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ABSTRACT

The most significant shortcoming of all software development

processes lies in the fact that humans are involved.
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SECTION 1

Introduction

Crucial software is any software whose failure could endanger human

lives or threaten the safety of expensive equipment. For example, the

software in computers providing active controls for aircraft is crucial.

Software is defined to be reliable if it complies with its require-

ments specification most of the time. Conversely, software is said to

have failed when it no longer complies with its requirements specifica-

tion. We choose not to define 'most1 because that leads to an attempt

to quantify software reliability and the goals of this grant do not

include probabilistic and statistical analysis of software failures.

Rather, we assume that any increase in reliability is desirable and any

methodology which may bring about an increase is worthy of considera-

tion. We assume that the determination of whether an increase has been

achieved is ascertained by experiments using conventional statistical

methods.

The purpose of this grant was to examine and extend a preliminary

approach to the engineering of crucial software which was presented in

the original grant proposal. The goals were to prepare a comprehensive

approach together with recommendations of those areas of software tech-

nology which are most likely to produce a substantial improvement in

software quality if vigorously pursued. Our primary conclusion from

extensive reviews of the literature and discussions with numerous



experts is that it is inappropriate at this time to propose a single

comprehensive approach to crucial software development. Rather, we find

several complementary technology areas which seem to offer the potential

of major increase in software reliability yet which are not sufficiently

mature that a clear choice can be made as to which is most appropriate.

This report is divided into ten sections. In Section 2, we examine

the various aspects of the conventional software development cycle.

This cycle was the basis of the augmented approach contained in the ori-

ginal grant proposal. We have formed the opinion that this cycle is

inadequate for crucial software development, and the justification for

this opinion is presented in Section 3- In Section 4 several possible

enhancements to the conventional software cycle are discussed. Software

fault tolerance is a possible enhancement of major importance and is

discussed separately, in depth, in Section 5. Formal verification using

mathematical proof is considered briefly in Section 6. Automatic pro-

gramming is a radical alternative to the conventional cycle and is dis-

cussed in Section 7- Our recommendations for a comprehensive approach

are presented in Section 8, and various experiments which could be con-

ducted in AIRLAB are described in Section 9. Our conclusions are

presented in Section 10. Finally, we present extended bibliographies on

the topics covered in this report. They are intended to provide the

reader with starting points for exploring further any of the subjects

addressed in this report.



SECTION 2

THE SOFTWARE DEVELOPMENT CYCLE

In the short term, the only feasible way to construct crucial

software is to use all of the best available tools and technologies, and

to apply them in the classical software development cycle. Even then,

they may not yield the required quality, but this determination is

specific to the system and the people involved in its creation.

The software development cycle which we are discussing in this sec-

tion is shown in Figure 2.1. It consists of only those steps typically

used at the present time in the development of software systems. As

such, it is a starting point for discussion and is simpler than the

approach contained in the original proposal for this grant.

In our review of the present state of the art, we have formed cer-

tain conclusions which relate to elements of the classical software

development cycle, each of which is discussed briefly in the following

sections.
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2..J.. Requirements Specifications

A requirements specification is a formally written statement of

what a software system is supposed to do rather than (as in a design

document or the actual code) how the system is to do it. Here, what is

required of the system is explicitly written down and can be reviewed

with the customer at the earliest stages to verify that the system to be

built actually reflects what is wanted. The creation of such a document

affords an early opportunity to review the consistency and completeness

of the idea so problems can be corrected before their consequences prol-

iferate. If the requirements specification is written in a formal

requirements language, it is possible to perform some consistency checks

automatically.

Z.JL.1. State .of the Art

Many projects, such as the original development of the A-7E

software [1], surge ahead into design without ever finding out what the

software system is supposed to do. Others do attempt to organize the

requirements specification in English prose, producing large documents

in which it is easy to get lost, which are often incomplete or wrong

(e.g. not specifying functions which the customer wants), and which are

often never read nor kept up to date (this was the case with the origi-

nal 2500 page BMD [2] requirements specification).

There is a great deal of current activity in the development of

requirements languages and analyzers. Some of the older attempts are

merely text organizers which are incapable of much more than cross



referencing usages of words in the document [3]. An apparently success-

ful method [1] provides suggestions of how to design and use forms to be

filled out about the project rather than a language per se. There are

those who contend that requirements languages should be especially

designed for restricted application areas, thus we find people working

on requirements language generators [4], Work has also been done

towards developing programs which will automatically perform consistency

and completeness checks on machine-readable requirements specifica-

tions [5],

It seems to be somewhat easier to write down the requirements for

business systems and for purely mathematical software than for real-time

systems. As a consequence, languages for those areas are much more

advanced. In the area of real-time software, hardware interfaces and

timing limitations must be specified, and priorities of goals must be

stated in anticipation of necessary optimizations. Just how best to

express a requirements specification continues to be an area of investi-

gation.

2..J..2.. Contribution to Reliability

By definition, reliability of a software system involves the degree

of its fidelity to its requirements specification. The requirements

specification should be written before further work on the system is

started. The requirements specification can be used to verify with the

customer that the developers understand exactly what is required, and

then can be used as a reference by the developers in making all deci-



sions regarding the project. The continual reference to an explicit

statement of what the product is to do cannot but help to ensure the

product's fidelity to those requirements.

If at all possible, the document should be written in a require-

ments language. When requirements analyzers become available, this

would allow automated completeness and consistency checks, this is espe-

cially important for changes during the post-delivery phase of the

software system's life. Requirements languages are designed to avoid

some of the problems of natural languages. Part of the power of the

English language lies in its ambiguity and the extensive use of context

to convey meanings. Ambiguity is inherently unsafe. For example,

although not a requirements specification, the Ada Reference Manual [6]

has for several years been a source of controversy over the meaning of

the language it is supposed to describe. Further, in a natural language

it is too easy to omit parts of the requirements specification, and the

very structure of the language prevents explicit connection of a network

of interrelationships.

A statement of requirements serves as a reference of what the

software system is really supposed to do, thus it serves as a "contract"

with the customer and with the eventual user, and can guide decisions

during design and coding. This helps to prevent "guesses" by design

analysts and programmers. It is far easier to detect and remove basic

concept faults before design than after much of a software system has

been designed (& coded!) to depend on them. A requirements specifica-

tion which is organized by the use of a requirements language can be

analyzed for such faults before a design exists to be infected by them.
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A requirements specification helps in the creation of tests which will

actually "verify" the software product since it is explicitly stated

what the product is to do in every situation. Thus, each test can actu-

ally contribute to knowledge about the system's reliability, and none

need be superfluous. If the software's response to an input is unspeci-

fied, whatever response it gives is as valid as another. Problems of

cross-accusations of what should have been assumed by whom could be

avoided if completeness checks are performed on a requirements specifi-

cation. In this context we completely reject the notion of "robustness"

in software [?]. Robust software is supposed to act "sensibly" when it

receives unexpected input in the event that nothing was in the require-

ments specification. During the post-delivery phase of a system's life,

the document continues to serve as a reference to guide proper or per-

mitted revisions. Moreover, it is an excellent place to document the

whys and wherefores of the changes, and the altered set of requirements

can be checked for consistency and completeness as before. Actually,

since the system would have been built around the requirements specifi-

cation, any changes during this period should be due to changes in what

is required of the system, which makes it appropriate to amend the

requirements specification.

2..J..3.. Activity Centers

For a survey of work in this area, see the May 1 982 issue of IEEE

Computer Magazine, in particular the chart by R. J. Lauber comparing 11

requirements languages and analysis systems on page 40 [8],



Parnas and Heninger, for the Naval Research Laboratory, Washington,

D. C. while at UNC Chapel Hill, developed a requirements specification

methodology which is applicable to flight software, since their project

was to build a system duplicating the functionality and time and space

efficiency of the A-7E aircraft operational flight program using modern

software engineering techniques [1,91. There had been no previous

requirements statement for the A-7E and the document resulting from this

project is being used by the "maintenance staff for the original

software. It is unclear how much of their success was due to the fact

that they were writing requirements specifications for an existing sys-

tem [1],

PDL [3] is a text organizing method with limited cross referencing

capabilities and, although intended for design documents, has been used

for requirements specification. A problem is that garbage text is per-

fectly acceptable to its processor.

PSL/PSA (Problem Statement Language/Analyzer) [5] is an older sys-

tem which seems to have had some success as we find many projects have

used it and there have been favorable comments about it in the litera-

ture (see the Bibliographies).

SREM (RSL/REVS) (Software Requirements Engineering Methodol-

ogy) [10,11,12,133 is available from the Ballistic Missile Defense

center in Huntsville. This system has actually been used in specifying

the requirements of a large real-time project.

As can be seen, an explicit requirements specification is highly

desirable in an effort to produce reliable software. However, the tech-

nologies of languages for its expression and analyzers of its
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consistency and completeness are not yet well established. Further,

there is nothing to assure that the document is actually used or kept

up-to-date as the life of a project progresses.
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2..Z. Design Methodology

Software Design methods are largely disciplined ways of thinking
X

through the problems the software is to solve. What the design stage is

to accomplish is the translation of the "what" description of the

requirements specification (most of the methodologies assume the

existence of a requirements specification) into an overall plan for

implementation —an overview of "how". This plan is to be written in

what has come to be known as a design language; a specialized notation

for accurately communicating what is to be accomplished to the indivi-

dual programmers who will be implementing the system. Most of the work

in discovering design methods occurred in the early to mid Seventies

under the umbrella term "Software Engineering. " Often, the process is

seen as a continuum with only a vague distinction between "gross design"

(which we are calling design) and "detailed design" (which we are cal-

ling implementation); in such cases, the design language is effectively

the implementation language.

2..2..J.. Contribution to Reliability

There are several motivations for preparing a design:

a) A thorough examination of the requirements specification for an

implementation strategy affords the opportunity of ascertaining

whether the project can be accomplished at all.

b) This same thorough coverage allows the design team to determine the

most vital areas for allocation of implementing personnel. It also
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allows the establishment of milestones for the development process.

c) A large system which is to perform a wide variety of functions

needs a great deal of organization and planning. Creation of a

design forces a disciplined approach to a problem and the resulting

document serves as a guide at every stage of development. A docu-

ment aimed at directing the implementors by limiting their scope of

concerns can serve testers as well, indicating which areas of the

software are intended to correspond to parts of the requirements

specification.

d) A design document provides a mapping from the requirements specifi-

cation to the coded software to limit the search for the modules

affected by later revisions to the requirements.

e) This documentary evidence can be used early on as a check point for

compliance with the requirements specification.

Unfortunately, the entire design process also provides more opportuni-

ties for faults to be introduced; hence, the attempts at devising

analysis tools for design languages [5], The factor which makes a

design worthwhile is that faulty decisions may be detected as they are

made rather than later when too much work depending upon them is at

stake to do more than patch.

2..2..2.. State .of the Art

This section provides some warnings about those methods considered

more likely than others to aid in creating effective designs. None of



than is a panacea. Indeed, it has been observed that most of these

methods are those which have been unconsciously employed by the best

programmers for years [14,15].

Most techniques are still at a stage in which they require lots of

"magic" [16] and often are described in very vague terms by their

devisers (see practically anything in the Design bibliography). Two

people using the same method on the same problem (requirements specifi-

cation) will rarely come up with the same design (this, the result of

experiment [16] ). Thus software design is still a game of skill, and

quite prone to human error.

The Jackson methodology [17] views a program as a transformer of

the structure of its input data to that of its output. Its area of

application has traditionally been in business data processing; other-

wise, it has not been applied in practice to large projects. Whether

the complexity of resolving structural conflicts can remain manageable

has not been determined. This is representative of the "data driven"

design methods.

In Dijkstra's Programming Calculus [18], the Floyd/Hoare [19,20]

axioms (augmented with later developments [21] ) are used to formally

derive a program from its requirements specification rather than to

prove an existing program. This method is not necessarily a separate

step from coding, and has been found difficult for the "average" pro-

grammer to understand. This method works, in the context of algorithms

involving only integers and logicals, and is included within the basis

for the recommendations below, but it can easily be mis-used through

inattention to strict logical detail, a failing for which humans are



14

notorious. The Stepwise Refinement [14] strategy (also known informally

as "structured programming11, "structured design", "top-down program-

ming", and "top-down design") is often incidentally employed to limit

complexity.

The trend towards including data abstraction mechanisms in program-

ming languages reveals a renewed respect for Parnas1 Information Hid-

ing [22]. This method has also been widely misinterpreted [23], Other

terms informally used concerning methods in this category are "func-

tional decomposition", "modularization", and "object oriented

design" [24].

The Data Flow design methods [25f26,27] attack a project by analyz-

ing the necessary itinerary of various items of information through a

network of transformations which gradually evolve the outputs from the

inputs. The choice of division among nodes of the network, however, can

often change application of this method into application of Functional

Decomposition.

Iterative Enhancement [28,29] is a simultaneous design and Imple-

mentation method in which a small portion of a system's functionality is

carried through to completion. This program is then given more func-

tions piecemeal in the same manner as the original chunk. Occasionally,

the original part may have been the prototype model.

SRI's Hierarchical Design Methodology [30] provides a set of tools

and languages which together allow the consistent use of a combination

of the above methods: top-down or hierarchical partitioning of the sys-

tem (requirements specification, design, and implementation) into

multi-level abstract machines, separation of the functions provided by
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each machine at its level, and verification of the consistency of

requirements specification, of design with requirements specification,

and of the implementing code. The code-level formal proof is (or was,

until recently) based upon the Boyer-Moore theorem prover [31].

The state of many design languages is evidenced by the fact that

Basili's "system" is simply a means of rapidly changing the syntax of

his "generic" design language [4],

A recommended overview of the more viable categories of methods,

with examples, appears in [163.

A good design is vital to reliable software, but the technology for

assuring production of or adherence to good designs is not there. We

have not progressed far beyond explicit statement of what good program-

mers have always done unconsciously. The technology of design languages

and analyzers is not very far advanced, nor is there any way of prevent-

ing their misuse. The apparently contained system of the HDM still only

allows consistent use of design methods. There is little to require

appropriate application of the system.
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Z.*3.* Programming Languages

2..3..J.. Introduction

Crucial systems usually operate in real time. Modula-2, HAL/S, and

Ada are high-level languages intended for real-time programming. In

this section, we examine some of the facilities in each of these

languages which have met with appreciation from real-time programmers

and those which have been found unsatisfactory. This examination

reviews the state of the art in programming languages.

2..3..2.. Modula-2

Wirth claims that ordinary parallel languages contain all that is

needed in a real-time language [32]. He proposes a discipline for their

use in which a correct program is built first and then optimized to tim-

ing constraints. All time dependencies are confined to interrupt

handlers and the program should not depend on any particular strategy

for process scheduling. There has been some disagreement about this

practiced ignorance of scheduling, and Wirth1 s second try at designing

Modula, which produced Modula-2, forces the user to design his own

scheduling algorithm. Confining all time dependencies to interrupt

handlers cannot be done other than in programs which merely monitor dev-

ices. A program's computational processes can produce correct results,

but if those results are not available for output when needed, the pro-

gram is useless as a real-time program. Wirth also suggests avoiding

many timing problems by adding more processors. This is fine if we have

the money and space for the extra processors and necessary wiring.
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However, the suggestion ignores the added problems and overhead of

inter-processor communication. One suggestion that seems to get agree-

ment from real-time programmers is that compilers should tell how long

each statement and overhead operation will actually take.

Holden and Wand have programmed a loosely constrained real-time

application (an operating system) in Modula [333. They label as good

the ability to give an absolute address to a variable at its declaration

and complain about the difficulty of writing disk drivers without some

generic parameter type. The latter problem is fixed in Modula-2 with

the types WORD and ADDRESS which match almost anything. Wirth [34]

claims a variable address declaration is extraneous with these "magic11

types, but was included in Modula-2 at his colleagues' insistence. Hol-

den and Wand point out that Modula1s design calls for a uniform hardware

I/O scheme of memory addressable "device registers" and may have prob-

lems on a different architecture such as ports with special I/O instruc-

tions. Modula-2 does assign static priorities to processes and pro-

cedures and these priorities are defined to be associated with those of

interrupts in the hardware, but a dynamic priority effect can be

achieved since procedures have the option of always being executed at

their own declared priority rather than inheriting the priority of the

process executing them. Thus, Modula-2 allows the user to determine

whether his application will have priorities assigned statically or

dynamically. Also, of these three languages, only Modula-2 defines what

process priorities mean in relation to the environment they must deal

with in real time.
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Hoiden and Wand say that Modula's design limits its range of appli-

cations since all processes must cooperate in sharing the processor. In

Modula (which Wirth [34] considers only a preliminary design for

Modula-2 in the sense of Preliminary Ada and Ada), a process must con-

sent to sending a signal and in Modula-2 a process must execute pro-

cedure TRANSFER before a process swap can take place. Complaints about

lack of pre-emptability in Modula-2 seem suspect in light of the fact

that pre-emption is generally achieved via interrupts as it is in

Modula-2. These complaints seem to ignore the fact that Modula-2 is

intended to be used in implementing facilities such as pre-emptive

schedulers.

Modula [33] was a basis for the YELLOW candidate in DoD's search

for a real-time language, i.e. it was a candidate design for Ada* It

was found lacking in that it does not have a fixed point/floating point

option, it does not provide for machine code inserts in the high-level

language code, it has no exception handling capabilities, it has no

facilities for specifying the machine representation of data objects,

and cannot express, in one program, operation of a multiprocessor sys-

tem.

Certain facts tend to cast doubts on the inherent efficiency of

Modula-2 [3!*]. Wirth designed his Lilith machine especially for the

language. Lilith is microcoded so that the instruction set is the

Modula-2 specific M-code. Also, his most time-critical device, the

high-resolution display, has its own bus to memory and that bus has four

times the bandwidth of the CPU's bus.
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Other obvious concerns with Modula-2 as a language for crucial sys-

tems are the relatively low level of typing in the language and the lack

of a systematic approach to constraints. Much of this was corrected in

Yellow, but that language was abandoned. Modula-2 is certainly better

than assembly languages but was not designed for, and does not aid the

development of crucial systems.

HAL/S [35] was adopted as a NASA standard flight language when an

implementation was demonstrated to have a ten to fifteen percent ineffi-

ciency in size and speed over assembly language. We point out that this

is a ridiculous metric. Efficiency is program dependent and compiler

dependent. The most important issue is reliability and that is ignored.

The language itself puts the periodicity of process scheduling,

control via wall clock time, events (hardware interrupts), and error

conditions under explicit programmer control. These things are achieved

via a large run- time library support system, and the HALMAT intermediate

language operators for many of these facilities are mnemonic for IBM

OS/360 supervisor calls. In contrast to Modula-2, HAL/S does not pro-

vide basic, low-level, facilities for tailoring an entire system to an

application but tries to assume the class of real-time programs known as

flight software and to provide a full underpinning for the user to build

on. Where the user needs access to the hardware, the language provides

the SUBBIT operator for bit manipulation and an implementation provides

jfMACRO's rather than allow assembly code insertion. This allows com-
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piler checks on usage while providing high-level access to machine

idiosyncrasies.

From the literature, HAL/S does not seem well known outside of

INTERMETRICS and NASA. A brief description of some of its real-time

related constructs follows. The words in upper case are keywords of the

HAL/S language.

Outside of implementation-specific ^MACRO'S, there is no absolute

addressing. Data storage may be AUTOMATIC (allocated only as long as a

procedure is activated), STATIC (allocated as long as the program exe-

cutes), or TEMPORARY (allocated only while a few statements execute).

Data may be DENSE (packed), ALIGNED on unspecified "appropriate"

hardware boundaries, or RIGID (laid out in memory exactly as described

in the declaration). ACCESS rights may be associated with data objects

and they may be grouped into LOCK groups for mutually exclusive access

through UPDATE blocks by tasks. Events are boolean-like variables which

may be LATCHED or not (able to hold a true value for more than an

instant or not). All communication among tasks is through shared vari-

ables. Separately compiled entities access data via a FORTRAN COMMON-

like facility known as COMPOOL's. Procedures and functions may be

expanded INLINE or may be specified to be REENTRANT or not. A degree of

optimization for common flight software applications is achieved by vir-

tue of the special VECTOR and MATRIX operators and data types. A task

may be stopped by another task by two methods: CANCEL allows the current

instance of the task to continue to completion but prohibits any

scheduled future instances of it, whereas TERMINATE destroys the current

instance as well. A task may WAIT UNTIL a certain wall clock time, WAIT
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for a certain length of time, WAIT FOR a combination of events to become

true, or WAIT FOR DEPENDENT'S to terminate. A hardware interrupt or a

task may SET an event variable true or RESET it false or may make it

true momentarily via SIGNAL. When an event variable changes values,

eyery event expression which has been reached by any task must be fully

re-evaluated to determine if the task is eligible to proceed. Error

conditions within a class or entire classes of errors may be raised

(SEND ERROR. . . ) , and the set of error handlers may be dynamically

changed by declaring and removing them (ON ERROR... statement; and OFF

ERROR. . . ) . As a special case, errors may be ignored or passed to the

support system with an optional change to an event variable (ON ERROR...

SYSTEM... or ON ERROR... IGNORE...) .

The most attractive statement in HAL/S for the.real-time programmer

'is the SCHEDULE statement. A task may be scheduled to begin execution

AT a certain time, within (IN) a certain time interval of the current

time, or ON the occurrence of true evaluation of an event expression.

It is required to be started with a priority, and may be made DEPENDENT

on the continued existence of the task executing the SCHEDULE statement.

Execution of the task may be made to begin anew EVERY so often or a cer-

tain amount of time AFTER it completes. Such repetition may continue

WHILE an event expression holds true or UNTIL an event expression

becomes true or UNTIL a certain time. All this may be specified in a

single SCHEDULE statement, and once started, a task's priority may be

changed by the UPDATE PRIORITY statement.

On the surface, HAL/S seems to provide everything a real-time pro-

grammer could want; particularly if a compiler could guarantee the



22

scheduling requested in each SCHEDULE statement. Carman [36], however,

describes several problems with HAL/S in the Space Shuttle project.

On occasion the project was forced to take risks by changing shared

variables outside of UPDATE blocks. This casts some doubt on the util-

ity of any language which prohibits shared variables or their unpro-

tected update. Either the implementation (one of three [37] ) of HAL/S

used by the project did not support or the project did not use the fol-

lowing features: DEPENDENT, REPEAT AFTER, TERMINATE, WAIT UNTIL, and ON

ERROR. UPDATE PRIORITY was rarely used, which implies that the need to

change a process1 priority is rare in real-time programs but probably

vital when it does arise. Also, the implementation imposed severe lim-

its on the complexity of event expressions that could be used. This

last rule was probably imposed to cut down on overhead since all event

expressions must be re-evaluated on any event change.

The original coding of the Shuttle software [36] turned out to be

plagued with throughput problems. For example, the I/O via READ/WRITE

statements or $MACRO's was too expensive. The project called for the

various machines to synchronize at most support routine calls. And

there were too many processes, resulting in scheduler queue overflows.

It was also apparent that, even with a SCHEDULE statement, timing con-

straint calculations had to be made by hand or with the aid of FSIM, a

functional simulation tool. The solution chosen was to break up certain

tasks into procedures and change the support executive to call these

procedures in an order determined by table-lookup, a technique employed

in many assembly language real-time programs [38].
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The generalized scheduling constructs of HAL/S, a language designed

for flight software, were found to be too inefficient in practice and

some parts were not implementable. Tripathi, Young, Good, and Brown, in

describing a verifiable subset of HAL/S and before completion of a ver-

ifyability study of Ada, concluded that a project should choose Ada over

HAL/S, noting that Ada has all the capability of HAL/S and more [39].

Apart from the functional criticisms of HAL/S, there are major

deficiencies relating to reliability. The language offers relatively

poor typing (no programmer defined types, for example). The process

communication mechanism, which relies on shared variables, is archaic

and very error prone. It is not amenable to automatic checking for

deadlock and similar difficulties. The control structures and expres-

sion structures of the language are also very poor. They are oriented

more towards ease of programming than reliable programming.

Ada was chosen as meeting the DoD's specified requirements for a

real-time language. It, like Modula, has gone through at least one re-

design after public comment. These comments came in a wide variety.

Some were objections to necessary features on purely aesthetic grounds,

e.g. the ELSE within a SELECT statement was found "nasty", although it

is needed for proceeding in the face of communications breakdowns or

time-critical processing [40]. Some were specific suggestions about

preliminary Ada which were included in "final" Ada, while others were

disagreements other about whether it was easy to program a favorite
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solution to some pet problem. We use the word "favorite" since it is

often not the case that "you can't do X in language Y" but instead "you

can't do X in language Y by method Z" [41].

Boute [42], in a study of preliminary Ada on representative commun-

ications control problems found it "very satisfactory", noting that the

complexity and structure of the solutions matched that of the problem

statement. On the other hand, Roberts, Evans, Morgan and Clarke [1*33,

also looking at communications control and claiming experience in that

area, say that the rendezvous mechanism is overly general and a poten-

tial time waster for message passing within or among processors.

Specifically, a message that does not even need acknowledgement cannot

be sent without at least four scheduling operations and that the sender

is tied down until the receiver is finished reading the message. They

state that Ada's philosophy is wrong for this application in that data

rather than processes should be queued.

Mahjoub [44], also in the area of distributed processing, is more

concerned with the asymmetry of the rendezvous. A task cannot know the

sender of a message and messages cannot be broadcast. The concern with

the asymmetric rendezvous seems to be a common one in resource alloca-

tion and scheduling [43,45J f although there is a solution to this prob-

lem, involving creation of a resource task. An early problem [46] with

scheduling was fixed in "final" Ada with task types so that manipulable

structures of processes could be created. But problems with scheduling

persist. Haridi, Bauner, and Svensson [4?] and Mahjoub [44] favor

static assignment of priorities by the user but, as we have noted, there

are applications in which dynamic priorities are necessary. People
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examining preliminary Ada [43] (before introduction of families of

entries) found the rigid FIFO queue organization prevented urgent

requests and tended to flatten different priorities to one level.

Mahjoub [44] says that real-time programmers need to be able to write

their own schedulers since different algorithms will be optimal for dif-

ferent applications. Roberts et al [43]. agree and declare that, to

build a scheduler in Ada, one is building one scheduler on top of

another, thus multiplying the overhead in what, in practice, is already

a tight situation. Different applications have different ranges of

speed requirements, some of the more highly constrained of which need

radically different organizations. They conclude that Ada offers the

wrong level of granularity of parallelism.

The method of inclusion of interrupt handling in Ada met with mixed

response. Bennett, Kornman, and Wilson [48] and Haridi, Bauner, and

Svensson [47] were in favor of it, but Mahjoub [44] was concerned with

response time in that the handler task might not be scheduled right away

or worse, might take a very long time to reach an accept for that entry.

The semantics of several Ada statements could result in bad states

in a distributed system [44]. Between initiation and termination of an

ABORT statement, a task might be able to communicate with another which,

by virtue of being on another machine, has not been destroyed yet.

Alternatively, a centralized knowledge base of what is alive and what

isn't which had to be interrogated at every call would present a

bottleneck which could easily bring a system down. The semantics have

been revised in ANSI standard Ada to alleviate such situations [49].

Other potential overhead problems for real-time systems involve the
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implementation level, the machine code insert capability was found use-

ful [48] but dangerous if used unnecessarily.

There have been a few experiments and analyses of the potential

efficiency of Ada implementations. Hapidi, Bauner and Svensson [47]

created a model intermediate language for Ada and ran (it may have been

interpreted) programs hand-translated into it against a real-time ver-

sion of C. The results of this experiment were deemed favorable for

Ada's efficient implementation. Eventoff, Harvey, and Price [52] did an

analysis of a generalized monitor based language vs. Ada's rendezvous on

multiprocessor shared memory systems. They concluded that each approach

was better suited for its own set of classes of applications. The moni-

tor approach imposed less overhead for problems involving asynchronous

communications and buffered synchronous communications while the rendez-

vous was better for problems requiring direct synchronization and prob-

lems which exhibited any degree of contention.

2.'3.'5.' Summary

Programming languages have received a great deal of attention over

the last thirty years and yet new ones continue to be designed. The

reason is that no programming language yet devised is perfect. The

design of languages is not a suitable problem for the short term, but

the proper choice of an existing language to use is. There are many

languages that are suitable for describing crucial software. Ada,

HAL/S, and Modula-2 are examples.
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The difficulties lie in finding a language:

a) which is of modern design,

b) which received sufficient care and analysis during its design,

c) which has a precise,, formal definition,

d) for which compilers exist for the machines of interest,

e) for which validation of compilers and run-time support systems

(within the current state of the art) is available,

f) and for which rigid configuration control of the language exists.

In the short term, these apparently minor issues are the really impor-

tant issues. Differing opinions on what a language construct means, or

subtle faults in compilers are major causes of faults in programs, but

which have nothing to do with the programming language itself.

In practice, the only programming language which has faced all

these issues and attempted to solve all of them is Ada. In addition,

Ada is the only widely known and soon to be widely available language to

include facilities for data abstraction. These facilities make the more

modern design methodologies (such as Information Hiding, the Jackson

method, and the Yourdon and Constantine system) far easier to use, and

far easier for their use to be enforced. We conclude that Ada is the

only choice of programming language for constructing crucial systems in

the short term, and that language design is such a massive project that

it is inappropriate for NASA to consider it. However, there are inade-

quacies in Ada and in the description of Ada. Short term investigations

of the use of Ada and into its formal definition are appropriate in sup-

port of crucial software development.
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Although we prefer Ada to the other extant candidates for program-

ming languages for crucial real-time software, we still bemoan the fact

that Ada was not designed with that purpose unwaveringly in mind. Ada,

despite the original goals, was designed to do "everything for every-

body". Hence, there are many aspects of the language which are not

verifiable. Ada provides facilities which the community has deemed

necessary to the creation of reliable software, but practices which lead

to unreliable software cannot be prevented in any language with current

technology without removal of features which are truly necessary.
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2..JL. Testing

Programmers have been running their programs against sample inputs

to see if they "work" since the first fault was ever found in a program,

yet no one has managed to move testing out of the world of ad hoc

methods. The situation seems best described by the following quote:

We know less about the theory of testing, which we do often,
than about the theory of program proving, which we do sel-
dom [53].

As long as humans are involved in the transformation of specifica-

tions of ideas into programs, we cannot be sure that no faults have been

introduced without testing the resulting programs. The problem lies in

choosing the set of tests which will uncover any faults in a given pro-

gram. There are kinds of faults which we know about and can categorize,

but there are also faults of a very much more subtle nature which are

heavily involved with the semantics of the individual program and which

we do not know any general way of detecting.

2..JL.JL. State .of the Art

Despite some attempts [53t5̂ }, no one has yet completed a formal

theory upon which to base the activities we call testing. Many of the

proposed methodologies appear to be attempts to systemize the ad hoc

methods of experienced program testers and to find systematic means of

detecting types of faults which it is known that programmers commonly

introduce. This may be in the hope that some formalism will fall out of

such efforts and that an organized approach will help avoid wasted test-
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ing effort in the mean time. Some directions concentrate on categories

of faults while others tend to concentrate on the input spaces of the

programs under test. One thing which must be remembered about testing

real-time software is that one of the dimensions of the input space is

time in that the behavior of the program usually changes over time for

the same inputs. This complicates any testing strategy since the poten-

tial exists for, say, a program which reads two input values to require

an infinite number of tests with different spacing of the inputs in

time. Just when is enough enough? Statistically based reliability

estimation and, of course, the exhaustive testing method, however, seem

to be the major offers of a strategy for telling when to stop testing a

given program [55,56,57]. Yet, there is a great deal of controversy

within the reliability estimation camp about which basic theory of

statistics applies, and exhaustive testing for real-time programs can be

impractical.

There are known types of faults which seem to evade these efforts:

With most testing methods, missing path errors are only detected
by mere chance. In fact, missing path errors cannot be found
systematically unless a requirements specification is available.
A correct requirements specification would describe all the
cases that should be handled by the program [58],

The allusion in the above to the unavailability of requirements

specifications brings up a point of difficulty in testing. Due to the

fact that in practice a program often reaches the testing stage without

anyone having bothered to create a requirements specification, testers

often have nothing but their own intuition to use in determining whether

a program run against a test case has passed or not.
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Another difficulty In testing is that programmers often try to

"cover" themselves by including redundant conditionals in their pro-

grams. This fact often makes it difficult for a tester to determine

whether a section of code is mistakenly unreachable or whether the con-

ditions being evaluated are simply impossible. Further, it seems to be

as difficult to create tests which create exceptional situations which

the software is supposed to recognize as it is to create test cases

which are intended to "stump" the software.

2..JL.2.. Contribution to Reliability

Without a formal theory, testing will only do two things for us:

a) It will assure us that, for the statistically meaningless set of

inputs which we have tried, a program or system of programs

"works."

b) It will give an unjustified increase to our subjective feelings of

"confidence" in our software systems.

With a formal theory of testing, a set of tests performed in line with

the theory would give a level of assurance of the program's correctness

comparable to that given by a formal proof of correctness (without human

mistakes in the proof). Short of a formal theory of testing, exhaustive

testing (when possible) is by definition a proof of a program. Without

a formal theory and with no possibility of exhaustive testing, the

activities now pursued give a wholly unjustified confidence in programs.
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2..JL.3.. Testing Techniques

In this section we give a list and brief explanations of the test-

ing techniques which have been proposed in the literature.

a) Execute JSvery Line

Since it is impossible to have tested everything that a program

does without trying each statement in it, it at first seems reason-

able to create a set of test cases which together cause the execu-

tion of each statement in the program. This does generate a good

number of test cases but it does not follow that executing each

statement in a program exercises all of the program's functions.

b) Branch Testing

One of the ways functionality can be missed by simply executing

every line in a program is for the program to contain a simple con-

ditional branch around a statement, call it 'S1. The strategy of

executing each statement would generate a test case which caused

evaluation of the conditional to allow the statement 'S1 to be exe-

cuted, but would not generate the test case which took the other

side of the branch. Branch testing is designed to make certain

that each statement is executed and both possibilities are tried

for each conditional branch in the program.

An example of a fault which Branch testing can miss is as follows.

Suppose a statement being guarded by a conditional branch is sup-

posed to be performed only under condition 'A1 yet the program as
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of conditions 'A1 or 'B'. A test of both sides of the branch might

be created containing two test cases, one in which 'A1 was false,

and one in which 'A1 was true. If 'B1 happened to be false in both

test cases, we have a situation in which, although both sides of

the branch would be exercised, the fault in the conditional expres-

sion would not be detected.

c) Path Testing

The idea here is to execute each possible path in the code as a

method of checking the program's functionality. Executing each

path is different from taking both sides of each branch. For exam-

ple, if the code contains a loop for which it is possible to exe-

cute the loop 0,1,2, or 3 times based on particular input values,

that loop contains 4 paths and thus requires 4 test cases. Should

that loop be nested within a similar loop, the number of test cases

required to test all paths in the loops is multiplied. Path test-

ing cannot consistently detect paths which the requirements specif-

ication (if it exists) calls for but are missing in the coded pro-

gram. For programs of a practical size, the number of possible

paths approaches the size of the input space, so, to keep from

testing forever, limits need to be made on loop executions or a

closed form for loops needs to be proven to make this method prac-

tical. '
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d) Structural Testing (Also called White Box Testing)

The internal structure of the program as coded is used as a basis

for choosing test cases. In using such test cases, the entire

functionality of the program as coded is supposed to be revealed

and that is to be compared with the specified requirements.

Several other methods fall under this category. At one level the

structure of a program is given by the conditional branches and

call structure. However, one can also see a program's structure in

other components. Geller [51*] attempts to formalize structural

testing.

e) Functional Testing (Also called Black Box Testing)

Functional testing attempts to test against the requirements

specification for functionality. If the requirements specification

states that the program should function in a certain manner when

confronted with a category of inputs, it is tested with instances

from that category. Test cases are chosen as if nothing other than

the required behavior were known about the coded program being

tested. It has been noted that this method cannot catch all faults

since the method does not know anything about the coded program's

internal structure i.e. the program may check out perfectly well

but may behave properly only for the inputs used in the test and

branch off into code which does something else entirely for other

inputs.
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f) Exhaustive Testing

All possible inputs are tested. One might think this impractical

if possible, and improbable if (as in most cases) there is a large

input space, but on current computers even the representable number

of 'real1 numbers is finite. With VLSI technology, it may become

reasonable to create a large array of chips to generate test cases

and run tests to exhaustion of the input space for a program. For

truly crucial software, the cost of creating and running the VLSI

chip array for years if it takes that long may be justified if a

formal theory of testing is not found which can definitively give a

more limited set of test cases for each program. Note that an

exhaustive test of a program is by definition a proof of the pro-

gram. All of the other test methods are capable of missing serious

faults while the only problem with exhaustive testing is the large

number of cases which must be run.

g) Error Seeding (Also called Mark-Recapture Testing)

In the error seeding strategy, a predetermined number of known

faults are deliberately introduced into a program and arbitrary

test cases are applied to the program (preferably by someone who

does not know how many and what faults were seeded). At any point

during testing, the percentage of seeded faults found is supposed

to approximate the proportion of the naturally occurring faults

which have been found so far by those tests. There is no reason to

believe that the number of seeded faults is anywhere near the

number of natural faults in any given program, nor that they occur
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with a similar distribution. Also, the seeded faults would be

manufactured by humans and as such would reflect the kinds of

faults humans expect themselves to introduce. This biases the dis-

tribution of the seeded faults toward the first few kinds of tests

the testing staff would try anyway. All of the seeded faults would

be found quickly whereas the truly subtle and difficult faults

would remain hidden.

h) Statistical Testing

Test cases are chosen via statistical sampling of the input space.

Because real-time programs usually deal with the physical world,

statistical testing is not likely to generate a realistic set of

tests. Changes in the real world are smooth and gradual whereas a

random sample from the input space is likely to vary widely.

i) Error-Based Testing

Experience with programming computers tells us that there are cer-

tain kinds of faults which we, as humans, commonly introduce.

Erpor-Based Testing is an approach to testing in which test cases

are designed especially to detect these kinds of faults. Unfor-

tunately, we do not have a complete list of faults which humans can

introduce, so no such set of tests is likely to detect all faults

in a given program. Subtle faults are difficult to classify and

more difficult to ferret out with classification-oriented testing

strategies. This represents the brute-force approach to learning

from experience.
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j) Mutation Testing

Mutation testing derives from error-based testing, but as a metho-

dology, seems to contribute more indirectly through evaluating the

effectiveness of the test set than directly through testing the

program. The required program and the coded program are thought of

as being instances within a "cloud" of similar programs each of

which differs from the others only slightly. The idea is to

repeatedly transform the coded program P into similar programs P1

by changing small parts of P. The set of test cases is run through

P* to see if the test set is complete in its ability to distinguish

between P and P1. If not, the tester must find a test which will

distinguish outputs from the two. Each mutation transform is said

to correspond to a class of faults. Among advocates of mutation

testing, there seems to be a consensus that no more than a one

"change" difference between P and P1 is necessary to test the test

set's effectiveness i.e. each P1 is created via one small altera-

tion to P. This method seems to call for combinatorically many

more "runs" of tests than the size of the program being tested. It

is difficult to tell how this process is supposed to determine

whether the coded program P is the required program. For example,

mutation testing cannot detect errors of omission where some part

of the requirements specification is not satisfied.

k) Partition Testing

Goodenough and Gerhart [53] explain this and offer basic defini-

tions and theorems which seem to be acknowledged as a good basis
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for a formal theory. Briefly, the requirements specification is

analyzed to determine a set of equivalence classes (partition) on

tuples of the input space. Running as a test case one tuple from

any equivalence class of the partition is completely equivalent to

running as test cases all tuples in that equivalence class. Thus,

exhaustive testing can be achieved by running one test case based

upon one tuple from each equivalence class of the input space.

This seems like an ideal test method since it limits the total

number of tests needed and is equivalent to exhaustive testing.

The problem with this method lies in determining the equivalence

classes. For realistic programs, this is not a solved problem.

1) Domain Testing

This is a refinement of Path Testing in conjunction with partition

testing. Tests are devised to make sure that the set (domain) of

inputs driving each path is correct, i.e. that the partition of the

input space defined by the requirements specification and the par-

tition of the input space effected by the coded program are one and

the same. Some of the limiting factors are that this method with

current technology cannot handle other than simple conditionals and

that it cannot detect mutually canceling faults. There seems to be

some merit in this approach as a lead-in to a testing formal-

ism [58].



40

m) Boundary Value Testing

Test cases are created to exercise each conditional in the program

as close as possible to the point where it changes between True and

False. This is a limited form of component testing where the com-

ponents are conditional expressions controlling branches.

n) Range Testing (Also called Stress Testing)

Same as Boundary Value Testing except the extrema of the ranges of

values of each variable and input are exercised as well.

o) gomoonent (Unit) and Integration Testing

Each component of the system is tested as a separate unit using

whatever method is preferred, and test the combination of com-

ponents (the entire system) for functionality as an assemblage of

known-to-be-correct parts. Some people seem to have the idea that

this can be done recursively.

Psychologically, we need to test our software before entrusting the

safety of ourselves or our equipment to it. Practically, we find that

the methods we use in testing are inadequate to the task. The hopes for

formal theories upon which to base testing strategies worthy of our

trust have not yet come to fruition, and may well never do so.
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2..S.- Programming Environments

A Programming Environment is the group of tools employed by humans

to develop and, later, revise softw.are. Much of the paperwork involved

in such things as version control, data dictionaries, and management

reports on programming projects can be considered drudgery and as dis-

tractions from the task at hand (building software). It seems reason-

able to try to migrate that work onto computers as we have migrated much

of the bookkeeping of programs to compilers of high-level languages.

Although reasonable, this has seldom been done.

What work in the area has been done in the past seems to be disor-

ganized and skewed toward the initial coding section of the software

life-cycle. The reasons for this seem to be summarized by the following

observations:

The financial structure of many software producers is that pro-
duction costs are a liability but maintenance costs are an asset
or income ... In academic environments, using a portion of
another person's code is often considered cheating. No credit
is given for producing reusable software [59].

A few attempts, notably the Programmer's Workbench and the National

Software Works, have been initiated to collect and implement on comput-

ers some of the tools which designers and programmers typically

use [60,61,62]. More recently, with skyrocketing software costs (both

in development and later revisions) and increasing complexity of sys-

tems, the DoD has become concerned about both automating the tools and

integrating them. The DoD has commissioned the construction of

integrated Ada Programming Support Environments (APSE's) [63,64] and the

NBS [65], in the Spring of 1981, studied what can be done with today's
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technology for medium and large software projects and what directions

funding of research should take in the next five to fifteen years in the

area of integrated environments for the entire software life-cycle.

We have had limited language specific computerized environments for

years. Interactive BASIC, APL, and LISP systems have usually had their

own file systems and editors, have been able to detect and notify the

programmer about syntax and context-sensitive syntax errors as programs

are entered. They have run-time systems capable of indicating errors in

terms of source lines or statements. Some are capable of backing up,

allowing source changes at execution time, and otherwise suspending exe-

cution while the programmer does other things, and have uniform and

omnipresent sets of commands so that a programmer, for instance, does

not have to "leave" the editor in order to "get" another file. A par-

ticular system, INTERLISP, has included many of the other capabilities

and features to be described below [66,6?]. Two of the primary quali-

ties these systems have in common, and which are seen to be the enabling

qualities of other planned environments, are that programmers deal with

the systems interactively and that the tools in the systems "know" about

each other and about the programming language.

Working from this starting point, much of the effort which has been

put into programming environment research has gone into "smart" editors

and source level debuggers [68].

Noting that we have been using text editors or other context-

ignoring systems (e.g. CDC's UPDATE) to enter and alter programs in com-

puters, and noting the success interpretive interactive systems have had

in detecting errors as they are entered and the fact that the trend in
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becomes reasonable to consider syntax-directed, language-specific edi-

tors for entering program text. The use of such editors could eliminate

compilations which are used only to detect and remove syntax errors.

Since we are dealing with high-level languages, it is silly not to debug

in terms of high-level language statements. Thus the idea of syntax-

directed interactive editing is extended to source-level debugging in

which one is able to interpretively "run" partial programs using such

techniques as "stepping" through statements, substituting values, back-

ing up, forcing branches, and making source-code patches while debug-

ging.

As currently implemented [69»70], many such editor-debugger systems

do not actually deal with a source code "file" but immediately internal-

ize the input characters so that they use a data structure directly

analogous to the syntax. In combination with CRT's they automatically

"prettyprint" the source display as it is entered and might flag errone-

ous text in "reverse video" characters. Some even use color [71]. What

does this buy in terms of reliability of life-critical software? We

save syntax error debugging runs, and individual programmers on large

projects can try out decisions in early stages without waiting for later

testing stages when such decisions and any possible alternatives may

have been forgotten.

The Cornell Program Synthesizer [70] allows a programmer to "hide"

sections of code to abbreviate the source so all of the currently

interesting parts can be displayed on a CRT at once. It also moves the

CRT's cursor around from statement to statement on the screen as its
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debugger "executes" them and presents a running display of variable-

value pairs on part of the screen; the speed and direction of such "exe-

cution" can be controlled by the programmer and suspended or altered at

any time. Statements are entered by selecting and filling in templates

and errors are tolerated but flagged until corrected.

Work on improving the hardware of programming environments is being

performed [72]. Noting that humans usually refer to several documents

and several areas of a source program at once, this research is concen-

trating on how to partition screens and provide for multiple screens and

still provide portable software and coherent, easily learned controlling

commands as part of the command language of the environment.

Of course, the computerized tools already in use would not neces-

sarily be abandoned. Since the editor would parse and internalize pro-

grams, a complete compiler is not needed. Rather we would need code

improvers, code generators, and simulators for host and non-host target

machines. The internalized form from the editor could also be fed into

a static analyzer.

One ingredient considered essential to an integrated environment is

a uniform command language. The language should be well human

engineered with extensive help facilities which could, in advanced sys-

tems, even be anticipatory. The UNIX approach of keeping manuals on-

line is seen as a large step in the right direction but has the failing

that one must know (the name of) what one is looking for in order to

find it. Although experimental systems are geared (consciously or oth-

erwise) to be used by experts (their creators), actual environments must

be able to serve novices with equal ease. The command language should
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also be omnipresent: within reason, any command should be valid at any

time. If the programmer is in the middle of using a tool when he

remembers he needs to start up another, he should be able to call upon

that other tool without abandoning the current tool, and the command

language interpreter should be able to figure out the object and change

of viewpoint without being explicitly told.

There has been considerable discussion on the degree of granularity

or tool size and the amount of integration desired in an environment.

Experiments with programming environments have ranged from the monol-

ithic (a single gigantic program) such as INTERLISP [66], to the tool

box approach provided by UNIX [73»7^]. The monolith is seen as being

less flexible and as hindering creation and inclusion of new tools pro-

vided by programmer-users. The tool box can be a jumble of bits and

pieces so that a programmer must expend great effort just in picking out

and properly composing the tools needed to perform even a simple opera-

tion. The trend seems to be toward small tools which can be composed,

but for the environment to figure out which ones are applicable and how

to compose them (i.e. for the tools to compose themselves), and for the

environment to be easily told about and include new tools. There is

also a strong trend toward having many tools running continuously as

independent processes unseen by the programmer.

File systems and systems for keeping up with what is in each file

play a major role in large projects. Does a given file contain a

requirements specification, design specifications, source text, compiled

binaries, executable code, implementor documentation, or test data for a

given module? Where are all of the source modules for a given project
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as they existed six weeks ago? Where is all material relevant to a cer-

tain paragraph of the system design document? Once a project gets to

the stage of needing versions of modules, especially for revisions long

after the original teams are gone, the picture gets even more compli-

cated.

Most, if not all, environments involve a well-coordinated database.

The database should manage objects (files), remembering properties about

each one and managing relationships between objects with like properties

and between objects whose properties exhibit dependencies. For security

and information hiding in large complex systems, it should also provide

and use access controls on its objects. All tools can be seen as creat-

ing new objects with properties relating to pre-existing objects. It is

suggested that, in concert with the command language help facilities,

the database could also serve as a kind of "Ann Landers" to field pro-

grammers' questions about policies, relationships among objects and

groups of objects, and even "how to" questions to prevent people from

constantly having to "re-invent the wheel", all the while avoiding vio-

lations of information hiding and security rules. ,

In heavily integrated systems, tools might monitor other tools1

transactions with the database and initiate still other tools automati-

cally when changes occur in objects which are related to other objects

by dependency relationships. For example, a change and recompilation of

an Ada package could trigger automatic recompilation of units which use

it. Such tools might also insist that the original change be related to

some report or test failure or try to aid the system documentation by

obtaining some other sort of verification stamp.
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Other tools (such as the Programmer's Assistant [75] ) might be

able to un-do a programmer's mistakes. This has implications for a

database since a mere trace of a programmer's transactions is insuffi-

cient: the database must remember everything, all versions of all

objects that ever existed for a project and their properties and rela-

tionships. A line of research arises here into how to compact this

tremendous amount of information. One proposal is that, rather than

keeping redundant information, the environment should keep a history of

all objects and re-generate individual objects when needed.

Integrated programming environments are envisioned to have every-

thing from the original requirements document in machine-readable form.

Some distant prospects exist for specialized editors which "know" about

the various kinds of documents in the system as the above mentioned

smart editors "know" about programming language source. There is also

the suggestion that such a requirements editor or design editor might

feed into a quick prototyping tool which eventually might evolve into a

program generator needing only a small amount of human "help" in the

form of answering questions about ambiguities in the requirements

specification.

Configuration management tools might monitor various releases of a

system: who got it, did each recipient get all "fixes", etc. Such tools

would track complaints, making sure someone handled than, and following

them through changes and re-testing of modules and being sure the new

configurations were actually released to the correct sites. All tests

should be kept automatically by the system from the first test of a par-

tial code segment on the source level debugger through to system
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them (which are still applicable) as part of any change before release.

In line with testing, there might also be automatic theorem provers

whose results could be used to keep down the numbers of necessary tests.

One proposal would have management select a methodology or set of

methodologies, based on the project's application domain, which then-

ceforth would drive the environment with respect to the project [76],

This suggestion is consistent with the goal of not having a particular

methodology inherent in an environment yet guarantees that all program-

mers abide by management's rules. An environment could provide further

management tools by automatically keeping track of who is working on

what project/module, the amount of time and money being spent, and when

the person moves on to something else. For instance, he might mark a

module "complete" or signal that he has dealt with changes necessitated

by some complaint or design, etc. change. The environment could also

generate reports about these activities for purposes such as scheduling

personnel and monitoring the progress of the project. Other reporting

tools might include redundancy reporters and schedulers of review ses-

sions based on some combination of elapsed time, percentage of the sys-

tem that has been changed, and faults reported, etc.

An important consideration for environments for large projects is

that often they are scattered over great distances and among many organ-

izations. It has been proposed [77] that environments be designed flex-

ibly enough to themselves be distributed with parts communicating with

each other, or to adapt to dealing with other, perhaps manual, environ-

ments in a secure manner. UNIX has mail and news systems which can
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or on the same site, but is considered by this proposal to be too gen-

eral. A mail system is desired in which not just any text can be sent

and in which receipt must be acknowledged and, for action requests, in

which the acknowledgement must include an agreement or suggested alter-

native routing.

This has been an extremely brief survey of some of the things

researchers are trying to do and are thinking about doing with program-

ming environments. For more depth, it is suggested that one read [65],

and for an analysis of the prospects of introducing efficient environ-

ments into the everyday world of programmers in the field, that one

read [59].

The technology of programming environments as currently implement-

able [65] does not go far beyond collections of "good" toolsets

appropriate to general software construction. The prospects for the

future are brighter for well-organized, cooperating systems which may

have a chance at enforcing adherence to those methodologies deemed more

likely to produce reliable systems. Unfortunately, that day is not

here. The current toolset approach has the same failing noted in the

other areas examined in this section: The approach allows rather than

enforces practices which may lead to the development of reliable

software.



SECTION 3

Enhancements To The Conventional Software Development Cycle

3..J.. Overview

The conventional process of developing software might be made more

reliable through the inclusion of several advanced techniques and a con-

trolled reorganization. Appropriating the prototyping concept from

other fields permits rapid feedback from customers on the accuracy of

the specified requirements and opens the producers' eyes to the problems

which will present themselves during full development. Re-use of the

work of others in the form of components limits the effort required in

implementing and verifying a new system. An integrated environment can

organize and enforce the flow of activities in the process, carry out

some transformations itself, and provide the "memory11 necessary for

life-cycle-long configuration and enhancement control. Closing the gap

between requirements specification and implementation languages through

development of very-high-level languages (VHLL) would enhance the abil-

ity to simulate proposed designs before committing to them and would

lessen the chances of introducing faults into design and implementation

due to improper semantic mappings.

The cycle itself needs reorganization to place the decision-making

and checking in the proper order and relegate to their proper roles less

beneficial activities. Often, in the conventional process, implementa-

tion decisions are made during the design phase, no checking for design
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validity is done until test cases are run on the implementing code, and

the current state of testing methodologies is such that developers place

unjustified importance on that part of the process. One proposal for

automatically enforcing the ordering on activities in the cycle is embo-

died in the SAGA system. Here, a program enforces previously-defined

rules governing which commands (such as "EDIT design document" op "COM-

PILE modulex") are valid at any given point in the development process.
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3..2_. Software Prototypes

In most engineering fields, a full-scale product is never attempted

before a pilot plant or prototype version has been built and operated to

the satisfaction of both producers and customers. This has rarely been

the practice in software development projects. Software prototyping has

grown out of experiences in which software systems have been completed

only to be immediately scrapped because the customer realized too late

that the product specified and built was not what was wanted [15].

Software prototyping technology is becoming a useful tool that

should be pursued with a view to applying it to crucial software. The

New York University implementation of Ada using the SETL system is a

superb example of prototyping. The prototype implementation proved that

Ada could be translated, to counter the arguments of those who could not

design compilers for it. It provided early feedback to the language

designers about things which were indeed unimplementable. And it

allowed the Ada Compiler Validation Capability (ACVC) development to

proceed in parallel with other translator development projects, since

proposed validation suites could be tried out on the prototype transla-

tor before anything else existed. There has been substantial criticism

of the NYU Ada translator because it executes very slowly. The critics

are missing the key point that in this prototype, speed has been rou-

tinely sacrificed for functionality.

SETL is not particularly application specific although it is

clearly more appropriate for prototyping compilers than control systems.

Systems oriented to control systems1 prototypes could probably be con-

structed on the SETL model.
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An overview of the issues and work being done in software prototyp-

ing can be found in [78]. There has also been an NBS workshop on rapid

prototyping a report on which is to be included in an issue of Software

Engineering Notes in the Spring of 1983 [793.

To be reliable, a software system must conform to its requirements

specification, but it cannot be built to meet requirements which are not

known. A prototype model enables the customer to notice the absence of,

and make explicit, requirements which had been assumed but not previ-

ously specified or the presence of things specified unintentionally.

Large systems' requirements tend to change while they are being built.

The early use of a prototype can serve to stabilize system goals sooner

in the cases where changes to requirements were due to capabilities pre-

viously "left out" of the requirements specification. Often the origi-

nators of the requirements specification will not have experience with

making explicit such things as a system's desired behavior. So it is

difficult for analysis of the requirements specification to produce an

accurate depiction of the behaviors wanted. Such problems can be

ameliorated by allowing the eventual users to exercise a rapidly built

prototype of the system. As in the above example of the SETL Ada imple-

mentation, a prototype may be used to experiment with possibilities for

dealing with novel problems. Thus, production of a prototype serves as

a means of verifying the transformation of the original idea to machine

readable requirements specification. In that they will most likely

build the prototype quickly while examining the original requirements

specification, it gives the highest people on the production staff a

chance to foresee some of the problems to be encountered later on.
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Often, the most risky or uncertain aspects of a problem are placed into

the prototype while more pedestrian aspects are ignored for the sake of

cost savings on this version which will be thrown away. The analysis of

what to leave out in the simple prototype helps to establish a basis for

later application of functional decomposition. The Irvine report [78]

offers several examples or real prototypes and the kinds of functions

emphasized or left out to enable their rapid construction. One example

involved the user-friendly interface and estimates of computational load

for an automated FAA flight service station.
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3.«3.« Software Components

A software component is a routine or set of routines with their own

private data which have been written to provide a service useful to a

variety of larger projects. A component which is in a portable form,

and has been proven to actually provide the service it claims to pro-

vide, can be of great use in building crucial software. The persons

responsible for the project can limit design efforts at higher levels to

matching the components' interfaces. There is also less project-

specific code to view with suspicion should faults be detected.

A limited form of software components has been with us for many

years in the form of mathematical subroutine libraries. However, fre-

quently other kinds of components have not been included in such

libraries because of the difficulty of specifying what functions are

performed and of writing understandable interface specifications. A

more important reason is that, previously widespread languages which

could interface to routines in libraries had to be able to access every-

thing within a library; there could be no information or auxiliary rou-

tines hidden from the user. Further, the desire for highly optimized

code has led to users1 reluctance to use anything they did not tailor to

individual applications.

These otherwise valid reasons do not apply to Ada. The Ada package

mechanism can provide portable abstractions of higher-level concepts and

structures in which external interfaces are fully specified yet with

internal workings inaccessible to users. As for the optimization prob-

lems, to make the language usable in real-time Ada compilers must per-

form extensive optimizations including those which apply across
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procedure boundaries anyway. "Optimization" via algorithm selection can

be done by providing a set of components for each function with addi-

tional specifications describing the types of situation most likely to

benefit from each component in the set. These qualities are not

specific to Ada. The technologies were not available in earlier

languages or had not all been brought together in one system before.

One system for using components in the development of efficient and

correct software is described in [80], The view taken in that system is

that a software component can be seen as a part which itself is composed

of parts depending on level of abstraction. The traditional or crafts-

man approach, through an expensive and time-consuming process, produces

efficient software requiring custom "maintenance" in the same way as any

"hand-made" item does. The parts-and-assemblies or components approach

produces cheaper software with a common "language of discussion" and

allows the parts to be studied for the ways in which they can fail and

be repaired in all applications. The component approach does not elim-

inate the craftsman since he is needed to build good, reusable parts,

and a system can rarely be built entirely from such reusable parts. The

relative costs of the approaches depend on the numbers of like programs

to be eventually produced. Since components represent implementation

choices, a fully coded and compiled part cannot be seen as an assembly

which can be optimized in a manner which would make software components

usable directly. Thus that system represents components as designs or

input/output specifications and enabling conditions which can influence

the choices of an automatic coding system in optimizing for particular

applications. In that system, libraries of components were built for
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specific application domains but were able to make use of components in

libraries for other domains which had already been built. The com-

ponents contained several alternatives with individual enabling condi-

tions so that an alternative could be chosen based upon "goals" for

development as specified by a human interacting with an experimental

transformation system. The components were relatively small but the

system could build up larger programs by combining them and using some

components for selective replacement within the text of other com-

ponents. The author describes this as "A domain's software components

map statements from the domain into other domains which are used to

model the objects and operations of the domain ... Each object and

operation in the resulting program may be explained by the system in

terms of the program specification." The examples actually presented in

the text are necessarily small and textually oriented, but include the

construction of a natural language parser-generator and a natural

language relational database.
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3..JL- Integrated Environments

Environments were discussed in Section 2. However, as was noted,

the current state is not as advanced as it could or should be. Much

research needs to be done to create programming environments which

actively take part in the production and correct revision of software

systems rather than passively offering individual unrelated and inade-

quate tools. This active participation characterizes the concept of an

intea;rgfced environment. Where the environment knows about the forms and

processes of software projects in general and of an individual project

in particular, it can institute and impose appropriate checks and docu-

mentation policies. Thus, the minimum amount of human work/ineptness

need be applied in a system's development.

The idea of environments needs to change from the box of tools

approach to active participant. An integrated environment needs to

recognize and save potential components for future use, and recognize

places where a previously developed component can be used and insert it.

The environment also needs to be able to generate a prototype model from

any level of "document" such as requirements specification, design

language "program", or partially implemented software to allow exercise

by users or simulation at any stage of the project. The order of events

needs to be controlled and enforced. For example, discovery of a fault

should trigger re-examination of the requirements specification before

design, and that before implementing code.

The HOST [81,82] system is to be such an integrated environment.

By using H-Graphs as a standard form for internal manipulation, all of

the system's "tools" can deal with the semantic basis of the project.



59

Thus the project's requirements specification, design language, and

implementation language can all be reduced to H-Graphs, or an H-Graph

form can be entered directly. This allows comparisons for compatibility

and consistency among all forms of the software, and the use of com-

ponents developed for other projects, perhaps in a different language.

Finally, prototyping can be achieved via interpretation of the H-Graph

representation of the requirements specification.
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3..S.. An Improved Conventional Software Development Cvcle

We propose an enhanced software development cycle to include all

the techniques mentioned above. It is shown in Figure 3.1.

The entire process is controlled by an integrated environment

which, among other things acts as a determiner of the "next valid

activity". All of the tools interact with a database which is per-

vasive, supplying the appropriate information where needed. The data-

base is made explicit in the figure at the interface between the idea

and the requirements specification for two reasons.

The first is that during post-delivery, as needs change, additions

to the original idea can re-enter the system in the process normally

termed "maintenance" (more accurately called "revision"). The original

idea and requirements specification are retrieved from the database and

fed through a consistency checker along with the additions. The con-

sistency checker should insist that conflicts be explicitly overridden.

(As a part of configuration control in the environment, the original

requirements specification is not overwritten but a new one for the

revised project is created.)

The second reason that the database is made specific is that during

original entry of wants, previous projects' ideas can be compared and

suggestions made for clarifications. Also the consistency checker can

play a part in-amendments during a project's development. The database

as described resembles what has often been called an "expert system",

and it is intended to be at least a primitive version of one.

All but the final path in the figure lead back to the requirements

specification. Any fault detected during testing, analysis, or exercise
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of a prototype and any item found unimplementable during coding or

design must be traced back to its origin in the requirements specifica-

tion as prime suspect with other areas becoming suspect if the require-

ments specification is found innocent.

Prototyping follows the requirements specification since we must

have some specification from which to build the prototype no matter how

vague. The prototyping step occurs between the requirements specifica-

tion and design on every iteration. Any revision of the requirements

potentially invalidates the previous requirements specification and its

approval which was derived from exercise of a prototype. This can be

seen as an instance of needing a rapid prototyping capability, and if

the prototype can be automatically generated or revised in real time

during the human-expert interaction that would be even better. In the

case of a fault being found and the requirements specification being

found innocent, the prototyping and analysis box may only entail the

check that the requirements specification really is correct.

Note here that the figure represents a general plan and the details

of each box may be complex with internal path control directed by the

environment and with the amount of complexity dependent upon the partic-

ular methodology chosen. For example, from Section 2 we saw several

requirements language-analyzer pairs and several design methodologies, a

choice of any of which would radically alter the appropriate box over

the others.

A prototype can be viewed as a model or simulation but we distin-

guish between the vehicle for "verifying" the mapping of ideas to

requirements specifications and that for verifying the mapping of
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requirements specifications to designs, just as testing and static

analysis are distinguished as steps verifying the mapping of designs to

implementations. A device for running a test case may be termed a simu-

lator, but more accurately a target environment emulation device.

Fault tolerance is brought in as early as the design phase. Such

capabilities should be designed into a system rather than appended after

full development. We have more to say on fault tolerance in Section 5.

After a design has been verified through simulation or other ana-

lyses, its implementation should be made formal wherever possible. This

includes formal derivation where the state of that technology is appli-

cable, the use of previously verified components, and proving of coded

portions of the program to the maximum extent possible. A formal seman-

tic definition of the implementation language and a formal semantic

representation of the design can be used to direct and guide the imple-

mentation process to the extent that matching semantic definition

languages may allow the design "document" to select statements or rou-

tines.

Note that the components box involves some give and take with the

implementation box. Design information and specified requirements

information influence the choice of components from the database and, in

a system such as [80], influence automatic optimizations on the com-

ponents chosen. Recognition, automatic or otherwise, of newly created

items in a project which could themselves be used elsewhere as com-

ponents can be made to trigger inclusion of these items into the com-

ponents database.
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The problems with testing were described in Section 2. However,

any exercise of a program has the potential for detecting some fault,

and humans have a psychological need for some sort of testing of any

newly developed product. If and when a formal theory of testing is

developed, the figure has reserved a place for it.

The stages of the software life-cycle are often said to be concep-

tual, actually taking place in parallel or in an overlapped manner. The

controlling environment should insist on an order which separates the

concerns of requirements specification, design, and coding. Just as

separation of concerns in a design limits complexity and enables an

accurate mapping of specified requirements, separation of the stages in

the development cycle limits the amount of information needing to be

dealt with at one time and prevents premature decisions in one part of a

system from having undue influence on the rest of the system. The fact

that we have paths back to the requirements specification does not

change this position. Any alterations to requirements specification,

design, or implementation necessitated by traversal of such a path

should cause the replacement of the affected parts, no matter how

widespread.



SECTION

The Inadequacy Of The Software Development Cycle

Given the stringent reliability requirements of crucial software,

can the conventional software development cycle or the cycle described

in Section 3-5 be used to build software of the desired quality? The

answer of course is yes, but rarely and unpredictably. There may be

circumstances in which reliable software is developed using conventional

methods. The problem is knowing that the software is sufficiently reli-

able. Crucial applications will certainly not use software which con-

tains known faults. However, what is required is assurance that either

there are no residual faults or that the unknown number of residual

faults will not lead to failure. We claim that the conventional

software development cycle cannot meet these requirements. We will

attempt to justify this claim with some experimental evidence and expert

opinion.

Two crucial applications relying on digital computers are the con-

trol of manned spacecraft and the control of nuclear weapons. Software

failure in either case could be catastrophic. Both applications

presently rely on conventional software development methods, and both

have experienced failures in production software systems. For example,

the first launch of the Space Shuttle was delayed for two days [36] by a

software fault. Fortunately the consequences were not serious. In

another example, the launch control system for the Trident missiles on
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board a Trident submarine went into an infinite loop when an operator

attempted to "launch" all 24 missiles in sequence during an exer-

cise [83]. All the missiles were disabled, and had this been a battle

situation, none could have been launched. The diagnosis of this problem

was operator error since the missiles are supposed to be launched in

three sequences of eight each.

The software which operates the SIFT computer [84] must be regarded

as crucial since the correct operation of the computer relies on the

correct operation of this software. The designers of SIFT did not use

the conventional software development cycle but chose instead to use a

formal verification method. They feel that faults were found this way

which would not have been found by conventional methods [85].

The software which supports communications of classified data is

crucial in the sense that failure might allow compromise of classified

data. Note however that failure which causes loss of service is accept-

able provided security is maintained [86]. This is far less stringent a

requirement than is imposed on crucial software.

The workshop on The Production of Reliable, Flight-Crucial

Software [87] was asked to discuss the issues involved in crucial

software development and make recommendations on research areas which

should be pursued. The first conclusion reached (which was agreed upon

unanimously) was:

There is serious doubt that it is presently possible to produce
flight software systems having the stated level of reliability
and to assure that they have that level of reliability.
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Finally, Winograd [88] has argued the case for major changes in

software development methodologies for various reasons, and Wasserman et

al [89] have pointed out that, in crucial applications, the consequences

of software failure may extend beyond the normal concerns for human life

or expensive equipment to legal actions against the programmers

involved.

Taken together, these points convince us that the conventional

software development cycle is inadequate. There may be examples of pro-

grams running which have been created by conventional means and which

appear to be reliable. The key word here is "appear". It is necessary

to show scientifically that the software is sufficiently reliable.



SECTION 5

Fault Tolerance

Although fault tolerance has been applied extensively in hardware,

it has received relatively little use in software. There is an impor-

tant distinction between hardware and software faults which must be must

be born in mind in discussing fault tolerance. The majority of hardware

faults are the result of physical degradation of components whereas

software faults have the characteristics of design faults. This pre-

cludes the use of parallel executions of identical software to guard

against faults but, in contrast to hardware, software does have the

potential for being permanently fault free.

In this section we review the state of the art in software fault

tolerance. We assume the reader is familiar with the basic principles

of the various methods. In general we feel that software fault toler-

ance has the potential to increase reliability dramatically. It can be

considered part of the conventional software development cycle. It is

considered here in a separate section because of its importance.
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iL.J.. Recovery Blocks

Recovery blocks were proposed as a technique for providing toler-

ance to faults in sequential programs. A Very strong theoretical back-

ground has been developed for recovery blocks. Provided erroneous

states are detected, damage assessment and state restoration are totally

reliable, and continued service can proceed from a secure starting

point. Two disadvantages are the need for hardware support (the

recovery cache) for state restoration and the fact that this is backward

error recovery. Despite the fact that the recovery cache was patented

ten years ago, there are no commercially available machines with

recovery caches and so there is no opportunity to use recovery blocks in

practice. Backward error recovery could be a problem in real-time sys-

tems and has to be taken into account.

Attempts to extend recovery blocks to concurrent programs led to

the problem of the domino effect and to the conversation technique as a

solution. Conversations are theoretically quite simple but rather

surprisingly no syntax has been chosen for their inclusion in program-

ming languages (in contrast to recovery blocks). Some proposals have

been made [90,91] but none has gained even modest acceptance and none

has been implemented. The reason for this situation is twofold.

Firstly, although conversations seem simple, integration of their seman-

tics into a language supporting concurrency is a major effort. Con-

current languages are still in their infancy and there are many very

difficult issues in their design. Incorporating conversations just

makes a very difficult problem even harder. The second difficulty with

conversations is that once again hardware support is required. In
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contrast to recovery blocks however, in order to implement a conversa-

tion, a recovery cache is required for every jrocess involved. Thus in

principle, many logically separate cache's have to be provided.

It has been observed [92] that many real-time systems have proper-

ties which allow fault tolerance using backward error recovery to be

included fairly easily. A framework has been proposed which allows

fault tolerance to be included in cyclic real-time systems with no spe-

cial hardware provisions. It has been pointed out that this work does

not cater for real-time systems which are interrupt driven and this is a

serious weakness. The work is being extended to include interrupt

driven systems to provide a comprehensive approach to fault tolerance in

real-time systems. , .
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.-Z- N-Version

With obvious analogy to hardware techniques, N-version program-

ming [93] has been proposed as a method of providing software fault

tolerance. It relies for all aspects of fault tolerance on the execu-

tion of multiple versions of a program and comparison of their results.

This is somewhat weaker theoretically that recovery blocks. Damage

assessment is handled by the assumption that damage will be limited to

the versions in the minority when the vote is taken. To ensure that

this is true, the versions must be physically separated. Clearly this

is not easily achieved for parts of programs such as subroutines. In

practice, this limits the application of N-version programming to the

system level and precludes its inclusion in technologies like software

components.

A further difficulty is the treatment of state restoration. Again,

this is handled by the assumption that the different versions do not

interfere and that the states of the versions in the majority after the

vote are consistent and ready for continued service.

It is important to note that any versions in the minority after

voting must be assumed to have failed. Thus they cannot participate in

any further system activities. If the system is required to continue

operation, there must be sufficient versions remaining for voting to be

possible.

Voting presents another problem for N-version systems. If the ver-

sions are implementing some form of arithmetic, the results may not be

in bit-for-bit agreement. In such cases, have there been failures?

Probably not, but to avoid detecting failures in these cases it is
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necessary to use ranges rather than exact inequality tests. How wide

should the ranges be? If they are too wide, failed versions will not be

detected, and if they are too narrow, successful versions will be

rejected.

An advantage of N-version programming is that it can be readily

applied to concurrent and real-time programs since it does not rely on

backward error recovery. Indeed, it has already been applied to a cru-

cial application [9^]. Hardware support is required for N-version pro-

gramming in the from of provision for physical separation (usually mul-

tiple processors) and for voting.
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S..3.. Reliability Improvement

A major area of concern in all aspects of software fault tolerance

is a lack of data showing that reliability is improved by using it. No

major demonstrations have been performed which show that fault tolerant

crucial systems can be built (although one such experiment is underway

at the University of Newcastle upon Tyne in England [95] ), let alone

that they will be adequately reliable.

It is intuitively reasonable to expect software reliability to be

improved by using software fault tolerance. Intuition is often wrong,

and it is necessary to resolve the remaining issues in the technology of

both forms of fault tolerance and to obtain reliable data on reliability

improvements that can be expected before the technology can be recom-

mended for inclusion in crucial software.



SECTION 6

Verification

By verification we mean the technology of establishing a mathemati-

cal proof that an executable computer program complies with its require-

ments specification. We have not spent a great deal of time on this

topic because of the substantial experience already in Langley's Fault-

Tolerant Systems Branch. The SIFT project and the contact with the SRI

verification group is extensive and provides a far better assessment of

that technology than we could obtain from the literature. For the sake

of completeness, we have included an extensive bibliography on verifica-

tion.

We make several observations of a cautionary nature because we feel

that it is important that verification not be viewed as a panacea.

First, if a program is to be proved, it's requirements specification has

to be in machine readable form which is amenable to analysis and this is

not always easy. For crucial applications it could be required but that

means that the engineer and the computer scientist will have to communi-

cate in an informal language (English) or the engineer will have to

learn (and be comfortable with) the formal notation. Another difficulty

with verification is the complexity of the proof process. Theorem

provers are a help but there is still a need for human guidance and

inspiration. This makes the proof process long and tedious, and contri-

butes to the fact that program proofs are not a routine matter and
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proofs of programs more than a few hundred lines long are very rare.

Perhaps the biggest danger with verification is the prospect of the

proof being wrong, i.e. a proof being produced for a program containing

faults. There are numerous examples of this in the literature. One

example is by Geller [511] in which two proofs are presented for a pro-

gram which is wrong. It must also be noted that there are major areas

where verification has had no success whatsoever. These areas include

floating point calculation, concurrent programs, and until recently

real-time programs.

Despite these reservations, there have been some remarkable

successes in verification technology. The proof of a simple real-time

program [96] is very encouraging. The recent proof of a program that is

more than 4000 lines long is also a major accomplishment. This program

and its associated proof were constructed at a measured productivity

rate of four lines of code per programmer per day [97]. This compares

very favorably with the productivity obtained using conventional

methods.

Provided the problems are kept in mind, verification appears to be

a technology that is almost ready for application in some parts of cru-

cial systems. The comprehensive approach to crucial software engineer-

ing that we propose in Section 8 incorporates verification.



SECTION 7

Automatic Programming

2..J_. Introduction

We have come to the conclusion that in the long term, major

improvements in the reliability of software will only be achieved if the

ad hoc methods of construction in which humans are involved can be elim-

inated. The problem in the classical software development cycle, or any

enhanced version of it, is that humans make decisions at every stage and

thereby introduce errors at every stage. As noted in Section 6, verifi-

cation can provide substantial reliability improvements. It relies,

however, on human-generated programs and human-generated proofs for the

most part, although there may be extensive computer checking. Despite

impressive success with verification, it is only an intermediate step.

The long term goal has to be the removal of unchecked (or uncheckable)

human decision making from the software generation process.

The creation of a software requirements specification is the only

step in software development where human decision making is required.

It is the link between the "idea" or "concept" for a system which exists
/

in a human's brain and computer processing of that idea. Once a com-

plete, formal requirements specification exists in machine readable

form, it is amenable to many formal methods of analysis. In principle,

these methods can be used to build an executable computer program

directly from the requirements specification with either no human
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intervention or just human guidance. Thus it is potentially possible to

derive a program from its requirements specification and thereby "prove"

that the resulting program complies with its requirements specification

(this is the definition of reliability). Note that no proof in the

classic sense of program proving is needed. Where formal methods do not

yet exist, or are not yet sufficiently powerful (such as program

design), additional research can be expected to yield satisfactory new

or improved techniques.

Unfortunately, since the requirements specification is the first

machine readable version of the "idea" or "concept", the translation

from the "idea" to the requirements specification cannot be automated

and subjected to completely formal methods. Thus it will never be pos-

sible to prove that the requirements specification corresponds precisely

to the original "idea". Many faults are introduced because of the

necessarily informal (and thus inadequate) translation of the "idea"

into a requirements specification.

The ideal situation would be one in which the requirements specifi-

cation is entered into a computer by a human at the highest practical

semantic level and the process of producing an executable program would

be left to the computer. The only testing that would be needed would be

that which convinced the human that the requirements specification as

initially entered corresponded to the "idea" in his/her head. Emphasis

must be placed on notations which allow requirements specifications to

be expressed in a form where the semantics can be determined by proces-

sors which will be responsible at least for analysis and possibly for

constructing the executable program.
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As noted above, no proof of correctness would be needed for pro-

grams which are automatically derived from their requirements specifica-

tions. Similarly, no fault-tolerance methods would be required or

desired. Another major advantage of this approach is the simplified

procedure needed for enhancement or modification. Changing a program

should always begin with changes to its requirements specification

though it rarely does. Changing a program may involve a substantial

redesign of algorithms and data structures although since this is so

time consuming, quicker methods involving "patches" are often used. For

programs which are automatically derived from their requirements specif-

ications, these problems go away. The requirements specifications have

to be changed but the rest of the process is automated. Although it may

require very large amounts of computer time, the derivation can proceed

automatically.

The practical implementation of these notions is termed automatic

proKrqminj.flp;. We have been reviewing this technology at some length in

order to determine its feasibility in the long term as a method for

building crucial software. A modest version of the technology has been

in use for some time in the form of high-level languages. Programs

written in high-level languages are really requirements specifications

for machine-language programs. These machine-level programs are not

written by humans but are derived automatically from the requirements

specifications by a computer program; namely a compiler. It is not

unreasonable to state that most programmers never write programs; they

write the requirements specification in a non-executable language (a

HLL) for a machine language program which is synthesized automatically.
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This application of automatic programming is readily accepted and needs

to be extended to higher-level constructs to allow more of the transla-

tion process to be automated.

The state of the art in automatic programming at the level needed

to eliminate human programmers from all but the requirements specifica-

tion phase is very far from practical use, as would be expected. How-

ever, we have performed an extensive literature search, and the example

systems that have been built and reported are quite impressive. For

example, with a little human guidance, a program to solve the eight

queens problem has been derived from its requirements specification.

There are several approaches to automatic programming and there are

related research projects which contribute to the goal of eliminating

human creativity from programming. There are many excellent surveys of

this field and they will not be duplicated here. The interested reader

is referred to the bibliography section on Automatic Programming, to the

survey by Biermann [98], and to the survey in the Artificial Intelli-

gence Handbook [99]. These latter two papers are excellent surveys of

the state of the art in automatic programming. Both are quite long (63

and 110 pages respectively) and summarize the theory behind the methods

as well as describing the major operational systems. They are both very

readable and the second one is very recent (1982).

In this section we will discuss briefly the various approaches to

automatic programming and the associated technologies. Although under

the general heading of automatic programming, two related research pro-

jects are mentioned. They are SAFE and the Programmer's Apprentice.

These two systems are applications of artificial intelligence which help
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reduce human error but are not complete program synthesis systems.
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Z.«2.« The Issues jln Automatic Programming

Any automatic programming system will require as its input a

program's requirements specification. We have already noted substantial

difficulties in this area in the conventional software development

cycle. Precision, freedom from ambiguity, and so on are all very hard

to achieve. For automatic programming, the situation is more difficult

since the requirements specification has to be amenable to machine

analysis. This seems to eliminate natural languages which are very con-

venient for humans but very difficult for computers to process. The

predicate calculus is usually suggested as a suitable notation, but it

is quite difficult for most humans to deal with.

This conflict has lead to two important lines of research. One is

automatic programming systems based on the predicate calculus [100], and

the other is an effort to build a processing system for the English

language [101]. In limited ways, both have been successful and we

recommend the products.of this research in our comprehensive approach

(see Section 8).

Another technique for specifying requirements is the use of exam-

ples. The intent is that the user gives the system examples of the com-

putation required and the system builds a program which satisfies all

the examples. Two different approaches to defining examples are used.

In one approach, the output expected for each input is given. In the

second, the user works through the desired algorithm with sample inputs

and the system is required to infer the algorithm.

Programming by example has been studied in depth and implemented in

two commercial systems by IBM [102,103]. Unfortunately, a program which
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works for all the examples may fail on the first application. Specifi-

cation of requirements by example and hence programming by example does

not seem like a viable technology for building crucial systems and will

not be discussed further in this report.

The output notation used by an automatic programming system is

called the target language. Different systems use different languages

but in most cases the target is some kind of high-level language. The

output of an automatic programming system can be translated into an exe-

cutable program by some form of compiler, thus completing the synthesiz-

ing process.

In principle, it is not necessary to be aware of the existence of

the target language or the fact that one form of the desired program is

written in this target language. In practice it is important and quite

useful. We have noted that automatic programming may not be able to

build programs of the size or complexity that we need. In section 8 we

propose an approach in which part of the program is synthesized automat-

ically and part is written by conventional means. The parts will have

to be merged and this can best take place at the level of the target

language.

To reduce the complexity of program synthesis, most existing sys-

tems restrict the application area that they deal with. Since automatic

programming is basically a research area, this approach is appropriate.

The goal of most researchers is to develop algorithms which will syn-

thesize something rather than something specific. Thus existing systems

are impressive (in some cases) but not particularly relevant to crucial

software development. This means that it will probably not be possible
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to use any existing system, or minor variant thereof, in a practical

crucial software development system. It also means that it will prob-

ably not be possible to use a single automatic programming system, even

if it were specially developed, in crucial software development. In
t

practice, it will probably be necessary to use several complementary

systems; each working on part of the problem.

There are several fundamentally different methods of operation used

in the various automatic programming systems. The different methods

have various advantages and disadvantages but externally the major

difference is in the size of programs which can be synthesized. At the

time of writing, the program sizes vary from a few lines in the approach

of Manna and Waldinger [104] to many tens of lines in the system of

Balzer105 . It must be kept in mind that there are other issues to

consider in comparing systems. For example, the Manna and Waldinger

approach is potentially more general although though there is no clear

limit to the transformation approach of Balzer.
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Z..3.- Automatio Pr9flra"""ing Systems

In this section we discuss some of the more significant automatic

programming systems and consider their relevance to crucial systems.

This is not a general survey. The interested reader is referred

to [99].

SAFE

The SAFE (Specification Acquisition From Experts) system [101] is

an attempt to build a program which can interact with a user in natural

language in order to determine the requirements for. a program. Its

input is in a subset of English and its output is a requirements specif-

ication written in a formal notation. Thus SAFE is trying to solve the

difficulties known to exist in the phase of software development where

requirements are specified.

SAFE expects its input to be ambiguous and incomplete. The goal of

the system is determine these problems and resolve them by interaction

with the user. With this goal, and the apparent successes of the system,

it appears to be an ideal candidate for use in crucial system develop-

ment.

The literature on SAFE indicates that its primary focus is on.

requirements specification. In fact in recent work [106] the SAFE sys-

tem has been coupled to a system supporting transformational implementa-

tion and a complete automatic programming system is being built. This

was the original goal of the SAFE system designers. SAFE is just an

intermediate step but a very important one.

Programmer1s Apprentice
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The Programmers Apprentice is described by its

designers [107,108,109,110] as an intermediate point along the road to

the desired goal of automatic programming. It is not an automatic pro-

gramming system. It is an application of artificial intelligence

methods in a system designed to help a human programmer by checking his

work. It has a substantial "knowledge" of programming maintained in a

library which it uses to help validate that human generated code is con-

sistent with the specification for that code.

The system is intended to operate interactively, conversing with a

programmer as an apprentice would. The examples of the system in use

which appear in the literature are very impressive but apparently

describe what l,t would do if fqlly implemented rather than what it is

able to do as currently implemented. It also appears that the system

has not been the subject of active work for some time.

The ideas behind the Programmer's Apprentice and the capabilities

that it apparently provides seem very suitable for use in crucial system

development. This technology is probably applicable in the short term.

PSI

PSI is a system built at Stanford by Cordell Green and col-

leagues [111], It is very large and apparently powerful. Some confu-

sion can easily occur in examining the literature since two major parts

of PSI (PECOS [112] and LIBRA [113] ) have been described in separate

papers and appear to be separate systems. PECOS and LIBRA are both

capable of some independent operation but are basically parts of PSI.

In fact, PECOS is the "coding expert" and LIBRA is the "efficiency
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expert" of PSI. We will not discuss PECOS and LIBRA separately.

As far as we can tell, PSI is the most comprehensive automatic pro-

gramming system that has been built and it is the only system to have

addressed certain issues. For example, its method of operation is basi-

cally transformational but it can reach a state in which several dif-

ferent transformations are valid. Note that any system based on

transformations can reach such a state. A choice at such points could be

made by a human, or by the system at random, but PSI invokes its effi-

ciency expert (LIBRA) which searches the valid transformations for the

one which will yield the most efficient program. Efficiency could be

terms of time or space.

PECOS is the "coding expert" for PSI and uses a database of rules

to make decisions about program synthesis. An impressive aspect of

PECOS is the way in which certain simple, "well-known" rules of program-

ming are contained it is database. For example, the following rule

which is frequently used by programmers can be included in the database:

If a collection is input, its representation may be converted
into any other representation before further processing.

In papers describing PSI and its subsystems, various examples are

given of programs that have been synthesized. Although we are impressed

that anything can be synthesized, we find the semantic level of the

input to be very low. The input definition of the problem in many cases

seems to contain too much detail and in fact is virtually a complete

program.
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Z..JL- Conclusions About Automatic

Several experimental systems have been built (many have not been

mentioned here but see the bibliography) , and a great deal of research

has been performed on automatic programming. Though the subject is far

from ready for general use, it does hold great promise and there do not

seem to be any fundamental, theoretical reasons for thinking that pro-

gress will not be made in automatic programming.

The advantages of synthesizing programs from their requirements

specifications are many but the most important here is the potential

increase in reliability. This approach seems to be the only viable way

of ensuring that programming is carried out in a scientific way, .and

does not rely on human fallibility and the associated introduction of

faults.



SECTION 8

A Comprehensive Approach

5..J.. Overview

Recall from Section 1 that no effort is made to quantify reliabil-

ity or reliability improvements in this grant. Thus in this section we

describe an approach which we feel will produce the most reliable

software product but we make no claims as to the degree of reliability

which might be achieved.

Given the inadequacy of the conventional software development

cycle, the difficulties with verification, and the infancy of automatic

programming, how should crucial software development proceed? Moving

from conventional methods to formal verification will yield an improve-

ment in reliability of software. Similarly, moving from formal verifi-

cation to automatic programming will yield another improvement, and

automatic programming probably represents the best that can ever be

done. An ideal solution would be the use of automatic programming for

the entire development of software for crucial applications. This ideal

is far from possible at this point so a less desirable, more practical

approach must be sought.

Basically, we propose that a combination of these three techniques

be used. For a given application, those parts which can be synthesized

by an automatic programming system should be. Of the remainder, those

parts which are written by humans but are amenable to verification
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should be verified. The remainder of the application (which may well be

large parts of it) will have to be built with conventional methods. To

provide some hope that this latter part is adequate, we propose the

extensive use of fault tolerance throughout this part of the software.

An overall environment needs to be produced with three clearly

defined but cooperating paths for the three development techniques. A

monitor is needed which would interact with the user to allow different

parts of the requirements specification to be guided down different

paths. The requirements specification for some clearly defined part of

the software could be presented to an automatic programming system. If

the system failed to synthesize the necessary software, the user would

then have to write the software and attempt to verify it. If that

failed, the user would be required to restructure the software to

include the necessary fault tolerance. The monitor would be required to

keep track of these various activities and assemble the final program

from the various synthesized, verified, and fault tolerant parts.

Figure 8.1 shows this proposed approach in rather limited detail.

Essentially, each of the three major aspects of the method is a software

development approach in its own right and will be described below in

more detail than shown in Figure 8.1.
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fi.,2.. Requirements

It is difficult to choose any one of the various requirements

languages that have been developed; each has its advantages and disad-

vantages. For reliability, extreme formalism is best. The predicate

calculus is a good choice because there is such an extensive body of

theory supporting it, and it is precise. It is also quite difficult for

the average computer scientist to use. For ease of use, natural

language is a good choice but there is no supporting formal theory, and

natural languages are imprecise and ambiguous. The impressive work of

Balzer on the SAFE system leads us to suggest that some form of res-

tricted natural language be used for crucial system requirement specifi-

cation and processed by the SAFE system to produce formal requirements

specifications.

We have not had any direct experience with using the SAFE system.

The papers which have been published about the system are rather lim-

ited, but the system seems to be very impressive. A major concern is

whether it can handle a natural language with sufficient expressive

power for crucial systems.
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S..3.. The Monitor

The monitor is responsible for coordinating all the system activi-

ties once the requirements specification has been produced by the SAFE

system. It requires a database for maintaining data, source files,

reports, etc, as development proceeds. It is not dissimilar from the

control systems of existing advanced environments. However, since there

are three parallel development paths, the interactions between the paths

will have to be handled very carefully. Some of these interactions are

touched upon in further subsections. It is probably the case that no

existing or currently proposed environment could handle all of these

interactions.
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S..A. The Automatic Proftrftprqina System

Which automatic programming system should be used? We cannot

select a single method because the technology is so immature. Given the

current state of the art however, we suggest the methods of Balzer, and

Manna and Waldinger.

There is a conflict between the use of automatic programming sys-

tems and the other two major parts of this system. In principle, an

automatic programming system is supposed to do everything, including

design. The other two parts require human input for everything includ-

ing the design phase. If the automatic programming system cannot handle

the entire development, it may be able to synthesize part of the

software. The part which remains may not be in a convenient form for

any of the traditional design methods.

Another issue is the difficulty of building automatic programming

systems which can handle arbitrary problem domains. The search space

that this implies is very large and this is a major limiting factor in

the ability of automatic programming systems to synthesize programs.

Both of these problems can be solved in the following way. The

automatic programming aspect of this system can be implemented as a

series of automatic programming systems operating in parallel and each

tackling a small, well-defined part of the crucial software applications

domain. For example, most crucial systems operate in real time and an

automatic programming system capable of synthesizing real-time

schedulers, and nothing else, could be a component of the system. That

part of the specification defining the real-time requirements could then

be supplied to that module and a suitable scheduler output.
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Major aspects of the software design phase would then take place at

the monitor stage. Those parts of the software which could be syn-

thesized by the automatic programming systems could be selected and code

synthesized. What remained would be well defined and amenable to human

detailed design and conventional development. Thus, we propose a set of

automatic programming systems, rather than one, until technology reaches

the point that a single system can cope with a complete crucial system.

As technology proceeds and more powerful automatic programming systems

become available, they can be added to such a design, and more of the

development of a crucial system can be moved from verification and fault

tolerance to automatic programming.
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fL.fL. Verification

Verification is Just one part of software development, unlike

automatic programming which (in principle) covers the entire transition

from requirements specification to executable program. Thus a program

which is to be verified requires all the elements of the software

development cycle to be present. That is assumed in this comprehensive

approach.

The verification part of this system would operate as existing

verification systems do. Other parts of the system would be required to

assist the process. The monitor and associated database would be used

to store proofs, control access to source code, and so on.

A theorem prover would be needed for verification. Many approaches

to theorem proving exist and we do not comment on which might be used.

However, we note that some automatic programming systems rely on theorem

proving. Indeed, the Manna and Waidinger [100] approach derives a pro-

gram from a proof. Thus a theorem prover is central to both verifica-

tion and program synthesis, and proof techniques which can be shared by

both technologies should be included in this comprehensive approach.
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&•£.. Conventional Softyare Development Cyol^e

The "improved conventional software development cycle" which was

delineated in Section 3 is modified from a stand-alone system to fit

into the context of our comprehensive approach. The monitor serves in

the role of the enhanced programming environment. The SAFE system

stands in the role of the requirements specification and analysis stages

of the conventional approach (see Figure 3.1). The use of the SAFE sys-

tem may eliminate the possibility that the requirements specification is

incomplete or inconsistent. Gross design has been done by the SAFE sys-

tem and the monitor. This entails the separation of concerns for the

automatic programming systems and the human development effort. The

portions of the crucial system developed by the automatic programming

systems can (and are intended to) act as components for the human

effort. Such portions may also enhance the overall system's prototyping

capabilities in that an early prototype may consist almost entirely of

the automatically programmable parts of the crucial system. It may

occur that the automatic programming systems and verification paths

"fail" due to human error in the human-guided gross design. For this

reason, the conventional cycle's loop back to original requirements

specification has not been eliminated.
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&..£. Fault Tolerance

The monitor can require that fault-tolerance be designed into all

human programmed software. The code built for attempted verification,

if it passes, can serve as is. However, if it fails verification, it

can serve as primary alternative in a fault-tolerant design with the

monitor then requiring the creation of other alternates. The conditions

used in the verification attempt can be saved for use as acceptance

tests to fill out the fault-tolerant implementation.

A monitor which "knows" about Safe Programming [114] can aid both

in verification and in providing fault-tolerance by enforcing limits on

all loops. The monitor should also force the use of fault-tolerant

techniques at all interfaces of the human-created code with the outside

world and with other parts of the human-created code. All of these

interfaces would be known to the monitor since it presided over the

high-level design.

The application of fault-tolerance is not strictly limited to the

non-verifiable human effort. The automatically programmed parts need

fault-tolerant interfaces with the human's code, both when using a

human-programmed component and when being passed parametric information

from human-programmed components. One way to create a design fault is

for the human to mis-use the automatically programmed code. Although in

the strictest sense a requirements specification problem, the automati-

cally programmed portions must be able to handle all possible situations

in the critical system/world interface as well.
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B..1. Testing

No matter how the software is built, if it is for a crucial appli-

cation, it will be tested. There are many technologies which are

involved in testing. In Section 2 we discussed only commonly-used con-

ventional methods in which the program is, executed on sample inputs and

the resulting outputs are compared with those expected (recall however

that it is frequently difficult to know what output is expected).

Naturally, this approach should be taken with crucial software

also. As we have noted however, there is no theoretical basis for any

of the practical, conventional testing methods and very little can be

concluded about the software from the results of the tests.

Nevertheless, given that testing will occur, how should the test

cases be selected and how should the tests be conducted? With no theory

of testing, any and all the methods have merit. There is no reason why

they cannot all be used. We show in the detailed version of our

approach ( Figure 8.2 ) a test case generator which is merely a piece of

software designed to aid the programmer in correctly generating the

desired combination of inputs. The monitor is shown connected to the

testing tools because the tests will be driven by the formal version of

the software requirements specification.
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SECTION 9

AIRLAB Research and Experimentation Recommendations

We use the term AIRLAB here to mean the facility presently being

constructed and the research objectives of developing technology to meet

the reliability requirements of crucial systems such as digital systems

for commercial air transports. We assume that NASA's major interest is

in making large improvements in software reliability over the long term

via essentially basic research. We also assume that resources are lim-

ited and that the most promising technologies need to be selected. Thus

these recommendations are limited to those which we consider to be high

risk and high payoff. We divide these recommendations into the

categories of the enhanced conventional software development cycle,

fault tolerance, automatic programming, and the comprehensive approach.
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2..JL. Tfre Software J)eveloDment Cycle

There are many areas of research in the software development cycle

which could be pursued. It is likely, however, that good progress will

be made in some of these areas independently of any NASA sponsored

research. For example, there is a great deal of research on environ-

ments being funded by the Department of Defense. This work is not

oriented particularly to highly-reliable systems, but should yield valu-

able results and demonstrations which will be of direct benefit to those

interested in crucial systems.

In examining the conventional software development cycle and

enhancements, suitable topics for research can probably be limited to

those areas which are receiving substantially too little attention or

where the goals of other researchers do not adequately address the dif-

ficulties of crucial software development. The latter is characterized

by research motivated by cost reduction, improved programmer produc-

tivity, or faster and smaller software. None of these is a very great

concern for crucial software where reliability is the dominating metric.

Given these criteria, we suggest the following areas from the

enhanced software development cycle be considered for research support:

(1) Rapid Prototyping. The technology is very immature and holds great

promise for clarifying issues at the start of a software project.

(2) Requirements Specification. Although there is active research in

this area, it is not directed to crucial applications and the state

of the art is really very poor.

(3) Software Testing. Despite the amount of testing which is performed

and the length of time we have been testing programs, there is



103

still no scientific basis for testing.

Static Analysis. This is basically an immature technology which

seems very promising but still has major problems. It is poten-

tially very valuable in crucial software development because it is

automatic.

As well as the above, we suggest that a monitoring project be

started to examine and evaluate conventional software development

methods. New techniques are continually being developed and reported.

How good are they? What is their impact on crucial software develop-

ment? These questions need to be answered by experts in the development

of crucial systems. Many military and commercial crucial systems are

presently being built with ad hoc collections of tools, very limited

knowledge of the state of the art, and limited resources to follow tech-

nology as it evolves. A source of information and assessment of tech-

nology as it applies to crucial systems would be very valuable to the

developers of these systems. It would also permit a clear assessment of

research needs.



S..2.. Fault Toleranoe

As noted in Section 5 there are many open questions in the technol-

ogy of fault tolerance. A high priority area of research has to be the

resolution of these various issues in order to provide a complete frame-

work for the construction of fault-tolerant crucial systems. Topics

include:

(1) Design and construction of hardware to provide processors which

include recovery caches and support for the voting necessary in in-

version programming.

(2) Determination of a suitable syntax for the conversation technique

and its incorporation into a general language structure for fault

tolerance based on backward error recovery.

(3) The creation of a better theoretical background for N-version pro-

gramming and the formulation of a framework which guarantees the

atomicity of the versions.

CO A comprehensive study of the voting issue in N-version programming.

(5) A study of the most appropriate way of combining recovery blocks

and N-version programming in the construction of crucial software.

Intuitively, software fault tolerance seems like a good idea.

There is precious little evidence, however, showing that it really is.

In fact, there is very little evidence showing that software fault

tolerance is even feasible. Ideas which seem reasonable in theory some-

times turn out to be impractical, especially in computer science. Some

experiments have been done which have implemented fault tolerant systems

[] but they were very limited in scope and not in the avionics or even
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real-time field.

A major research area to which AIRLAB is ideally suited is the con-

struction of realistic demonstration fault-tolerant systems. We propose

that advanced applications such as active controls be taken as typical

of the crucial systems which will be required in the near future and

that fault-tolerant versions of these applications be constructed. We

have no doubt that many significant issues will arise in such activities

which have not so far been suggested or resolved.
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SL.3.. Automatic Programming

Automatic programming is very far from practical use but seems to

hold great promise. Clearly, it is the highest risk, highest payoff,

longest term technology being considered in this report. It has to be

understood that the payoff period is likely to be many years [98]. In

view of its technical infancy, there are few clear-cut experiments which

can be conducted in the AIRLAB framework. Experiments involving program

synthesis would probably have to be extremely simple, reflecting the

state of the art.

In general, we recommend that automatic programming be reviewed in

more depth than has been possible in this study. This review should

include detailed evaluation of specific systems by installing them in

AIRLAB if possible, and evaluating them carefully in the context of cru-

cial software. The results of these analyses would permit a coordinated

research program to be planned. Specifically, we recommend:

(1) A working group of leading researchers in the field be assembled to

review the state of the art, compare and contrast systems, and dis-

cuss the applicability of the technology to crucial systems.

(2) Install, test and evaluate the SAFE system. Based on published

reports, this seems like a very powerful system which could be

applied to crucial system requirements specification in the very

near future.

(3) Install, test and evaluate the PSI system. Based on published

reports (which are extensive), this seems to be the most complete

and general automatic programming system that has been built.
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(1) Install, test and evaluate any other automatic programming systems

which appear to hold any promise of being suitable for programming

crucial applications.

Once some experience has been gained with the available automatic

programming systems, research goals will become clearer. It may be

appropriate to begin constructing an automatic programming system

tailored to real-time control although this does not seem desirable at

this point. It is important to review existing systems, get the opin-

ions of experts in the field, and gather specimen problems before defin-

ing research goals in this area.
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2..JL. Comprehensive Approach

The comprehensive approach which we proposed in Section 8 attempts

to mix several technologies which are not normally used together. A

central experiment which we recommend is an attempt to build a version

of the comprehensive approach to determine the feasibility of this

integration. If this experimental system is built carefully, it should

allow new tools, such as more powerful automatic programming systems, to

be added and evaluated as they become available. A test bed for new

tools or modified environments is essential to allow for the assessment

of these technologies in the crucial software context.

As we have noted elsewhere in this report, some software engineer-

ing technologies are developed with a specific application area in mind.

If this area does not include crucial software, the technology may be

useful and it may not. To allow for uniform evaluation, we recommend

the establishment of a collection of representative problems from cru-

cial applications. These could be made available to researchers to

assist them in evaluating their own work, and they could be used by NASA

to evaluate new technologies as they become available.



SECTION 10

Conclusions

We have reviewed many areas of software engineering in an effort to

determine which areas of technology could contribute to a major improve-

ment in software reliability if research is pursued vigorously. We have

formed the opinion that methods which are presently used for software

development are inadequate for building crucial systems. Further, we

feel that existing methods are so far from producing the desired level

of reliability, and that the required level will not be reached by

incremental improvements to commonly used techniques.

As a first step, we propose that the conventional software develop-

ment cycle be enhanced substantially by integrating the new technologies

of software prototypes, software components, fault tolerance, the Ada

program language, testing based on the emerging theories of adequate

test coverage, and machine-based methodology enforcement. Even using

the best modern technology, there seems little hope of achieving the

required level of reliability and certainly no hope of being sure that

this level has been achieved. The flaws in the conventional development

cycle (even if it is substantially enchanced) are the extent to which it

relies on human decision making and the non-scientific basis of most of

the methodology.

Fault tolerance is often proposed as a "safety net" for software.

Supposedly, even if the software contains faults, fault-tolerant methods
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will prevent these faults from leading to failures. It may, but this

has still to be demonstrated and for concurrent systems (including many

real-time systems), fault tolerance still has to be shown to be practi-

cal let alone useful.

Formal verification has made remarkable progress and is able to

deal with quite sophisticated programs. Unfortunately, there are still

major areas where verification is not possible. As a second step there-

fore we suggest that verification be integrated into the software

development cycle and that its use be required wherever possible.

Informally, we expect to see systems developed in which those parts of

the system amenable to verification are verified and the remainder build

by conventional methods. These latter parts would be required to

include fault tolerance so that there is some "insurance" against

failure in the non-verified parts.

In the long term, really large improvements in reliability will be

achieved only if human creativity and decision making are removed from

software development. This leads us to suggest that the techniques of

automatic programming might provide the source of major reliability

improvements. Automatic programming is very limited in its capabilities

now but the possibility of direct machine translation of requirements

specification to executable program has obvious and major advantages.

We propose therefore that automatic programming be pursued as a topic of

basic research. It cannot be used in building crucial systems at

present but as research advances the state of the art, it could be used

to build gradually larger parts of crucial systems.
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Our comprehensive approach is a combination of automatic program-

ming, verification, and fault tolerance coupled to improved conventional

methods. The approach involves a system in which all three paths are

available. A crucial system would be constructed by synthesizing as

much as possible (which may be very little) using an automatic program-

ming system, building the remainder using conventional methods and veri-

fying as much as possible, and finally employing fault tolerance for

those parts which cannot be synthesized or verified.

This approach will not necessarily improve reliability, but, even

if it does, it may be very difficult to ensure that desired levels of

reliability have been achieved. However, as basic research on automatic

programming and verification allow more of a crucial system to be built

with these technologies, reliability will surely increase. When systems

can finally be totally synthesized automatically, it may be possible to

make definitive statements about reliability.
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