6 & \[
\begin{aligned}
& 103- \\
& 106, \\
& 301- \\
& 303, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & V72K2826X
V72K2827X
V72K6468X
V72K6469X & PRESS & Same as ROLL PULSE (substituting pitch axis for roll axis). \\
\hline MANUAL MODE ROTATION ROLL ACCEL & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & V72K2814X
V72K2815X
V72K6444X
V72K6445X & PRESS & Directs the Orbital DAP to enter ACCEL mode in the roll axis. Primary thrusters fire while the RHC is out of detent and stop firing only when the RHC is returned to detent, allowing attitude to drift freely. \\
\hline MDM-FLT
CRIT
AFT
FA1 & T & 06 & & & & \[
\begin{aligned}
& \mathrm{ON} \\
& \mathrm{OFF}
\end{aligned}
\] & \\
\hline FA2 & T & 06 & & & & \[
\begin{aligned}
& \text { ON } \\
& \text { OFF }
\end{aligned}
\] & \\
\hline FA3 & T & 06 & & & & \[
\begin{aligned}
& \text { ON } \\
& \text { OFF }
\end{aligned}
\] & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline MANUAL MODE ROTATION ROLL PULSE & PBI & C3
A6 & \[
\begin{aligned}
& 103- \\
& 106, \\
& 301- \\
& 303, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K2816X } \\
& \text { V72K2817X } \\
& \text { V72K6448X } \\
& \text { V72K 6449X }
\end{aligned}
\] & PRESS & Directs the Transition and Orbital DAPs to enter PULSE mode in the roll axis. Primary thrusters fire to generate a predetermined body rate increment response to each deflection of the RHC. No further firing occurs until the RHC is returned to detent and deflected again. \\
\hline MANUAL MODE ROTATION YAW ACCEL & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K2834X \\
V72K2835X \\
V72K6484X \\
V72K6485X
\end{tabular} & PRESS & Same as ROLL ACCEL above (substituting yaw axis for roll axis). \\
\hline MANUAL MODE ROTATION YAW DISC RATE & PBI & C3
A6 & \[
\begin{aligned}
& 103- \\
& 106, \\
& 301- \\
& 303, \\
& 201- \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K2832X \\
V72K2833X \\
V72K6480X \\
V72K6481X
\end{tabular} & PRESS & Same as ROLL DISC RATE above (substituting yaw axis for roll axis). \\
\hline MANUAL MODE ROTATION YAW PULSE & PBI & C3
A6 & \[
\begin{aligned}
& 103- \\
& 106, \\
& 301- \\
& 303, \\
& 201, \\
& 202 \\
& 801
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K2836X \\
V72K2837X \\
V72K6488X \\
V72K6489X
\end{tabular} & PRESS & Same as ROLL PULSE above (substituting yaw axis for roll axis). \\
\hline MANUAL MODE TRANSLATION X HIGH & PBI & \[
\begin{aligned}
& \text { C3 } \\
& \text { A6 }
\end{aligned}
\] & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & & PRESS & This mode is not currently being used. When used, this mode will require both primary and backup thrusters in the X -axis to fire as long as the THC is held out of detent. \\
\hline \begin{tabular}{l}
MANUAL MODE \\
TRANSLA- \\
TION X \\
NORM
\end{tabular} & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & V72K2860X
V72K2861X
V72K6510X
V72K6511X & PRESS & Directs the Orbital DAP to enter NORMAL ACCEL mode, in which the primary jets in the X -axis are fired as long as the THC is held out of detent (no backup thruster firings normally). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline MANUAL MODE TRANSLATION X PULSE & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K2862X \\
V72K2863X \\
V72K6513X \\
V72K6514X
\end{tabular} & PRESS & Directs the Orbital DAP to enter PULSE mode, in which the primary thrusters in the X -axis are fired for a preset increment in response to each THC deflection. No further firing occurs until the THC is returned to detent and deflected again. \\
\hline MANUAL MODE TRANSLATION Y LOW Z & PBI & \[
\begin{aligned}
& \text { C3 } \\
& \text { A6 }
\end{aligned}
\] & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & & PRESS & This mode is not currently being used. See HIGH mode definition above (substitute Y axis for X axis). \\
\hline \begin{tabular}{l}
MANUAL MODE \\
TRANSLATION Y NORM
\end{tabular} & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K2870X } \\
& \text { V22K2871X } \\
& \text { V72K6520X } \\
& \text { V72K6521X }
\end{aligned}
\] & PRESS & See NORM mode definition above (substitute Y axis for X axis). \\
\hline MANUAL MODE
\(\qquad\) TION Y PULSE & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K2872X } \\
& \text { V72K2873X } \\
& \text { V72K6523X } \\
& \text { V72K } 6524 \mathrm{X}
\end{aligned}
\] & PRESS & See PULSE mode definition above (substitute Y axis for X axis). \\
\hline \begin{tabular}{l}
MANUAL MODE \\
TRANSLATION Z HIGH
\end{tabular} & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K2884X } \\
& \text { V72K2885X } \\
& \text { V72K6537X } \\
& \text { V72K6538X }
\end{aligned}
\] & PRESS & Directs the Orbital DAP to enter HIGH ACCEL mode, in which the primary and backup jets in the Z axis are fired as long as the THC is held out of detent. \\
\hline \begin{tabular}{l}
MANUAL MODE \\
TRANSLATION Z NORM
\end{tabular} & PBI & C3
A6 & \[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & 6.25 & \[
\begin{aligned}
& \text { V72K2880X } \\
& \text { V72K2881X } \\
& \text { V72K6530X } \\
& \text { V72K6531X }
\end{aligned}
\] & PRESS & See NORM mode definition (substitute \(Z\) axis for X axis). \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline \multirow[t]{3}{*}{OI PCMMU PWR} & \multirow[t]{3}{*}{T} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & 1 & \\
\hline & & & & & & 2 & \\
\hline & & & & & & OFF & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { OMS ENG } \\
& \text { LEFT }
\end{aligned}
\]} & \multirow[t]{3}{*}{T} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{104,
105,
202,
302} & \multirow[t]{3}{*}{1.04} & \[
\begin{aligned}
& \text { V43S4572X } \\
& \text { V43S4573X }
\end{aligned}
\] & ARM & Enables S/W control of engine control valves.
(37555) \\
\hline & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V43S4570X } \\
& \text { V43S4571X }
\end{aligned}
\]} & ARM/ PRESS & Enables GN2 purge of engine following OMS cutoff. \\
\hline & & & & & & OFF & Disables engine valve control, thus disabling the engine. (55306) (57330) \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { OMS ENG } \\
& \text { RIGHT }
\end{aligned}
\]} & \multirow[t]{3}{*}{T} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 104, } \\
& \text { 105, } \\
& 202, \\
& 302
\end{aligned}
\]} & \multirow[t]{3}{*}{1.04} & V43S5573X & ARM & Enables S/W control of engine control valves.
(37555) \\
\hline & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V43S5570X } \\
& \text { V43S5571X }
\end{aligned}
\]} & ARM/ PRESS & Enables GN2 purge of engine following OMS cutoff. (See left engine.) \\
\hline & & & & & & OFF & Disables engine valve control, thus disabling the engine. (55306) (57330) \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { ORBITAL } \\
& \text { DAP } \\
& \text { CONTROL } \\
& \text { AUTO }
\end{aligned}
\]} & \multirow[t]{6}{*}{PBI} & \multirow[t]{3}{*}{C3} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(103-\) \\
106 \\
\(301-\) \\
\hline
\end{tabular}} & \multirow[t]{6}{*}{6.25} & V72K2840X & \multirow[t]{6}{*}{PRESS} & \multirow[t]{3}{*}{Directs the Transition DAP in OPS 1 and 3 and the Orbit DAP in OPS 2 to assume automatic.} \\
\hline & & & & & V72K2841X & & \\
\hline & & & & & V72K2842X & & \\
\hline & & \multirow[t]{3}{*}{A6} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 303, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & & \multirow[t]{3}{*}{\begin{tabular}{l}
V72K6490X \\
V72K6491X \\
V72K6492X
\end{tabular}} & & \\
\hline & & & & & & & \multirow[t]{2}{*}{(Panel A6 inputs used in OPS 2 only.)} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ORBITAL } \\
& \text { DAP } \\
& \text { CONTROL } \\
& \text { MAN }
\end{aligned}
\]} & \multirow[t]{2}{*}{PBI} & \multirow[t]{2}{*}{C3} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 103- \\
& 106
\end{aligned}
\]} & \multirow[t]{2}{*}{6.25} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V72K2845X } \\
& \text { V72K2846X }
\end{aligned}
\]} & \multirow[t]{2}{*}{PRESS} & \multirow[t]{2}{*}{Directs the Transition DAP in OPS 1 and 3 and the Orbit.} \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
ORBITAL \\
DAP RCS \\
JETS \\
NORM
\end{tabular}} & \multirow[t]{5}{*}{PBI} & \multirow[t]{3}{*}{C3} & \multirow[t]{5}{*}{\[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & \multirow[t]{5}{*}{6.25} & V72K2851X & \multirow[t]{5}{*}{PRESS} & \multirow[t]{5}{*}{Directs the Orbital DAP to use the 38 normal ( 870 lb ) jets for rotational and translational control.} \\
\hline & & & & & V72K2852X & & \\
\hline & & & & & V72K2857X & & \\
\hline & & \multirow[t]{2}{*}{A6} & & & \multirow[t]{2}{*}{V72K6505X V72K6506X V72K6500X} & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline \begin{tabular}{l}
ORBITAL \\
DAP RCS \\
JETS \\
VERN
\end{tabular} & \multirow[t]{2}{*}{PBI} & C3 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & \multirow[t]{2}{*}{6.25} & \[
\begin{aligned}
& \text { V72K2853X } \\
& \text { V72K2854X } \\
& \text { V72K2858X }
\end{aligned}
\] & \multirow[t]{2}{*}{PRESS} & \multirow[t]{2}{*}{Directs the Orbital DAP to use the 6 vernier ( \(25-\mathrm{lb}\).) jets for rotational and translational control.} \\
\hline & & A6 & & & \begin{tabular}{l}
V72K6507X \\
V72K6508X \\
V72K6501X
\end{tabular} & & \\
\hline \[
\begin{aligned}
& \text { ORBITAL } \\
& \text { DAP } \\
& \text { SELECT A }
\end{aligned}
\] & \multirow[t]{2}{*}{PBI} & C3 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & \multirow[t]{2}{*}{6.25} & \begin{tabular}{l}
V72K2801X \\
V72K2802X \\
V72K2805X
\end{tabular} & \multirow[t]{2}{*}{PRESS} & Directs the Orbital DAP to use set A (coarse) flight control parameters (gains, deadbands, etc.). \\
\hline & & A6 & & & V72K6430X
V72K6431X
V72K6419X & & (Panel A6 inputs used in OPS 2 only.) \\
\hline \[
\begin{aligned}
& \text { ORBITAL } \\
& \text { DAP } \\
& \text { SELECT B }
\end{aligned}
\] & \multirow[t]{2}{*}{PBI} & C3 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 201, \\
& 202, \\
& 801
\end{aligned}
\]} & \multirow[t]{2}{*}{6.25} & \[
\begin{aligned}
& \text { V72K } 2803 \mathrm{X} \\
& \text { V72K2804X } \\
& \text { V72K2806X }
\end{aligned}
\] & \multirow[t]{2}{*}{PRESS} & \multirow[t]{2}{*}{Directs the Orbital DAP to use set B (fine) flight control parameters (gains, deadbands, etc.).} \\
\hline & & A6 & & & \[
\begin{aligned}
& \text { V72K } 6432 \mathrm{X} \\
& \text { V72K } 6433 \mathrm{X} \\
& \text { V72K6420X }
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& \text { PITCH } \\
& \text { AUTO }
\end{aligned}
\] & \multirow[t]{2}{*}{PBI} & F2 & \(101-\)
103,
\(601-\)
603, & \multirow[t]{2}{*}{6.25} & V72K 5251X
V72K 5252X
V72K 5253X & \multirow[t]{2}{*}{PRESS} & \multirow[t]{2}{*}{During ascent modes all axes to Auto. During entry modes only roll/yaw axes to Auto.} \\
\hline & & F4 & 305 & & \begin{tabular}{l}
V72K 5151X \\
V72K5152X \\
V72K5153X
\end{tabular} & & \\
\hline \[
\begin{aligned}
& \text { PITCH } \\
& \text { CSS }
\end{aligned}
\] & PBI & F2
F4 & \[
\begin{aligned}
& 101- \\
& 103, \\
& 601- \\
& 603, \\
& 304, \\
& 305
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K 5256X \\
V72K 5257X \\
V72K5258X \\
V72K5156X \\
V72K5157X \\
V72K5158X
\end{tabular} & PRESS & During ascent modes all axes to Manual. During entry modes only pitch axis to manual. \\
\hline \begin{tabular}{l}
PITCH \\
TRIM
\end{tabular} & \multirow[t]{3}{*}{MT} & C3 & \multirow[t]{3}{*}{\[
\begin{aligned}
& 101- \\
& 106, \\
& 601- \\
& 603, \\
& 301- \\
& 305
\end{aligned}
\]} & \multirow[t]{3}{*}{6.25} & \begin{tabular}{l}
V72K1503X \\
V72K 1504X \\
V72K 1515X \\
V72K1516X
\end{tabular} & DOWN & Rotates elevons down. Establishes new trim surface position for elevons. \\
\hline & & \multirow[t]{2}{*}{L2} & & & V72K 1500X V72K 1501X V72K 1512X & CNTR & Leaves elevons in last trim configuration. \\
\hline & & & & & V72K 1513X & UP & Rotates elevons up. Establishes new trim surface position for elevons. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline \[
\begin{aligned}
& \text { ROLL/YAW } \\
& \text { CSS }
\end{aligned}
\] & PBI & F2
F4 & \[
\begin{aligned}
& 101- \\
& 103, \\
& 601- \\
& 603, \\
& 304, \\
& 305
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K5270X \\
V72K5271X \\
V72K 5272X \\
V72K5170X \\
V72K5171X \\
V72K5172X
\end{tabular} & PRESS & During ascent modes all axes to Auto. During entry modes only roll/yaw axes to Auto. \\
\hline \[
\begin{aligned}
& \text { S-BAND } \\
& \text { PM } \\
& \text { ANTENNA }
\end{aligned}
\] & R & C3 & & & & \begin{tabular}{l}
LRAFT \\
LRFWD \\
URAFT \\
URFWD \\
ULAFT \\
ULFWD \\
LLAFT \\
LLFWD \\
GPC
\end{tabular} & \\
\hline S-BAND
PM
ANTENNA
CONTROL & T & C3 & & & & \begin{tabular}{l}
CMD \\
PANEL
\end{tabular} & \\
\hline \begin{tabular}{l}
SBTC \\
TAKOVER
\end{tabular} & PB & L2
C3 & \[
\begin{aligned}
& 102, \\
& 103, \\
& 601- \\
& 603, \\
& 304, \\
& 305
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K 1577X \\
V72K 1580X \\
V72K 1583X \\
V72K 1587X \\
V72K 1590X \\
V72K 1593X
\end{tabular} & PRESS & Causes manual takeover of the SBTC function. Manual control of the speedbrake can be established from either the L2 (PLT) or C3 (CDR) panel. Thrust control is possible only from the L2 (PLT) panel. \\
\hline \begin{tabular}{l}
SPD BK/ \\
THROT \\
AUTO/ \\
MAN
\end{tabular} & PBI & F2
F4 & \[
\begin{aligned}
& 102, \\
& 103, \\
& 601- \\
& 603
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K 1570X \\
V72K 1571X \\
V72K1572X \\
V72K 1600X \\
V72K 1601X \\
V72K 1602X
\end{tabular} & PRESS & Changes SBTC mode from manual to automatic, disabling the active SBTC. Manual control is reestablished via SBTC takeover pushbutton. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline \[
\begin{aligned}
& \text { SRB } \\
& \text { SEPARA- } \\
& \text { TION }
\end{aligned}
\] & T & C3 & \[
\begin{aligned}
& 102, \\
& 305, \\
& 603
\end{aligned}
\] & 6.25 & \begin{tabular}{l}
V72K4613X \\
V72K 4614X \\
V72K4619X
\end{tabular} & \begin{tabular}{l}
MAN/ \\
aUTO
\end{tabular} & Enables use of SRB separation SEP PBI to manually separate the SRBs. If PBI is not depressed, separation will still occur automatically. Also enables use of SEP PBI to set the WOW and WONG discretes in 305 and 603. \\
\hline & & & & & \[
\begin{aligned}
& \text { V72K4611X } \\
& \text { V72K 4612X } \\
& \text { V82L4719X }
\end{aligned}
\] & AUTO & Enables only auto separation. \\
\hline \[
\begin{aligned}
& \text { SRB } \\
& \text { SEPARA- } \\
& \text { TION }
\end{aligned}
\] & PBI & C3 & & & & PRESS & \\
\hline \begin{tabular}{l}
TACAN 1 \\
ANT SEL
\end{tabular} & T & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & & \begin{tabular}{l}
UPPER \\
LOWER \\
AUTO
\end{tabular} & \begin{tabular}{l}
Selects upper antenna for Tacan. \\
Selects lower antenna for Tacan. \\
Allows GPC to select upper and lower antenna GPC is always sending out selection commands, but they are inhibited when switch is in UPPER or LOWER position.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { TACAN } 2 \\
& \text { ANT SEL }
\end{aligned}
\] & T & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & & UPPER LOWER AUTO & (Same as TACAN 1.) \\
\hline \begin{tabular}{l}
TACAN 3 \\
ANT SEL
\end{tabular} & T & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602 \\
& 603
\end{aligned}
\] & 1.04 & & UPPER LOWER AUTO & (Same as TACAN 1.) \\
\hline TACAN 1 CHANNEL & TH & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & V72M6598P & & Defines TACAN 1 Channel when in \(T / R\) Mode. \\
\hline TACAN 2 CHANNEL & TH & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & V72M6648P & & Defines TACAN 2 Channel when in \(T / R\) Mode. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{TABLE 5-1. SWITCHES (Continued)} \\
\hline SWITCH & TYP & PNL & OPS & FRQ & MSID & STATE & DEFINITION \\
\hline TACAN 3 CHANNEL & TH & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & V72M6698P & & \begin{tabular}{l}
Defines TACAN 3 \\
Channel when in T/R Mode.
\end{tabular} \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { TACAN } 1 \\
& \text { MODE }
\end{aligned}
\]} & \multirow[t]{4}{*}{R} & \multirow[t]{4}{*}{07} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\]} & \multirow[t]{4}{*}{1.04} & \multirow[t]{4}{*}{V72K8410X} & GPC & Channel selection controlled by GPC (otherwise channel selection controlled by thumbwheels). \\
\hline & & & & & & T/R & Tacan in Transmit/Receive mode set in thumbwheels. \\
\hline & & & & & & RCV & Tacan in receive only mode (on channel set in thumbwheels). \\
\hline & & & & & & OFF & Tacan not powered up. \\
\hline \[
\begin{aligned}
& \text { TACAN } 2 \\
& \text { MODE }
\end{aligned}
\] & R & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & V72X8430X & \[
\begin{aligned}
& \text { GPC } \\
& \text { T/R } \\
& \text { RCV } \\
& \text { OFF }
\end{aligned}
\] & (Same as TACAN 1.) \\
\hline TACAN 3 MODE & R & 07 & \[
\begin{aligned}
& 304, \\
& 305, \\
& 602, \\
& 603
\end{aligned}
\] & 1.04 & V72K8450X & \begin{tabular}{l}
GPC \\
T/R \\
RCV \\
OFF
\end{tabular} & (Same as TACAN 1.) \\
\hline THC & & F5 & & & & & \\
\hline \[
\begin{aligned}
& \text { TRTM } \\
& \text { RHC/PNL }
\end{aligned}
\] & T & F6 & \[
\begin{aligned}
& 101- \\
& 106, \\
& 601
\end{aligned}
\] & 6.25 & V72K1160X & ENABLE & Enables commander's RHC Trim inputs. \\
\hline & & & \[
\begin{aligned}
& 603, \\
& 301- \\
& 305, \\
& 201, \\
& 202, \\
& 801
\end{aligned}
\] & & V72K1161X & INHIBIT & Allows no RHC Trim inputs from LH RHC. \\
\hline \[
\begin{aligned}
& \text { TRTM } \\
& \text { RHC/PNL } \\
& - \text { RH }
\end{aligned}
\] & T & F8 & \begin{tabular}{l}
101- \\
106, \\
601- \\
603, \\
301- \\
305, \\
201, \\
202, \\
801
\end{tabular} & 6.25 & V72K 1210X
V62K 1211X & ENABLE
INHIBIT & \begin{tabular}{l}
Enables pilot's RHC Trim inputs. \\
Allows no RHC Trim inputs from RH RHC.
\end{tabular} \\
\hline
\end{tabular}

TABLE 5-1. SWITCHES (Continued)


\subsection*{5.2 DEU KEYBOARD}

The Keyboard on panel C2 is a matrix of thirty-two keys which are used to provide manual inputs to the FSW system. The keys and the resulting actions of each are defined as follows (list is by rows):
FAULT SUMM A single-key entry which presents the Fault Summary Page (FSP) display (099) to the CRT.

SYS SUMM This single-key entry results in a System Summary Page being requested as a DISPLAY supported function. Display page number is determined by Major Function switch position and a table in FSW. If a two-page System Summary is defined for the current OPS, successive depressions of this key will cause the two pages to be requested in rotating fashion.
MSG RESET This single-key entry results in the removal of the current message from the bottom message line of the display, blanking the entire line. See Section 6 for other actions associated with this key.
\begin{tabular}{|c|c|}
\hline ACK & This single-key entry results in changing the message being displayed on the bottom message line to a static message if flashing. If the current message is a fault or GPC error message, the keyed entry is made available to Lights and Alarm Processing so that the appropriate Caution and Warning subsystem lights and tones are turned off \\
\hline GPC/CRT & This keyed entry results in one of the DEUs ( \(1,2,3\), or 4 ) being assigned to one of the GPCs ( \(1,2,3,4\), or 5 ) or, in the case of ' 0 ' for the GPC number of isolating the specified DEU by terminating polling by all GPCs. Entered as GPC/CRT/NM EXEC, where N is GPC number, M is DEU number. \\
\hline A & Enters a Hex A. \\
\hline B & Enters a Hex B. \\
\hline C & Enters a Hex C. \\
\hline I/O RESET & Depression of this key followed by EXEC causes BCE elements to be restored and data path masks to be cleared for each string/bus assigned to the GPC set listening to the DEU from which the request was made. \\
\hline D & Enters a Hex D. \\
\hline E & Enters a Hex E. \\
\hline F & Enters a Hex F. \\
\hline ITEM & This key is used to initiate a message to select an item on the CRT being viewed. Data may or may not follow item number(s). \\
\hline 1 & Enters a numeric 1. \\
\hline 2 & Enters a numeric 2. \\
\hline 3 & Enters a numeric 3. \\
\hline EXEC & A terminator key used to end ITEM, GPC/CRT, and I/O RESET messages. It may be defined additionally as a special single-key, no-number item for a display, allowing crew to enter the specific item by pushing 'EXEC'. \\
\hline 4 & Enters a numeric 4. \\
\hline 5 & Enters a numeric 5. \\
\hline 6 & Enters a numeric 6. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\begin{tabular}{l} 
RELEASE: \\
BOOK:
\end{tabular} & \begin{tabular}{l} 
OI20 \\
PASS User's Guide
\end{tabular} \\
OPS & \begin{tabular}{l} 
This key is a function initiation key which brings a message of OPS XXX PRO to \\
cause an OPS Transition or Mode Recall.
\end{tabular} \\
7 & Enters a numeric 7.
\end{tabular}

\section*{6. FAULT ANNUNCIATION AND MESSAGES}

\subsection*{6.1 ANNUNCIATION}

Faults are detected by the operating system, GN\&C, VU, PL and SM software. They result from hardware failures, or warning of failures, operator errors, and software or data problems. Faults are classified as Caution and Warning (class 2), Alert (class 3), GPC detected (class 4), and Operator error (class 5). They are identified by the indications summarized below:
-1 Class 2 - Caution Warning
-1.1 Flashing fault message appears on Fault message line of all CRT displays. If a message is already there, the number at the right of the message line is incremented.
-1.2 GNC, SM and Payload indicator alarms are outputs.
-2 Class 3-Alert
-2.1 Flashing fault message appears on fault message line of all CRT displays. If a message is already there, the number at the right of the message line is incremented.
-2.2 SM Alert Light is lit.
-2.3 SM Alert Tone is sounded.
-3 Class 4 - GPC detected error
-3.1 Flashing fault message appears on fault message line of all CRT displays. If a message is already there, the number at the right of the message line is incremented.

\section*{-4 Class 5-Operator Error}
-4.1 Flashing fault message appears on fault message line of CRT attached to offending keyboard. Any message currently displayed on that CRT is saved and will reappear on the message line if a message reset is entered on the CRT displaying the operator error message. (33619)
-5 Following a class 2,3 or 4 message, the keyboard ACK key stops the message from flashing, issues an alert light off command, and resets any associated tone. Thus, the message itself is still displayed and the specific error lamps associated with the error (if any) remain illuminated.
-6 The MSG RESET key will delete the current message from all CRTs displaying that message, and reset the tone and all indicators lamps remaining illuminated as a result of that message.
-7 Faults are stored chronologically on the Fault Summary Page which may contain up to 15 messages. (55324)
-8 Fault Summary Page Interlock Function - When multiple failures occur that result in the same (identical text) class 2, 3 or 4 fault message from the same source GPC(s), the FSW filters all but the first message within a fixed interlock period of 4.8 seconds. This is done to avoid excessive repeated annunciation of identical fault messages. Internal indicators are reset every 4.8 seconds to allow re-annunciation to the message line and the Fault Summary Page.
-9 The standard Fault Message line format is shown in Figure 6-1.


TEXT: This space contains a brief description of the problem and the affected system. Some messages begin with a " G " or " S " followed by a 2-digit reference to a CRT page where more complete information is available.
C\&W: A * indicates the fault is in the C\&W category.
GPC: Specifies the GPCs detecting the fault.
TIME: The time of fault detection (HH:MM:SS).
NUMBER: The number of faults annunciated since current message appeared on the message line. These may be viewed on the Fault Summary page.

Figure 6-1. Fault Message Format

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

\subsection*{6.2 MESSAGES}

See Appendix G for fault messages.

\section*{7. GROUND/GPC INTERFACES}

The Ground Interfaces with the on-board computers through two major capabilities; a Launch Data Bus (LDB) system, and a radio frequency Network Signal Processor (NSP) Uplink. Section 7.1 describes the LDB system, including the Test Control Supervisor (TCS), and Section 7.2 addresses Uplink processing.

\subsection*{7.1 LAUNCH DATA BUS}

The LDB is a dual bus system providing an interface between external users and the orbiter. Communications may be established in a Direct I/O mode or a GPC mode. In the Direct Mode, commands are sent from the ground to the Command Decoders (2) which direct the commands to the requested unit. In the GPC mode, commands are sent to the on-board computer (GPC). It is this capability that will be addressed in this document.

\subsection*{7.1.1 LDB Protocol/Polling}

The basic polling rate between the GPC and the ground is 25 Hz , or one poll each 40 ms . The established protocol results in a total communication cycle each 120 ms .
-1 Protocol consists of INTERROGATION, RESPONSE to INTERROGATION, GO-AHEADS to data requests, DATA TRANSMISSION, and STATUS indications. In case both the GPC and the ground wish to transfer data, the ground transmission will take place first.

\subsection*{7.1.2 LDB Polling Controls}

LDB polling may be started and stopped via SPEC 100, Item 14 and SPEC 001 , Item 50 . Polling will always attempt to start on LDB1. If the GPC is unable to establish valid protocol on LDB1, it will (unless prevented by a ground command), attempt to establish polling on LDB2. If that is unsuccessful, it will Toggle back to LDB1. This process continues indefinitely until either valid polling is established or it is stopped via another Item Entry. (28350)
-1 LDB polling may be requested by any GPC. However, LDB polling will be activated in the GPC assigned to command LDB1. If the commander of LDB1 is a member of a RS, all of those RS members will participate in LDB polling. The * on SPEC 100 (Item 14), or SPEC 001 (Item 50) merely indicates that LDB polling has been requested, not that the GPC displaying the * is participating in the polling.
-2 The ground, through TCS operator code 7 (see Section 7.1.5), has several possible LDB polling controls. These, with known restrictions, etc. are:
-2.1 Turn off polling - all GPCs in Common Set terminate polling.
-2.2 Assign current polling bus to another GPC.
-2.2.1 Specified GPC must be member of CS or an error code of 3 is returned.
-2.2.2 All GPCs (other than the specified GPC) not in RS with specified GPC terminate polling.
-2.3 Assign polling to a specified bus (assume the current non-polling bus specified) - Specified bus must be commanded by GPC currently polling or by a GPC in RS with current polling GPC. If not, and AUTO-Switchover is enabled, 3 pseudo time-outs will be logged and polling will be re-established on the original bus.
\begin{tabular}{llc} 
RELEASE: & Ol20 & Date: \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}
-3 In general, no LDB control operators should be issued during an OPS transition since they can cause CS Fail-to-Sync in certain timing situations.
-4 If the LDB buses ever get used for a GPC-to-GPC memory overlay, then all subsequent Initial Timeout I/O errors will be logged as MSC Timeouts (for GSE, SRB, MCIU). (47243)
-5 DGI cycle overrun can occur when the flight software system is executing at a high processing I/O level. (46507)

\subsection*{7.1.3 LDB Mass Memory Operations}

The Ground/GPC interface provides the capability to perform read and/or write operations to the MMUs. The operations may be performed in one of two modes; capability 1-MMU hardware addressing by using absolute addresses (File, Track, Subfile, Block); or capability 2 by using Phase/Load Block addressing. In either case, it is a user responsibility to avoid attempting simultaneous updates to the MMU from on-board and the ground. Such an attempt would compromise the acceptability of the software on the MMU.
-1 The following guidelines for capability 1 apply:
-1.1 The smallest write is 1 Block.
-1.2 Full block(s) shall be written ( 512 words). (47853)
-1.3 The largest write or read is 128 Blocks.
-2 Capability 2 provides patching capability whereby specific locations within a software Load Block may be modified. The following guidelines for capability 2 apply:
-2.1 The sequence of operations is read, merge, write.
-2.2 Universal Patch Format (UPF) shall be adhered to.

\subsection*{7.1.4 LDB SSME Load Operations}

The ground initiates loading of the SSME controllers via LDB command to the SSME Load Program. Controller programs reside on MMUs on-board; however, commands to transfer the program from the MMU through the GPC/Engine Interface Unit to the controller are sent from the ground. (48500)

\subsection*{7.1.5 LDB Test Control Supervisor Operations}

A set of ground commands exist to provide the capability to checkout the Shuttle system for launch. These commands are sent via the LDB to the GPC(s) controlling LDB polling for execution. Commands may be sent individually (in which case they are referred to as TCS-1 or SACS) or in groups to be executed together (called a sequence). TCS sequences may also be stored on a MMU and brought into the GPC and executed via ground command or the TCS Control SPEC (SPEC 105).
- 1 Commands may be defined in three categories:
-1.1 Software Avionics Command Support (SACS) - subset of TCS 1-for-1 commands which may be issued in any OPS except G8. (55017)
-1.2 TCS 1 -for- 1 - individual commands which are sent and generate a response back to the ground. Three of these are especially for controlling a TCS sequence and are referred to as Interactive.
-1.3 TCS Sequence - a logical collection of operators grouped together into a package which is sent from the ground (or fetched from a MMU) to the GPC for execution. (37530)
-2 Table 7.1-1 provides a list of TCS operator codes and availability of each in the three categories. Detailed information about each operator may be found in the OFT Launch Data Bus Software Interface Requirements (SS-P-0002-150). The following restrictions apply to TCS usage:
-2.1 TCS Sequence Buffers - There are three TCS sequence buffers ( 1024 words each). A TCS sequence may require one, two, or all three of the TCS buffers. The user must set the End-of-buffer Indicator in the last operator of every buffer except the last buffer for a sequence (it is not necessary to set the End-of-buffer Indicator in the END operator but it will not cause a problem if it is set).
-2.2 Only one multi-buffer sequence may be loaded at any one time. (Currently the number of sequence buffers restricts the number of multi-buffer sequences to one. If the number of sequence buffers is increased the user must assure that only one multi-buffer sequence is loaded at one time.)
-2.3 All TCS sequences loaded in the GPC at a given time should have unique names. If the user attempts to load a sequence with the same name as a sequence that is already loaded, TCS will terminate the request and transmit an error response to the ground.
-2.4 The STOP AT step number is updated when a STOP AT item is entered. It is zeroed when any STOP AT step is reached. Thus, multiple STOP ATs in one sequence at one time are not indicated on the display. Also, the STOP AT step number field could be zero on the display when a STOP AT step still exists in the sequence.
-2.5 TCS Operator Responses - The TCS Operator Responses have been standardized in OFT. Response words one through five are the same for each operator. Any response words unique to an operator are in response words \(6-\mathrm{N}\). Responses to TCS Interactive Operators are placed into the sequence response buffer as well as being transmitted immediately as a result of the execution of any single command operator.
-2.6 There are three independent capabilities that enable the user to input an equivalent DEU message into the GPC: TCS, SACS \& Uplink. The user should assure that no two equivalent DEU capabilities are utilized during the same MCDS processing cycle ( 1 second).
-2.7 TCS Priority Processing - While TCS is executing a set of TCS operators in a priority series, no other TCS operators will be processed. The use of the TCS Priority Change operator causes the defined operations to be executed at a higher priority level. (47292)
-2.7.1 Single Commands: The first single command received during this time will be held and executed after the priority series is completed (or an error is encountered in the series). Other single commands will be rejected and Functional Destination Cannot Accept Data error status is returned. This includes both Interactive and 1 -for- 1 commands.
-2.7.2 Sequence Blocks: Same as single commands.
-2.8 TCS-1/TCS-S INTERACTION - The TCS sequencer processes TCS operators originating from SPEC 105, TCS-1 operators via the LDB, and TCS-S operators loaded via the LDB or MMU. The TCS sequencer interleaves the processing of these operators with the following priority: 1) SPEC 105 operator, 2) TCS-1 operator, and 3) TCS-S operator. If more than one test sequence is loaded (up to three possible) and executing concurrently, the processing of the steps of test sequences will be interleaved.

The following demonstrates the priority and order of operator execution assuming three test sequences active and control SPEC and TCS-1 operators always present:
- Control SPEC operator
- TCS-1 operator
- Test Sequence "A" operator
- Control SPEC operator
- TCS-1 operator
- Test Sequence "B" operator
- Control SPEC operator
- TCS-1 operator
- Test Sequence "C" operator

If only one sequence is loaded or active, the operators from that sequence only are interleaved with control SPEC and TCS-1 operators (if present). Nominally several TCS-S operators are executed sequentially since control SPEC operators are dependent on display processing rates and TCS-1 operators are dependent on LDB protocol rates. Interactive commands (from the control SPEC or TCS-1) to control a test sequence are not executed until the current operator of that test sequence is complete.
Note: A TCS-1 interactive command (e.g., STOP) to a test sequence performing a DELAY operator will be held and executed after the TCS-S DELAY operator is complete. This can cause the TCS-1 Functional Destination to remain busy for the length of time in the DELAY operator plus the time required to process the TCS-1 STOP operator.

\subsection*{7.1.6 Explicitly Coded Programs (ECP)}

Several Vehicle Utility Checkout functions are not possible using the stand-alone TCS operators described in section 7.1.5. The functions are provided by on-board software programs which are coded to do an explicit job and only that job. These programs are initiated via the TCS CALL operator (see Table 7.1-1, OP CODE 12). A description of each program is provided. The description includes function, control interfaces, error processing, and any constraints and assumptions.

\subsection*{7.1.6.1 Actuator Initialization (AI)}

The AI process performs the following functions: 1) Drives each actuator to a specified initial position, mode 0; 2) preconditions the Actuator MDMs with position feedback Values, mode 1; 3) Drives OMS, SSME, Body Flap and Speedbrake/Rudder to a FERRY position, mode 2; RAIN position, mode 3; GRAVITY position, mode 4; NULL position, mode 5; and TURNAROUND position, mode 6. Each task can be selected via the TCS Call operator. (25187)

\subsection*{7.1.6.1.1 Control Interfaces}

The test is called via the TCS CALL operator using the AI CALL function and is available only in OPS G9.
-1 Upon initialization, the AI function is required to run in mode 1 prior to the running of mode 0 and it is required to run successfully in mode 0 prior to running any of the other modes ( \(2,3,4,5,6\) ).
\begin{tabular}{ll|l} 
RELEASE: & OI20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: & 0
\end{tabular}
-2 The CALL is formatted as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\hline DW4 & \multicolumn{16}{|c|}{ACTUATOR INITIALIZATION PROGRAM ID (1)} \\
\hline DW5 & & & & & & & & RES & & & & & & & MOD & ID \\
\hline
\end{tabular}
\begin{tabular}{cl}
\(\frac{\text { DW }}{4}\) & \\
5 & \begin{tabular}{l} 
BITS \\
\(5-24\)
\end{tabular} \\
5 & 9 \\
5 & \(10-21\) \\
5 & \(22-24\)
\end{tabular}

\section*{DESCRIPTION}

Actuator Initialization Program - Decimal 1; LSB is BIT 24.

SRB and Nosewheel Actuator MDMs Bypassed When Set To Zero.

SPARES - Set To Zero
MODE ID

\author{
\(000=\) Initial Positioning Mode \\ \(001=\) MDM Preconditioning Mode \\ \(010=\) Ferry Positioning Mode \\ 011 = Rain Positioning Mode \\ \(100=\) Gravity Positioning Mode \\ \(101=\) Null Positioning Mode \\ \(110=\) Turnaround Positioning Mode
}
-3 Initial Positioning - Mode 0
The AI function will perform the initialization task by issuing commands to drive the SSME and OMS engines pitch and yaw Actuators, Aerosurface Actuators, SRB actuators, Nosewheel and Body Flap actuators to predefined positions in a predefined order as shown in Table 7.1-2. If specified in the Call operator, the SRB and Nosewheel Actuator MDMs can be bypassed.
-4 MDM Preconditioning - Mode 1
For each aerosurface, the commanded position is the result of a Middle-Value Selection performed on the four actuator feedbacks. For each OMS engine the Active Actuator position command corresponds to the Active Actuator position feedback, and the Standby command to the Standby feedback. The Body Flap is sent an Inhibit command. For the SSME, OMS, SRB, and ELVN Actuators, the position feedbacks are limit checked against the maximum initialization values listed in Table 7.1-2. If the position feedback value or the middle value for any of these actuators is outside the limits, the position command issued is equal to the maximum initialization value. The Nosewheel is commanded to the initial position referenced in Table 7.1-3 without any reference to its present position. If specified in the Call operator, the SRB and Nosewheel Actuators will be bypassed.
-5 Ferry/Rain/Gravity/Null/Turnaround Position - Modes 2, 3, 4, 5, 6
The AI function will perform the positioning of the SSME and OMS engines pitch and yaw actuators and the Body Flap actuator, the Speedbrake actuator and the Rudder actuator to a Ferry (mode 2), Rain (mode 3), Gravity (mode 4), Null (mode 5), or Turnaround (mode 6) position as shown in Tables 7.1-4, 5, 6, 7 and 8.

\subsection*{7.1.6.1.2 Limits}

None
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{TABLE 7.1-2. AI MODE 0 (INITIAL)} \\
\hline \multirow[b]{2}{*}{ACTUATOR DEVICES AND SEQUENCES} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { COMMAND } \\
& \text { POSITION }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { LOW } \\
\text { VALUE }
\end{gathered}
\]} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { HIGH } \\
\text { VALUE }
\end{gathered}
\]} \\
\hline & PCM & DEG & PCM & DEG & PCM & DEG \\
\hline BODY FLAP & -66 & +2.5 & -123 & 0.0 & -9 & +5.0 \\
\hline L OMS YAW (ACT\&STBY) & +420 & +6.9 & -50 & -0.8 & +492 & +8.1 \\
\hline L OMS PITCH (ACT\&STBY) & +356 & +5.8 & -443 & -7.3 & +443 & +7.3 \\
\hline R OMS YAW (ACT\&STBY) & +420 & -6.9 & -50 & +0.8 & +492 & -8.1 \\
\hline R OMS PITCH (ACT\&STBY) & +356 & +5.8 & -443 & -7.3 & +443 & +7.3 \\
\hline SSME 1 PITCH & +144 & -3.3 & +63 & -1.5 & +224 & -5.2 \\
\hline SSME 1 YAW & +10 & +0.2 & -62 & -1.2 & +82 & +1.5 \\
\hline SSME 2 PITCH & +36 & +0.8 & -35 & -0.8 & +108 & +2.5 \\
\hline SSME 2 YAW & +274 & +5.1 & +190 & +3.6 & +475 & +8.9 \\
\hline SSME 3 PITCH & -7 & +0.2 & -79 & +1.8 & +64 & -1.5 \\
\hline SSME 3 YAW & -261 & -4.9 & -475 & -8.9 & -178 & -3.3 \\
\hline SPEEDBRAKE & -215 & +21.0 & -226 & +19.8 & -158 & +27.2 \\
\hline RUDDER & 0 & 0.0 & -42 & -2.3 & +42 & +2.3 \\
\hline LEFT INBOARD ELVN & +136 & +0.4 & +104 & -1.5 & +167 & +2.2 \\
\hline RIGHT INBOARD ELVN & +136 & +0.4 & +104 & -1.5 & +167 & +2.2 \\
\hline LEFT OUTBOARD ELVN & +138 & +0.5 & +104 & -1.5 & +169 & +2.3 \\
\hline RIGHT OUTBOARD ELVN & +138 & +0.5 & +104 & -1.5 & +169 & +2.3 \\
\hline SRB L ROCK * & 0 & & -73 & -1.0 & +73 & +1.0 \\
\hline SRB L TILT * & 0 & & -73 & -1.0 & +73 & +1.0 \\
\hline SRB R ROCK * & 0 & & -73 & -1.0 & +73 & +1.0 \\
\hline SRB R TILT * & 0 & & -73 & -1.0 & +73 & +1.0 \\
\hline NOSEWHEEL & 0 & & NA & & NA & \\
\hline
\end{tabular}

Note: * Engineering Unit is Inches, not Degrees

TABLE 7.1-3. AI MODE 1 (PRECONDITIONING)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ACTUATOR DEVICES AND SEQUENCES} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { COMMAND } \\
& \text { POSITION }
\end{aligned}
\]} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { LOW } \\
\text { VALUE }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { HIGH } \\
& \text { VALUE }
\end{aligned}
\]} \\
\hline & PCM & DEG & PCM & DEG & PCM & DEG \\
\hline BODY FLAP & & & NA & & NA & \\
\hline L OMS YAW (ACT\&STBY) & & & \(-512\) & -8.4 & \(+511\) & +8.4 \\
\hline L OMS PITCH (ACT\&STBY) & & & -512 & -8.4 & \(+511\) & +8.4 \\
\hline R OMS YAW (ACT\&STBY) & & & -512 & \(-8.4\) & \(+511\) & +8.4 \\
\hline R OMS PITCH (ACT\&STBY) & & & -512 & +8.4 & \(+511\) & -8.4 \\
\hline SSME 1 PITCH & & & -433 & +10.0 & \(+433\) & \(-10.0\) \\
\hline SSME 1 YAW & & & -433 & -8.1 & \(+433\) & +8.1 \\
\hline SSME 2 PITCH & & & -433 & \(-10.0\) & \(+433\) & +10.0 \\
\hline SSME 2 YAW & & & -433 & -8.1 & \(+433\) & +8.1 \\
\hline SSME 3 PITCH & & & -433 & \(+10.0\) & \(+433\) & \(-10.0\) \\
\hline SSME 3 YAW & & & -433 & \(-8.1\) & \(+433\) & +8.1 \\
\hline SPEEDBRAKE & & & -394 & +1.6 & \(+500\) & +98.6 \\
\hline RUDDER & & & -490 & -27.1 & \(+490\) & \(+27.1\) \\
\hline LEFT INBOARD ELVN & & & \(-476\) & \(-35.1\) & \(+476\) & \(+20.1\) \\
\hline RIGHT INBOARD ELVN & & & -476 & -35.1 & \(+476\) & \(+20.1\) \\
\hline LEFT OUTBOARD ELVN & & & -477 & -35.1 & \(+477\) & +20.1 \\
\hline RIGHT OUTBOARD ELVN & & & -477 & -35.1 & \(+477\) & +20.1 \\
\hline SRB L ROCK * & & & -433 & -6.1 & +433 & +6.1 \\
\hline SRB L TILT * & & & -433 & \(-6.1\) & \(+433\) & +6.1 \\
\hline SRB R ROCK * & & & -433 & \(-6.1\) & +433 & +6.1 \\
\hline SRB R TILT * & & & -433 & \(-6.1\) & \(+433\) & +6.1 \\
\hline NOSEWHEEL & & & NA & & NA & \\
\hline
\end{tabular}

\footnotetext{
Note: * Engineering Unit is Inches, not Degrees
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{TABLE 7.1-4. AI MODE 2 (FERRY)} \\
\hline \multirow[b]{2}{*}{ACTUATOR DEVICES AND SEQUENCES} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { COMMAND } \\
& \text { POSITION }
\end{aligned}
\]} & \multicolumn{2}{|c|}{\[
\begin{gathered}
\text { LOW } \\
\text { VALUE }
\end{gathered}
\]} & \multicolumn{2}{|c|}{\[
\begin{gathered}
\text { HIGH } \\
\text { VALUE }
\end{gathered}
\]} \\
\hline & PCM & DEG & PCM & DEG & PCM & DEG \\
\hline BODY FLAP & +346 & + 20.7 & +289 & + 18.2 & +403 & +23.2 \\
\hline L OMS YAW (ACT\&STBY) & -384 & \(-6.3\) & -434 & \(-7.1\) & -334 & \(-5.5\) \\
\hline L OMS PITCH (ACT\&STBY) & +373 & +6.1 & \(+323\) & \(+5.3\) & +423 & + 6.9 \\
\hline R OMS YAW (ACT\&STBY) & -384 & \(+6.3\) & -434 & +7.1 & -334 & + 5.5 \\
\hline R OMS PITCH (ACT\&STBY) & +373 & +6.1 & \(+323\) & \(+5.3\) & +423 & +6.9 \\
\hline SSME 1 PITCH & -432 & \(+10.0\) & -475 & + 11.0 & -336 & + 7.8 \\
\hline SSME 1 YAW & \(+10\) & +0.2 & -62 & -1.2 & \(+82\) & +1.5 \\
\hline SSME 2 PITCH & -148 & -3.4 & -229 & \(-5.3\) & -67 & \(-1.5\) \\
\hline SSME 2 YAW & -32 & -0.6 & -104 & -1.9 & \(+40\) & + 0.8 \\
\hline SSME 3 PITCH & \(+173\) & -4.0 & +91 & -2.1 & +255 & \(-5.9\) \\
\hline SSME 3 YAW & \(+48\) & + 0.9 & -24 & -0.5 & \(+120\) & +2.2 \\
\hline SPEEDBRAKE & \(-317\) & \(+10.0\) & -374 & +3.8 & -260 & \(+16.2\) \\
\hline RUDDER & 0 & & -42 & -2.3 & \(+42\) & \(+2.3\) \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{TABLE 7.1-8. AI MODE 6 (TURNAROUND)} \\
\hline \multirow[b]{2}{*}{ACTUATOR DEVICES AND SEQUENCES} & \multicolumn{2}{|l|}{COMMAND
POSITION} & \multicolumn{2}{|c|}{\[
\begin{gathered}
\text { LOW } \\
\text { VALUE }
\end{gathered}
\]} & \multicolumn{2}{|c|}{\[
\begin{gathered}
\text { HIGH } \\
\text { VALUE }
\end{gathered}
\]} \\
\hline & PCM & DEG & PCM & DEG & PCM & DEG \\
\hline BODY FLAP & + 346 & + 20.7 & +289 & + 18.2 & +403 & + 23.2 \\
\hline L OMS YAW (ACT\&STBY) & -367 & +6.0 & +327 & + 5.4 & + 407 & +6.7 \\
\hline L OMS PITCH (ACT\&STBY) & + 354 & + 5.8 & +314 & + 5.1 & +376 & +6.2 \\
\hline R OMS YAW (ACT\&STBY) & +367 & -6.0 & +327 & -5.4 & +407 & -6.7 \\
\hline R OMS PITCH (ACT\&STBY) & + 354 & + 5.8 & +314 & + 5.1 & + 376 & +6.2 \\
\hline SSME 1 PITCH & + 101 & -2.3 & + 58 & -1.3 & + 143 & -3.3 \\
\hline SSME 1 YAW & +10 & +0.2 & -44 & -0.8 & +63 & + 1.2 \\
\hline SSME 2 PITCH & -73 & -1.7 & -117 & -2.7 & -29 & -0.7 \\
\hline SSME 2 YAW & + 10 & +0.2 & -44 & -0.8 & +63 & + 1.2 \\
\hline SSME 3 PITCH & + 101 & -2.3 & + 58 & -1.3 & + 143 & -3.3 \\
\hline SSME 3 YAW & + 10 & +0.2 & -44 & -0.8 & +63 & +1.2 \\
\hline SPEEDBRAKE & -362 & +5.1 & -421 & -1.3 & -301 & + 11.7 \\
\hline RUDDER & 0 & & -42 & -2.3 & +42 & +2.3 \\
\hline
\end{tabular}

Note: The command position values are listed in PCM counts.
SSMEs/SRBs (POSITION F.B. IN PCM COUNTS - \(\mathrm{A}_{0}\) ) ( \(\mathrm{A}_{1}\) ) = CMD VALUE
\(\mathrm{A}_{0}=\) COMPENSATION BIAS \(=250\) PCM COUNTS (I-LOADABLE)
\(\mathrm{A}_{1}=\) MULTIPLICATION FACTOR \(=1.818\) (I-LOADABLE)

BOOK:
Ol20
Date: \(\quad 12 / 20 / 90\)
PASS User's Guide
Rev: 0

\subsection*{7.1.6.1.3 Error Processing}

An appropriate CALL program error response code may be generated relative to the conditions defined below. For all such error conditions, the GPC shall reject the call operator and inhibit the test. The error code shall be made available for the TCS CALL program error response and to the TCS control display.

\section*{CONDITIONS}

ERROR CODE
HDA function not active for reading position feedback 102
Actuator position not within tolerance 103
A CALL operator which requests either AI Mode 0, Mode 2,
Mode 3 or Mode 4 to run after OPS 9 initialization and prior to running AI Mode 1

Actuator position feedback values invalid due to I/O errors
104
A CALL operator which requests either Mode 2, 3 or 4 prior to 102 AI Mode 0

\subsection*{7.1.6.1.4 Constraints/Assumptions}
-1 AI cannot run concurrently with FRT, MAT, RAMP, or BFD. The AI mode 0 process will complete processing all actuators even though a positioning error (error code \(=103\) ) might occur. Once all the actuators have been driven the error response is transmitted to the ground or SPEC 105 display, if necessary. The HDA processor must be active.
-2 If AI is executed while an IMU submode is active, there is a small probability that the IMU jitter requirement may be violated for one cycle. Such an occurrence will be transparent to the user as well as to the results of the submode.

\subsection*{7.1.6.2 Ramp Function Generator (RFG)}

The RFG outputs a ramp function stimulus to specified aerosurface actuators, SSME/SRB Thrust Vector Control (TVC) actuators, Orbital Maneuvering System (OMS) actuators, nosewheel actuator and RGA devices as defined in Table 7.1-9. Only one actuator/device can be selected per test via the ramp function call operator (see call format). The capability also exists to output a stimulus to a single channel of a four-channel actuator.

\subsection*{7.1.6.2.1 Control Interfaces}

The test is called via the TCS call operator using the RFG call function and is available only in OPS G9. Upon initialization the AI function is required to run in Mode 1 prior to the running of the RFG function the first time.
-1 The RFG function is deactivated by TCS cancel, OPS transition, or the selected surface reaching its final value.

Table 7.1-9. ACTUATORS/DEVICE AVAILABLE FOR TEST AND INITIALIZATION
\begin{tabular}{|c|c|c|}
\hline DEVICE ID & BINARY & ACTUATOR/DEVICE \\
\hline 0 & 000000 & NOSEWHEEL ACTUATOR \\
\hline 1 & 000001 & SPEEDBRAKE (SB) ACTUATOR \\
\hline 2 & 000010 & RUDDER (RUD) ACTUATOR \\
\hline 3 & 000011 & LEFT INBOARD ELEVON (LIE) ACTUATOR \\
\hline 4 & 000100 & RIGHT INBOARD ELEVON (RIE) ACTUATOR \\
\hline 5 & 000101 & LEFT OUTBOARD ELEVON (LOE) ACTUATOR \\
\hline 6 & 000110 & RIGHT OUTBOARD ELEVON (ROE) ACTUATOR \\
\hline 7 & 000111 & SSME 1 PITCH ACTUATOR \\
\hline 8 & 001000 & SSME 1 YAW ACTUATOR \\
\hline 9 & 001001 & SSME 2 PITCH ACTUATOR \\
\hline 10 & 001010 & SSME 2 YAW ACTUATOR \\
\hline 11 & 001011 & SSME 3 PITCH ACTUATOR \\
\hline 12 & 001100 & SSME 3 YAW ACTUATOR \\
\hline 13 & 001101 & SRB LEFT ROCK ACTUATOR \\
\hline 14 & 001110 & SRB LEFT TILT ACTUATOR \\
\hline 15 & 001111 & SRB RIGHT ROCK ACTUATOR \\
\hline 16 & 010000 & SRB RIGHT TILT ACTUATOR \\
\hline 17 & 010001 & RIGHT OMS PITCH-ACTIVE ACTUATOR \\
\hline 18 & 010010 & RIGHT OMS PITCH-STANDBY ACTUATOR \\
\hline 19 & 010011 & RIGHT OMS YAW-ACTIVE ACTUATOR \\
\hline 20 & 010100 & RIGHT OMS YAW-STANDBY ACTUATOR \\
\hline 21 & 010101 & LEFT OMS PITCH-ACTIVE ACTUATOR \\
\hline 22 & 010110 & LEFT OMS PITCH-STANDBY ACTUATOR \\
\hline 23 & 010111 & LEFT OMS YAW-ACTIVE ACTUATOR \\
\hline 24 & 011000 & LEFT OMS YAW-STANDBY ACTUATOR \\
\hline 25 & 011001 & RGA 1 ROLL GYRO \\
\hline 26 & 011010 & RGA 1 PITCH GYRO \\
\hline 27 & 011011 & RGA 1 YAW GYRO \\
\hline 28 & 011100 & RGA 2 ROLL GYRO \\
\hline 29 & 011101 & RGA 2 PITCH GYRO \\
\hline 30 & 011110 & RGA 2 YAW GYRO \\
\hline 31 & 011111 & RGA 3 ROLL GYRO \\
\hline 32 & 100000 & RGA 3 PITCH GYRO \\
\hline 33 & 100001 & RGA 3 YAW GYRO \\
\hline 34 & 100010 & RGA 4 ROLL GYRO \\
\hline 35 & 100011 & RGA 4 PITCH GYRO \\
\hline 36 & 100100 & RGA 4 YAW GYRO \\
\hline
\end{tabular}
```

RELEASE: OI20
BOOK: PASS User's Guide
-2 The RFG call is formatted as follows:

```
Date: 12/20/90
Rev: 0
\begin{tabular}{lllllllllllllllll} 
BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{tabular}

DW 4

DW 5

DW 6
DW 7
\begin{tabular}{|l|l|c|c|c|}
\hline \multicolumn{5}{|c|}{ RAMP PROGRAM ID (2) } \\
\hline OMS & SPARES & CH & NO & I/O \\
ACTUATOR/RGA SELECT \\
\hline \multicolumn{4}{|c|}{ SLOPE } \\
\hline \multicolumn{5}{|c|}{} \\
\hline \multicolumn{5}{|c|}{ FINAL VALUE } \\
\hline
\end{tabular}

\section*{DW BITS DESCRIPTION}

9-24
9-10

11-15
16-17

18

19-24

9-24
9-18

Ramp program ID - Decimal 2 (LSB is bit 24)
OMS SELECT ACTIVE/STBY-1/2 discretes control. Determines the logic state of the ACTIVE/STBY-1/2 discretes to be output by the GPC for the selected OMS actuator device.
\(1=\) GPC outputs logic one
\(0=\) GPC outputs logic zero

\section*{Spares - Set to zero}

Channel number to drive with ramp function stimulus for single-channel I/O mode select (refer to DW 5, bit 18) for device ID selects of 1 through 16 (QUAD-CHANNEL DEVICE):
\(00=\) Channel A
\(01=\) Channel B
\(10=\) Channel C
11 = Channel D
For device ID select of 0 (Nosewheel):
\(00=\) Channel B (FF02)
\(01=\) Channel C (FF03)
Channel selects of ' 10 ' or ' 11 ' are invalid for device ID of 0 .
DW 5, bits 16-17 not applicable for device IDs other than 0-16.
I/O mode select for ID selects of 1 through 16:
\(0=\) Quad channel I/O
1 = Single channel I/O
I/O mode select for ID select \(=0\) (Nosewheel):
\(0=\) Dual-channel I/O
1 = Single-channel I/O
DW 5, bit 18 not applicable for device IDs other than 0-16.
Actuator or RGA selected for stimulus input - Decimal 0 to 36 (refer to Table 7.1-9 for designated actuator or RGA IDs.) (LSB is bit 24)
Slope value - LSB equal \(1 / 32\) PCM count (unsigned).
Final value in hardware units - Plus 511 to - 512 PCM counts representing an analog stimulus value (negative values in 2 s complement form)

\subsection*{7.1.6.2.2 Limits}

The following limits are checked prior to or during the RFG execution:
-1 Position Limit Checks (Table 7.1-10).
-2 Rate Limit if the position limit is exceeded.
-3 Collision avoidance on the collision potential actuators (SSME's, OMS, and Body Flap)
-4 SSME-1 clearance with the OMS pods
-5 Rudder/Speedbrake

\subsection*{7.1.6.2.3 Error Processing}

An appropriate CALL program error response code may be generated relative to the error conditions defined below. For all such error conditions, the GPC shall inhibit the test. The error code shall be made available for the TCS call program error response and to the TCS control display.

\section*{CONDITIONS}

HDA function not active for reading position feedback
The call generates an out-of-limits position or rate
A test which invokes a collision potential situation
Call to RAMP the first time prior to running AI Mode 1
Actuator position feedback values invalid due to I/O errors

\section*{ERROR CODE}

Speedbrake/rudder travel range is not within limits204
A call operator with an invalid actuator/RGA ID ..... 200
SSME1/OMS pod clearance not within limits ..... 206
Invalid nosewheel channel selected ..... 200

\subsection*{7.1.6.2.4 Constraints/Assumptions}
-1 The HDA processor must be active.
-2 The RFG, FRT, MAT, AI, and BFD functions are all mutually exclusive; i.e., only one may be active at any one time. (37708)
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ TABLE 7.1-10. POSITION AND RATE DRIVE COMMAND UNITS } \\
\hline \multicolumn{1}{|c|}{ ACTUATOR/DEVICES } & \multicolumn{2}{|c|}{ POSITION LIMITS } \\
\cline { 3 - 6 } & \multicolumn{2}{|c|}{ LOW } & \multicolumn{2}{c|}{ HIGH } \\
\cline { 2 - 5 } & PCM & DEG & PCM & DEG \\
\hline SPEEDBRAKE & -344 & +7.0 & +504 & +99.0 \\
RUDDER & -504 & -27.9 & +504 & +27.9 \\
LEFT INBOARD ELEVON (VERTICAL)* & -220 & -20.3 & +480 & +20.3 \\
LEFT INBOARD ELEVON (HORIZONTAL)* & -480 & -35.3 & +480 & +20.3 \\
RIGHT INBOARD ELEVON (VERTICAL)* & -220 & -20.3 & +480 & +20.3 \\
RIGHT INBOARD ELEVON (HORIZONTAL)* & -480 & -35.3 & +480 & +20.3 \\
LEFT OUTBOARD ELEVON (VERTICAL)* & -220 & -20.3 & +480 & +20.3 \\
LEFT OUTBOARD ELEVON (HORIZONTAL)* & -480 & -35.3 & +480 & +20.3 \\
RIGHT OUTBOARD ELEVON (VERTICAL)* & -220 & -20.3 & +480 & +20.3 \\
RIGHT OUTBOARD ELEVON (HORIZONTAL)* & -480 & -35.3 & +480 & +20.3 \\
SSME 1 PITCH & -440 & +10.2 & +440 & -10.2 \\
SSME 1 YAW & -440 & -8.2 & +440 & +8.2 \\
SSME 2 PITCH & -440 & -10.2 & +440 & +10.2 \\
SSME 2 YAW & -440 & -8.2 & +440 & +8.2 \\
SSME 3 PITCH & -440 & +10.2 & +440 & -10.2 \\
SSME 3 YAW & -440 & -8.2 & +440 & +8.2 \\
SRB L ROCK ** & -460 & -6.4 & +460 & +6.4 \\
SRB L TILT ** & -460 & -6.4 & +460 & +6.4 \\
SRB R ROCK ** & -460 & -6.4 & +460 & +6.4 \\
SRB R TILT ** & -460 & -6.4 & +460 & +6.4 \\
RIGHT OMS ENG PITCH ACTUATOR/ACTIVE & -364 & -6.0 & +358 & +5.9 \\
RIGHT OMS ENG PITCH ACTUATOR/STANDBY & -364 & -6.0 & +358 & +5.9 \\
RIGHT OMS ENG YAW ACTUATOR/ACTIVE & -420 & +6.9 & +420 & -6.9 \\
RIGHT OMS ENG YAW ACTUATOR/STANDBY & -420 & -6.9 & +420 & -6.9 \\
LEFT OMS ENG PITCH ACTUATOR/ACTIVE & -364 & -6.0 & +358 & +5.9 \\
LEFT OMS ENG PITCH ACTUATOR/STANDBY & -364 & -6.0 & +358 & +5.9 \\
LEFT OMS ENG YAW ACTUATOR/ACTIVE & -420 & -6.9 & +420 & +6.9 \\
LEFT OMS ENG YAW ACTUATOR/STANDBY & -420 & -6.9 & +420 & +6.9 \\
NOSEWHEEL STEERING ACTUATOR & -500 & -10.0 & +500 & +10.0 \\
\hline
\end{tabular}

Note: A single rate limit equal to a \(1 / 4\) PCM count (scaled per DW6) shall be applicable for all devices except the SRBs (which have no rate limit requirements) when the horizontal elevon low limits are selected via the GTS display. A single rate limit equal to a zero PCM count shall be applicable when the vertical elevon low limits are selected via the GTS display (default).
* The elevon position low limits are selectable via the GTS display. The default values are the vertical low limits.

\footnotetext{
** For SRB actuators, the value is in inches, not degrees.
}

\subsection*{7.1.6.3 Frequency Response Test (FRT)}

The FRT provides the capability to output a sine wave or step function stimulus to either an aerosurface actuator, an SSME actuator, an SRB actuator, an OMS actuator, the nosewheel actuator or an RGA. Only one actuator or RGA can be selected per test. The actuators and RGAs available to receive the FRT stimulus and their selection ID are defined in Table 7.1-9. The nosewheel actuator (device select \(=\) 0 ) shall be handled as a dual-channel device, i.e., the stimulus will be output on both channels.
Additionally, the capability shall exist to output the stimulus on either one of these two channels. The capability shall exist to output a stimulus to a single channel of a Quad-channel device (ref. Table 4.7-1, Device ID selects 1-16). The FRT stimulus is output at a 100 samples-per-second rate for the selected actuator and a 25 samples-per-second rate for the selected RGA.

\subsection*{7.1.6.3.1 Control Interfaces}

The test is called via the TCS call operator using the FRT call function and is available only in OPS G9 simplex GPC configuration. Upon initialization, the AI function is required to run in Mode 1 prior to the running of the FRT function the first time.
-1 The FRT function is deactivated by TCS CANCEL, OPS transition or successful completion of the test.
-2 The FRT CALL is formatted as follows:
\begin{tabular}{lllllllllllllllll} 
BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{tabular}

DW 4
DW 5
DW 6
DW 7
DW 8
DW 9
DW 10
DW 11
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{FRT PROGRAM ID (3)} \\
\hline OMS & SPARES & \[
\begin{aligned}
& \hline \mathrm{CH} \\
& \mathrm{NO}
\end{aligned}
\] & I/O & SID & ACTUATOR/RGA SELECT \\
\hline \multicolumn{5}{|c|}{FUNCTION MAXIMUM VALUE} & SPARES \\
\hline \multicolumn{5}{|c|}{FUNCTION MINIMUM VALUE} & SPARES \\
\hline \multicolumn{6}{|c|}{TEST PERIOD} \\
\hline \multicolumn{6}{|c|}{SINE SIGNAL FREQUENCY} \\
\hline \multicolumn{6}{|c|}{STEP INITIAL LEVEL DURATION} \\
\hline \multicolumn{6}{|c|}{STEP HIGH/LOW LEVEL DURATION} \\
\hline
\end{tabular}
\begin{tabular}{cll} 
DW & BITS & DESCRIPTION \\
4 & \(9-24\) & \begin{tabular}{l} 
FRT program ID - Decimal \\
5
\end{tabular} \\
\(9-10\) & \begin{tabular}{l} 
OMS SELECT ACTIVE/ST \\
the logic state of the ACTIVE \\
the GPC for the selected OM
\end{tabular} \\
& \begin{tabular}{ll}
\(1=\) GPC outputs logic one \\
\(0=\) GPC outputs logic zero
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline RELEASE: BOOK: & \begin{tabular}{l}
OI20 \\
PASS User's Guide
\end{tabular} & \[
\begin{aligned}
& \text { Date: } 12 / 20 / 90 \\
& \text { Rev: } 0
\end{aligned}
\] \\
\hline DW & BITS & DESCRIPTION \\
\hline \multirow[t]{5}{*}{5} & \multirow[t]{5}{*}{15-16} & Channel number that will be driven with the FRT Function when single channel I/O (Ref. DW5, Bit 17) is requested for device ID selects 1 through 16: \\
\hline & & \[
\begin{aligned}
& 00=\text { Channel A } \\
& 01=\text { Channel B } \\
& 10=\text { Channel C } \\
& 11=\text { Channel D }
\end{aligned}
\] \\
\hline & & For device ID select of 0 (Nosewheel): \\
\hline & & \[
\begin{aligned}
& 00=\text { Channel B (FF02) } \\
& 01=\text { Channel C (FF03) }
\end{aligned}
\] \\
\hline & & Channel selects of ' 10 ' or ' 11 ' are invalid for device ID 0 . DW5, bits 15-16 not applicable for device IDs other than 0-16. \\
\hline \multirow[t]{5}{*}{5} & \multirow[t]{5}{*}{17} & I/O mode select for ID selects of 1 through 16: \\
\hline & & \[
\begin{aligned}
& 0=\text { Quad-Channel I/O } \\
& 1=\text { Single-Channel I/O }
\end{aligned}
\] \\
\hline & & I/O mode select for ID select of 0 (Nosewheel): \\
\hline & & \[
\begin{aligned}
& 0=\text { Dual-Channel I/O } \\
& 1=\text { Single-Channel I/O }
\end{aligned}
\] \\
\hline & & DW 5, bit 17 not applicable for device IDs other than 0-16. \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{18} & Stimulus ID (SID) \\
\hline & & \[
\begin{aligned}
& 1=\text { Sine stimulus } \\
& 0=\text { Step stimulus }
\end{aligned}
\] \\
\hline 5 & 19-24 & Actuator or RGA selected for stimulus input - Decimal 0 to 36 (refer to Table 7.1-9 for designated actuator or RGA IDs) (LSB is bit 24). \\
\hline 6 & 9-18 & Function maximum value in hardware units - Plus 511 to 512 PCM counts representing an analog value (negative values in 2 s complement); LSB is bit 18 . \\
\hline 6 & 19-24 & Spares - Set to zero \\
\hline 7 & 9-18 & Function minimum value in hardware units - Plus 511 to 512 PCM counts representing an analog value (negative values in 2 s complement); LSB is bit 18 . \\
\hline 7 & 19-24 & Spares - Set to zero \\
\hline 8 & 9-24 & Test period in cycles; LSB is bit 24 and equals 1.0 cycle. \\
\hline 9 & 9-24 & Sine signal frequency in Hz ; LSB is bit 24 and equals 0.1 Hz . \\
\hline 10 & 9-24 & Step function initial level duration; LSB is bit 24 and equals 10 msec for the 100 Hz rate and 40 msec for the 25 Hz rate. \\
\hline 11 & 9-24 & Step function high/low level duration; LSB is bit 24 and equals 10 msec for the 100 Hz rate and equals 40 msec for the 25 Hz rate. \\
\hline
\end{tabular}
\begin{tabular}{lll} 
RELEASE: & Ol20 & Date: \(12 / 20 / 90\) \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}
-3 Sine stimulus; The sine stimulus transmitted to the selected actuator or RGA and has the following characteristics:
-3.1 Stimulus characteristics; The stimulus begins at the initial value, continues in a positive direction toward the maximum amplitude value, then continues until completion of the full number of cycles specified. The type of stimulus is a symmetrical and cyclic waveshape representing a sine wave.
-3.2 Number-of-cycles range; 1.0 to 100 cycles
-3.3 Frequency range; 0.1 to 25 Hz
-4 Step stimulus; The step stimulus transmitted to the selected actuator or RGA is an analog signal with the following characteristics:
-4.1 Stimulus characteristics; The stimulus begins on the initial level and sends the operator-defined levels for the operator-defined test period until the number of full cycles specified are completed. The stimulus value ends on the last initial level of the specified stimulus for a complete test run. The stimulus type is operator-defined and cyclic.
-4.2 Number-of-cycles range; 1.0 to 100 cycles
-4.3 Initial level duration range; 0 to \(60,000 \mathrm{msec}\).
-4.4 High and low level duration range; 10 to \(60,000 \mathrm{msec}\) for the 100 Hz rate and 40 to 60,000 msec for the 25 Hz rate.
-4.5 If the initial level duration equals zero, the transition from high level value to low level value, or vice-versa, shall be instantaneous (i.e., no output at the initial value).
-4.6 If the high/low level duration equals zero, there shall be no output and an error condition is generated.

\subsection*{7.1.6.3.2 Limits}

The following limits are checked prior to or during the FRT execution:
-1 Position Limit Checks (Table 7.1-10) except RGAs
-2 SSME1 and OMS Pod
-3 Collision avoidance on the collision potential actuators (SSME's, OMS, and Body Flap).
-4 Rudder/Speedbrake
All limit checks listed above shall be bypassed when single-channel I/O is requested of a quad device (Speedbrake, Rudder, Elevon, SSME, and SRB Actuators).

\subsection*{7.1.6.3.3 Error Processing}

An appropriate CALL program error response code may be generated relative to the error conditions defined below. For all such error conditions, the GPC shall inhibit the test. The error code shall be made available for the TCS call program error response and to the TCS control display.

\section*{CONDITIONS}

ERROR CODE
A CALL to FRT with other GPCs in the RUN mode 302
HDA function not active for reading position feedback 302
A CALL operator with a high/low-level duration equal to zero 300
A CALL operator which generates an out-of-limits position or rate 300
A test which invokes a collision-potential situation 306
An initial value which is not within the Call-operator-specified
maximum and minimum values
Call to FRT the first time prior to running AI Mode 1
Actuator position feedback values invalid due to I/O errors 304
Speedbrake/rudder travel range is not within limits 305
A CALL operator with an invalid actuator/RGA ID 300
SSME1/OMS pod clearance not within limits 306
\(\begin{array}{ll}\text { Invalid nosewheel channel selected } & 300\end{array}\)

\subsection*{7.1.6.3.4 Constraints/Assumptions}
-1 The initial value for all RGA processing is zero.
-2 The HDA function is required to be active.
-3 At the completion of the test period, the function continues to output a stimulus (start values) for two seconds and then close. (37531)

\subsection*{7.1.6.4 Dedicated Display Checkout (DDCO)}

DDCO provides the capability of loading the low-value test data for each DDU-drive indicator and the HUD unique data, according to the instructions and data received through the TCS CALL operator.

\subsection*{7.1.6.4.1 Control Interfaces}

The Test is called via the TCS CALL Operator using the DDCO CALL function and is available only in OPS G9. The CALL Operator is predefined, with a fixed length format. The Software will overlay the dedicated display low test values and the HUD unique data with the CALL Operator data. The DDCO CALL Operation Format is shown in Table 7.1-11.

\subsection*{7.1.6.4.2 Limits}

None

\subsection*{7.1.6.4.3 Error Processing}

None

\subsection*{7.1.6.4.4 Constraints/Assumptions}

DDCO can be run concurrently with AI, RFG, FRT, MAT, BFD, and BFM.

TABLE 7.1-11. DEDICATED DISPLAY CHECKOUT CALL OPERATOR FORMAT \(\begin{array}{lllllllllllllllll}\text { BITS } & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24\end{array}\) DW 4 DW 5 DW 6 DW 7 DW 8 DW 9 DW 10

DW 11

DW 12

DW 13

DW 14

DW 15

DW 16

DW 17

DW 18

DW 19

DW 20

DW 21

DW 22


TABLE 7.1-11. DEDICATED DISPLAY CHECKOUT CALL OPERATOR FORMAT (CONTINUED)
BITS \(\quad 9 \quad 10\)

DW 23

DW 24

DW 25

DW 26

DW 27

DW 28

DW 29
DW 30

DW 31

DW 32

DW 33

DW 34
DW 35

DW 36
DW 37

DW 38

DW 39

DW 40
DW 41
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{PRIMARY BEARING} & SPARES \\
\hline \multicolumn{3}{|c|}{SECONDARY BEARING} & SPARES \\
\hline \multicolumn{4}{|c|}{PRIMARY DISTANCE} \\
\hline \multicolumn{4}{|c|}{SECONDARY DISTANCE} \\
\hline \multicolumn{2}{|l|}{COURSE DEVIATION CMD} & \multicolumn{2}{|r|}{SPARES} \\
\hline \multicolumn{2}{|l|}{GLIDESLOPE DEVIATION} & \multicolumn{2}{|r|}{SPARES} \\
\hline AAVI CONTROL
WORD & \multicolumn{3}{|c|}{SPARES} \\
\hline \multicolumn{4}{|c|}{AVVI TEST WORD} \\
\hline \multicolumn{3}{|c|}{INDICATED ALTITUDE} & SPARES \\
\hline \multicolumn{3}{|c|}{VERTICAL VELOCITY} & SPARES \\
\hline \multicolumn{3}{|c|}{RADAR ALTITUDE} & SPARES \\
\hline \multicolumn{2}{|l|}{VERTICAL ACCELERATION} & \multicolumn{2}{|c|}{SPARES} \\
\hline AMI CONTROL
WORD & \multicolumn{3}{|c|}{SPARES} \\
\hline \multicolumn{4}{|c|}{AMI TEST WORD} \\
\hline \multicolumn{3}{|c|}{MACH/VELOCITY} & SPARES \\
\hline \multicolumn{3}{|c|}{ALPHA} & SPARES \\
\hline \multicolumn{3}{|c|}{EQUIVALENT AIR SPEED} & SPARES \\
\hline \multicolumn{3}{|c|}{VEHICLE ACCELERATION} & SPARES \\
\hline \multicolumn{4}{|c|}{HUD DATA SCALING CONTROL WORD} \\
\hline
\end{tabular}

TABLE 7.1-11. DEDICATED DISPLAY CHECKOUT CALL OPERATOR FORMAT (CONTINUED)
\begin{tabular}{llllllllllllllllll} 
BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{tabular}

DW 42

DW 43

DW 44

DW 45

DW 46

DW 47

DW 48
DW 49

DW 50

DW 51

DW 52

DW 53

DW 54

DW 55
DW 56

DW 57
DW 58

DW 59

DW 60


TABLE 7.1-11. DEDICATED DISPLAY CHECKOUT CALL OPERATOR FORMAT (CONTINUED)
\begin{tabular}{lllllllllllllllll} 
BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{tabular}

DW 61
\begin{tabular}{|c|}
\hline FLIGHT PATH REFERENCE 1 \\
\hline X_ZERO \\
\hline HERROR/H_ERROR \\
\hline ENERGY_UPPER_LIMIT \\
\hline ENERGY_SHUTTLE \\
\hline ENERGY_LOWER_LIMIT \\
\hline ENERGY_NOMINAL \\
\hline AILERON POSITION \\
\hline AILERON LOAD BALANCE INCREMENT \\
\hline PITCH ADJUSTMENT \\
\hline VV FILTER FREQUENCY \\
\hline HUD MESSAGE 2 CONTROL WORD \\
\hline RUNWAY REMAINING TO STOP \\
\hline RUNWAY TO GO MINIMUM \\
\hline MAX DECELERATION CMD \\
\hline RUNWAY LENGTH \\
\hline SPARE (RESERVED FOR AUTOLAND MON) \\
\hline SPARE (RESERVED FOR AUTOLAND MON) \\
\hline
\end{tabular}

TABLE 7.1-11. DEDICATED DISPLAY CHECKOUT CALL OPERATOR FORMAT (CONTINUED)


Note: For a complete description of each data word, see SS-P-002-550 Table 4.13-7).

\subsection*{7.1.6.5 Multiple Actuator Test (MAT)}

MAT simultaneously outputs a trapezoidal waveform stimulus to specified groups of aerosurface actuators or SSME and SRB thrust vector control actuators. Only one group can be selected per test. The actuators available in each group to receive the stimulus and the group selection ID are defined in the CALL Operator format description. The capability also exists to output the trapezoidal stimulus on a single channel for the selected actuator group.

\subsection*{7.1.6.5.1 Control Interfaces}

The test is called via the TCS CALL Operator using the MAT CALL function and is available only in OPS G9. The group of actuators to be tested and the trapezoidal characteristics are selected by user inputs made available via the MAT Call Operator.
-1 Upon initialization, the AI function is required to run in Mode 1 prior to the running of the MAT function the first time.
-2 The MAT function is inhibited when the specified number of trapezoidal transitions are complete, when the TCS Sequencer that called the function is cancelled, by a TCS CANCEL Operator to MAT, or by an OPS transition. If the function is to be inhibited prior to completion, it will cease after the output of the current computed stimulus value.
-3 The Multiple Actuator Test Call Operator Format is as follows:
\begin{tabular}{llllllllllllllllll} 
BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{tabular}

DW 4
DW 5
DW 6
DW 7
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{MAT PROGRAM ID (5)} \\
\hline P & \multicolumn{4}{|c|}{SLOPE VALUE} & LED & SPARE \\
\hline & \multicolumn{3}{|r|}{DEFLECTION} & SPARE & TRA & SITIONS \\
\hline & AGS & I/O & CH NO & \multicolumn{3}{|l|}{SPARE} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline RELEASE: BOOK: & \begin{tabular}{l}
OI20 \\
PASS User's Guide
\end{tabular} & \[
\begin{array}{ll}
\text { Date: } & 12 / 20 / 90 \\
\text { Rev: } & 0
\end{array}
\] \\
\hline DW & BITS & DESCRIPTION \\
\hline 4 & 9-24 & MAT PROGRAM ID - DECIMAL 5 (LSB, BIT 24) \\
\hline 5 & 9 & SLOPE POLARITY (P) \(0=\) POSITIVE SLOPE 1 = NEGATIVE SLOPE \\
\hline 5 & 10-20 & SLOPE VALUE - LSB EQUALS \(1 / 32\) PCM COUNT \\
\hline \multirow[t]{2}{*}{5} & 21 & \begin{tabular}{l}
LEFT ELVN DEFLECTION (LED) \\
(VALID WITH ACTUATOR GROUP 001 ONLY)
\end{tabular} \\
\hline & & \begin{tabular}{l}
\(0=\) SAME POLARITY AS RIGHT ELVN \\
\(1=\) OPPOSITE POLARITY AS RIGHT ELVN
\end{tabular} \\
\hline 5 & 22-24 & SPARE \\
\hline 6 & 9-18 & DEFLECTION VALUE IN HARDWARE UNITS - PLUS 1 TO 1023 PCM COUNTS REPRESENTING AN ANALOG STIMULUS VALUE \\
\hline 6 & 19-20 & SPARE - SET TO ZERO \\
\hline 6 & 21-24 & TRANSITIONS - LSB IS BIT 24 AND EQUALS ONE TRANSITION OF THE TRAPEZOIDAL WAVE STIMULUS. RANGE IS 1 TO 15 (DECIMAL). \\
\hline \multirow[t]{2}{*}{7} & 9-12 & ACTUATOR GROUP SELECT (AGS) \\
\hline & & \[
\begin{aligned}
0000= & \text { LIE, RIE, LOE, ROE AND RUDDER ACTUATORS } \\
0001= & \text { LIE, RIE, LOE AND ROE ACTUATORS } \\
0010= & \text { LIE AND LOE ACTUATORS } \\
0011= & \text { RIE AND ROE ACTUATORS } \\
0100= & \text { SSME } 1,2 \text {, AND 3 PITCH AND YAW ACTUATORS } \\
0101= & \text { SSME 1, 2, AND 3 PITCH ACTUATORS } \\
0110= & \text { SSME 1, 2, AND 3 YAW ACTUATORS } \\
0111= & \text { SRB RIGHT ROCK AND TILT ACTUATORS } \\
1000= & \text { SRB LEFT ROCK AND TILT ACTUATORS } \\
1001= & \text { SRB LEFT ROCK, LEFT TILT, RIGHT ROCK, } \\
& \text { AND RIGHT TILT ACTUATORS }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{7} & 13 & I/O MODE SELECT \\
\hline & & \[
\begin{aligned}
& 0=\text { QUAD-CHANNEL } \\
& 1=\text { SINGLE CHANNEL I/O }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{7} & 14-15 & \begin{tabular}{l}
CHANNEL NUMBER TO DRIVE WITH MAT FUNCTION STIMULUS FOR SINGLE CHANNEL I/O \\
MODE SELECT (ref. DW7, BIT 13)
\end{tabular} \\
\hline & & \[
\begin{aligned}
& 00=\text { CHANNEL A } \\
& 01=\text { CHANNEL B } \\
& 10=\text { CHANNEL C } \\
& 11=\text { CHANNEL D }
\end{aligned}
\] \\
\hline 7 & 16-24 & SPARE \\
\hline
\end{tabular}

\subsection*{7.1.6.5.2 Limits}

The limits are checked prior to or during MAT EXECUTION:
-1 OMS clearance
-2 Body Flap clearance
-3 Rudder/Speedbrake
-4 The following Algorithm is used to insure the MAX DEFLECTION does not exceed the values shown in 7.1.6.5-3:
(Last CMD Val) + (Slope)(INTEGER (DEFLECTING/SLOPE))

\subsection*{7.1.6.5.3 Error Processing}

An appropriate CALL program error response code may be generated relative to the error conditions defined below. For all such error conditions, the GPC shall reject the Call operator and/or inhibit the test. The error code is made available for the TCS CALL program error response and to the TCS control display.

\section*{CONDITIONS}

\section*{ERROR CODE}
\[
\text { A call operator with the slope value deflection value, or transition } 500
\]
value equal to zero
A call operator with a deflection value greater than the MAT deflection limit

A call operator with an undefined actuator group selection
Call to MAT prior to the execution of AI call operator \(\mathrm{ID}=1\) ..... 502 since OPS initialization
HDA function not active for reading position feedbacks ..... 502
OMS and body flap feedback values invalid due to two consecutive ..... 504
input errors
Speedbrake/rudder travel range is not within limits ..... 505
OMS, body flap, or OMS pod/SSME1 not within clearance limits ..... 506

\subsection*{7.1.6.5.4 Constraints/Assumptions}
-1 The Multiple Actuator Test (MAT), Actuator Initialization (AI), RAMP Function Generator (RAMP), Frequency Response Test (FRT), and Body Flap Drive (BFD) are mutually exclusive.
-2 The HDA function is required to be active.

\subsection*{7.1.6.6 Body Flap Drive (BFD)}

BFD provides the capability to position the body flap to a desired position. The capability also exists to output a stimulus to a single channel. (25187)

\subsection*{7.1.6.6.1 Control Interfaces}

The test is called via the TCS Call Operator using the BFD Call Function and is available only in OPS G9. The BF desired position and Channel Selection are specified by the User via BFD function Call Operator.
\begin{tabular}{ll|ccc} 
RELEASE: & OI20 & Date: & 12/20/90 \\
BOOK: & PASS User's Guide & Rev: & 0
\end{tabular}
-1 The BFD function is deactivated when the desired position is reached, a TCS cancel, the Sequencer that called the BFD is cancelled via a TCS CANCEL Operator, or by an OPS transition.
-2 The BFD CALL is formatted as follows:


\subsection*{7.1.6.6.2 Limits}

The following limits are checked prior to or during the BFD execution:
-1 Position limit checks are +400 PCM counts \(\left(23.1^{\circ}\right)\) and -400 PCM counts \(\left(-12.2^{\circ}\right)\).
-2 Collision avoidance with SSME 2 and 3 pitch.
SSME \(2<198 \quad\left(2.18^{\circ}\right)\)
SSME \(3>286\) ( \(1.51^{\circ}\) )

\subsection*{7.1.6.6.3 Error Processing}

An appropriate CALL program error response code may be generated relative to the conditions defined below. For all such error conditions, the GPC shall reject the CALL Operator and/or inhibit the test. The error code shall be made available for the TCS CALL program error response and to the TCS control display.
\begin{tabular}{|c|c|c|c|}
\hline RELEASE: BOOK: & \begin{tabular}{l}
0120 \\
PASS User's Guide
\end{tabular} & \begin{tabular}{l}
Date: \\
Rev:
\end{tabular} & \[
\begin{aligned}
& 12 / 20 \\
& 0
\end{aligned}
\] \\
\hline & CONDITIONS & ERROR & CODE \\
\hline & A CALL operator with a position value that exceeds the BF position limit. & 600 & \\
\hline & HDA not active for reading position feedbacks. & 602 & \\
\hline & No valid BF or SSME 2 pitch or SSME 3 pitch position data available. & 604 & \\
\hline & A potential collision situation. & 606 & \\
\hline & No BF movement response. & 607 & \\
\hline
\end{tabular}

\subsection*{7.1.6.6.4 Constraints/Assumptions}
-1 The HDA function is required to be active.
-2 The BFD, RFG, FRT, MAT, and AI are all mutually exclusive.

\subsection*{7.1.6.7 Body Flap Monitor (BFM)}

The BFM provides the capability to cyclically check the actual position of the BF and prevent it from exceeding predefined position limits using BF inhibit commands.

\subsection*{7.1.6.7.1 Control Interfaces}

The monitor is called via the TCS Call Operator using the BFM Call function and is available only in OPS G9. The BFM function is initiated by user inputs made available via the BFM Call Operator.
-1 The BFM function can only be terminated by a TCS CANCEL Operator, when the sequence that called the BFM is cancelled via a TCS CANCEL Operator, or by an OPS transition.
-2 The BFM Call is formatted as follows:
\begin{tabular}{lllllllllllllllll} 
BITS & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{tabular}

DW 4
DW 5

\begin{tabular}{clll} 
DW & BITS & & DESCRIPTION \\
4 & \(9-24\) & & BF monitor program ID decimal 7 (LSB, bit 24) \\
5 & \(9-23\) & & Spare - set to zero \\
5 & 24 & & \begin{tabular}{l} 
BFM Enable (E) \\
\(0=\) Not assigned, format error response \\
\end{tabular} \\
& & \(1=\) Enable of BFM
\end{tabular}

\subsection*{7.1.6.7.2 Limits}

The BFM function shall cyclically check the actual position of the BF and determine if the BF is within proper limits for the set commands. If the BF position is greater than +433 PCM counts \(\left(24.5^{\circ}\right)\) or less than -433 PCM counts ( \(-13.7^{\circ}\) ), the BF enable commands and the UP/DN commands shall be reset. If the BF position is within the enable limits, the BF position shall then be checked against the UP limit and the DN limit. If the BF position is less than -411 PCM counts ( \(-12.5^{\circ}\) ), the UP command shall be reset. Also, if the BF position is greater than +411 PCM counts \(\left(23.6^{\circ}\right)\), the DN command shall be
reset. An out of limit condition shall generate a CALL program error response, but the BFM function shall remain active. The BF set commands shall not be altered by the BFM function for BF positions within the above range limits.

\subsection*{7.1.6.7.3 Error Processing}

An appropriate call program error response code may be generated relative to the conditions defined below. For error code 700, the GPC shall reject the CALL operator and not initiate the test. For the other error codes, the GPC shall generate the error response only once for the same condition. The error code shall be made available for the TCS CALL program error response and to the TCS control display. (50953)
CONDITIONS
ERROR CODE
BFM CALL format error ..... 700
HDA not active for reading position feedbacks ..... 702
No valid BF position feedback data to the BFM function ..... 704
BF position outside of limits. ..... 705

\subsection*{7.1.6.7.4 Constraints/Assumptions}
- 1 The HDA function is required to be active.
-2 The BFM can be run concurrently with AI, RFG, FRT, MAT, and BFD.

\subsection*{7.1.7 Launch Sequence Commands}

The ground, via the LDB, may send commands to the on-board RSLS to control the countdown for launch. Several commands such as RESUME COUNT, GO-FOR-AUTO-SEQUENCE, GO-FOR-SSME-START, etc., are required inputs in OPS G1. Some commands, such as SRB calibration update, are unique to OPS G9.
- 1 In case of a count recycle, some indicator/commands are reset during RSLS resetting and must be entered again. The responsibility for all such actions lies with the user. (37537) \((38765 / 39740)\) (50278)

\subsection*{7.1.8 DEU Read Capability}

The ground/GPC interface provides the capability to perform the reading of up to 128 words of DEU memory. The operation can be performed in OPS G9 through a TCS operator. It is performed in OPS P9 via the MM utility process. In either case, the user supplies the DEU number, the DEU starting address, and the length of continuous data to be dumped.
-1 The data read is sent to the ground via the LDB.
\begin{tabular}{ll|l} 
RELEASE: & Ol20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: & 0
\end{tabular}

\subsection*{7.2 UPLINK}

The uplink system provides the capability to transmit data from the ground via RF signals to the Orbiter. Communication is via two Network Signal Processors (NSPs) connected to flight critical MDMs and thus to the GPC.

\subsection*{7.2.1 Control Interfaces}

The uplink system is configured through a combination of cockpit switches and MCDS entries. Power may be applied to only one NSP at a time and is controlled by either ground command or a switch on panel A1L. Selection of the control method is via the S-Band PM Control switch on panel C3. This switch may be in the CMD position (nominal) which enables the NSPs for ground control of power or it may be in the PANEL position which limits control of NSP power to the switch on panel A1L. The AlL switch may be in NSP1, OFF, or NSP2 position. Command acceptance/processing is controlled via a switch on panel C3A5 which may take positions: NSP-B - block all commands (data inhibit); GPC-B acceptance/rejection is under control of the GPC (see next paragraph); ENA - all commands will be accepted by the NSP (assuming they are valid). (37528/56516/56677)
-1 The DPS Utility SPEC function (see Section 3.5.001) allows control of NSP processing via ITEM entries:

35 (AUTO) - Uplink is enabled or inhibited based on the Site-In-View flag from the SM2 GPC.
36 (ENA) - Uplink is always enabled (default)
37 (INH) - Uplink is always inhibited

\subsection*{7.2.2 Software Interfaces}

At PASS initialization, the GPC controlling FF1 (and thus, NSP1) will attempt to read data from NSP1. If valid data is received, it will be processed. If NSP1 is not powered on, and/or two I/O Errors occur, the attempted read will be bypassed; i.e., the GPC will quit attempting to communicate with NSP1. If NSP2 is powered on, the GPC controlling it (via FF3) will attempt to read it. If two I/O errors occur it also will be bypassed. An I/O RESET must be performed to attempt to establish communication again with the NSPs (NSP1 first, then NSP2).
-1 A GPC in Operational Sequence SM2 will compute a Site-In-View flag which may be used to accept or reject commands. The NSP (if valid) will be read regardless of the state of the flag; however, if ITEM 35 of the DPS Utility (SPEC) has been selected, the data will be processed only if the flag is set.

\subsection*{7.2.2.1 NSP Data}

The PASS attempts to read 30 words of data and 2 discrete words every 160 ms , or at a 6.25 Hz rate from the current NSP. The data is formatted:

Word \(1 \quad\) NSP Status Word (See 7.2.2.2)
Word 2-31 NSP Data: Up to 10 Command Words of 48 bits each. Fill data (Idle Pattern) of O's is stored by NSP in non-command words.
Word 32 NSP Validity Word (See 7.2.2.2)

\subsection*{7.2.2.2 Validity Checking}

The PASS, upon a successful (no I/O Errors) read of NSP data, does validity checking on both hardware (NSP supplied) validity, and command validity. The results of the checking are downlisted in two 16 -bit words; GPC-VAL provides the status of the software checking while NSP-VAL provides the status of the hardware (NSP) checking. (25300)
-1 Bits in GPC-VAL are defined as follows:
\(0 \quad 0 \quad\) Command 1 in buffer is valid.
1 Command 1 in buffer is not valid. Reason for error can be improper:
Vehicle Code
GPC/Major Function ID
OP Code versus Memory Configuration
First Word/Last word specification

1-9
10

11

12

13

14

15
-2 Bits in NSP-VAL are defined as follows:
0-9
10
\(0 \quad 0\)
\(0 \quad\) First and Last Word (FW/LW) of command(s) accepted.
1 Error in First or Last Word of command(s):
a. FW/LW indicator set in improper sequence.
b. FW sent to a complete Two-Stage load with same OP Code as commands in buffer.
c. FW is in error (i.e., not properly formatted).

Hardware defined - not referenced by PASS.

0 Single-Stage MDM discrete output command accepted.
1 MDM address specified in single-stage MDM discrete output command is invalid (undefined).

0 Two-Stage buffer execute accepted.
1 Two-Stage buffer execute rejected due to no LW in buffer.
0 Always zero. Not set.
\(0 \quad\) Valid vehicle ID
1 Invalid vehicle ID specified.
\(0 \quad\) PASS processing enabled by switch on panel C3 (See 7.2.1).

1 Switch is in GPC Block position; i.e., processing of commands is inhibited.
RELEASE: OI20 Date: 12/20/90

BOOK: PASS User's Guide Rev: 0

\subsection*{7.2.3 Uplink Commands}

Valid commands via uplink fall into four categories:
-1 Single Stage - Command contains destination information and does not require preview. It is processed upon receipt.
-2 Two-Stage - Command(s) require an execute command to cause processing to occur. The first word of a Two-Stage buffer must be a 48 bit command word consisting of 16 bits of header information and 32 bits of command data. Up to 32 additional 48 bit words may be included; however, the first 16 bits of each word must be identical. The buffer is downlisted to allow inspection before attempted execution. (37534)
-3 Stored-Program Command (SPC) - A special case of a Two-Stage command which has an execute time associated with it. There are two types of SPC commands: Orbiter SPC commands and Payload SPC commands. Up to 10 Orbiter SPC commands can be queued at one time. The Payload SPC buffer will accommodate up to 25 SPC requests although only ten may be uplinked at a time. The buffer-execute command causes the SPC(s) to be Armed to be executed within \(\pm 2\) seconds of the specified execution time. If the specified time is in the past, the SPC will be executed immediately.
-4 Payload Throughput Command (TPC). The Two-Stage buffer is used to buffer a TPC until the TPC is complete (Last Command Word received). At that point it is immediately sent to the appropriate application for processing. If the requested payload link is busy, the command will not be buffered.

\subsection*{7.2.3.1 Single-Stage Commands}

Execution of Single-Stage command(s) occurs upon receipt from the NSP (up to 10 per NSP read).
Single-Stage commands may be interleaved with Two-Stage commands. The header information (first 16 bits of each 48 bit command word) must conform to the definition in Table 7.2-1.
-1 All Single-Stage commands are valid in all memory configurations except SPC Buffer clear (7.2.3.1.4) which is valid only in OPS SM2/4.

TABLE 7.2-1. UPLINK COMMAND HEADER BITS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline \multicolumn{3}{|l|}{VEH ADD} & \multicolumn{4}{|l|}{MAJOR FCN/GPC} & \multicolumn{7}{|l|}{OP CODE} & F & L \\
\hline
\end{tabular}

\section*{BITS DESCRIPTION}

1-3 Vehicle address - Three-bit code that identifies the vehicle that shall respond to a given CW.

000 - Illegal
010 - Vehicle 102
011 - Vehicle 103
100 - Vehicle 104
101 - Vehicle 105
110 - Vehicle 106
111 - Vehicle 107
4-7 Major FNC/GPC - Identifies the GPC or MF to which the command is addressed. (43987) The codes are defined as follows:
```

0000-Illegal
0001-GPC 1
0010-GPC 2
0011 - GPC 3
0100-GPC 4
0101 - GPC 5
0110 - All active GPCs
0111 - GN\&C
1000 - SM
1001 - PL - Payloads
1010 - BFCS - used by the Backup Flight Control System
1011 - Illegal codes
thru
1111 -

```

Codes 0001 through 0101 are illegal if GPC is a member of a Redundant Set (RS). Uplink software shall test GPC number codes versus RS status.

Codes 0001 through 0110 are illegal for Two-Stage OP codes greater than 5 .
8-14 OP Code - This seven-bit field shall contain the OP code listed in Table 7.2-2. (45215) The first bit of the OP code is one for all single-stage or interactive commands and zero for all two-stage commands.

15-16
First CW in the load.
Last CW in the load.
Single CW loads.
Intermediate CWs in loads greater than two command words.

\subsection*{7.2.3.1.1 MDM Command}

The format for the single-stage MDM command is as follows:

\begin{tabular}{lllllllllllllllll} 
BITS & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48
\end{tabular}

\section*{ANALOG/DISCRETE MASK}

\section*{BITS}

1-16
17-20

21-25

26-32

33-48

MDM number - Seven-bit binary code (LSB, bit 32) designating the MDM to be addressed:
\begin{tabular}{lll} 
MDM Number & & \\
\cline { 1 - 1 } 0000001 & & MDM \\
0000010 & FF1 \\
0000011 & FF2 \\
0000100 & FF3 \\
0000101 & FF4 \\
0000110 & FA1 \\
000011 & FA2 \\
0001000 & FA3 \\
0001001 & FA4 \\
0001010 & PF1 \\
0001011 & PF2 \\
0001100 & LF1 \\
\(0001101^{*}\) & LA1 \\
\(000110^{*}\) & FLX1 \\
\(000111^{*}\) & FLX2 \\
\(0010000^{*}\) & FLX3 \\
\(0010001^{*}\) & FLX4 & FLX5
\end{tabular}

Analog/Discrete mask - For Discretes, identifies discretes that are reset or set as indicated by Bit 21. For Analogs, identifies the left justified 10-Bit signed Two's complement PCM value.
*Indicates mission dependent payload flex MDM (or equivalent BTU.)

\subsection*{7.2.3.1.2 Word-By-Word Correction}

This Single-Stage command allows correction of the Two-Stage buffer on a word-by-word basis:
\begin{tabular}{lllllllllllllllll} 
BITS & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32
\end{tabular}
\begin{tabular}{lllllllllllllllll} 
BITS & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48
\end{tabular}

BITS DESCRIPTION
1-16 Refer to Table 7.2-1 for data field definition. OP Code: 1000100
17-25 Spares - Set to all zeros.
26-32 Word number - Seven-bit code (LSB, bit 32) indicating the 16 -bit word in the Two-Stage buffer to be updated.

0000000 First word (0)
1000010 Last word (66)
33-48 Data

\subsection*{7.2.3.1.3 Buffer Execute (Two-Stage)}

This command is a single 48 bit command word which is used to execute the contents of the Two-Stage buffer (is not part of buffer). Uplink software does not process the Two-Stage buffer upon receipt of the buffer-execute command unless the last command word indicator has been received for the load residing in the Two-Stage buffer. An attempt to execute the Two-Stage buffer without the last command word indicator shall be rejected and an error indicator shall be set.

\section*{BITS DESCRIPTION}

1-16
17-32
33-48

Refer to Table 7.2-1 for data field definitions. OP Code: 100001111
Set pattern: 1111111011110000
All zeros

\subsection*{7.2.3.1.4 Buffer Clear (Two-stage or SPC)}

This command is a single 48 bit command word which is used to clear either the Two-Stage or the Stored Program buffers (The buffers will be set to all zeros.):
\begin{tabular}{ll|l} 
RELEASE: & OI20 & Date: \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}

BITS
1-16 Refer to Table 7.2-1 for data field definitions.
2-stage OP Code: 1000001
Orbiter SPC OP Code: 1000010
Payload SPC OP Code: 1001001

\subsection*{7.2.3.1.5 Uplink Activity Indicator}

This single 48 bit command may be used to override the PASS control of the Uplink activity indicator on the CRT.

\section*{BITS}

1-16

17-48

\section*{DESCRIPTION}

\subsection*{7.2.3.2 Two-Stage Commands}

Two-stage commands are uplinked to the two-stage buffer and, once in the buffer, are downlisted to allow inspection by the ground for correctness before execution. The first command word of the buffer must have ' 10 ' as bits \(15-16\), and the last command word must have ' 01 ' as bits \(15-16\) (a single command word load must have ' 11 ' as bits \(15-16\) ). Intermediate command words must have bits \(15-16\) set to ' 00 '.
-1 Data formats for specific Two-Stage commands are defined in the requirements document SS-P-0002-140 (Downlist/Uplink Requirements). Commands/OP codes available are given in Table 7.2-2.

\subsection*{7.2.3.3 Time Executed Commands}

The Time Executed Serial I/O command (OP Code 0101110 ) is valid only in OPS SM2/4. A 32 bit (fixed point) GMT time of execution is specified. Refer to paragraph 6.3.32 in SS-P-0002-140 for detailed definition of words/bits.

\subsection*{7.2.3.4 Payload Throughput}

The payload throughput command (OP code 0111101 ) is valid only in OPS SM2/4. It should not be confused with the Payload Data Load command (OP Code 0011010). Refer to paragraph 6.3.40 of SS-P-0002-140 for a detailed description of Payload Throughput.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 7.2-2. UPLINK OP CODES/MEMORY CONFIGURATION} \\
\hline \multirow[b]{2}{*}{COMMANDS} & \multirow[b]{2}{*}{\begin{tabular}{l}
OPS* \\
CODES
\end{tabular}} & \multicolumn{9}{|c|}{MEMORY CONFIGURATIONS} \\
\hline & & \[
\begin{gathered}
0 \\
\text { OPSO }
\end{gathered}
\] & \[
\begin{array}{c|}
\hline 1 \\
\mathrm{G} 1 / 6 \\
\hline
\end{array}
\] & \[
\begin{gathered}
2 \\
\mathrm{G} 2
\end{gathered}
\] & \[
\begin{gathered}
\hline 3 \\
\text { G3 }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 4 \\
& \mathrm{~S} 2
\end{aligned}
\] & \[
\begin{aligned}
& \hline 5 \\
& \mathrm{~S} 4
\end{aligned}
\] & \[
\begin{aligned}
& \hline 6 \\
& \text { P9 }
\end{aligned}
\] & \[
\begin{gathered}
\hline 8 \\
\text { P8 }
\end{gathered}
\] & \[
\begin{gathered}
9 \\
\text { G9 }
\end{gathered}
\] \\
\hline G-MEM Contiguous & \[
\begin{gathered}
0000001 \\
(3)
\end{gathered}
\] & X & & X & & X & X & X & X & X \\
\hline G-MEM Scatter & \[
\underset{(3.1)}{0000010}
\] & X & & X & & X & X & X & X & X \\
\hline MDM Multiple Command & \[
0000011
\]
(1.1) & X & X & X & X & X & X & X & X & X \\
\hline \begin{tabular}{l}
Orbiter MDM \\
Multiple SPC \\
Commands
\end{tabular} & \[
\begin{gathered}
0000100 \\
(1.2)
\end{gathered}
\] & & & & & X & X & & & \\
\hline Equivalent DEU & \[
\begin{aligned}
& 0000101 \\
& (5)
\end{aligned}
\] & X & X & X & X & X & X & X & X & X \\
\hline Mass Memory Unit Patch & \[
\begin{gathered}
0000110 \\
(4)
\end{gathered}
\] & & & & & X & X & X & & \\
\hline KU-Band/S Band Antenna Control Uplink Load & \[
\begin{gathered}
0000111 \\
(9)
\end{gathered}
\] & & & & & X & X & & & \\
\hline IMU REFSMMAT Load & \[
\begin{gathered}
0001000 \\
(10)
\end{gathered}
\] & & & X & \[
\begin{aligned}
& \text { MM } \\
& 301 \\
& \text { Only }
\end{aligned}
\] & & & & & \\
\hline Orbiter State Vector Load & \[
\begin{gathered}
0001001 \\
(11)
\end{gathered}
\] & & X & X & X & & & & X & \\
\hline \begin{tabular}{l}
Rendezvous Vehicle \\
State Vector Load
\end{tabular} & \[
\begin{gathered}
0001010 \\
(12)
\end{gathered}
\] & & & X & & & & & & \\
\hline Guidance Polynomial Load-PPOLY & \[
\begin{gathered}
0001011 \\
(13)
\end{gathered}
\] & & & & & & & & & X \\
\hline Guidance Polynomial Load-PSI & \[
\begin{gathered}
0001100 \\
(13)
\end{gathered}
\] & & & & & & & & & X \\
\hline Guidance Polynomial Load-THET 1,I & \[
\begin{gathered}
0001101 \\
(13)
\end{gathered}
\] & & & & & & & & & X \\
\hline Guidance Polynomial Load-THETA Bias & \[
\begin{gathered}
0001110 \\
(13)
\end{gathered}
\] & & & & & & & & & X \\
\hline Launch Targeting Load & \[
\underset{(14)}{0001111}
\] & & X & & & & & & & X \\
\hline On-Orbit Guidance Target PEG 7 Load & \[
\underset{(15)}{0010000}
\] & & & X & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TABLE 7.2-2. UPLINK OP CODES/MEMORY CONFIGURATION (Continued)} \\
\hline \multirow[b]{2}{*}{COMMANDS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { OPS* } \\
& \text { CODES }
\end{aligned}
\]} & \multicolumn{9}{|c|}{MEMORY CONFIGURATIONS} \\
\hline & & \[
\begin{gathered}
0 \\
\text { OPSO }
\end{gathered}
\] & \[
\begin{array}{c|}
\hline 1 \\
\text { G1/6 }
\end{array}
\] & \[
\begin{gathered}
2 \\
\text { G2 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 3 \\
\text { G3 }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 4 \\
& \mathrm{~S} 2
\end{aligned}
\] & \[
\begin{gathered}
\hline 5 \\
\mathrm{~S} 4
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\hline \text { P9 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 8 \\
\text { P8 }
\end{gathered}
\] & \[
\begin{gathered}
9 \\
\text { G9 }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Deorbit Guidance \\
Target PEG 7 Load
\end{tabular} & \[
\begin{gathered}
0010001 \\
(16)
\end{gathered}
\] & & & X & X & & & & & \\
\hline IMU Gyro Bias Load & \[
0010010
\]
(17) & & \[
\begin{aligned}
& \text { MM } \\
& 101 \\
& \text { Only }
\end{aligned}
\] & X & \[
\begin{aligned}
& \text { MM } \\
& 301 \\
& \text { Only }
\end{aligned}
\] & & & & & \\
\hline IMU Accelerometer Bias & \[
\begin{gathered}
0010011 \\
(18)
\end{gathered}
\] & & & X & \[
\begin{aligned}
& \text { MM } \\
& 301 \\
& \text { Only }
\end{aligned}
\] & & & & & \\
\hline Deorbit Guidance PEG 4 Load & \[
\begin{gathered}
0010100 \\
(22)
\end{gathered}
\] & & & X & X & & & & & \\
\hline Deorbit Landing Site Parameters Load & \[
\begin{gathered}
0010101 \\
(23)
\end{gathered}
\] & & & & X & & & & & \\
\hline TDRS State Vector Load & \[
\underset{(19)}{0010110}
\] & & & & & X & X & & & \\
\hline KU-Band Antenna Bias Matrix Load & \[
\underset{(20)}{0010111}
\] & & & & & X & X & & & \\
\hline ADI Inertial Quaternion Load & \[
\begin{gathered}
0011000 \\
(21)
\end{gathered}
\] & & & X & X & & & & & \\
\hline OMS Targeting Load & \[
\underset{(30)}{0011001}
\] & & X & & & & & & & X \\
\hline Payload Data Load & \[
\begin{gathered}
0011010 \\
(25)
\end{gathered}
\] & & & & & X & X & & & \\
\hline PSP Configuration Message Load & \[
0011011
\]
(26) & & & & & X & X & & & \\
\hline Vehicle Inertia Matrix & \begin{tabular}{l}
\[
0011100
\] \\
(27)
\end{tabular} & & X & & & & & & & \\
\hline ADI Reference Quaternion Load & \[
\underset{(21)}{001101}
\] & & & X & X & & & & & X \\
\hline ADI Bias LVLH Quaternion Load & \[
\begin{gathered}
0011110 \\
(21)
\end{gathered}
\] & & & X & X & & & & & X \\
\hline \begin{tabular}{l}
Deorbit TACAN \\
Parameters
\end{tabular} & \[
\begin{gathered}
0011111 \\
(28)
\end{gathered}
\] & & & & X & & & & & \\
\hline \begin{tabular}{l}
Delta NAV \\
Command
\end{tabular} & \[
\begin{gathered}
0100000 \\
(29)
\end{gathered}
\] & & X & & X & & & & & \\
\hline
\end{tabular}

TABLE 7.2-2. UPLINK OP CODES/MEMORY CONFIGURATION (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{COMMANDS} & \multirow[b]{2}{*}{OPS* CODES} & \multicolumn{9}{|c|}{MEMORY CONFIGURATIONS} \\
\hline & & \[
\begin{gathered}
0 \\
\text { OPS0 }
\end{gathered}
\] & \[
\begin{gathered}
1 \\
\mathrm{G} 1 / 6
\end{gathered}
\] & \[
\begin{gathered}
2 \\
\text { G2 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 3 \\
\text { G3 }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 4 \\
& \mathrm{~S} 2
\end{aligned}
\] & \[
\begin{gathered}
\hline 5 \\
\mathrm{~S} 4
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { P9 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 8 \\
\text { P8 }
\end{gathered}
\] & \(\stackrel{9}{\mathrm{G} 9}\) \\
\hline Table Maintenance Block Update & \begin{tabular}{l}
\[
0100001
\] \\
(34)
\end{tabular} & & & & & X & X & & & \\
\hline Global Table Update & \[
\begin{gathered}
0100010 \\
(44)
\end{gathered}
\] & & & X & & & & & & \\
\hline Command Channel Update & \[
\begin{gathered}
0100011 \\
(45)
\end{gathered}
\] & & & X & & & & & & \\
\hline Command Antenna Update & \[
\begin{gathered}
0100100 \\
(46)
\end{gathered}
\] & & & X & & & & & & \\
\hline Guidance Polynomial Load-THET 2,I & \[
0100101
\]
(13) & & & & & & & & & X \\
\hline IMU Accelerometer Scale Factor & \[
\begin{gathered}
0100110 \\
(48)
\end{gathered}
\] & & & X & \[
\begin{aligned}
& \text { MM } \\
& 301 \\
& \text { Only }
\end{aligned}
\] & & & & & \\
\hline Guidance Polynomial Load-THET 3,I & \[
\underset{(13)}{0100111}
\] & & & & & & & & & X \\
\hline Guidance Polynomial Load-PHI I & \[
\begin{gathered}
0101000 \\
(13)
\end{gathered}
\] & & & & & & & & & X \\
\hline VENT/RCS Body Force Vector Load & \[
\begin{gathered}
0101001 \\
(24)
\end{gathered}
\] & & & X & & & & & X & \\
\hline \begin{tabular}{l}
Drag Model \\
Parameter Load
\end{tabular} & \[
0101010
\]
(36) & & & X & & & & & X & \\
\hline Covariance Matrix Parameters Load & \[
\begin{gathered}
0101011 \\
(38)
\end{gathered}
\] & & & X & & & & & & \\
\hline MDM BITE Data Read & \[
\begin{gathered}
0101100 \\
(35)
\end{gathered}
\] & X & & X & & X & X & & X & \\
\hline \begin{tabular}{l}
Insertion Guidance \\
Target-PEG 4 \\
Command Load
\end{tabular} & \[
\underset{(31)}{0101101}
\] & & X & & & & & & & \\
\hline Time Executed Command (TEC) Load & \[
\underset{(32)}{010110}
\] & & & & & X & X & & & \\
\hline Orbiter Rate Gyro Bias Update & \begin{tabular}{l}
\[
0110000
\] \\
(49)
\end{tabular} & & & & \[
\begin{aligned}
& \text { MM } \\
& 301 \\
& \text { Only }
\end{aligned}
\] & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TABLE 7.2-2. UPLINK OP CODES/MEMORY CONFIGURATION (Continued)} \\
\hline \multirow[b]{2}{*}{COMMANDS} & \multirow[b]{2}{*}{OPS* CODES} & \multicolumn{9}{|c|}{MEMORY CONFIGURATIONS} \\
\hline & & \[
\begin{array}{c|}
\hline 0 \\
\text { OPS0 }
\end{array}
\] & \[
\begin{array}{c|}
\hline 1 \\
\mathrm{G} 1 / 6 \\
\hline
\end{array}
\] & \[
\begin{gathered}
2 \\
\mathrm{G} 2
\end{gathered}
\] & \[
\begin{gathered}
\hline 3 \\
\text { G3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
\mathrm{~S} 2
\end{gathered}
\] & \[
\begin{gathered}
\hline 5 \\
S 4
\end{gathered}
\] & \[
\begin{gathered}
\hline 6 \\
\text { P9 }
\end{gathered}
\] & \[
\begin{gathered}
\hline 8 \\
\text { P8 }
\end{gathered}
\] & \[
\begin{gathered}
9 \\
\text { G9 }
\end{gathered}
\] \\
\hline Accelerometer Assembly Bias Update & \[
\begin{gathered}
0110001 \\
(50)
\end{gathered}
\] & & & & \[
\begin{aligned}
& \hline \text { MM } \\
& 301 \\
& \text { Only }
\end{aligned}
\] & & & & & \\
\hline RCS Quantity Monitoring & \[
\underset{(37)}{0110010}
\] & & & X & & & & & & X \\
\hline PCMMU Telemetry and PDI Decom Format Load & \[
\underset{(43)}{0110110}
\] & & & X & & & & & & \\
\hline Variable D/L Select & \[
0110111
\]
(42) & X & X & X & X & X & X & X & X & X \\
\hline Time Execute Command Clear & \[
\begin{gathered}
0111000 \\
(39)
\end{gathered}
\] & & & & & X & X & & & \\
\hline Payload Scaling Coefficient Set Update & \[
\underset{(51)}{0111100}
\] & & & & & X & X & & & \\
\hline Payload Throughput & \[
\begin{gathered}
0111101 \\
(40)
\end{gathered}
\] & & & & & X & X & & & \\
\hline \begin{tabular}{l}
Payload MDM \\
Multiple SPC \\
Commands
\end{tabular} & \[
\underset{(1.3)}{011110}
\] & & & & & X & X & & & \\
\hline Two-Stage Buffer Clear Command & \[
\begin{gathered}
1000001 \\
(7)
\end{gathered}
\] & X & X & X & X & X & X & X & X & X \\
\hline \begin{tabular}{l}
Stored Program \\
Buffer Clear (Orbiter)
\end{tabular} & \[
\begin{gathered}
1000010 \\
(7)
\end{gathered}
\] & & & & & X & X & & & \\
\hline Two-Stage Buffer Execute Command & \[
1000011
\]
(6) & X & X & X & X & X & X & X & X & X \\
\hline Word-by-Word Correction & \[
\begin{gathered}
1000100 \\
(2)
\end{gathered}
\] & X & X & X & X & X & X & X & X & X \\
\hline MDM Command (Single-Stage) & \[
\underset{(1)}{1000101}
\] & X & X & X & X & X & X & X & X & X \\
\hline Uplink Activity Indicator OFF Command & \[
\begin{gathered}
1000110 \\
(8.2)
\end{gathered}
\] & X & X & X & X & X & X & X & X & X \\
\hline \begin{tabular}{l}
Uplink Activity \\
Indicator ON \\
Command
\end{tabular} & \[
\begin{gathered}
1000111 \\
(8.1)
\end{gathered}
\] & X & X & X & X & X & X & X & X & X \\
\hline
\end{tabular}

TABLE 7.2-2. UPLINK OP CODES/MEMORY CONFIGURATION (Continued)

* The number in parenthesis refers to paragraph 6.3.XX in SS-P-0002-140 Requirements Document.
** This OP code is valid only when the recipient GPC is in OPS 00 and enabled via G-MEM procedure (refer to paragraph 4.6.6.3.2 of CPDS SS-P-0002-170).
Note: Because of software design considerations, any future single-stage OP code commands should be assigned sequentially, beginning with OP code \(4 \mathrm{~A}_{16}\) (1001010).

\subsection*{7.2.4 Uplink Restrictions/Notes}
-1 Certain restrictions exist for several of the GNC uplink loads. (37528/56516/56677)
-2 An invalid engine ID uplinked in PEG 4 or PEG 7 target set will not be rejected. (38163)
-3 The uplink software detects certain error conditions which results in no indication to the ground that an error occurred or that the command did not execute. (37553)
-4 If an uplink to the PSP is defective such that when the PSP receives the command it requests a retransmission, the GPC will resend the same command again. (55330)
-5 Whenever multiple RTCIO requests for the flight critical buses are made in a flight OPS, the possibility exists of jittering the start of HFE I/O. (56157)
-6 The uplink of a target state vector that defines an orbit with a semi-major axis that is greater than 1X108 feet will yield erroneous results when the state vector is predicted to current time. (57282)

\subsection*{7.3 DOWNLIST}

The downlist capability provides selected data from the on-board GPC memory to the ground via the telemetry link. Parameters are sampled at various rates; placed in fifty downlist frames of up to 128 words each. Each frame is transmitted at a .5 Hz rate.
-1 The contents of each downlist frame are defined in computerized loading reports. Three different reports are generated to facilitate location of parameters: a frame and word listing, a Master Measurement List (MML), and a HAL name listing.
-2 Each of the three reports described above have the same format of data for each entry (the only difference being the order of the entries). Column headings and their definitions are as follows.
-2.1 Measurement Number. The MML number associated with the parameter. Format of the number is \(\mathrm{AXXA}^{\prime} \mathrm{XXXXA}^{\prime \prime}\), where \(\mathrm{A}, \mathrm{A}^{\prime}\), and \(\mathrm{A}^{\prime \prime}\) are alphabetic, \(\mathrm{X}^{\prime}\) s are digits.
NOTE:
For the MML sort \(\mathrm{A}^{\prime}, \mathrm{A}^{\prime \prime}\) are ignored; that is, the sort is done by the first character (A), and the six digit number of XX() XXXX .
-2.2 Measurement Name. The nomenclature of the parameter.
-2.3 KBS IND. Kilobits Indicator: \(0=128\) KBS only. \(1=64\) and 128 KBS.
-2.4 OUT RATE. The output rate in samples per second ( \(100,25,12.5,5\) or 1 ).
-2.5 DL FMT ID. The Downlist Format ID.
-2.6 HOMO SET NO. The Time Homogenous Set Number. 0 - Not part of a homogenous set. Non-0 - The homogenous set number.
-2.7 PARM TYP. The parameter type as described below.

Type
01
02

05 Fixed Point - Signed
06

03 Parent Discrete Word
\(04 \quad\) Fixed Point - Signed
Meaning
Floating Point - Single Precision
Floating Point - Double Precision

16, 32 or 48

07 Packed Bit String - Signed***
08 Packed Bit String - Unsigned***
Raw BTU Data*
Variable Parameter **
2 to 32
Discrete
1
2 to 32
n
2 to 16
* Type 9 Supercedes all other parameter types and is used whenever applicable.
** Type 10 parameters are those whose format/interpretation is indeterminate at loading time (eg., Uplink 2 Stage Buffer).
*** Type 7 and/or 8 is used to define all parameters that are bit strings but require less than 16 bits for data representation (i.e., command words output as 16 bits but only ten bits are data).
-2.8 PARM LEN. Length of the parameter in bits where applicable.
-2.9 START BIT. The starting bit position of the parameter where applicable. A Start Bit of 1 in the Flight Software corresponds to bit 0 in the Downlist Loading.
-2.10 START FRAME. The Downlist Frame number.
-2.11 START WORD. The word number in the Downlist Frame.
-2.12 COMPOOL NAME. The name of the COMPOOL from which the parameter is extracted.
-2.13 ENTRY NAME. The HAL name by which the parameter is referenced.

\subsection*{7.3.1 FORMATS AND FORMATTER PROGRAMS}

The collections of data output into the downlist stream are organized into groups called formats, each with its own ID. Table 7.3-1 contains a matrix of format IDs and the memory configuration in which each is valid.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|r|}{TABLE 7.3-1. DOWNLIST FORMAT ID VS. MEMORY CONFIGURATION} \\
\hline \[
\begin{aligned}
& \text { FMT } \\
& \text { ID }
\end{aligned}
\] & \[
\begin{gathered}
\text { OPS } \\
0
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{MC} 1 \\
& \mathrm{G} 1
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MC} 2 \\
& \mathrm{G} 2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MC} 3 \\
& \mathrm{G} 3
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{MC4} \\
& \mathrm{SM} 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { MC5 } \\
& \text { SM4 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MC6 } \\
& \text { PL9 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MC8 } \\
& \text { G8 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MC9 } \\
& \text { G9 }
\end{aligned}
\] & Name \\
\hline 20(A) & X & & & & & & & & & OPS 0 \\
\hline 21(B) & & X & & & & & & & & GNC Ascent/Abort \\
\hline 22(B,H) & & & X & & & & & & & GNC On-Orbit \\
\hline 23(B) & & & & X & & & & & & GNC Entry \\
\hline 24(B,H) & & & & & X & & & & & SM/RMS/PL \\
\hline 25(B,H) & & & & & & X & & & & SM/RMS/PL \\
\hline 26(G) & & & & & X & & & & & SM Ground Checkout \\
\hline 32(B,H) & & & & & & & & X & & On-Orbit Checkout \\
\hline 42(C) & & & & & & & & & X & Init and Checkout - GNC 9 \\
\hline 44(B) & & & & & & & & & X & Precount - GNC 9 \\
\hline 46(C) & & & & & & & & & X & FRT Checkout \\
\hline 48(J) & & & & & & & X & & & PL9 - MM Utility \\
\hline 52(I) & & & & & & & X & & & PL9 - MM Utility \\
\hline 53(C) & & & & & & & & & X & FCS Checkout \\
\hline 60(C) & & & & & & & & & X & Payload Checkout \\
\hline 91(E) & & & & & X & X & X & & & Mass Memory Dump \\
\hline \(92(\mathrm{~F})\)
\(93(\mathrm{D})\) & X & X & X & X & X & X & X
X & X & X & \begin{tabular}{l}
Spacelab M/M Dump Through GPC in PL9 (SPEC 111) \\
Main Memory HISAM Dump
\end{tabular} \\
\hline 97(C) & & & & & & & & & X & - PCMMUCheckout - Address \\
\hline 98(C) & & & & & & & & & X & PCMMUCheckout - 052525 Octal \\
\hline 99(C) & & & & & & & & & X & PCMMUCheckout - 125252 Octal \\
\hline
\end{tabular}

NOTES:
A. Format 20 also output during OPS transitions. All format 20 content is output when another format has at least one format 20 requirement.
B. Format automatically selected by software.
C. Format user selectable. See Table 3.100-1, function 4.
D. Format automatically selected by software during main memory dump. See Table 3.000-1, function 6 , or during HISAM dump.
E. Format automatically selected by software during mass memory dump. See Table 3.9011(P)-1, function 7.
F. Format 92 momentarily available only during period of actual dump.
G. Format user selectable. See Table 3.064-1, function 3.
H. When transmitting Low Data Rate, these format numbers are incremented by 40 (e.g., 62, 64, 65).
I. Format automatically selected if PL9 GPC is the active downlist GPC at OPS initialization.
J. Format automatically selected if PL9 GPC is NOT the active downlist GPC at OPS initialization.
-1 Flight Software Downlist Output is written to the PCM Master Unit device, addressed to one of the five Computer Data RAMS (known as Toggle Buffers). PCMMU software, called formatter programs, retrieve Toggle Buffer data (downlist) and Orbiter Instrumentation (downlink) and ship both to the ground by the telemetry link.
-2 Table 7.3-2 lists toggle buffer assignments by Memory Configuration. Non-prime members of a redundant set or non-prime members of an OPS-O common set downlist to an invalid PCMMU MIA address to prevent toggle buffer assignment conflict.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{TABLE 7.3-2. TOGGLE BUFFERS VS MEMORY CONFIGURATION} \\
\hline Memory Config & 0A & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 9 \\
\hline Toggle Buffer & 4B & 1 & 1 & 1 & 2 & 2 & 4B & 1 & 1 \\
\hline
\end{tabular}

NOTES:
A. A non-prime OPS 0 GPC can be forced to downlist into toggle buffer 4 by entry of Item 49 on the GPC MEMORY SPEC.
B. Toggle buffer conflicts with two machines downlisting to one toggle buffer will result if:
1. A non-prime OPS 0 GPC is directed to toggle buffer 4 when a non-prime PL9 MC is operating in the Common Set; or
2. A PASS HISAM dump is executed in one GPC with another GPC downlisting to toggle buffer 1. Must terminate prime GPC downlist to toggle buffer 1 before starting a HISAM dump.
-3 The Formatter Programs are available for low data rate ( 64 KBPS ) and high data rate ( 128 KBPS ) telemetry. There is one 'Hard' (always available) formatter for high data rate; all others are 'Soft' or programmable formatters. The Soft formatter programs are resident on Mass Memory and are loadable under software control. See Sections 3.5.100 and 3.5.062.
-4 Table 7.3-3 identifies the formatter programs available, the Toggle buffers they access, and the number of telemetry words for downlink and downlist.
-5 Table 7.3-4 defines which downlist formats are valid in downlink formats available (see Table 3.062-1, function 3).

TABLE 7.3-3. DOWNLINK/DOWNLIST FORMATS AND TOGGLE BUFFERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Downlink/PDI Decom} & \multicolumn{4}{|c|}{Downlist} \\
\hline \begin{tabular}{l}
64 KBPS \\
Formatter Programmable
\end{tabular} & \begin{tabular}{l}
Down- \\
link \\
No. of Words
\end{tabular} & \begin{tabular}{l}
PDI \\
Decom \\
1 \\
No. \\
of \\
Words
\end{tabular} & \begin{tabular}{l}
PDI \\
Decom \\
2 \\
No. \\
of \\
Words
\end{tabular} & \begin{tabular}{l}
PDI \\
Decom \\
3 \\
No. \\
of \\
Words
\end{tabular} & \begin{tabular}{l}
PDI \\
Decom \\
4 \\
No. \\
of \\
Words
\end{tabular} & Toggle Buffer No. of Words & Toggle Buffer No. of Words & Toggle Buffer No. of Words & \\
\hline 102 Ascent 103 Orbit 104 Orbit 105 Entry 106 Orbit 107 Orbit 108 Orbit 109 Orbit 110 Orbit & \[
\begin{aligned}
& 80 \\
& 80 \\
& 80 \\
& 80 \\
& 64 \\
& 68 \\
& 68 \\
& 68 \\
& 68 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4 \\
& - \\
& \hline 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& - \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 1-64 \\
& 1-56 \\
& 1-56 \\
& 1-64 \\
& 1-56 \\
& 1-56 \\
& 1-56 \\
& 1-56 \\
& 1-56 \\
& \hline
\end{aligned}
\] & 5-16
\(2-24\)
\(2-24\)
\(5-16\)
\(2-24\)
\(2-24\)
\(2-24\)
\(2-24\)
\(2-24\) & 4-16 & \\
\hline 128 KBPS Formatter & & & & & & & & & \\
\hline HARD 129 Ascent/ Checkout & 160 & & & & & \[
1-128
\] & \[
5-32
\] & & \\
\hline SOFT & & & & & & & & & \\
\hline 160 Prelaunch & 160 & & & & & 1-128 & 4-32 & & \\
\hline 161 Orbit 162 Orbit 163 Orbit 164 Entry & \[
\begin{aligned}
& 160 \\
& 160 \\
& 128 \\
& 160
\end{aligned}
\] & & & & & \[
\begin{aligned}
& 1-112 \\
& 1-112 \\
& 1-112 \\
& 1-128
\end{aligned}
\] & \[
\begin{aligned}
& 2-48 \\
& 2-48 \\
& 2-48 \\
& 5-32
\end{aligned}
\] & 4-32 & \\
\hline \begin{tabular}{l}
165 Orbit \\
168 Orbit \\
171 Prelaunch \\
172 Prelaunch
\end{tabular} & \[
\begin{aligned}
& 144 \\
& 144 \\
& 160 \\
& 144 \\
& \hline
\end{aligned}
\] & 4 & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 1-112 \\
& 1-112 \\
& 1-128 \\
& 1-128
\end{aligned}
\] & \[
\begin{aligned}
& 2-48 \\
& 2-48 \\
& 5-32 \\
& 2-48
\end{aligned}
\] & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{22}{|c|}{TABLE 7.3-4. DOWNLIST FORMATS IN DOWNLINK} \\
\hline & \multicolumn{21}{|c|}{DOWNLIST FORMAT ID'S} \\
\hline DOWNLINK-
PHASE & 2 & 2 & 2 & 2 & 2
4 & 3
2 & 4
2 & 4
4 & 4
6 & \begin{tabular}{l}
4 \\
8 \\
\hline
\end{tabular} & 5
2 & \begin{tabular}{l}
5 \\
3 \\
\hline
\end{tabular} & 6
0 & 9
0 & 9
1 & 9
3 & 9 & 9
8 & 9 & \(*\)
1
2 & \(*\)
1
3 \\
\hline 102-A & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & & & & & X & X \\
\hline 103-0 & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 104-O & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 105-E & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & & & & & X & X \\
\hline 106-O & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 107-0 & X & & X & & X & \(X\) & & & & X & & & & X & X & & & & & & \\
\hline 108-O & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 109-O & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 110-O & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 111-0 & X & & X & & X & X & & & & X & & & & X & X & & & & & & \\
\hline 160-V & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & X & X & X & X & & \\
\hline 161-O & X & & X & & X & X & & & & X & & & & X & X & X & & & & & \\
\hline 162-0 & X & & X & & X & X & & & & X & & & & X & X & X & & & & & \\
\hline 163-O & X & & X & & X & X & & & & X & & & & X & X & X & & & & & \\
\hline 164-E & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X \\
\hline 165-O & X & & X & & X & X & & & & X & & & & X & X & X & & & & & \\
\hline 168-0 & X & & X & & X & X & & & & X & & & & X & X & X & & & & & \\
\hline 169-A & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X \\
\hline \(171-\mathrm{V}\) & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X \\
\hline 172-V & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & & \\
\hline 173-A & X & X & X & X & & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X \\
\hline 174-0 & X & & X & & X & X & & & X & X & & & & X & X & X & & & & & \\
\hline 175-0 & X & & X & & X & X & & & X & X & & & & X & X & X & & & & & \\
\hline 176-V & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & & \\
\hline \(177-\mathrm{V}\) & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & X & & \\
\hline 252-P & X & & & & X & & & & & & & & & X & & & & & & & \\
\hline
\end{tabular}
* BFS Formats - Not Selectable in PASS

PHASE -
A - Ascent
O - Orbit
E - Entry
P - Payload Checkout
V . Vehicle Checkout

\subsection*{7.3.2 FAULT SUMMARY PAGE}

The downlist data includes the last five entries in the fault summary page. Each entry is composed of four 16 bit words. The first two words define the message (see Figure 7.3-1), and the second two words contain the time of the message.


Figure 7.3-1. FSP Message Definition
-1 The individual bits \(0-4\) specify which GPC(s) detected the error. The major field is a numeric value (IDs in decimal) representing the major text of the message (Table 7.3-5). The MINOR field is a numeric value representing the minor text of the message (Table 7.3-6). Major and minor ID's for SM and PM can be found in the corresponding flight FSR. Reference Section 6 for a detailed description of Fault Annunciation and Messages.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TABLE 7.3-5. MAJOR FIELDS OF MESSAGES} \\
\hline ID & FIELD & ID & FIELD & ID & FIELD \\
\hline 100 & ILLEGAL ENTRY & 160 & MPS HYD & 355 & S94 PDRS WR R \\
\hline 101 & OFF/BUSY & 161 & SSME FAIL & 358 & 212 SL LINK \\
\hline 102 & GPC & 162 & HIGH G & 359 & SM GRDCK \\
\hline 103 & I/O ERROR & 163 & GNC GRD CK & 360 & 211 SS RAU ERR \\
\hline 104 & \(>3\) DEU & 164 & TARGET ERR & 361 & 211 INVAL RAU \\
\hline 105 & & 165 & F RCS & 362 & 213 EX RAU ERR \\
\hline 106 & BCE STRG 1 & 166 & L RCS & 363 & 213 INVAL RAU \\
\hline 107 & BCE STRG 2 & 167 & R RCS & 364 & PDRS SLIP \\
\hline 108 & BCE STRG 3 & 168 & G23 RCS SYSTEM & 365 & PDRS TEST \\
\hline 109 & BCE STRG 4 & 169 & DAP RECONF & & \\
\hline 110 & SUMWORD & 170 & SPD BRK & & \\
\hline 111 & CRT BITE & 171 & SEL AUTO & & \\
\hline 112 & MDM OUTPUT & 173 & ET SEP-INH & & \\
\hline 113 & TIME & 174 & NAV EDIT & & \\
\hline 114 & BCE BYP & 175 & SW TO MEP & & \\
\hline 115 & S62 BCE BYP & 176 & SSME REPRO & & \\
\hline 131 & FCS CH & 177 & AERO DRIVE & & \\
\hline 132 & SBTC/THC & 178 & & & \\
\hline 133 & RHC & 182 & OTT ST IN & & \\
\hline 134 & FCS SAT & 186 & DISPLAY SW & & \\
\hline 135 & BODY FLAP & 187 & PROBES & & \\
\hline 136 & RM FAIL & 189 & ROLL REF & & \\
\hline 137 & G33 RNDZ RADAR & 190 & RCS XFEED & & \\
\hline 138 & RM DLMA & 307 & S60 CHECKPT & & \\
\hline 139 & IMU BITE/T & 309 & TFL LOAD & & \\
\hline 140 & TGT T & 310 & ITEM RJCT & & \\
\hline 141 & ET SEP-MAN & 314 & S69 FC END HTR & & \\
\hline 142 & BDY FLP SW & 329 & FC PURGE & & \\
\hline 143 & PNL TRIM & 333 & PBD CONF & & \\
\hline 147 & RCS PWR & 336 & PBD SEQ & & \\
\hline 148 & SENSE SW & 340 & CIRC PUMP & & \\
\hline 149 & ME SHDN SW & 341 & PDRS DERIG & & \\
\hline 150 & MPS CMD & 342 & PDRS REL & & \\
\hline 151 & ET SEP-AUT & 343 & S96 PDRS ABE & & \\
\hline 152 & G51 RL MODE SW & 344 & PDRS SING & & \\
\hline 153 & TGT EL ANG & 345 & S96 PDRS CNTL & & \\
\hline 154 & TGT ITER & 346 & S96 PDRS RCH & & \\
\hline 155 & MPS DATA & 347 & PDRS TEMP & & \\
\hline 156 & L OMS & 348 & S96 PDRS CKCRT & & \\
\hline 157 & R OMS & 349 & S94 PDRS GPC & & \\
\hline 158 & G23 OMS/RCS & 350 & S96 PDRS MCIU & & \\
\hline 159 & MPS ELEC & 354 & S90 PCS ERROR & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ID} & \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|c|}{ID} & \multirow[b]{2}{*}{FIELD} & \multicolumn{2}{|c|}{ID} & \multirow[b]{2}{*}{FIELD} \\
\hline HEX & DEC & & HEX & DEC & & HEX & DEC & \\
\hline 0 & 0 & & 2E & 47 & ICC5 & 5F & 95 & RTLS \\
\hline 1 & 1 & 1 & 30 & 48 & L & 60 & 96 & GMBL \\
\hline 2 & 2 & 2 & 31 & 49 & R & 61 & 97 & QTY \\
\hline 3 & 3 & 3 & 32 & 50 & MANF & 62 & 98 & VLV \\
\hline 4 & 4 & 4 & 33 & 51 & IMU & 63 & 99 & PC \\
\hline 5 & 5 & 5 & 34 & 52 & MLS & 64 & 100 & HE P \\
\hline 6 & 6 & A & 35 & 53 & PRL & 65 & 101 & TK P \\
\hline 7 & 7 & B & 36 & 54 & TAC & 66 & 102 & LEAK \\
\hline 8 & 8 & C & 37 & 55 & HOLD & 67 & 103 & DJET \\
\hline 9 & 9 & TEMP & 38 & 56 & CYCL & 68 & 104 & FJET \\
\hline A & 10 & COMM & 3A & 58 & SY & 69 & 105 & LJET \\
\hline B & 11 & JPC1 & 3B & 59 & SP & 70 & 112 & RJET \\
\hline C & 12 & JPC2 & 3 C & 60 & EP & 71 & 113 & UJET \\
\hline D & 13 & OF A & 3D & 61 & WP & 72 & 114 & AJET \\
\hline E & 14 & OF B & 3 E & 62 & WY & 73 & 115 & PVT \\
\hline F & 15 & OA & 3F & 63 & WR & 86 & 134 & FAIL \\
\hline 10 & 16 & CONF & 40 & 64 & MCIU & 88 & 136 & R/Y \\
\hline 12 & 18 & FF1 & 41 & 65 & F & 89 & 137 & 6 \\
\hline 13 & 19 & FF2 & 42 & 66 & POS & 90 & 144 & EE \\
\hline 14 & 20 & FF3 & 43 & 67 & MOM & 91 & 145 & T CK \\
\hline 15 & 21 & FF4 & 44 & 68 & ADTA & 95 & 149 & ALT \\
\hline 16 & 22 & FAl & 45 & 69 & CRT2 & 96 & 150 & KU \\
\hline 17 & 23 & FA2 & 46 & 70 & CRT3 & 97 & 151 & D/L \\
\hline 18 & 24 & FA3 & 47 & 71 & CRT4 & 98 & 152 & PSP1 \\
\hline 19 & 25 & FA4 & 48 & 72 & BITE & 99 & 153 & PSP2 \\
\hline 1A & 26 & PL & 49 & 73 & NSP & 9A & 154 & PSP \\
\hline 1B & 27 & FLEX & 4A & 74 & MADC & 9B & 155 & BRK \\
\hline 1 C & 28 & SCA & 4B & 75 & MCPC & 9 C & 156 & C/W \\
\hline 1D & 29 & PORT & 4 C & 76 & ICF & 9D & 157 & NMI \\
\hline 1 E & 30 & STBD & 4D & 77 & HC & 9 E & 158 & FS \\
\hline 1F & 31 & PDI & 4E & 78 & ALL & 9 F & 159 & LOSS \\
\hline 20 & 32 & PL1 & 4 F & 79 & ENA & & & \\
\hline 21 & 33 & PL2 & 50 & 80 & TONE & & & \\
\hline 22 & 34 & LF1 & 51 & 81 & MTU & & & \\
\hline 23 & 35 & LA1 & 52 & 82 & SEQ & & & \\
\hline 24 & 36 & CRT1 & 53 & 83 & STKR & & & \\
\hline 25 & 37 & PCM & 54 & 84 & RGA & & & \\
\hline 28 & 40 & D & 55 & 85 & ACC & & & \\
\hline 29 & 41 & WOW & 5A & 90 & MMU1 & & & \\
\hline 2B & 43 & ICC1 & 5B & 91 & MMU2 & & & \\
\hline 2 C & 44 & ICC2 & 5C & 92 & ERR & & & \\
\hline 2D & 45 & ICC3 & 5D & 93 & TERM & & & \\
\hline 2 E & 46 & ICC4 & 5 E & 94 & TAL & & & \\
\hline
\end{tabular}

\subsection*{7.3.3 DEU MESSAGES AND KEYBOARD LAYOUT}

Keyboard entries are placed in the downlist buffers at a 1 Hz rate. Each message has 10 HWs of keystroke data with three keystrokes per half-word as shown in Figure 7.3-2; bit 15 is set to zero.
-1 Each value may be converted to a keystroke from Table 7.3-7 to construct the message received by the GPC(s).


KEYSTROKE VALUE KEYSTROKE VALUE KEYSTROKE VALUE

Figure 7.3-2. DEU Message Format

TABLE 7.3-7. DEU KEYSTROKES
\begin{tabular}{|c|c|c|}
\hline VALUE & & KEYSTROKE \\
\hline DEC & HEX & \\
\hline 00 & 0 & 0 \\
\hline 01 & 1 & 1 \\
\hline 02 & 2 & 2 \\
\hline 03 & 3 & 3 \\
\hline 04 & 4 & 4 \\
\hline 05 & 5 & 5 \\
\hline 06 & 6 & 6 \\
\hline 07 & 7 & 7 \\
\hline 08 & 8 & 8 \\
\hline 09 & 9 & 9 \\
\hline 10 & A & A \\
\hline 11 & B & B \\
\hline 12 & C & C \\
\hline 13 & D & D \\
\hline 14 & E & E \\
\hline 15 & F & F \\
\hline 16 & 10 & SYS SUMM \\
\hline 17 & 11 & OPS \\
\hline 18 & 12 & SPEC \\
\hline 19 & 13 & FAULT SUMM \\
\hline 20 & 14 & ITEM \\
\hline 21 & 15 & - \\
\hline 22 & 16 & + \\
\hline 23 & 17 & \\
\hline 24 & 18 & I/O RESET \\
\hline 25 & 19 & GPC/CRT \\
\hline 26 & 1 A & CLEAR \\
\hline 27 & 1 B & RESUME \\
\hline 28 & 1 C & ACK \\
\hline 29 & 1 D & MSG RESET \\
\hline 30 & 1 E & EXEC \\
\hline 31 & 1F & PRO \\
\hline
\end{tabular}
-2 The lower number shown in each key location indicates the keystroke code (in hexadecimal) sent to the GPC when the message is transmitted. The number is a 5-bit code.
\begin{tabular}{|c|c|c|c|}
\hline FAULT SUMM & \begin{tabular}{l}
SYS \\
SUMM \\
10
\end{tabular} & \begin{tabular}{l}
MSG RESET \\
1D
\end{tabular} & \begin{tabular}{l}
ACK \\
1C
\end{tabular} \\
\hline \begin{tabular}{l}
GPC/ \\
CRT \\
19
\end{tabular} & \begin{tabular}{l}
A \\
OA
\end{tabular} & \begin{tabular}{l}
B \\
OB
\end{tabular} & \begin{tabular}{l}
C \\
OC
\end{tabular} \\
\hline \[
\begin{gathered}
\text { I/O } \\
\text { RESET } \\
18
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} \\
\mathrm{OD}
\end{gathered}
\] & \begin{tabular}{l}
E \\
OE
\end{tabular} & \begin{tabular}{l}
F \\
OF
\end{tabular} \\
\hline \begin{tabular}{l}
ITEM \\
14
\end{tabular} & \begin{tabular}{l}
1 \\
01
\end{tabular} & \[
\begin{gathered}
2 \\
02 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
03 \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
EXEC \\
1E
\end{tabular} & \[
4
\]
\[
04
\] & \[
\begin{gathered}
5 \\
05 \\
\hline
\end{gathered}
\] & \[
6
\]
\[
06
\] \\
\hline \begin{tabular}{l}
OPS \\
11
\end{tabular} & \[
\begin{gathered}
7 \\
07 \\
\hline
\end{gathered}
\] & \[
8
\]
\[
08
\] & \[
\begin{gathered}
9 \\
09 \\
\hline
\end{gathered}
\] \\
\hline \begin{tabular}{l}
SPEC \\
12
\end{tabular} & \[
15
\] & \[
\begin{gathered}
0 \\
00
\end{gathered}
\] & \begin{tabular}{l}
\(+\) \\
16
\end{tabular} \\
\hline RESUME
1B & CLEAR
\[
1 \mathrm{~A}
\] & \[
17
\] & PRO 1F \\
\hline
\end{tabular}

Figure 7.3-3. MCDS Keyboard Layout

\section*{8. DATA ANALYSIS}

This section of the User's Guide is basically a T\&O support section. Several topics are addressed to provide information necessary to analyze data which may be available for troubleshooting in an expedited fashion. Topics addressed include GPC errors, I/O errors, GPC dump analysis, Microfiche available, and MMU directory.

\subsection*{8.1 GPC ERRORS}

This section will address software induced GPC errors, and software indications of any GPC hardware problems.

\subsection*{8.1.1 GPC FAIL-TO-SYNCS}

Multiple computers with PASS loaded and in RUN will be in at least Common Set (unless a previous error has occurred). Multiple computers in common set with the same major function active are said to be in Redundant Set.
-1 When GPCs in Common Set (CS) and/or Redundant Set (RS) fail to arrive at a synch point together (within some tolerance) a Fail-To-Synch (FTS) is declared. The GPC(s) voting against a GPC light their respective U-FAIL light on the CAM (see section 4.2). If a GPC receives two or more U-FAIL votes, it will declare itself failed, light its I-FAIL on the CAM, and freeze its SYNC trace table (as will other GPCs in the CS/RS).
-2 The following items are peculiarities the user should be aware of when a FTS occurs:
-2.1 A dual commander situation can be encountered at the completion of an unsuccessful OPS Transition/OPS Mode Recall attempting to expand the current R/S. (38458)
-2.2 GPC Failed Out of Common Set/Redundant Set (37543)
-2.3 Multiple Commanders of a DEU Can Result in an F-T-S (37590)
-2.4 Output Switch in TERMINATE at RS Formation (32119)
-2.5 Overlay Failure Following F-T-S During Overlay (25159)
-2.6 Possible common set F.T.S. due to I/O completion (55318)

\subsection*{8.1.2 GPC ERROR LOG (CZ2V_GPC_ERR_LOG)}

The GPC Error Log is available for downlist in all D/L formats and consists of:
- Last 5 GPC errors
- Last error in each GPC
- Cumulative error count for each GPC
- GPC error \(\log\) index to next available log entry. \((0,6,12, .\). .)
-1 Each error is defined in six 16 bit words in downlist. The first word is a 16 bit PDE address.
(25119) The next 3 words (words 2, 3 and 4) contain time of error (run time). Word two is 16 bit half hour count (LSB \(=30 \mathrm{~min}\).). Word three and four are 32 bit microseconds counter (LSB \(=1\) microsec). Word five contains a 4 bit BSR of the block in error, a 6 bit error code, and a 6 bit error group (see Figure 8.1-1). The error groups and codes are given in Table 8.1-1.


Figure 8.1-1. GPC ERROR WORD 5
-2 The sixth word contains the 16 bit address at the time of error. If the first bit of this address is not zero (first hex digit >7), then extended addressing is required. In this case the first digit of word six is replaced with two digits as determined by the first digit (BSR) of word 5. Table 8.1-2 defines the replacement digits as a function of the values of word 6 , digit 1 and word 5 digit 1 . (25137)
-3 Additional information for each of the last five GPC errors is logged in an auxiliary GPC error Log. This information is NOT downlisted. However, it is available in GPC dumps and is very useful in resolving compiler defined errors. The auxiliary error data is found in compool FCMCOM, structure TFCMAUXL. TFCMAUXL is indexed in the same manner as the GPC error log (i.e., the first entry in the auxiliary error log corresponds to the first entry in the GPC error log, the second to the second, etc.). Each entry in the auxiliary error log is 4 halfwords long and is formatted as follows:

HW 0, 1 - First word of PSW from the stack HW 2, 3 - The contents of the HAL Linkage Register
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE 8.1-1. GPC ERROR GROUP/CODE} \\
\hline GROUP & CODE & WORD 5 HEX * & APPENDIX** & ERROR CONDITION** \\
\hline 02 & 13 & X342 & E & CYCLIC OVERRUN. \\
\hline 03 & 00 & X003 & E & ILLEGAL OPERATION CODE. \\
\hline 03 & 01 & X043 & E & PRIVILEGED INSTRUCTION. \\
\hline 03 & 04 & X103 & E & FIXED POINT OVERFLOW. \\
\hline 03 & 05 & X143 & E & SIGNIFICANCE. \\
\hline 03 & 07 & X1C3 & E & CPU PROTECTION VIOLATION. \\
\hline 03 & 09 & X243 & E & EXPONENT UNDERFLOW (FLOATING POINT). \\
\hline 03 & 10 & X283 & E & OVERFLOW CONVERT. \\
\hline 03 & 11 & X2C3 & E & EXPONENT OVERFLOW. \\
\hline 03 & 12 & X303 & E & DIVIDE (FLOATING POINT). \\
\hline 03 & 20 & X \(503{ }^{\circ}\) & E & INSTRUCTION MONITOR. \\
\hline 04 & 04 & X104 & D & EXPONENTIATION OF 0 TO POWER
\[
<=0 .
\] \\
\hline 04 & 05 & X144 & D & SQUARE ROOT ARG < 0 . \\
\hline 04 & 06 & X184 & D & EXP FUNCTION ARG \(>174.673\). \\
\hline 04 & 07 & X1C4 & D & LOG FUNCTION ARG \(<=0\). \\
\hline 04 & 08 & X204 & D & \begin{tabular}{l}
SIN OR COS FUNCTION |ARG| \\
\(>\) (2.621 E5)PI (1.126 E15)PI.
\end{tabular} \\
\hline 04 & 09 & X244 & D & SINH OR COSH FUNCTION ARG > 175,366. \\
\hline 04 & 10 & X284 & D & ARCSIN OR ARCCOS FUNCTION |ARG| \(>1\). \\
\hline 04 & 11 & X2C4 & D & TAN FUNCTION |ARG| > 2.621 E5 1.126 E15. \\
\hline 04 & 12 & X304 & D & TAN FUNCTION ARG TOO CLOSE TO \((2 N+1) P I / 2\). \\
\hline 04 & 14 & X384 & D & CLOSE REACHED ON FUNCTION. \\
\hline 04 & 15 & X3C4 & D & SCALAR TOO LARGE OR TOO SMALL FOR INTEGER CONVERSION. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{TABLE 8.1-1. GPC ERROR GROUP/CODE (Continued)} \\
\hline GROUP & CODE & \[
\begin{aligned}
& \text { WORD } 5 \\
& \text { HEX * }
\end{aligned}
\] & APPEN-
DIX** & ERROR CONDITION** \\
\hline 04 & 16 & X404 & D & IN REMAINDER (A,B) B \(=0\). \\
\hline 04 & 17 & X444 & D & ILLEGAL CHARACTER SUBSCRIPT. \\
\hline 04 & 18 & X484 & D & LENGTH IN LJUST OR RJUST FUNCTION IS > STRING LENGTH OR IS < 0 . \\
\hline 04 & 19 & X4C4 & D & IN A MOD B, \(\mathrm{B}=0, \mathrm{~A}<0\). \\
\hline 04 & 20 & X504 & D & STRING NOT IN STANDARD FORMAT FOR CHARACTER TO SCALAR CONVERSION. \\
\hline 04 & 22 & X584 & D & STRING NOT IN STANDARD FORMAT FOR CHARACTER TO INTEGER CONVERSION. \\
\hline 04 & 24 & X604 & D & \(\mathrm{A}^{* *} \mathrm{~B}\) WITH \(\mathrm{A}<=0\) AND \(\mathrm{B}<=0\). \\
\hline 04 & 25 & X644 & D & VECTOR OR MATRIX DIVISION BY ZERO. \\
\hline 04 & 27 & X6C4 & D & ARG OF INVERSE IS SINGULAR. \\
\hline 04 & 28 & X704 & D & ARG OF UNIT VECTOR IS NULL VECTOR. \\
\hline 04 & 29 & X744 & D & ILLEGAL BIT STRING. \\
\hline 04 & 30 & X784 & D & SUBBIT SUBSCRIPT EXCEEDED BIT LENGTH. \\
\hline 04 & 31 & X7C4 & D & BIT @ OCT INVALID CHARACTER. \\
\hline 04 & 32 & X804 & D & BIT @ HEX INVALID CHARACTER. \\
\hline 04 & 59 & XEC4 & D & ARCCOSH ARG < 1. \\
\hline 04 & 60 & XF04 & D & ARCTANH \(\mid\) ARG \(\mid>=1\). \\
\hline 04 & 62 & XF84 & D & ARCTAN2 FUNCTION ERROR ARG1 = \(\mathrm{ARG} 2=0\). \\
\hline 05 & 00 & X005 & E & I/O ERROR ON ICC RETRY. \\
\hline 05 & 01 & X045 & E & DISAGREE ON TRANSMITTER STATUS. \\
\hline 05 & 04 & X105 & E & I/O ERROR STORE PROTECT VIOLATION. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{TABLE 8.1-1. GPC ERROR GROUP/CODE (Continued)} \\
\hline GROUP & CODE & \[
\begin{aligned}
& \text { WORD } 5 \\
& \text { HEX * }
\end{aligned}
\] & \[
\begin{aligned}
& \text { APPEN- } \\
& \text { DIX** }
\end{aligned}
\] & ERROR CONDITION** \\
\hline 05 & 05 & X145 & E & ILLEGAL DEVICE ID. \\
\hline 05 & 06 & X185 & E & INVALID EVENT ADDRESS SPECIFIED. \\
\hline 05 & 07 & X1C5 & E & CHECKSUM ERROR ON ICC RETRY. \\
\hline 06 & 01 & X046 & E & ZERO MESSAGE LENGTH IN DEU RESPONSE BUFFER. \\
\hline 06 & 02 & X086 & E & INVALID ICC HEADER. \\
\hline 06 & 03 & X0C6 & E & INVALID ICC DATA CONTROL. \\
\hline 06 & 05 & X146 & E & INVALID SVC PARAMETER LIST FOR MTU UPDATE. \\
\hline 06 & 06 & X186 & E & PMU TIME INVALID. \\
\hline 06 & 07 & X187 & E & DO CASE OUT OF RANGE. \\
\hline 07 & 01 & X047 & E & PRE-INITIALIZED IOQE BUSY FOR HFE INPUT. \\
\hline 07 & 02 & X087 & E & PRE-INITIALIZED IOQE BUSY FOR HFE OUTPUT. \\
\hline 07 & 03 & X 0 C 7 & E & PRE-INITIALIZED IOQE BUSY FOR MFE INPUT. \\
\hline 07 & 04 & X107 & E & PRE-INITIALIZED IOQE BUSY FOR NSP (UPLINK) INPUT. \\
\hline 07 & 05 & X147 & E & PRE-INITIALIZED IOQE BUSY FOR DOWNLIST. \\
\hline 07 & 06 & X187 & E & PRE-INITIALIZED IOQE BUSY FOR SRB INPUT. \\
\hline 07 & 07 & X1C7 & E & PRE-INITIALIZED IOQE BUSY FOR ICC. \\
\hline 07 & 08 & X207 & E & PRE-INITIALIZED IOQE BUSY FOR LDB. \\
\hline 07 & 09 & X247 & E & PRE-INITIALIZED IOQE BUSY FOR MCIU INPUT. \\
\hline 07 & 10 & X287 & E & PRE-INITIALIZED IOQE BUSY FOR MCIU OUTPUT. \\
\hline 07 & 11 & X2C7 & E & PRE-INITIALIZED IOQE BUSY FOR HDA INPUT. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|l|l|}
\hline \multicolumn{8}{|c|}{ TABLE 8.1-1. GPC ERROR GROUP/CODE (Continued) }
\end{tabular}\(|\)\begin{tabular}{l} 
GROUP \\
\hline 07 \\
\hline 07 \\
\hline
\end{tabular}
* Value of \(X\) denotes sector (0-6).
** Error Conditions are listed in the indicated Appendix in alphabetical order.
TABLE 8.1-2. EXTENDED ADDRESSING
If the first digit of Word 6 is greater than 7, then replace that digit with the two digits, as determined by the value of Word 5 , digit 1 , given in the following table to derive the extended address.

RELEASE: OI20
BOOK: PASS User's Guide

Date: 12/20/90
Rev: 0
\begin{tabular}{|c|ccccc|}
\hline \begin{tabular}{c} 
1st digit \\
(Word 6)
\end{tabular} & \multicolumn{5}{|c|}{ 1st digit } \\
\hline & 2 & 3 & 4 & 5 & 6 \\
\hline 8 & 10 & 18 & 20 & 28 & 30 \\
9 & 11 & 19 & 21 & 29 & 31 \\
A & 12 & 1 A & 22 & 2 A & 32 \\
B & 13 & 1 B & 23 & 2 B & 33 \\
C & 14 & 1 C & 24 & 2 C & \\
D & 15 & 1 D & 25 & 2 D & \\
E & 16 & 1 E & 26 & 2 E & \\
F & 17 & 1 F & 27 & 2 F & \\
\hline
\end{tabular}

\subsection*{8.2 INPUT/OUTPUT (I/O) ERRORS}

The GPC, through a data bus network, sends data to Line Replaceable Units (LRUs) (Output) and via commands to LRUs receives data back (Input). Limited error checking (transmitter disabled MIA busy) is done on the transmission of data. The input is error checked, and if an error occurs, appropriate storing of information and annunciation (if any) is done.
-1 I/O Error Management is divided into two distinct types of processing, 1) errors that can be associated with the input/output of data, and 2) errors detected by CPU/IOP hardware which must be handled by FCOS because the error is severe and processing may be halted. Figure 8.2-1 contains a list of those errors for which an applications process can be notified. These errors really are of three types: BCE NO/GO, MSC Timeout, and Pseudo Timeout. The first thirteen errors listed are BCE NO/GOs. Figure 8.2-2 contains a list of CPU/IOP hardware detected errors which are handled by FCOS. These errors are detected via Level A and B hardware interrupts.
-2 Application processes may request status explicitly via the I/O macros or implicitly, as certain macros have the status request built-in as a part of the specification which generates the I/O SVC parameter list. Two types of status request are allowed; one method, called regular status, is accomplished by FCOS storing certain information in slots prior to the application buffer. A fullword ( 32 bits) of status, called the transaction status word, is stored at LOC minus four halfwords. If a BCE NO/GO occurs, FCOS stores the residual word count at buffer minus two halfwords. If a MSC timeout occurs, FCOS stores zero at buffer minus two halfwords. The last 16 bits of the absolute buffer address are stored at buffer minus one halfword (the absolute buffer address is retrieved from the BCE Local Store). The residual word count is also obtained from BCE local store and represents the data words remaining to be received or transmitted. If a MSC Timeout or PSEUDO Timeout occurs, FCOS stores zero at buffer minus two halfwords and minus one at buffer minus one halfword. See Figure 8.2-3 for a visual layout of the status slots and Figure 8.2-4 for a definition of the transaction status word. FCOS does not clear or maintain the status words for this type of request. (14403/55237) (25062/25140)
-3 A second type of status is known as COMMFAULT. COMMFAULT is implemented to allow application processes to determine the validity of data on an LRU basis. FCOS maintains an array which contains one bit for each LRU to be COMFAULTed. This array is called the status indicator and is located in CZ1_COMMON (CZEB_COMM_FAULT) with an external equate for the symbol, FIOBCES1. FCOS also maintains another array which has the same format as the status indicator and this word is called the bypass indicator. Each bit set to one in the bypass indicator means that LRU has been bypassed in the BCE chain of which it is a member. The bypass indicator is named FIOBCEB1 and is located in the FCOS COMPOOL, FCMCOM. COMFAULTing occurs in the following manner. FCOS clears the status indicator word of faulted bits for a given request prior to initiating I/O for that transaction. The bypass indicators are then ORed into this. If an error(s) occurs on a given BCE in a transaction, every element on that transaction's chain (BCE) is marked as having bad data forming a composite mask representing all LRUs with bad data for this I/O transaction. If the same error occurs on consecutive I/O cycles, only the erring BCE element will be COMFAULTed and the rest of the COMMFAULTs for the non-erring elements on that BCE chain will be cleared. Figure \(8.2-5\) shows a layout of the bypass words. Note that when a bus is deselected, all the bypass indicators for that bus get set, including those for transactions not in the current OPS. The bypass indicators are OR'ed into commfault indicators which then also have bits set for transactions not in the current OPS. (25074/25184) (31435) (33304) (33698) (34656) (35211) (37507) (37509) (37533) (37706) (39054) (39359)
-4 \(\mathrm{An}^{\prime * \prime}\) as an element number in Figure 8.2-5 represents those elements which may be included for any particular mission. The numbering of these elements begins with 105 and continues sequential to a maximum of 252. These element numbers are unique within a set of mission dependent I/O programs (S2, S4, VU) rather than being unique for the flight as are the elements with listed numbers.

Initial Timeout - an RDS, RDL, or MIN instruction timed out while waiting for the first input word to arrive.

Timeout - an RDS, RDL, or MIN instruction timed out while waiting for a data word, other than the first, to arrive.

Transmitter Disabled - at some point in the execution of a TDS, TDL, MOUT, or MIN instruction the MIA associated with the BCE had its transmitter disabled. This error may also indicate a MIA found busy when it was time to initiate transmission of a new data word or the MIN command word.

Parity - while executing an RDS, RDL, or MIN instruction, an input word with bad parity was detected.

MIA Mismatch - while executing an RDS, RDL, or MIN instruction, a mismatch between the input IUA and BCE's IUAR occurred.

Self Test Error - a BCE self test instruction has detected a fault in a BCE.

GAP - a gap greater than 20 microseconds occurred during execution of a TDL or TDS instruction, or a 5 microsecond gap on an MOUT.

SYNC Error - while executing an RDS, RDL, or MIN instruction, an input word with command sync was received.
\begin{tabular}{|c|l|}
\hline S & Power transient has caused normalization of the IU registers. \\
\hline E & Subsystem serial channel error. \\
\hline V & Validity of data is suspect. \\
\hline
\end{tabular}

Illegal OP Code - a given BCE has encountered an illegal instruction in the execution of a program.

Boundary Alignment - a given BCE encountered a long format instruction on an odd halfword boundary.

MSC Timeout - hung or looping BCE.

Figure 8.2-1. I/O Errors Which May be Handled by Application Processes
\begin{tabular}{ll}
\begin{tabular}{l} 
RELEASE: OI20 \\
BOOK: PASS User's Guide
\end{tabular} \\
Error Description & \\
GO/NO GO Timer Expiration & \begin{tabular}{l} 
FCOS Response \\
Rev:
\end{tabular} \\
IOP Fail Latch & \\
Not used by PASS (except in Bootstrap Loader). Should
\end{tabular}

Note: All errors are logged as I/O errors, except erroneous setting of spare bits.

Figure 8.2-2. I/O Errors Handled By FCOS
\begin{tabular}{l} 
RELEASE: OI20 \\
BOOK: \\
PASS User's Guide
\end{tabular}
Single Bus and No BCE Chaining
-4 HW \begin{tabular}{c} 
Transaction \\
-2 HW \\
-1 HW \\
\hline Residatus Word Word Count \({ }^{1}\) \\
\hline
\end{tabular}

RELEASE: OI20

Buffer address as specified in the I/0 macro and used by the element having an error.

Multi-bus and/or BCE Chaining
\begin{tabular}{|c|}
\hline Transaction \\
\hline Status Word \\
\hline Residual Word Count \({ }^{1}\) \\
\hline Pointer to I/O Buffer² \\
\hline
\end{tabular}

Buffer address as specified in the I/O macro and used by Element 1, Bus x .


Buffer address used by Element 2, Bus x .

Buffer address used by Element 1, Bus y.

Notes: 1. This count will be zero if a PSEUDO or MSC TIMEOUT.
2. This pointer will be set to HEX'FFFF' for a PSEUDO TIMEOUT and to the last 16 bits of the absolute buffer address of the last error for other errors.

Figure 8.2-3. Example of Status Slot Layout
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{ll}
\text { RELEASE: } & \text { OI20 } \\
\text { BOOK: } & \text { PASS }
\end{array}
\] & Guide \(\quad\)\begin{tabular}{l} 
Date: \(12 / 20 / 9\) \\
Rev: 0
\end{tabular} \\
\hline \[
\begin{gathered}
\text { BIT } \\
\text { POSITION }
\end{gathered}
\] & SET TO ' 1 ' FOR THE FOLLOWING REASON \\
\hline 0 & ENTIRE TRANSACTION FAILED. NO GOOD DATA EXISTS. SET IN ALL GPCS PARTICIPATING IN THE TRANSACTION. \\
\hline 1 & FAILURE SOMEWHERE IN THE TRANSACTION. SET ONLY IN THE GPC'S EXPERIENCING THE ERROR. \\
\hline 2 & SELF HAD ERROR. \\
\hline 3 & MSC TIMEOUT HAS OCCURRED. SET ONLY IN THE GPC EXPERIENCING THE ERROR. \\
\hline 4 & PSEUDO TIMEOUT HAS OCCURRED. SET ONLY IN THE GPC EXPERIENCING THE ERROR. \\
\hline 5 & INITIAL TIMEOUT HAS OCCURRED. SET ONLY IN THE GPC EXPERIENCING THE ERROR. \\
\hline 6 & FAILED OR POWERED DOWN MM. MM OR GPC-TO-GPC AS APPLICABLE. SET ONLY IN THE GPC EXPERIENCING THE ERROR. \\
\hline 7 & MM SELECTED FOR IPL \\
\hline 8 & CHECKSUM ERROR \\
\hline 9 & BUS BUSY OR CHECKSUM BUFFER RESERVED \\
\hline 10-23 & MASK OF BUSES, \(10-23\) ONLY, WITH MSC TIMEOUT OR PSEUDO TIMEOUT \\
\hline 24-26 & NOT USED \\
\hline 27-31 & \begin{tabular}{l}
MASK OF GPC'S WHICH FAILED OVERLAY (MM/GPC-TO-GPC \\
ONLY - SET IN ALL GPCS PARTICIPATING IN OVERLAY) \\
BIT 27-GPC1 \\
BIT 28 - GPC2 \\
BIT 29 - GPC3 \\
BIT 30 - GPC4 \\
BIT 31 - GPC5
\end{tabular} \\
\hline
\end{tabular}

0

1

MASK OF GPC'S WHICH FAILED OVERLAY (MM/GPC-TO-GPC ONLY - SET IN ALL GPCS PARTICIPATING IN OVERLAY) BIT 28 -GPC2
BIT 29-GPC3
BIT 31 - GPC5

Figure 8.2-4. Format of the Transaction Status Word
```

RELEASE: OI20
BOOK: PASS User's Guide

```

Date: 12/20/90
Rev: 0
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{0} & 0 & FF1 & 31 & FF Input Prom Seq 1,2 & MFE \\
\hline & 1 & FF2 & 36 & FF Input Prom Seq 1,2 & MFE \\
\hline & 2 & FF3 & 40 & FF Input Prom Seq 1,2 & MFE \\
\hline & 3 & FF4 & 46 & FF Input Prom Seq 1,2 & MFE \\
\hline & 4 & FF1 & 33 & TACAN/RA & MFE \\
\hline & 5 & FF2 & 38 & TACAN/RA & MFE \\
\hline & 6 & FF3 & 42 & TACAN/RA & MFE \\
\hline & 7 & Null & & Null & Null \\
\hline & 8 & FF1 & 34 & MSBLS & MFE \\
\hline & 9 & FF2 & 39 & MSBLS & MFE \\
\hline & 10 & FF3 & 43 & MSBLS & MFE \\
\hline & 11 & Null & & Null & Null \\
\hline & 12 & FF1 & 32 & IMU & MFE \\
\hline & 13 & FF2 & 37 & IMU & MFE \\
\hline & 14 & FF3 & 41 & IMU & MFE \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & Null & & Null & Null \\
\hline & 17 & Null & & Null & Null \\
\hline & 18 & FF1 & 35 & STU & MFE \\
\hline & 19 & FF3 & 44 & STU & MFE \\
\hline & 20 & FF3 & 45 & Rendezvous Radar & MFE \\
\hline & 21 & Null & & Null & Null \\
\hline & 22 & Null & & Null & Null \\
\hline & 23 & Null & & Null & Null \\
\hline & 24 & EIU1 & 51 & EIU1/P1 & MFE \\
\hline & 25 & EIU2 & 52 & EIU2/P1 & MFE \\
\hline & 26 & EIU3 & 53 & EIU3/P1 & MFE \\
\hline & 27 & Null & & Null & Null \\
\hline & 28 & FA1 & 47 & FA Input Prom Seq 1,2 & MFE \\
\hline & 29 & FA2 & 48 & FA Input Prom Seq 1,2 & MFE \\
\hline & 30 & FA3 & 49 & FA Input Prom Seq 1,2 & MFE \\
\hline & 31 & FA4 & 50 & FA Input Prom Seq 1,2 & MFE \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{1} & 0 & FF1 & 7 & MDM Return Word & HFE/HDA \\
\hline & 1 & FF2 & 11 & MDM Return Word & HFE/HDA \\
\hline & 2 & FF3 & 14 & MDM Return Word & HFE/HDA \\
\hline & 3 & FF4 & 17 & MDM Return Word & HFE/HDA \\
\hline & 4 & FF1 & 10 & FF Input Prom Seq 2,6 & HFE/HDA \\
\hline & 5 & FF2 & 13 & FF Input Prom Seq 2,6 & HFE/HDA \\
\hline & 6 & FF3 & 16 & FF Input Prom Seq 2,6 & HFE/HDA \\
\hline & 7 & FF4 & 19 & FF Input Prom Seq 2,6 & HFE/HDA \\
\hline & 8 & FF1 & 9 & ADTA & HFE/HDA \\
\hline & 9 & FF2 & 12 & ADTA & HFE/HDA \\
\hline & 10 & FF3 & 15 & ADTA & HFE/HDA \\
\hline & 11 & FF4 & 18 & ADTA & HFE/HDA \\
\hline & 12 & FAl & 20 & MDM Return Word & HFE/HDA \\
\hline & 13 & FA2 & 22 & MDM Return Word & HFE/HDA \\
\hline & 14 & FA3 & 25 & MDM Return Word & HFE/HDA \\
\hline & 15 & FA4 & 28. & MDM Return Word & HFE/HDA \\
\hline & 16 & FA1 & 21 & FA Input Prom Seq 3,10 & HFE/HDA \\
\hline & 17 & FA2 & 24 & FA Input Prom Seq 3,10 & HFE/HDA \\
\hline & 18 & FA3 & 27 & FA Input Prom Seq 3,10 & HFE/HDA \\
\hline & 19 & FA4 & 30 & FA Input Prom Seq 3,10 & HFE/HDA \\
\hline & 20 & EIU1 & 1 & EIU1/P1 & HFE \\
\hline & 21 & EIU1 & 4 & EIU1/P4 & HFE \\
\hline & 22 & EIU2 & 2 & EIU2/P1 & HFE \\
\hline & 23 & EIU2 & 5 & EIU2/P4 & HFE \\
\hline & 24 & EIU3 & 3 & EIU3/P1 & HFE \\
\hline & 25 & EIU3 & 6 & EIU3/P4 & HFE \\
\hline & 26 & Null & & Null & Null \\
\hline & 27 & Null & & Null & Null \\
\hline & 28 & Null & & Null & Null \\
\hline & 29 & FA2 & 23 & Hyd. Sys 3 Press. C & HFE/HDA \\
\hline & 30 & FA3 & 26 & OMS Lt. Eng. Press. & HFE/HDA \\
\hline & 31 & FA4 & 29 & OMS Rt. Eng. Press. & HFE/HDA \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{2} & 0 & FF1 & 54 & MTU1 & MTU \\
\hline & 1 & FF2 & 55 & MTU2 & MTU \\
\hline & 2 & FF3 & 56 & MTU3 & MTU \\
\hline & 3 & Null & & Null & Null \\
\hline & 4 & FF1 & 66 & NSP1 Discretes & NSP \\
\hline & 5 & FF3 & 68 & NSP2 Discretes & NSP \\
\hline & 6 & FF1 & 67 & NSP1 Data & NSP \\
\hline & 7 & FF3 & 69 & NSP2 Data & NSP \\
\hline & 8 & FA1 & 78 & FA1 MDM & GNC OPS INIT \\
\hline & 9 & FA2 & 79 & FA2 MDM & GNC OPS INIT \\
\hline & 10 & FA3 & 80 & FA3 MDM & GNC OPS INIT \\
\hline & 11 & FA4 & 81 & FA4 MDM & GNC OPS INIT \\
\hline & 12 & FF1 & 74 & FF1 MDM & GNC OPS INIT \\
\hline & 13 & FF2 & 75 & FF2 MDM & GNC OPS INIT \\
\hline & 14 & FF3 & 76 & FF3 MDM & GNC OPS INIT \\
\hline & 15 & FF4 & 77 & FF4 MDM & GNC OPS INIT \\
\hline & 16 & LL1 & 70 & SRB Prom & SRB \\
\hline & 17 & LL2 & 71 & SRB Prom & SRB \\
\hline & 18 & LR1 & 72 & SRB Prom & SRB \\
\hline & 19 & LR2 & 73 & SRB Prom & SRB \\
\hline & 20 & FF1 & 57 & MDM Return Word & IMU \\
\hline & 21 & FF2 & 60 & MDM Return Word & IMU \\
\hline & 22 & FF3 & 63 & MDM Return Word & IMU \\
\hline & 23 & Null & & Null & Null \\
\hline & 24 & FF1 & 59 & IMU Discretes & IMU \\
\hline & 25 & FF2 & 62 & IMU Discretes & IMU \\
\hline & 26 & FF3 & 65 & IMU Discretes & IMU \\
\hline & 27 & Null & & Null & Null \\
\hline & 28 & FF1 & 58 & IMU Data & IMU \\
\hline & 29 & FF2 & 61 & IMU Data & IMU \\
\hline & 30 & FF3 & 64 & IMU Data & IMU \\
\hline & 31 & Null & & Null & Null \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{3} & 0 & Null & & Null & Null \\
\hline & 1 & Null & & Null & Null \\
\hline & 2 & Null & & Null & Null \\
\hline & 3 & Null & & Null & Null \\
\hline & 4 & Null & & Null & Null \\
\hline & 5 & Null & & Null & Null \\
\hline & 6 & Null & & Null & Null \\
\hline & 7 & Null & & Null & Null \\
\hline & 8 & Null & & Null & Null \\
\hline & 9 & Null & & Null & Null \\
\hline & 10 & Null & & Null & Null \\
\hline & 11 & Null & & Null & Null \\
\hline & 12 & Null & & Null & Null \\
\hline & 13 & Null & & Null & Null \\
\hline & 14 & Null & & Null & Null \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & Null & & Null & Null \\
\hline & 17 & Null & & Null & Null \\
\hline & 18 & Null & & Null & Null \\
\hline & 19 & Null & & Null & Null \\
\hline & 20 & Null & & Null & Null \\
\hline & 21 & Null & & Null & Null \\
\hline & 22 & Null & & Null & Null \\
\hline & 23 & Null & & Null & Null \\
\hline & 24 & Null & & Null & Null \\
\hline & 25 & Null & & Null & Null \\
\hline & 26 & Null & & Null & Null \\
\hline & 27 & Null & & Null & Null \\
\hline & 28 & PFI & 95 & PDI & PDI PF1 \\
\hline & 29 & MCIU & 82 & MCIU & MCIU \\
\hline & 30 & PF1 & 83 & PSP1 & PSP PF1 \\
\hline & 31 & PF2 & 84 & PSP2 & PSP PF2 \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{ccccl}
\begin{tabular}{l} 
RELEASE: \\
BOOK:
\end{tabular} & \begin{tabular}{l} 
OI20 \\
PASS User's Guide
\end{tabular} & & \\
WORD & & & \\
& & & & \\
BIT Rev:
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{5} & 0 & FLX 1 & * & MDM Return Word & Single FLX 1/2 \\
\hline & 1 & FLX 1 & & Element 1 & Single FLX 1/2 \\
\hline & 2 & FLX 1 & & Element 2 & Single FLX \(1 / 2\) \\
\hline & 3 & FLX 1 & & Element 3 & Single FLX \(1 / 2\) \\
\hline & 4 & FLX 1 & & Element 4 & Single FLX \(1 / 2\) \\
\hline & 5 & FLX 1 & & Element 5 & Single FLX 1/2 \\
\hline & 6 & FLX 1 & & Element 6 & Single FLX \(1 / 2\) \\
\hline & 7 & FLX 1 & & Element 7 & Single FLX \(1 / 2\) \\
\hline & 8 & FLX 1 & & Element 8 & Single FLX \(1 / 2\) \\
\hline & 9 & FLX 1 & & Element 9 & Single FLX \(1 / 2\) \\
\hline & 10 & FLX 1 & & Element 10 & Single FLX \(1 / 2\) \\
\hline & 11 & FLX 1 & & Element 11 & Single FLX \(1 / 2\) \\
\hline & 12 & FLX 1 & & Element 12 & Single FLX \(1 / 2\) \\
\hline & 13 & FLX 1 & & Element 13 & Single FLX \(1 / 2\) \\
\hline & 14 & FLX 1 & & Element 14 & Single FLX \(1 / 2\) \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & FLX 2 & * & MDM Return Word & Single FLX 1/2 \\
\hline & 17 & FLX 2 & & Element 1 & Single FLX \(1 / 2\) \\
\hline & 18 & FLX 2 & & Element 2 & Single FLX \(1 / 2\) \\
\hline & 19 & FLX 2 & & Element 3 & Single FLX \(1 / 2\) \\
\hline & 20 & FLX 2 & & Element 4 & Single FLX \(1 / 2\) \\
\hline & 21 & FLX 2 & & Element 5 & Single FLX \(1 / 2\) \\
\hline & 22 & FLX 2 & & Element 6 & Single FLX \(1 / 2\) \\
\hline & 23 & FLX 2 & & Element 7 & Single FLX \(1 / 2\) \\
\hline & 24 & FLX 2 & & Element 8 & Single FLX \(1 / 2\) \\
\hline & 25 & FLX 2 & & Element 9 & Single FLX \(1 / 2\) \\
\hline & 26 & FLX 2 & & Element 10 & Single FLX \(1 / 2\) \\
\hline & 27 & FLX 2 & & Element 11 & Single FLX \(1 / 2\) \\
\hline & 28 & FLX 2 & & Element 12 & Single FLX \(1 / 2\) \\
\hline & 29 & FLX 2 & & Element 13 & Single FLX \(1 / 2\) \\
\hline & 30 & FLX 2 & & Element 14 & Single FLX 1/2 \\
\hline & 31 & Null & & Null & Null \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{6} & 0 & FLX 3 & * & MDM Return Word & Single FLX 3/4 \\
\hline & 1 & FLX 3 & & Element 1 & Single FLX 3/4 \\
\hline & 2 & FLX 3 & & Element 2 & Single FLX 3/4 \\
\hline & 3 & FLX 3 & & Element 3 & Single FLX 3/4 \\
\hline & 4 & FLX 3 & & Element 4 & Single FLX 3/4 \\
\hline & 5 & FLX 3 & & Element 5 & Single FLX 3/4 \\
\hline & 6 & FLX 3 & & Element 6 & Single FLX 3/4 \\
\hline & 7 & FLX 3 & & Element 7 & Single FLX 3/4 \\
\hline & 8 & FLX 3 & & Element 8 & Single FLX 3/4 \\
\hline & 9 & FLX 3 & & Element 9 & Single FLX 3/4 \\
\hline & 10 & FLX 3 & & Element 10 & Single FLX 3/4 \\
\hline & 11 & FLX 3 & & Element 11 & Single FLX 3/4 \\
\hline & 12 & FLX 3 & & Element 12 & Single FLX 3/4 \\
\hline & 13 & FLX 3 & & Element 13 & Single FLX 3/4 \\
\hline & 14 & FLX 3 & & Element 14 & Single FLX 3/4 \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & FLX 4 & * & MDM Return Word & Single FLX 3/4 \\
\hline & 17 & FLX 4 & & Element 1 & Single FLX 3/4 \\
\hline & 18 & FLX 4 & & Element 2 & Single FLX 3/4 \\
\hline & 19 & FLX 4 & & Element 3 & Single FLX 3/4 \\
\hline & 20 & FLX 4 & & Element 4 & Single FLX 3/4 \\
\hline & 21 & FLX 4 & & Element 5 & Single FLX 3/4 \\
\hline & 22 & FLX 4 & & Element 6 & Single FLX 3/4 \\
\hline & 23 & FLX 4 & & Element 7 & Single FLX 3/4 \\
\hline & 24 & FLX 4 & & Element 8 & Single FLX 3/4 \\
\hline & 25 & FLX 4 & & Element 9 & Single FLX 3/4 \\
\hline & 26 & FLX 4 & & Element 10 & Single FLX 3/4 \\
\hline & 27 & FLX 4 & & Element 11 & Single FLX 3/4 \\
\hline & 28 & FLX 4 & & Element 12 & Single FLX 3/4 \\
\hline & 29 & FLX 4 & & Element 13 & Single FLX 3/4 \\
\hline & 30 & FLX 4 & & Element 14 & Single FLX 3/4 \\
\hline & 31 & Null & & Null & Null \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
RELEASE: \\
BOOK:
\end{tabular} & \[
\begin{aligned}
& \text { OI20 } \\
& \text { PASS }
\end{aligned}
\] & ser's Guide & & & Date
Rev \\
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline 7 & 0 & FLX 5 & * & MDM Return Word & Single FLX 5 \\
\hline & 1 & FLX 5 & & Element 1 & Single FLX 5 \\
\hline & 2 & FLX 5 & & Element 2 & Single FLX 5 \\
\hline & 3 & FLX 5 & & Element 3 & Single FLX 5 \\
\hline & 4 & FLX 5 & & Element 4 & Single FLX 5 \\
\hline & 5 & FLX 5 & & Element 5 & Single FLX 5 \\
\hline & 6 & FLX 5 & & Element 6 & Single FLX 5 \\
\hline & 7 & FLX 5 & & Element 7 & Single FLX 5 \\
\hline & 8 & FLX 5 & & Element 8 & Single FLX 5 \\
\hline & 9 & FLX 5 & & Element 9 & Single FLX 5 \\
\hline & 10 & FLX 5 & & Element 10 & Single FLX 5 \\
\hline & 11 & FLX 5 & & Element 11 & Single FLX 5 \\
\hline & 12 & FLX 5 & & Element 12 & Single FLX 5 \\
\hline & 13 & FLX 5 & & Element 13 & Single FLX 5 \\
\hline & 14 & FLX 5 & & Element 14 & Single FLX 5 \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & FLX & * & MDM Return Word & Dual Port 3 \\
\hline & 17 & FLX/SCA & & Element 1 & Dual Port 3 \\
\hline & 18 & FLX/SCA & & Element 2 & Dual Port 3 \\
\hline & 19 & FLX & & Element 3 & Dual Port 3 \\
\hline & 20 & FLX & & Element 4 & Dual Port 3 \\
\hline & 21 & FLX & & Element 5 & Dual Port 3 \\
\hline & 22 & FLX & & Element 6 & Dual Port 3 \\
\hline & 23 & FLX & & Element 7 & Dual Port 3 \\
\hline & 24 & FLX & & Element 8 & Dual Port 3 \\
\hline & 25 & FLX & & Element 9 & Dual Port 3 \\
\hline & 26 & FLX & & Element 10 & Dual Port 3 \\
\hline & 27 & FLX & & Element 11 & Dual Port 3 \\
\hline & 28 & FLX & & Element 12 & Dual Port 3 \\
\hline & 29 & FLX & & Element 13 & Dual Port 3 \\
\hline & 30 & FLX & & Element 14 & Dual Port 3 \\
\hline & 31 & Null & & Null & Null \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{8} & 0 & FLS & * & MDM Return Word & Dual Port 1 \\
\hline & 1 & FLX/SCA & & Element 1 & Dual Port 1 \\
\hline & 2 & FLX/SCA & & Element 2 & Dual Port 1 \\
\hline & 3 & FLX & & Element 3 & Dual Port 1 \\
\hline & 4 & FLX & & Element 4 & Dual Port 1 \\
\hline & 5 & FLX & & Element 5 & Dual Port 1 \\
\hline & 6 & FLX & & Element 6 & Dual Port 1 \\
\hline & 7 & FLX & & Element 7 & Dual Port 1 \\
\hline & 8 & FLX & & Element 8 & Dual Port 1 \\
\hline & 9 & FLX & & Element 9 & Dual Port 1 \\
\hline & 10 & FLX & & Element 10 & Dual Port 1 \\
\hline & 11 & FLX & & Element 11 & Dual Port 1 \\
\hline & 12 & FLX & & Element 12 & Dual Port 1 \\
\hline & 13 & FLX & & Element 13 & Dual Port 1 \\
\hline & 14 & FLX & & Element 14 & Dual Port 1 \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & FLX & * & MDM Return Word & Dual Port 1 \\
\hline & 17 & FLX/SCA & & Element 1 & Dual Port 1 \\
\hline & 18 & FLX/SCA & & Element 2 & Dual Port 1 \\
\hline & 19 & FLX & & Element 3 & Dual Port 1 \\
\hline & 20 & FLX & & Element 4 & Dual Port 1 \\
\hline & 21 & FLX & & Element 5 & Dual Port 1 \\
\hline & 22 & FLX & & Element 6 & Dual Port 1 \\
\hline & 23 & FLX & & Element 7 & Dual Port 1 \\
\hline & 24 & FLX & & Element 8 & Dual Port 1 \\
\hline & 25 & FLX & & Element 9 & Dual Port 1 \\
\hline & 26 & FLX & & Element 10 & Dual Port 1 \\
\hline & 27 & FLX & & Element 11 & Dual Port 1 \\
\hline & 28 & FLX & & Element 12 & Dual Port 1 \\
\hline & 29 & FLX & & Element 13 & Dual Port 1 \\
\hline & 30 & FLX & & Element 14 & Dual Port 1 \\
\hline & 31 & Null & & Null & Null \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline \multirow[t]{32}{*}{9} & 0 & FLX & * & MDM Return Word & Dual Port 2 \\
\hline & 1 & FLX/SCA & & Element 1 & Dual Port 2 \\
\hline & 2 & FLX/SCA & & Element 2 & Dual Port 2 \\
\hline & 3 & FLX & & Element 3 & Dual Port 2 \\
\hline & 4 & FLX & & Element 4 & Dual Port 2 \\
\hline & 5 & FLX & & Element 5 & Dual Port 2 \\
\hline & 6 & FLX & & Element 6 & Dual Port 2 \\
\hline & 7 & FLX & & Element 7 & Dual Port 2 \\
\hline & 8 & FLX & & Element 8 & Dual Port 2 \\
\hline & 9 & FLX & & Element 9 & Dual Port 2 \\
\hline & 10 & FLX & & Element 10 & Dual Port 2 \\
\hline & 11 & FLX & & Element 11 & Dual Port 2 \\
\hline & 12 & FLX & & Element 12 & Dual Port 2 \\
\hline & 13 & FLX & & Element 13 & Dual Port 2 \\
\hline & 14 & FLX & & Element 14 & Dual Port 2 \\
\hline & 15 & Null & & Null & Null \\
\hline & 16 & FLX & * & MDM Return Word & Dual Port 2 \\
\hline & 17 & FLX/SCA & & Element 1 & Dual Port 2 \\
\hline & 18 & FLX/SCA & & Element 2 & Dual Port 2 \\
\hline & 19 & FLX & & Element 3 & Dual Port 2 \\
\hline & 20 & FLX & & Element 4 & Dual Port 2 \\
\hline & 21 & FLX & & Element 5 & Dual Port 2 \\
\hline & 22 & FLX & & Element 6 & Dual Port 2 \\
\hline & 23 & FLX & & Element 7 & Dual Port 2 \\
\hline & 24 & FLX & & Element 8 & Dual Port 2 \\
\hline & 25 & FLX & & Element 9 & Dual Port 2 \\
\hline & 26 & FLX & & Element 10 & Dual Port 2 \\
\hline & 27 & FLX & & Element 11 & Dual Port 2 \\
\hline & 28 & FLX & & Element 12 & Dual Port 2 \\
\hline & 29 & FLX & & Element 13 & Dual Port 2 \\
\hline & 30 & FLX & & Element 14 & Dual Port 2 \\
\hline & 31 & Null & & Null & Null \\
\hline
\end{tabular}

Figure 8.2-5. Bypass/Commfault Words Description (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline RELEASE: BOOK: & \[
\begin{aligned}
& \text { OI20 } \\
& \text { PASS }
\end{aligned}
\] & ser's Gu & & & \[
\begin{aligned}
& \text { Date } \\
& \text { Rev: }
\end{aligned}
\] \\
\hline WORD & BIT & BTU & ELE\# & ELEMENT & TRANSACTION \\
\hline 10 & 0 & PF1 & 85 & PBD & PL High Rate \\
\hline & 1 & PF1 & 86 & PBD & PL High Rate \\
\hline & 2 & PF1 & 87 & PBD & PL High Rate \\
\hline & 3 & PL1 & * & Element 4 & PL High Rate \\
\hline & 4 & PL1 & & Element 5 & PL High Rate \\
\hline & 5 & PL1 & & Element 6 & PL High Rate \\
\hline & 6 & PL1 & & Element 7 & PL High Rate \\
\hline & 7 & PL1 & & Element 8 & PL High Rate \\
\hline & 8 & PL1 & & Element 9 & PL High Rate \\
\hline & 9 & PL1 & & Element 10 & PL High Rate \\
\hline & 10 & PL1 & & Element 11 & PL High Rate \\
\hline & 11 & PL1 & & Element 12 & PL High Rate \\
\hline & 12 & PL1 & & Element 13 & PL High Rate \\
\hline & 13 & PL1 & & Element 14 & PL High Rate \\
\hline & 14 & PL1 & & Element 15 & PL High Rate \\
\hline & 15 & PL1 & & Element 16 & PL High Rate \\
\hline & 16 & PF2 & 88 & PBD & PL High Rate \\
\hline & 17 & PF2 & 89 & PBD & PL High Rate \\
\hline & 18 & PF2 & 90 & PBD & PL High Rate \\
\hline & 19 & PL2 & * & Element 4 & PL High Rate \\
\hline & 20 & PL2 & & Element 5 & PL High Rate \\
\hline & 21 & PL2 & & Element 6 & PL High Rate \\
\hline & 22 & PL2 & & Element 7 & PL High Rate \\
\hline & 23 & PL2 & & Element 8 & PL High Rate \\
\hline & 24 & PL2 & & Element 9 & PL High Rate \\
\hline & 25 & PL2 & & Element 10 & PL High Rate \\
\hline & 26 & PL2 & & Element 11 & PL High Rate \\
\hline & 27 & PL2 & & Element 12 & PL High Rate \\
\hline & 28 & PL2 & & Element 13 & PL High Rate \\
\hline & 29 & PL2 & & Element 14 & PL High Rate \\
\hline & 30 & PL2 & & Element 15 & PL High Rate \\
\hline & 31 & PL2 & & Element 16 & PL High Rate \\
\hline
\end{tabular}

Date: 12/20/90
Rev: 0

TRANSACTION

PL High Rate

PL High Rate
PL High Rate
High Rate

PL High Rate
PL High Rate

PL High Rate
PL High Rate
PL High Rate

PL High Rate
PL High Rate
PL High Rate

PL High Rate
PL High Rate
PL High Rate
gh Rate

PL High Rate
PL High Rate
PL High Rate

PL High Rate

Figure 8.2-5. Bypass/Commfault Words Description (Continued)

\subsection*{8.2.1 I/O Related User Notes}

Because of the complex nature of the PASS I/O technique, several items are not self-evident to the user. These are included here to prevent misapplication of the software and to provide a quick-look reference for unexpected occurrences.
-1 Consecutive I/O Resets (31435)
-2 I/O Reset With Failed MTU Causes BFS to Downmode a String (35211)
-3 Downlist I/O Error Log Overrun Conditions (37509)
-4 Restore NSP Element (34656)
-5 DEU IPL - "I/O ERROR CRT" (37706)
-6 No Re-Enable of DEU I/O Error Annunciation For Hard DEU I/O Failures (37507)
-7 Unannunciated BCE Bypasses (14403/55237)
-8 Transient I/O Errors When Downmoding a RS to OPS 0 (34665)
-9 Resetting BTU Port Failure Indicators (33304)
-10 BFS - PASS I/O Windows Missed (39359)
-11 Setting of NSP and MTU Commfaults After an FF MDM Bypass (37533)
-12 BCE Element Bypass on Power Transient Detection (39054)

\subsection*{8.2.2 I/O Error Log (CZ2V_IO_ERR_LOG)}
-1 The I/O Error Log includes the following:
- First five I/O errors since IPL or since the previous ERR LOG RESET on GPC Memory.
- Last five I/O errors (Downlisted).
- Index to the last entry made in the error log.
- Last I/O error from each GPC including the cumulative count in each GPC (Downlisted).
-2 Each error is defined in eight 16 bit words.
-3 Words 1 \& 2
3.1 Bits \(0-4\) contain the BUS number on which the error occurred (Table 8.2-1).
3.2 Bits 5-9 UNUSED.
3.3 Bits 10-16 contain the device ID (Table 8.2-7).
3.4 Bits 17-20 contain the operation code (Table 8.2-7). (30107)
3.5 Bits \(21-31\) contain the residual word count. (25062/25140)
\begin{tabular}{ll|l} 
RELEASE: & Ol20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: & 0
\end{tabular}
-4 Word 3: Bits 0-7 BUS control element number COMFAULTABLE

FD - No Bus Management Table entry found
FE - Overlay in progress, unable to search Bus Management Table
XX - Valid Element Number, Bus Management Table entry found (see Table 8.2-8). NON-COMFAULTABLE

OO - Not protected, not TCS Quad FA, nor TCS Quad FF, nor TCS MSEC/EIU
FF - Protected, TCS Quad FA, TCS Quad FF, or TCS MSEC/EIU
-5 Words 4 \& 5: IOP status register (Tables 8.2-2 through 8.2-6).
-6 Words 6, 7, \& 8: Time of the error - RUNTIME (Word 6: Time of the error (LSB of 30 Min ); Word 7 \& 8: Time of the error (LSB \(=1\) microsecond).
-7 Word 9: Cumulative count of Errors.


TABLE 8.2-2. BCE (1 THRU 24) STATUS WORD CONTENTS

\begin{tabular}{|c|c|c|c|c|}
\hline WD1 & WD2 & BIT \# & ERROR & DESCRIPTION \\
\hline 1000 & 0000 & 3 & SIG MIS & Signature Mismatch detected by MC/Hardware(I). While executing an RDS, RDL, or MIN instruction, microcode detected a mismatch between the input IUA and the BCE's IUAR (BCE Local Store (LS) REG C5). Wait State, Data not stored. \\
\hline 0800 & 0000 & 4 & PARITY & Parity detected by the MIA(I). While executing a Receive Data Instruction, an input word with bad parity was detected. Wait State, Data not stored in MIA buffer. \\
\hline 0X00 & 0000 & 5-7 & SEV BIT & SEV Bits detected by MC/Hardware(I). This field is the logical OR of the SEV bits of all input words that were detected to have errors during execution of previous Receive Data Instruction. The S and V bits were inverted before the OR, thus any pattern other than 101 will be recorded in these bits. Wait State, Data not stored in MIA buffer. \\
\hline 00X8 & 0000 & 8-12 & IUA & Subsystem Address field is the logical OR of the received subsystem address of the input word that was detected to have an error during execution of previous Receive Data Instruction. \\
\hline 0001 & 0000 & 15 & SYNC & Sync Error detected by the MC(I,O). While executing a Receive Data Instruction, an input word with command sync was received. Wait State, Data not stored in MIA buffer. \\
\hline
\end{tabular}

TABLE 8.2-2. BCE (1 THRU 24) STATUS WORD CONTENTS (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline WD1 & WD2 & BIT \# & ERROR & DESCRIPTION \\
\hline 0000 & 0400 & 21 & GAP & GAP detected by MC Time Out (O). A gap of greater than 20 micro seconds occurred during execution of a Transmit Data Instruction or 5 micro seconds during a MOUT. Wait State. \\
\hline 0000 & 0200 & 22 & SELF TEST & Self Test Error detected by BCE Self Test. A BCE Self Test Instruction has detected a fault in the BCE. Valid during self test only, will not be seen in flight. \\
\hline 0000 & 0100 & 23 & XMIT DIS & Transmitter Disabled, detected by MC Test (I/O). At the point of execution of a TDS, TDL, MOUT, or MIN Instruction, the MIA associated with this BCE had its transmitter disabled. This bit is also set if the MIA was found busy when it was time to initiate transmission of a new data word or the MIN command word. Wait State. \\
\hline 0000 & 0040 & 25 & INIT T/O & Initial Time Out detected by MC Time Out (I). A Receive Data Instruction timed out while waiting for the first input word to arrive. Wait State. \\
\hline 0000 & 0020 & 26 & T/O & Time Out detected by MC Time Out (I). A Receive Data Instruction timed out while waiting for a data word to arrive. This time out occurred on data inputs other than the first word. \\
\hline 0000 & 0010 & 27 & BLOCK T/O & Block Time Out detected by MC Time Out (I). A Receive Data Instruction timed out while waiting for an interblock gap to end. Only valid when getting data from Mass Memory. \\
\hline 0000 & 0008 & 28 & BOUNDARY & \begin{tabular}{l}
Boundary Alignment Error detected by MC (I). \\
This BCE encounters a long format instruction on an odd halfword boundary. Wait State.
\end{tabular} \\
\hline 0000 & 0004 & 29 & OP CODE & Illegal Op Code detected by MC (I,O). This BCE encountered an illegal instruction in the execution of a program. Wait State. \\
\hline
\end{tabular}
\(\mathrm{MC}=\) Microcode; \((\mathrm{I})=\) Input Operation; \((\mathrm{O})=\) Output Operation;
WAIT STATE \(=\) BCE Program goes to WAIT STATE.
NOTE: A BCE of \(1-5\) with an IOP Status Register of zero indicates an ICC message buffer checksum miscompare for the given \(\mathrm{BCE} / \mathrm{GPC}\).

TABLE 8.2-3. BCE (27) STATUS WORD CONTENTS

\begin{tabular}{|l|l|l|l|l|}
\hline WD1 & WD2 & BIT \# & ERROR & DESCRIPTION \\
\hline 0200 & 0000 & 6 & FAILED MM & Failed of Powered down MM. \\
0100 & 0000 & 7 & SEL FOR IPL & MM selected for IPL. \\
0080 & 0000 & 8 & CHECKSUM & Checksum Error. \\
0040 & 0000 & 9 & BUSY & Bus Busy or Checksum Buff Reserved. \\
0008 & 0000 & 12 & LDB 1 BUS & Error on LB1 Bus 12. \\
0004 & 0000 & 13 & LDB 2 BUS & Error on LB2 Bus 13. \\
0000 & 2000 & 18 & MM1 BUS & Error on MM1 Bus 18. \\
0000 & 1000 & 19 & MM2 BUS & Error on MM2 Bus 19. \\
\hline
\end{tabular}

TABLE 8.2-4. BCE (28) STATUS WORD CONTENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{BIT POSITION} & \multicolumn{16}{|c|}{WORD 1} & & \multicolumn{14}{|c|}{WORD 2} \\
\hline & 0 & \multicolumn{2}{|l|}{} & \multicolumn{4}{|l|}{345} & \multicolumn{4}{|l|}{6789} & \multicolumn{2}{|l|}{\(\begin{array}{ll}1 & \\ 0 & 1\end{array}\)} & \multicolumn{2}{|l|}{23} & \multicolumn{2}{|l|}{45} & 56 & \multicolumn{3}{|l|}{789} & 2 & \multicolumn{2}{|l|}{12} & \multicolumn{2}{|l|}{34} & \multicolumn{3}{|l|}{56789} & \multicolumn{2}{|l|}{3} \\
\hline ERROR & 0 & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & B & & 0 & 00 & & 0 \\
\hline DESCRIPTION & & U & U & U & U & U & U & \(\cup\) & U & U & U & \(\cup\) & U & U & \(\cup\) & U & U & U & U & U & U & U & U & U & U & U & & & & & \\
\hline & & S & S & S & S & S & & S S & S & S & S & S & S & S & S & S & S & S & S & S & S & S & S & S & S & S & & & & & \\
\hline & & 1 & 2 & 3 & 4 & 5 & 56 & 6 & 7 & 8 & 9 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & & & & & \\
\hline & & & & & & & & & & & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline WD1 & WD2 & BIT \# & ERROR & DESCRIPTION \\
\hline 4000 & 0000 & 1 & BUS 1 & Bus 1 on which MSC Timeout occurred. \\
2000 & 0000 & 2 & BUS 2 & Bus 2 on which MSC Timeout occurred. \\
1000 & 0000 & 3 & BUS 3 & Bus 3 on which MSC Timeout occurred. \\
0800 & 0000 & 4 & BUS 4 & Bus 4 on which MSC Timeout occurred. \\
0400 & 0000 & 5 & BUS 5 & Bus 5 on which MSC Timeout occurred. \\
0200 & 0000 & 6 & BUS 6 & Bus 6 on which MSC Timeout occurred. \\
0100 & 0000 & 7 & BUS 7 & Bus 7 on which MSC Timeout occurred. \\
0080 & 0000 & 8 & BUS 8 & Bus 8 on which MSC Timeout occurred. \\
0040 & 0000 & 9 & BUS 9 & Bus 9 on which MSC Timeout occurred. \\
0020 & 0000 & 10 & BUS 10 & Bus 10 on which MSC Timeout occurred. \\
0010 & 0000 & 11 & BUS 11 & Bus 11 on which MSC Timeout occurred. \\
0008 & 0000 & 12 & BUS 12 & Bus 12 on which MSC Timeout occurred. \\
0004 & 0000 & 13 & BUS 13 & Bus 13 on which MSC Timeout occurred. \\
0002 & 0000 & 14 & BUS 14 & Bus 14 on which MSC Timeout occurred. \\
0001 & 0000 & 15 & BUS 15 & Bus 15 on which MSC Timeout occurred. \\
0000 & 8000 & 16 & BUS 16 & Bus 16 on which MSC Timeout occurred. \\
0000 & 4000 & 17 & BUS 17 & Bus 17 on which MSC Timeout occurred. \\
0000 & 2000 & 18 & BUS 18 & Bus 18 on which MSC Timeout occurred. \\
0000 & 1000 & 19 & BUS 19 & Bus 19 on which MSC Timeout occurred. \\
0000 & 0800 & 20 & BUS 20 & Bus 20 on which MSC Timeout occurred. \\
0000 & 0400 & 21 & BUS 21 & Bus 21 on which MSC Timeout occurred. \\
0000 & 0200 & 22 & BUS 22 & Bus 22 on which MSC Timeout occurred. \\
0000 & 0100 & 23 & BUS 23 & Bus 23 on which MSC Timeout occurred. \\
0000 & 0080 & 24 & BUS 24 & Bus 24 on which MSC Timeout occurred. \\
\hline
\end{tabular}

TABLE 8.2-5. BCE (29) STATUS WORD CONTENTS

\(\left.\begin{array}{|l|l|l|l|l|}\hline \text { WD1 } & \text { WD2 } & \text { BIT \# } & \text { ERROR } & \text { DESCRIPTION } \\
\hline 8000 & 0000 & 0 & \text { NONE } & \text { Not defined for AP-101S. } \\
4000 & 0000 & 1 & \text { NONE } & \text { Not defined for AP-101S. } \\
2000 & 0000 & 2 & \text { NONE } & \text { Not defined for AP-101S. } \\
0800 & 0000 & 4 & \text { OVERFLOW } & \text { DMA Q Overflow. } \\
0400 & 0000 & 5 & \text { TIMEOUT } & \text { DMA Timeout. } \\
000 \mathrm{X} & 0000 & 13-15 & \begin{array}{l}\text { INTERRUPT } \\
\text { LEVEL B } \\
\text { CODE }\end{array} & \begin{array}{l}\text { Level B Interrupt Code. } \\
1\end{array} \quad \text { (100) I/O Store Protect Violation. } \\
2 \quad \text { (110) AGE Interrupt. }\end{array}\right]\)\begin{tabular}{ll} 
All other codes undefined for AP-101S.
\end{tabular}

TABLE 8.2-6. BCE (30) STATUS WORD CONTENTS

\(\left.\begin{array}{|l|l|l|l|l|}\hline \text { WD1 } & \text { WD2 } & \text { BIT \# } & \text { ERROR } & \text { DESCRIPTION } \\ \hline 8000 & 0000 & 0 & \begin{array}{l}\text { GO/NO-GO } \\ 4000\end{array} & 0000 \\ 2000 & 0000 & 2 & \text { FAIL LATCH } & \begin{array}{l}\text { Go/No-Go Timer. Timer has timed out and } \\ \text { generated the interrupt. }\end{array} \\ 1000 & 0000 & 3 & \text { R/M IDLE } & \begin{array}{l}\text { IOP Fail Latch. The IOP RM Voter Logic has } \\ \text { detected two or more U-FAIL votes indicating this } \\ \text { GPC has failed to SYNC. } \\ \text { C/M Idle. The IOP Control/Monitor logic is in the } \\ \text { Idle mode and available for further operations. }\end{array} \\ 0800 & 0000 & 4 & \text { IOP FAULT } & \begin{array}{l}\text { ROS Parity Error. A parity error has occurred } \\ \text { during transfer from IOP Read Only Storage (ROS). } \\ \text { Bit 2 is also set when this failure occurs. }\end{array} \\ \text { IOP Fault. The bit is set when the IOP detects a } \\ \text { transient or hard failure of the IOP oscillator. Bit 2 } \\ \text { is also set when this failure occurs. }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 8.2-7. PASS FCOS I/O DEVICE IDs} \\
\hline \multirow[b]{2}{*}{DEVICE} & \multirow[b]{2}{*}{ID} & \multicolumn{9}{|c|}{OPERATION CODE **} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline IPR Via ICC (RS) & 1 & & & & & & & & & \\
\hline GPC to GPC & 2 & WRT & RDS & No-op & & & & & & \\
\hline *SSIP ICC & 3 & & & & & & & & & \\
\hline SSUS Output & 4 & WRT & & & & & & & & \\
\hline DEU \#1 & 5 & Fill & Poll & \[
\begin{aligned}
& \text { IPL } \\
& \text { Fill }
\end{aligned}
\] & Dump & \begin{tabular}{l}
Request \\
BITE \\
Status
\end{tabular} & \begin{tabular}{l}
Reset \\
Scratch \\
Pad Li.
\end{tabular} & \begin{tabular}{l}
Crit. \\
Format Fill
\end{tabular} & Remote Fill & Remote Dump \\
\hline DEU \#2 & 6 & Fill & Poll & \[
\begin{aligned}
& \text { IPL } \\
& \text { Fill }
\end{aligned}
\] & Dump & \begin{tabular}{l}
Request \\
BITE \\
Status
\end{tabular} & \begin{tabular}{l}
Reset \\
Scratch \\
Pad Li.
\end{tabular} & \begin{tabular}{l}
Crit. \\
Format Fill
\end{tabular} & Remote Fill & Remote Dump \\
\hline DEU \#3 & 7 & Fill & Poll & \[
\begin{aligned}
& \text { IPL } \\
& \text { Fill }
\end{aligned}
\] & Dump & \begin{tabular}{l}
Request \\
BITE \\
Status
\end{tabular} & \begin{tabular}{l}
Reset \\
Scratch \\
Pad Li.
\end{tabular} & \begin{tabular}{l}
Crit. \\
Format Fill
\end{tabular} & Remote Fill & Remote Dump \\
\hline DEU \#4 & 8 & Fill & Poll & \[
\begin{aligned}
& \text { IPL } \\
& \text { Fill }
\end{aligned}
\] & Dump & \begin{tabular}{l}
Request \\
BITE \\
Status
\end{tabular} & Reset Scratch Pad Li. & \begin{tabular}{l}
Crit. \\
Format Fill
\end{tabular} & Remote Fill & Remote Dump \\
\hline DDU & 9 & WRT ALL DDU & \[
\begin{aligned}
& \text { WRT } \\
& \text { ADI }
\end{aligned}
\] & & & & & & & \\
\hline PMU's \({ }^{1}\) & 10 & \begin{tabular}{l}
WRT \\
GPC \\
Data \\
RAM
\end{tabular} & WRT 128 KBPS Program & \begin{tabular}{l}
WRT \\
64 \\
KBPS \\
Program
\end{tabular} & \[
\begin{aligned}
& \text { RDS } \\
& 128 \\
& \text { KBPS } \\
& \text { Program } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { RDS } \\
& 64 \\
& \text { KBPS } \\
& \text { Program } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { RDS } \\
& \text { BITE }
\end{aligned}
\] & Hard FMT Select & Program FMT Select & SM RDS OI/PL RAM \\
\hline \(\mathrm{MMU}^{2}\) & 11 & WRT With Chksum & WRT Without Chksum & RDS With Chksum & RDS Without Chksum & MM Utility WRT & Read Stat Reg. & Overlay Read & Position Tape & MM Utility Read \\
\hline FC Bite Acquisi. & 12 & & RDS & & & & & & & \\
\hline * HFE Input & 13 & & RDS & & & & & & & \\
\hline *HFE Output & 14 & WRT & & & & & & & & \\
\hline * MFE Input & 15 & & RDS & & & & & & & \\
\hline GNC OPS Initial Input (BITE Test 4) & 16 & & RDS & & & & & & & \\
\hline IMU Input & 17 & & RDS & & & & & & & \\
\hline IMU Output & 18 & WRT & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 8.2-7. PASS FCOS I/O DEVICE IDs (Continued)} \\
\hline & & \multicolumn{9}{|c|}{OPERATION CODE **} \\
\hline DEVICE & ID & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline MTU 1 RS & 19 & WRT & MET RESET & & & & & & & \\
\hline MTU 2 RS & 20 & WRT & \begin{tabular}{l}
MET \\
RESET
\end{tabular} & & & & & & & \\
\hline MTU 3 RS & 21 & WRT & MET RESET & & & & & & & \\
\hline MTU ALL & 22 & & RDS & & & & & & & \\
\hline FC C \& W WRT & 23 & WRT & & & & & & & & \\
\hline \begin{tabular}{l}
*NSP \\
Cyclic Input
\end{tabular} & 24 & & RDS & & & & & & & \\
\hline FAOUT & 25 & WRT & & & & & & & & \\
\hline \begin{tabular}{l}
*HDA \\
Input 1
\end{tabular} & 26 & & RDS & & & & & & & \\
\hline TCS FF1 & 27 & WRT & RDS & & & & & & & \\
\hline TCS FF2 & 28 & WRT & RDS & & & & & & & \\
\hline TCS FF3 & 29 & WRT & RDS & & & & & & & \\
\hline TCS FF4 & 30 & WRT & RDS & & & & & & & \\
\hline TCS FA1 & 31 & WRT & RDS & & & & & & & \\
\hline TCS FA2 & 32 & WRT & RDS & & & & & & & \\
\hline TCS FA3 & 33 & WRT & RDS & & & & & & & \\
\hline TCS FA4 & 34 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS QUAD } \\
& \text { FA }
\end{aligned}
\] & 35 & WRT & RDS & & & & & & & \\
\hline TCS QUAD FF & 36 & WRT & RDS & & & & & & & \\
\hline \begin{tabular}{l}
RJD \\
CMD A \\
TOGGLER
\end{tabular} & 37 & WRT & & & & & & & & \\
\hline NSW STEERING & 38 & & RDS & & & & & & & \\
\hline \begin{tabular}{l}
MECFIRE \\
2 FIRE 3
\end{tabular} & 39 & WRT & RDS & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 8.2-7. PASS FCOS I/O DEVICE IDs (Continued)} \\
\hline & & \multicolumn{9}{|c|}{OPERATION CODE **} \\
\hline DEVICE & 1D & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline G9 ONE SHOT & 40 & WRT & & & & & & & & \\
\hline \begin{tabular}{l}
TCS \\
MODEABLE
\end{tabular} & 41 & WRT & RDS & & & & & & & \\
\hline \begin{tabular}{l}
TCS \\
MULTI-BUS
\end{tabular} & 42 & WRT & RDS & & & & & & & \\
\hline PF BITE ACQUI. & 43 & & RDS & & & & & & & \\
\hline PF 1 DISC & 44 & WRT & & & & & & & & \\
\hline PF 2 DISC & 45 & WRT & & & & & & & & \\
\hline TCS PFl & 46 & WRT & RDS & & & & & & & \\
\hline TCS PF2 & 47 & WRT & RDS & & & & & & & \\
\hline SM PF FIXED OUTPUTS & 48 & \begin{tabular}{l}
Cyclic \\
Output
\end{tabular} & \[
\begin{aligned}
& \text { Payload } \\
& \text { Bay } \\
& \text { Drs }
\end{aligned}
\] & & & & & & & \\
\hline PSP PF1 & 49 & WRT & STATUS & & & & & & & \\
\hline PSP PF2 & 50 & WRT & STATUS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { PL HIGH } \\
& \text { RATE* }
\end{aligned}
\] & 51 & & RDS & & & & & & & \\
\hline PF LOW RATE & 52 & & RDS & & & & & & & \\
\hline \begin{tabular}{l}
DUAL \\
Port 1
\end{tabular} & 53 & & RDS & & & & & , & & \\
\hline \begin{tabular}{l}
DUAL \\
Port 2
\end{tabular} & 54 & & RDS & & & & & & & \\
\hline \begin{tabular}{l}
DUAL \\
Port 3
\end{tabular} & 55 & & RDS & & & & & & & \\
\hline \begin{tabular}{l}
Single \\
Flex 1/2
\end{tabular} & 56 & & RDS & & & & & & & \\
\hline \begin{tabular}{l}
Single \\
Flex \(3 / 4\)
\end{tabular} & 57 & & & & & & & & & \\
\hline \begin{tabular}{l}
Single \\
Flex 5
\end{tabular} & 58 & & RDS & & & & & & & \\
\hline SM Table Driven & 59 & & RDS & & & & & & & \\
\hline PDI & 60 & WRT & RDS & & & & & & & \\
\hline LDB* & 61 & INT. W/O DATA &  & \[
\begin{aligned}
& \text { GO } \\
& \text { AHEAD }
\end{aligned}
\] & TRANS ENABLE & STATUS REQUEST & STATUS & WAVE OFF & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 8.2-7. PASS FCOS I/O DEVICE IDs (Continued)} \\
\hline & & \multicolumn{9}{|c|}{OPERATION CODE**} \\
\hline DEVICE & ID & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline \begin{tabular}{l}
TCS LB \\
MDMs
\end{tabular} & 62 & WRT & RDS & & & & & & & \\
\hline SRB* & 63 & & RDS & & & & & & & \\
\hline TCS SRB & 64 & WRT & RDS & & & & & & & \\
\hline MCIU IN & 65 & & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { MCIU } \\
& \text { OUT }
\end{aligned}
\] & 66 & WRT & & & & & & & & \\
\hline TCS MCIU & 67 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS BUS } \\
& 10
\end{aligned}
\] & 68 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS BUS } \\
& 11
\end{aligned}
\] & 69 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS BUS } \\
& 14
\end{aligned}
\] & 70 & WRT & RDS & & & & & & & \\
\hline TCS Bus 15 & 71 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS Bus } \\
& 16
\end{aligned}
\] & 72 & WRT & RDS & & & & & & & \\
\hline TCS Bus 17 & 73 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS Bus } \\
& 20
\end{aligned}
\] & 74 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS Bus } \\
& 21
\end{aligned}
\] & 75 & WRT & RDS & & & & & & & \\
\hline \[
{ }_{22}^{\text {TCS Bus }}
\] & 76 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS Bus } \\
& 23
\end{aligned}
\] & 77 & WRT & RDS & & & & & & & \\
\hline \[
\begin{aligned}
& \text { TCS MSEC } \\
& / \text { EIU }
\end{aligned}
\] & 80 & WRT & & & & & & & & \\
\hline
\end{tabular}

1OP Code 10: TCS RDS OI/PL RAM. OP Code 11: WRT 64 KBPS one Word. OP Code 12: TCS RDS 64/128 KBPS Program.

2OP Code 10: TCS MM BITE Status.
*Pre-Initialized IOQUE
**For Single OP Code Device ID's, an OP Code of zero may be indicated in the I/O Error Log.

TABLE 8.2-8. BCE ELEMENT NUMBER TABLE
\begin{tabular}{|c|c|c|c|}
\hline ELEM & BUS & BTU & DESCRIPTION \\
\hline 1 & 14 & EIU1 & Port 1 (HFE) \\
\hline 2 & 15 & EIU2 & Port 1 (HFE) \\
\hline 3 & 16 & EIU3 & Port 1 (HFE) \\
\hline 4 & 17 & EIU1 & Port 4 (HFE) \\
\hline 5 & 17 & EIU2 & Port 4 (HFE) \\
\hline 6 & 17 & EIU3 & Port 4 (HFE) \\
\hline 7 & 20/14 & FF1 & MDM Return Word \\
\hline 8 & 20/14 & FF1 & Payload Sensor \\
\hline 9 & 20/14 & FF1 & ADTA \\
\hline 10 & 20/14 & FF1 & Input Prom Seq 2,6 \\
\hline 11 & 21/15 & FF2 & MDM Return Word \\
\hline 12 & 21/15 & FF2 & ADTA \\
\hline 13 & 21/15 & FF2 & Input Prom Seq 2,6 \\
\hline 14 & 22/16 & FF3 & MDM Return Word \\
\hline 15 & 22/16 & FF3 & ADTA \\
\hline 16 & 22/16 & FF3 & Input Prom Seq 2,6 \\
\hline 17 & 23/17 & FF4 & MDM Return Word \\
\hline 18 & 23/17 & FF4 & ADTA \\
\hline 19 & 23/17 & FF4 & Input Prom Seq 2,6 \\
\hline 20 & 14/20 & FA1 & MDM Return Word \\
\hline 21 & 14/20 & FA1 & Input Prom Seq 3,10 \\
\hline 22 & 15/21 & FA2 & MDM Return Word \\
\hline 23 & 15/21 & FA2 & Hyd. Sys 3 Press. C. \\
\hline 24 & 15/21 & FA2 & Input Prom Seq 3,10 \\
\hline 25 & 16/22 & FA3 & MDM Return Word \\
\hline 26 & 16/22 & FA3 & OMS Left Eng. Press. \\
\hline 27 & 16/22 & FA3 & Input Prom Seq 3,10 \\
\hline 28 & 17/23 & FA4 & MDM Return Word \\
\hline 29 & 17/23 & FA4 & OMS Rt. Eng. Press. \\
\hline 30 & 17/23 & FA4 & Input Prom Seq 3,10 \\
\hline 31 & 20/14 & FF1 & Input Prom Seq 1,2 \\
\hline 32 & 20/14 & FF1 & IMU (MFE) \\
\hline 33 & 20/14 & FF1 & TACAN/RA \\
\hline 34 & 20/14 & FF1 & MSBLS \\
\hline 35 & 20/14 & FF1 & STU \\
\hline 36 & 21/15 & FF2 & Input Prom Seq 1,2 \\
\hline 37 & 21/15 & FF2 & IMU (MFE) \\
\hline 38 & 21/15 & FF2 & TACAN/RA \\
\hline 39 & 21/15 & FF2 & MSBLS \\
\hline
\end{tabular}

TABLE 8.2-8. BCE ELEMENT NUMBER TABLE (Continued)
\begin{tabular}{lllll} 
ELEM & BUS & BTU & & DESCRIPTION \\
\cline { 1 - 1 } 40 & \(22 / 16\) & FF3 & & Input Prom Seq 1,2 \\
41 & \(22 / 16\) & FF3 & & IMU (MFE) \\
42 & \(22 / 16\) & FF3 & & TACAN/RA \\
43 & \(22 / 16\) & FF3 & & MSBLS \\
44 & \(22 / 16\) & FF3 & & STU \\
45 & \(22 / 16\) & FF3 & & Rend. Radar \\
46 & \(23 / 17\) & FF4 & & Input Prom Seq 1,2 \\
47 & \(14 / 20\) & FA1 & & Input Prom Seq 1,2 \\
48 & \(15 / 21\) & FA2 & & Input Prom Seq 1,2 \\
49 & \(16 / 22\) & FA3 & & Input Prom Seq 1,2 \\
50 & \(17 / 23\) & FA4 & & Input Prom Seq 1,2 \\
51 & 14 & EIU1 & & Port 1 (MFE) \\
52 & 15 & EIU2 & & Port 1 (MFE) \\
53 & 16 & EIU3 & & Port 1 (MFE) \\
54 & \(20 / 14\) & FF1 & & MTU 1 \\
55 & \(21 / 15\) & FF2 & & MTU 2 \\
56 & \(22 / 16\) & FF3 & & MTU 3 \\
57 & \(20 / 14\) & FF1 & & MDM Return Wd (IMU) \\
58 & \(20 / 14\) & FF1 & & IMU Data (IMU) \\
59 & \(20 / 14\) & FF1 & & IMU Discretes \\
60 & \(21 / 15\) & FF2 & & MDM Returned (IMU) \\
61 & \(21 / 15\) & FF2 & & IMU Data (IMU) \\
62 & \(21 / 15\) & FF2 & & IMU Discretes \\
63 & \(22 / 16\) & FF3 & & MDM Return Wd (IMU) \\
64 & \(22 / 16\) & FF3 & & IMU Data (IMU) \\
65 & \(22 / 16\) & FF3 & & IMU Discretes \\
66 & \(20 / 14\) & FF1 & & NSP1 Discretes \\
67 & \(20 / 14\) & FF1 & & NSP1 Data \\
68 & \(22 / 16\) & FF3 & & NSP2 Discretes \\
69 & \(22 / 16\) & FF3 & & NSP2 Data \\
70 & \(12 / 13\) & LL1 & & SRB Prom \\
71 & \(12 / 13\) & LL2 & & SRB Prom \\
72 & \(12 / 13\) & LR1 & & SRB Prom \\
73 & \(12 / 13\) & LR2 & & SRB Prom \\
74 & \(20 / 14\) & FF1 & & MDM Discretes (OPS Init) \\
75 & \(21 / 15\) & FF2 & & MDM Discretes (OPS Init) \\
76 & \(22 / 16\) & FF3 & & MDM Discretes (OPS Init) \\
77 & \(23 / 17\) & FF4 & & MDM Discretes (OPS Init) \\
78 & \(14 / 20\) & FA1 & & MDM Discretes (OPS Init) \\
& & & &
\end{tabular}
\begin{tabular}{lll} 
RELEASE: & OI20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: & 0
\end{tabular}

TABLE 8.2-8. BCE ELEMENT NUMBER TABLE (Continued)
\begin{tabular}{llll} 
ELEM & BUS & BTU & DESCRIPTION \\
79 & \(15 / 21\) & FA2 & \\
80 & \(16 / 22\) & FA3 & MDM Discretes (OPS Init) \\
81 & \(17 / 23\) & FA4 & MDM Discretes (OPS Init) \\
82 & 12 & MCIU & MCIU Data \\
83 & \(10 / 11\) & PF1 & PSP1 \\
84 & \(10 / 11\) & PF2 & PSP2 \\
85 & \(10 / 11\) & PF1 & PL Bay Doors \\
86 & \(10 / 11\) & PF1 & PL Bay Doors \\
87 & \(10 / 11\) & PF1 & PL Bay Doors \\
88 & \(10 / 11\) & PF2 & PL Bay Doors \\
89 & \(10 / 11\) & PF2 & PL Bay Doors \\
90 & \(10 / 11\) & PF2 & PL Bay Doors \\
91 & \(10 / 11\) & PF1 & MDM Return Wd \\
92 & \(10 / 11\) & PF1 & KU-Band Radar \\
93 & \(10 / 11\) & PF2 & MDM Return Wd \\
94 & \(10 / 11\) & PF2 & Fuel Cell Purge \\
95 & & &
\end{tabular}

\subsection*{8.3 DUMP ANALYSIS}

This section of the User's Guide will address various topics relating to information which may be gleaned from a GPC dump.

\subsection*{8.3.1 SYNC TRACE LOG}

The Sync trace function within the STS PASS software records PC2 timer interrupts, sync SVC's, and I/O interrupts. The SYNC trace function logs all system interrupts that require CS (Common Set) or RS (Redundant Set) sync in a core resident trace table (FCMTRCLG). The trace \(\log\) is a circular wrap table (i.e., when the table fills up the oldest entry is overlayed) of fifty (50) entries. The trace function is activated on system initialization. On sync failure, the trace function is deactivated by setting the index to the next entry (TPSATAMW) equal to zero. This effectively causes all future sync trace entries to overlay the entry following the last good trace entry. (25048/33907) The sync trace function is not deactivated if the failing GPC exhibits zero sync discretes.
-1 The following parameters provide data relative to the trace log:
\begin{tabular}{|c|c|c|c|c|}
\hline NAME & LOC & CONTENT & & DESCRIPTION \\
\hline TPSATENT & 0008 & XXXX & XXXX - & Pointer to next trace entry, i.e., effective address of 1 XXXX \\
\hline TPSATAMW & 0009 & 0008/0000 & \[
\begin{aligned}
& 0008- \\
& 0000-
\end{aligned}
\] & Index to the next trace entry Indicates the trace is deactivated \\
\hline TPSATBGN & 000A & 8XXX & 8XXX - & Starting location of the trace log, i.e., effective address of 18XXX \\
\hline TPSATEND & 000B & 8XXX & 8XXX - & End of trace log, i.e., Loc. 18XXX \\
\hline
\end{tabular}
-2 Following a RS or CS sync failure, the failed GPC and at least one of the other GPCs in the RS or CS should be dumped so the sync trace entries and other pertinent data can be analyzed. After the computer dumps have been performed, the sync trace function should be restarted. The entry of ITEM 48 EXEC on the GPC Memory display restarts the sync trace logging, clears the first five/last five entries of the I/O error log, and resets the U-Fail votes. This entry is effective only in the GPC commanding the CRT and those GPCs listening on that bus, i.e., RS members. Thus for CS only members this entry must be performed on a CRT commanded by each GPC in the CS.
-3 Each sync trace entry is eight (8) halfwords long. Figure 8.3-1 presents the word layout of a trace entry.
\begin{tabular}{cccccccccc|}
0 & \multicolumn{2}{c}{15} & 16 & 31 & 0 & 15 & 16 & 31 & 0 \\
\hline
\end{tabular}

Figure 8.3-1
-3.1 Word 1-TIME (1A \& 1B): A fullword containing the time (GMT) of the entry. This word is a 30 minute counter in microseconds. For SVC and I/O entries, it is the time of a successful sync or when a sync timeout is detected. For Timer entries, it is the time that the interrupt occurred.
-3.2 Word 2-Return Address (2A \& 2B): A fullword containing the first fullword of the appropriate old PSW which gives the return address. Indicates what program and location was executing when the interrupt occurred.
-3.3 Word 3-Interrupt Detail
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{7}{*}{If Type} & \multirow[t]{2}{*}{\(=\mathrm{SVC}\)} & 3A: & Bits 0-15 contain the address of the SVC parameter list. \\
\hline & & 3B: & Bits 16-31 contain the SVC number \\
\hline & \multirow[t]{2}{*}{\(=\mathrm{I} / \mathrm{O}\)} & 3A: & Bits \(0-15\) contain the device ID (Ref. Table 8.2-7) \\
\hline & & 3B: & Bits 16-31 contain the Op Code (Ref. Table 8.2-7) \\
\hline & \multirow[t]{3}{*}{\(=\) TIMER} & 3A: & Bits \(0-15\) contain the halfhour count field from the TQE \\
\hline & & 3B: & Bits 16-31 contain the TQE flags field \\
\hline & & & \[
\begin{aligned}
0001 & =\text { SIP TIMER } \\
0008 & =\mathrm{HFE} / \mathrm{DGI} / \mathrm{HDA}
\end{aligned}
\] \\
\hline
\end{tabular}
-3.4 Word 4-Trace Type
4A: A halfword containing the trace entry
\(1=\) SVC entry
\(2=\mathrm{I} / \mathrm{O}\) entry
3 = TIMER entry
4B: \(\quad\) Reserved (should contain 0 )

\subsection*{8.3.2 WAIT STATE}

If a GPC is in the wait state and is powered off prior to moding to HALT, the put-a-way PSW at location 10-13 will contain the current PSW at the time the GPC entered the wait state.

\subsection*{8.4 PASS MICROFICHE}

The flight software documentation medium is microfiche. A brief description of the documentation deliverables and their possible usage follows.

\subsection*{8.4.1 MASS MEMORY BUILD (MMBXXXX)}

This is the map of the base software release. In other words, one build map for each major release. The information tables are arranged in mass memory phase/load block order.
-1 The following data is included:
Phase.
Load block.
Protect/unprotect status of the load block.
MMU address of load block (file, track, subfile, block).
Load block checksum (address (FTSBB), offset in block, value).
CSECT information (name, GPC address, length).
CSECT location on MMU (FTSBB and offset) NOTE: FTSBB is physical MMU block CSECT begins in; offset is from beginning of load block).

\subsection*{8.4.2 MASS MEMORY PATCH}

For each MMU update by patch, two types of listings are delivered by microfiche. The first is a list of the input patch files and the second is a list of the patches in Universal Patch Format.
-1 For the patch files, information specified is:
LOC - Name of the location to be patched
DATAX - New contents of location
BLOCK - MMU address (FTSBB)
LOC - Offset in MMU block
OLD DATA - Contents of location before patch
NEW DATA - Contents of location after patch
-2 The UPF is a standardized format of card images (A-E). These cards are defined as follows:
A. BEGIN PATCH card which signals start of a new patch with optional comments.
B. Specifies the Patch ID to be inserted in the Revision Patch Log (RPL) for the patch with optional comments.
C. System identifiers: Software Element ID (1-7) as defined in Section 8.5; MMU version, and phase/load block of the specified system the patch is to be applied to.
D. Location identifiers: Offset (decimal) in load block, number (decimal) of consecutive words to be patched, GPC memory address of first word, and protect status of location(s).
E. Provides desired contents of locations to be patched (maximum of five per card).
-3 Each patch must begin with an A, B, and C card (only one of each). Multiple pairs of D/E cards may be in the patch as long as the locations are in the phase/load block specified on the C card. Multiple E cards may be used with a D card if needed to provide the specified number of consecutive patch contents.

\subsection*{8.4.3 MASS MEMORY DUMP (MMB)}

This is the hexadecimal dump of the entire mass memory tape. The data is in file, track, subfile, block (FTSBB) order and each block is labeled.
-1 This mass memory documentation is typically used to resolve miscompares when doing a mass memory dump and compare. The dump/compare data is listed by \(\mathrm{F} / \mathrm{T} / \mathrm{S} / \mathrm{BB}\) and may be correlated to phase/load block/offset by use of mass memory build, mass memory patch, and mass memory dump reports.

\subsection*{8.4.4 ILOAD REPORT (ILDMAP)}

An ILOAD report is generated for each update of the PASS ILOAD parameters. Within the microfiche report are three sorts of the parameters: by MSID, HAL name, and FSSR name. Information provided on the first three rows defines the ILOAD parameter itself:

Row 1 -
MSID: V97U0717C
FSSR NAME: GELERROR(1) (Requirements document name)
PF: G4.227> G4.36 (Principle function number in FSSR)
MC: 00 (Memory configuration - not specified)
VALUE: + 1.409836E + 00
RI UNITS: ND (Units in FSSR)
Row 2 -
HAL NAME: CGCS_GELERROR1
UOC: GCA_AERO_표ITCH_25H (Unit of Compilation)
BLOCK: Left blank
IBM UNITS: ND (Units in code)
Row 3 -
```

PH: }6\mathrm{ (Phase)
LB: }6\mathrm{ (Load block)
OFFSE:}952\mathrm{ (Offset in load block in decimal)
FTSBB: 56028 (MMU block address)
O-S:440 (Offset in MMU block in decimal)
GPCAD: 0AA42 (Address of parameter in GPC memory)
MM VAL: 1.4098358E + 00 (Value on MMU)
MMVAL-HEX: 41168EB0 (Value on MMU in HEX)
CVAL: 1.4098358E + 00 (Value in COMPOOL)
CVAL-HEX: 41168EB0 (Value in COMPOOL in HEX)

```
-1 Additional data defines derived parameters. Rows 2 and 3 are provided for the derived parameter. If it is not of the same value, the equation used to derive the value is specified in terms of MSIDs.

\subsection*{8.4.5 PASS SYSTEM SOFTWARE}

System Software modules are of two types: HAL coded and AP-101 Assembler Language coded (FCOS). For the HAL modules, the HAL source code and relatively addressed object code is listed. Additionally, a symbol cross reference, compool references, data structures and local data are shown. For Assembler Language modules, the assembled program and its external references are listed.
\begin{tabular}{ll|l} 
RELEASE: & OI20 & Date: \\
BOOK: & 12/20/90 \\
PASS User's Guide & Rev: 0
\end{tabular}

\subsection*{8.4.6 APPLICATIONS SOFTWARE}

All applications modules are coded in HAL. Again the source code, unresolved object code, external references, and symbol cross references are listed.

\subsection*{8.4.7 HALSTAT}

This is the universal reference for all HAL modules and symbols. The first section gives the statistics for each compilable unit (module). The second section provides information about data structure templates. Information given is:

Size of structure in both HEX and decimal
References to the structure (parameters in it) by HAL modules/statement numbers in it
Layout of the structure definition statement
Memory allocation (relative to start of structure) of parameters in structure.
The third section, and the one most commonly used, is the Global Symbol Dictionary. This is the symbolic cross reference for all HAL names. Relative address and size is specified, followed by the absolute address for all memory configurations. A list of the HAL modules that reference the name is given along with the source statement number at which it is referenced. The type of reference is also given using the following code:
\(0=\) Definition
\(1=\) Subscript
\(2=\) Reference (i.e., to right of \(=\) sign)
\(4=\) Assignment (i.e., to left of \(=\) sign)
\(6=\) Reference and Assignment (ex: \(\mathrm{x}=\mathrm{x}+1\) )
Data type and word length information is also included in this section.

\subsection*{8.4.8 DISASSEMBLY (DASS)}

DASS is a set of microfiche which provides, for each memory configuration, an Assembly Language listing of the entire GPC memory. This is produced by Dis-Assembling the link-edited memory configuration; thus, all relative addressings have been resolved, etc. Assembler-type comments are provided within limitations of space.

\subsection*{8.4.9 AUTODOC (AUTOMATIC DOCUMENTATION)}

The AUTODOC microfiche provides a module/parameter cross reference for all HAL modules. Information contained in the report for each parameter includes:

HAL name of parameter
What the parameter is (ITEM column which is mostly left blank)
Modules which reference the parameter
Types of reference by the module
D - Declaration
A - Assignment
R - Reference
S - Subscript
MSID of parameter
\begin{tabular}{llcc} 
RELEASE: & OI20 & Date: & 12/20/90 \\
BOOK: & PASS User's Guide & Rev: & 0
\end{tabular}

Description - which includes type, attributes assigned by compiler and any additional commentary on the parameter.
-1 AUTODOC is provided by software development area (SSW, GNC, SM, etc.). Each area may have from one to three sets of AUTODOC. These multiple sets are not duplicates - each set contains different modules from the specified development area. Within a set, the modules are in alphabetical order but are not necessarily contiguous. For example, in GNC, set 1 contains, among others, modules GCA-GC9. Set 2 contains, among others, GAA-GAI, then skips to GEH, does not contain GEI, does have GEJ, does not have GEK, etc. Set 3 does have GEI and GEK. Thus, one must search diligently on occasion to find a particular module.

\subsection*{8.4.10 INCLUDE LIBRARY (INCL80)}

This set of microfiche is a listing of members composed of HAL source level statements which are not compilable units. By compiler directive, a member is merged (included) into the HAL source statements of the unit being processed before it is compiled. The include directives are usually done with a No List option to inhibit printing of the included statements. This presents problems in code inspections, thus a copy of the source member library is vital to each site. A large part of the include library is the input source for the off-line Display Format Generator which produces the GPC code required to drive the on-board CRT displays.

\subsection*{8.5 MASS MEMORY DIRECTORY}

The mass memory directory is constructed to allow UPF access to all elements on the mass memory tape. This directory is arranged on the M/M tape in System ID order. Entries in the directory allow accessing of either a patch directory (for those elements which possess a patch directory) or the appropriate phase and load block (for those elements which do not possess a patch directory). Due to LDB limitations, there exists a maximum of 8 System IDs.
-1 There exists only one \(\mathrm{M} / \mathrm{M}\) directory to reference all the elements contained on the mass memory. This allows PL9/SM2, regardless of the FSW system in which it is contained, to reference any element on the tape.
-2 Format of the directory is per Figure 8.5 -1, each entry is 16 -bit halfwords.
-3 Length of 1 st section driven by \# System IDs which is fixed at 8 , thus length of 1 st section \(=41\) halfwords
-4 Length of 2 nd and 3rd sections are data related.
-5 For those elements which possess patch directories - the \(\uparrow\) and \# Sys n Patch Directory fields will be non-zero and allow UPF software direct access to the patch directory MMU address. \(\uparrow\) points directly to load block/MM address section of table.
-6 For those elements which contain patchable items not contained in a patch directory, the and \# Sys n non-Patch Directory fields will be non-zero and will refer UPF software to the phase section of the directory which will give the load block information for the applicable phase. Once the load block information is determined, UPF software will then reference the load block section to determine MMU address for the requested patchable item.
-7 Detailed information for the elements containing patch directories.
System IDs 1, 2, 3 will contain a value of 1 in the \# Sys \(n\) Patch Directory Entries field since there is a patch directory for each version of the FSW.
System ID 4 will contain a value of 1 in the \# Sys n Patch Directory Entries field since there is a single BFS patch directory with up to 3 phases in the patch directory representing the different versions of the BFS software.
System ID 6 will contain a value of 3 in the \# Sys n Patch Directory Entries field since there is a different SSME patch directory for each version of SSME software.
-8 Use of this directory means that when patches to a M/M element which has a patch directory (such as a phase table) are desired, \(4 \mathrm{M} / \mathrm{M}\) operations are required 1) read \(\mathrm{M} / \mathrm{M}\) Directory to locate address of elements patch directory, 2) read that element patch directory, 3) read the appropriate phase/load block, 4) read the RPL for that element. However for those elements which do not possess a patch directory, only 3 MM operations are required - 1) read M/M Directory to locate element, 2) read the appropriate phase/load block for that element, 3) read the RPL for that element.
-9 These M/M operations will be transparent to the user. He merely enters his System ID, phase, and load block and software does the rest.
\begin{tabular}{llc} 
RELEASE: & OI20 & Date: \\
BOOK: & PASS User's Guide & Rev: \\
BO/90
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{1} & \multicolumn{2}{|l|}{\#512 HW Blocks in Mass Memory Directory} \\
\hline & \(0 \uparrow\) Sys 0 Patch Directory Entries & 15 \\
\hline 2 & \#Sys 0 Patch Directory Entries & \\
\hline 3 & \(\uparrow\) Sys 0 Non-Patch Directory Phase Entries & \\
\hline 4 & \#Sys 0 Non-Patch Directory Phase Entries & \\
\hline 5 & MM ADDR of Sys 0 RPL & \\
\hline 36 & \(\uparrow\) Sys 7 Patch Directory Entries & \\
\hline 37 & \#Sys 7 Patch Directory Entries & \\
\hline 38 & \(\uparrow\) Sys 7 Non-Patch Directory Phase Entries & \\
\hline \multirow[t]{2}{*}{39
40} & \#Sys 7 Non-Patch Directory Phase Entries & \\
\hline & MM ADDR of Sys 7 RPL & \\
\hline 40 & \begin{tabular}{l}
\(\uparrow\) Sys 0 Non-Patch Directory Load Block Entries \#Sys 0 Non-Patch Directory Load Block Entries \\
\(\uparrow\) Sys 7 Non-Patch Directory Load Block Entries \#Sys 7 Non-Patch Directory Load Block Entries
\end{tabular} & \\
\hline & \begin{tabular}{l}
\#HW Load Block \#1 - Patch Directory - Sys 0 MM ADDR Load Block \#1-Patch Directory - Sys 0 \\
\#HW Load Block N-Non-Patch Directory - Sys 7 \\
MM ADDR Load Block N-Non-Patch Directory - Sys 7
\end{tabular} & \\
\hline
\end{tabular}

Figure 8.5-1. MASS Memory Directory Format

\subsection*{8.6 DEU IPL LOG TABLE (CZ2V_DEU_IPL_LOGTB)}

The DEU IPL Log provides a history of DEU IPL attempts. It is able to store 10 entries, and is divided into two parts. The first half of the table stores the first 5 DEU IPL attempt entries, and then becomes static. The second half of the table is wrap-around and stores the last 5 DEU IPL attempt entries (i.e., when the second half fills up, the oldest entry is overlaid).
-1 Each entry in the \(\log\) identifies the time of a DEU IPL request, the DEU id, and a completion code to indicate the failure/success of the DEU IPL (see Figure 8.6-1). The valid DEU IPL completion codes are:
\begin{tabular}{|c|c|}
\hline & No error, IPL Attempt Successful \\
\hline & - DEU I/O Error On BITE Status Response \\
\hline 2 & - Invalid DEU BITE Status Response \\
\hline 3 & - DEU I/O Error On DCP Fill \\
\hline 4 & - DEU I/O Error On DCP Time Fill \\
\hline 5 & - DEU I/O Error On DCP Poll \\
\hline & - DEU Invalid DCP Poll Response \\
\hline 7 & DEU I/O Error On Critical Format Fill \\
\hline & DEU Critical Format Checksum Error \\
\hline 9 & MMU1 I/O Error On DCP Read \\
\hline 10 & MMU1 I/O Error On Critical Format Read \\
\hline 11 & MMU2 I/O Error On DCP Read \\
\hline 12 & MMU2 \(1 / \mathrm{O}\) Error On Critical Format Read \\
\hline 13 & DEU IPL Attempt Invalid - Improper Memory Configuratio \\
\hline & DEU IPL Attempt Invalid - IPL in Progress On \\
\hline
\end{tabular}
-2 The DEU IPL Log Table can be cleared by executing Item 48 on Spec 000.
\begin{tabular}{|c|c|c|}
\hline ENTRY TIME & DEU ID & \begin{tabular}{c} 
DEU IPL \\
COMPLETION \\
CODE \\
\((1\) halfword \()\)
\end{tabular} \\
\hline
\end{tabular}

Figure 8.6-1. DEU IPL LOG ENTRY

O

\section*{O}

\section*{APPENDIX A. SUBJECT CROSS-REFERENCE}

This Appendix provides a cross-reference between Subjects (Keywords) and the User's Guide sections where they can be found.

The User's Guide Subject Cross-Reference Data Base Form shows the Keyword definitions. This form may be used to update the subject cross-reference. Completed forms should be sent to the PASS User's Guide Coordinator (see Appendix H).
The individual Keyword Reports are ordered alphabetically.
\(\qquad\)

O
\begin{tabular}{ll} 
RELEASE: & OI20 \\
BOOK: & PASS User's Guide \\
\\
& \\
& USER'S GUIDE SUBJECT CROSS-REFERENCE DATA BASE FORM \\
INDICATE ALI. OF THE APPROPRIATE AREAS INVOLVED
\end{tabular}

ORIGINATOR:
DATE:

\section*{User's Guide Section Number:}

User's Guide Section Title: \(\qquad\)
Principal Functions (PF): \(\qquad\)
Major Software Area: SSW( )GNC( )VU( )SM/PL( )

\section*{KEYWORDS}
```

    ABORT - Abort(s)
    ADI - Attitude Direction Indicator
    AMI - Alpha Mach Indicator (AMI)
    ASCENT - Ascent
    BCE - Bus Control Element
    COMMFAULTS - Commfaults/Bypass
    CROSSFEED - Crossfeed(s)
    DAP - Digital Autopilot
    DED-DISP - Dedicated-Displays (DD)
    DISP - Display Function (DISP)
    DUMP - Dump Processing
    ECP - Explicitly Coded Program
    ENTRY - Entry
    FCS - Flight Control System
    FTS - Fail-To-Sync, RS/CS
    GUID - Guidance (GUID)
    HSI - Horizontal Situation Indicator
    HW - Hardware
    1/O - Input/Output Error Processing
    ILOAD - Initialization Load
    IPL - Initial Program Load
    KU-BAND - Ku-Band
    LEVEL C - Level C Data
    _MDM - Multiplexer/Demultiplexer
    _MISSION - Mission Dependent Processor
    _MPS - Main Propulsion System
    _NAVAID - Navigation Aids
    _OPS - Operation Sequence
    _PANEL - Panel (PNL)
    PCS - Payload Control Supervisor
    _POWERED - Powered Flight (PF)
    _PSP COMM - PSP Communication
    _RM - Redundancy Management
    _RUNWAY - Runway
    SC - System Control
    SPEC - Specialist Function
    __SSME - Space Shuttle Main Engine
    _STP - Self Test Program
    SWITCHES - Switch Position/Contacts
    TCS - Test Control Supervisor
    _ UI - User Interface
    ```
__ACTUATORS - Actuator(s) (ACT)
__AM - Antenna Management
_ANNUNCIATION - Indicators/DEU Messages
__AVVI - Altitude/Vertical Velocity Indicator
BUS - Bus, Data or MDM
__COMPILER - Compiler
_CYCLE-WRAP - Cycle-Wrap
-DCP - DEU Control Program
DEU - Display Electronic Unit
DOWNLIST - Downlist (D/L)
__DYNAMICS - Flight Dynamics
__EIU - Engine Interface Unit
__FCOS - Flight Computer Operating System
__FDA - Fault Detection \& Annunciation
_GPC - GPC/Error Processing
_HIP - Hardware Interface Program
HUD - Head Up Display
HYD - Hydraulics (HYD)
ICC - Intercomputer Communication
_IMU - Inertial Measurement Unit
_KEYBOARD - Keyboard (KB)
_LDB - Launch Data Bus
MCDS INTERFACE - MCDS Interface
_MECO - Main Engine Cutoff
_MMU - Mass Memory Unit
_NAV - Navigation
_OMS - Orbital Maneuvering System
_ORBIT - Orbit
_PAYLOADS - Payloads (P/L)
_PDT - Parameter Data Tape
_PRELAUNCH - Prelaunch (PL)
_RCS - Reaction Control System
_RMS - Remote Manipulator System
SACS - Software Avionics Command Support
_SEQ - Sequencers, SM or GNC
SPI - Surface Position Indicator
STATUS - Display Status/Arrows/Asterisks
SVC - Supervisor Call
_TARGET - Target(s)/Targeting
_TRANSITIONS - Transition(s)
__UPLINK - Uplink (UL)

\section*{MAJOR SOFTWARE AREA GNC}

SECTION
NUMBER
NUMBER
2.4
2.4.2
2.4.2.1
2.4.2.2
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.5.1
2.4.5.2
2.4.6
2.4.6.1
2.4.6.2
2.4.7
2.4.7.1
2.4.7.2
2.4.8
2.4.8.1
2.4.8.2
3.5
3.5.000
3.5.001
3.5.002
3.5.018
3.5.019
3.5.020
3.5.021
3.5.022
3.5.023
3.5.025
3.5.033
3.5.034
3.5.040
3.5.041
3.5.042
3.5.043
3.5.044
3.5.045
3.5.050

SECTION
TITLE
OPERATIONAL SEQUENCES
OPS GNC9
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC2
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC3
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC6
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC8.
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
DISPLAYS
GPC MEMORY
DPS UTILITY
TIME
GNC SYS SUMM 1
GNC SYS SUMM 2
DAP CONFIG
IMU ALIGN
S TRK/COAS CNTL
RCS
RM ORBIT
REL NAV
ORBIT TGT
SENSOR TEST
RGA/ADTA/RCS
SWITCH/SURF
CONTROLLERS
SWITCHES
NWS CHECK
HORIZ SIT

\section*{MAJOR SOFTWARE AREA \\ GNC (Continued)}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SECTION \\
NUMBER
\end{tabular} & \[
\begin{aligned}
& \text { SECTION } \\
& \text { TITLE }
\end{aligned}
\] \\
\hline 3.5.051 & OVERRIDE \\
\hline 3.5.053 & CONTROLS \\
\hline 3.5.1011 & XXXXXX TRAJ \\
\hline 3.5.1021 & XXXXXX TRAJ \\
\hline 3.5.1031 & XXXXXX TRAJ \\
\hline 3.5.1041 & XXXXX MNVR YYYYY \\
\hline 3.5.1051 & XXXXX MNVR YYYYY \\
\hline 3.5.1061 & XXXXX MNVR YYYYY \\
\hline 3.5.2011(G) & UNIV PTG \\
\hline 3.5.2021(G) & XXXXX MNVR YYYYY \\
\hline 3.5.3011 & XXXXX MNVR YYYYY \\
\hline 3.5.3021 & XXXXX MNVR YYYYY \\
\hline 3.5.3031 & XXXXX MNVR YYYYY \\
\hline 3.5.3041 & ENTRY TRAJ 1 \\
\hline 3.5.3042 & ENTRY TRAJ 2 \\
\hline 3.5.3043 & ENTRY TRAJ 3 \\
\hline 3.5.3044 & ENTRY TRAJ 4 \\
\hline 3.5.3045 & ENTRY TRAJ 5 \\
\hline 3.5.3051 & VERT SIT 1 \\
\hline 3.5.3052 & VERT SIT 2 \\
\hline 3.5.6011 & XXXXXX TRAJ \\
\hline 3.5.6021 & VERT SIT 1 \\
\hline 3.5.6031 & VERT SIT 2 \\
\hline 3.5.8011 & FCS/DED DISP C/O \\
\hline 4.7.1 & ATTITUDE DIRECTION INDICATOR (ADI) \\
\hline 4.7.2 & HORIZONTAL SITUATION INDICATOR (HSI) \\
\hline 4.7.3 & ALPHA MACH INDICATOR \\
\hline 4.7.4 & ALTITUDE/VERTICAL VELOCITY INDICATOR \\
\hline 4.7.5 & SURFACE POSITION INDICATOR \\
\hline 4.7.6 & FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS \\
\hline 4.7.7 & REACTION CONTROL SYSTEM ACTIVITY LIGHTS \\
\hline 4.8 & HEAD-UP DISPLAY \\
\hline 5. & TABLE 5-1. SWITCHES \\
\hline 5.2 & DEU KEYBOARD \\
\hline 6.1 & ANNUNCIATION \\
\hline 6.2 & MESSAGES \\
\hline 7.1.7 & LAUNCH SEQUENCE COMMANDS \\
\hline 7.3 & DOWNLIST \\
\hline
\end{tabular}
\begin{tabular}{ll|l} 
RELEASE: & OI20 & Date: \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}

\section*{MAJOR SOFTWARE AREA SM/PL}

SECTION
NUMBER
2.3.2
2.4
2.4.3.2
2.4.9
2.4.9.1
2.4.9.2
3.5
3.5.000
3.5.001
3.5.002
3.5.060
3.5.062
3.5.064
3.5.066
3.5.067
3.5.068
3.5.069
3.5.076
3.5.077
3.5.078
3.5.079
3.5.085
3.5.086
3.5.087
3.5.088
3.5.089
3.5.090
3.5.094
3.5.095
3.5.096
3.5.097
3.5.100
3.5.110
3.5.111
3.5.2011(S)
3.5.2021(S)

SECTION
TITLE
DEU LOAD
OPERATIONAL SEQUENCES
BASIC FUNCTIONS AVAILABLE
OPS SM2/4
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
DISPLAYS
GPC MEMORY
DPS UTILITY
TIME
SM TABLE MAINT
PCMMU/PL COMM
SM GROUND CHECKOUT
ENVIRONMENT
ELECTRIC
CRYO SYSTEM
FUEL CELLS
COMM/RCDR
EVA-MMU/FSS
SM SYS SUMM 1
SM SYS SUMM 2
MASS MEMORY R/W
APU/HYD
HYD THERMAL
APU/ENVIRON THERM
PRPLT THERMAL
PCS CONTROL
PDRS CONTROL
PDRS OVERRIDE
PDRS STATUS
PL RETENTION
GTS DISPLAY
BUS/BTU STATUS
SL MEMORY DUMP
ANTENNA
PL BAY DOORS
\begin{tabular}{|c|c|}
\hline RELEASE: BOOK: & \begin{tabular}{l}
OI20 \\
PASS User's Guide
\end{tabular} \\
\hline & MAJOR SOFTWARE AREA SM/PL (Continued) \\
\hline \begin{tabular}{l}
SECTION \\
NUMBER
\end{tabular} & SECTION TITLE \\
\hline 3.5.4011(S) & ANTENNA \\
\hline 3.5.4021(S) & PL BAY DOORS \\
\hline 4.6 & REMOTE MANIPULATOR SYSTEM (RMS) INDICATORS \\
\hline 5. & TABLE 5-1. SWITCHES \\
\hline 5.2 & DEU KEYBOARD \\
\hline 6.1 & ANNUNCIATION \\
\hline 6.2 & MESSAGES \\
\hline 7.2.3.3 & STORED PROGRAM COMMAND \\
\hline 7.2.3.4 & PAYLOAD THROUGHPUT \\
\hline 7.3 & DOWNLIST \\
\hline 8.5 & MASS MEMORY DIRECTORY \\
\hline
\end{tabular}

\section*{MAJOR SOFTWARE AREA SSW}

SECTION
NUMBER
2.1
2.2
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.2
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2
2.4.4
2.5
3.
3.1
3.2
3.3
3.4.1
3.5
3.5.000
3.5.001
3.5.002
3.5.006
3.5.099
4.1
4.2
4.3
4.4
4.5
5.
5.2
6.1
6.2
7.1.6

SECTION
TITLE
OVERVIEW
MASS MEMORY
SYSTEM INITIALIZATION
INITIAL PROGRAM LOAD (IPL) SEQUENCE
IPL SEQUENCE FAILURES
NO DISPLAY
DEU LOAD
OPERATIONAL SEQUENCES
OPS O
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC9
OPS GNC1
ACTUATOR/HYDRAULIC ACTIVATION RESTRICTIONS
CRT DISPLAYS
MCDS/GPC ASSIGNMENT HIERARCHY
STANDARD CRT DISPLAY PAGE
OPS, SPEC, DISP PAGE HIERARCHY
IPL MENU
DISPLAYS
GPC MEMORY
DPS UTILITY
TIME
GPC/BUS STATUS
FAULT
DATA PROCESSING SYSTEM (DPS) TALKBACKS
COMPUTER ANNUNCIATION MATRIX
CAUTION AND WARNING LIGHTS
MASTER ALARM
SM ALERT LIGHT
TABLE 5-1. SWITCHES
DEU KEYBOARD
ANNUNCIATION
MESSAGES
EXPLICITLY CODED PROGRAMS (ECP)
```

RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

```

MAJOR SOFTWARE AREA
SSW (Continued)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
SECTION \\
NUMBER
\end{tabular} & \[
\begin{aligned}
& \text { SECTION } \\
& \text { TITLE }
\end{aligned}
\] \\
\hline 7.3 & DOWNLIST \\
\hline 8.1 & GPC ERRORS \\
\hline 8.1.1 & GPC FAIL-TO-SYNCS \\
\hline 8.1.2 & GPC ERROR LOG (CZ2V_GPC_ERR_LOG) \\
\hline 8.2 & INPUT/OUTPUT (I/O) ERRORS \\
\hline 8.2.1 & I/O RELATED USER NOTES \\
\hline 8.2.2 & I/O ERROR LOG (CZ2V_IO_ERR_LOG) \\
\hline 8.3 & DUMP ANALYSIS \\
\hline 8.3.1 & SYNC TRACE LOG \\
\hline 8.3.2 & WAIT STATE \\
\hline 8.4.5 & PASS SYSTEM SOFTWARE \\
\hline
\end{tabular}
```

RELEASE: OI20
BOOK: PASS User's Guide

# MAJOR SOFTWARE AREA VU 

SECTION
NUMBER
2.3.2
2.4
2.4.2
2.4.2.1
2.4.2.2
2.4.3
2.4.3.1
2.4.3.2
2.4.8
3.
3.5
3.5.000
3.5.001
3.5.002
3.5.062
3.5.100
3.5.101
3.5.102
3.5.104
3.5.105
3.5.106
3.5.110
3.5.111
3.5.112
3.5.113
3.5.9011(G)
3.5.9011(P)
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.8

SECTION
TITLE
DEU LOAD
OPERATIONAL SEQUENCES
OPS GNC9
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS PL9
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC8
CRT DISPLAYS
DISPLAYS
GPC MEMORY
DPS UTILITY
TIME
PCMMU/PL COMM
GTS DISPLAY
SENSOR SELF-TEST
RCS/RGA/ADTA TEST
GND IMU CNTL/MON
TCS CONTROL
MANUAL CONTROLS
BUS/BTU STATUS
SL MEMORY DUMP
GPC/BTU I/F
ACTUATOR CONTROL
GPC MEMORY
MASS MEMORY R/W
ATTITUDE DIRECTION INDICATOR (ADI)
HORIZONTAL SITUATION INDICATOR (HSI)
ALPHA MACH INDICATOR
ALTITUDE/VERTICAL VELOCITY INDICATOR
SURFACE POSITION INDICATOR
FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS
REACTION CONTROL SYSTEM ACTIVITY LIGHTS
HEAD-UP DISPLAY

| RELEASE: BOOK: | Ol20 <br> PASS User's Guide |
| :---: | :---: |
|  | MAJOR SOFTWARE AREA <br> VU (Continued) |
| SECTION | SECTION |
| NUMBER | TITLE |
| 5. | TABLE 5-1. SWITCHES |
| 5.2 | DEU KEYBOARD |
| 6.1 | ANNUNCIATION |
| 6.2 | MESSAGES |
| 7.1.5 | LDB TEST CONTROL SUPERVISOR OPERATIONS |
| 7.1.6 | EXPLICITLY CODED PROGRAMS |
| 7.1.6.1 | ACTUATOR INITIALIZATION (AI) |
| 7.1.6.2 | RAMP FUNCTION GENERATOR (RFG) |
| 7.1.6.3 | FREQUENCY RESPONSE TEST (FRT) |
| 7.1.6.4 | DEDICATED DISPLAY CHECKOUT (DDCO) |
| 7.1.6.5 | MLLTIPLE ACTUATOR TEST (MAT) |
| 7.1.6.6 | BODY FLAP DRIVE (BFD) |
| 7.1.6.7 | BODY FLAP MONITOR (BFM) |
| 7.1.8 | DEU READ CAPABILITY |
| 7.2.2.1 | NSP DATA |
| 7.2.2.2 | VALIDITY CHECKING |
| 7.3 | DOWNLIST |
| 7.3.1 | FORMATS AND FORMATTER PROGRAMS |
| 8.5 | MASS MEMORY DIRECTORY |


| RELEASE: | OI20 | Date: |
| :--- | :--- | :---: |
| BOOK: | 12/20/90 |  |
| PASS User's Guide | Rev: 0 |  |

## KEYWORD ABORT

| SECTION <br> NUMBER | SECTION <br> TITLE |
| :--- | :--- |
| 3.5.1011 | XXXXXX TRAJ |
| 3.5 .1031 | XXXXXX TRAJ |
| 3.5 .1041 | XXXXX MNVR YYYYY |
| 3.5 .1051 | XXXXX MNVR YYYYY |
| 3.5 .1061 | XXXXX MNVR YYYYY |
| 3.5 .3051 | VERT SIT 1 |
| 3.5 .3052 | VERT SIT 2 |
| 5. | TABLE 5-1. SWITCHES |


| RELEASE: BOOK: |  |
| :---: | :---: |
|  | KEYWORD ACTUATORS |
| SECTION NUMBER | SECTION TITLE |
| 2.4.4 | OPS GNC1 |
| 2.4.8 | OPS GNC8 |
| 2.4.8.1 | DISPLAYS AVAILABLE |
| 2.5 | ACTUATOR/HYDRAULIC ACTIVATION RESTRICTIONS |
| 3.5.018 | GNC SYS SUMM 1 |
| 3.5.051 | OVERRIDE |
| 3.5.053 | CONTROLS |
| 3.5.113 | ACTUATOR CONTROL |
| 4.7.6 | FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS |
| 5. | TABLE 5-1. SWITCHES |
| 7.1.6.1 | ACTUATOR INITIALIZATION (AI) |
| 7.1.6.2 | RAMP FUNCTION GENERATOR (RFG) |
| 7.1.6.3 | FREQUENCY RESPONSE TEST (FRT) |
| 7.1.6.5 | MULTIPLE ACTUATOR TEST (MAT) |
| 7.1.6.6 | BODY FLAP DRIVE (BFD) |
| 7.1.6.7 | BODY FLAP MONITOR (BFM) |

## KEYWORD <br> ADI

SECTION
NUMBER
4.7
4.7.1
5.

SECTION
TITLE
GNC DEDICATED DISPLAYS
ATTITUDE DIRECTION INDICATOR (ADI)
TABLE 5-1. SWITCHES

| RELEASE: <br> BOOK: | OI20 <br> PASS User's Guide |  |
| :--- | :--- | :---: |
|  |  |  |
|  |  | KEYWORD |
|  |  | AM |

## KEYWORD

AMI

SECTION
NUMBER
4.7.3

SECTION
TITLE
ALPHA MACH INDICATOR

| RELEASE: BOOK: | OI20 <br> PASS User's Guide |
| :---: | :---: |
|  | KEYWORD ANNUNCIATION |
| SECTION <br> NUMBER | SECTION TITLE |
| 2.3.1.1 | IPL SEQUENCE FAILURES |
| 2.3.2 | DEU LOAD |
| 2.4.4 | OPS GNC1 |
| 2.4.9.2 | BASIC FUNCTIONS AVAILABLE |
| 3. | CRT DISPLAYS |
| 3.4 | USER'S GUIDE DISPLAY FORMAT |
| 3.4.1 | IPL MENU |
| 3.5 | DISPLAYS |
| 3.5.018 | GNC SYS SUMM 1 |
| 3.5.019 | GNC SYS SUMM 2 |
| 3.5.064 | SM GROUND CHECKOUT |
| 3.5.099 | FAULT |
| 3.5.104 | GND IMU CNTL/MON |
| 4.1 | DATA PROCESSING SYSTEM (DPS) TALKBACKS |
| 4.2 | COMPUTER ANNUNCIATION MATRIX |
| 4.3 | CAUTION AND WARNING LIGHTS |
| 4.4 | MASTER ALARM |
| 4.5 | SM ALERT LIGHT |
| 5.2 | DEU KEYBOARD |
| 6.1 | ANNUNCIATION |
| 6.2 | MESSAGES |
| 7.3 | DOWNLIST |
| 7.3.2 | FAULT SUMMARY PAGE |
| 7.3.3 | DEU MESSAGES AND KEYBOARD LAYOUT |
| 8.1 | GPC ERRORS |
| 8.1.1 | GPC FAIL-TO-SYNCS |
| 8.1.2 | GPC ERROR LOG (CZ2V_GPC_ERR_LOG) |
| 8.2 | INPUT/OUTPUT (I/O) ERRORS |
| 8.2.1 | I/O RELATED USER NOTES |
| 8.2.2 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |
| 8.3 | DUMP ANALYSIS |
| 8.3.2 | WAIT STATE |

RELEASE: OI20
BOOK: PASS User's Guide

KEYWORD
ASCENT

SECTION SECTION
NUMBER
3.5.1011
3.5.1021
3.5.1031

Date: 12/20/90
Rev: 0

TITLE
XXXXXX TRAJ
XXXXXX TRAJ
XXXXXX TRAJ

RELEASE: OI20
BOOK: PASS User's Guide

Date: 12/20/90
Rev: 0

KEYWORD
AVVI

SECTION SECTION
NUMBER
TITLE
4.7
4.7 .4
5.

GNC DEDICATED DISPLAYS
ALTITUDE/VERTICAL VELOCITY INDICATOR TABLE 5-1. SWITCHES
KEYWORD
BCE
SECTION SECTIONNUMBERTITLE
5.2
6.2

## DEU KEYBOARD

MESSAGES
RELEASE: OI20 Date: 12/20/90
BOOK: PASS User's Guide Rev: 0

| RELEASE: BOOK: | $\mathrm{OI} 20$ <br> PASS User's Guide |
| :---: | :---: |
|  | KEYWORD BUS |
| SECTION <br> NUMBER | $\begin{aligned} & \text { SECTION } \\ & \text { TITLE } \end{aligned}$ |
| 2.4 | OPERATIONAL SEQUENCES |
| 2.4.1 | OPS O |
| 2.4.1.1 | DISPLAYS AVAILABLE |
| 2.4.1.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4.2.1 | DISPLAYS AVAILABLE |
| 2.4.4 | OPS GNC1 |
| 2.4.4.1 | DISPLAYS AVAILABLE |
| 2.4.7.2 | BASIC FUNCTIONS AVAILABLE |
| 3.1 | MCDS/GPC ASSIGNMENT HIERARCHY |
| 3.5.000 | GPC MEMORY |
| 3.5.001 | DPS UTILITY |
| 3.5.006 | GPC/BUS STATUS |
| 3.5.018 | GNC SYS SUMM 1 |
| 3.5.053 | CONTROLS |
| 3.5.110 | BUS/BTU STATUS |
| 3.5.112 | GPC/BTU I/F |
| $3.5 .9011(\mathrm{G})$ | ) GPC MEMORY |
| $3.5 .9011(\mathrm{P})$ | MASS MEMORY R/W |
| 5. | TABLE 5-1. SWITCHES |
| 5.2 | DEU KEYBOARD |
| 6.2 | MESSAGES |
| 8.1 | GPC ERRORS |
| 8.1.1 | GPC FAIL-TO-SYNCS |
| 8.1.2 | GPC ERROR LOG (CZ2V_GPC_ERR_LOG) |
| 8.2 | INPUT/OUTPUT (I/O) ERRORS |
| 8.2 .1 | I/O RELATED USER NOTES |
| 8.2.2 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |
| 8.3 | DUMP ANALYSIS |

## KEYWORD

 BUSSECTION
NUMBER
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2.1
2.4.4
2.4.4.1
2.4.7.2
3.1
3.5.000
3.5.001
3.5.006
3.5.018
3.5.053
3.5.110
3.5.112
3.5.9011(G)
3.5.9011(P)
5.
5.2
6.2
8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.3

SECTION
TITLE
OPERATIONAL SEQUENCES
OPS O
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
DISPLAYS AVAILABLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
MCDS/GPC ASSIGNMENT HIERARCHY
GPC MEMORY
DPS UTILITY
GPC/BUS STATUS
GNC SYS SUMM 1
CONTROLS
BLS/BTU STATUS
GPC/BTU I/F
GPC MEMORY
MASS MEMORY R/W
TABLE 5-1. SWITCHES
DEU KEYBOARD
MESSAGES
GPC ERRORS
GPC FAIL-TO-SYNCS
GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
INPUT/OUTPUT (I/O) ERRORS
I/O RELATED USER NOTES
I/O ERROR LOG (CZ2V_IO_ERR_LOG)
DUMP ANALYSIS

# KEYWORD <br> COMMFAULTS 

| SECTION <br> NUMBER | SECTION <br> TITLE |  |
| :--- | :--- | :--- |
| 2.4 .4 .1 |  | DISPLAYS AVAILABLE |
| 2.4 .5 |  | OPS GNC2 |
| 4.7.1 |  | ATTITUDE DIRECTION INDICATOR (ADI) |
| 6.1 |  | ANNUNCIATION |
| 6.2 | MESSAGES |  |
| 8.1 | GPC ERRORS |  |
| 8.1 .1 | GPC FAIL-TO-SYNCS |  |
| 8.1 .2 | GPC ERROR LOG (CZ2V_GPC_ERR_LOG) |  |
| 8.2 | INPUT/OUTPUT (I/O) ERRORS |  |
| 8.2 |  | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |

## KEYWORD

 COMPILER| SECTION | SECTION <br> NUMBER |
| :--- | :--- |
| TITLE |  |


| RELEASE: | OI20 | Date: |
| :--- | :--- | :---: |
| BOOK: | PASS User's Guide | Rev: 0 |

KEYWORD
CROSSFEED

SECTION NUMBER
5.

SECTION
TITLE

TABLE 5-1. SWITCHES

RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

## KEYWORD <br> CYCLE-WRAP

SECTION
NUMBER
3.5.022
8.1
8.1.1
8.1.2
8.3

SECTION
TITLE
S TRK/COAS CNTL
GPC ERRORS
GPC FAIL-TO-SYNCS
GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
DUMP ANALYSIS

RELEASE: OI20
BOOK: PASS User's Guide

KEYWORD
DAP

SECTION
NUMBER
3.5.020
3.5.023
6.2

SECTION
TITLE
DAP CONFIG
RCS
MESSAGES

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

## KEYWORD

DCP

SECTION
NUMBER
SECTION
TITLE


| RELEASE: BOOK: | OI20 <br> PASS User's Guide |
| :---: | :---: |
|  | $\underset{\text { DEU }}{\text { KEYWORD }}$ |
| SECTION | SECTION |
| NUMBER | TITLE |
| 2.3.1.2 | NO DISPLAY |
| 2.3.2 | DEU LOAD |
| 3.1 | MCDS/GPC ASSIGNMENT HIERARCHY |
| 3.5.021 | IMU ALIGN |
| 3.5.104 | GND IMU CNTL/MON |
| 3.5.110 | BUS/BTU STATUS |
| 4.1 | DATA PROCESSING SYSTEM (DPS) TALKBACKS |
| 5. | TABLE 5-1. SWITCHES |
| 5.2 | DEU KEYBOARD |
| 6.2 | MESSAGES |
| 7.1.8 | DEU READ CAPABILITY |
| 7.3 | DOWNLIST |
| 7.3.3 | DEU MESSAGES AND KEYBOARD LAYOUT |


| RELEASE: BOOK: | $\begin{aligned} & \text { Ol20 } \\ & \text { PASS User's Guide } \end{aligned}$ |
| :---: | :---: |
|  | KEYWORD DISP |
| SECTION NUMBER | SECTION TITLE |
|  | NO |
|  |  |
| 2.4 | OPERATIONAL SEQUENCES |
| 2.4.1 | OPS O |
| 2.4.1.1 | DISPLAYS AVAILABLE |
| 2.4.1.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4.2.1 | DISPLAYS AVAILABLE |
| 2.4.2.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4.3 | OPS PL9 |
| 2.4.3.1 | DISPLAYS AVAILABLE |
| 2.4.4 | OPS GNC1 |
| 2.4.4.1 | DISPLAYS AVAILABLE |
| 2.4.4.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4.5 | OPS GNC2 |
| 2.4.5.1 | DISPLAYS AVAILABLE |
| 2.4.6.1 | DISPLAYS AVAILABLE |
| 2.4.7 | OPS GNC6 |
| 2.4.7.1 | DISPLAYS AVAILABLE |
| 2.4.7.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4.8 | OPS GNC8 |
| 2.4.8.1 | DISPLAYS AVAILABLE |
| 2.4.9.1 | DISPLAYS AVAILABLE |
| 2.4.9.2 | BASIC FUNCTIONS AVAILABLE |
| 3. | CRT DISPLAYS |
| 3.2 | STANDARD CRT DISPLAY PAGE |
| 3.3 | OPS, SPEC, DISP PAGE HIERARCHY |
| 3.4 | USER'S GUIDE DISPLAY FORMAT |
| 3.4.1 | IPL MENU |
| 3.4.2 | DEU STAND-ALONE SELF-TEST (DEU SAST) |
| 3.5 | DISPLAYS |
| 3.5 .006 | GPC/BUS STATUS |
| 3.5.018 | GNC SYS SUMM 1 |
| 3.5.019 | GNC SYS SUMM 2 |
| 3.5.066 | ENVIRONMENT |
| 3.5.067 | ELECTRIC |
| 3.5.068 | CRYO SYSTEM |


| RELEASE: <br> BOOK: | OI20 <br> PASS User's Guide |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
| SECTION |  |
| NEYS (Continued) |  |

# DISP (Continued) 

SECTION
3.5.069
3.5.076
3.5.077
3.5 .078
3.5.079
3.5 .086
3.5.087
3.5.088
3.5.089
3.5.096
3.5.099
3.5.106
3.5.1011
3.5.1021
3.5.1031
3.5.3051
. 3052
3.5.6011
3.5.6021
.5.6031
5.
5.2
6.1
7.3.2
7.3.3
8.1
8.1.1
8.1.2
8.2
8.2.2


## KEYWORD

DOWNLIST

SECTION
NUMBER
2.4.1.2
2.4.2.2
2.4.3.1
2.4.3.2
2.4 .4
2.4.4.2
2.4 .5
2.4.5.2
2.4.6.2
2.4.7.2
2.4.9.2
3.4.1
3.5.000
3.5.001
3.5.064
3.5.100
5.
7.2.3.2
7.3
7.3.1
7.3.2
7.3.3
8.1
8.12
8.2
8.2
8.3

SECTION
TITLE
BASIC FUNCTIONS AVAILABLE
BASIC FUNCTIONS AVAILABLE
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
GNCl
BASIC FUNCTIONS AVAILABLE

BASIC FUNCTIONS AVAILABLE
BASIC FUNCTIONS AVAILABLE
BASIC FUNCTIONS AVAILABLE

BASIC FUNCTIONS AVAILABLE
IPL MENU
GPC MEMORY
UTILITY
SM GROUND CHECKOUT

TABLE 5-1. SWITCHES
GROUND/GPC INTERFACES
TWO-STAGE COMMANDS
DOWNLIST

FAULT SUMMARY PAGE
DEU MESSAGES AND KEYBOARD LAYOUT
GPC ERRORS

GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
INPUT/OUTPUT (I/O) ERRORS
I/O RELATED USER NOTES

DUMP ANALYSIS

| RELEASE: | OI20 | Date: |
| :--- | :--- | :---: |
| BOOK: | 12/20/90 |  |
| PASS User's Guide | Rev: 0 |  |

## KEYWORD

DUMP

| SECTION <br> NUMBER | SECTION <br> TITLE |
| :--- | :--- |
| 2.3 .1 .1 | IPL SEQUENCE FAILURES |
| 2.4 .3 | OPS PL9 |
| 3.5 .111 | SL MEMORY DUMP |
| 7.3 | DOWNLIST |
| 8. | DATA ANALYSIS |
| 8.1 | GPC ERRORS |
| 8.1 .1 | GPC FAIL-TO-SYNCS |
| 8.1 .2 | GPC ERROR LOG (CZ2V_GPC_ERR_LOG) |
| 8.3 | DUMP ANALYSIS |

RELEASE: OI20
Date: 12/20/90
BOOK
PASS User's Guide
Rev: 0

KEYWORD
DYNAMICS

| SECTION | SECTION |
| :--- | :--- |
| NUMBER | TITLE |



RELEASE: OI20
BOOK: PASS User's Guide
Date: $12 / 20 / 90$
Rev: 0

## KEYWORD

EIU

SECTION SECTION
NUMBER TITLE

RELEASE: OI20 BOOK: PASS User's Guide

Date: $12 / 20 / 90$
Rev: 0

KEYWORD
ENTRY

SECTION
NUMBER
3.5.050
3.5.053
3.5.1041
3.5.3011
3.5.3041
3.5.3042
3.5.3043
3.5.3044
3.5.3045
3.5.3051
3.5.3052
5.

SECTION
TITLE
HORIZ SIT
CONTROLS
XXXXX MNVR YYYYY
XXXXX MNVR YYYYY
ENTRY TRAJ 1
ENTRY TRAJ 2
ENTRY TRAJ 3
ENTRY TRAJ 4
ENTRY TRAJ 5
VERT SIT 1
VERT SIT 2
TABLE 5-1. SWITCHES

## KEYWORD FCOS

SECTION
NUMBER
2.3
2.3.1
2.3.1.1
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2
2.4.2.1
2.4.2.2
2.4.4
3.5
4.1
4.2
7.3.1
8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2
8.3.1

SECTION
TITLE
SYSTEM INITIALIZATION
INITIAL PROGRAM LOAD (IPL) SEQUENCE
IPL SEQUENCE FAILURES
OPERATIONAL SEQUENCES
OPS O
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC9
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC1
DISPLAYS
DATA PROCESSING SYSTEM (DPS) TALKBACKS COMPUTER ANNUNCIATION MATRIX
FORMATS AND FORMATTER PROGRAMS
GPC ERRORS
GPC FAIL-TO-SYNCS
GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
INPUT/OUTPUT (I/O) ERRORS
I/O RELATED USER NOTES
I/O ERROR LOG (CZ2V_IO_ERR_LOG)
SYNC TRACE LOG


## KEYWORD <br> FDA

SECTION
NUMBER
2.4.4
2.4.4.1
2.4.7.1
2.4.9
2.4.9.2
3.5
3.5.006
3.5.019
3.5.060
3.5.099
4.1
4.2
4.3
4.4
4.5
6.1
6.2
8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2

SECTION
TITLE
OPS GNC1
DISPLAYS AVAILABLE
DISPLAYS AVAILABLE
OPS SM2/4
BASIC FUNCTIONS AVAILABLE
DISPLAYS
GPC/BUS STATUS
GNC SYS SUMM 2
SM TABLE MAINT
FAULT
DATA PROCESSING SYSTEM (DPS) TALKBACKS
COMPUTER ANNUNCIATION MATRIX
CAUTION AND WARNING LIGHTS
MASTER ALARM
SM ALERT LIGHT
ANNUNCIATION
MESSAGES
GPC ERRORS
GPC FAIL-TO-SYNCS
GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
INPUT/OUTPUT (I/O) ERRORS
I/O RELATED USER NOTES
I/O ERROR LOG (CZ2V_IO_ERR_LOG)

| RELEASE: <br> BOOK: | Ol20 <br> PASS User's Guide |
| :--- | :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
| SECTION | KEYWORD |
| NUMBER | FECTION |
|  | TITLE |
| 3.5 .018 | GNC SYS SUMM 1 |
| 4.1 | DATA PROCESSING SYSTEM (DPS) TALKBACKS |
| 4.2 | COMPUTER ANNUNCIATION MATRIX |
| 8.1 | GPC ERRORS |
| 8.1 .1 | GPC FAIL-TO-SYNCS |
| 8.1 .2 | GPC ERROR LOG (CZ2V_GPC_ERR_LOG) |
| 8.2 | INPUT/OUTPUT (I/O) ERRORS |
| 8.2 .2 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |

## KEYWORD GPC

SECTION
NUMBER
2.3.1.2
2.3.1.3
2.4
2.4.4
3.5.006
3.5.099
5.
6.2
8.
8.1
8.1.1
8.1.2
8.3
8.3.2

SECTION
TITLE
NO DISPLAY
CAM LIGHT
OPERATIONAL SEQUENCES
OPS GNC1
GPC/BUS STATUS
FAULT
TABLE 5-1. SWITCHES
MESSAGES
DATA ANALYSIS
GPC ERRORS
GPC FAIL-TO-SYNCS
GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
DUMP ANALYSIS
WAIT STATE

| RELEASE: | OI20 |
| :--- | :--- |
| BOOK: | PASS User's Guide | | Date: | 12/20/90 |
| :---: | :---: |
| Rev: | 0 |

KEYWORD GUID

SECTION
NUMBER
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.7
2.4.7.1
4.7.2
4.7.3
4.8
5.

SECTION<br>TITLE<br>OPS GNCl<br>DISPLAYS AVAILABLE<br>BASIC FUNCTIONS AVAILABLE<br>OPS GNC2<br>OPS GNC6<br>DISPLAYS AVAILABLE<br>HORIZONTAL SITUATION INDICATOR (HSI)<br>ALPHA MACH INDICATOR<br>HEAD-UP DISPLAY<br>TABLE 5-1. SWITCHES

RELEASE: OI20
BOOK: PASS User's Guide

## KEYWORD <br> HIP

## SECTION

SECTION

- NUMBER

TITLE

| RELEASE: BOOK: | $\begin{aligned} & \text { OI20 } \\ & \text { PASS User's } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  | KEYWORD HSI |
| SECTION <br> NUMBER |  | SECTION <br> TITLE |  |
| 4.7 |  | GNC DED | DISPLAYS |
| 4.7.2 |  | HORIZON | TUATION IN |
| 5. |  | TABLE 5-1 | CHES |

RELEASE: OI20

## KEYWORD <br> HUD

SECTION SECTION
-NUMBER
TITLE
4.8

HEAD-UP DISPLAY

| RELEASE: BOOK: | $\begin{aligned} & \text { OI20 } \\ & \text { PASS User's } \end{aligned}$ |  |
| :---: | :---: | :---: |
|  |  |  |
| SECTION |  | SEC |
| NUMBER |  | TIT |
| 2.3.1.1 |  | IPL |
| 2.3.1.3 |  | CAM |
| 2.4.8 |  | OPS |
| 3.4.1 |  | IPL |
| 3.5.043 |  | CON |
| 3.5.101 |  | SEN |
| 4.1 |  | DAT |
| 4.2 |  | COM |
| 4.3 |  | CAU |
| 4.4 |  | MAS |
| 4.5 |  | SM |
| 4.6.1 |  | RMS |
| 4.6.2 |  | RMS |
| 4.6.3 |  | RMS |
| 4.6.4 |  | RMS |
| 4.6.5 |  | RMS |
| 4.6.6 |  | RMS |
| 4.6.7 |  | RMS |
| 4.6.8 |  | RAT |
| 4.6.9 |  | RAT |
| 4.6.10 |  | RAT |
| 4.6.11 |  | EE R |
| 4.6.12 |  | EE |
| 4.6.13 |  | EE |
| 4.6.14 |  | EE 0 |
| 4.6.15 |  | EE |
| 4.6.16 |  | EE |
| 4.6.17 |  |  |
| 4.6.18 |  | STB |
| 4.6.19 |  | $\underset{\mathrm{I}}{\mathrm{STB}}$ |
| 4.6.20 |  | POR |
| 4.6.21 |  | $\mathrm{POR}$ |


| RELEASE: BOOK: | OI20 PASS User's Guide |
| :---: | :---: |
|  | KEYWORD HW (Continued) |
| SECTION <br> NUMBER | SECTION <br> TITLE |
| 4.6.23 | RMS ACTUAL AND COMMANDED RATES INDICATOR |
| 4.7.1 | ATTITUDE DIRECTION INDICATOR (ADI) |
| 4.7 .6 | FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS |
| 4.7 .7 | REACTION CONTROL SYSTEM ACTIVITY LIGHTS |
| 5. | TABLE 5-1. SWITCHES |
| 6.2 | MESSAGES |
| 8.1 | GPC ERRORS |
| 8.1.1 | GPC FAIL-TO-SYNCS |
| 8.1.2 | GPC ERROR LOG (CZ2V_GPC_ERR_LOG) |
| 8.2 | INPUT/OUTPUT (I/O) ERRORS |
| 8.2.2 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |
| 8.3 | DUMP ANALYSIS |


| RELEASE: <br> BOOK: | PI20 <br> PASS User's Guide |
| :--- | :--- | :--- |
|  |  |
|  |  |
|  |  |
| SECTION | KEYWORD |
| NUMBER | SECTION |
|  | TITLE |
| 2.4 .4 | OPS GNC1 |
| 2.4 .8 | OPS GNC8 |
| 2.4 .8 .1 | DISPLAYS AVAILABLE |
| 2.5 | ACTUATOR/HYDRAULIC ACTIVATION RESTRICTIONS |
| 3.5 .018 | GNC SYS SUMM 1 |
| 3.5 .051 | OVERRIDE |
| 3.5 .053 | CONTROLS |
| 4.7 .6 | FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS |
| 5. | TABLE 5-1. SWITCHES |
| 7.1 .6 .1 | ACTUATOR INITIALIZATION (AI) |
| 7.1 .6 .2 | RAMP FUNCTION GENERATOR (RFG) |
| 7.1 .6 .3 | FREQUENCY RESPONSE TEST (FRT) |
| 7.1 .6 .5 | MULTIPLE ACTUATOR TEST (MAT) |
| 7.1 .6 .6 | BODY FLAP DRIVE (BFD) |
| 7.1 .6 .7 | BODY FLAP MONITOR (BFM) |

## KEYWORD <br> I/O

| SECTION <br> NUMBER | SECTION <br> TITLE |
| :---: | :---: |
| 2.4.4 | OPS GNC1 |
| 3.4.1 | IPL MENU |
| 3.4.2 | DEU STAND-ALONE SELF-TEST (DEU SAST) |
| 3.5.000 | GPC MEMORY |
| 3.5.006 | GPC/BUS STATUS |
| 3.5.051 | OVERRIDE |
| 3.5.099 | FAULT |
| 4.1 | DATA PROCESSING SYSTEM (DPS) TALKBACKS |
| 4.2 | COMPUTER ANNUNCIATION MATRIX |
| 5.2 | DEU KEYBOARD |
| 6.1 | ANNUNCIATION |
| 6.2 | MESSAGES |
| 7.2.2 | SOFTWARE INTERFACES |
| 7.2.2.2 | VALIDITY CHECKING |
| 8. | DATA ANALYSIS |
| 8.2 | INPUT/OUTPUT (I/O) ERRORS |
| 8.2.1 | I/O RELATED USER NOTES |
| 8.2.2 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |
| 8.3 | DUMP ANALYSIS |
| 8.3.2 | WAIT STATE |

## KEYWORD

ICC

SECTION
NUMBER
2.4.7.2
6.2
8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.2

SECTION
TITLE
BASIC FUNCTIONS AVAILABLE
MESSAGES
GPC ERRORS
GPC FAIL-TO-SYNCS
GPC ERROR LOG (CZ2V_GPC_ERR_LOG)
INPUT/OUTPUT (I/O) ERRORS
I/O RELATED USER NOTES
I/O ERROR LOG (CZ2V_IO_ERR_LOG)

# KEYWORD 

ILOAD

SECTION
NUMBER
2.4.4
2.4.5
3.5.104
8.4.4

SECTION
TITLE
OPS GNC1
OPS GNC2
GND IMU CNTL/MON
ILOAD REPORT (ILDMAP)

| RELEASE: | OI20 | Date: | 12/20/90 |
| :--- | :--- | :---: | :---: |
| BOOK: | PASS User's Guide | Rev: | 0 |

KEYWORD
IMU

| SECTION | SECTION |
| :--- | :--- |
| NUMBER | TITLE |
| 2.4 .4 | OPS GNC1 |
| 2.4 .4 .1 | DISPLAYS AVAILABLE |
| 2.4 .4 .2 | BASIC FUNCTIONS AVAILABLE |
| 2.4 .5 | OPS GNC2 |
| 2.4 .7 | OPS GNC6 |
| 2.4 .7 .1 | DISPLAYS AVAILABLE |
| 3.5 .001 | DPS UTILITY |
| 3.5 .018 | GNC SYS SUMM 1 |
| 3.5 .021 | IMU ALIGN |
| 3.5 .022 | S TRK/COAS CNTL |
| 3.5 .051 | OVERRIDE |
| 3.5 .100 | GTS DISPLAY |
| 3.5 .104 | GND IMU CNTL/MON |
| 5. | TABLE 5-1. SWITCHES |
| 6.1 | ANNUNCIATION |
| 6.2 | MESSAGES |

KEYWORD
IPL

SECTION
NUMBER
2.1
2.2.1
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.2
2.4.5
3.
4.1
5.

SECTION
TITLE
OVERVIEW
GPC MEMORY CONFIGURATION
SYSTEM INITIALIZATION
INITIAL PROGRAM LOAD (IPL) SEQUENCE
IPL SEQUENCE FAILURES
NO DISPLAY
CAM LIGHT
DEU LOAD
OPS GNC2
CRT DISPLAYS
DATA PROCESSING SYSTEM (DPS) TALKBACKS
TABLE 5-1. SWITCHES

```
RELEASE: OI20

\title{
KEYWORD KEYBOARD
}
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE \\
\hline 3.1 & MCDS/GPC ASSIGNMENT HIERARCHY \\
3.4 & USER'S GUIDE DISPLAY FORMAT \\
3.5 .022 & S TRK/COAS CNTL \\
3.5 .104 & GND IMU CNTL/MON \\
3.5 .1041 & XXXXX MNVR YYYYY \\
3.5 .1051 & XXXXX MNVR YYYYY \\
3.5 .1061 & XXXXX MNVR YYYYY \\
\(3.5 .2021(G)\) & XXXXX MNVR YYYYY \\
3.5 .3021 & XXXXX MNVR YYYYY \\
3.5 .3031 & DATA PROCESSING SYSTEM (DPS) TALKBACKS \\
4.1 & COMPUTER ANNUNCIATION MATRIX \\
4.2 & DEU KEYBOARD \\
5.2 & DOWNLIST \\
7.3 & DEU MESSAGES AND KEYBOARD LAYOUT \\
7.3 .3 & GPC ERRORS \\
8.1 & GPC FAIL-TO-SYNCS \\
8.1 .1 & GPC ERROR LOG (CZ2V_GPC_ERR_LOG) \\
8.1 .2 & INPUT/OUTPUT (I/O) ERRORS \\
8.2 & I/O ERROR LOG (CZ2V_IO_ERR_LOG) \\
8.2 .2 &
\end{tabular}

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

\title{
KEYWORD \\ KU-BAND
}

SECTION
NUMBER
3.5.2011(S) ANTENNA
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
RELEASE: \\
BOOK:
\end{tabular} & \begin{tabular}{l}
OI20 \\
PASS User's Guide
\end{tabular} \\
\hline & KEYWORD LDB \\
\hline SECTION & SECTION \\
\hline NUMBER & TITLE \\
\hline 2.4 & OPERATIONAL SEQUENCES \\
\hline 2.4.1.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.2.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4 .3 & OPS PL9 \\
\hline 2.4.3.1 & DISPLAYS AVAILABLE \\
\hline 2.4.3.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.4 & OPS GNC1 \\
\hline 2.4.4.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.5.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.6.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.7.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.8.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 2.4.9.2 & BASIC FUNCTIONS AVAILABLE \\
\hline 3. & CRT DISPLAYS \\
\hline 3.5.001 & DPS UTILITY \\
\hline 3.5.006 & GPC/BUS STATUS \\
\hline 3.5.100 & GTS DISPLAY \\
\hline 5. & TABLE 5-1. SWITCHES \\
\hline 7. & GROUND/GPC INTERFACES \\
\hline 7.1 & LAUNCH DATA BUS \\
\hline 7.1.1 & LDB PROTOCOL/POLLING \\
\hline 7.1.2 & LDB POLLING CONTROLS \\
\hline 7.1.3 & LDB MASS MEMORY OPERATIONS \\
\hline 7.1.4 & LDB SSME LOAD OPERATIONS \\
\hline 7.1 .5 & LDB TEST CONTROL SUPERVISOR OPERATIONS \\
\hline 7.1 .6 & EXPLICITLY CODED PROGRAMS (ECP) \\
\hline 7.1.6.1 & ACTUATOR INITIALIZATION (AI) \\
\hline 7.1.6.2 & RAMP FUNCTION GENERATOR (RFG) \\
\hline 7.1 .6 .3 & FREQUENCY RESPONSE TEST (FRT) \\
\hline 7.1.6.4 & DEDICATED DISPLAY CHECKOUT (DDCO) \\
\hline 7.1.6.5 & MULTIPLE ACTUATOR TEST (MAT) \\
\hline 7.1.6.6 & BODY FLAP DRIVE (BFD) \\
\hline 7.1.6.7 & BODY FLAP MONITOR (BFM) \\
\hline 7.1 .7 & LAUNCH SEQUENCE COMMANDS \\
\hline 7.1 .8 & DEU READ CAPABILITY \\
\hline 8.2.1 & I/O RELATED USER NOTES \\
\hline 8.2.2 & I/O ERROR LOG (CZ2V_IO_ERR_LOG) \\
\hline 8.5 & MASS MEMORY DIRECTORY \\
\hline
\end{tabular}

Date: \(12 / 20 / 90\)
Rev: 0

\section*{ECTION \\ SECTION}
-
2.4
2.4.1.2
2.4.2.2
2.4.3
2.4.3.1
2.4.3.2
2.4.4
.
2.4.5.2
2.4.6.2
2.4.7.2
2.4.8.2
2.4.9.2
3.
.5.001
3.5.006
3.5.100
5.
7.
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.6.1
7.1.6.2
7.1.6.3
7.1.6.4
7.1.6.5
7.1.6.6
7.1.6.7
7.1.7
7.1.8
8.2.1
8.5 OPS PL9

OPS GNC1

CRT DISPLAYS
DPS UTILITY

GTS DISPLAY

OPERATIONAL SEQUENCES
BASIC FUNCTIONS AVAILABLE
BASIC FUNCTIONS AVAILABLE

ISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE

ASIC FUNCTIONS AVAILABLE

BASIC FUNCTIONS AVAILABLE
BASIC FUNCTIONS AVAILABLE
BASIC FUNCTIONS AVAILABLE

GPC/BUS STATUS

TABLE 5-1. SWITCHES

LAUNCH DATA BUS
LDB PROTOCOL/POLLING

LDB MASS MEMORY OPERATIONS
LDB SSME LOAD OPERATIONS
LDB TEST CONTROL SUPERVISOR OPERATIONS

ACTUATOR INITIALIZATION (AI)
RAMP FUNCTION GENERATOR (RFG)
DEDICATED DISPLAY CHECKOUT (DDCO)
MULTIPLE ACTUATOR TEST (MAT)
BODY FLAP DRIVE (BFD)

LAUNCH SEQUENCE COMMANDS
DEU READ CAPABILITY

I/O ERROR LOG (CZ2V_IO_ERR_LOG)
MASS MEMORY DIRECTORY

KEYWORD
LEVEL C

SECTION NUMBER

SECTION
TITLE

RELEASE: OI20
BOOK: PASS User's Guide

Date: 12/20/90
Rev: 0

KEYWORD
MCDS INTERFACE

SECTION
NUMBER

SECTION TITLE

\title{
KEYWORD MDM
}
\begin{tabular}{ll}
\begin{tabular}{l} 
SECTION \\
NUMBER
\end{tabular} & \begin{tabular}{l} 
SECTION \\
TITLE
\end{tabular} \\
\cline { 1 - 1 } 3.5 .001 & \\
3.5 .006 & DPS UTILITY \\
3.5 .018 & GPC/BUS STATUS \\
3.5 .053 & GNC SYS SUMM 1 \\
3.5 .100 & CONTROLS \\
3.5 .110 & GTS DISPLAY \\
3.5 .112 & BUS/BTU STATUS \\
\(3.5 .9011(\mathrm{G})\) & GPC/BTU I/F \\
\(3.5 .9011(\mathrm{P})\) & GPC MEMORY \\
6.2 & MASS MEMORY R/W \\
8.1 & MESSAGES \\
8.1 .1 & GPC ERRORS \\
8.1 .2 & GPC FAIL-TO-SYNCS \\
8.2 & GPC ERROR LOG (CZ2V_GPC_ERR_LOG) \\
8.2 .1 & INPUT/OUTPUT (I/O) ERRORS \\
8.2 .2 & I/O RELATED USER NOTES \\
8.3 & I/O ERROR LOG (CZ2V_IO_ERR_LOG) \\
& DUMP ANALYSIS
\end{tabular}

SECTION
NUMBER
5.
6.2

SECTION
TITLE

TABLE 5-1. SWITCHES
MESSAGES

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

KEYWORD
MISSION

SECTION SECTION
NUMBER TITLE
2.4.9.2

BASIC FUNCTIONS AVAILABLE

KEYWORD
MMU

SECTION
NUMBER
2.1
2.2
2.2.1
2.2.2
2.3.1
2.3.1.1
2.3.1.3
2.3.2
2.4
2.4.3
2.4.3.1
2.4.3.2
2.4.4
2.4.4.1
2.4.9
2.4.9.1
2.4.9.2
3.4.1
3.5.001
3.5.090
3.5.104
3.5.105
3.5.110
3.5.9011(P)
5.
6.2
7.1.3
7.1.4
8.
8.2.2
8.4.1
8.4.2
8.4.3
8.5

SECTION
TITLE

\section*{OVERVIEW}

MASS MEMORY
GPC MEMORY CONFIGURATION
MASS MEMORY ALLOCATION
INITIAL PROGRAM LOAD (IPL) SEQUENCE
IPL SEQUENCE FAILURES
CAM LIGHT
DEU LOAD
OPERATIONAL SEQUENCES
OPS PL9
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC1
DISPLAYS AVAILABLE
OPS SM2/4
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
IPL MENU
DPS UTILITY
PCS CONTROL
GND IMU CNTL/MON
TCS CONTROL
BUS/BTU STATUS
MASS MEMORY R/W
TABLE 5-1. SWITCHES
MESSAGES
LDB MASS MEMORY OPERATIONS
LDB SSME LOAD OPERATIONS
DATA ANALYSIS
I/O ERROR LOG (CZ2V_IO_ERR_LOG)
MASS MEMORY BUILD (MMBXXXX)
MASS MEMORY PATCH
MASS MEMORY DUMP (MMB)
MASS MEMORY DIRECTORY

\section*{KEYWORD \\ MPS}

\section*{SECTION \\ NUMBER}
5. TABLE 5-1. SWITCHES
6.2

SECTION
TITLE

MESSAGES

\begin{tabular}{ll} 
BOOK: PASS User's Guide \\
& \\
& KEYWORD \\
& NAVAID
\end{tabular}

SECTION
NUMBER
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.6
2.4 .7
2.4.7.1
2.4.8
3.5.018
3.5.021
3.5.022
3.5.033
3.5.3041
3.5.3042
3.5.3043
3.5.3044
3.5.3045
4.7 .2
4.7 .4
5.
6.1
6.2

SECTION
TITLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC2
OPS GNC3
OPS GNC6
DISPLAYS AVAILABLE
OPS GNC8
GNC SYS SUMM 1
IMU ALIGN
S TRK/COAS CNTL
REL NAV
ENTRY TRAJ 1
ENTRY TRAJ 2
ENTRY TRAJ 3
ENTRY TRAJ 4
ENTRY TRAJ 5
HORIZONTAL SITUATION INDICATOR (HSI)
ALTITUDE/VERTICAL VELOCITY INDICATOR
TABLE 5-1. SWITCHES
ANNUNCIATION
MESSAGES

Date: 12/20/90

\section*{NAVAID}

RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

\section*{KEYWORD \\ OMS}
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE
\end{tabular}
3.5.019
3.5.023
5.
6.1
6.2

TITLE
GNC SYS SUMM 2
RCS
TABLE 5-1. SWITCHES
ANNUNCIATION
MESSAGES

\author{
KEYWORD \\ OPS
}

SECTION
NUMBER
2.4
2.4 .1
2.4.1.1
2.4.1.2
2.4.2
2.4.2.1
2.4.2.2
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4 .6
2.4.7
2.4.7.1
2.4.8
3.1
3.4
5.
5.1
5.2
6.2
7.1.2

SECTION
TITLE
OPERATIONAL SEQUENCES
OPS O
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC9
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC2
OPS GNC3
OPS GNC6
DISPLAYS AVAILABLE
OPS GNC8
MCDS/GPC ASSIGNMENT HIERARCHY
USER'S GUIDE DISPLAY FORMAT
TABLE 5-1. SWITCHES
TABLE FORMAT
DEU KEYBOARD
MESSAGES
LDB POLLING CONTROLS

RELEASE: OI20 Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

KEYWORD ORBIT

SECTION
NUMBER
3.5.033
3.5.034
3.5.1041
3.5.2011(G)
\(3.5 .2021(\mathrm{G})\)
3.5.2021(S)
3.5.3021
3.5.8011
5.

SECTION
TITLE
REL NAV
ORBIT TGT
XXXXX MNVR YYYYY
UNIV PTG
XXXXX MNVR YYYYY
PL BAY DOORS
XXXXX MNVR YYYYY
FCS/DED DISP C/O
TABLE 5-1. SWITCHES

\title{
KEYWORD \\ PANEL
}
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE
\end{tabular}
2.3.1.1
2.3.1.3
2.4.8
3.4.1
3.5.043
4.1
4.2
4.3
4.4
4.5
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21
4.6.23

TITLE
IPL SEQUENCE FAILURES
CAM LIGHT
OPS GNC8
IPL MENU

\section*{CONTROLLERS}

DATA PROCESSING SYSTEM (DPS) TALKBACKS
COMPUTER ANNUNCIATION MATRIX
CAUTION AND WARNING LIGHTS
MASTER ALARM
SM ALERT LIGHT
RMS MASTER ALARM (PANEL A8A1)
RMS MODE LIGHT (PANEL A8A1)
RMS AUTO SEQ LIGHTS (PANEL A8A1)
RMS CAUTION LIGHTS (PANEL A8A1)
RMS BRAKES INDICATOR (PANEL A8A1)
RMS SAFING BARBER-POLE INDICATOR (PANEL A8A1)
RMS SOFTWARE STOP BARBER-POLE INDICATOR (PANEL A8A1)
RATE MIN INDICATOR (PANEL A8A1)
RATE HOLD INDICATOR (PANEL A8A1)
RATE SCALE INDICATOR (PANEL A8A1)
EE RIGID BARBER-POLE INDICATOR (PANEL A8A1)
EE DERIGID BARBER-POLE INDICATOR (PANEL A8A1)
EE CLOSE BARBER-POLE INDICATOR (PANEL A8A1)
EE OPEN BARBER-POLE INDICATOR (PANEL A8A1)
EE CAPTURE BARBER-POLE INDICATOR (PANEL A8A1)
EE EXTEND BARBER-POLE INDICATOR (PANEL A8A1)
SHOULDER BRACE RELEASE BARBER-POLE INDICATOR (PANEL A8A1)
STBD RMS STO/LAT INDICATORS (PANEL A8A2)
STBD RMS READY-FOR-LATCH AFT/MID/FWD BARBER-POLE INDICATORS (PANEL A8A2)
PORT RMS STO/LAT INDICATORS (PANEL A8A2)
PORT RMS READY-FOR-LATCH AFT/MID/FWD BARBER-POLE INDICATORS (PANEL A8A2)
RMS ACTUAL AND COMMANDED RATES INDICATOR

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

KEYWORD
PANEL (Continued)
\begin{tabular}{ll}
\begin{tabular}{ll} 
SECTION \\
NUMBER
\end{tabular} & \begin{tabular}{l} 
SECTION \\
TITLE
\end{tabular} \\
\hline 4.7 .1 & \\
4.7 .6 & \\
4.7 .7 & FLTITUDE DIRECTION INDICATOR (ADI) \\
5. & REACTION CONTROL SYSTEM ACTIVITY LIGHTS \\
8.1 & TABLE 5-1. SWITCHES \\
8.1 .1 & GPC ERRORS \\
8.1 .2 & GPC FAIL-TO-SYNCS \\
8.2 & GPC ERROR LOG (CZ2V_GPC_ERR_LOG) \\
8.2 .2 & INPUT/OUTPUT (I/O) ERRORS \\
8.3 & I/O ERROR LOG (CZ2V_IO_ERR_LOG) \\
& DUMP ANALYSIS
\end{tabular}
\begin{tabular}{llc} 
RELEASE: & OI20 & Date: \(12 / 20 / 90\) \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}

\section*{KEYWORD}

PAYLOADS
\begin{tabular}{ll}
\begin{tabular}{l} 
SECTION \\
NUMBER
\end{tabular} & \begin{tabular}{l} 
SECTION \\
TITLE
\end{tabular} \\
\hline 2.4 .9 .2 & BASIC FUNCTIONS AVAILABLE \\
3.5 .006 & GPC/BUS STATUS \\
3.5 .090 & PCS CONTROL \\
3.5 .094 & PDRS CONTROL \\
3.5 .096 & PDRS STATUS \\
3.5 .097 & PL RETENTION \\
3.5 .100 & GTS DISPLAY \\
4.6 & REMOTE MANIPULATOR SYSTEM (RMS) INDICATORS \\
5. & TABLE 5-1. SWITCHES \\
7.2 .3 & UPLINK COMMANDS
\end{tabular}
\begin{tabular}{ll|c} 
RELEASE: & OI20 & Date: \\
BOOK: & PASS User's Guide & Rev: 0
\end{tabular}

\section*{KEYWORD} PCS
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE \\
\hline
\end{tabular}
6.2

MESSAGES

\section*{KEYWORD}

PDT

\section*{SECTION \\ NUMBER \\ SECTION \\ TITLE}
```

RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0

```

\section*{KEYWORD}

POWERED

SECTION
NUMBER
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.7
2.4.7.1
4.7.1
4.7.2
4.7.3
4.7.4
4.7.6
5.

SECTION
TITLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC2
OPS GNC6
DISPLAYS AVAILABLE
ATTITUDE DIRECTION INDICATOR (ADI)
HORIZONTAL SITUATION INDICATOR (HSI)
ALPHA MACH INDICATOR
ALTITUDE/VERTICAL VELOCITY INDICATOR
FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS
TABLE 5-1. SWITCHES

\section*{KEYWORD \\ PRELAUNCH}
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE \\
\hline 2.4 .1 & OPS O \\
2.4 .1 .1 & DISPLAYS AVAILABLE \\
2.4 .1 .2 & BASIC FUNCTIONS AVAILABLE \\
2.4 .2 & OPS GNC9 \\
2.4 .2 .1 & DISPLAYS AVAILABLE \\
2.4 .2 .2 & BASIC FUNCTIONS AVAILABLE \\
2.4 .3 & OPS PL9 \\
2.4 .3 .1 & DISPLAYS AVAILABLE \\
2.4 .3 .2 & BASIC FUNCTIONS AVAILABLE \\
2.4 .4 & OPS GNC1 \\
2.4 .4 .1 & BISPLAYS AVAILABLE \\
2.4 .4 .2 & GNSIC FUNCTIONS AVAILABLE \\
3.5 .104 & TABLE 5-1. SWITCHES \\
5. & RAMP FTUTOR INITIALIZATION (AI) \\
7.1 .6 .1 & FREQUENCY RESPONSE TEST (FRT) \\
7.1 .6 .2 & DEDICATED DISPLAY CHECKOUT (DDCO) \\
7.1 .6 .3 & MULTIPLE ACTUATOR TEST (MAT) \\
7.1 .6 .4 & BODY FLAP DRIVE (BFD) \\
7.1 .6 .5 & BODY FLAP MONITOR (BFM) \\
7.1 .6 .6 & LAUNCH SEQUENCE COMMANDS \\
7.1 .6 .7 &
\end{tabular}
\begin{tabular}{ll|l} 
RELEASE: & OI20 & Date: \\
BOOK: & PASS User's Guide & Rev: \(\quad 0\)
\end{tabular}

KEYWORD
PSP COMM
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE \\
\hline
\end{tabular}

KEYWORD

\section*{RCS}

\section*{SECTION}

NUMBER
2.4.4
2.4.4.1
2.4.5
2.4.7
2.4.8
3.5.018
3.5.019
3.5.020
3.5.023
3.5.041
3.5.051
3.5.100
3.5.102
4.7.1
4.7.2
4.7.3
4.7.4
4.7.6
4.7.7
5.
6.1
6.2

SECTION
TITLE
OPS GNC1
DISPLAYS AVAILABLE
OPS GNC2
OPS GNC6
OPS GNC8
GNC SYS SUMM 1
GNC SYS SUMM 2
ORBIT DAP CONFIGURATION (DAP CONFIG)
RCS
RGA/ADTA/RCS
OVERRIDE
GTS DISPLAY
RCS/RGA/ADTA TEST
ATTITUDE DIRECTION INDICATOR (ADI)
HORIZONTAL SITUATION INDICATOR (HSI)
ALPHA MACH INDICATOR
ALTITUDE/VERTICAL VELOCITY INDICATOR
FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS
REACTION CONTROL SYSTEM ACTIVITY LIGHTS
TABLE 5-1. SWITCHES
ANNUNCIATION
MESSAGES
\begin{tabular}{lll}
\begin{tabular}{l} 
RELEASE: \\
BOOK:
\end{tabular} & \begin{tabular}{l} 
OI20 \\
PASS User's Guide
\end{tabular} \\
& \\
& \\
& \\
SECTION & & KEYWORD \\
NUMBER & & RM \\
\hline & SECTION \\
2.4 .4 & OPS GNC1 \\
2.4 .4 .1 & DISPLAYS AVAILABLE \\
2.4 .5 & OPS GNC2 \\
3.5 .023 & RCS \\
3.5 .025 & RM ORBIT \\
3.5 .040 & SENSOR TEST \\
3.5 .042 & SWITCH/SURF \\
3.5 .044 & SWITCHES \\
3.5 .051 & OVERRIDE \\
3.5 .053 & CONTROLS \\
6.1 & ANNUNCIATION \\
6.2 & MESSAGES
\end{tabular}

KEYWORD
RMS

SECTION
NUMBER
2.4.9.2
3.5.064
3.5.094
3.5.096
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21
4.6.22
4.6.23
6.2

SECTION
TITLE
BASIC FUNCTIONS AVAILABLE
SM GROUND CHECKOUT
PDRS CONTROL
PDRS STATUS
REMOTE MANIPULATOR SYSTEM (RMS) INDICATORS
RMS MASTER ALARM (PANEL A8A1)
RMS MODE LIGHT (PANEL A8A1)
RMS AUTO SEQ LIGHTS (PANEL A8A1)
RMS CAUTION LIGHTS (PANEL A8A1)
RMS BRAKES INDICATOR (PANEL A8A1)
RMS SAFING BARBER-POLE INDICATOR (PANEL A8A1)
RMS SOFTWARE STOP BARBER-POLE INDICATOR (PANEL A8A1)
RATE MIN INDICATOR (PANEL A8A1)
RATE HOLD INDICATOR (PANEL A8A1)
RATE SCALE INDICATOR (PANEL A8A1)
EE RIGID BARBER-POLE INDICATOR (PANEL A8A1)
EE DERIGID BARBER-POLE INDICATOR (PANEL A8A1)
EE CLOSE BARBER-POLE INDICATOR (PANEL A8A1)
EE OPEN BARBER-POLE INDICATOR (PANEL A8A1)
EE CAPTURE BARBER-POLE INDICATOR (PANEL A8A1)
EE EXTEND BARBER-POLE INDICATOR (PANEL A8A1)
SHOULDER BRACE RELEASE BARBER-POLE INDICATOR (PANEL A8A1)
STBD RMS STO/LAT INDICATOR (PANEL A8A2)
STBD RMS READY-FOR-LATCH AFT/MID/FWD BARBER-POLE INDICATORS (PANEL A8A2)
PORT RMS STO/LAT INDICATOR (PANEL A8A2)
PORT RMS READY-FOR-LATCH AFT/MID/FWD BARBER-POLE INDICATORS (PANEL A8A2)
RMS DIGITAL DISPLAY (PANEL A8A2)
RMS ACTUAL AND COMMANDED RATES INDICATOR
MESSAGES

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

KEYWORD
RUNWAY

SECTION
NUMBER
3.5 .050
3.5.3051
3.5.3052

SECTION
TITLE
HORIZ SIT
VERT SIT 1
VERT SIT 2

KEYWORD
SACS

SECTION
NUMBER
4.7.1
7.1.5

SECTION
TITLE
ATTITUDE DIRECTION INDICATOR (ADI)
LDB TEST CONTROL SUPERVISOR OPERATIONS

RELEASE: OI20
Date: \(12 / 20 / 90\)
BOOK: PASS User's Guide
Rev: 0

\section*{KEYWORD \\ SC}
\begin{tabular}{ll} 
SECTION & SECTION \\
NUMBER & TITLE \\
\hline 2.4 & OPERATIONAL SEQUENCES \\
2.4 .1 .1 & DISPLAYS AVAILABLE \\
3.5 & DISPLAYS \\
3.5 .000 & GPC MEMORY \\
3.5 .001 & DPS UTILITY \\
6.2 & MESSAGES
\end{tabular}
```

RELEASE: OI20
BOOK: PASS User's Guide

## KEYWORD SEQ

SECTION
NUMBER
2.4.4
2.4.4.1
2.4.4.2
2.4.7
7.1.7

SECTION
TITLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE OPS GNC6

LAUNCH SEQUENCE COMMANDS

| RELEASE: BOOK: | $0120$ <br> PASS User's Guide |
| :---: | :---: |
|  | KEYWORD SPEC |
| SECTION <br> NUMBER | $\begin{aligned} & \text { SECTION } \\ & \text { TITLE } \end{aligned}$ |
| 2.3.1.2 | NO DISPLAY |
| 2.4 | OPERATIONAL SEQUENCES |
| 2.4.1 | OPS O |
| 2.4.1.1 | DISPLAYS AVAILABLE |
| 2.4.1.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4.2.1 | DISPLAYS AVAILABLE |
| 2.4.2.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4 .3 | OPS PL9 |
| 2.4.3.1 | DISPLAYS AVAILABLE |
| 2.4.4 | OPS GNC1 |
| 2.4.4.1 | DISPLAYS AVAILABLE |
| 2.4.4.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4 .5 | OPS GNC2 |
| 2.4.5.1 | DISPLAYS AVAILABLE |
| 2.4.6.1 | DISPLAYS AVAILABLE |
| 2.4.7 | OPS GNC6 |
| 2.4.7.1 | DISPLAYS AVAILABLE |
| 2.4.7.2 | BASIC FUNCTIONS AVAILABLE |
| 2.4 .8 | OPS GNC8 |
| 2.4.8.1 | DISPLAYS AVAILABLE |
| 2.4.9.1 | DISPLAYS AVAILABLE |
| 2.4.9.2 | BASIC FUNCTIONS AVAILABLE |
| 3. | CRT DISPLAYS |
| 3.2 | STANDARD CRT DISPLAY PAGE |
| 3.3 | OPS, SPEC, DISP PAGE HIERARCHY |
| 3.4 | USER'S GUIDE DISPLAY FORMAT |
| 3.5 | DISPLAYS |
| 3.5 .000 | GPC MEMORY |
| 3.5.001 | DPS UTILITY |
| 3.5.002 | TIME |
| 3.5.020 | DAP CONFIG |
| 3.5.021 | IMU ALIGN |
| 3.5.022 | S TRK/COAS CNTL |
| 3.5.023 | RCS |
| 3.5.025 | RM ORBIT |

## KEYWORD

 SPECSECTION
NUMBER
2.3.1.2
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2.1
2.4.2.2
2.4.3
2.4.3.1
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.5.1
2.4.6.1
2.4.7
2.4.7.1
2.4.7.2
2.4.8
2.4.8.1
2.4.9.1
2.4.9.2
3.
3.2
3.3
3.4
3.5
3.5.000
3.5.001
3.5.002
3.5.020
3.5.021
3.5.022
3.5.025

SECTION
TITLE
NO DISPLAY
OPERATIONAL SEQUENCES
OPS O
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS PL9
DISPLAYS AVAILABLE
OPS GNC1
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC2
DISPLAYS AVAILABLE
DISPLAYS AVAILABLE
OPS GNC6
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
OPS GNC8
DISPLAYS AVAILABLE
DISPLAYS AVAILABLE
BASIC FUNCTIONS AVAILABLE
CRT DISPLAYS
STANDARD CRT DISPLAY PAGE
OPS, SPEC, DISP PAGE HIERARCHY
USER'S GUIDE DISPLAY FORMAT
DISPLAYS
GPC MEMORY
DPS UTILITY
TIME
DAP CONFIG

S TRK/COAS CNTL
RCS
RM ORBIT

KEYWORD
SPEC (Continued)

SECTION
NUMBER
3.5.033
3.5.034
3.5.040
3.5.041
3.5.042
3.5.043
3.5.044
3.5.050
3.5.051
3.5.053
3.5.060
3.5.062
3.5.064
3.5.085
3.5.090
3.5.094
3.5.100
3.5.101
3.5.102
3.5.104
3.5.105
3.5.110
3.5.111
3.5.112
3.5.113
3.5.1041
3.5.1051
3.5.1061
3.5.2011(G)
3.5.2011(S)
3.5.2021(G)
3.5.2021(S)
3.5.3011
3.5.3021
3.5.3031
3.5.3041
3.5.3042

SECTION TITLE

REL NAV
ORBIT TGT
SENSOR TEST
RGA/ADTA/RCS
SWITCH/SURF
CONTROLLERS
SWITCHES
HORIZ SIT
OVERRIDE
CONTROLS
SM TABLE MAINT
PCMMU/PL COMM
SM GROUND CHECKOUT
MASS MEMORY R/W
PCS CONTROL
PDRS CONTROL
GTS DISPLAY
SENSOR SELF-TEST
RCS/RGA/ADTA TEST
GND IMU CNTL/MON
TCS CONTROL
BUS/BTU STATUS
SL MEMORY DUMP
GPC/BTU I/F
ACTUATOR CONTROL
XXXXX MNVR YYYYY
XXXXX MNVR YYYYY
XXXXX MNVR YYYYY
UNIV PTG
ANTENNA
XXXXX MNVR YYYYY
PL BAY DOORS
XXXXX MNVR YYYYY
XXXXX MNVR YYYYY
XXXXX MNVR YYYYY
ENTRY TRAJ 1
ENTRY TRAJ 2

KEYWORD
SPEC (Continued)

SECTION
NUMBER
3.5.3043
3.5.3044
3.5.3045
3.5.4011(S)
3.5.4021(S)
3.5.8011
3.5.9011(G)
3.5.9011(P)
4.7.1
4.7.6
5.
5.2
6.1
6.2
7.1.2
7.1.6.1
7.1.6.2
7.1.6.3
7.1.6.5
7.2.1
7.2.2
7.3.3
8.1
8.1.1
8.2
8.2.1
8.2.2

## SECTION

TITLE
ENTRY TRAJ 3
ENTRY TRAJ 4
ENTRY TRAJ 5
ANTENNA
PL BAY DOORS
FCS/DED DISP C/O
GPC MEMORY
MASS MEMORY R/W
ATTITUDE DIRECTION INDICATOR (ADI)
FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS
TABLE 5-1. SWITCHES
DEU KEYBOARD
ANNUNCIATION
MESSAGES
LDB POLLING CONTROLS
ACTUATOR INITIALIZATION (AI)
RAMP FUNCTION GENERATOR (RFG)
FREQUENCY RESPONSE TEST (FRT)
MULTIPLE ACTUATOR TEST (MAT)
CONTROL INTERFACES
SOFTWARE INTERFACES
DEU MESSAGES AND KEYBOARD LAYOUT
GPC ERRORS
GPC FAIL-TO-SYNCS
INPUT/OUTPUT (I/O) ERRORS
I/O RELATED USER NOTES
I/O ERROR LOG (CZ2V_IO_ERR_LOG)

```
RELEASE: O120
BOOK: PASS User's Guide
Date: 12/20/90
```

KEYWORD
SPI

SECTION SECTION
NUMBER
TITLE
4.7.5

SURFACE POSITION INDICATOR

## KEYWORD

SSME

| SECTION <br> NUMBER | $\begin{aligned} & \text { SECTION } \\ & \text { TITLE } \end{aligned}$ |
| :---: | :---: |
| 2.4.3.1 | DISPLAYS AVAILABLE |
| 6.2 | MESSAGES |
| 7.1.4 | LDB SSME LOAD OPERATIONS |
| 8.5 | MASS MEMORY DIRECTORY |

## KEYWORD

 STATUSSECTION
NUMBER
2.4
2.4.4
2.4.5
2.4.7
2.4.7.1
3.5
3.5.000
3.5.001
3.5.002
3.5.006
3.5.019
3.5.021
3.5.023
3.5.025
3.5.033
3.5.041
3.5.042
3.5.043
3.5.044
3.5.050
3.5.051
3.5.053
3.5.060
3.5.062
3.5.064
3.5.066
3.5.067
3.5.068
3.5.069
3.5.076
3.5.077
3.5.078
3.5.079
3.5.085
3.5.086
3.5.087
3.5.088
3.5.089

SECTION
TITLE
OPERATIONAL SEQUENCES
OPS GNC1
OPS GNC2
OPS GNC6
DISPLAYS AVAILABLE
DISPLAYS
GPC MEMORY
DPS UTILITY
TIME
GPC/BUS STATUS
GNC SYS SUMM 2
IMU ALIGN
RCS
RM ORBIT
REL NAV
RGA/ADTA/RCS
SWITCH/SURF
CONTROLLERS
SWITCHES
HORIZ SIT
OVERRIDE
CONTROLS
SM TABLE MAINT
PCMMU/PL COMM
SM GROUND CHECKOUT
ENVIRONMENT
ELECTRIC
CRYO SYSTEM
FUEL CELLS
COMM/RCDR
EVA-MMU/FSS
SM SYS SUMM 1
SM SYS SUMM 2
MASS MEMORY R/W
APU/HYD
HYD THERMAL
APU/ENVIRON THERM
PRPLT THERMAL

## KEYWORD <br> STATUS (Continued)

| SECTION <br> NUMBER | $\begin{aligned} & \text { SECTION } \\ & \text { TITLE } \end{aligned}$ |
| :---: | :---: |
| 3.5.090 | PCS CONTROL |
| 3.5.094 | PDRS CONTROL |
| 3.5.096 | PDRS STATUS |
| 3.5.097 | PL RETENTION |
| 3.5.100 | GTS DISPLAY |
| 3.5.101 | SENSOR SELF-TEST |
| 3.5.102 | RCS/RGA/ADTA TEST |
| 3.5.104 | GND IMU CNTL/MON |
| 3.5.106 | MANUAL CONTROLS |
| 3.5.110 | BUS/BTU STATUS |
| 3.5.112 | GPC/BTU I/F |
| 3.5.113 | ACTUATOR CONTROL |
| 3.5.1041 | XXXXX MNVR YYYYY |
| 3.5.1051 | XXXXX MNVR YYYYY |
| 3.5.1061 | XXXXX MNVR YYYYY |
| 3.5.2011(G) | UNIV PTG |
| 3.5.2011(S) | ANTENNA |
| 3.5.2021(G) | XXXXX MNVR YYYYY |
| 3.5.2021(S) | PL BAY DOORS |
| 3.5.3021 | XXXXX MNVR YYYYY |
| 3.5.3031 | XXXXX MNVR YYYYY |
| 3.5.3041 | ENTRY TRAJ 1 |
| 3.5.3042 | ENTRY TRAJ 2 |
| 3.5.3043 | ENTRY TRAJ 3 |
| 3.5.3044 | ENTRY TRAJ 4 |
| 3.5.3045 | ENTRY TRAJ 5 |
| 3.5.8011 | FCS/DED DISP C/O |
| 3.5.9011(G) | GPC MEMORY |
| 3.5.9011(P) | MASS MEMORY R/W |
| 4.7.1 | ATTITUDE DIRECTION INDICATOR (ADI) |
| 6.1 | ANNUNCIATION |
| 6.2 | MESSAGES |
| 7.3.3 | DEU MESSAGES AND KEYBOARD LAYOUT |
| 8.1 | GPC ERRORS |
| 8.1.1 | GPC FAIL-TO-SYNCS |
| 8.2.1 | I/O RELATED USER NOTES |
| 8.2.2 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |

RELEASE: OI20
BOOK: PASS User's Guide
Date: 12/20/90
Rev: 0

## KEYWORD <br> STP

## KEYWORD

SVC

## SECTION <br> NUMBER <br> SECTION TITLE

## KEYWORD <br> SWITCHES

SECTION
NUMBIER
2.3
2.3.1
2.3.1.1
2.3.2
2.4.4
2.4.4.1
2.4.7
2.4.8
2.4.8.1
3.
3.1
3.5.000
3.5.006
3.5.025
3.5.042
3.5.044
3.5.051
4.1
4.2
4.7.6
5.
7.2.1

SECTION
TITLE
SYSTEM INITIALIZATION
INITIAL PROGRAM IOAD (IPL) SEQUENCE
IPI, SEQUENCE FAII,URES
DEU LOAD
OPS GNCl
DISPLAYS AVAILABLE
OPS GNC6
OPS GNC8
DISPLAYS AVAILABLI:
CRT DISPLAYS
MCDS/GPC ASSIGNMENT HIERARCHY
GPC MEMORY
GPC/BUS STATUS
RM ORBIT
SWITCH/SURF
SWITCHES
OVIERRIDE
DATA PROCESSING SYSTEM (DPS) TALKBACKS
COMPUTER ANNUNCIATION MATRIX
FLIGHT CONTROL SYSTEM MODE STATUS LIGHTS
SWITCHES, TABLE 5-1. SWITCHES
CONTROL INTERFACES

TARGET

SECTION
NUMBER
2.4.4
2.4.4.1
2.4.5
2.4 .7
2.4.7.1
3.5.022
5.

SECTION
TITLE
OPS GNC1
DISPLAYS AVAILABLE
OPS GNC2
OPS GNC6
DISPLAYS AVAILABLE
S TRK/COAS CNTL
TABLE 5-1. SWITCHES

## KEYWORD <br> TCS

| SECTION NUMBER | $\begin{aligned} & \text { SECTION } \\ & \text { TITLE } \end{aligned}$ |
| :---: | :---: |
| 3.5.001 | DPS UTILITY |
| 3.5.105 | TCS CONTROL |
| 7. | GROUND/GPC INTERFACES |
| 7.1.2 | LDB POLLING CONTROLS |
| 7.1.5 | LDB TEST CONTROL SUPERVISOR OPERATIONS |
| 7.1.6.1 | ACTUATOR INITIALIZATION (AI) |
| 7.1.6.2 | RAMP FUNCTION GENERATOR (RFG) |
| 7.1.6.3 | FREQUENCY RESPONSE TEST (FRT) |
| 7.1.6.4 | DEDICATED DISPLAY CHECKOUT (DDCO) |
| 7.1.6.5 | MULTIPLE ACTUATOR TEST (MAT) |
| 7.1.6.6 | BODY FLAP DRIVE (BFD) |
| 7.1.6.7 | BODY FLAP MONITOR (BFM) |
| 7.1.7 | LAUNCH SEQUENCE COMMANDS |
| 7.1.8 | DEU READ CAPABILITY |


| SECTION <br> NUMBER | SECTION <br> TITLE |
| :--- | :--- |
| 2.1 | OVERVIEW |
| 2.2 .1 | GPC MEMORY CONFIGURATION |
| 2.4 | OPERATIONAL SEQUENCES |
| 2.4 .2 .1 | DISPLAYS AVAILABLE |
| 2.4 .2 .2 | BASIC FUNCTIONS AVAILABLE |
| 2.4 .4 | OPS GNC1 |
| 2.4 .5 | OPS GNC2 |
| 6.2 | MESSAGES |

KEYWORD
UI

| SECTION | SECTION |
| :--- | :--- |
| NUMBER | TITLE |
| 2.4 | OPERATIONAL SEQUENCES |
| 2.4 .1 .1 | DISPLAYS AVAILABLE |
| 2.4 .2 .1 | DISPLAYS AVAILABLE |
| 3.4 .1 | IPL MENU |
| 3.4 .2 | DEU STAND-ALONE SELF-TEST (DEU SAST) |
| 3.5 | DISPLAYS |
| 6.1 | ANNUNCIATION |
| 6.2 | MESSAGES |

## KEYWORD UPLINK

| SECTION <br> NUMBER | SECTION <br> TITLE |
| :--- | :--- |
| 2.4 .4 | OPS GNC1 |
| 2.4 .4 .1 | DISPLAYS AVAILABLE |
| 2.4 .5 | OPS GNC2 |
| 2.4 .7 .2 | BASIC FUNCTIONS AVAILABLE |
| 3. | CRT DISPLAYS |
| 3.5 .001 | DPS UTILITY |
| 3.5 .060 | SM TABLE MAINT |
| 3.5 .062 | PCMMU/PL COMM |
| 7. | UPOUND/GPC INTERFACES |
| 7.2 | CONTROL INTERFACES |
| 7.2 .1 | SOFTWARE INTERFACES |
| 7.2 .2 | VAP DATA |
| 7.2 .2 .1 | UPLINK COMMANDS |
| 7.2 .2 .2 | SINGLE STAGE COMMANDS |
| 7.2 .3 | TWO STAGE COMMANDS |
| 7.2 .3 .1 | STORED PROGRAM COMMAND |
| 7.2 .3 .2 | PAYLOAD THROUGHPUT |
| 7.2 .3 .3 | UPLINK RESTRICTIONS/NOTES |
| 7.2 .3 .4 | I/O ERROR LOG (CZ2V_IO_ERR_LOG) |
| 7.2 .4 |  |

## APPENDIX B. USER NOTES CROSS-REFERENCE

This Appendix provides a cross-reference between User Notes (for PASS FSW DRs) and the User's Guide paragraph(s) where the note applies. See the Flight Software Program Notes and Waivers (PNW), document number JSC-19320, for the complete User Note text.
The NASA approved User Note title is also provided.
When multiple DRs are answered by the same note, the subsequent DR references the original DR.

O

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| 014403 | 8.2-2, 8.2.1-7 | BCE | Unannunciated BCE Bypasses. |
| 014442 | T3.051-1\#38 | DISP, SEQ, SPEC | Vent Door Control Open/Closed Requests. |
| 014444 | T3.1041-1\#13 | FCS, OMS | OMS Engine Problems Caused by GPC or String Failures. |
| 014460 | T3.1041-1\#19 | DOWNLIST, <br> TARGET | VGO-DISP Downlisted Incorrectly During Deorbit Maneuver Targeting. |
| 014474 | $\begin{aligned} & \text { 3.5.105-3.1.F, } \\ & \text { T3.9011(P)-1\#5 } \end{aligned}$ | DEU, SPEC | Demand Update Data Flash. |
| 015177 | 3.5.3041-3 | DISP, GUID | Blinking of Phugoid Symbol. |
| 015194 | T3.2011(G)-1\#13 | DAP, SPEC | Displayed DAP Attitude Errors Discontinuities On-Orbit. |
| 015620 | 2.4-2, APP.G (I/O <br> Error MMU X) | MMU, OPS, TRANSITIONS | MMU and Other Contentions with OPS Transition. |
| 015651 | $\begin{aligned} & \text { 2.4.3.1-1, } \\ & \text { T3.9011(P)-1\#8 } \end{aligned}$ | MMU, SPEC | Procedure for Reading From One MM and Writing to Another. |
| 017176 | 3.5.104-2 | IMU | FSW Storage of IMU Pair Data. |
| 025048 | 8.3.1 | GPC | Double SVC SYNC Trace Entry. |
| 025062 | 8.2-2, 8.2.2-3.5 | I/O, BCE | I/O Error Log Residual Word Count. |
| 025074 | $\begin{aligned} & \text { 2.4.4.2-6, 8.2.3, } \\ & \text { APP.G } \\ & \text { (Display SW X) } \end{aligned}$ | COMMFAULTS, FCOS, BCE | Effects of Commfaults. |
| 025108 | 2.4.4-3.4, 2.4.7 | DOWNLIST | Invalid TACAN Control Register Output. |
| 025119 | 8.1.2-1 | GPC, FCOS | FCOS Errors in the GPC Error Log. |
| 025137 | 8.1.2-2 | $\begin{aligned} & \text { DOWNLIST, } \\ & \text { GPC, I/O } \end{aligned}$ | System Software Downlist Parameters are Not Necessarily a Homogeneous Set. |
| 025140 | 8.2-2, 8.2.2-3.5 | I/O, BCE | Reference DR 25062. |
| 025159 | 8.1.1-2.5 | FTS, OPS, TRANSITIONS, MMU | Overlay Failure Following F-T-S During Overlay. |
| 025184 | $\begin{aligned} & \text { 2.4.4.2-6, 8.2-3, } \\ & \text { APP.G } \\ & \text { (Display SW X) } \end{aligned}$ | COMMFAULTS, FCOS, BCE | Reference DR 25074. |
| 025187 | $\begin{aligned} & \text { 2.4.2.2-1, } \\ & \text { 7.1.6.1, 7.1.6.6, } \\ & \text { APP.G (GPC X) } \end{aligned}$ | ACTUATORS, ECP, SSME, OMS | F-T-S Due to PCMMU Data. |
| 025197 | 2.4.2-2, 2.4.2.2-2, <br> T8.1-1, APP.E (I/O Cycle Wrap) | DOWNLIST, CYCLE-WRAP | Possible Downlist I/O Cycle Wrap in G9. |
| 025221 | 3.5.104-2 | IMU | Reference DR 17176. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| . 025242 | T3.9011(P)-1\#6 | MMU, SPEC | MM Utility Dump Capability. |
| 025300 | 7.2.2.2 | UPLINK | Incorrect "BAD CHECKSUM" Indication, MC3 Overlay Uplink. |
| 025372 | 2.4-5, APP.G (I/O <br> Error MMU X) | MMU, SPEC, OPS, <br> TRANSITIONS | SPEC 0 Not Presented on DEU After Mass Memory Pre-Position Failure. |
| 025384 | T3.094-1\#1 | RMS, SPEC | RMS Master Alarm. |
| 025396 | 3.3-1 | $\begin{aligned} & \text { SPEC, } \\ & \text { SWITCHES } \end{aligned}$ | System SPEC Sensitivity to MAJ FUNC Switch Setting. |
| 027521 | 3-2 | SWITCHES, DEU, TCS | MAJ FUNC Switch Setting on DEU Equivalent Messages. |
| 028304 | T3.001-1\#4 | LDB, I/O, MMU, BUS, ANNUNCIATION | LDB GPC-to-GPC Error Message. |
| 028343 | 2.4-7 | SPEC, OPS <br> TRANSITIONS | SPEC $0-00$, GPC Memory, Page Presented After Overlay Failure in All Required GPCs. |
| 028350 | $\begin{aligned} & \text { 7.1.2, APP.G } \\ & \text { (GPC X) } \end{aligned}$ | FTS, LDB <br> ICC, I/O | Possible FAIL-to-SYNC due to LDB Errors and ICC Overload. |
| 028353 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 028364 | 2.4-5, APP.G (I/O <br> Error MMU X) | MMU, I/O, ANNUNCIATION | Mass Memory Error Annunciation. |
| 029284 | T3.002-1\#5 | SPEC, <br> KEYBOARD, FTS | SPEC 002, GMT Updates. |
| 029949 | 2.4.4.2-1, T8.1-1 | I/O | SRB Data Acquisition I/O Errors at SRB Separation. |
| 030072 | $\begin{aligned} & \text { 2.4.2.1-14, } \\ & \text { T3.112-1\#4 } \end{aligned}$ | I/O, SPEC | BTU Readiness Test Stops on Undefined Step. |
| 030107 | 8.2.2-3.4 | I/O | Invalid OP Codes in I/O Error Log. |
| 030138 | 2.3-3.5, 2.4.1-2 | SWITCHES, ICC, FTS | Reference DR 42433. |
| 030139 | 4.7.2-10 | HSI, DED-DISP | HSI Truncation of the Range Counters. |
| 030526 | $\begin{aligned} & \text { 2.4.8.1-11, } \\ & \text { 3.5.042-2 } \end{aligned}$ | COMMFAULTS, FCS, SWITCHES | Commfault Status Not Checked for FCS Channel Switches. |
| 030767 | 3.5.022-2 | SPEC | Request for S TRK/COAS CNTL Display (SPEC 22) in MM 302-305. |
| 030780 | 2.4-7 | SPEC, OPS, TRANSITIONS | Reference DR 28343. |
| 031435 | 8.2-3, 8.2.1-1 | $\begin{aligned} & \text { I/O, BCE, } \\ & \text { ANNUNCIATION } \end{aligned}$ | Consecutive I/O Resets. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR NUMBER | USER'S GUIDE REFERENCE | KEYWORDS | TITLE |
| :---: | :---: | :---: | :---: |
| . 031987 | T3.000-1\#4 | SPEC | Read/Write Function, Conversion of Large Magnitude Engineering Units (EUs) Data Values. |
| 032119 | 8.1.1-2.4 | SWITCHES, OPS, <br> TRANSITIONS, FTS | Output Switch in TERMINATE at RS Formation. |
| 033268 | 2.4-2, APP.G (I/O <br> Error MMU X) | LDB, OPS, <br> TRANSITIONS, MMU | OPS Transition Failure Manifestations. |
| 033299 | 2.4-2 | LDB, OPS, <br> TRANSITIONS | LDB Bus Assignments at OPS Transition/Mode Recall. |
| 033304 | 8.2-3, 8.2.1-9 | BUS, DOWNLIST | Resetting BTU Port Failure Indicators. |
| 033619 | 6.1-4.1, T8.1-1 | ANNUNCIATION | Garbled Message on Display Message Line. |
| 033643 | 2.4.1.2-2, 2.4.3.2-1 | DEU, IPL | DEU Recovery Procedure Following an Invalid DEU IPL Request. |
| 033698 | 8.2-3 | BUS, BCE, COMMFAULTS | Bus Deselection Reflected in BCE Bypass and Commfault Indicators. |
| 033749 | 2.2.1, APP.G (I/O Error MMU X) | MMU, SWITCHES, OPS, <br> TRANSITIONS | Fail to Transition After MMU Power "OFF," then "ON." |
| 033754 | 3.3-1 | DISP | Automatic Resume to CRT Pages Which are Display (DISP) Only. |
| 033907 | 8.3.1 | GPC | Reference DR 25048. |
| 034656 | 8.2-3, 8.2.1-4 | ANNUNCIATION, I/O, DOWNLIST | Restore NSP Element. |
| 034665 | 2.4.2-2, 8.2.1-8 | I/O, BUS | Transient I/O Errors When Downmoding a RS to OPS 0 . |
| 035047 | 2.4.6-2.4 | $\begin{aligned} & \text { TRANSITIONS, } \\ & \text { DAP, FCS } \end{aligned}$ | Attitude Error Limitation at Transition to MM 304/FCS AUTO. |
| 035151 | $\begin{aligned} & 3.5 .022-2, \\ & \text { T3.022-1\#6 } \end{aligned}$ | SPEC | Improper COAS Operation. |
| 035211 | 8.2-3, 8.2.1-2 | KEYBOARD, BUS | I/O Reset with Failed MTU Causes BFS to Downmode a String. |
| 035322 | $\begin{aligned} & \text { T3.104-1\#6, } \\ & \text { T8.1-1 } \end{aligned}$ | IMU, GPC | IMU ATT DET Caused Library Routine Error. |
| 035513 | T3.000-1\#1 | SPEC, OPS, <br> TRANSITIONS | SPEC 0 Initialization (GMEM Items). |
| 035572 | T3.8011-1\#7 | ACTUATORS, DISP | Execution of Secondary Actuator Check. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| . 035743 | 2.4.9 | SPEC, OPS, <br> TRANSITIONS, UI | CRT X's on SM OPS 2 Overlay. |
| 036015 | 2.4.4-3, 2.4.6-2 | TARGET, DISP, TRANSITIONS | MM Transitions with Targeting Active. |
| 036094 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 036176 | T3.1041-1\#9 | SPEC, UPLINK | Targeting Time-of-Ignition (TIG) Affected by MET Update. |
| 036183 | 2.4-7 | SPEC, OPS, <br> TRANSITIONS | Reference DR 28343. |
| 036329 | 3-2 | DEU, TCS | DEU Equivalent Commands. |
| 036416 | 2.4-5 | TRANSITIONS, DAP, ORBIT | State of Transition and Orbit DAPs After an OPS Mode Recall or OPS Transition. |
| 036479 | 2.4.6-2.3 | TRANSITIONS, ENTRY, SPEC, DISP | Transition From 303 to 301 Immediately After State Vector Update. |
| 036544 | T3.002-1\#6 | DISP, RM | MTU Down Arrows Not Removed on TM SPEC. |
| 036549 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 036728 | 2.4.3.2-1 | $\begin{aligned} & \text { IPL, SPEC, } \\ & \text { DEU } \end{aligned}$ | PL9 Mass Memory READ/DEU Loader. |
| 037062 | 2.4.6, T8.1-1 | TRANSITIONS, CYCLE-WRAP, ENTRY | MFE Overruns at OPS Transition From OPS 0 to OPS 3 . |
| 037123 | 3.5.1041-4-2 | OMS, TRANSITIONS | OMS TVC Feedback Reinitialized on OPS Transition. |
| 037420 | $\begin{aligned} & \text { T3.001-1\#2, } \\ & \text { T3.9011(P)-1\#2 } \end{aligned}$ | MMU, SPEC, LDB, UPLINK, ICC, DEU | Failure to ICC Mass Memory Indicator. |
| 037427 | $\begin{aligned} & \text { T3.000-1\#1, } \\ & \text { T3.000-1\#2, } \\ & \text { T3.001-1\#1, } \\ & \text { T3.002-1\#1 } \end{aligned}$ | ICC, SPEC | ICC Interface of Simultaneous Inputs. |
| 037462 | T3.104-1\#6 | IMU, ECP | IMU Time Tag Jitter. |
| 037501 | 2.4-7 | SPEC, OPS, <br> TRANSITIONS | Reference DR 28343. |
| 037503 | 3.3-1 | SPEC, DEU | Unable to Resume SPEC From a Failed DEU. |
| 037504 | T3.002-1\#3 | SPEC | TM, SPEC 002, Updating the Sign for: GMT DELTA, MET DELTA, SET, CRT. |
| 037506 | T3.000-1\#2 | DISP, SPEC, UI | Stale Data on GPC Memory Display (SPEC 0 ). |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| . 037507 | 8.2-3, 8.2.1-6 | I/O, DEU, <br> ANNUNCIATION | No Pre-Enable of DEU I/O Error Annunciation for Hard DEU I/O Failures. |
| 037509 | 8.2-3, 8.2.1-3 | DOWNLIST, I/O | Downlist I/O Error Log Overrun Conditions. |
| 037511 | 3.1-4 | DEU, SWITCHES, OPS, TRANSITIONS | DEU MAJ FUNC Switch Setting Mismatch with OPS Transition. |
| 037512 | 3.1-2 | DEU, <br> SWITCHES | DEU Control Loss Associated with the BFS CRT SEL Switch. |
| 037514 | 2.4.4 | TRANSITIONS, IPL, ASCENT | GPC-to-GPC Overlay of MC1 Hangs System. |
| 037516 | T3.000-1\#1 | SPEC | GPC Memory SPEC Initialization. |
| 037517 | $\begin{aligned} & \text { T2-2\#13, } \\ & \text { T3.002-1\#6 } \end{aligned}$ | SPEC, DISP | Primary GPC Time Initialization. |
| 037519 | T5-1(ATT) | ADI, SWITCHES | ATT_REF Push Button Hold. |
| 037522 | $\begin{aligned} & \text { T3.021-1\#2 } \\ & \text { T3.021-1\#5 } \\ & \text { T3.104-1\#3 } \\ & \text { T3.104-1\#4 } \end{aligned}$ | IMU | Once the IMU Software In-Operate (CGMB_IMU_INOP) is Set, It Will Never be Reset. |
| 037528 | $\begin{aligned} & \text { 4.7.1-9.8, 7.2.1, } \\ & \text { 7.2.4-1, T8.1-1, } \\ & \text { APP.E (CPU } \end{aligned}$ <br> Protection Violation, Overflow Convert) | UPLINK | GNC Uplink Load Restrictions. |
| 037529 | T3.9011(P)-1\#4 | MMU | MM Patch Limitations. |
| 037530 | 7.1.5-1.3 | TCS | TCS Priority Change Operator Environment Limitations. |
| 037531 | 7.1.6.3.4-3 | ECP, TCS | FRT Environment Limitations. |
| 037533 | $\begin{aligned} & \text { T8.1-1, 8.2-3, } \\ & \text { 8.2.1-11 } \end{aligned}$ | COMMFAULTS, MDM | Setting of NSP and MTU Commfaults After an FF MDM Bypass. |
| 037534 | 7.2.3-2 | UPLINK | Partial Uplink of Fixed Length Loads. |
| 037536 | $\begin{aligned} & \text { 3.5.000-2, } \\ & \text { 3.5.001-2, } \\ & 3.5 .002-2 \end{aligned}$ | SPEC, DEU, KEYBOARD | Restrictions on System Software SPEC Usage. |
| 037537 | $\begin{aligned} & \text { 2.4.4.2-6 } \\ & \text { 7.1.7-1 } \end{aligned}$ | SEQ | LPS Bypass Commands Should be Re-entered on Recycle. |
| 037538 | $\begin{aligned} & \text { 4.7.1-8, } \\ & \text { 4.7.1-9.8 } \end{aligned}$ | ADI | Pre-Launch ADI Reference. |
| 037542 | 3-3 | DEU, IPL | DEU IPL'ed by BFS Not Usable by PASS. |
| 037543 | 8.1.1-2.2 | FTS, IPL | GPC Failed Out of Common Set/Redundant Set. |
| 037545 | $\begin{aligned} & \text { 2.4.4.2-5, 2.4.6, } \\ & \text { 2.4.7 } \end{aligned}$ | GPC | Procedures for Multiple GPC Failures in a Redundant Set (Potential Loss of Control). |


|  | PASS USER'S G | USER NOTE | S-REFERENCE (Continued) |
| :---: | :---: | :---: | :---: |
| DR NUMBER | USER'S GUIDE REFERENCE | KEYWORDS | TITLE |
| . 037546 | 2.4-5 | TRANSITIONS, OPS, BUS | No Bus or GPC Reconfiguration on OPS Mode-to-Mode. |
| 037547 | T3.000-1\#4 | SPEC, UPLINK, TCS, SACS | Restrictions on Use of GPC Memory Read/Write Capabilities. |
| 037549 | $\begin{aligned} & \text { 2.4.5.1-9, } \\ & \text { 2.4.6.1-4 } \end{aligned}$ | IMU, IPL, ORBIT | IMU "Software" Operate Mode Initialization After an Orbit IPL. |
| 037551 | $\begin{aligned} & \text { 2.4.2-2, 2.4.4-2, } \\ & \text { 2.4.4-3.1, 2.4.5, } \\ & \text { 2.4.5-1.1, } \\ & \text { 2.4.6-2.4, } \\ & \text { 2.4.6.1-1.2, } \\ & \text { 2.4.8, 2.5, } \\ & \text { 3.1.11-1\#1 } \end{aligned}$ | ACTUATORS, HYD, OPS, TRANSITIONS | Actuator/Hydraulic Subsystem Activation Restrictions. |
| 037553 | 7.2.4-3 | UPLINK | Uplink Error Processing. |
| 037555 | T5-1 (OMS) | OMS, SWITCHES | Engine Response to the Arm/Press Switch. |
| 037559 | 4.7.1-9.3 | ADI | ADI Yaw Error Needle Sensitivity for Fuel Wasting. |
| 037561 | T3.1041-1\#14 | OMS, GUID | OMS Gimbal Drive Check During OMS Maneuvers. |
| 037562 | 4.7.1-9.2 | RCS, ADI | Pitch Error Needle Sensitivity for RCS Maneuvers. |
| 037564 | T3.1041-1\#2, <br> T3.1041-1\#4, <br> T3.1041-1\#6, <br> T3.1041-1\#8, <br> T3.1041-2 | RCS, SPEC, KEYBOARD | Keyboard Entries During an RCS Maneuver. |
| 037567 | $\begin{aligned} & \text { T3.018-1\#7, } \\ & \text { T5-1 (FCS) } \end{aligned}$ | FCS, DISP | Momentary FCS Channel Down Arrows. |
| 037569 | $\begin{aligned} & \text { 2.4.4.2-5, } 2.4 .5 \\ & \text { 2.4.6, 2.4.8 } \end{aligned}$ | FCS, DAP | Simultaneous RHC Control in Trans DAP and Orbit DAP. |
| 037570 | $\begin{aligned} & \text { 2.4.4.2-5, } \\ & \text { 3.5.051-2, } \\ & \text { T3.051-1\#24 } \end{aligned}$ | IMU, SSME | Main Engine Throttling Following Intermittent 3 IMU Loss. |
| 037572 | T3.060-1\#1 | UPLINK, SPEC | Table Maintenance - SPEC vs Uplink Interaction. |
| 037573 | 3.5.1041-4-1 | TARGET, DISP | Maneuver Display Responses to Target Loads. |
| 037577 | T3.050-1\#10 | SPEC, DISP | Invalid TACAN Bearing Data Displayed on HSD. |
| 037584 | T3.062-1\#1 | SPEC | TFL Fail if SPEC 62 Dropped. |
| 037585 | $\begin{aligned} & \text { T3.1041-1\#6, } \\ & \text { T3.1041-1\#8 } \end{aligned}$ | GUID, DISP | Guidance-Computed Burn Attitude Not Displayed for Yaw Desired Near + or -90 Degrees. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR <br> NUMBER | USER'S GUIDE REFERENCE | KEYWORDS | TITLE |
| :---: | :---: | :---: | :---: |
| 037590 | 8.1.1-2.3 | DEU, FTS | Multiple Commanders of a DEU Can Result in an F-T-S. |
| 037591 | $\begin{aligned} & \text { T3.1041-1\#10, } \\ & \text { T3.1041-2\#23 } \end{aligned}$ | SPEC, ENTRY, DISP | Timer Countdown Terminated Unconditionally on MM 301 INIT or MNVR Target Item Update. |
| 037593 | T3.1041-1\#5 | IMU, SPEC | Weight Decrements on MNVR EXEC DISP in MM 302 or 202 When No Thrust is Applied. |
| 037594 | $\begin{aligned} & \text { APP.G (MPS } \\ & \text { CMD X) } \end{aligned}$ | SSME | Erroneous Command Path Failure Annunciation. |
| 037637 | 3-2 | DEU, TCS | Reference DR 36329. |
| 037657 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 037660 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 037692 | $\begin{aligned} & \text { 3.5.043-2, } \\ & \text { 3.5.044-2, } 5 \end{aligned}$ | SWITCHES, COMMFAULTS, RM, DISP | Three Contact Switch Faulty Indications. |
| 037693 | T3.050-1\#12 | NAV, RM | Potential Repetitive TACAN Self-Test. |
| 037706 | $\begin{aligned} & \text { 2.3.2-1, 8.2-3, } \\ & \text { 8.2.1-5, APP.G } \\ & \text { (I/O Error CRT X) } \end{aligned}$ | DEU, IPL, <br> ANNUNCIATION | DEU IPL - "I/O Error CRT." |
| 037708 | 7.1.6.2.4-2 | ECP | Method of Calculating Ramp Slope Increment. |
| 037981 | T3.050-1\#9 | NAV, UPLINK | State Vector Update During Entry. |
| 038163 | $\begin{aligned} & 3.5 \cdot 1041-4-3, \\ & \text { 7.2.4-2 } \end{aligned}$ | UPLINK, <br> TARGET, SSME SPEC, DISP | Uplinked Bad Engine IDs are Not Ignored on CRT. |
| 038458 | 8.1.1-2.1 | ICC, OPS, <br> TRANSITIONS | Dual Commanders After Loss of Reconfiguration ICC Messages. |
| 038733 | 3.1-5 | DEU | GPC/CRT Input Interference. |
| 038748 | T3.100-1\#6 | IMU | G9 One-Shot Transfer of Data From PASS to BFS. |
| 038765 | $\begin{aligned} & \text { 2.4.4.2-6 } \\ & \text { 7.1.7-1 } \end{aligned}$ | SEQ, <br> ASCENT, DAP, <br> ACTUATORS | RS Launch Sequencer and Terminal Count Processing. |
| 039021 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 039027 | 2.4.1 | SWITCHES, <br> ANNUNCIATION | MTU Message at Secondary GPC Initialization. |
| 039054 | 8.2-3, 8.2.1-12 | BCE | BCE Element Bypass on Power Transient Detection. |

PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| 039065 | T8.1-1 | GPC | Incorrect GPC Error Log Interface From TM Function. |
| 039359 | $\begin{aligned} & \text { T8.1-1, 8.2-3, } \\ & \text { 8.2.1-10 } \end{aligned}$ | OPS, BUS, I/O | BFS-PASS I/O Windows Missed. |
| 039371 | T3.1041-1\#4 | SPEC | Maneuver Displays Show Stale Data. |
| 039372 | T3.050-1\#12 | DISP | Dilemma Indicated for All (3) TACANs. |
| 039408 | 4.7.1-9.1 | ADI | ADI Rates When Yaw Angle Approximately Equal to 90 Degrees. |
| 039417 | 2.4.6-2.5 | ENTRY, GUID | HAC Roll Oscillations. |
| 039591 | T3.023-1\#5 | RCS | Final Input Not Processed by RCS Quantity Gauging. |
| 039740 | $\begin{aligned} & \text { 2.4.4.2-6, } \\ & \text { 7.1.7-1 } \end{aligned}$ | SEQ, <br> ASCENT, DAP, <br> ACTUATORS | Reference DR 38765. |
| 040375 | T3.051-1\#38 | SEQ, SPEC | GRTLS/Entry Manual Vent Door Command Response. |
| 040556 | $\begin{aligned} & \text { 3.5.1031-1, } \\ & \text { 3.5.1041-4-6 } \end{aligned}$ | ANNUNCIATION, TRANSITIONS, ASCENT | Illegal Entry on Transition to MM 104. |
| 040620 | T3.002-1\#5 | SPEC, <br> KEYBOARD, FTS | Reference DR 29284. |
| 040622 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 041008 | $\begin{aligned} & \text { 2.4.2.1-14, } \\ & \text { T3.112-1\#2 } \end{aligned}$ | ECP, SPEC | GPC/BTU Readiness Test of the MCIU. |
| 041148 | $\begin{aligned} & \text { T3.1041-1\#6, } \\ & \text { T3301-1-18, } \\ & \text { T3.1041-1\#9, } \\ & \text { 3.5.1041-4-4, } \\ & \text { T8.1-1 } \end{aligned}$ | IPL | Weight Initialization Required for In-Flight IPL. |
| 041168 | T3.051-1\#2 | DISP, RM, SEQ, SWITCHES | No OMS Dump Change for Abort Downmode in MM 103. |
| 041184 | 2.4.6 | SEQ | Orbit OMS/RCS Connect Function Not Active Across OPS Transition. |
| 041238 | 2.4.6 | IMU, RM, TRANSITIONS, DAP, OPS | OPS 3 Transition with Three IMUs Deselected by RM. |
| 041533 | $\begin{aligned} & \text { 2.4.2-2, } \\ & \text { 2.4.2.1-14, } \\ & \text { T3.112-1\#2, 4.6.1 } \end{aligned}$ | RMS, BUS, <br> TCS, SPEC | RMS Master Alarm in OPS S9 and G9. |
| 042085 | 4.7.1-9.6 | ADI, RCS, FCS | Erroneous Attitude Rate Indication on ADI with RJDs Off. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR <br> NUMBER | USER'S GUIDE REFERENCE | KEYWORDS | TITLE |
| :---: | :---: | :---: | :---: |
| . 042263 | 4.6.3 | RMS, <br> SWITCHES, <br> SPEC, DISP, <br> PAYLOADS | Select RMS Auto Mode, but No Ready Light. |
| 042303 | APP.G <br> (Time MTU) | ANNUNCIATION | No MTU Fault Down Message Annunciation During Initialization. |
| 042318 | $\begin{aligned} & \text { T3.094-1\#11, } \\ & \text { T3.094-1\#12 } \end{aligned}$ | RMS | Operator Commanded Auto Sequence Caution. |
| 042433 | 2.3-3.5, 2.4.1-2 | FTS, ICC, SWITCHES | Potential F-T-S Due to ICC Contention at New GPC Start-up. |
| 042574 | APP.G (IMU <br> BITE/T X) | IMU, <br> TRANSITIONS | Potential False IMU BITE/T Message at G9 to Gl Transition. |
| 042640 | 2.4.5, 2.4.8 | $\begin{aligned} & \text { ORBIT, DAP, } \\ & \text { IMU } \end{aligned}$ | Orbit DAP Configuration During and After IMU Fail or OPS Mode Recall. |
| 042650 | $\begin{aligned} & \text { 2.4.4.1-4, } \\ & \text { T3.050-1\#8 } \end{aligned}$ | $\begin{aligned} & \text { ASCENT, SPEC, } \\ & \text { DISP } \end{aligned}$ | SPEC 50 (Horizontal Situation) Will Not Toggle From STRT to OVHD in OPS 1. |
| 043357 | 2.4.6 | TRANSITIONS, IMU, RM, DAP, OPS | Reference DR 41238. |
| 043940 | T3.104-1\#9, APP.G (IMU BITE/T X) | IMU | False Redundant Gyro or Velocity Over Limit Bite Failure Annunciation. |
| 043987 | T7.2-1 Bits 4-7 | UPLINK, OPS | Uplink to RS OPS-000. |
| 044206 | T3.1041-1\#1 | SPEC, DISP | Incorrect MNVR Display Title for 1 Second. |
| 044246 | $\begin{aligned} & \text { 2.4.5.1-9, } \\ & \text { 2.4.6.1-4 } \end{aligned}$ | $\begin{aligned} & \text { IMU, IPL, } \\ & \text { ORBIT } \end{aligned}$ | Reference DR 37549. |
| 044248 | $\begin{aligned} & \text { 2.4.4.2-5, } \\ & \text { 2.4.6-2.5 } \end{aligned}$ | FCS, DAP | Flight Control QBAR Lower Limit Error During Split-Mode Rollout. |
| 044250 | T3.8011-1\#7 | ACTUATORS, DISP | Reference DR 35572. |
| 044254 | T5-1 (Body) | RM, SWITCHES | Body Flap Limit Cycle Filtering Not Done While BF AUTO/MAN PBI Depressed. |
| 044391 | T8.1-1, APP.E (Cyclic Overrun) | CYCLE-WRAP, DEU, DISP | Cycle Wraps in Cyclic Display Processor. |
| 044724 | 2.4.2-1 | IMU | IMU Downmode From Operate to Standby for Double Bite Test 4 Failure. |
| 044892 | T3.1041-1\#5 | ABORT | Incorrect Orbiter Mass Displayed During a TAL Abort. |
| 044990 | T3.094-1\#1 | RMS | RMS Shoulder Yaw Motion Near Shoulder Singularity. |
| 045166 | $\begin{aligned} & \text { T3.021-1\#1, } \\ & \text { T3.104-1\#1, } \end{aligned}$ | IMU | Bite Test Ignores IMU Selected After Failure. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| . 045215 | T7.2-1 Bits 8-14 | UPLINK, LDB | G-MEM Contiguous and G-MEM Scatter Restrictions. |
| 045335 | T8.1-1, APP.E (Exponent Overflow) | IMU, GPC | Potential GPC Errors for IMU Failure. |
| 045345 | T3.104-1\#7 | IMU | Procedure for IMU Checkpoint Read/Write with IMUs Powered Off. |
| 045603 | 2.4.6.1-1.1 | $\begin{aligned} & \text { IMU, } \\ & \text { TRANSITIONS, } \\ & \text { NAV } \end{aligned}$ | Two IMU Failures Can Cause NAV State Discontinuity at OPS Transition. |
| 045604 | 2.4.6.1-1.1 | IMU, NAV, <br> TRANSITIONS | Reference DR 45603. |
| 045609 | 3.2-H, 3.5.002-2 | DISP | CRT Timer Decrements During Launch Holds. |
| 045703 | T3.050-1\#12 | DISP | TACAN Dilemma Indication. |
| 045739 | 2.4.4-3.5 | ABORT, OMS, TARGET, SPEC | Unsupported AOA/ATO Requests in 105 After OMS-2 Burn. |
| 045748 | 2.4.4 | MPS, DUMP | Interruptions to MPS Dump. |
| 045749 | $\begin{aligned} & \text { T3.1041-1\#7, } \\ & \text { T3.1041-2 } \end{aligned}$ | SPEC | PRPLT Item Validity Restrictions. |
| 045751 | 2.4.4-3.5 | SEQ | ET Umbilical Door Closure Not Completed. |
| 045822 | 3.4-3.1 | DISP | Minus Signs in Incorrect Display Column. |
| 046500 | T3.023-1\#6 | OMS, RCS | OMS/RCS Interconnect Gauging. |
| 046501 | T8.1-1 | GPC | Potential GPC Errors During Braking on Runway. |
| 046503 | T3.8011-1\#7 | ACTUATORS, DISP | Reference DR 35572. |
| 046505 | 4.7.1-9.5 | ADI | Spike in ADI Error Needle Pitch Axis. |
| 046506 | 7.1.2-2.4 | LDB, OPS, <br> TRANSITIONS | Auto-Switchover and LDB Polling Interface. |
| 046507 | 7.1.2-5, <br> T8.1-1, APP.E (Cyclic Overrun) | LDB, <br> CYCLE-WRAP | DGI Cycle Overrun. |
| 046510 | 2.4.6-2.1 | GUID | Target Miss Related to TIG in the Past. |
| 046511 | 2.4.4-3.3 | DUMP, SSME | No Automatic Pre-MECO Dumps After 2 SSME Failure Situation. |
| 046512 | 4.7.1-9.4 | ADI, GUID, SPEC, DAP | Auto MNVR (Item 27) Required to Reference ADI Errors to the Guidance Solution in OPS 2. |
| 046513 | 5.1-1 | SWITCHES, <br> MDM, HW | Moving Switches to "GPC" Position and PASS GPC Recovery. |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| 046515 | 2.4.7-1.2 | ABORT, ADI | Alpha-Recovery/NZ-Hold Transition in OPS 6. |
| 046520 | 2.4.7-1.1 | ABORT, GUID | PEG Slow to Converge During Fuel Dissipation Phase of RTLS. |
| 046526 | $\begin{aligned} & \text { T3.023-1\#5, } \\ & \text { T3.1041-1\#18, } \\ & \text { T3.1041-2\#13 } \end{aligned}$ | ORBIT, OMS, RCS | HE/VAP ISO VLV CMDS Terminated by Orbit OMS/RCS Interconnect. |
| 046617 | 2.3-3.5, 2.4.1-2 | FTS, ICC, SWITCHES | Reference DR 42433. |
| 047243 | 7.1.2-4 | LDB, BUS, I/O | MSC Timeouts in Commander of LDB. |
| 047292 | $\begin{aligned} & \text { 2.4.2.2-1, } \\ & \text { 7.1.5-2.7 } \end{aligned}$ | TCS | Invalid TCS Priority Change Operators. |
| 047311 | 2.4.2-2, <br> T8.1-1, APP.E (Cyclic Overrun, I/O Cycle Wrap) | CYCLE-WRAP, DED-DISP, TCS | Cyclic I/O Cycle Wraps in G9. |
| 047317 | 3.2-H, 3.5.002-2 | DISP | Reference DR 45609. |
| 047741 | $\begin{aligned} & \text { T3.021-1\#1, } \\ & \text { T3.104-1\#1 } \end{aligned}$ | IMU | False IMU Bite Test Failures. |
| 047752 | $\begin{aligned} & \text { T3.021-1\#1, } \\ & \text { T3.104-1\#1 } \end{aligned}$ | IMU | Reference DR 47741. |
| 047853 | 2.4.3, 7.1.3-1.2 | MMU, SPEC | Ground Responsibility When Using MMU Capability 1 WRITE. |
| 048415 | T3.050-1\#2 | DISP, ENTRY | PTI Indications on ENTRY TRAJ and HORIZ SIT Displays. |
| 048423 | T3.100-1\#7, <br> T3.102-1\#3 | RCS, <br> PRELAUNCH SPEC | Terminating SPEC 100 Does Not Terminate RJD Toggle. |
| 048500 | 2.4.2.2-1, 7.1 .4 | SSME, LDB, TRANSITIONS, OPS | SSME Load LDB Response Lost During OPS Transition. |
| 048777 | 2.4.5, 2.4.8 | OPS, <br> TRANSITIONS | Loss of Vent Data at OPS Transition. |
| 048995 | T3.104-1\#1 | IMU | Procedure to Increase IMU Read Rate During IMU Moding. |
| 050085 | $\begin{aligned} & 3.5 .050-2, \\ & \text { T3.050-1\#15 } \end{aligned}$ | DISP | HAC Radius Position Uninitialized in MM 304. |
| 050235 | T3.104-1\#9, APP.G (IMU BITE/T X) | IMU | Reference DR 43940. |
| 050278 | 7.1.7-1, <br> T8.1-1, APP.E (Cyclic Overrun, I/O Cycle Wrap) | $\begin{aligned} & \text { LDB, } \\ & \text { CYCLE-WRAP, } \\ & \text { GPC } \end{aligned}$ | DGI LDB Cycle Overrun After Launch Sequence Hold. |

PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR | USER'S GUIDE |  |  |
| :---: | :---: | :---: | :---: |
| NUMBER | REFERENCE | KEYWORDS | TITLE |
| . 050776 | $\begin{aligned} & \text { 2.4.4-3.4 } \\ & \text { 2.4.6-2.2 } \end{aligned}$ | DAP, RCS | Trans-DAP State After Cancelled Guided RCS Burn. |
| 050887 | T3.034-1\#2 | ORBIT, DISP, <br> TARGET, SPEC | Left Truncation on Orbit Targeting Display. |
| 051250 | $\begin{aligned} & \text { 2.4.2.1-7, } \\ & \text { T3.100-1\#8 } \end{aligned}$ | HUD, DED-DISP | Data Items Blink on Right HUD in G9. |
| 051349 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 051373 | 2.4-2 | MMU, OPS, TRANSITIONS | Reference DR 15620. |
| 051805 | 4.7.1-9.7 | ADI | ADI Needles. |
| 051807 | 4.7.1-9.7 | ADI | Reference DR 51805. |
| 052100 | 2.4-6 | BUS | Bus Distribution Restrictions. |
| 052101 | $\begin{aligned} & 2.4 \cdot 4 \cdot 2-4 \\ & 2.4 \cdot 5-1.1 \\ & 2.4 .6-2.1 \end{aligned}$ | TARGET, UPLINK, OPS, TRANSITIONS | Loss of Targeting and Uplink Data During OPS Transition. |
| 052102 | 2.4.2-2, <br> T8.1-1, APP.E (CPU Protection Violation), APP.G (GPC BITE X) | GPC, FCOS | Possible Program Check in OPS G9. |
| 052111 | 2.4.5, 2.4.8 | ORBIT, DAP, <br> ANNUNCIATION | Orbit DAP Vernier Downmode Annunciation. |
| 052759 | 3.5.1041-4-5 | DISP, SPEC | Some Values of TIG Seconds Displayed as "60.0." |
| 052763 | T3.034-1\#15 | GUID, RCS | Compute T1 Terminates Guidance During RCS Burn. |
| 052779 | 2.4-2 | SPEC, OPS, TRANSITIONS, DEU | SPEC Request Concurrent with OPS Transition Request. |
| 052780 | 3-2 | DEU, TCS, ANNUNCIATION | Resume Request via DEU Equivalent May Cause Illegal Entry. |
| 053101 | $\begin{aligned} & \mathrm{T} 3.2011(\mathrm{G})-\mathrm{l} \# 7, \\ & \mathrm{~T} 8.1-1 \end{aligned}$ | TARGET, NAV | Target Tracking Selected Without Rendezvous Navigation. |
| 053428 | $\begin{aligned} & \text { 2.4.4-3.5 } \\ & 3.5 .1051-1 \end{aligned}$ | UPLINK, OMS, TARGET | Uplink of OMS-2 Targets in MM 104. |
| 054012 | 2.3.1.3 | IPL | CAM Light On/Off During Successful IPL. |
| 054950 | T3.022-1\#5 | SPEC | Incorrect Star Table Displayed for Two Seconds. |
| 055006 | 3-2 | DEU, UPLINK, <br> LDB, TCS | DEU-Equivalent Messages are Not SYNTAX-Checked. |


| RELEASE: | OI20 |
| :--- | :--- |
| BOOK: | PASS User's Guide | Date: | 12/20/90 |
| :--- |

## PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued)

| DR <br> NUMBER | USER'S GUIDE REFERENCE | KEYWORDS | TITLE |
| :---: | :---: | :---: | :---: |
| 055017 | 7.1.5-1.1 | SACS, LDB, OPS, <br> TRANSITIONS | Executing SACS Operator Across OPS Transition. |
| 055053 | APP.E <br> (I/O Cycle Wrap) | DED-DISP, <br> CYCLE-WRAP, SPEC, SPI, DOWNLIST | Downlist Cycle Wraps During DDU Tests (High, Low, Drive). |
| 055121 | $\begin{aligned} & \text { T3.1041-1\#1, } \\ & \text { T8.1-1 } \end{aligned}$ | GPC, ABORT | GPC Errors if MM106 is Entered During an AOA. |
| 055237 | 8.2-2, 8.2.1-7 | BCE | Reference DR 14403. |
| 055246 | APP.G <br> (SUMWORD X) | LDB, SPEC, ANNUNCIATION | GSE Polling Active with No LDBs May Cause Common Set Sumword Annunciation. |
| 055300 | 4.2-1 | FTS, <br> ANNUNCIATION, OPS, <br> TRANSITIONS | Inconsistent Annunciation of FTS During OPS Transition. |
| 055302 | T3.062-1\#6 | ANNUNCIATION, PAYLOADS | Non-Processing of PDI Payload Data Streams May Cause S2 Annunciations. |
| 055306 | T5-1 (OMS) | OMS, RM, DUMP | Contingency Dump Termination via Arm/Press Switches. |
| 055307 | 2.4.5-1.2 | FCS, IMU | IMU Data Loss During MM 202 Preburn Maneuver. |
| 055313 | 2.4-5 | DAP, ENTRY | Trans DAP Maneuvers After MM301 OPS Recall. |
| 055314 | T3.1041-1\#2 | OMS, DISP | OMS L/R Down Arrows Not Cleared After Both Item on MNVR Display. |
| 055318 | 8.1.1-2.6 | FTS, I/O, BUS | Possible Common Set F-T-S Due to I/O Completion. |
| 055324 | 6.1-7 | ANNUNCIATION, OPS, <br> TRANSITIONS | Missing Time Tag on Error Message. |
| 055325 | $\begin{aligned} & \text { T3.1041-1\#12, } \\ & \text { T3.1041-2\#27 } \end{aligned}$ | RCS, SPEC, ORBIT | QBI Snapshot at End of Manual Burn. |
| 055328 | 2.4.6 | ABORT, OPS, TRANSITIONS | Velocity Errors Due to Delay in TAL OPS 3 Transition. |
| 055343 | $\begin{aligned} & \mathrm{T} 3.060-1 \# 1, \\ & \mathrm{~T} 3.2011(\mathrm{~S}) \cdot 1 \# 1 \end{aligned}$ | $\begin{aligned} & \text { KU-BAND, } \\ & \text { SPEC } \end{aligned}$ | KU-Band Variable Beta Angle Operational Range. |
| 055345 | $\begin{aligned} & \text { T3.9011(P)-1\#2, } \\ & \text { APP.F (MSC T/O } \\ & \text { Bus X), APP.G } \\ & \text { (I/O Error MMU X) } \end{aligned}$ | ANNUNCIATION, MMU, SPEC, DOWNLIST | MM Bite Status Data Following an MM MSC Time Out. |
| 055355 | T8.1-1, APP.E (I/O Cycle Wrap) | DOWNLIST, <br> CYCLE-WRAP | Downlist I/O Cycle Wraps After MTU Updates. |


| $\begin{array}{l}\text { RELEASE: } \\ \text { BOOK: }\end{array}$ | $\begin{array}{l}\text { OI20 } \\ \text { PASS User's Guide }\end{array}$ |  | $\begin{array}{l}\text { Date: } \\ \text { Rev: }\end{array}$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  | PASS USER'S GUIDE USER NOTE CROSS-REFERENCE (Continued) |  |  |$]$

## APPENDIX C. USER NOTES

-This Appendix previously provided a numerically ordered listing of the PASS User Notes (PASS DR numbers), with NASA approved text, referenced in this PASS User's Guide. These notes have been deleted from this document since the Flight Software Program Notes and Waivers (PNW), document number JSC-19320, contains listings of these notes.

## APPENDIX D. COMPILER ERRORS

This Appendix provides a tabled list of Compiler Errors in alphabetical order. Each error condition is shown with Manifestation, Description, and Possible Causes information.

| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC COMPILER ERRORS | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ARG OF UNIT IS NULL VECTOR | $\begin{array}{cc} \text { GPC ERROR } \\ \text { GROUP } & 4 \\ \text { CODE } & 28 \end{array}$ | THE FUNCTION UNIT(A) WAS CALLED WHERE VECTOR ARGUMENT A HAS ALL ELEMENTS EQUAL TO ZERO. RESULT = INPUT MATRIX |  |
| BIT @ HEX INVALID CHARACTER | $\begin{aligned} & \text { GPC ERROR } \\ & \text { GROUP } \\ & \text { GODE } \\ & \hline \end{aligned}$ | ROUTINE IN ERROR WAS BIT @ HEX <br> (A) - CONVERT A FROM A HEX STRING <br> IN CHARACTER FORMAT TO A BIT FORMAT. <br> ARGUMENT A DOES NOT REPRESENT A HEX STRING IN CHARACTER FORMAT. <br> RESULT = ZERO |  |
| BIT @ OCT INVALID CHARACTER | $\begin{aligned} & \text { GPC ERROR } \\ & \text { GROUP } \\ & \text { CODE } \\ & \hline 1 \end{aligned}$ | ROUTINE IN ERROR WAS BIT @ OCT (A) - CONVERT A FROM AN OCTAL IN CHARACTER FORMAT TO A BIT FORMAT. <br> ARGUMENT A DOES NOT REPRESENT AN OCTAL IN CHARACTER FORMAT. RESULT = ZERO |  |
| CLOSE <br> REACHED ON FUNCTION | $\begin{array}{lr} \text { GPC ERROR } \\ \text { GROUP } & 4 \\ \text { CODE } & 14 \end{array}$ | NO RETURN STATEMENT WAS ENCOUNTERED PRIOR TO REACHING TIIE CLOSE OF THE FUNCTION. |  |
| $\begin{aligned} & \text { EXP } \\ & \text { FUNCTION } \\ & \text { ARG }>174.673 \end{aligned}$ | $\begin{gathered} \text { GPC ERROR } \\ \text { GROUP } \\ \text { CODE } \\ \hline \end{gathered}$ | RESULT = MAX POSITIVE INTEGER |  |
| EXPONENTIA- <br> TION OF ZERO TO <br> POWER < = 0 | $\begin{aligned} & \text { GPC ERROR } \\ & \text { GROUP } \\ & \text { CODE } \end{aligned}$ | RESULT $=0$ |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC COMPILER ERRORS | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| LENGTH IN LJUST OR RJUST FUNCTION IS > STRING LENGTH OR IS < 0 | $\begin{array}{cc} \text { GPC ERROR } \\ \text { GROUP } & 4 \\ \text { CODE } & i 8 \end{array}$ | TRUNCATION TO THE SPECIFIED LENGTH OCCURS ON THE LEFT (RJUST) OR RIGHT (LJUST) |  |
| $\begin{aligned} & \text { LOG } \\ & \text { FUNCTION } \\ & \text { ARG }<=0 \end{aligned}$ | $\begin{aligned} & \text { GPC ERROR } \\ & \text { GROUP } \\ & \text { CODE } \end{aligned}$ | IF ARG $=0$ THEN RESULT $=$ MAX NEG INTEGER <br> ELSE RESULT $=$ LOG OF $\|A R G\|$ |  |
| SCALAR TOO <br> LARGE OR TOO SMALL FOR INTEGER CONVERSION | GPC ERROR $\begin{array}{lr}\text { GROUP } & 4 \\ \text { CODE } & 15\end{array}$ | IF ARG TOO SMALL THEN RESULT = MAXIMUM NEGATIVE INTEGER <br> IF ARG TOO LARGE THEN RESULT = MAXIMUM POSITIVE INTEGER DETECTED IN THE FOLLOWING LIBRARY FUNCTIONS: <br> ROUND, CEILING, FLOOR, TRUNCATE, INTEGER, SCALAR, MATRIX, VECTOR |  |
| SIN OR COS $\|A R G\|>$ (2.621 E5)PI | $\begin{array}{ll} \text { GPC ERROR } \\ \text { GROUP } & 4 \\ \text { CODE } & 8 \end{array}$ | $\text { RESULT }=\frac{\text { SQ. ROOT OF } 2}{2}$ |  |
| SINH OR COSH <br> ARG > 175,366 | $\begin{gathered} \text { GPC ERROR } \\ \text { GROUP } \\ \text { CODE } \end{gathered}$ | RESULT $=$ MAX POSITIVE INTEGER |  |
| SQUARE ROOT $\text { ARG }<0$ | $\begin{array}{ll} \text { GPC ERROR } \\ \text { GROUP } & 4 \\ \text { CODE } & 5 \end{array}$ | RESULT = SQUARE ROOT OF \|ARG| |  |



## APPENDIX E. GPC ERROR MESSAGES

This Appendix provides a tabled list of GPC Error Conditions in alphabetical order. Each error condition is shown with Manifestation, Description, and Possible Causes information.

| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| CHECKSUM ERROR ON ICC RETRY | ENTRY IN THE GPC ERROR LOG FOR: GROUP 5 CODE 7 <br> A GPC 'ICC-X' FAULT SUMMARY MESSAGE WILL BE ANNUNCIATED. $\mathrm{X}=1,2,3$, or 4 . <br> CAM LIGHT(S) INDICATING A FAILED GPC WILL BE LIT. <br> MASTER <br> ALARM <br> GPC C/W <br> LIGHT <br> B/U C/W <br> LIGHT | A CHECKSUM MISCOMPARE WAS DETECTED ON THE ICC MESSAGE, AFTER THE SECOND CONSECUTIVE ERROR ON THE SAME MESSAGE. <br> FCOS WILL DETERMINE WHICH GPC(S) CAUSED THE ERROR AND WILL FORCE THEM TO FAIL-TO-SYNC. | THIS ERROR IS PROBABLY CAUSED BY A FAILING GPC (E.G., ICC DATA BUS PROBLEM). <br> IT COULD ALSO BE THE RESULT OF A SOFTWARE ERROR IN THE PROCESSING OF THE VARIANT DATA AMONG THE MEMBERS OF A NON-SIMPLEX SET OF GPC'S. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| DISAGREE ON TRANSMITTER STATUS | ENTRY IN THE GPC ERROR LOG FOR: GROUP 5 <br> A GPC ${ }^{\prime} \mathrm{X}^{\prime}$ FAULT <br> SUMMARY <br> MESSAGE <br> WILL BE <br> ANNUNCIATED. <br> THE CAM <br> DIAGONAL IS <br> LIT FOR THE <br> GPC WITH <br> THE ERROR, AND THE <br> TALKBACK IS SET TO <br> BARBER-POLE. <br> MASTER <br> ALARM <br> GPC C/W <br> LIGHT <br> B/U C/W <br> LIGHT | FCOS DETECTED A DISAGREEMENT DURING A CHECK OF THE EXPECTED (COMMANDED) VS ACTUAL STATUS OF THE MIA TRANSMITTER. (CHECKS VALUES OF TRANSMITTER ENABLE BIT IN bCE STATUS REGISTER 3, 1 BIT FOR EACH OF 24 BCE'S.) <br> THE GPC WILL FORCE ITSELF TO THE WAIT STATE WHICH COULD CAUSE A FAIL TO SYNC. | 1. THIS PROBLEM IS INDICATIVE OF A MIA TRANSMITTER THAT HAS FAILED 'ON' IN THE IOP. <br> 2. THERE IS A LESSER CHANCE THAT THIS ERROR COULD BE CAUSED BY A SOFTWARE PROBLEM IN FCOS. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| EXPONENT OVERFLOW | ENTRY IN THE GPC ERROR LOG FOR: GROUP 3 CODE 11 <br> A PROGRAM CHECK <br> INTERRUPT WITH AN <br> INTERRUPT <br> CODE OF 11 <br> WILL BE <br> STORED IN <br> MEMORY <br> LOCATIONS <br> 48 -4B. | THE RESULT OF A FLOATING POINT ARITHMETIC OPERATION PRODUCED AN EXPONENT THAT EXCEEDED THE MAXIMUM <br> LEGAL VALUE. (RANGE E-64 TO $\mathrm{E}+63$ ) <br> THE ERROR IS IGNORED BY FCOS AND APPLICATION PROCESSES, AND NORMAL EXECUTION CONTINUES. | SEE OVERFLOW ERROR (GROUP 3 CODE 10). NOTE: 45335 GPC EXPONENT OVERFLOW ERRORS MAY OCCUR FOLLOWING AN IMU FAILURE. |
| EXPONENT UNDERFLOW (FLOATING POINT) | ENTRY IN THE GPC ERROR LOG FOR: GROUP CODE <br> A PROGRAM CHECK <br> INTERRUPT WITH AN <br> INTERRUPT <br> CODE OF 9 <br> WILL BE <br> STORED IN <br> MEMORY <br> LOCATIONS <br> 48-4B. | THE RESULT OF A FLOATING POINT ARITHMETIC OPERATION PRODUCED A NEGATIVE EXPONENT LESS THAN ZERO WITH A NON-ZERO FRACTIONAL COMPONENT. <br> THE ERROR IS IGNORED BY FCOS AND APPLICATION PROCESSES, AND NORMAL EXECUTION CONTINUES. | FSW EXECUTES WITH THIS INTERRUPT MASKED (PSW BIT $22=0$ ), THEREFORE THIS ERROR SHOULD NEVER OCCUR. <br> IF PATCHES HAVE BEEN APPLIED, VERIFY THEY ARE CORRECT. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| FIXED POINT OVERFLOW | ENTRY IN THE <br> GPC ERROR <br> LOG FOR: <br> $\begin{array}{ll}\text { GROUP } & 3 \\ \text { CODE } & 4\end{array}$ <br> A PROGRAM <br> CHECK <br> INTERRUPT <br> WITH AN <br> INTERRUPT <br> CODE OF 4 <br> WILL BE <br> STORED IN <br> MEMORY <br> LOCATIONS <br> 48-4B. | THE MAGNITUDE OF THE RESULT OF A FIXED POINT ARITHMETIC OPERATION WAS TOO LARGE TO BE REPRESENTED IN THE RESULT'S OPERAND (MEMORY LOCATION OR REGISTER). THE OPERATION IS TERMINATED WITHOUT CHANGING THE OPERANDS. <br> THIS ERROR IS IGNORED BY FCOS AND APPLICATION PROCESSES, AND NORMAL EXECUTION CONTINUES. | FSW EXECUTES WITH THIS INTERRUPT MASKED (PSW BIT $20=0$ ), THEREFORE THIS ERROR SHOULD NEVER OCCUR. <br> IF PATCHES HAVE BEEN APPLIED, VERIFY THEY ARE CORRECT. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ILLEGAL DEVICE ID | ENTRY IN THE GPC ERROR LOG FOR: GROUP 5 CODE 5 | WHILE INITIALIZING AN IOQE (I/O QUEUE ELEMENT), FCOS MODULE FIOSVC DETECTED AN INVALID DEVICE ID (DEVICE ID LESS THAN ZERO OR GREATER THAN 128). <br> AFTER LOGGING THE ERROR, FIOSVC TERMINATES IOQE INITIALIZATION AND RETURNS CONTROL TO THE CALLING SEQUENCE. <br> IF ONLY ONE GPC SEES ERROR, A FAIL-TO-SYNC WILL OCCUR. | THIS ERROR WOULD INDICATE A SOFTWARE PROBLEM IN THE CODE THAT STORES THE DEVICE ID PARAMETER IN THE I/O SVC PARAMETER LIST. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ILLEGAL OP CODE | ENTRY IN THE GPC ERROR LOG FOR: GROUP CODE <br> A PROGRAM CHECK <br> INTERRUPT WITH AN INTERRUPT CODE OF 0 WILL BE STORED IN MEMORY LOCATIONS 48-4B. <br> CLASS 3 ERROR MESSAGE <br> FSP MESSAGE, "GPC BITE. | THE ERROR OCCURS WHEN AN ATTEMPT IS MADE TO EXECUTE A INSTRUCTION (OP CODE), THAT IS NOT SUPPORTED BY THE GPC. <br> IF THE ERROR IS DETECTED IN FCOS, THE FCOS DISPATCHER WILL PASS CONTROL OF THE CPU TO THE HIGHEST PRIORITY APPLICATION PROCESS WHICH IS READY FOR EXECUTION (I.E., NOT WAITING FOR I/O, SOME EVENT, OR FUTURE TIME). <br> IF THE ERROR WAS DETECTED IN AN APPLICATION PROCESS, THAT PROCESS WILL BE FORCE CLOSED AND THE FCOS DISPATCHER WILL PASS CONTROL OF THE CPU TO THE HIGHEST PRIORITY APPLICATION PROCESS WHICH IS READY FOR EXECUTION (I.E., NOT WAITING FOR I/O, SOME EVENT, OR FUTURE TIME). <br> MAY RESULT IN A FAIL-TO-SYNC. | 1. THIS ERROR IS CAUSED BY IMPROPER SPECIFICATION OR USE OF INSTRUCTIONS OR DATA. IT IS MOST LIKELY A SOFTWARE PROBLEM. IF PATCHES HAVE BEEN APPLIED, VERIFY THEY ARE CORRECT. <br> 2. POSSIBLE HARDWARE FAILURE. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS""CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| INSTRUCTION MONITOR | ENTRY IN THE GPC ERROR LOG FOR: <br> AN <br> GROUP 3 <br> CODE 20 <br> INSTRUCTION MONITOR <br> INTERRUPT <br> WILL BE <br> STORED IN <br> MEMORY <br> LOCATIONS <br> 70-73. <br> FSP MESSAGE, "GPC BITE." | AN ATTEMPT WAS MADE TO EXECUTE AS INSTRUCTIONS, DATA STORED IN UNPROTECTED MEMORY LOCATIONS. ALL INSTRUCTION CODES ARE STORED IN MEMORY ADDRESSES WHICH HAVE THE PROTECT BIT SET ON. MOST DATA IS STORED IN UNPROTECTED MEMORY LOCATIONS. THE FALSE INSTRUCTION WILL NOT BE EXECUTED. <br> IF THE ERROR WAS DETECTED WHILE FCOS WAS EXECUTING, THE FCOS DISPATCHER WILL PASS CONTROL OF THE CPU TO THE HIGHEST PRIORITY APPLICATION PROCESS WHICH IS READY FOR EXECUTION (I.E., NOT WAITING FOR I/O, SOME EVENT, OR FUTURE TIME). | 1. THIS ERROR IS CAUSED BY IMPROPER SPECIFICATION OR USE OF INSTRUCTIONS OR DATA. IF PATCHES HAVE BEEN APPLIED, VERIFY THEY ARE CORRECT. <br> 2. POSSIBLE HARDWARE ADDRESSING OR MEMORY PROBLEM. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| INSTRUCTION MONITOR (CONTINUED |  | IF THE ERROR WAS DETECTED IN AN APPLICATION PROCESS, THAT PROCESS WILL BE FORCE CLOSED (I.E., THE APPLICATION PROCESS WILL BE TERMINATED), AND THE FCOS DISPATCHER WILL PASS CONTROL OF THE CPU TO THE HIGHEST PRIORITY APPLICATION PROCESS WHICH IS READY FOR EXECUTION (I.E., NOT WAITING FOR I/O, SOME EVENT, OR FUTURE TIME). <br> PROBABLE FAIL-TO-SYNC |  |
| INVALID EVENT ADDRESS SPECIFIED | ENTRY IN THE GPC ERROR LOG FOR: GROUP 5 CODE 6 | FCOS MODULE FPMEVAL DETECTED AN EVENT WHOSE ADDRESS FELL OUTSIDE THE ADDRESS LIMITS OF THE EQE (EVENT QUEUE ELEMENT) POOL. <br> AFTER LOGGING THE ERROR, FPMEVAL TERMINATES THE EVENT EVALUATION, AND RETURNS CONTROL TO THE CALLING PROGRAM. | THIS ERROR WOULD INDICATE A SOFTWARE PROBLEM IN THE CODE THAT GENERATED THE invalid event variable address. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |

"INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS"

| GPC ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| :---: | :---: | :---: | :---: |
| INVALID ICC HEADER | ENTRY IN THE GPC ERROR LOG FOR: GROUP 6 CODE 2 | THE SYSTEM INTERFACE PROCESSOR (AIESIP) COULD NOT MATCH THE MESSAGE HEADER IN THE ICC BUFFER WITH ANY OF THE LEGAL VALUES IN THE ICC MESSAGE TABLE. <br> AIESIP WILL LOG THIS ERROR AND TERMINATE PROCESSING OF THE ICC MESSAGE BUFFER. | THREE GENERAL TYPES OF PROBLEMS OFFER THE POTENTIAL TO INTRODUCE THIS ERROR. IN EACH CASE THE PROBLEM IS ASSUMED TO BE UNDETECTABLE BY THE GPC BITE CIRCUITRY. <br> 1) DATA IN THE SOURCE GPC'S ICC BUFFER IS GOOD, BUT SOMEWHERE BETWEEN THERE AND STORING THE DATA INTO THE DESTINATION GPC'S ICC BUFFER, THE DATA BECOMES BAD. COMPARISON BETWEEN THE SOURCE AND DESTINATION GPC'S, WOULD SHOW DIFFERENT DATA IN THEIR RESPECTIVE BUFFERS. <br> 2) DATA IN THE SOURCE GPC'S ICC BUFFER IS BAD. THE SOFTWARE IS PERFORMING THE CORRECT PROCESSING, BUT SOMEWHERE IN MOVING THE DATA TO THE SOURCE'S ICC BUFFER, THE DATA IS POLLUTED. COMPARISON BETWEEN THE SOURCE AND DESTINATION GPC'S WOULD SHOW THE SAME DATA IN THEIR RESPECTIVE BUFFERS. <br> 3) DATA IN THE SOURCE GPC'S ICC BUFFER IS BAD. THE SOFTWARE IS SOMEHOW IN THE WRONG PROCESSING LOOP, STORING OTHERWISE VALID ICC MESSAGES INTO THE BUFFER, BUT THERE IS NO LEGITIMATE REASON TO DO SO. COMPARISON BETWEEN THE SOURCE AND DESTINATION GPC'S WOULD SHOW THE SAME DATA IN THEIR RESPECTIVE BUFFERS. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |  |


| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| :---: | :---: | :---: | :---: |
| I/O CYCLE WRAP FOR: | ENTRY IN THE GPC ERROR LOG FOR: GROUP 7 CODE N NOTE: $\mathrm{N}=1-13$ <br> SEE THE <br> FOLLOWING <br> IOQE'S FOR THE <br> APPROPRIATE CODE. | I/O CYCLE WRAPS (GROUP 7 ERRORS) ARE LOGGED WHEN AN ATTEMPT IS MADE TO INITIATE CYCLIC I/O THAT USES A <br> PRE-INITIALIZED I/O QUEUE ELEMENT (PIOQE - BUILT AT SYSTEM BUILD TIME), IF THAT I/O HAS NOT YET COMPLETED FROM THE PREVIOUS CYCLE. THIS CONDITION IS DETECTED BY THE PIOQE INDICATING IT IS IN USE (OR BUSY) AT THE TIME OF INITIATION. <br> THE CODE 1 THRU 13 CORRESPONDS TO THE ID OF THE PIOQE PREVIOUSLY ASSIGNED TO IT. I/O INITIATED ON ONE SIP CYCLE DOES NOT COMPLETE BEFORE THE NEXT SIP TIMER. SIP TIMER INITIATES I/O EVERY 40 MSEC. <br> THE ERROR WILL BE LOGGED, I/O CYCLE WILL BE SKIPPED, AND THEN THE COLLECTION OF DATA RESUMES NORMALLY ON THE NEXT CYCLE. | THESE ERRORS COULD BE CAUSED bY ONE OF THE FOLLOWING CONDITIONS: <br> NOTE: 47311 UNUSUALLY HIGH I/O ACTIVITY ON THE SAME BUS(ES) AS THE TRANSACTION IN ERROR OR ON BUS(ES) FOR TRANSACTIONS WITH HIGHER PRIORITIES (E.G., DDU DYNAMIC DRIVE TEST). <br> NOTE: 25197 ACTIONS SUCH AS AN OPS MODE RE-CALL OR AN OPS TRANSACTION WITH MULTIPLE LRU'S POWERED DOWN, RESULTING IN HIGH I/O ERROR ACTIVITY. |

"INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS"
\(\left.$$
\begin{array}{l|l|l|l|}\hline \begin{array}{l}\text { GPC ERROR } \\
\text { CONDITION }\end{array}
$$ \& \begin{array}{l}HOW <br>
MANIFESTED <br>

TO USER\end{array} \& DESCRIPTION OF THE ERROR\end{array}\right]\)| POSSIBLE CAUSES / KNOWN SCENARIOS |
| :--- |
| AND RELATED PROBLEMS (NOTE \#) |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| I/O ERROR <br> ON ICC <br> RETRY | ENTRY IN THE GPC ERROR LOG FOR: GROUP 5 CODE 0 <br> A GPC ' $X^{\prime}$ <br> FAULT <br> SUMMARY <br> MESSAGE WILL BE ANNUNCIATED <br> CAM LIGHTS INDICATING A FAILED GPC WILL BE LIT. | TWO CONSECUTIVE I/O ERRORS ON THE ICC BUS WERE DETECTED ON A RETRY OF THE SAME ICC MESSAGE. <br> FCOS WILL DETERMINE WHICH GPC(S) CAUSE THE ICC FAILURE AND WILL FORCE THE GUILTY GPC(S) TO FAIL-TO-SYNC. <br> THIS ERROR WILL BE PRECEDED BY I/O ERRORS ON ICC BUS. | THIS FAILURE IS INDICATIVE OF A FAILED ICC BUS MIA IN THE TRANSMITTING OR RECEIVING IOP. THERE IS A LESSER CHANCE OF AN ICC DATA BUS PROBLEM. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| I/O ERROR STORE PROTECT VIOLATION | ENTRY IN THE GPC ERROR LOG FOR: GROUP 5 CODE 4 <br> AN <br> EXTERNAL-1 <br> (LEVEL B) <br> INTERRUPT WITH AN INTERRUPT CODE OF 4 WILL BE STORED IN MEMORY LOCATIONS 80-83. <br> FSP MESSAGE, "GPC BITE." | WHILE THE IOP WAS PROCESSING THE DMA (DIRECT MEMORY ACCESS) QUEUE, AN ATTEMPT WAS MADE TO STORE INTO A MAIN MEMORY LOCATION THAT HAD THE STORE PROTECT BIT SET ON. <br> IF THE ERROR WAS DETECTED WHILE FCOS WAS IN EXECUTION, THE FCOS DISPATCHER WILL PASS CONTROL OF THE CPU TO THE HIGHEST PRIORITY APPLICATION PROCESS WHICH IS READY FOR EXECUTION (I.E., NOT WAITING FOR I/O, SOME EVENT, OR FUTURE TIME). <br> IF THE ERROR WAS DETECTED DURING THE EXECUTION OF AN APPLICATION PROCESS, THAT PROCESS WILL BE FORCE CLOSED (I.E., THE APPLICATION PROCESS WILL BE TERMINATED), AND THE FCOS DISPATCHER WILL PASS CONTROL OF THE CPU TO THE HIGHEST PRIORITY APPLICATION PROCESS WHICH IS READY FOR EXECUTION (I.E., NOT WAITING FOR I/O, SOME EVENT, OR FUTURE TIME). PROBABLE FAIL-TO-SYNC. | SEE I/O ADDRESS SPECIFICATION ERROR (GROUP 5 CODE 3). |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
| $\underset{s}{z}$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| PMU TIME INVALID | ENTRY IN THE GPC ERROR LOG FOR: GROUP 6 CODE 6 | WHEN THE FIRST GPC IS MODED TO RUN, THE SIP TIME SOURCE IS SELECTED. TO ACCOMPLISH THIS, THE MTU IS READ AND THE TIME IS SAVED IN GPC MEMORY AS RUNTIME. THEN TIME IS READ FROM THE PMU. LIMIT CHECKS ARE PERFORMED ON THE PMU TIME VALUE USING RUNTIME AS THE REFERENCE. IF THE PMU TIME IS NEITHER AHEAD OF RUNTIME, NOR MORE THAN 1.02 SECONDS BEHIND RUNTIME, PMU TIME BECOMES THE SIP TIME SOURCE. THIS IS THE DESIRED RESULT. OTHERWISE RUNTIME IS USED AS THE SIP TIME SOURCE, AND THIS ERROR IS LOGGED. | THIS ERROR WOULD INDICATE A PROBLEM EXTERNAL TO THE GPC. THE PROBLEM IS PROBABLY BETWEEN THE PMU AND MTU, OR POSSIBLY BETWEEN THE PMU AND THE GPC. <br> NOTE: 100710 THE MOST PROBABLE CAUSE FOR THIS ERROR IS READING THE MTU PRIOR TO PERFORMING AN MTU RE-SET. <br> THIS ERROR WILL ALSO OCCUR IF MTU IS POWERED DOWN OR DRIFTING DUE TO INADEQUATE WARMUP TIME (16 HOURS). PMU TIME AHEAD OF RUNTIME INDICATES MTU IS FAST. PMU TIME BEHIND RUNTIME INDICATES MTU IS SLOW. <br> IF THIS ERROR OCCURS DURING COUNTDOWN WHEN FORMING G9 RS, THE GPC SHOULD BE TAKEN TO STANDBY/RUN TO FORCE PASS TO USE PMU TIME. THIS IS NECESSARY SINCE BFS USES PMU TIME AND BOTH MUST USE THE SAME SOURCE TO PREVENT TIME SKEW. (THIS ERROR SHOULD NOT OCCUR DURING COUNTDOWN RS FORMATION SINCE THE MTU WILL NORMALLY BE WARMED UP |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  | "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { SIGNIFI- } \\ & \text { CANCE } \end{aligned}$ | ENTRY IN THE GPC ERROR LOG FOR: $\begin{array}{ll}\text { GROUP } & 3 \\ \text { CODE } & 5\end{array}$ <br> A PROGRAM CHECK <br> INTERRUPT WITH AN INTERRUPT CODE OF 5 WILL BE STORED IN MEMORY LOCATIONS 48-4B. | A LOSS OF SIGNIFICANCE WAS DETECTED DURING THE EXECUTION OF FLOATING POINT ARITHMETIC INSTRUCTIONS. <br> THIS ERROR INDICATES SIGNIFICANT BIT(S) REQUIRED FOR ACCURACY WERE DROPPED FROM THE FRACTION OF A NUMBER. <br> THIS ERROR IS IGNORED BY FCOS AND APPLICATION PROCESSES, AND NORMAL EXECUTION CONTINUES. | FSW EXECUTES WITH THE INTERRUPT MASKED (PSW BIT $23=0$ ), THEREFORE THIS ERROR SHOULD NEVER OCCUR. <br> THIS ERROR IS CAUSED BY IMPROPER SPECIFICATION OR USE OF INSTRUCTIONS OR DATA. <br> IF PATCHES HAVE BEEN APPLIED, VERIFY THEY ARE CORRECT. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| GPC ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ZERO MSG LENGTH IN DEU RESP BUFF | ENTRY IN THE GPC ERROR LOG FOR: GROUP 6 CODE 1 | WHILE PROCESSING A DEU <br> RESPONSE MESSAGE, THE MCDS INPUT PROCESSOR <br> (DMI_MCDS_IN) FOUND THE <br> MESSAGE READY BIT ON BUT <br> THE NUMBER OF KEYSTROKES indicated was zero. THE KEYSTROKES ARE DISCARDED. <br> THE PROCESSOR WILL LOG THE ERROR MESSAGE, AND THEN RESET (TURN OFF) THE MESSAGE READY INDICATOR. | NOTE: (SMS D019) DURING THE DEU'S PROCESSING OF THE TERMINATOR KEYS: PRO, EXEC, FAULT SUMM, SYS SUMM, RESUME; THERE IS A 45 MICRO-SECOND WINDOW THAT PERMITS ERRONEOUS TRANSFERS OF THE KEYBOARD DATA TO THE GPC. IF POLLING FROM THE GPC OCCURS DURING THE WINDOW, THIS ERROR IS A POSSIBLE RESULT. IN CASES WHERE A POLL FAIL IS INDICATED, REASSIGN THE POLL FAIL DEU BY GPC/CRT FROM ANOTHER DEU AND RE-ENTER THE MESSAGE. <br> OTHER POSSIBLE RESULTS INCLUDE "ILLEGAL ENTRY" (PASS), "I/O ERR CRT" (BFS), OR SIMPLY NO RESPONSE FROM THE GPC. THE USER SHOULD RE-KEY THE MESSAGE. |


| RELEASE: | OI20 | Date: $12 / 20 / 90$ |
| :--- | :--- | :---: |
| BOOK: | PASS User's Guide | Rev: 0 |

## APPENDIX F. I/O ERROR MESSAGES

This Appendix provides a tabled list of I/O Error Conditions divided into three sections: Section 1 contains DEVICE ID/OP CODE error messages listed in DEVICE ID order; Section 2 contains BCE ELEMENT error messages listed in alphabetical order; and Section 3 contains STATUS REGISTER error messages listed in alphabetical order. Each error condition is shown with Manifestation, Description, and Possible Causes information.

| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| IPR VIA ICC-RS | $\begin{aligned} \text { DEVICE ID } & =1 \\ \text { OP CODE } & =0 \end{aligned}$ | IF AN I/O ERROR OCCURS ON CERTAIN RS I/O TRANSACTIONS (E.G., HFE OR MFE), ERROR DATA ABOUT THE TRANSACTION IS EXCHANGED OVER THE ICC BUSSES. THIS IS CALLED AN IPR (I/O PROBLEM REPORT) ICC TRANSACTION. |  |
| $\begin{aligned} & \text { GPC TO GPC } \\ & \text { WRT } \end{aligned}$ | DEVICE ID $=2$ OP CODE $=1$ | ERROR ON GPC-TO-GPC OPS OVERLAY WRITE OPERATION. ERROR HANDLING SAME AS MMU OVERLAY. |  |
| $\begin{aligned} & \text { GPC TO GPC } \\ & \text { RDS } \end{aligned}$ | DEVICE ID = 2 <br> OP CODE $=2$ | ERROR ON GPC-TO-GPC OPS OVERLAY READ OPERATION. ERROR HANDLING SAME AS MMU OVERLAY. |  |
| $\begin{aligned} & \text { GPC TO GPC } \\ & \text { NO-OP } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =2 \\ \text { OP CODE } & =3 \end{aligned}$ | ERROR ON GPC-TO-GPC OPS NO-OP. ERROR HANDLING SAME AS MMU OVERLAY. |  |
| SSIP ICC | DEVICE ID $=3$ <br> OP CODE $=0$ | ERROR ON 124 HALF-WORD COMMON SET SYNC MESSAGE - SSIP (SYSTEM SOFTWARE INTERFACE PROCESSOR). |  |
| sSus OUTPUT WRT | DEVICE ID $=4$ OP CODE $=1$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| DEU X FILL | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =1 \end{array}$ | AN ERROR WITH THIS OP CODE INDICATES A FAILURE ON A GPC DISPLAY FILL COMMAND (MESSAGE TYPE 28, SUBFIELD 3) WHICH IS USED TO LOAD DISPLAY INSTRUCTIONS INTO THE "DISPLAY BUFFER." |  |
| DEU X POLL | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =2 \end{array}$ | AN ERROR WITH THIS OP CODE INDICATES A FAILURE ON GPC TIME FILL COMMAND (MESSAGE TYPE 28, SUBFIELD 0) OR ITS "CHAINED" MCDS STATUS REQUEST (MESSAGE TYPE 0, SUBFIELD 4) WHICH FOLLOWS IT. |  |
| DEU X IPL FILL | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =3 \end{array}$ | AN ERROR WITH THIS OP CODE INDICATES A FAILURE ON A GPC COMMAND (MESSAGE TYPE 28, SUBFIELD 0) INTENDED FOR A DEU WITH THE IPL PROM PROGRAM RUNNING; THAT IS WITH DEU LOAD DISPLAYED ON THE CRT. |  |
| DEU X DUMP | DEVICE ID = * <br> OP CODE $=4$ | AN ERROR WITH THIS OP CODE INDICATES A FAILURE ON A GPC REQUEST (MESSAGE TYPE 29) TO DUMP UP TO 511 WORDS FROM THE DEU, STARTING AT A GIVEN DEU ADDRESS. DEU SHOULD RESPOND WITH THE REQUESTED NUMBER OF WORDS. |  |
| $\mathrm{X}=1,2,3,4$ | $\begin{aligned} & *=5,6,7,8 \\ & \text { (FOR DEU 1,2,3,4 } \\ & \text { RESPECTIVELY) } \end{aligned}$ |  |  |

F.1-2

| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| DEU X REQ <br> BITE STAT | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =5 \end{array}$ | AN ERROR WITH THIS OP CODE INDICATES A FAILURE ON A GPC REQUEST (MESSAGE TYPE 0, SUBFIELD 4) INTENDED FOR A DEU WITH THE IPL PROM PROGRAM RUNNING; THAT IS, WITH "DEU LOAD" DISPLAYED ON THE CRT. THIS COMMAND MUST BE RECEIVED BY THE IPL PROM BEFORE THE DEU CAN ACCEPT A LOAD (FILL COMMAND). |  |
| DEU X RESET SCR PD LINE | $\begin{aligned} & \text { DEVICE ID }=* \\ & \text { OP CODE }=6 \end{aligned}$ | THIS OP CODE IS THE GPC COMMAND TO THE DEU (MESSAGE TYPE 4) TO CLEAR THE CRT SCRATCH PAD LINE, ON WHICH THE DEU DISPLAYS THE CURRENT KEYBOARD MESSAGE. THE GPC CLEARS THE LINE WHEN A NEW PAGE IS DISPLAYED. |  |
| $\mathrm{X}=1,2,3,4$ | $\begin{aligned} & *=5,6,7,8 \\ & \text { (FOR DEU 1,2,3,4 } \\ & \text { RESPECTIVELY) } \end{aligned}$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| DEU X CRIT FORMAT FILL | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =7 \end{array}$ | AN ERROR WITH THIS OP CODE INDICATES A FAILURE ON A GPC COMMAND (MESSAGE TYPE 28, SUBFIELD 5) WHICH IS USED TO LOAD DISPLAY INSTRUCTIONS INTO THE "CRITICAL FORMAT BUFFER." |  |
| DEU X REMOTE FILL | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =8 \end{array}$ | THIS FUNCTION NOT PRESENTLY USED. |  |
| DEU X REMOTE DUMP | $\begin{array}{ll} \text { DEVICE ID } & =* \\ \text { OP CODE } & =9 \end{array}$ |  |  |
| $\mathrm{X}=1,2,3,4$ | $\begin{aligned} & *=5,6,7,8 \\ & \text { (FOR DEU 1,2,3,4 } \\ & \text { RESPECTIVELY) } \end{aligned}$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | IIOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBIEMS (NOTE \#) |
| $\begin{aligned} & \text { DDU } \\ & \text { WRT ALL } \\ & \text { DDU } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =9 \\ \text { OP CODE } & =1 \end{aligned}$ | ERROR ON G9/P9 WRITE TO DDU 1 (LEFT) AND 2 (RIGHT) VIA FCI-4. DDU OUTPUTS ARE ON DEMANI), VIA SPICC 100. |  |
| DDU <br> WRT ADI | $\begin{aligned} \text { DEVICE ID } & =9 \\ \text { OP CODE } & =2 \end{aligned}$ | ERROR ON G9/P9 WRITE TO DDU 3 (AFT) VIA FCI-4. DDU OU'TPUTS ARE ON DEMAND VIA SPEC 100. |  |
| PMU'S WRT GPC DATA RAM | $\begin{aligned} & \text { DEVICE ID }=10 \\ & \text { OP CODE }=1 \end{aligned}$ | PCMMU ERROR ON WRITING DOWNLIST TO THE TOGGIE BUFFER. |  |
| PMU'S WRT 128 KBPS PGM | $\begin{aligned} \text { DEVICE ID } & =10 \\ \text { OP CODE } & =2 \end{aligned}$ | PCMMU ERROR ON WRITING TFI, DATA TO THE HIGII DATA RATE FORMATTER MEMORIES. | VAIID ONLY IN SM AND VU. |
| PMU'S WRT 64 KBPS PGM | $\begin{aligned} \text { DEVICE ID } & =10 \\ \text { OP CODE } & =3 \end{aligned}$ | PCMMU ERROR ON WRITING TFL DATA TO THE LOW DATA RATE FORMATTER MEMORIES. | VALID ONLY IN SM AND VU. |
| PMU'S <br> RDS 128 <br> KBPS PGM | DEVICE ID $=10$ <br> OP CODE $=4$ <br> I/O ERROR <br> LOGGED) <br> FSP MESSAGE <br> (I/O ERROR PCM) | PCMMU ERROR ON READING TIIE HIGH DATA RATE (IIDR) RAM CHECKSUM VAlUE. | VAIID ONI.Y IN SM AND VU. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| PMU'S <br> WRT 64 <br> KBPS 1 WD | $\begin{aligned} \text { DEVICE ID } & =10 \\ \text { OP CODE } & =11 \end{aligned}$ | PCMMU ERROR DURING A ONE-TIME WRITE OF THE SYNC WORD INTO WORD 88 (THE OI SYNC WORD) OF THE 64 KBPS MEMORY. |  |
| PMU'S <br> TCS RDS <br> 64/128 P | $\begin{aligned} \text { DEVICE ID } & =10 \\ \text { OP CODE } & =12 \end{aligned}$ |  |  |
| MMU WRT W/ CKSUM | $\begin{aligned} & \text { DEVICE ID = } 11 \\ & \text { OP CODE }=1 \\ & \text { //O ERROR } \\ & \text { LOGGEDD } \\ & \text { MMU BSR SET } \\ & \text { FSP MEESAGE } \\ & \text { (I/O ERROR } \\ & \text { MMU X, WHERE } \\ & \text { X=1 OR 2) } \end{aligned}$ | THIS TRANSACTION ERROR INDICATES A FAILURE OCCURRED DURING A GPC-TO-MMU WRITE WITH CHECKSUM OPERATION. (SEE RELATED BCE 27 STATUS REGISTER ERROR.) | 1. MMU HARDWARE FAILURE. <br> 2. MMU TAPE DAMAGE OR CONTAMINATION. <br> 3. MMU LOAD PROBLEM. <br> 4. GPC TRANSMITTER/RECEIVER FAILURE. |
| MMU WRT W/O CKSUM | $\begin{aligned} & \text { DEVICE ID }=11 \\ & \text { OP CODE }=2 \\ & \text { I/O ERROR } \\ & \text { LOGGED } \\ & \text { FSP MESSAGE } \\ & \text { (I/O ERROR } \\ & \text { MMU X, WHERE } \\ & \text { X }=1 \text { OR 2) MMU } \\ & \text { BSR SET } \end{aligned}$ | THIS TRANSACTION ERROR INDICATES A FAILURE OCCURRED DURING A GPC-TO-MMU WRITE WITHOUT <br> CHECKSUM OPERATION. (SEE RELATED BCE 27 STATUS REGISTER ERROR.) | 1. MMU HARDWARE FAILURE. <br> 2. MMU TAPE DAMAGE OR CONTAMINATION. <br> 3. MMU LOAD PROBLEM. <br> 4. GPC TRANSMITTER/RECEIVER FAILURE. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| MMU RDS W/ CKSUM | DEVICE ID $=11$ <br> OP CODE $=3$ <br> I/O ERROR <br> LOGGED <br> FSP MESSAGE <br> (I/O ERROR <br> MMU X, WHERE <br> $\mathrm{X}=1$ OR 2) MMU BSR SET | FAILURE DURING A GPC-TO-MMU READ WITH CHECKSUM OPERATION. (SEE RELATED BCE 27 STATUS REGISTER ERROR.) | 1. MMU HARDWARE FAILURE. <br> 2. MMU TAPE DAMAGE OR CONTAMINATION. <br> 3. MMU LOAD PROBLEM. <br> 4. MMU DUMP AND/OR COMPARE PROBLEM. <br> 5. GPC TRANSMITTER/RECEIVER FAILURE. <br> 6. FAILURE OF A TFL OR PDI LOAD. |
| MMU RDS W/O CKSUM | DEVICE ID $=11$ OP CODE $=4$ I/O ERROR LOGGED <br> FSP MESSAGE <br> (I/O ERROR <br> MMU X, WHERE <br> $\mathrm{X}=1$ OR 2) MMU <br> BSR SET | FAILURE DURING A GPC-TO-MMU READ WITHOUT CHECKSUM OPERATION. (SEE RELATED BCE 27 STATUS REGISTER ERROR.) | 1. MMU HARDWARE FAILURE. <br> 2. MMU TAPE DAMAGE OR CONTAMINATION. <br> 3. MMU LOAD PROBLEM. <br> 4. MMU DUMP AND/OR COMPARE PROBLEM. <br> 5. GPC TRANSMITTER/RECEIVER FAILURE. |
| MMU MM UTILITY WRT | DEVICE ID $=11$ <br> $\mathrm{OPCODE}=5$ <br> I/O ERROR <br> LOGGED <br> FSP MESSAGE <br> MMU OFF/BUSY | ERROR DURING A GPC-TO-MMU UTILITY_WRITE_REQUEST. ONLY USED FOR CAPABILITȲ 1 TYPE WRITES (FILE, TRACK, SUBFILE, BLOCK GROUND COMMANDS VIA THE LDB). | ONLY OCCURS IN SM OR PL9 OPS. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { MMU } \\ & \text { READ STAT } \\ & \text { REG } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =11 \\ \text { OP CODE } & =6 \end{aligned}$ | TRANSACTION ERROR DURING A GPC-TO-MMU STATUS REQUEST COMMAND. STATUS REQUEST COMMAND IS ISSUED BEFORE AND AFTER EVERY MMU OPERATION. |  |
| MMU OVERLAY READ | $\begin{aligned} \text { DEVICE ID } & =11 \\ \text { OP CODE } & =7 \end{aligned}$ | ERROR OCCURRED DURING A GPC-TO-MMU OPS OVERLAY REQUEST. |  |
| MMU POSITION TAPE | $\begin{aligned} \text { DEVICE ID } & =11 \\ \text { OP CODE } & =8\end{aligned}$ | TRANSACTION ERROR DURING A GPC-TO-MMU POSITION REQUEST COMMAND. |  |
| MMU MMU UTILITY READ | $\begin{array}{ll} \text { DEVICE ID } & =11 \\ \text { OP CODE } & =9 \end{array}$ |  | LIMITED TO PL9 OPS ONLY. |
| MMU TCS MM BITE STATUS | DEVICE ID $=11$ <br> OP CODE $=10$ |  |  |
| FC BITE ACQU RDS | DEVICE ID $=12$ OP CODE $=2$ | ERROR IN G9 WHILE CYCLICALLY READING FF AND FA MDM'S BITE STATUS REGISTER. INITIATED BY SPEC 112 ENTRY. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| MTU ALL RDS | $\begin{aligned} \text { DEVICE ID } & =22 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| FC C\&W WRT | $\begin{aligned} \text { DEVICE ID } & =23 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| NSP CYCLIC IN RDS | $\begin{aligned} \text { DEVICE ID } & =24 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| FAOUT WRT | $\begin{aligned} \text { DEVICE ID } & =25 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| HDA INPUT 1 RDS | $\begin{aligned} \text { DEVICE ID } & =26 \\ \text { OP CODE } & =2 \end{aligned}$ | HFE TYPE INPUT IN G9 OR PL9. |  |
| TCS FFX WRT $(X=1,2,3,4)$ | $\begin{aligned} \text { DEVICE ID } & =27 \\ 28,29,30 & \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| TCS FFX RDS $(X=1,2,3,4)$ | $\begin{array}{ll} \text { DEVICE ID } & =27 \\ 28,29,30 & =2 \\ \text { OP CODE } & =2 \end{array}$ |  |  |
| TCS FAX WRT $(X=1,2,3,4)$ | $\begin{array}{ll} \text { DEVICE ID } & =31 \\ 32,33,34 \\ \text { OP CODE } & =1 \end{array}$ |  |  |
| TCS FAX RDS ( $\mathrm{X}=1,2,3,4$ ) | $\begin{array}{ll} \text { DEVICE ID } & =31 \\ 32,33,34 & \\ \text { OP CODE } & =2 \end{array}$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { TCS QUAD FA } \\ & \text { WRT } \end{aligned}$ | DEVICE ID $=35$ <br> OP CODE = 1 |  |  |
| TCS QUAD FA RDS | $\begin{aligned} \text { DEVICE ID } & =35 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS QUAD FF } \\ & \text { WRT } \end{aligned}$ | DEVICE ID $=36$ OP CODE $=1$ |  |  |
| TCS QUAD FF RDS | DEVICE ID $=36$ OP CODE $=2$ |  |  |
| RJD CMD A TGLR WRT | DEVICE ID $=37$ OP CODE $=1$ |  |  |
| G9 ONE SHOT WRT | $\begin{aligned} \text { DEVICE ID } & =38 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| SPARE DEVICE | $\underset{40,41,42}{\text { DEVICE ID }}=39$ |  |  |
| PF BITE ACQU RDS | $\begin{array}{ll} \text { DEVICE ID } & =43 \\ \text { OP CODE } & =2 \end{array}$ |  |  |
| PFX <br> DISCRETES <br> WRT <br> ( $\mathrm{X}=1,2$ ) | $\begin{aligned} & \text { DEVICE ID }=44, \\ & 45 \\ & \text { OP CODE }=1 \end{aligned}$ |  |  |
| TCS PF1 WRT | $\begin{aligned} \text { DEVICE ID } & =46 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |

F.1-12

| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| TCS PF2 WRT TCS PFC RDS | $\begin{aligned} \text { DEVICE ID } & =47 \\ \text { OP CODE } & =1 \\ \text { DEVICE ID } & =47 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| SM PF FIXD OUT CYCLIC OUTPUTS | $\begin{array}{ll} \text { DEVICE ID } & =48 \\ \text { OP CODE } & =1 \end{array}$ |  |  |
| SM PF FIXD OUT PYLD BAY DOORS | $\begin{array}{ll} \text { DEVICE ID } & =48 \\ \text { OP CODE } & =2 \end{array}$ |  |  |
| $\begin{aligned} & \text { PSP PFX WRT } \\ & (\mathrm{X}=1,2) \end{aligned}$ | $\begin{aligned} & \text { DEVICE ID }=49, \\ & \text { S0 CODE }=1 \end{aligned}$ |  |  |
| PSP PFX STATUS ( $\mathrm{X}=1,2$ ) | $\begin{aligned} & \text { DEVICE ID }=49, \\ & 50 \\ & \text { OP CODE }=2 \end{aligned}$ |  |  |
| PL HIGH RATE RDS | $\begin{aligned} \text { DEVICE ID } & =51 \\ \text { OP CODE } & =2 \end{aligned}$ | ERROR DURING A HIGH-RATE ( 6.25 Hz ) READ OF THE PL MDM. |  |
| PF LOW RATE RDS | $\begin{aligned} \text { DEVICE ID } & =52 \\ \text { OP CODE } & =2 \end{aligned}$ | ERROR DURING A LOW-RATE ( 1.04 Hz ) READ OF THE PL MDM. |  |
| $\begin{aligned} & \text { DUAL PORT } \mathrm{X} \\ & \text { RDS } \\ & (\mathrm{X}=1,2,3) \end{aligned}$ | $\begin{array}{ll} \text { DEVICE ID } & =53, \\ 54,55 \\ \text { OP CODE } & =2 \end{array}$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| LDB TRANS ENABLE | $\begin{aligned} \text { DEVICE ID } & =61 \\ \text { OP CODE } & =4 \end{aligned}$ |  |  |
| LDB STATUS REQUEST | $\begin{aligned} \text { DEVICE ID } & =61 \\ \text { OP CODE } & =5 \end{aligned}$ |  |  |
| LDB STATUS | $\begin{aligned} \text { DEVICE ID } & =61 \\ \text { OP CODE } & =6 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { LDB WAVE } \\ & \text { OFF } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =61 \\ \text { OP CODE } & =7 \end{aligned}$ |  |  |
| TCS LB <br> MDM'S WRT | $\begin{aligned} \text { DEVICE ID } & =62 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| TCS LB MDM'S RDS | $\begin{aligned} \text { DEVICE ID } & =62 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| SRB RDS | $\begin{aligned} \text { DEVICE ID } & =63 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| TCS SRB WRT | $\begin{aligned} \text { DEVICE ID } & =64 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| TCS SRB RDS | $\begin{aligned} \text { DEVICE ID } & =64 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| MCIU IN RDS | $\begin{array}{ll} \text { DEVICE ID } & =65 \\ \text { OP CODE } & =2 \end{array}$ |  |  |
| MCIU OUT WRT | $\begin{aligned} \text { DEVICE ID } & =66 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 1 - DEVICE ID/OP CODE ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { TCS BUS } 16 \\ & \text { WRT } \end{aligned}$ | $\begin{aligned} & \text { DEVICE ID }=72 \\ & \text { OP CODE } \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 16 \\ & \text { RDS } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =72 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 17 \\ & \text { WRT. } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =73 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 17 \\ & \text { RDS } \end{aligned}$ | DEVICE ID $=73$ <br> OP CODE $=2$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 20 \\ & \text { WRT } \end{aligned}$ | $\begin{aligned} & \text { DEVICE ID }=74 \\ & \text { OP CODE } \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 20 \\ & \text { RDS } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =74 \\ \text { OP CODE } & =2 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 21 \\ & \text { WRT } \end{aligned}$ | $\begin{aligned} \text { DEVICE ID } & =75 \\ \text { OP CODE } & =1 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 21 \\ & \text { RDS } \end{aligned}$ | $\begin{aligned} & \text { DEVICE ID }=75 \\ & \text { OP CODE }=2 \end{aligned}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 22 \\ & \text { WRT } \end{aligned}$ | $\begin{array}{ll} \text { DEVICE ID } & =76 \\ \text { OP CODE } & =1 \end{array}$ |  |  |
| $\begin{aligned} & \text { TCS BUS } 22 \\ & \text { RDS } \end{aligned}$ | DEVICE ID $=76$ <br> OP CODE $=2$ |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - bCE ELEMENT ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { EIUX/P1 } \\ & \quad(X=1,2,3) \end{aligned}$ | BCE ELEMENT = 1(EIU1) 2(EIU2) 3 (EIU3) 51 (EIU1) 53(EIU3) | ```ENGINE INTERFACE UNIT X PORT I BUS 14 BUS 15 BUS 16 BUS 14 BUS 15 BUS 16``` | BCE ELEMENTS 1, 2, and 3 VALID IN G1/G6 ONLY AND BCE ELEMENTS 51, 52 , and 53 VALID IN G1/G6 AND VU ONLY. <br> MAY BE OBSERVED AT POWER OFF OF MAIN ENGINE CONTROLLER. |
| $\begin{aligned} & \mathrm{EIUX} / \mathrm{P} 4 \\ & (\mathrm{X}=1,2,3) \end{aligned}$ | BCE ELEMENT = 4(EIU1) 5(EIU2) 6 (EIU3) | ENGINE INTERFACE UNIT X PORT 4 BUS 17 <br> BUS 17 <br> BUS 17 | VALID IN Gl/G6 ONLY. <br> MAY BE OBSERVED AT POWER OFF OF MAIN ENGINE CONTROLLER. |
| $\begin{aligned} & \text { FAX IN PR } \\ & \text { SQ } 3 \text {-10 } \\ & (X=1,2,3,4) \end{aligned}$ | BCE ELEMENT = <br> 21(FA1) <br> 24(FA2) <br> 30(FA4) | FLIGHT AFT X MDM INPUT PROM SEQUENCE 3-10. |  |
| $\begin{aligned} & \text { FAX IN PR } \\ & \text { SQ } 1,2 \\ & (X=1,2,3,4) \end{aligned}$ | BCE ELEMENT $=$ $47(\mathrm{FA1})$ $48(\mathrm{FA2})$ 49(FA3) 50(FA4) | FLIGHT AFT X MDM INPUT PROM SEQUENCE 1,2. |  |
| FAX MDM $(X=1,2,3,4)$ | BCE ELEMENT = 78(FA1) <br> 79(FA2) $80($ FA <br> 81(FA4) | FLIGHT AFT X MDM DISCRETES |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - bCE ELEMENT ERRORS |  |  |  |
| I/O ERROR | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| FAX MDM RETURN WORD ( $\mathrm{X}=1,2,3,4$ ) | BCE ELEMENT $=$ 200 (FA1) 22(FA2) 25(FA3) 28(FA4) | MDM RETURN WORD IS FORMED BY SHIFTING THE GPC MDM COMMAND WORD LEFT BY 2 BITS (I.E., EFFECTIVELY TRUNCATING THE FIRST 2 BITS AND ADDING Two ZEROES TO THE END). <br> TYPICALLY SENT AT BEGINNING OF SELECTED MDM TRANSACTIONS. <br> ERROR ON FLIGHT CRITICAL HDA CYCLIC INPUTS (G9/P9) OR HFE INPUT (G1-G8). |  |
| FA2 HYDR SYS 3 PRESS | BCE ELEMENT $=23$ | FLIGHT AFT 2 MDM HYDRAULIC SYSTEM 3 PRESSURE C ERROR ON READ OF FA2 CARD 14 CHANNEL 28. |  |
| FA3 OMS L ENG CH PRS | BCE ELEMENT $=26$ | FLIGHT AFT 3 MDM OMS LEFT ENGINE CHAMBER PRESSURE. |  |
| FA4 OMS R ENG CH PRS | BCE ELEMENT $=29$ | FLIGHT AFT 4 MDM OMS RIGHT ENGINE CHAMBER PRESSURE. |  |
| FFX ADTA $(X=1,2,3,4)$ | BCE ELEMENT $=$ $9(\mathrm{FF} 1)$ $12(\mathrm{FF} 2)$ $15(\mathrm{FF} 3)$ $18(\mathrm{FF} 4)$ | FLIGHT FORWARD MDM X AIR DATA TRANSDUCER ASSEMBLY. <br> SERIAL I/O DATA FROM THE ADTA. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - bCE ELEMENT ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { FFX IMU } \\ & (X=1,2,3) \end{aligned}$ | BCE ELEMENT $=$ $32(\mathrm{FF} 1)$ $37(\mathrm{FF} 2)$ 41(FF3) | FLIGHT FORWARD X MDM INERTIAL MEASUREMENT UNIT. <br> ERROR ON MID FREQUENCY EXECUTIVE (MFE) INPUT IMU FF PROM STRING A. |  |
| $\begin{aligned} & \text { FFX IMU DATA } \\ & (\mathrm{X}=1,2,3) \end{aligned}$ | BCE ELEMENT $=$ 58(FF1) $61(\mathrm{FF} 2)$ $64(\mathrm{FF} 3)$ | FLIGHT FORWARD X MDM INERTIAL MEASUREMENT UNIT DATA. <br> ERROR ON G9 CYCLIC READS OF SERIAL I/O DATA FROM IMU. | VALID IN G9 ONLY. |
| FFX IMU DISCRETES ( $\mathrm{X}=1,2,3$ ) | BCE ELEMENT $=$ 59(FF1) 62(FF2) $65(\mathrm{FF} 3)$ | FLIGHT FORWARD X INERTIAL MEASUREMENT UNIT DISCRETES. ERROR ON G9 CYCLIC READS, IMU OPERATE/BITE DISCRETES. | VALID IN G9 ONLY. |
| $\begin{aligned} & \text { FFX IN PR } \\ & \text { SQ } 1,2,2,2,3,4) \\ & (X=1,2 \end{aligned}$ | BCE ELEMENT $=$ 31 FF1) $36(\mathrm{FF} 2)$ $40 \mathrm{FF} 3)$ $46(\mathrm{FF} 4)$ | FLIGHT FORWARD X MDM INPUT PROM SEQUENCE 1,2. |  |
| $\begin{aligned} & \text { FFX IN PR } \\ & \text { SQ 2-6 } \\ & (X=1,2,3,4) \end{aligned}$ | BCE ELEMENT $=$ $10(\mathrm{FF} 1)$ $13(\mathrm{FF} 2)$ $16 \mathrm{FF} 3)$ $19(\mathrm{FF} 4)$ | FLIGHT FORWARD X MDM INPUT PROM SEQUENCE 2-6. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - BCE ELEMENT ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | $\qquad$ |
| $\begin{aligned} & \text { FFX MDM } \\ & \qquad(\mathrm{X}=1,2,3,4) \end{aligned}$ | $\begin{array}{r} \text { BCE ELEMENT = } \\ 74(\mathrm{FF} 1) \\ 75(\mathrm{FF} 2) \\ 76(\mathrm{FF} 3) \\ 77(\mathrm{FF} 4) \end{array}$ | FLIGHT FORWARD X MDM DISCRETES. |  |
| FFX MDM RETURN WORD $(\mathrm{X}=1,2,3,4)$ | BCE ELEMENT $=$ 7(FF1) 11(FF2) 14(FF3) 17(FF4) 57(FF1 IMU) 60(FF2 IMU) 63(FF3 IMU) | MDM RETURN WORD IS FORMED BY SHIFTING THE GPC MDM COMMAND WORD LEFT BY 2 BITS (I.E., EFFECTIVELY TRUNCATING THE FIRST 2 BITS AND ADDING TWO ZEROES TO THE END). <br> TYPICALLY SENT AT BEGINNING OF TRANSACTIONS. <br> ERROR ON FLIGHT CRITICAL HDA CYCLIC INPUTS (G9/P9) OR HFE INPUT (G1-G8). | BCE ELEMENTS 57, 60, AND 63 VALID IN G9 ONLY. |
| FFX MSBLS $(X=1,2,3)$ | $\begin{array}{r} \text { BCE ELEMENT = } \\ 34(\mathrm{FF} 1) \\ 39(\mathrm{FF} 2) \\ 43(\mathrm{FF} 3) \end{array}$ | FLIGHT FORWARD X MDM MICROWAVE SCANNING BEAM LANDING SYSTEM. <br> SERIAL I/O DATA FROM MSBLS. |  |
| $\begin{aligned} & \text { FFX MTU X } \\ & (\mathrm{X}=1,2,3) \end{aligned}$ | $\begin{array}{r} \text { BCE ELEMENT = } \\ 54(\mathrm{FF} 1) \\ 55(\mathrm{FF} 2) \\ 56(\mathrm{FF} 3) \end{array}$ | FLIGHT FORWARD X MDM MASTER TIMING UNIT X. <br> SERIAL I/O DATA FROM MTU. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - BCE ELEMENT ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { FFX STU } \\ & (X=1,3) \end{aligned}$ | $\begin{array}{r} \text { BCE ELEMENT }= \\ 35(\mathrm{FF} 1) \\ 44(\mathrm{FF} 3) \end{array}$ | FLIGHT FORWARD X MDM STAR TRACKER UNIT. STU2-Y |  |
| $\begin{aligned} & \text { FFX TACAN/RA } \\ & (\mathrm{X}=1,2,3) \end{aligned}$ | BCE ELEMENT $=$ $33(\mathrm{FF} 1)$ $38 \mathrm{FF} 2)$ $42(\mathrm{FF} 3)$ | FLIGHT FORWARD X MDM <br> TACTICAL AIR NAVIGA'TION/RADAR ALTIMETER. |  |
| FF1 NSP1 DATA | BCE ELEMENT = 67(FF1) | FLIGHT FORWARD 1 MDM NETWORK SIGNAL PROCESSOR 1 DATA. <br> SERIAL I/O DATA FROM NSP. |  |
| $\underset{\substack{\text { FF1 NSP1 } \\ \text { DISCRETES }}}{ }$ | BCE ELEMENT = 66(FF1) | FLIGHT FORWARD 1 MDM NETWORK SIGNAL PROCESSOR 1 DISCRETES. <br> NSP POWER/BLK DISCRETES. |  |
| FF1 PAYLOAD SENSOR | BCE ELEMENT = $8(\mathrm{FF} 1)$ | FLIGHT FORWARD 1 MDM PAYLOAD SENSOR. |  |
| FF3 NSP2 DATA | BCE ELEMENT = 69(FF3) | FLIGHT FORWARD 3 MDM NETWORK SIGNAL PROCESSOR 2 DATA. <br> SERIAL I/O DATA FROM NSP. |  |
| FF3 NSP2 DISCRETES | BCE ELEMENT = 68(FF3) | FLIGHT FORWARD 3 MDM NETWORK SIGNAL PROCESSOR 2 DISCRETES. NSP POWER/BLK DISCRETES. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - bCE ELEMENT ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { FF3 } \\ & \text { RENDEZVOUS } \\ & \text { RADAR } \end{aligned}$ | BCE ELEMENT = 45(FF3) | FLIGHT FORWARD 3 MDM RENDEZVOUS RADAR. | VALID IN VU AND G2 ONLY. |
| $\begin{aligned} & \text { LLX SRB PROM } \\ & (\mathrm{X}=1,2) \end{aligned}$ | BCE ELEMENT $=$ $70(\mathrm{LL} 1)$ $71(\mathrm{LL} 2)$ | SRB MDM PROM | VALID IN VU AND Gl/G6 ONLY. |
| $\begin{aligned} & \text { LRX SRB PROM } \\ & (\mathrm{X}=1,2) \end{aligned}$ | BCE ELEMENT $=$ 72(LR1) 73(LR2) | SRB MDM PROM | VALID IN VU AND Gl/G6 ONLY. |
| MCIU | BCE ELEMENT = 82(MCIU) | MANIPULATOR CONTROLLER INTERFACE UNIT. SERIAL I/O DATA FROM MCIU. | VALID IN SM AND VU ONLY. |
| MCIU SINGLE FLX2 EL4 | BCE ELEMENT $=11$ | MANIPULATOR CONTROLLER INTERFACE UNIT SINGLE FLEX 2 MDM ELEMENT 4. (MISSION UNIQUE ELEMENT NUMBER) | VALID IN SM ONLY. |
| PFX MDM RETURN WORD ( $\mathrm{X}=1,2$ ) | BCE ELEMENT $=$ $91(\mathrm{PF} 1)$ $93(\mathrm{PF} 2)$ | PAYLOAD FORWARD X MDM RETURN WORD. (MDM RETURN WORD IS FORMED BY SHIFTING THE GPC MDM COMMAND WORD LEFT BY 2 BITS (I.E., EFFECTIVELY TRUNCATING THE FIRST 2 BITS AND ADDING TWO ZEROES TO THE END).) <br> TYPICALLY SENT AT BEGINNING OF TRANSACTIONS. | VALID IN SM AND VU ONLY. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - bCE ELEMENT ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{gathered} \text { PFX PBD } \\ (\mathrm{X}=1,2) \end{gathered}$ | BCE ELEMENT $=$ $85(\mathrm{PF} 1)$ $86 \mathrm{PF} 1)$ $87(\mathrm{PF} 1)$ $88 \mathrm{PF} 2)$ $89(\mathrm{PF} 2)$ $90(\mathrm{PF} 2)$ | PAYLOAD FORWARD X MDM PAYLOAD BAY DOORS. <br> PAYLOAD HIGH RATE READS OF THE PBD DISCRETES. | VALID IN SM AND VU ONLY. |
| $\begin{gathered} \text { PFX PSP X } \\ (\mathrm{X}=1,2) \end{gathered}$ | BCE ELEMENT $=$ $83(\mathrm{PF1})$ $84(\mathrm{PF} 2)$ | PAYLOAD FORWARD X MDM PAYLOAD SIGNAL PROCESSOR. | VALID IN SM ONLY. |
| PF1 PDI | BCE ELEMENT = 95(PF1) | PAYLOAD FORWARD 1 MDM PAYLOAD DATA INTERLEAVER. | VALID IN SM AND G9 ONLY. |
| PF1 KU-BAND RADAR | BCE ELEMENT = 92(PF1) | PAYLOAD FORWARD 1 MDM KU-BAND RADAR. ERROR ON PAYLOAD LOW DATA RATE READ. | VALID IN SM AND VU ONLY. |
| PF2 FUEL CELL PURGE | BCE ELEMENT = <br> 94(PF2) | PAYLOAD FORWARD 2 MDM FUEL CELL PURGE. PAYLOAD LOW RATE READ OF THE FUEL CELL PURGE DISCRETES. | VALID IN SM AND VU ONLY. |
| $\begin{aligned} & \text { SCAX } \\ & \text { CD0CH0 } \\ & (X=1,2) \end{aligned}$ | $\begin{aligned} & \text { BCE ELEMENT = } \\ & 105,107,109,111 \end{aligned}$ | SEQUENCE CONTROL ASSEMBLY X (PAM) CARD 0 CHANNEL 0. <br> (MISSION UNIQUE ELEMENT <br> NUMBERS) |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 2 - BCE ELEMENT ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS <br> AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { SCAX } \\ & \text { CD1CH0 } \\ & (X=1,2) \end{aligned}$ | $\begin{aligned} & \text { BCE ELEMENT = } \\ & 106,108,110,112 \end{aligned}$ | SEQUENCE CONTROL ASSEMBLY X(PAM) CARD 1 CHANNEL 0. (MISSION UNIQUE ELEMENT NUMBERS) |  |
| SCA2 DUL PT1 ELX ( $\mathrm{X}=1,2,3,4,5$ ) | BCE ELEMENT = 120,121,122,123,124 | SEQUENCE CONTROL ASSEMBLY 2 (PAM) DUAL PORT 1 ELEMENT X. (MISSION UNIQUE ELEMENT NUMBERS) |  |
| $\begin{aligned} & \text { SCA2 DUL PT1 } \\ & \text { R/W } \end{aligned}$ | BCE ELEMENT $=11$ | SEQUENCE CONTROL ASSEMBLY 2(PAM) DUAL PORT 1 RETURN WORD. (MISSION UNIQUE ELEMENT NUMBER) | . |
| SCA2 DUL PT2 ELX ( $\mathrm{X}=1,2$ ) | $\begin{aligned} & \text { BCE ELEMENT = } \\ & 125,126 \end{aligned}$ | SEQUENCE CONTROL ASSEMBLY 2 (PAM) DUAL PORT 2 ELEMENT X. (MISSION UNIQUE ELEMENT NUMBERS) |  |
| $\begin{aligned} & \text { SCA2 SINGLE } \\ & \text { FLX2 ELX } \\ & (\mathrm{X}=1,2,3,5) \end{aligned}$ | $\begin{aligned} & \text { BCE ELEMENT = } \\ & 114,115,116,118 \end{aligned}$ | SEQUENCE CONTROL ASSEMBLY 2 (PAM) SINGLE FLEX 2 MDM ELEMENT X. (MISSION UNIQUE ELEMENT NUMBERS) | VALID IN SM ONLY. |
| $\begin{aligned} & \text { SCA2 SINGLE } \\ & \text { FLX2 R/W } \end{aligned}$ | BCE ELEMENT $=11$ | SEQUENCE CONTROL ASSEMBLY 2 (PAM) SINGLE FLEX 2 MDM RETURN WORD. (MISSION UNIQUE ELEMENT NUMBER) | VALID IN SM ONLY. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 -STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| AGE INT | I/O ERROR LOGGED <br> ALL I/O FROM THIS GPC STOPS. <br> MASTER ALARM GPC C/W LIGHT <br> B/U C/W LIGHT <br> SIMPLEX: <br> I-FAIL LIGHT <br> RS/CS: <br> FAIL TO SYNC, FSP MESSAGES, I-FAIL/U-FAIL LIGHTS | LEVEL B I/O ERROR STAT REG - <br> BITS 13-15 (110) (STATUS WORD FOR BCE 29) <br> AGE INTERRUPT WITH I/O QUEUE ACTIVE. <br> GENERATES A CPU EXT. 1 INTERRUPT CPU DETECTED ERROR. | 1. CPU FAILURE |
| BLK T/O | I/O ERROR LOGGED <br> FSP MESSAGE (I/O ERROR MMU X, WHERE $X=1$ OR 2) | BCE STATUS REGISTER - BIT 27 (STATUS WORD FOR BCE 1-24) <br> A RECEIVE DATA INSTRUCTION TIMED OUT WHILE WAITING FOR AN INTERBLOCK GAP TO END. ONLY VALID WHEN GETTING DATA FROM MASS MEMORY. | 1. MMU FAILURE <br> 2. IOP FAILURE (NON-UNIVERSAL ERROR ONLY) <br> 3. FSW ERROR (MOST LIKELY DURING PATCHING OR FSW DEVELOPMENT). |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| BOUNDRY | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 28 (STATUS WORD FOR BCE 1-24) <br> A GIVEN BCE ENCOUNTERED A LONG FORMAT INSTRUCTION (32 BITS) ON AN ODD HALFWORD (16 BITS) BOUNDARY. | 1. IOP FAILURE (NON-UNIVERSAL ERROR ONLY) <br> 2. FSW ERROR (MOST LIKELY DURING PATCHING OR FSW DEVELOPMENT) |
| BUSY/BUF | I/O ERROR LOGGED <br> FSP MESSAGE, MMU OFF/BUSY | BCE STATUS REGISTER - BIT 9 (STATUS WORD FOR BCE 27) <br> bCE BUSY/WAIT STATUS INDICATES BUSY, SUCH AS ANOTHER I/O TRANSACTION IN PROGRESS ON THIS BUS (AS DEFINED BY BIT 12, 13, 18, OR 19). <br> THE CHECKSUM BUFFER IS NEEDED TO HOLD THE ORIGINAL COPY OF THE DATA TO BE WRITTEN TO MASS MEMORY, FOR LATER RE-WRITE (BY MANUAL COMMAND) IN CASE OF FAILURE OF THE ORIGINAL REQUEST. <br> bus Experiencing the error WILL BE INDICATED IN BIT 12 (ERR LDB1), 13 (ERR LDB2), 18 (ERR MM1), OR 19 (ERR MM2). | 1. PROCEDURAL ERROR (E.G., <br> REQUESTING A DEU LOAD WHILE ONE IS IN PROGRESS). <br> 2. REQUESTING OPS OVERLAY ON THE LDB BUSES WITHOUT TERMINATING GSE POLLING AND/OR SRB I/O. <br> 3. A PROCEDURAL ERROR CAN CAUSE THE BUFFER TO BE UNAVAILABLE, AS BY WRITING TO BOTH MASS MEMORIES CONCURRENTLY. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| CKSUM | I/O ERROR LOGGED <br> FSP MESSAGE, I/O ERROR MMU X, WHERE $X=1$ OR 2 | BCE STATUS REGISTER - BIT 8 (STATUS WORD FOR BCE 27) <br> CHECKSUM WORD (LAST WORD IN LOADBLOCK) DOES NOT MATCH THE GPC COMPUTED CHECKSUM OF ALL OTHER WORDS IN BLOCK. <br> BUS EXPERIENCING THE ERROR WILL BE INDICATED IN BIT 12 (ERR LB1), 13 (ERR LB2), 18 (ERR MM1), OR 19 (ERR MM2). | 1. MMU LOAD PROBLEM <br> 2. FAILURE IN IOP OR CPU |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| CM IDLE | LOGGED <br> I/O ERROR | LEVEL A INTERRUPT REGISTER <br> BIT 2 (STATUS WORD FOR BCE $30=$ 2000 0000) <br> THE IOP CONTROL MONITOR (C/M) IDLE SIGNAL IS SET BY: <br> 1. MOVING THE MODE SW FROM HALT OR STANDBY TO RUN <br> 2. GPC POWER CYCLE OR POWER TRANSIENT TO CPU OR IOP <br> 3. PROGRAM CONTROLLED OUTPUT (PCO) MASTER RESET COMMAND <br> 4. IOP FAIL RESET (CAUSED BY IOP READ ONLY STORAGE (ROS) PARITY ERROR OR IOP FAULT) <br> GENERATES A CPU EXT. 0 INTERRUPT | THIS I/O ERROR WITH ONLY THE C/M IDI.E BIT SET IS NORMALLY THE FIRST I/O ERROR IN THE I/O ERROR LOG <br> AFTER AN IPL. IT IS CAUSED BY A PCO MASTER RESET DURING FSW <br> INITIALIZATION. THIS ERROR LOG ENTRY SHOULD BE EXPECTED ONLY AT IPL OR AFTER MODING THE GPC FROM RUN TO STANDBY OR HALT AND BACK TO RUN. <br> THIS BIT WILL ALSO BE SET IN THE I/O ERROR LOG ENTRIES FOR IOP ROS PARITY ERROR OR IOP FAULT. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 -STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| DMA Q OVERFLOW | I/O ERROR LOGGED <br> ALL I/O FROM THIS GPC STOPS. <br> MASTER ALARM GPC C/W LIGHT <br> B/U C/W LIGHT <br> SIMPLEX: <br> I-FAIL LIGHT <br> RC/CS: <br> FAIL TO SYNC, FSP MESSAGES, I-FAIL/U-FAIL LIGHTS | LEVEL B INTERRUPT REGISTER BIT 4 (STATUS WORD FOR BCE $29=$ 0800-0000) <br> THE OVERFLOW CIRCUITRY HAS DETECTED AN ATTEMPT TO HOLD MORE THAN 64 DIRECT MEMORY ACCESS (DMA) REQUESTS. <br> IOP GENERATES A CPU EXT. 1 INTERRUPT | 1. IOP FAILURE <br> 2. CPU FAILURE |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| DMA TIMEOUT | I/O ERROR IOGGED <br> ALL I/O FROM THIS GPC STOPS. <br> MASTER ALARM GPC C/W LIGHT B/U C/W LIGHT <br> SIMPLEX: <br> I-FAIL LIGHT <br> RS/CS: <br> FAIL TO SYNC, FSP MESSAGES, I-FAIL/U-FAIL LIGHTS | LEVEL B INTERRUPT REGISTER BIT 5 (STATUS WORD FOR BCE $29=$ 0400 0000) <br> THE 8 MICROSECOND TIMER HAS DETECTED A DMA THAT HAS BEEN IN PROCESS FOR MORE THAN 8 MICROSECONDS. <br> IOP GENERATES A CPU EXT. 1 INTERRUPT | 1. IOP FAILURE <br> 2. CPU FAILURE <br> 3. ERRONEOUS PROGRAM CONTROLLED OUTPUT (PCO) COMMAND (PCO CW C100 8000) INHIBIT COMPLETION OF A DMA CYCLE - CAUSES CHANNEL TO INHIBIT COMPLETION OF DMA CHANNEL TO TEST DMA 8 MICROSECOND TIMER. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | $\begin{aligned} & \hline \text { HOW } \\ & \text { MANIESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| E BIT | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 6 (STATUS WORD FOR BCE 1-24) <br> MDM: SET ONLY ON SERIAL I/O TRANSACTIONS. INDICATES SERIAL I/O DATA NOT SUCCESSFULLY RECEIVED. <br> NOTE: STATUS WORD WILL ALSO CONTAIN THE IUA (INTERFACE UNIT ADDRESS) OF THE RECEIVED DATA WORD. <br> EIU COMPUTER I/F ADAPTER (CIA) DETECTED ERRORS. <br> PMU DETECTED ERRORS. DEU DETECTED ERRORS. MMU E-BIT DISABLED - ALWAYS ZERO. EXCEPT FOR EIU, SERIAL CHANNEL TRANSMISSION ERRORS DO NOT CAUSE A BIT TO BE SET IN THE BSR. | COMMON I/O ERROR SIGNATURE RECEIVED FROM A POWERED OFF OR FAILED SERIAL LRU SUCH AS AN IMU, TACAN, OI MDM (PMU READ), ETC. ETC. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | pOSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ERR LB1 | I/O ERROR LOGGED <br> FSP MESSAGE, OFF/BSY MMU 1 OR I/O ERROR MMU 1 | BCE STATUS REGISTER - BIT 12 (STATUS WORD FOR BCE 27) <br> THIS ERROR OCCURS IF THE LDB HAS BEEN SELECTED FOR A GPC-TO-GPC OVERLAY AND BUS BUSY OR CHECKSUM BUFFER IN USE OR CHECKSUM ERROR ON OVERLAY. | 1. LDB POLLING AND SRB I/O MUST BE TERMINATED BEFORE USING LDB FOR GPC-TO-GPC OVERLAYS. <br> 2. CHECKSUM BUFFER RESERVED FOR SOME OTHER FUNCTION IN PROGRESS. <br> 3. PATCH HAS BEEN APPLIED TO THE SOURCE GPC OPS OVERLAY WITHOUT CHANGING THE LOAD block checksum. |
| ERR LB2 | I/O ERROR LOGGED <br> FSP MESSAGE, OFF/BSY MMU 2 OR I/O ERROR MMU 2 | BCE STATUS REGISTER - BIT 13 (STATUS WORD FOR BCE 27) <br> SAME AS FOR ERROR ON LDB1 BUS 12 ABOVE. | SAME AS FOR ERROR ON LDB1 BUS 12 ABOVE. |
| ERR MM1 | I/O ERROR LOGGED <br> FSP MESSAGE, OFF/BSY MMU 1 OR I/O ERROR MMU 1 | BCE STATUS REGISTER - BIT 18 (STATUS WORD FOR BCE 27) | THIS ERROR OCCURS IF MM1 HAS BEEN SELECTED FOR AN OVERLAY AND BUS IS BUSY, CHECKSUM BUFFER IS IN USE, OR A CHECKSUM ERROR OCCURS ON THE OVERLAY. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ERR MM2 | I/O ERROR LOGGED <br> FSP MESSAGE, OFF/BSY MMU 2 OR I/O ERROR MMU 2 | BCE STATUS REGISTER - BIT 19 (STATUS WORD FOR BCE 27) | THIS ERROR OCCURS IF MM2 HAS BEEN SELECTED FOR AN OVERLAY AND BUS IS BUSY, CHECKSUM BUFFER IS IN USE, OR A CHECKSUM ERROR OCCURS ON THE OVERLAY. |
| FL/PWR DN | I/O ERROR LOGGED <br> FSP MESSAGE, OFF/BSY MMU X ( $\mathrm{X}=1,2$ ) | BCE STATUS REGISTER - BIT 6 (STATUS WORD FOR BCE 27) <br> SELECTED MASS MEMORY UNIT NOT READY AS INDICATED BY THE MM READY DISCRETE. <br> BUS EXPERIENCED THE ERROR WILL BE INDICATED IN BIT 18 (ERR MM1) OR 19 (ERR MM2). | 1. MMU(S) POWERED OFF <br> 2. FAILED MMU. MMU READY DISCRETE INDICATED NOT READY. |
| GAP | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 21 (STATUS WORD FOR BCE 1-24) <br> A GAP GREATER THAN 20 MICROSECONDS OCCURRED DURING EXECUTION OF A TDL OR TDS INSTRUCTION, OR A 5 MICROSECOND GAP ON A MOUT INSTRUCTION. <br> TRANSMITTER OUTPUT IS MONITORED BY WRAP BACK TO RECEIVER. | GPC FAILURE INDICATION (IOP OR CPU). <br> TDL - TRANSMIT DATA LONG <br> TDS - TRANSMIT DATA SHORT <br> MOUT - MSG OUT |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { GO/NO-GO } \\ & \text { TIMER } \end{aligned}$ | I/O ERROR LOGGED <br> I-FAIL LIGHT <br> MASTER ALARM GPC C/W LIGHT B/U C/W LIGHT | LEVEL A INTERRUPT REGISTER BIT 0 (STATUS WORD FOR BCE 30) <br> THE IOP WATCHDOG TIMER HAS TIMED OUT AND GENERATED A CPU EXT. 0 INTERRUPT | ONLY IPL BOOTSTRAP LOADER (FCMBOOT) SETS THE WATCHDOG TIMER IN PASS FSW, THEREFORE THIS ERROR SHOULD NEVER BE SEEN BY PASS. IF IT DOES OCCUR, SUSPECT: <br> 1. IOP FAILURE <br> 2. CPU FAILURE (ERRONEOUS PGM CONTROLLED OUTPUT CMD TO LOAD IOP WATCHDOG TIMER) |
| INIT T/O | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 25 (STATUS WORD FOR BCE 1-24) <br> AN RDS, RDL OR MIN INSTRUCTION TIMED OUT WHILE WAITING FOR THE FIRST INPUT WORD TO ARRIVE. <br> BUS INITIAL TIMEOUT VALUES <br> ICC - 33 MICROSECONDS <br> DK - 5 MILLISECONDS <br> PL - 33 MICROSECONDS <br> LDB - 610.5 MICROSECONDS <br> FC - 33 MICROSECONDS <br> MM - 1.96 SECONDS (EXCEPT FOR MM STATUS READS) <br> PMU-49.5 MICROSECONDS <br> (RDS = RECEIVE DATA SHORT) <br> (RDL = RECEIVE DATA LONG) <br> (MIN = MESSAGE IN) | 1. POWERED OFF OR FAILED BTU. <br> 2. IOP FAILURE IF ERROR WAS NON-UNIVERSAL. <br> 3. DEU INITIAL TIMEOUT CAN OCCUR DURING DEU IPL. |


| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| I/O STORE PROT | I/O ERROR LOGGED <br> GPC BITE FSP MESSAGE <br> IF ERROR IS NON-UNIVERSAL: FAIL TO SYNC, FSP MESSAGES, I-FAIL/U-FAIL LIGHTS <br> MASTER ALARM GPC C/W LIGHT B/U C/W LIGHT | LEVEL B I/O ERROR STAT REG BITS 13-15 (100) (STATUS WORD FOR BCE 29) <br> A DMA INPUT FROM THE IOP ATTEMPTED TO STORE DATA IN A PROTECTED MEMORY LOCATION. <br> CPU DETECTED ERROR. <br> GENERATES A CPU EXT. 1 INTERRUPT | 1. IOP FAILURE <br> 2. CPU FAILURE <br> 3. CABLE CONNECTOR PROBLEM BETWEEN CPU J2 AND IOP J1. <br> 4. SOFTWARE ERROR (CPU/MSC/BCE). <br> IF ERROR IS MANIFESTED BY ONLY ONE GPC IN A REDUNDANT SET, THE ERROR SHOULD BE CONSIDERED A HARDWARE FAILURE. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| IOP FAIL LATCH | I/O ERROR LOGGED <br> I-FAIL LIGHT, FAIL TO SYNC, FSP MESSAGES <br> MASTER ALARM GPC C/W LIGHT B/U C/W LIGHT | LEVEL A INTERRUPT REGISTER BIT 1 (STATUS WORD FOR BCE 30) <br> THE IOP VOTER FAIL LATCH IS SET BY THE HARDWARE RM VOTER LOGIC WHENEVER TWO OR MORE FAIL VOTE DISCRETES ARE RECEIVED. THIS LATCH CAN ALSO BE SET BY SOFTWARE BY USING THE PROGRAM CONTROLLED OUTPUT (PCO) "LOAD TEST REGISTER". THE FAIL LATCH SIGNAL GENERATES A CPU EXT. 0 INTERRUPT. | THIS I/O ERROR IS LOGGED IN A GPC WHICH HAS FAILED TO SYNC FROM A COMMON SET OR REDUNDANT SET. <br> THE COMPUTER HAS NOT HALTED, BUT IS NO LONGER A MEMBER OF THE REDUNDANT SET. |



| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| MSC T/O BUS X $(X=1-24)$ <br> OP CODE | I/O ERROR LOGGED <br> I/O ERROR LOGGED | BCE NUMBER $=28$ <br> STATUS REGISTER BITS EQUATE TO BUS NUMBER <br> BCE (BUS) IN ERROR WAS BUSY TOO LONG (MONITORED BY MSC). <br> BCE STATUS REGISTER - BIT 29 (STATUS WORD FOR BCE 1-24) <br> THIS BCE ENCOUNTERED AN ILLEGAL INSTRUCTION IN THE EXECUTION OF A PROGRAM. | 1. NOISE ON BUS <br> 2. OPEN BUS <br> 3. INVALID TIME IN BCE LOCAL STORE REG (B3) <br> 4. IOP OR CPU FAILURE <br> NOTE: 55345 FOLLOWING AN MMU MSC T/O, RESIDUAL DATA COULD BE PICKED UP INSTEAD OF MMU BITE STATUS REGISTER CONTENTS DURING THE TRAILING BITE STATUS READ. <br> 1. IOP FAILURE <br> 2. FSW ERROR (MOST LIKELY DURING PATCHING OR FSW DEVELOPMENT) <br> 3. INDICATION OF MDM A/D CONVERTER FAILURE (ERROR FORCED BY FSW). |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| PARITY | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 4 (STATUS WORD FOR BCE 1-24) <br> WHILE EXECUTING AN RDS, RDL OR MIN INSTRUCTION, AN INPUT WORD WITH BAD PARITY, INVALID MANCHESTER, OR BIT COUNT ERROR WAS RECEIVED. <br> (AP-101S GPC) <br> (RDS = RECEIVE DATA SHORT) <br> (RDL $=$ RECEIVE DATA LONG) <br> (MIN = MESSAGE IN) | 1. IOP MIA GENERATED <br> 2. DATA BUS PROBLEM |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ROS PARITY ERR | I/O ERROR LOGGED <br> ALL I/O FROM THIS GPC STOPS. <br> MASTER ALARM GPC C/W LIGHT B/U C/W LIGHT <br> SIMPLEX: <br> I-FAIL LIGHT <br> RS/CS: <br> FAIL TO SYNC, FSP MESSAGES, I-FAIL/U-FAIL LIGHTS | LEVEL A INTERRUPT REGISTER BIT 3 (STATUS WORD FOR BCE 30) <br> A PARITY ERROR HAS OCCURRED DURING TRANSFER FROM IOP READ ONLY STORAGE (ROS). <br> THIS FAILURE ALSO SETS THE C/M IDLE SIGNAL (BIT 2). <br> IOP GENERATES A CPU EXT. 0 INTERRUPT | IOP HARDWARE FAILURE |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 -STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| S BIT | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 5 (STATUS WORD FOR BCE 1-24) <br> POWER DOWN/UP SEQUENCE HAS OCCURRED SINCE THE TRANSMISSION OF THE LAST MESSAGE. <br> NOTE: STATUS WORD WILL ALSO CONTAIN THE IUA (INTERFACE UNIT ADDRESS) OF THE RECEIVED DATA WORD. | POWER CYCLE OR POWER TRANSIENT ON A BTU (E.G., MDM). THE S-BIT SHALL BE SET TO " $0^{\prime \prime}$ ON THE FIRST RESPONSE DATA WORD TRANSMITTED BY THE MDM FOLLOWING A POWER DOWN/POWER UP SEQUENCE. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR CONDITION | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| SIG MIS | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 3 (STATUS WORD FOR BCE 1-24) <br> WHILE EXECUTING AN RDS, RDL OR MIN INSTRUCTION, MICROCODE DETECTED A MISMATCH BETWEEN THE INPUT BTU ADDRESS AND THE bCE'S IUAR (BCE LOCAL STORE (LS) REG C5) <br> (RDS = RECEIVE DATA SHORT) <br> (RDL $=$ RECEIVE DATA LONG) <br> (MIN = MESSAGE IN) | THE BTU ADDRESS LOGGED IN BITS 8-12 OF THIS I/O ERROR ENTRY SHOULD BE COMPARED WITH THE BTU ADDRESS OF all bTU'S ON THIS BUS FOR A CLUE TO ISOLATE THE CAUSE OF THE ERROR. IF THE LOGGED BTU ADDRESS IS NOT VALID FOR ANY BTU ON THE BUS (E.G., ALL ONES OR ALL ZEROES), IT MAY NOT BE POSSIBLE TO ISOLATE THE CAUSE UNLESS ALL GPC'S IN A REDUNDANT SET SEE THE ERROR OR IT IS A NON-UNIVERSAL I/O ERROR. POSSIBLE CAUSES: <br> 1. IOP FAILURE (IF NON-UNIVERSAL ERROR) <br> 2. BTU FAILURE (MDM, EIU, ETC.) IDENTIFIED BY I/O ERROR DEVICE ID AND BCE ELEMENT (IF ERROR SEEN by all grc's in a redundant SET). |
| SLF TST | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 22 (STATUS WORD FOR BCE 1-24) <br> A BCE SELF TEST INSTRUCTION (STP) HAS DETECTED A FAULT IN THE BCE. VALID ONLY DURING SELF TEST (IPL). | IF ANNUNCIATED DURING PASS EXECUTION, IT IS AN INDICATION OF GPC FAILURE, SINCE THE SELF TEST INSTRUCTION IS NOT USED BY PASS. INSTRUCTION IS NOT USED BY PASS. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| I/O ERROR | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| SYNC | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 15 (STATUS WORD FOR BCE 1-24) <br> WIIILE EXECUTING AN RDS, RDL OR MIN INSTRUCTION, AN INPUT WORD WITH COMMAND SYNC WAS RECEIVED. | CMD SYNC SHOULD ONLY BE <br> GENERATED BY ANOTHER GPC. THIS ERROR SIGNATURE IS A MANIFESTATION OF DUAL COMMANDERS ON A BUS. |
| TIMEOUT | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 26 (STATUS WORD FOR BCE 1-24) <br> AN RDS, RDL OR MIN INSTRUCTION TIMED OUT WHILE WAITING FOR A DATA WORD, OTHER THAN THE FIRST, TO ARRIVE. <br> THE BCE EXPECTS A DATA WORD EVERY 33 MICROSECONDS AFTER THE FIRST WORD IS RECEIVED. | 1. COMMON I/O ERROR ON CRT BUS WHEN DEU IPL REQUESTED. GPC EXPECTS 16 WORD RESPONSE FROM DEU. DEU IPL PROGRAM RESPONDS WITH ONLY 1 WORD. <br> 2. NOISE ON DATA BUS. <br> 3. DUAL COMMANDERS ON THE DATA BUS. <br> 4. IOP FAILURE OR BTU FAILURE |

## "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS"

 "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED"| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| :---: | :---: | :---: | :---: |
| I/O ERROR CONDITION | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| V BIT | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 7 (STATUS WORD FOR BCE 1-24) <br> VALIDITY OF DATA IS SUSPECT. <br> NOTE: STATUS WORD WILL ALSO CONTAIN THE IUA (INTERFACE UNIT ADDRESS) OF THE RECEIVED DATA WORD. <br> EIU: V-BIT IS DISABLED. <br> MDM: V-BIT SET BY NONEXISTENT CHANNEL DETECTED, INTERNAL SCU ERROR, NO TRANSFER INDICATION FROM IDM. | ERROR INDICATION SET IN A BTU (E.G., MMU OR MDM) RESPONSE DATA WORD TO INDICATE THE BTU BITE HAS DETECTED A DATA ERROR OR INTERNAL FAILURE. ADDITIONAL ERROR DATA IS USUALLY AVAILABLE IN THE BTU BITE STATUS REGISTER (BSR). |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| SECTION 3 - STATUS REGISTER ERRORS |  |  |  |
| $\begin{aligned} & \text { I/O ERROR } \\ & \text { CONDITION } \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| XMIT DIS | I/O ERROR LOGGED | BCE STATUS REGISTER - BIT 23 (STATUS WORD FOR BCE 1-24) <br> AT SOME POINT IN THE EXECUTION OF A TDS, TDL OR MOUT INSTRUCTION, THE MIA <br> ASSOCIATED WITH THE BCE HAD ITS TRANSMITTER DISABLED AS DETECTED BY BIT 23 OR THE MIA WAS BUSY WHEN IT WAS TIME TO INITIATE TRANSMISSION OF A NEW DATA WORD. <br> (TDS = TRANSMIT DATA SHORT) <br> (MOUT = MESSAGE OUT) <br> (TDL $=$ TRANSMIT DATA LONG) | POSSIBLE INDICATIONS: <br> 1. THE GPC OUTPUT SW IS IN BACKUP OR TERM POSITION <br> 2. DUAL COMMANDERS ON THE BUS (PROCEDURAL ERROR) <br> 3. OPEN BUS CONDITION <br> 4. SOME BTU ON THE BUS CONTINUOUSLY EMITTING DATA <br> 5. IOP FAILURE |

## APPENDIX G. FAULT SUMMARY PAGE MESSAGES

This Appendix provides a tabled list of Fault Summary Page Messages in alphabetical order. Each error condition is shown with Manifestation, Description, and Possible Causes information.

| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  | "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRRESENTTATIVE AS REQUIRED" |  |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { BCE STRG } 1 \mathrm{X} \\ & (\mathrm{X}=\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \end{aligned}$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MESSAGE TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE EXECUTION OF ONE OF THE INPUT PROM SEQUENCES: THE I/O ELEMENT IS BYPASSED. <br> $\mathrm{A}=$ FF1 PROM SEG 1-2 <br> B $=$ FF1 PROM SEG 2-6 <br> C $=$ FAl PROM SEG 1-2 <br> D = FAl PROM SEG 3-10 | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE MDM'S AND THE LRU'S THE PROM SEQUENCES READ. |
| BCE STRG 1X ( $\mathrm{X}=$ ADTA, TAC, MLS, IMU, MTU, STRK, NSP) | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MESSAGE TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE READ OF THE SERIAL I/O DEVICE (ADTA, TAC/RA, MLS, IMU, MTU, STKR, NSP) VIA THE FF1 MDM. THIS I/O TRANSACTION VIA THE FF1 MDM TO THE INDICATED LRU IS BYPASSED. | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE FF1 MDM AND THE LRU. THE ERROR MAY ALSO INDICATE THE POSSIBILITY OF HARDWARE PROBLEMS WITH THE SERIAL I/O LRU OR THAT THE LRU IS POWERED OFF. |
| BCE STRG 2X $(\mathrm{X}=\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MESSAGE TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE EXECUTION OF ONE OF THE INPUT PROM SEQUENCES: THE I/O ELEMENT IS BYPASSED. <br> $\mathrm{A}=\mathrm{FF} 2$ PROM SEG 1-2 <br> B $=$ FF2 PROM SEG 2-6 <br> C $=$ FA2 PROM SEG 1-2 <br> D = FA2 PROM SEG 3-10 | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE MDM'S AND THE LRU'S THE PROM SEQUENCES READ. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| BCE STRG 2 X ( $\mathrm{X}=\mathrm{ADTA}, \mathrm{TAC}$, MLS, IMU, MTU) | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MESSAGE TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE READ OF THE SERIAL I/O DEVICE (ADTA, TAC, MLS, IMU, MTU) VIA THE FF2 MDM. THIS I/O TRANSACTION VIA THE FF2 MDM TO THE INDICATED LRU IS BYPASSED. | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE FF2 MDM AND THE LRU. THE ERROR MAY ALSO INDICATE THE POSSIBILITY OF HARDWARE PROBLEMS WITH THE SERIAL I/O LRU OR THAT THE LRU IS POWERED OFF. |
| $\begin{aligned} & \text { BCE STRG } 3 \mathrm{X} \\ & (\mathrm{X}=\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \end{aligned}$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MESSAGE TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE EXECUTION OF ONE OF THE INPUT PROM SEQUENCES: THE I/O ELEMENT IS BYPASSED. <br> $\mathrm{A}=\mathrm{FF} 3$ PROM SEG 1-2 <br> $\mathrm{B}=\mathrm{FF} 3$ PROM SEG 2-6 <br> $\mathrm{C}=$ FA3 PROM SEG 1-2 <br> $\mathrm{D}=$ FA3 PROM SEG 3-10 | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE MDM'S AND THE LRU THE PROM SEQUENCES READ. |
| $\begin{aligned} & \text { BCE STRG 3X } \\ & \text { (X = ADTA, TAC, } \\ & \text { MLS, IMU, STKR, } \\ & \text { NSP, MTU) } \end{aligned}$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MESSAGE TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE READ OF THE DEVICE (ADTA, TAC/RA, MLS, IMU, STKR, NSP, MTU) VIA THE FF3 MDM. THIS I/O TRANSACTION VIA THE FF3 MDM TO THE INDICATED LRU IS BYPASSED. | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE FF3 MDM AND THE LRU. THE ERROR MAY ALSO INDICATE THE POSSIBILITY OF HARDWARE PROBLEMS WITH THE LRU OR THAT THE LRU IS POWERED OFF. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { BCE STRG 4X } \\ & (\mathrm{X}=\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \end{aligned}$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE EXECUTION OF ONE OF THE INPUT PROM <br> SEQUENCES: THE I/O ELEMENT IS BYPASSED. <br> A = FF4 PROM SEG 1-2 <br> B $=$ FF4 PROM SEG 2-6 <br> C $=$ FA4 PROM SEG 1-2 <br> D = FA4 PROM SEG 3-10 | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE MDM'S AND THE LRU THE PROM SEQUENCES READ. |
| BCE STRG 4 ADTA | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. TWO I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE READ OF THE ADTA VIA THE FF4 MDM. THIS I/O TRANSACTION VIA THE FF4 MDM TO THE ADTA IS BYPASSED. | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF HARDWARE PROBLEMS IN THE COMMUNICATIONS LINK BETWEEN THE GPC AND THE FF4 MDM AND THE ADTA. THE ERROR MAY ALSO INDICATE THE POSSIBILITY OF HARDWARE PROBLEMS WITH THE ADTA OR THAT THE ADTA IS POWERED OFF. |
| BODY FLAP CYCL | A CLASS 3 FAULT <br> MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S <br> - STATUS INDICATOR ON GNC SYS SUMM 1 DISPLAY | BODY FLAP ALERT CYCLE MSG. <br> THE BODY FLAP IS MOVING WITHOUT BEING COMMANDED BY FLIGHT CONTROL. <br> OPS 1/6, 3 | NO BODY FLAP COMMAND HAS BEEN ISSUED BY FLIGHT CONTROL BUT THE BODY FLAP IS MOVING AND RM HOLD COMMANDS HAVE NOT STOPPED THE MOVEMENT. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS""CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| BODY FLAP FAIL | A CLASS 3 FAULT <br> MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT <br> MESSAGE ON <br> ALL CRT'S <br> - STATUS <br> INDICATOR ON GNC SYS SUMM 1 DISPLAY | BODY FLAP ALERT FAIL MSG. THE BODY FLAP HAS NOT MOVED AS COMMANDED BY FLIGHT CONTROL. <br> OPS 1/6, 3 | FLIGHT CONTROL HAS ISSUED A BODY FLAP COMMAND BUT THE BODY FLAP dOES NOT MOVE AND EITHER A HOLD CONDITION DOES NOT EXIST OR THE HOLD DIRECTION IS DIFFERENT FROM THE BODY FLAP MOTION. |
| $\begin{aligned} & \text { BODY FLAP } \\ & \text { HOLD } \end{aligned}$ | A CLASS 3 FAULT <br> MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT <br> MESSAGE ON ALL <br> CRT'S <br> - STATUS <br> INDICATOR ON GNC SYS SUMM 1 DISPLAY | BODY FLAP ALERT HOLD MESSAGE. THE BODY FLAP IS MOVING WITHOUT BEING COMMANDED BY FLIGHT CONTROL. <br> OPS $1 / 6,3,2,8$ | NO BODY FLAP COMMAND HAS BEEN ISSUED BY FLIGHT CONTROL BUT THE BODY FLAP IS MOVING AND A HOLD COMMAND HAS BEEN ISSUED BY RM TO STOP THE MOVEMENT. |
| BODY FLAP SW L | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT message on all CRT'S | BODYFLAP DN(UP) SWITCH disagreement on cir side of COCKPIT. | 1. TWO SWITCH CONTACTS DO NOT AGREE FOR UP OR DOWN POSITION. <br> 2. THE NO OUTPUT STATE OF THE CONTACT IS USED BY FSW. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { BODY FLAP } \\ & \text { SW R } \end{aligned}$ | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | BODYFLAP DN(UP) SWITCH <br> DISAGREEMENT ON PLT SIDE OF COCKPIT. | 1. TWO SWITCH CONTACTS DO NOT AGREE FOR THE UP OR DOWN POSITION. <br> 2. THE NO OUTPUT STATE OF THE CONTACT IS USED BY FSW. |
| $\begin{aligned} & \text { CRT BITE } X \\ & (X=1,2,3,4) \end{aligned}$ | A CLASS 3 FAULT <br> MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | THIS ERROR INDICATES A CRITICAL BITE ERROR WAS DETECTED ON THE INDICATED DEU. ONE OR MORE ERRORS WERE DETECTED. <br> A. CPU BITE SOFTWARE FAIL <br> B. KEYBOARD CHANNEL A FAIL <br> C. KEYBOARD CHANNEL B FAIL <br> D. CPU MEMORY PARITY ERROR | IN GENERAL THIS ERROR INDICATES THAT THE DEU HAS DETECTED DEU HARDWARE PROBLEMS. |
| DAP RECONF | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT <br> DOWNFIRING VERNIER JET(S) FAILED OFF/LEAK OR DESELECTED. ORBIT DAP WILL DOWNMODE TO MANUAL IF CURRENTLY IN AUTO. <br> VALID IN OPS 2 | HARDWARE MALFUNCTION; CREW OPTION |
| $\begin{aligned} & \text { DISPLAY SW X } \\ & \mathbf{X}=\mathrm{A}(\mathrm{AFT}) \\ & \mathrm{X}=\mathrm{R}(\mathrm{RIGHT}) \\ & \mathrm{X}=\mathrm{L}(\mathrm{LEFT}) \end{aligned}$ | A CLASS 3 FAULT <br> MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | NO POSITION OR MULTIPLE POSITIONS SELECTED FOR: <br> - THESE SWITCHES IN OPS $1 / 6,2,3$, AND 8 : <br> - LH/RH ADI RATE SWITCH (HIGH/MED/LOW - DEFAULT IS MED) <br> - LH/RH ADI ERROR SWITCH (HIGH/MED/LOW - DEFAULT IS MED) | 1. HARDWARE MALFUNCTION <br> 2. SHORTED OR OPEN SWITCH CONTACT(S) <br> 3. DR 25074: I/O RESET WITH BCE ELEMENTS POWERED DOWN WILL CAUSE COMMFAULT, AND IF DISPLAY SWITCH PROCESSOR IS RUNNING AT THE SAME TIME, THIS FSP MESSAGE WILL OCCUR. |

"INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS"

| ERROR NAME | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { DISPLAY SW X } \\ & \mathrm{X}=\mathrm{A}(\mathrm{AFT}) \\ & \mathrm{X}=\mathrm{R} \text { (RIGHT) } \\ & \mathrm{X}=\mathrm{L}(\text { LEFT) } \\ & \text { (CONTINUED) } \end{aligned}$ |  | - LH/RH ADI ATT SEL SWITCH (INRTL/LVLH/REF - DEFAULT IS LVLH) <br> - LH/RH HSI MODE SWITCH (ENTRY/TAEM - DEFAULT IS ENTRY) <br> - LH/RH HSI SOURCE SWITCH (TACAN/NAV/MLS - DEFAULT IS NAV) <br> - LH/RH HSI TRANS SWITCH ( $1 / 2 / 3$ - DEFAULT IS 3 ) <br> - THESE ADDITIONAL SWITCHES IN OPS 2 AND 8: <br> - AFT ADI RATE SWITCH (HIGH/MED/LOW - DEFAULT IS MED) <br> - AFT ADI ERROR SWITCH (HIGH/MED/LOW - DEFAULT IS MED) <br> - AFT ADI ATT SEL SWITCH (INRTL/LVLH/REF - DEFAULT IS LVLH) <br> - THESE ADDITIONAL SWITCHES IN OPS 3 AND 6: <br> - LH/RH AIR DATA SWITCH (LEFT/NAV/RIGHT - DEFAULT IS NAV) <br> - LH/RH RADAR ALT SWITCH (1/2 - DEFAULT IS 1) <br> AN INPUT PROM SEQ 1,2 <br> COMMFAULT ON <br> - FF1 (LEFT) <br> - FF2 (RIGHT) <br> - FF3 (AFT) |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ET SEP-AUT | CLASS 3 MESSAGE APPEARS ON MESSAGE LINE AND FAULT SUMMARY. SM ALERT LIGHT IS LIT. SM TONE IS SOUNDED | ET SEP MODE SWITCH RM FAILURE <br> THE SWITCH CONTACTS FOR ET SEP SWITCH INDICATE BOTH POSITIONS OR NEITHER POSITION. DEFAULT POSITION AUTO IS USED. <br> VALID IN OPS 6 ONLY |  |
| ET SEP-INH | CLASS 3 MESSAGE APPEARS ON MESSAGE LINE AND FAULT SUMMARY. SM ALERT LIGHT IS LIT. SM TONE IS SOUNDED. | ET SEPARATION IS INHIBITED DUE TO FAILURE TO SATISFY ONE OR MORE SEPARATION CRITERIA. | IN OPS 1 ET SEP-INH COULD BE CAUSED BY BODY RATES AND THE CONFIGURATION OF THE FEEDLINE DISCONNECT VALVES. <br> IN OPS 6 BODY RATES, ALPHA AND BETA, AND THE CONFIGURATION OF THE FEEDLINE DISCONNECT VALVES COULD CAUSE SEP-INH. |
| ET SEP-MAN | CLASS 3 MESSAGE APPEARS ON MESSAGE LINE AND FAULT SUMMARY. SM ALERT LIGHT IS LIT. SM TONE IS SOUNDED. | ET SEP MODE SWITCH RM FAILURE <br> THE SWITCH CONTACTS FOR THE ET SEP SWITCH INDICATE BOTH POSITIONS OR NEITHER POSITION. DEFAULT POSITION MANUAL IS USED. <br> VALID IN OPS 1 ONLY |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| F RCS PVT | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT/ENTRY FORWARD RCS FUEL OR OXIDIZER | QUANTITY CALCULATION SUSPENDED. THIS IS DUE TO BOTH PRIMARY AND SUBSTITUTE SOURCE OF THE MEASUREMENT NEEDED FOR RCS TANK QUANTITY ARE COMMFAULTED AND NOT AVAILABLE. |
| F RCS TK P | A CLASS 2 FAULT MESSAGE (CAUTION WARNING): <br> - MASTER ALARM LIGHT <br> - C\&W TONE <br> - BACKUP C/W ALARM LIGHT ON THE CAUTION AND WARNING MATRIX | ORBIT <br> THE PRESSURE IN THE RCS FORWARD FUEL OR OXIDIZER TANK IS BELOW LIMIT OR EXCEEDS LIMIT |  |
| $\begin{aligned} & \text { G23 OMS/RCS } \\ & \text { QTY } \end{aligned}$ | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT <br> THE AMOUNT OF OMS PROPELLANT USED EXCEEDS THE LIMIT DURING AN OMS/RCS INTERCONNECT | LARGE AMOUNT OF MANEUVER ACTIVITY; LEAKAGE DURING A LONG PERIOD OF INTERCONNECT. |
| $\begin{aligned} & \text { G23 RCS } \\ & \text { SYSTEM X } \\ & \text { X }=\text { L (LEFT AFT) } \\ & \text { X }=\text { R (RIGHT } \\ & \text { AFT) } \\ & \text { X }=\text { F (FWD) } \end{aligned}$ | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT <br> AT LEAST ONE OF THE FOLLOWING IS EITHER BELOW LIMIT OR EXCEEDS LIMIT: RCS-X FU TANK OUT PRESS RCS-X OX TANK OUT PRESS RCS-X FU TANK TEMP 1 RCS-X OX TANK TEMP 1 |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { G33 RNDZ } \\ & \text { RADAR } \end{aligned}$ | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT <br> RENDEZVOUS RADAR LOSES TRACK ON A TARGET WHILE IN GPC ACQUISITION MODE | TARGET MOVES OUT OF RANGE; HARDWARE MALFUNCTION |
| $\begin{aligned} & \text { G51 RL MODE } \\ & \text { SW } \end{aligned}$ | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ASCENT/ENTRY <br> ENTRY ROLL MODE SWITCH: NUMBER OF CONTACTS SET FOR AILERON POSITION DISAGREES WITH NUMBER SET FOR YAW JET/RUDDER POSITION; DEFAULT IS POSITION WITH THE HIGHER NUMBER OF CONTACTS | HARDWARE MALFUNCTION |
| $\begin{aligned} & \text { GPC BITE } X \\ & (X=1,2,3,4,5) \end{aligned}$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. A POSSIBLE GPC ERROR IS LOGGED. | WHILE PERFORMING NORMAL GPC PROCESSING, THE GPC <br> ENCOUNTERED A PROGRAM OR SYSTEM INTERRUPT WHICH WAS GENERATED DUE TO AN IMPROPER SPECIFICATION OR USE OF INSTRUCTIONS OR DATA. ONE OF THE FOLLOWING CAUSED THIS "BITE" CONDITION: <br> ILLEGAL OPERATION CODE (GPC ERROR GP 3 CODE 0). <br> CPU ADDRESS SPECIFICATION (GPC ERROR GP 3 CODE 3). <br> PRIVILEGED INSTRUCTION. (GPC ERROR GP 3 CODE 1) <br> INSTRUCTION MONITOR (GPC ERROR GP 3 CODE 20) I/O STORE PROTECT VIOLATION (GPC ERROR GP 5 CODE 4). | IN GENERAL THIS ERROR INDICATES THE POSSIBILITY OF A PROGRAMMING ERROR OR HARDWARE ERROR. UNDER NO CONDITIONS WOULD THIS ERROR BE EXPECTED. <br> USER NOTE 52102. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| GPC BITE X ( $\mathrm{X}=1,2,3,4,5$ ) (CONTINUED) |  | I/O ADDRESS SPECIFICATION (GPC ERROR GP 5 CODE 3). <br> CPU STORE PROTECT (GPC ERROR GP3 CODE 7) <br> UPON RECEIVING THIS ERROR, THE GPC WILL "FORCE CLOSE" ON THE SPECIFIC APPLICATION TASK IT WAS EXECUTING AT THAT TIME and move to the next <br> application highest priority task ready to run. |  |
| GPC CONF | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY page. | AN OPS TRANSITION WAS REQUESTED THAT SPECIFIED AN INVALID TARGET GPC. | THE OPS TRANSITION SPECIFIED A TARGET GPC THAT WAS NOT IN THE REDUNDANT OR COMMON SET OR OPS ZERO. <br> MOST LIKELY CAUSED BY A PROCEDURAL ERROR. |
| $\underset{(\mathrm{X}=1,2,3,4,5)}{\operatorname{GPC} \mathrm{X}}$ | A CLASS 2 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS <br> DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. THE APPROPRIATE CAM LIGHT WILL ALSO BE LIT. | GPC X HAS FAILED TO SYNC WITH OTHER GPC'S. <br> THE GPC'S WHICH HAVE FAILED TO SYNC WITH GPC X WILL BE IDENTIFIED IN THE GPC COLUMN ON THE FSP AND ALSO BY THE CAM LIGHTS. | IN GENERAL A GPC MAY BE FAILED TO SYNC BECAUSE OF SOFTWARE ERRORS, GPC/IOP HARDWARE FAILURES OR THE DETECTION OF A GPC BEING MODED TO STANDBY/HALT OR POWERED OFF. <br> AI COLLISION AVOIDANCE CHECKS COULD CAUSE A FTS DUE TO THE USE OF POSITION FEEDBACK DATA OBTAINED FROM THE PCMMU VIA INDIVIDUAL READS BY EACH GPC. DR 25187 |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \operatorname{GPC~X} \\ & (\mathrm{X}=1,2,3,4,5) \\ & \text { (CONTINUED) } \end{aligned}$ |  |  | IF CONTINUOUS LDB ERRORS AND THE ASSOCIATED TOGGLING IS OCCURRING AND AN OPS TRANSITION WITH SECONDARY GPC'S IS REQUESTED, A fTS MAY RESULT. DR 28350 |
| > 3 DEU | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. | AN ATTEMPT WAS MADE TO ASSIGN A FOURTH DEU TO THE COMMAND SET. | THE MESSAGE IS ANNUNCIATED WHEN AN ATTEMPT IS MADE TO ASSIGN A FOURTH DEU TO A GPC IN THE COMMON SET. <br> most likely caused by procedural ERROR. |
| HIGH G | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S <br> - HIGH G INDICATOR ON HORIZ SIT DISPLAY - HIGH G INDICATOR ON HUD | THE TOTAL LOAD IN MM 304 OR NORMAL ACCELERATION IN MM 305, 602, 603 HAS BEEN EXCEEDED. | WHEN THE APPROPRIATE G DATA IS GREATER THAN THE I-LOADED LOAD FLASH VALUE, A HIGH-G INDICATOR IS SET ON FOR THE HORIZONTAL SITUATION DISPLAY AND A HIGH-G INDICATOR IS SET ON FOR THE HUD. WHEN THE APPROPRIATE LOAD DATA IS GREATER THAN THE ILOADED LOAD LIMIT, A HIGH-G INDICATOR IS SET ON FOR GAX. BELOW THE LOAD FLASH VALUE ALL 3 HIGH-G INDICATORS ARE OFF. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ILLEGAL ENTRY | A CLASS 5 ANNUNCIATION MESSAGE ON THE MESSAGE LINE OF THE CRT ATTACHED TO THE OFFENDING KEYBOARD. | THIS GENERIC MESSAGE IS GENERATED WHEN SOME SOFTWARE KEYBOARD INTERFACE HAS BEEN VIOLATED. | ILLEGAL KYDB ENTRY WITH RESPECT TO OPS SELECT/TRANSITION, DATA LOAD, INITIALIZATION, MEMORY RECONFIGURATION, GPC ASSIGN, KYBD SYNTAX, FREEZE DRY LOAD, ETC. THE ENTRY IS REJECTED AND THE REQUESTED ACTION(S) IS NOT TAKEN. <br> USUALLY CAUSED BY USER INPUT ERROR. |
| I/O ERROR X ( $\mathrm{X}=\mathrm{CRT1}$, CRT2, CRT3, CRT4) | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. ONE OR MORE I/O ERRORS ARE LOGGED. | A SINGLE I/O ERROR HAS OCCURRED ON AN I/O TRANSACTION WITH THE INDICATED DEU. | IN GENERAL THIS ERROR IS CAUSED BY DEU HARDWARE PROBLEMS OR BY A DEU THAT HAS NO POWER, OR BY TRANSMITTER/RECEIVER PROBLEMS IN THE IOP. IF A DEU IPL SWITCH IS ENTERED JUST PRIOR TO A POLL BY THE GPC, THE DCP MAY BE BUSY EXECUTING THE IPL SOFTWARE AND UNABLE TO RESPOND TO THE POLL REQUEST. THIS MAY RESULT IN AN INITIAL TIME-OUT OR INTERWORD TIME-OUT OF THE POLL REQUEST WHICH CAUSES THE FAULT MESSAGE TO BE ANNUNCIATED. DR 37706 |
| I/O ERROR X ( $\mathrm{X}=\mathrm{FA} 1, \mathrm{FA} 2$, FA3, FA4, FF1, FF2, FF3, FF4, LA1, LF1, PL1, PL2) | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. ONE OR MORE I/O ERRORS ARE LOGGED. | THIS ERROR INDICATES A FAILURE OCCURRED ON THE MDM RETURN WORD READ. BCE BYPASS (WHOLE MDM BYPASS) DUE TO TWO CONSECUTIVE I/O ERROR MDM RETURN WORDS. | THE ERROR MAY BE THE RESULT OF DATA BUS PROBLEMS OR HARDWARE PROBLEMS AT THE MDM. A TRANSMITTER/RECEIVER PROBLEM IN THE IOP WILL ALSO GENERATE THE MESSAGE. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{array}{\|l} \hline \text { HOW } \\ \text { MANIFESTED } \\ \text { TO USER } \\ \hline \end{array}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| I/O ERROR $\operatorname{MMU} X(X=1,2)$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. ONE OR MORE I/O ERRORS ARE LOGGED | THIS ERROR INDICATES A FAILURE OCCURRED ON A READ OR WRITE TRANSACTION TO THE MMU OR AN INTERNAL MMU ELECTRONICS FAILURE. THIS ERROR INDICATES THE GPC IS UNABLE TO PROPERLY COMMUNICATE WITH THE MMU due to one of the following FAILURES: <br> initial timeout TIMEOUT PARITY <br> BLOCK TIMEOUT ON MM DATA ILLEGAL OPCODE <br> FAILED OR POWERED DOWN MM MM SELECTED FOR IPL CHECKSUM ERROR <br> bUS BUSY/CHECKSUM BUFFER RESERVED <br> ERROR ON MM X (BUS 18 OR 19) MSC TIMEOUT. <br> I/O ADDRESS SPECIFICATION (GPC ERROR GP 5 CODE 3). <br> THIS ERROR IS ANNUNCIATED ON THE FIRST I/O ERROR FROM THE INDICATED MMU. | THIS ERROR MAY OCCUR DURING AN OPS TRANSITION IF A MM IS DOWN, SELECTED FOR IPL, OR CONFLICTING MM OPERATIONS ARE ACTIVE (DR 33268). THIS ERROR MAY ALSO OCCUR DURING AN OPS TRANSITION IF ANY OF THE FOLLOWING MMU FUNCTIONS ARE ACTIVE (DR 15620): <br> DEU IPL <br> GPC IPL (PASS OR BFS) <br> FREEZE DRY <br> OPS TRANSITION IN ANOTHER GPC DISPLAY FORMAT OVERLAY (SM2 ONLY) <br> CHECKPOINT <br> PCMMU FORMAT RETRIEVAL <br> TCS SEQ READ OR WRITES TO MMU MM DUMPS <br> IMU CALIBRATION REQUESTS <br> IF A MM PREPOSITION OPERATION FAILS DURING AN OPS TRANSITION, SPEC 000 WILL NOT COME UP (DR 25372). IF MM ERRORS OCCUR DURING AN OPS TRANSITION, THERE MAY BE MORE ERRORS LOGGED THAN THERE ARE ANNUNCIATION MESSAGES (DR 28364). THE MMU MUST BE POWERED ON AT LEAST 34 SECONDS PRIOR TO <br> ATTEMPTING ACCESS, OTHERWISE A MMU I/O ERROR MAY OCCUR (DR 33749). |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \hline \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| I/O ERROR MMU $X(X=1,2)$ (CONTINUED) |  |  | FOLLOWING A MM MSC T/O, RESIDUAL DATA COULD BE PICKED UP INSTEAD OF MM BSR CONTENT DURING THE TRAILING BITE STATUS READ. THIS WOULD BE VISIBLE ON THE MM R/W SPEC AND IN DOWNLIST (DR 55345). <br> IF A SIMPLEX GPC SUSTAINS THIS ERROR, AN I/O ERROR WHICH SHOULD BE LOGGED AS AN INITIAL TIMEOUT WILL BE ERRONEOUSLY LOGGED AS AN MSC TIMEOUT. |
| $\underset{X=1,2,3}{\text { IMU BITE/T } \mathbf{X}}$ | A CLASS 3 FAULT MESSAGE (ALERT). FLASHING MESSAGE ON FAULT MESSAGE LINE OF ALL CR'T DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ASCENT/ORBIT/ENTRY <br> HARDWARE OR SOFTWARE DETECTED FAULT: HARDWARE <br> - DATA GOOD NOT SET; <br> - COMMAND WORD <br> TRANSMISSION FAILURE; <br> - PLATFORM/CAPRI <br> TEMPERATURE NOT READY/SAFE <br> SOFTWARE <br> REDUNDANT AXIS RATE <br> FAILURE; <br> INNER ROLL LIMIT FAILURE; <br> - TORQUE COMMAND FAILURE; <br> - SLEW COMMAND FAILURE; <br> - ACCELEROMETER GAIN <br> SETTING FAILURE; <br> - VELOCITY LIMIT FAILURE <br> OPS 1/6, 2, 3 | 1. IMU POWERED OFF <br> 2. HARDWARE MALFUNCTION <br> 3. INCORRECT ILOADS <br> 4. UNACCEPTABLE TEMPERATURE CONDITION <br> 5. DR'S $42574,43940,50235$, AND 56091. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| L OMS VLV | LASHING MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. CLASS 3 ALARM | ORBIT <br> A HELIUM AND/OR VAPOR ISOLATION VALVE REMAINS OPEN AFTER REPRESSURIZATION DURING A LEFT OMS/RCS INTERCONNECT | 1. HARDWARE MALFUNCTION <br> 2. OPEN SIGNAL ON ONE OF FOUR VALVES AFTER $1 / 5$ SECOND DELAY. |
| $\begin{aligned} & \mathrm{L} \text { RCS XJET } \\ & \mathrm{X}=\mathrm{A}(\mathrm{AFT}) \\ & \mathrm{X}=\mathrm{U}(\mathrm{UP}) \\ & \mathrm{X}=\mathrm{D}(\mathrm{DOWN}) \end{aligned}$ | CLASS 2 MESSAGE ON MESSAGE LINE AND FAULT SUMMARY PAGE. | THIS ERROR DESCRIBES THE FAIL STATUS OF THE X MANIFOLD OF THE LEFT POD. | A LEFT POD X JET HAS EITHER FAILED OFF, FAILED ON, OR FAILED LEAK. |
| $\mathrm{X}=\mathrm{L}$ (LEFT) | RCS JET CAUTION AND WARNING LIGHT ON. C/W TONE SOUNDED. AN "OFF", "ON", OR "LK" STATUS DISPLAYED ON THE RCS SPEC. STATUS ALSO DISPLAYED ON SYSTEM SUMMARY. | RM WILL AUTOMATICALLY DESELECT JETS FAILED OFF OR LEAKING, BUT WILL NOT AUTOMATICALLY DESELECT JETS FAILED ON. <br> OPS 1/6, 2, 3, 8 | LOGIC: <br> 1. DRIVER OUTPUT INDICATION IS ON WHILE COMMAND B IS OFF, INDICATING A JET FAILED ON. <br> 2. PROPELLANT INJECTOR TEMPERATURE IS LOW, INDICATING A LEAKING JET. <br> 3. CHAMBER PRESSURE INDICATION IS OFF WHILE COMMAND B IS ON, INDICATING A JET FAILED OFF. |
| L RCS HE P | A CLASS 3 FAULT <br> MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT <br> THE PRESSURE IN THE HELIUM TANK FOR THE LEFT AFT RCS FUEL OR OXIDIZER TANK IS BELOW LIMIT. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \end{aligned}$ TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| L RCS LEAK | FLASHING <br> message on FAULT MESSAGE LINE OF ALL CRT DISPLAYS, CLASS 2 alarm C/W Light ON | ORBIT/ENTRY <br> LEFT AFT RCS: <br> DIFFERENCE BETWEEN FUEL AND OXIDIZER QUANTITIES EXCEEDS THE LEAK DETECTION LIMIT | 1. A LEAK IN ONE PROPELLANT TANK <br> 2. OX/FU DELTA QUANTITY GREATER THAN $12.6 \%$ |
| L RCS PVT | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | ORBIT/ENTRY <br> LEFT AFT RCS FUEL OR OXIDIZER | QUANTITY CALCULATION SUSPENDED. THIS IS DUE TO BOTH PRIMARY AND SUBSTITUTE SOURCE OF THE MEASUREMENT NEEDED FOR RCS TANK QUANTITY ARE COMMFAULTED AND NOT AVAILABLE. |
| L RCS TK P | A CLASS 2 FAULT MESSAGE (CAUTION WARNING): <br> - MASTER ALARM LIGHT <br> - C\&W TONE <br> - BACKUP C/W ALARM LIGHT ON THE CAUTION AND WARNING MATRIX | ORBIT <br> THE PRESSURE IN THE RCS LEFT AFT FUEL OR OXIDIZER TANK IS below limit or exceeds limit. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| MDM OUTPUT X ( $\mathrm{X}=\mathrm{FA} 1, \mathrm{FA} 2$, FA3, FA4, FF1, FF2, FF3, FF4, PL1, PL2) | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. | THE MDM RETURN WORD DID NOT COMPARE WITH THE EXPECTED PATTERN. THREE CONSECUTIVE MISCOMPARES WERE DETECTED. OPS 1/6, 2, 3 | THE ERROR MAY BE THE RESULT OF DATA BUS PROBLEMS, HARDWARE PROBLEMS AT THE MDM, OR IOP FAILURE. <br> NOTE: MDM OUTPUT PL1(2) ONLY VALID DURING ACTIVE Gl TRANSITION TO BFS TO RUN. |
| $\underset{(\mathrm{X}=\mathrm{C}, \mathrm{~L}, \mathrm{R})}{\operatorname{ME} \text { SHD } \mathrm{X}}$ | CLASS 3 MESSAGE <br> APPEARS ON THE <br> MESSAGE LINE <br> AND FAULT <br> SUMMARY. SM <br> ALERT LIGHT IS <br> LIT AND SM TONE <br> SOUNDED. | THE TWO SWITCH CONTACTS OF THE APPROPRIATE MAIN ENGINE SHUTDOWN PUSHBUTTON DISAGREE | SWITCH FAILURE, CONTROL BUS FAILURE, OR MDM FAILURE. <br> IF THIS OCCURS UPON PRESSING THE PUSHBUTTON TO SHUTDOWN THE RESPECTIVE SSME, THE GPC WILL NOT ISSUE THE SHUTDOWN COMMAND. |
| $\begin{aligned} & \text { MPS CMD X } \\ & (\mathrm{X}=\mathrm{C}, \mathrm{~L}, \mathrm{R}) \end{aligned}$ | CLASS 3 MESSAGE <br> APPEARS ON <br> MESSAGE LINE <br> AND FAULT <br> SUMMARY. SM <br> ALERT LIGHT IS <br> LIT AND SM TONE <br> SOUNDED. IN MM <br> 102-103 AND 601. <br> THE AMBER <br> ENGINE STATUS <br> LIGHT COMES ON. | MAIN ENGINE COMMAND PATH FAILURE <br> POST SRB IGNITION, THE SSME SOP WILL POST THIS FAILURE MESSAGE UNDER THE FOLLOWING CONDITIONS: <br> 1. THE GPC SENT A COMMAND TO THE SSMEC, AND THE SSMEC REJECTED IT. <br> 2. THE GPC SENT A COMMAND TO THE SSMEC, AND THE SSMEC DID NOT RESPOND WITHIN THREE CYCLES. | THE SSMEC WILL REJECT A COMMAND IF IT IS NOT COMPATIBLE WITH THE CURRENT PHASE/MODE. <br> POST SRB IGNITION, THE SSMEC VOTES 2 OF 3 ON ALL COMMANDS, SO A COMBINATION OF TWO OF THE FOLLOWING FAILURES THAT CAUSE A LOSS OF TWO CHANNELS TO THE SSMEC WILL CAUSE THIS MESSAGE: <br> 1. GPC FAILURES (E.G., MIA FAULT, HALT, ETC.) <br> - GPC 1 OR 2 FOR SSME1 (CENTER) <br> - GPC 2 OR 3 FOR SSME 2 (LEFT) <br> - GPC 1 OR 3 FOR SSME3 (RIGHT) |



| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR | $\begin{aligned} & \hline \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| MPS DATA X ( $\mathrm{X}=\mathrm{C}, \mathrm{L}, \mathrm{R}$ ) (CONTINUED) |  | 2. A SWITCH VDT COMMAND IS ISSUED TO THE SSMEC. <br> 3. BOTH THE PRIMARY AND SECONDARY DATA PATHS ARE STILL FAILED FOR FOUR CYCLES. <br> A PRIMARY OR SECONDARY DATA PATH FAILURE IS DECLARED WHEN THE SSME CONTROLLER'S TIME REFERENCE WORD IS NOT UPDATING OR ID WORDS 1 AND 2 ARE NOT 1 'S COMPLEMENT OF EACH OTHER FOR TWO CONSECUTIVE CYCLES. | 2. FLIGHT CRITICAL BUS 5 FAILURE FOR SSME 1 <br> FLIGHT CRITICAL BUS 6 FAILURE FOR SSME 2 <br> FLIGHT CRITICAL BUS 7 FAILURE FOR SSME 3 <br> 3. EIU FAILURES <br> - MIA 1 FAULT <br> - CIA 1 FAULT <br> - STATUS BUFFER 1 FAULT <br> - POWER SUPPLY CHANNEL A FAILURE <br> 4. SSMEC FAILURES <br> - DCU A HALT <br> - VEEI CH A RECORDER DATA FAILURE <br> - CH A POWER INPUT OR SUPPLY FAILURE <br> -- SSME1/AC1, SSME2/AC2, SSME3/AC3 <br> 5. SSMEC TO EIU PRIMARY DATA BUS FAILURE. <br> FAILURES THAT CAUSE SECONDARY DATA PATH FAILURES: <br> 1. GPC 4 FAILURE <br> 2. FLIGHT CRITICAL BUS 8 FAILURE <br> 3. EIU FAILURES <br> - MIA 2 FAULT <br> - CIA 2 FAULT <br> - STATUS BUFFER 2 FAULT <br> - POWER SUPPLY CHANNEL B FAILURE <br> 4. SSMEC FAILURES <br> - DCU B HALT <br> - VEEI CH B RECORDER <br> - CH B POWER INPUT OR SUPPLY FAILURE <br> -- SSME1/AC2, SSME2/AC3, SSME3/AC1 |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| MPS ELEC $X$ ( $\mathrm{X}=\mathrm{C}, \mathrm{L}, \mathrm{R}$ ) | CLASS 3 MESSAGE <br> APPEARS ON MESSAGE LINE AND FAULT SUMMARY. SM ALERT LIGHT IS LIT. SM TONE IS SOUNDED. IN MM 102-103 AND 601 WILL CAUSE AN AMBER ENGINE STATUS LIGHT. | MAIN ENGINE ELECTRONIC LOCKUP. <br> IF BOTH CHANNELS OF THE FUEL FLOWRATE OR Pc MEASUREMENTS ARE DISQUALIFIED DURING THE START OR MAINSTAGE PHASES, THE SSME CONTROLLER MODES TO ELECTRONIC LOCKUP. IN THIS MODE THE THRUST LEVEL IS HELD AT THE LAST COMMANDED STATE. <br> VALID IN MM101, 102, AND 103. | OPEN OR SHORT IN HARNESSES OR <br> TRANSDUCERS. ALSO A LOSS OF ONE INPUT ELECTRONICS IN ONE CHANNEL AND THE ABOVE IN THE OTHER CHANNEL. <br> PRE-LAUNCH: LAUNCH HOLD/ABORT AND ENGINE STATUS LIGHT. <br> POST-LAUNCH: ENGINE STATUS LIGHT. |
| $\begin{aligned} & \text { MPS HYD X } \\ & (\mathrm{X}=\mathrm{C}, \mathrm{~L}, \mathrm{R}) \end{aligned}$ | CLASS 3 MESSAGE <br> APPEARS ON MESSAGE LINE AND FAULT SUMMARY. SM ALERT LIGHT IS LIT. SM TONE IS SOUNDED. IN MM 102-103 AND 601 WILL CAUSE AN AMBER ENGINE STATUS LIGHT. | MAIN ENGINE HYDRAULIC LOCKUP <br> IF BOTH CHANNELS OF THE SSME ACTUATORS FAIL DURING THE START AND MAINSTAGE PHASES, THE SSME CONTROLLER MODES TO HYDRAULIC LOCKUP. IN THIS MODE THE THRUST LEVEL IS HELD BY HYDRAULICALLY LOCKING THE ACTUATORS AT THE POSITION WHEN THE FAILURE OCCURRED. | PRE-LAUNCH: LAUNCH ABORT AND STATUS LIGHT. <br> POST-LAUNCH: ENGINE STATUS LIGHT. <br> POSSIBLE CAUSES COULD INCLUDE A COMBINATION OF THE FOLLOWING FAILURES: <br> - HYDRAULIC SYSTEMS FAILURE IN THE MAIN ENGINE OR ORBITER <br> - FAILURE OF THE RVDT FEEDBACKS <br> - OUTPUT ELECTRONICS FAILURE (ON ONLY ONE CHANNEL) <br> - OPEN OR SHORT IN THE HARNESSES BETWEEN THE SSMEC AND ACTUATORS <br> - FAILURE OF SERVOS OR SERVO-SWITCHES ON THE ACTUATOR <br> - VALVE SEIZURE |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ERROR } \\ & \text { NAME } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| NAV EDIT ALT | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S <br> - EDIT HISTORY INDICATOR ON HORIZ SIT DISPLAY | DRAG OR ADTA ALTITUDE DATA IS INSUFFICIENT FOR <br> PROCESSING BELOW MACH 2.5 <br> AND ABOVE AN I-LOADED <br> ALTITUDE LIMIT. | THE AIR DATA PROBES ARE NOT DEPLOYED. <br> THE PROBE-SENSED ALTITUDE (ADTA H) IS IN THE INHIBIT MODE (INH) MODE ON THE HORIZ SIT DISPLAY. <br> NO AIR DATA TRANSDUCER ASSEMBLIES (ADTA'S) ARE FUNCTIONAL. <br> THREE OUT OF THE LAST FOUR ALTITUDE MEASUREMENTS FROM THE AIR DATA SENSOR OR DRAG ALTITUDE PROCESSOR HAVE FAILED THE EDIT TEST. |
| $\begin{aligned} & \text { NAV EDIT } \\ & \text { TAC } \end{aligned}$ | a Class 3 FAULT <br> MESSAGE <br> (ALERT): <br> - SM ALERT <br> LIGHT <br> - SM ALERT TONE <br> - FLASHING <br> faUlt message <br> ON ALL CRT'S <br> - EDIT HISTORY INDICATOR ON HORIZ SIT DISPLAY | TACAN SENSOR DATA IS INSUFFICIENT FOR PROCESSING ABOVE AN I-LOADED ALTITUDE LIMIT. | THREE OUT OF THE LAST FOUR RANGE/BEARING MEASUREMENTS FROM THE TACAN SENSOR HAVE FAILED THE RESIDUAL EDIT TEST. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { OFF/BSY X X } \\ & (\mathrm{X}=\text { MMUU1, } \\ & \text { MMU2 }) \end{aligned}$ | A CLASS 3 <br> ANNUNCIATION MESSAGE IS ISSUED. THE MSG TEXT IS DISPLAYED ON THE MESSAGE LINE AND ON THE FAULT SUMMARY PAGE. ONE OR MORE I/O ERRORS ARE LOGGED. | THE INDICATED MMU DID NOT RESPOND TO THE READ/WRITE REQUEST PROPERLY. (MM READY DISCRETE NOT PRESENT) | A MMU TRANSACTION WAS REQUESTED WHEN THE MMU WAS OFF/BUSY, FAILED OFF, OR SELECTED FOR IPL. |
| OTT ST IN | A CLASS 3 FAULT MESSAGE <br> (ALERT): <br> - SM ALERT <br> LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | TAEM GUID DOWNMODE MSG OPTIONAL TAEM TARGETING (OTT) <br> OPS 1/6, 3 | THE INDICATED ENERGY OVER WEIGHT RATIO IS LESS THAN THE REQUIRED VALUE FOR AN OVHD APPROACH. |
| PNL TRIM L | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING fault message ON ALL CRT'S | LH PNL TRIM SW MSG TWO OF THE COMMANDER'S SWITCH CONTACTS DO NOT AGREE FOR POSITIVE OR NEGATIVE PITCH, ROLL, OR YAW TRIM. <br> OPS $1 / 6,3$ | 1. HARDWARE FAILURE <br> 2. SHORTED OR OPEN SWITCH CONTACT(S) |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| PNL TRIM R | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING fault message ON ALL CRT'S | RH PNL TRIM SW MSG TWO OF THE PILOT'S SWITCH CONTACTS DO NOT AGREE FOR POSITIVE OR NEGATIVE PITCH, ROLL, OR YAW TRIM. <br> OPS 1/6, 3 | 1. HARDWARE FAILURE <br> 2. SHORTED OR OPEN SWITCH CONTACT(S) |
| PROBES | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM AlERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S | A FAILURE IN THE DEPLOY OF AN ADTA PROBE HAS OCCURRED. | BOTH AIR DATA TRANSDUCER ASSEMBLY (ADTA) PROBES HAVE NOT BEEN SUCCESSFULLY DEPLOYED BELOW A MACH NUMBER OF 2.5 . |
| R OMS GMBL | FLASHING <br> MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, OMS TVC ALERT LIGHT ON, A DOWN ARROW BY THE FAILED ACTUATOR, AND SM ALERT TONE SOUNDED. | ASCENT/ORBIT/ENTRY <br> THE DIFFERENCE BETWEEN THE POSITION COMMAND AND FEEDBACK FOR AN OMS PITCH OR YAW ACTUATOR FOR THE RIGHT POD REMAINS GREATER THAN 2 DEGREES FOR AT LEAST 3.84 SECONDS. THIS IMPLIES THE ACTUATOR EITHER DOES NOT DRIVE WHEN COMMANDED OR THE DRIVE RATE IS LESS THAN 2.9 DEG/SEC. | SLOW DRIVE RATES OF OMS GIMBAL ACTUATOR, FAILURE TO DRIVE AT ALL, OR FAILURE OF THE POSITION MEASUREMENT SEEN BY THE GPC. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ERROR } \\ & \text { NAME } \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| R OMS PC | FLASHING MESSAGE ON FAJLT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. CLASS 2 ALARM | ASCENT/ORBIT/ENTRY RIGHT OMS ENGINE: CHAMBER PRESSURE FALLS BELOW LIMIT AFTER AN ENGINE FAILURE | 1. HARDWARE MALFUNCTION <br> 2. PC LESS THAN $80 \%$ |
| R OMS QTY | FLASHING <br> MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ASCENT/ORBIT/ENTRY RIGHT OMS POD; TANK LOW LEVEL CONDITION DETECTED FOR FUEL OR OXIDIZER | 1. CONSUMPTION OF PROPELLANT(S) <br> 2. LEAKAGE QUANTITY LESS THAN $5 \%$ |
| R OMS VLV | FLASHING MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT CLASS 3 ALARM TONE SOUNDED. | ORBIT <br> A HELIUM AND/OR VAPOR ISOLATION VALVE REMAINS OPEN AFTER <br> REPRESSURIZATION DURING A RIGHT OMS/RCS INTERCONNECT | 1. HARDWARE MALFUNCTION <br> 2. OPEN SIGNAL ON ONE OF FOUR VALVES AFTER 1.5 SECOND DELAY |



| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| R RCS PVT | A CLASS 3 FAULT MESSAGE <br> (ALERT): <br> - SM ALERT <br> LIGHT <br> - SM ALERT TONE <br> - FLASHING <br> FAULT MESSAGE ON ALL CRT'S | ORBIT/ENTRY <br> RIGHT AFT RCS FUEL OR OXIDIZER | QUANTITY CALCULATION SUSPENDED. THIS IS DUE TO BOTH PRIMARY AND SUBSTITUTE SOURCE OF THE MEASUREMENT NEEDED FOR CS TANK QUANTITY ARE COMMFAULTED AND not available. |
| R RCS TK P | A CLASS 2 FAULT MESSAGE (CAUTION WARNING): <br> - MASTER ALARM LIGHT <br> - C\&W TONE <br> - BACKUP C/W ALARM LIGHT ON THE CAUTION AND WARNING MATRIX | ORBIT <br> THE PRESSURE IN THE RCS RIGHT AFT FUEL OR OXIDIZER TANK IS BELOW LIMIT OR EXCEEDS LIMIT. |  |
| $\begin{aligned} & \text { RCS PWR } \\ & \text { FAIL } \end{aligned}$ | FLASHING <br> MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON AND SM ALERT TONE SOUNDED. CLASS 3 ALARM | ASCENT/ORBIT/ENTRY FORWARD/AFT RCS: <br> NO OPEN/CLOSE SELECTION FOR FUEL OR OXIDIZER MANIFOLD ISOLATION VALVE. OPEN AND CLOSE INDICATIONS ALL READ ZERO. |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| $\begin{aligned} & \text { RHC X } \\ & (X=A, L, R) \end{aligned}$ | FLASHING MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ```ORBIT/ENTRY LEFT/RIGHT RHC: FAIL - COMMANDS ON THE ORBIT AFT RHC: LEAST TWO CHANNELS DISAGREE DILEMMA - COMMANDS FROM THE TWO AVAILABLE CHANNELS DISAGREE FAIL/DILEMMA SAME AS FOR LEFT/RIGHT RHC``` | HARDWARE MALFUNCTION |
| RM DLMA RGA/ACC | A CLASS 2 FAULT MESSAGE. MESSAGE <br> APPEARS ON THE MESSAGE LINE AND FAULT SUMMARY. GNC INDICATOR ALARM OUTPUT C\&W LIGHT ON CONSOLE. | RGA OR ACCELEROMETER ASSEMBLY (AA) DILEMMA CONDITION SUCH THAT RM CANNOT ISOLATE FAILURE. <br> A DILEMMA CONDITION EXISTS WHEN THE YSTEM HAS BEEN REDUCED TO TWO FUNCTIONING SENSORS SUCH THAT RM CANNOT DISTINGUISH THE GOOD SENSOR FROM THE BAD SENSOR. | DISAGREEMENT IN RGA OR AA DATA. RM CANNOT DETERMINE WHICH DATA IS GOOD. SOLUTION TO DILEMMA IS TO MANUALLY DESELECT DATA CONSIDERED BAD. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |  |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED"" |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { ERROR } \\ & \text { NAME } \end{aligned}$ | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| RM FAIL <br> IMU | A CLASS 3 FAULT MESSAGE <br> (ALERT). <br> FLASHING <br> MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ASCENT/ORBIT/ENTRY IMU REDUNDANCY MANAGEMENT/THREE IMU'S AVAILABLE: <br> THE SQUARED <br> ATTITUDE/VELOCITY ERROR FOR AN IMU EXCEEDS THE ATTITUDE/VELOCITY FAULT DETECTION THRESHOLD | 1. HARDWARE MALFUNCTION <br> 2. IMPROPER ILOAD(S) |
| RM FAIL <br> MLS | A CLASS 3 FAULT <br> MESSAGE <br> (ALERT): <br> - SM ALERT <br> LIGHT <br> - SM ALERT TONE <br> - FLASHING <br> fault message <br> ON ALL CRT'S <br> - STATUS <br> INDICATOR ON GNC SYS <br> SUMM 1 <br> DISPLAY | MLS $1 / 2 / 3$ FL MSG A MISCOMPARE EXISTS IN THE ORBITER ELEVATION, RANGE, AND/OR AZIMUTH DETERMINATIONS AND RM HAS ISOLATED THE BAD DATA AND DECLARED A FAILURE. OPS 3 |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| RM FAIL RGA | A CLASS 3 FAULT MESSAGE (ALERT). <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S SYSTEM SUMMARY DOWN ARROW FOR FAILED UNIT. | RGA UNIT FAILURE ( $1 / 2 / 3 / 4$ ). FAILED UNIT DATA NOT USED. <br> FAILED SENSOR DIVERGED FROM THE SELECTED VALUE MORE THAN THE ALLOWED TOLERANCE CAUSING THE GPC TO SET THE FAIL/DESELECT DISCRETE. | 1. HARDWARE FAILURE OF RGA <br> 2. ELECTRONICS FAILURE |
| RM FAIL TAC | A CLASS 3 FAULT MESSAGE <br> (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S <br> - STATUS INDICATORS ON GNC SYS SUMM 1 AND HORIZ SIT DISPLAYS | TAC $1 / 2 / 3$ FL MSG <br> RM EVALUATES RANGE AND BEARING DATA INDEPENDENTLY AND WHEN A PARAMETER MISCOMPARES AND RM CAN ISOLATE THE BAD DATA, A FAILURE IS DECLARED. <br> OPS 1/6, 3 | AT THE THREE-LRU LEVEL, TACAN RM EVALUATES RANGE AND BEARING DATA INDEPENDENTLY, DECLARING A PARAMETER FAILED WHEN IT MISCOMPARES WITH THE OTHER TWO LRU'S BY MORE THAN A GIVEN THRESHOLD. <br> AT THE TWO-LRU LEVEL, AUTOMATIC TACAN SELF-TEST CAN ISOLATE A FAILED PARAMETER IF BOTH LRU'S ARE IN THE GPC MODE. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR <br> NAME | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| ROLL REF | A CLASS 3 FAULT MESSAGE (AI ERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S - STATUS INDICATOR ON ENTRY TRAJ X DISPLAYS | ROLL REF MSG <br> THE GUIDANCE COMPUTED REFERENCE BODY ROLL ANGLE (ROLL REF) IS BELOW A CALCULATED VALUE. <br> OPS 3 |  |
| SBTC/THC A | A CLASS 3 FAULT <br> MESSAGE <br> (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S <br> - STATUS INDICATORS ON GNC SYS SUMM 1 AND RM ORBIT DISPLAYS AND CONTROLLERS DISPLAY. | A THC CH $1 / 2 / 3$ FL/DLMA MSG AFT THC INITIAL COMMFAULT OR FAILURE OR DILEMMA HAS BEEN DETECTED. <br> OPS 2/8 | AFT THC TRANSIENT FAILURE. <br> DDU POWER SUPPLY FAILURE WHICH CAUSES THE CORRESPONDING AFT THC CHANNEL TO BE LOST. AFT THC TX/TY/TZ CONTACT FAILED OR MDM PARAM LOSS. COMBINATIONS OF ABOVE PROBLEMS WILL CAUSE DISAGREEMENT BETWEEN SIGNALS FROM CONTROLLER LRU'S. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | HOW <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| SBTC/THC L | A CLASS 3 FAULT <br> MESSAGE <br> (ALERT): <br> - SM ALERT <br> LIGHT <br> - SM ALERT TONE <br> - FLASHING <br> FAULT MESSAGE <br> ON ALL CRT'S <br> - STATUS <br> INDICATORS ON GNC SYS SUMM 1 AND RM ORBIT DISPLAYS AND CONTROLLERS DISPLAY. | L SBTC/THC CH 1/2/3 FL/DLMA MSG <br> LEFT SBTC/THC INITIAL COMMFAULT OR FAILURE OR DILEMMA HAS BEEN DETECTED. OPS 2/8, 3 | LEFT TRANSLATIONAL HAND CONTROLLER (THC) TRANSIENT FAILURE. <br> DISPLAY DRIVER UNIT (DDU) POWER SUPPLY <br> FAILURE CAUSING THE CORRESPONDING LEFT SBTC OR THC CHANNEL TO BE LOST. <br> LEFT THC TX/TY/TZ CONTACT FAILED OR MDM <br> PARAM LOSS. <br> LEFT SPEEDBRAKE/THRUST CONTROLLER (SBTC) COMMAND FAILURE OR DISAGREE. <br> COMBINATIONS OF ABOVE PROBLEMS WILL CAUSE DISAGREEMENT BETWEEN SIGNALS FROM CONTROLLER LRU'S. |
| SBTC/THC R | A CLASS 3 FAULT MESSAGE <br> (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING <br> FAULT MESSAGE <br> ON ALL CRT'S <br> - STATUS <br> INDICATOR ON GNC SYS SUMM 1 DISPLAY, RM ORBIT AND CONTROLLERS DISPLAYS. | R SBTC CH $1 / 2 / 3$ FL/DLMA MSG RIGHT SBTC INITIAL COMMFAULT OR FAILURE OR DILEMMA HAS BEEN DETECTED. OPS 3 | DDU POWER SUPPLY FAILURE WHICH CAUSES THE CORRESPONDING RIGHT SBTC CHANNEL TO be lost. RIGHT SBTC COMMAND FAILURE OR DISAGREE. <br> COMBINATIONS OF ABOVE PROBLEMS WILL CAUSE DISAGREEMENT BETWEEN SIGNALS FROM CONTROLLER LRU'S. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR <br> NAME | HOW <br> MANIFESTED TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS AND RELATED PROBLEMS (NOTE \#) |
| SEL AUTO | FLASHING MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ORBIT <br> A MANEUVER/TRACK/ROTATION OPTION HAS BEEN SELECTED ON THE UNIVERSAL POINTING DISPLAY BUT THE ORBIT DAP IS NOT IN AUTO MODE, OR IT IS 5 SECONDS BEFORE A MANEUVER/TRACK/ ROTATION OPTION IS TO BECOME CURRENT BUT THE ORBIT DAP IS NOT IN AUTO MODE. | 1. CREW ERROR <br> 2. HARDWARE MALFUNCTION |
| SENSE SW | FLASHING <br> MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ORBIT <br> NO OR SIMULTANEOUS $-\mathrm{Z} /-\mathrm{Y}$ SELECTION FOR THE ADI SENSE SWITCH; DEFAULT SWITCH PROCESSING SELECTS -Z | HARDWARE MALFUNCTION |
| SPD BRK | A CLASS 3 FAULT MESSAGE (ALERT): <br> - SM ALERT LIGHT <br> - SM ALERT TONE <br> - FLASHING FAULT MESSAGE ON ALL CRT'S <br> - HUD INDICATOR | THE SPEEDBRAKE HAS EXCEEDED A SPECIFIED DEVIATION FROM THE COMMANDED POSITION. | SPEED BRAKE POSITION GREATER THAN 20 PERCENT FROM AUTO SCHEDULE FOR MACH NUMBER BETWEEN 0.95 AND 10. <br> SPEEDBRAKE POSITION IS OUTSIDE OF I-LOADED LIMITS BELOW AN I-LOADED ALTITUDE AND PRIOR TO WEIGHT ON WHEELS. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAM | How <br> MANIFESTED <br> TO USER | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS and related problems (NOTE \#) |
| $\begin{aligned} & \begin{array}{l} \text { SSME FAIL } \\ \mathbf{X} \\ (\mathrm{X}=\mathrm{C}, \mathrm{~L}, \mathrm{R}) \end{array} \end{aligned}$ | CLASS 3 MESSAGE ON MESSAGE SUMMARY FMLT alert light is LIT. SM TONE IS engine status LIGHT. PASS WILL NOT ISSUE MESSAGE IN BFS) | PREMATURE MAIN ENGINE SHUTDOWN, I.E. THE SSME IS IN PHASE PRIOR TO THE MECO COMMAND BEING SET. THIS MESSAGE IS VALID IN MM102 AND MM103. | SSMEC INITIATES SHUTDOWN FOR EXCEEDING THE LIMITS OF THE FOLLOWING PARAMETERS: <br> 1. HPFT TURBINE DISCHARGE TEMP <br> 2. HPOT TURBINE DISCHARGE TEMP <br> 3. HPFT COOLANT LINER PRESSURE <br> 5. HPOT SECONDARY SEAL CAVITY PRESSURE <br> 6. $\mathrm{P}_{\mathrm{c}}$ VS $\mathrm{P}_{\mathrm{c}}$ REFERENCE |
|  | A CLASS 3 <br> annunciation MESSAGE IS ISSUED. THE MSG TEXT IS THEPAYED ON LINE AND ON the fault sUmmary page. | SUMWORD OF SSW CRITICAL DATA ICCED BETWEENGP MISCOMPARED WITH THE SUMWORD OF THE INDICATED GPC. THE COMPARE I PERFIRMED ONCEEACH MAJOR CYCLE (960 MS). THREE MUST BE DEEECTED BEFOR MESSAGE IS ANNUNCIATED. |  OR SOFTWARE FAILURES OR THE RESULTS OF A user error. <br> the message may be annunciated if both LDB'S BUSES ARE DROPPED FROM THE SET OR HARD FAILED WHILE GSE POLLING IS ACTIVE ENABLED. DR 5246 |
| sw To mep | A CLASS 3 FAULT MESSAGE <br> (ALERT): <br> LIGHT <br> - SM ALERT TONE <br> FLASHING <br> FAULT MESSAGE <br> - STATUS <br> INDICATOR ON VERT SIT X DISPLAYS | MEP ALERT MSG MINIMUM ENTRY POINT (MEP) ALERT. <br> OPS 1/6, 3 | THE ENERGY OVER WEIGHT RATIO (E/N) IS TOO LOW TO MAKE TT TO THE RUNWAY AND THE CREW NEEDS TO MOVE THE HAC TO THE MEP WHICH IS CLOSER TO THE RUNWAY. |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS" |  |  |  |
| :--- | :--- | :--- | :--- |
| "CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |


| "INFORMATION ON THIS PAGE NOT TO BE USED FOR LAUNCH HOLD DECISIONS""CONSULT LOCAL T\&O REPRESENTATIVE AS REQUIRED" |  |  |  |
| :---: | :---: | :---: | :---: |
| ERROR NAME | $\begin{aligned} & \text { HOW } \\ & \text { MANIFESTED } \\ & \text { TO USER } \\ & \hline \end{aligned}$ | DESCRIPTION OF THE ERROR | POSSIBLE CAUSES / KNOWN SCENARIOS and related problems (NOTE \#) |
| $\begin{aligned} & \text { TGT EL } \\ & \text { ANG } \end{aligned}$ | FLASHING <br> MESSAGE ON <br> FAIJLT MESSAGE <br> LINE OF ALL CRT <br> DISPLAYS, SM <br> ALERT LIGHT ON, <br> AND SM ALERT <br> TONE SOUNDED. | ORBIT <br> TARGETING OPERATIONS (SPEC 34): MAXIMUM NUMBER OF ITERATIONS REACHED DURING CALCULATION OF TPI TIG FOR THE SPECIFIED ELEVATION ANGLE | 1. IMPROPER TARGETS SPECIFIED <br> 2. IMPROPER ILOAD(S) |
| TGT ITER | FLASHING <br> MESSAGE ON FAULT MESSAGE LINE OF ALL CRT DISPLAYS, SM ALERT LIGHT ON, AND SM ALERT TONE SOUNDED. | ORBIT <br> TARGETING OPERATIONS (SPEC 34): LAMBERT TGT TRANSFER angle near singularity POINT; COMPUTATIONS FOR A PARABOLIC TRANSFER; MAXIMUM NUMBER OF ITERATIONS REACHED DURING a COMPUTATION | 1. IMPROPER TARGETS SPECIFIED <br> 2. IMPROPER ILOAD(S) |

## APPENDIX H. DISTRIBUTION LIST

Following this Appendix is a listing of the PASS User's Guide Distribution List. If you wish to be included on the Distribution List and are currently not, please complete a copy of the blank Distribution List Request form included in this Appendix and send the completed form to the PASS User's Guide Coordinator:

CARLA J. YAGER
IBM TEST AND OPERATIONS
M/C 6206A
3700 BAY AREA BOULEVARD
HOUSTON, TEXAS 77058

```
RELEASE: OI20
Date: 12/20/90
BOOK: PASS User's Guide
Rev: 0
```


## PASS USER'S GUIDE DISTRIBUTION LIST REQUEST FORM

To receive copies of, or updates to, the PASS User's Guide, you need to be on the PASS User's Guide distribution list. To update the distribution list, fill in the following information and send the completed form to the PASS User's Guide coordinator listed below.

If you have any questions or suggestions, please contact Carla J. Yager at (713) 282-8426.
DATE:
NAME:
PHONE NUMBER:

## COMPANY NAME:

DEPARTMENT:
MAIL CODE:
ADDRESS:
CITY:
STATE:
ZIP:
NUMBER OF COPIES:

Send completed forms to:
CARLA J. YAGER
IBM TEST AND OPERATIONS
M/C 6206A
3700 BAY AREA BLVD.
HOUSTON, TEXAS 77058


[^0]:    - DIl3 is driven true to the GPC if the GPC (1-5) Output Switch is in the TERM position.
    - DIl5 is driven true to the selected GPC when the "GPC Memory DUMP" panel switch is placed in a GPC position (1, 2, 3, 4, 5).

[^1]:    * Valid in all MC except G1 and G3.

