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THE "BUG" HEARD ’ROUND THE WORLD 

Discussion of the software problem which 
delayed the first Shuttle orbital flight 

Joha 8. Garman 

Cn April 10, 1981, about 20 minutes prior to the scheduled 
launching of the first flight of America's Space Transportation 
System, astronauts and technicians attempted to initialize the 
software system which "backs-up" the quad-redundant primary 
software system..... eand could not. In fact, there was no 
possible way, it turns out, that the BFS (Backup Flight Control 
System) in the fifth onboard computer could have been initialized 
properly with the PASS (Primary Avionics Software System) already 
executing in the other four computers. There was a "bug" - a 
very small, very improbable, very intricate, and very old mistake 
in the initialization logic of the PASS. It was the type of 
mistake that gives programmers and managers alike nightmares - 
and theoreticians and analysts endless challenge. It was the 
kind of mistake that "cannot happen" if one "follows all the 
rules" of good software design and implementation. It was the 
kind of mistake that can never be ruled out in the world of real 

systems development; a world involving hundreds of programmers 
and analysts, thousands of hours of testing and simulation, and 
millions of pages of design specifications, implementation 
schedules, and test plans and reports. Because ir that world, 
software is in fact "soft" - in a large complex real time control 
system like the Shuttle's avionics system, software is pervasive 
and, in virtually every case, the last subsystem to stabilize. 
Software by its nature is the easiest place to correct problems - 
tut by that very nature, it becomes a tyrant to its users ard a 
tenuous and murky unknown to the analysts. Software is the 
easiest to change....but in change, it is the easiest to 

compromise, 

The path to reliability in the Shuttle Orbiter spacecraft is 
through replication ~ replication of sensors, replication of 
effectors, replication of controls, computers, software, data 

buses, and power supplies. In fact, in order to satisfy a 
general Shuttle goal of "Fail Operational - Fail Safe" ("FO/FS") 
most components are replicated 4-deep ~ either literally (4 sets 
of hardware, etc.) or equivalently (alternate schemes 
substituting for one or more of the four). Four is the magic 
number for a very logical and intuitively obvious reason: FO/FS 
requires full operational capability after one failure, and a 
safe return capability after a second. It takes three to vote - 
so it initially takes four to still be able to vote after the 
first failure.
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There are five onboard computers {called "GPC's" by everyone - 
with few remembering that they really were "general purpose") - 
four operate with identical software loads during critical 
phases, That approach is excellent for computer or related 
hardware failures - but it doesn't fit the bill if one admits to 
the possibility of catastrophic software bugs ("the bug" of this 
article certainly is not in that class). The thought of such a 
tug "bringing down" four otherwise perfect computer systems 

simultaneously and instantly converting the Crbiter to an inert 

mass of tiles, wires, and airframe in the middle of a highly 
dynamic flight phase was more than the project could bear. So, 

in 1976, the concept of placing an alternate software load in the 
fifth GPC, an otherwise identical component of the avionics 
system, was born. 

That software system, plus an ingenious yet simple astronaut- 
managed control which permits only the fifth or the other four to 
have any control, is what makes up the BFS. Its development 
utilized the same requirements specifications, the same 
programming language and compiler ("HAL/S" - by Intermetrics, 
Inc., of Cambridge, Massachusetts, under contract to NASA) and 
the same target computer. But it was developed by an entirely 
different and remote organization (Rockwell International, 

Lowney, California, vs. IBM, Federal oystens Division, Houston, 
Texas, for the PASS) and used an entirely different operating 
system (developed by Rockwell and IBM, respectively - both under 
contract to NASA). A very thorough and complete interface 

specification was drawn up and a relatively straightforward 
operating technique ensued. The BFS, when not in control, would 
"listen" to all the input and some output data traffic to and 
from the PASS-controlled GPCts. In that way the "EFS" could 
independently "keep up" with the goings-on of the Orbiter and 
wission and he ever~ready to take over control of the vehicle 
when switched in by the astronauts. Moreover, it could do so 
without any dependency on a potentially failing PASS except for 
its dependency on the PASS to fetch information from sensors and 
crew for it to listen to. This concept created several implicit 
but fundamental changes in the overall Orbiter design and 
cperation. 

First, the BFS had to "keep tabs" on the PASS and "stop 

listening" wherever it thought the PASS might be compromising 
data fetching. For in no way could any failure of the PASS he 
permitted to "pollute" the BFS (thus potentially bringing down 
all five computer systems simultaneously). 

Second, the BFS could only possibly remain in a "ready" state for 
a short period after failure of the PASS. If there is no data to 

listen to then only extrapolation and certain reinitialization 
techniques following switch-over would permit the EFS to take 
successful control of the vehicle. As such, astronauts were 

trained to make their choices quickly.
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Third, the PASS itself had to make some design and operating 
technique modifications. The PASS operating system is 
asynchronous and priority driven (i.e., the most important task 
is always given immediate control of the computer, resulting in 
Many interruptions and process "swaps"}). Yet four different 
computers are able to keep in perfect process synchronization and 
waintain identical bit-for-bit data contents with no more than 
eight sync state codes, about 6% overhead, and some intermittent 

inter-computer data exchanges. The concept was difficult and the 
design was complex, but the result was a very "forgiving" 
software system ~- either to hardware failures ("FO/FS"!) or to 
many forms of intermittent software failures. An example of the 

latter is any condition which creates a temporary "CPU overload" 
(too much processing to do in too little time). This could be 
caused by software errors, Simultaneous hardware failures (with 
the incumbent additional load of error processing to log what has 
happened, analyze it, and protect or fault-down the system where 
necessary), or even an unanticipated coincidence of normal 
processing. ‘The priority-driven systen "carries on" with 
whatever CPU time is available by "skipping" or delaying lower 
priority processing. By contrast, the BFS design is much more 
like a fully synchronous "time-slotted" system, where each 
process is given a fixed ration of time in which to execute each 
cycle. While perhaps more straightforward to validate, it 
carries less flexibility and "forgiveness", Unfortunately, 
asynchronous and synchronous systems don't "mix" well. For the 
FFS to literally listen to all critical external data fetches by 
the PASS, the PASS had to either become, or pretend to become, 
“synchronous” on those processes. This was accomplished with as 
little compromise to the design as possible. In fact, the most 
direct consequence initially was an improvement in efficiency of 
the PASS. Virtually all cyclic processing was "scheduled" with 
respect to a cycle counter in a high priority system process. 
The result was an "apparent" synchronous operation of all 
critical processing (though process interruption and swapping are 
yet rampant, and properly so) and a consolidation of much of the 
input/output processing on the 25-data bus network since the time 
phasing of most processes became constant and always predictable. 
Still, the PASS, under enough "stress", is prone to "misbehavior"™ 
- with asynchronism escaping to the forefront. This is quite 
proper behavior to the PASS (and usually successful), but it 
could leave the BFS with a nervous breakdown and the crew with a 
dilemma (which is normally to "stick with the PASS" since 
switchback from BFS to PASS is not possible). It is this 
dichotomy in design, an insolubility lurking between the PASS and 
EFS that was one of the roots of the launch delay. The changes 
to the PASS to accommodate BFS happened during the final and very 
difficult stages of development of the nulti-computer software. 
the issue here was that not quite all the PASS cyclic process 

start-ups were converted to be done with respect to the cycle 
counter (i.e., the emulated synchronism). However, without "the 

bug" it would have done no harm, and except for consistency 
alone, initiating all processes with respect to the cycle counter 

was not a requirement.
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Fourth, and the final fundamental effect of incorporating the 
EFS, was that the system became even more complex. Another 
subsystem, especially one as intricately woven into the fabric of 
the avionics as is the BFS, carries with it solutions to some 

Froblems, but the creation of others. While it certainly 
increased the reliability of the system with respect to generic 
ecftware failures, it is still argued academically within the 
project whether the net reliability is any higher today than it 
would have been had the PASS evolved to maturity without the 
Eresence of its cousin - either as a complicating factor...or a 

crutch. On the other hand, almost everyone involved in the PASS- 
side "feels" a lot more comfortable! 

Even "the bug" itself is complex and buried deep in the PASS. In 
fact, it wasn't until IBM really began examining "dumps" of PASS 
GEC's an hour or so after the problem initially occurred that 
anyone thought it could be anything but a BFS problem (after all, 
it was the PFS that refused to "sync" up - start listening - to 
some of the PASS data traffic; and the PASS had been operating 
perfectly for almost 30 hours during pre-launch countdown and 
checkout of the vehicle). When the very first GPC is turned on 
and the PASS is loaded, it attempts to synchronize the start-up 
cf all its cyclic processing with the cyclic output of telemetry 

data from the vehicle. While not a mandatory requirement, having 
a known and fixed phasing between cyclic computer processes and 
telemetry from computers and hardware systems alike makes the 
fost-flight analysis of data an easier task. This 

synchronization is accomplished by reading the value of time 
within the telemetry system (which in turn was sampled from the 
same central clock that the GPC's sample for time), and 
calculating from that the phasing of the telemetry system with 
tespect to the central clock. A start time which is both in the 
future and would result in PASS synchronization with the 
telemetry is then calculated. Finally, a high priority system 
process is initiated at that calculated time and all (well, 
aimost all) other processing then or later is started with 

respect to that process and the cycle counter kept within it. 
Even the BFS, using the cycle counter passed to it by this 
process, becomes time=-synchronized so that it knows when to 
expect PASS data fetches on the data buses. 

Early on Friday morning, even before the launch was scrubbed, it 
Lecame apparent that a few processes in the PASS were occurring 
out of phase from (one cycle early with respect to) all other 
FASS and BFS cyclic processing. One of these was the PASS 
periodic fetching of data ("polling") from the vehicle's two 
uplink processors (the devices from which the GPC's obtain 
command information from Mission Control). Since the BFS, to 

prevent "pollution", stops listening to all data on any buses on 
which it hears unanticipated PASS data fetches, it soon became 
apparent why the BFS couldn't "sync" up. To the BFS, the data 
fetches one cycle early were simply unanticipated "noise" from 
the PASS (with silence following where data fetches were
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expected). Since the two uplink devices are located on "strings 
1 and 3" (the four pairs of critical buses which fold most of the 
guidance, navigation, and flight control sensors and effectors 
are called "strings" 1 through 4), the BFS stopped listening. In 
fact, it never really started listening to anything on those two 
strings 20 minutes prior to the scheduled launch when the BFS was 
first turned on. 

Ey early afternoon, and primarily by forcing all the experts into 
the same room and talking out the symptoms observed in computer 
dumps, most of "the bug" was understood. Whenever the operating 

system is asked to initiate a cyclic process with a start time in 
the past, it will "slip" the start time the number of process 
cycles required to put it in the future. The result is as if the 
Frocess did actually start “on time" (much as an alarm clock = if 
set to ring in the past, it slips a 12-hour cycle so it can ring 
in the future). Since the start time is a calculated value, and 

since polling of the uplink device is one of the few processes 
started independently of this calculation, an error model 
involving a late calculation of start time was quickly 
constructed. And in fact, it was then verified (the vehicle 
GPC's had been left "untouched" to assist the effort) that in 
fact all PASS and BFS processing was late by one cycle with 
respect to telemetry. Uplink polling was on time and therefore 
simply appeared early (it was right and the rest of the world was 
wrong) on each of its cycles. 

Nevertheless, we were not able to ascertain how the startup time 
calculation could possibly take so long that the calculated start 
time would be in the past when the calculation completed - that 
appeared to ke impossible! However, we did know: 

1) That it was low probability - never seen before on the 
vehicle or in labs (though it could often be masked in labs 
through the use of "reset" or restart points ~ avoiding the 
costly encumberance of "IPL" and initialization on each 
test). 

2) That it was "latching" - if the phasing error were present, 
the system would work just as hard to maintain it across all 
possible GPC reconfigurations as it would to maintain the 
correct phasing if it weren't present. Thus if we would get 
the GPC's initialized with the proper phasing, there was no 
concern whatsoever that the problem could “pop up" during the 
flight. 

3) That we could test for it~ either by examing the PASS process 
and telemetry phasing, or simply turning on the BFS. 

4) That we could correct the phasing - just like an old 
television set: if it doesn't work turn it off and back on 
again. This is something that couldn't have been done with 
the fully-fueled and armed vehicle on Friday morning - the 
GPC's play a critical role in processing information from and 
to the KSC Launch Processing System, and therefore in 
managing the vehicle on the launch pad.
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All that information, plus the fact that recycling the GPC's 
Friday night did clear the problem on the vehicle, gave NASA 
Management more than enough information to commit to a launch or 
Sunday morning. 

Fut we still didn't know exactly how the problem had happened - 
and didn't until Sunday afternoon, about 8 hours after launch. 
Actually we felt quite fortunate in getting the final entomology 
of "the bug" that soon. This problem had all the characteristics 
of bugs that can take weeks of analysis to really "nail down". 
And what was the answer? Time! That nemesis of real-time 
systems and concurrent processing, that concept which though 
pervasive in our lives is so difficult to conceptualize in many 
contexts, The "obvious" occurred to one of the IPM analysts - 
since the calculation of start time couldn't possibly take so 
long that the start time would be in the past when the 
calculation completed, maybe it didn't! Maybe the GPC "thought" 
it did - "past" is a concept to humans, it's an equation in 
computers: the difference of start time and current time being 
negative. Multiple computers with identical software and data 
can't look at "clocks" to see what time it is. If they did, they 
would each get slightly, ever so slightly, different values. 
With slightly different values used in such operations as "fire 
Fyrotechnics on the first cycle after 3:00", the computers might 
easily "sliver": some GPCts firing on one cycle, and some on the 
next (sampling 3:00.001 versus 2:59.999). To solve this dilemma, 
PASS GPC's utilize the operating system's "timer queue" as a 
clock. The top entry is the desired start time of the next 
cyclic process ~ and with hundreds of cyclic process executions 
scattered across any second, the top entry is always a fairly 
accurate reading of current time (always a little in the future, 
Eut always fairly accurate). Moreover, it is always bit~-for-bit 
identical across redundant PASS GPC'ts. Of course, when the very 
first GPC is turned on there is no active processing. Since 
that's the only time the queve is empty, and since the queve is 
initialized with a known fill-pattern, a test for that pattern is 
the same as testing for "first GPC on", In that case, since no 
other GPC's are around, the GPC is allowed to use its clock for 
time. 

seeees.-But the queue wasn't empty! (Determined via lab 
simulation.) 

About 2 years earlier, a change to use of a common subroutine to 
do some data bus initialization prior to the "start time" 
calculation was made. That the subroutine had a "delay" in it 
which placed a time in the timer queue went totally 
unnoticed....after all, what does a bus initialization routine 

have to do with a calculation to determine telemetry phasing? 
Moreover, at that time the delay was small enough that the top 
entry in the queue was close to current time ~ in the future, but 
close. That same subroutine is used elsewhere for bus 
initialization after certain system reconfigurations. The time
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delay in it was such that a temporary CPU overload during 
critical flight control processing could occur. A "fix" to that 
problem was made about a year later ~ about a year before the 
flight. The delay time, "just a constant in the code", was 
increased slightly in order to place the subroutine's post-delay 
processing away from the flight control processing. That 
increase was enough to open a 1 in 67 probability window for a 
problem in the first GPC turned on. In its start time 
calculation, using that "slightly more"-in-the-future queue time 

as if it were current time, it could cross the "cliff" and 
"think" that the start time was a little in the past. The 
operating system would then slip that single system process by 
one cycle, which in turn would cause all (almost all) processing 

in all GPC's to be one cycle late! 

Eut again, to testers and analysts, what does a constant in a bus 
initialization routine have to do with the calculation of start 
time in the first GPC? No "mapping" analyzer built today could 
have found that linkage. Testing might have. But the window 
wasn't opened until late in the test program (relative to this 
code}, and even then, most simulations didn't go through the 
expense of initializing "from scratch". And even where they did, 
it would have to have been in a lab with a reasonakly accurate 
model of the telemetry system plus a simulation or test involving 
koth PASS and BFS, and it would still he fighting the low 
probability. Even then, the temptation would be to try 
again....and never be able to repeat it; and never be sure it 
wasn't a "funny" in the lab set-up....or a similar problem fixed 
ky another software change. That, in fact, apparently did happen 
in one of the labs....about 4 months prior to the flight. 

And then, on the day that the first GPC was turned on, 30 hours 
before scheduled launch, we hit the problem...... 

The development of avionics software for the Space Shuttle is one 
of the largest, if not the largest, flight software 
implementation efforts ever undertaken in this nation. It has 
keen very expensive, and yet it has saved money, saved schedule, 
and increased design margins time and time again during the 
evolution of the Orbiter and its ground test, flight tests, and 

finally the STS-1 mission. Since computers are programmed by 
humans, and since "the bug" was in a program, it must surely 
follow that the fault lies with some human programmer or designer 
scmewhere--maybe! But I think that's a naive and shortsighted 
view, certainly held by very few within the project. It is 
complexity of design and process that got us (and Murphy's Law!). 
Complexity in the sense that we, the "software industry" are 
still naive and forge into large systems such as this with too 
little computer, budget, schedule, and definition of the software 
role. We do it because these systems won't work, can't work, 
without computers and software.
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If there are lessons to ke learned from "the bug", they must be 
in how we view ourselves and our task. Building software ina 
large system against fixed schedules is not conducive to "bug- 
free" products. We can minimize the errors, and we can minimize 

the flight criticality of the ones that remain (and "the bug" 
certainly wasntt flight critical) - but we can't treat it like a 

problem with a methodological solution. If it were, we would 
simply start following the rules of the many and respected 
software engineering theoreticians in this country and around the 
world. Eut even today, their approaches assume a relatively 
pristine environment for software development - an environment 

where requirements can be completed correctly prior to design, 
design prior to code and test, and code and test prior to 
verification, validation, and integration into the hardware 
system. In fact, an environment where the project is assumed to 
know what it wants out of the software in the beginning! 
Software development from my perspective is almost never that 
way. It should be, and we should try hard to make it so - but it 
is always iterative and incremental instead. Were we to force 
the assumed environment, it would be like the "tail wagging the 
dog" and I can assure you that STS-1 would be on the ground yet. 

The lesson from "the bug" that I plea is directed to the academic 
and software engineering community: help us to find ways to 
reliably modify software with minimum impact in time and cost. 
Not perfect reliability, because projects will always back off to 
trade for time and cost. Maintaining software systems in the 
field, absorbing large changes or additions in the middle of 
development cycles, and reconfiguring software systems to "fit" 
never~quite-identical vehicles or missions are our real problems 
today. It's easy to say "don't break the rules", It's 
impossible not to without inverting the relative position of 
software in embedded systems - and that's wrong! Software may be 
the "soul" in most complex systems, but it is still just part of 
the supporting cast....a very flexible part. 

Deputy Chief, 
Spacecraft Software Division 
NASA, Johnson Space Center 
Houston, Texas 

August 24, 1981 

John PF. Garman


