
SOFTWARE
ENGINEERING

NOTES
An Informal Newsletter of the

SPECIAL INTEREST GROUP ON
SOFTWARE ENGINEERING

Volume 6, Number 5 October 1981

CONTRIBUTIONS
The "Bug" Heard ’Round the World, John R. Garman

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 6 No 5, October 1981 Page 3

THE "BUG" HEARD ’ROUND THE WORLD

Discussion of the software problem which
delayed the first Shuttle orbital flight

Joha 8. Garman

Cn April 10, 1981, about 20 minutes prior to the scheduled
launching of the first flight of America's Space Transportation
System, astronauts and technicians attempted to initialize the
software system which "backs-up" the quad-redundant primary
software system..... eand could not. In fact, there was no
possible way, it turns out, that the BFS (Backup Flight Control
System) in the fifth onboard computer could have been initialized
properly with the PASS (Primary Avionics Software System) already
executing in the other four computers. There was a "bug" - a
very small, very improbable, very intricate, and very old mistake
in the initialization logic of the PASS. It was the type of
mistake that gives programmers and managers alike nightmares -
and theoreticians and analysts endless challenge. It was the
kind of mistake that "cannot happen" if one "follows all the
rules" of good software design and implementation. It was the
kind of mistake that can never be ruled out in the world of real

systems development; a world involving hundreds of programmers
and analysts, thousands of hours of testing and simulation, and
millions of pages of design specifications, implementation
schedules, and test plans and reports. Because ir that world,
software is in fact "soft" - in a large complex real time control
system like the Shuttle's avionics system, software is pervasive
and, in virtually every case, the last subsystem to stabilize.
Software by its nature is the easiest place to correct problems -
tut by that very nature, it becomes a tyrant to its users ard a
tenuous and murky unknown to the analysts. Software is the
easiest to change....but in change, it is the easiest to

compromise,

The path to reliability in the Shuttle Orbiter spacecraft is
through replication ~ replication of sensors, replication of
effectors, replication of controls, computers, software, data

buses, and power supplies. In fact, in order to satisfy a
general Shuttle goal of "Fail Operational - Fail Safe" ("FO/FS")
most components are replicated 4-deep ~ either literally (4 sets
of hardware, etc.) or equivalently (alternate schemes
substituting for one or more of the four). Four is the magic
number for a very logical and intuitively obvious reason: FO/FS
requires full operational capability after one failure, and a
safe return capability after a second. It takes three to vote -
so it initially takes four to still be able to vote after the
first failure.

ACM SIGSOFT SOF’ FWARE ENGINEFRING NOTES, Vol 6 No 5, October 1981 Page 4

There are five onboard computers {called "GPC's" by everyone -
with few remembering that they really were "general purpose") -
four operate with identical software loads during critical
phases, That approach is excellent for computer or related
hardware failures - but it doesn't fit the bill if one admits to
the possibility of catastrophic software bugs ("the bug" of this
article certainly is not in that class). The thought of such a
tug "bringing down" four otherwise perfect computer systems

simultaneously and instantly converting the Crbiter to an inert

mass of tiles, wires, and airframe in the middle of a highly
dynamic flight phase was more than the project could bear. So,

in 1976, the concept of placing an alternate software load in the
fifth GPC, an otherwise identical component of the avionics
system, was born.

That software system, plus an ingenious yet simple astronaut-
managed control which permits only the fifth or the other four to
have any control, is what makes up the BFS. Its development
utilized the same requirements specifications, the same
programming language and compiler ("HAL/S" - by Intermetrics,
Inc., of Cambridge, Massachusetts, under contract to NASA) and
the same target computer. But it was developed by an entirely
different and remote organization (Rockwell International,

Lowney, California, vs. IBM, Federal oystens Division, Houston,
Texas, for the PASS) and used an entirely different operating
system (developed by Rockwell and IBM, respectively - both under
contract to NASA). A very thorough and complete interface

specification was drawn up and a relatively straightforward
operating technique ensued. The BFS, when not in control, would
"listen" to all the input and some output data traffic to and
from the PASS-controlled GPCts. In that way the "EFS" could
independently "keep up" with the goings-on of the Orbiter and
wission and he ever~ready to take over control of the vehicle
when switched in by the astronauts. Moreover, it could do so
without any dependency on a potentially failing PASS except for
its dependency on the PASS to fetch information from sensors and
crew for it to listen to. This concept created several implicit
but fundamental changes in the overall Orbiter design and
cperation.

First, the BFS had to "keep tabs" on the PASS and "stop

listening" wherever it thought the PASS might be compromising
data fetching. For in no way could any failure of the PASS he
permitted to "pollute" the BFS (thus potentially bringing down
all five computer systems simultaneously).

Second, the BFS could only possibly remain in a "ready" state for
a short period after failure of the PASS. If there is no data to

listen to then only extrapolation and certain reinitialization
techniques following switch-over would permit the EFS to take
successful control of the vehicle. As such, astronauts were

trained to make their choices quickly.

ACM SIGSOVT SOFTWARE ENGINEERING NOTES, Vol 6 No 5, October 1981 Page 5

Third, the PASS itself had to make some design and operating
technique modifications. The PASS operating system is
asynchronous and priority driven (i.e., the most important task
is always given immediate control of the computer, resulting in
Many interruptions and process "swaps"}). Yet four different
computers are able to keep in perfect process synchronization and
waintain identical bit-for-bit data contents with no more than
eight sync state codes, about 6% overhead, and some intermittent

inter-computer data exchanges. The concept was difficult and the
design was complex, but the result was a very "forgiving"
software system ~- either to hardware failures ("FO/FS"!) or to
many forms of intermittent software failures. An example of the

latter is any condition which creates a temporary "CPU overload"
(too much processing to do in too little time). This could be
caused by software errors, Simultaneous hardware failures (with
the incumbent additional load of error processing to log what has
happened, analyze it, and protect or fault-down the system where
necessary), or even an unanticipated coincidence of normal
processing. ‘The priority-driven systen "carries on" with
whatever CPU time is available by "skipping" or delaying lower
priority processing. By contrast, the BFS design is much more
like a fully synchronous "time-slotted" system, where each
process is given a fixed ration of time in which to execute each
cycle. While perhaps more straightforward to validate, it
carries less flexibility and "forgiveness", Unfortunately,
asynchronous and synchronous systems don't "mix" well. For the
FFS to literally listen to all critical external data fetches by
the PASS, the PASS had to either become, or pretend to become,
“synchronous” on those processes. This was accomplished with as
little compromise to the design as possible. In fact, the most
direct consequence initially was an improvement in efficiency of
the PASS. Virtually all cyclic processing was "scheduled" with
respect to a cycle counter in a high priority system process.
The result was an "apparent" synchronous operation of all
critical processing (though process interruption and swapping are
yet rampant, and properly so) and a consolidation of much of the
input/output processing on the 25-data bus network since the time
phasing of most processes became constant and always predictable.
Still, the PASS, under enough "stress", is prone to "misbehavior"™
- with asynchronism escaping to the forefront. This is quite
proper behavior to the PASS (and usually successful), but it
could leave the BFS with a nervous breakdown and the crew with a
dilemma (which is normally to "stick with the PASS" since
switchback from BFS to PASS is not possible). It is this
dichotomy in design, an insolubility lurking between the PASS and
EFS that was one of the roots of the launch delay. The changes
to the PASS to accommodate BFS happened during the final and very
difficult stages of development of the nulti-computer software.
the issue here was that not quite all the PASS cyclic process

start-ups were converted to be done with respect to the cycle
counter (i.e., the emulated synchronism). However, without "the

bug" it would have done no harm, and except for consistency
alone, initiating all processes with respect to the cycle counter

was not a requirement.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 6 No 5, October 1981 Page 6

Fourth, and the final fundamental effect of incorporating the
EFS, was that the system became even more complex. Another
subsystem, especially one as intricately woven into the fabric of
the avionics as is the BFS, carries with it solutions to some

Froblems, but the creation of others. While it certainly
increased the reliability of the system with respect to generic
ecftware failures, it is still argued academically within the
project whether the net reliability is any higher today than it
would have been had the PASS evolved to maturity without the
Eresence of its cousin - either as a complicating factor...or a

crutch. On the other hand, almost everyone involved in the PASS-
side "feels" a lot more comfortable!

Even "the bug" itself is complex and buried deep in the PASS. In
fact, it wasn't until IBM really began examining "dumps" of PASS
GEC's an hour or so after the problem initially occurred that
anyone thought it could be anything but a BFS problem (after all,
it was the PFS that refused to "sync" up - start listening - to
some of the PASS data traffic; and the PASS had been operating
perfectly for almost 30 hours during pre-launch countdown and
checkout of the vehicle). When the very first GPC is turned on
and the PASS is loaded, it attempts to synchronize the start-up
cf all its cyclic processing with the cyclic output of telemetry

data from the vehicle. While not a mandatory requirement, having
a known and fixed phasing between cyclic computer processes and
telemetry from computers and hardware systems alike makes the
fost-flight analysis of data an easier task. This

synchronization is accomplished by reading the value of time
within the telemetry system (which in turn was sampled from the
same central clock that the GPC's sample for time), and
calculating from that the phasing of the telemetry system with
tespect to the central clock. A start time which is both in the
future and would result in PASS synchronization with the
telemetry is then calculated. Finally, a high priority system
process is initiated at that calculated time and all (well,
aimost all) other processing then or later is started with

respect to that process and the cycle counter kept within it.
Even the BFS, using the cycle counter passed to it by this
process, becomes time=-synchronized so that it knows when to
expect PASS data fetches on the data buses.

Early on Friday morning, even before the launch was scrubbed, it
Lecame apparent that a few processes in the PASS were occurring
out of phase from (one cycle early with respect to) all other
FASS and BFS cyclic processing. One of these was the PASS
periodic fetching of data ("polling") from the vehicle's two
uplink processors (the devices from which the GPC's obtain
command information from Mission Control). Since the BFS, to

prevent "pollution", stops listening to all data on any buses on
which it hears unanticipated PASS data fetches, it soon became
apparent why the BFS couldn't "sync" up. To the BFS, the data
fetches one cycle early were simply unanticipated "noise" from
the PASS (with silence following where data fetches were

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 6 No 5, October 1981 Page 7

expected). Since the two uplink devices are located on "strings
1 and 3" (the four pairs of critical buses which fold most of the
guidance, navigation, and flight control sensors and effectors
are called "strings" 1 through 4), the BFS stopped listening. In
fact, it never really started listening to anything on those two
strings 20 minutes prior to the scheduled launch when the BFS was
first turned on.

Ey early afternoon, and primarily by forcing all the experts into
the same room and talking out the symptoms observed in computer
dumps, most of "the bug" was understood. Whenever the operating

system is asked to initiate a cyclic process with a start time in
the past, it will "slip" the start time the number of process
cycles required to put it in the future. The result is as if the
Frocess did actually start “on time" (much as an alarm clock = if
set to ring in the past, it slips a 12-hour cycle so it can ring
in the future). Since the start time is a calculated value, and

since polling of the uplink device is one of the few processes
started independently of this calculation, an error model
involving a late calculation of start time was quickly
constructed. And in fact, it was then verified (the vehicle
GPC's had been left "untouched" to assist the effort) that in
fact all PASS and BFS processing was late by one cycle with
respect to telemetry. Uplink polling was on time and therefore
simply appeared early (it was right and the rest of the world was
wrong) on each of its cycles.

Nevertheless, we were not able to ascertain how the startup time
calculation could possibly take so long that the calculated start
time would be in the past when the calculation completed - that
appeared to ke impossible! However, we did know:

1) That it was low probability - never seen before on the
vehicle or in labs (though it could often be masked in labs
through the use of "reset" or restart points ~ avoiding the
costly encumberance of "IPL" and initialization on each
test).

2) That it was "latching" - if the phasing error were present,
the system would work just as hard to maintain it across all
possible GPC reconfigurations as it would to maintain the
correct phasing if it weren't present. Thus if we would get
the GPC's initialized with the proper phasing, there was no
concern whatsoever that the problem could “pop up" during the
flight.

3) That we could test for it~ either by examing the PASS process
and telemetry phasing, or simply turning on the BFS.

4) That we could correct the phasing - just like an old
television set: if it doesn't work turn it off and back on
again. This is something that couldn't have been done with
the fully-fueled and armed vehicle on Friday morning - the
GPC's play a critical role in processing information from and
to the KSC Launch Processing System, and therefore in
managing the vehicle on the launch pad.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol G No 5, October 1981 Page 8

All that information, plus the fact that recycling the GPC's
Friday night did clear the problem on the vehicle, gave NASA
Management more than enough information to commit to a launch or
Sunday morning.

Fut we still didn't know exactly how the problem had happened -
and didn't until Sunday afternoon, about 8 hours after launch.
Actually we felt quite fortunate in getting the final entomology
of "the bug" that soon. This problem had all the characteristics
of bugs that can take weeks of analysis to really "nail down".
And what was the answer? Time! That nemesis of real-time
systems and concurrent processing, that concept which though
pervasive in our lives is so difficult to conceptualize in many
contexts, The "obvious" occurred to one of the IPM analysts -
since the calculation of start time couldn't possibly take so
long that the start time would be in the past when the
calculation completed, maybe it didn't! Maybe the GPC "thought"
it did - "past" is a concept to humans, it's an equation in
computers: the difference of start time and current time being
negative. Multiple computers with identical software and data
can't look at "clocks" to see what time it is. If they did, they
would each get slightly, ever so slightly, different values.
With slightly different values used in such operations as "fire
Fyrotechnics on the first cycle after 3:00", the computers might
easily "sliver": some GPCts firing on one cycle, and some on the
next (sampling 3:00.001 versus 2:59.999). To solve this dilemma,
PASS GPC's utilize the operating system's "timer queue" as a
clock. The top entry is the desired start time of the next
cyclic process ~ and with hundreds of cyclic process executions
scattered across any second, the top entry is always a fairly
accurate reading of current time (always a little in the future,
Eut always fairly accurate). Moreover, it is always bit~-for-bit
identical across redundant PASS GPC'ts. Of course, when the very
first GPC is turned on there is no active processing. Since
that's the only time the queve is empty, and since the queve is
initialized with a known fill-pattern, a test for that pattern is
the same as testing for "first GPC on", In that case, since no
other GPC's are around, the GPC is allowed to use its clock for
time.

seeees.-But the queue wasn't empty! (Determined via lab
simulation.)

About 2 years earlier, a change to use of a common subroutine to
do some data bus initialization prior to the "start time"
calculation was made. That the subroutine had a "delay" in it
which placed a time in the timer queue went totally
unnoticed....after all, what does a bus initialization routine

have to do with a calculation to determine telemetry phasing?
Moreover, at that time the delay was small enough that the top
entry in the queue was close to current time ~ in the future, but
close. That same subroutine is used elsewhere for bus
initialization after certain system reconfigurations. The time

ACM SIGSOFT SOFTWARE ENGINEERING NOTES, Vol 6 No 5, October 1981 Page 9

delay in it was such that a temporary CPU overload during
critical flight control processing could occur. A "fix" to that
problem was made about a year later ~ about a year before the
flight. The delay time, "just a constant in the code", was
increased slightly in order to place the subroutine's post-delay
processing away from the flight control processing. That
increase was enough to open a 1 in 67 probability window for a
problem in the first GPC turned on. In its start time
calculation, using that "slightly more"-in-the-future queue time

as if it were current time, it could cross the "cliff" and
"think" that the start time was a little in the past. The
operating system would then slip that single system process by
one cycle, which in turn would cause all (almost all) processing

in all GPC's to be one cycle late!

Eut again, to testers and analysts, what does a constant in a bus
initialization routine have to do with the calculation of start
time in the first GPC? No "mapping" analyzer built today could
have found that linkage. Testing might have. But the window
wasn't opened until late in the test program (relative to this
code}, and even then, most simulations didn't go through the
expense of initializing "from scratch". And even where they did,
it would have to have been in a lab with a reasonakly accurate
model of the telemetry system plus a simulation or test involving
koth PASS and BFS, and it would still he fighting the low
probability. Even then, the temptation would be to try
again....and never be able to repeat it; and never be sure it
wasn't a "funny" in the lab set-up....or a similar problem fixed
ky another software change. That, in fact, apparently did happen
in one of the labs....about 4 months prior to the flight.

And then, on the day that the first GPC was turned on, 30 hours
before scheduled launch, we hit the problem......

The development of avionics software for the Space Shuttle is one
of the largest, if not the largest, flight software
implementation efforts ever undertaken in this nation. It has
keen very expensive, and yet it has saved money, saved schedule,
and increased design margins time and time again during the
evolution of the Orbiter and its ground test, flight tests, and

finally the STS-1 mission. Since computers are programmed by
humans, and since "the bug" was in a program, it must surely
follow that the fault lies with some human programmer or designer
scmewhere--maybe! But I think that's a naive and shortsighted
view, certainly held by very few within the project. It is
complexity of design and process that got us (and Murphy's Law!).
Complexity in the sense that we, the "software industry" are
still naive and forge into large systems such as this with too
little computer, budget, schedule, and definition of the software
role. We do it because these systems won't work, can't work,
without computers and software.

ACM SIGSCVT SOFTWARE ENGINEERING NOTES, Vol 6 No 5, October 198! Page 10

If there are lessons to ke learned from "the bug", they must be
in how we view ourselves and our task. Building software ina
large system against fixed schedules is not conducive to "bug-
free" products. We can minimize the errors, and we can minimize

the flight criticality of the ones that remain (and "the bug"
certainly wasntt flight critical) - but we can't treat it like a

problem with a methodological solution. If it were, we would
simply start following the rules of the many and respected
software engineering theoreticians in this country and around the
world. Eut even today, their approaches assume a relatively
pristine environment for software development - an environment

where requirements can be completed correctly prior to design,
design prior to code and test, and code and test prior to
verification, validation, and integration into the hardware
system. In fact, an environment where the project is assumed to
know what it wants out of the software in the beginning!
Software development from my perspective is almost never that
way. It should be, and we should try hard to make it so - but it
is always iterative and incremental instead. Were we to force
the assumed environment, it would be like the "tail wagging the
dog" and I can assure you that STS-1 would be on the ground yet.

The lesson from "the bug" that I plea is directed to the academic
and software engineering community: help us to find ways to
reliably modify software with minimum impact in time and cost.
Not perfect reliability, because projects will always back off to
trade for time and cost. Maintaining software systems in the
field, absorbing large changes or additions in the middle of
development cycles, and reconfiguring software systems to "fit"
never~quite-identical vehicles or missions are our real problems
today. It's easy to say "don't break the rules", It's
impossible not to without inverting the relative position of
software in embedded systems - and that's wrong! Software may be
the "soul" in most complex systems, but it is still just part of
the supporting cast....a very flexible part.

Deputy Chief,
Spacecraft Software Division
NASA, Johnson Space Center
Houston, Texas

August 24, 1981

John PF. Garman

