

ISS-ULF5/STS-133 ERRATA

NOTE This Errata pack contains information that is applicable to both the Shuttle & Station Crews & Flight Control Teams.

CONTENTS:

Section A - Procedures That Must Be Uplinked Real Time Section B - Changes To Be Uplinked Real Time Only If Required Section C - Changes Made To The Crew's SODF Prior To Launch Attachment 1 - ODF Status for Flight Attachment 2 - 3 Change-out/Temp Pages

All technical changes to the ISS SODF, as documented in this errata package, have been approved through the US Systems Operations Data File Control Board CR process.

Some of the changes apply to future flights also and will be republished after this flight. These changes are denoted by (¥) following the CR number.

Some of the changes apply to this flight only and will not appear in future publications.

If you choose to incorporate 'flight-specific' changes into your 'generic' book(s), it is recommended that you do so in a manner that allows them to be removed for future flights (e.g., use pencil rather than ink, retain old pages rather than throw them away, etc.).

Refer questions or comments on these changes to the SODF Coordinator, SODF Manager, or Ops Planner.

SECTION A: PROCEDURES THAT MUST BE UPLINKED REAL-TIME.

The following procedures are needed but were received too late for incorporation into the crew's books for transport on ULF5. They must be sent to the crews via OCA.

Change Request Number Change Request Title

SECTION B: CHANGES APPROVED FOR REAL-TIME UPLINK IF REQUIRED.

The following changes will be implemented in real-time only if the covered situation arises. Copies of the CRs have been provided to the ODF Console. Each console position should ascertain if his position is affected and be prepared to submit a flight note if uplink is required.

Change Request Number

Change Request Title

NONE

<u>SECTION C</u>: CHANGES MADE TO THE CREW'S SODF PRIOR TO LAUNCH. The following changes have been incorporated into the crew's flight copies. At the time of printing these changes have not been made in IPV. In order to avoid print driver problems, please print from the ULF5 Errata .pdf file located

CR	DESCRIPTION	ATT# FILE	NAME
Assy_Ops-2173	UPDATE UOP CONNECTION IN 1.100 CBCS	N/A	
	INSTALLATION		
	Page 4, Table 1. Parts List		
	UOP Power PSA Cable, 120VDC		
	From: 1008, 1007, 1002 To: 1005, 1008, 1002		
	Page 5, Step 1.1		
	From: Verifying No Power Applied to Node 1 UOP 1 J3 To: Verifying No Power Applied to Node 1 UOP 1 J4		
	Page 5, step 2.2		
	From: UOP Power PSA Cable, 120VDC P2 $\rightarrow \mid \leftarrow J3$		
	on Node 1 UOP 1		
	To: UOP Power PSA Cable, 120VDC P2 $\rightarrow \mid \leftarrow J4$		
	on Node 1 UOP 1		
Assy_Ops-2174	1.115 PMM VESTIBULE - CONFIGURE FOR	N/A	
	Page 39, Table 1. 1553 Buses in W0205 P106 and W0202 P118 Connectors		
	From: CB INT 2 Prime C&C To: CB INT 2 Prime C&C		

Assy_Ops-2175		N/A		
$rasy_ops-2175$	TABLE 1 REFERENCE FIX TO 1.115 Page 76 step 16 1	IN/A		
	Page 76, step 16.1			
	From: sel [YY] where [YY] = Bus Name from Table 1 To: sel [XX] where [XX] = Bus Name from Table 1			
	From: [YY] Bus Status To: [XX] Bus Status			
Assy_Ops-2172	DCB S/N UPDATE IN DESCENT SAMPLE TRANSFER PROC	N/A		
	Page 179, <u>PARTS:</u>			
	From: Double Coldbag S/N 1007 To: Double Coldbag S/N 1007			
	Page 183, step 8			
	From: Double Cold Bag S/N 1007 To: Double Cold Bag S/N 1007			
Assy_Ops-2171	UPDATE TO GLACIER STATUS CHECK TEMPERATURE Glacier Status Check Cue Card Back			N/A
	(ASSY OPS-2b/ULF5/B) and page 348			
	Step 1.4 "If ascent Glacier"			
	From: $\sqrt{\text{Display}} - \text{'CURR TEMP:' is +35.0° C \pm 5.0° C}$			
	To: $\sqrt{\text{Display}} - \text{'CURR TEMP:' is } +4.0^{\circ} \text{ C} \pm 2.0^{\circ} \text{ C}$			
ISS EVA SYSTEM	S			
CR	DESCRIPTION	ATT# F	ILE	NAME
ISS_EVA_SYS-	EVA NH3 DECON PROCEDURES & CUE CARD	2 192	65x.doc	
00629 (¥)	Replace pages 799 thru 806 and cue card		19	265x.pdf
			19	502x.doc
			19	502x.pdf
Joint Operations				
FN	DESCRIPTION	ATT# F	ILE	NAME
F039915	25-0309 3.119 RADIATION AREA MONITOR DOSIMETERS - INSTALLATION OF DOSIMETERS ON ISS	3	_	2_25_0309.pdf 2_25_0309.docx
	Note: Do not remove existing procedure.			
	Before page 153, add 25-0309 3.119 Radiation Area Monitor Dosimeters - Installation of Dosimeters on ISS (5 pages)			

PREPARED BY:

Statistic and some services

ŮI ð

Cindy Simon ULF5 SODF Coordinator

REVIEWED BY:

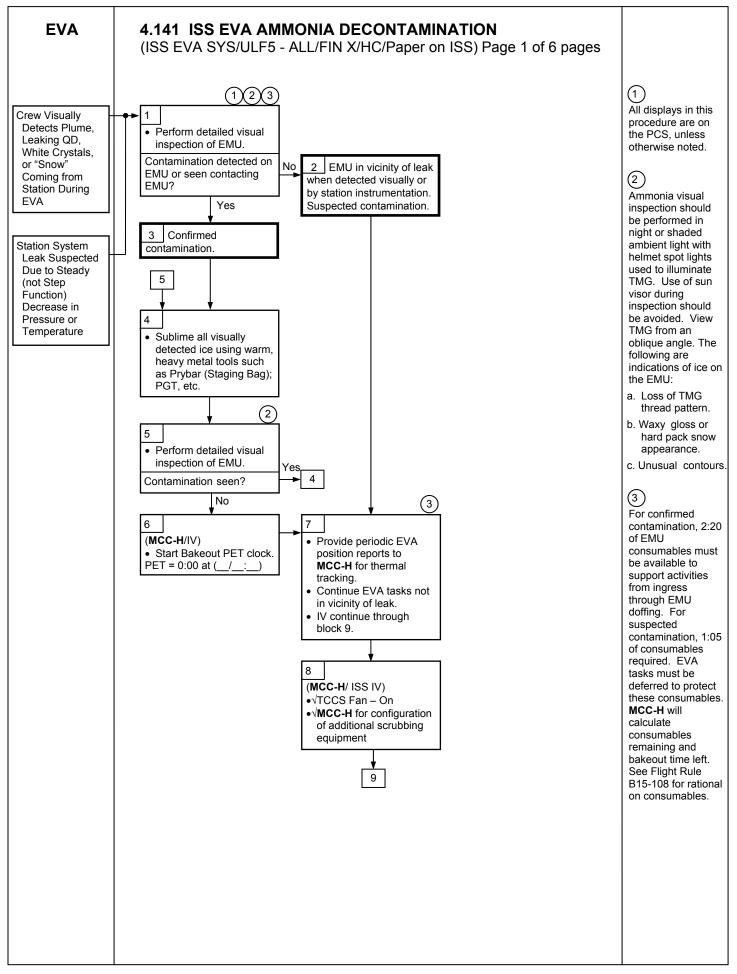
Lisa Payne

APPROVED BY: the to the

Mark Kasinger Chairman, US Systems Operations Data File Control Board

ATTACHMENT 1

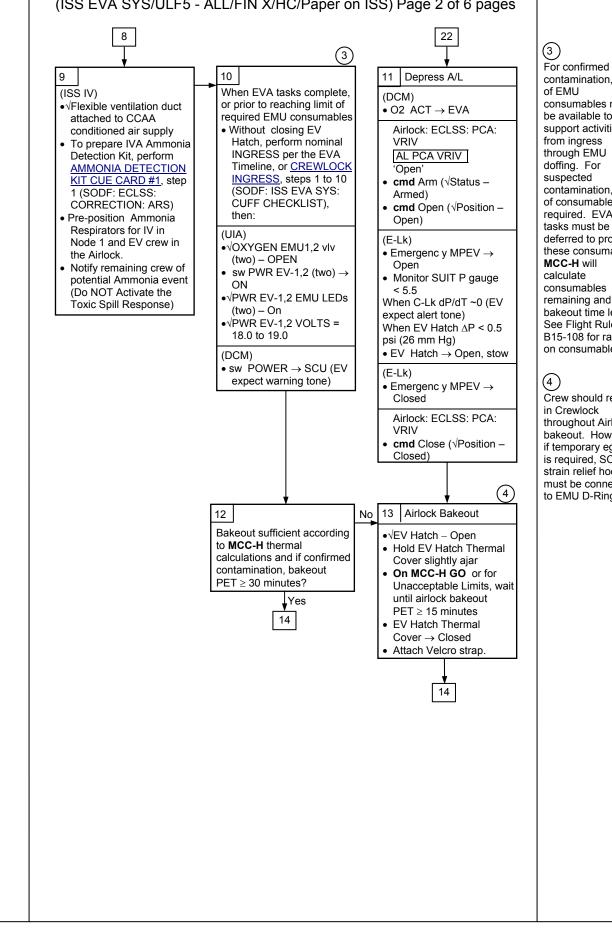
ODF STATUS FOR FLIGHT Expedition 25/ULF5

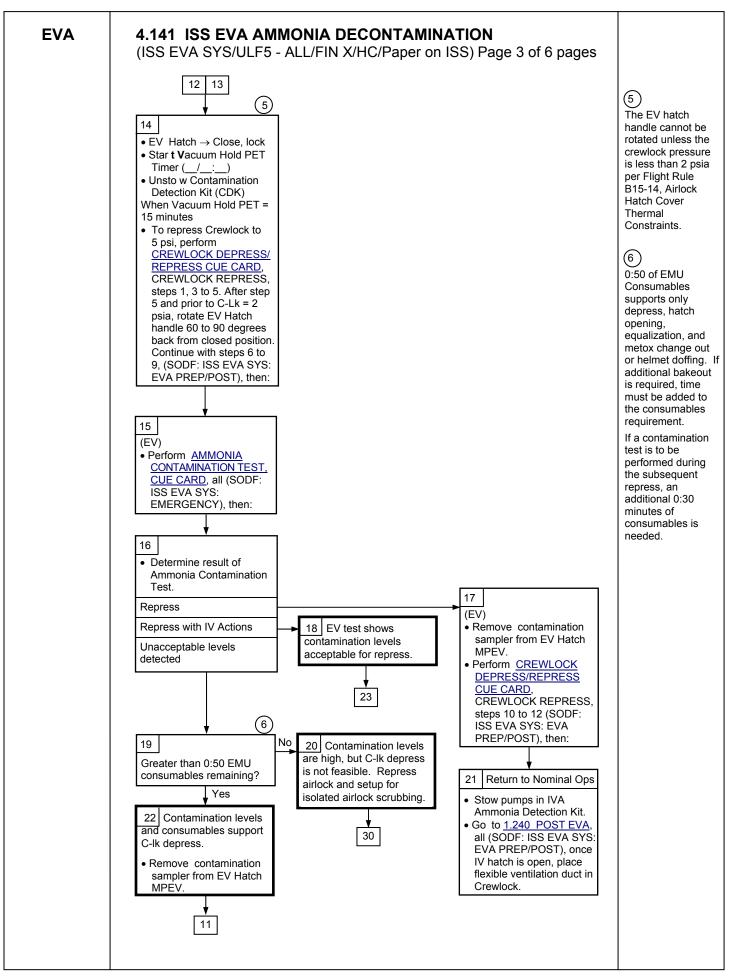

Start Use: **1 NOV 10** E25 Coordinator: Kim Hussein ULF5 Coordinator: Cindy Simon

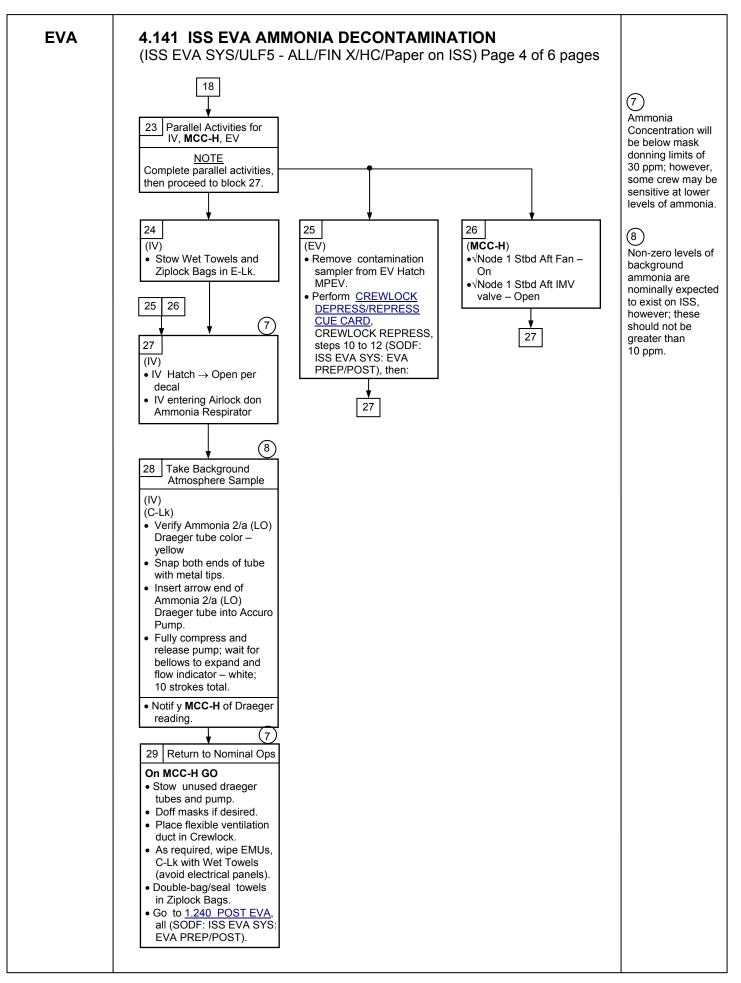
For the latest status of SODF books for ULF5 please refer to the SODF website and select the E25 Flight Status Sheet.

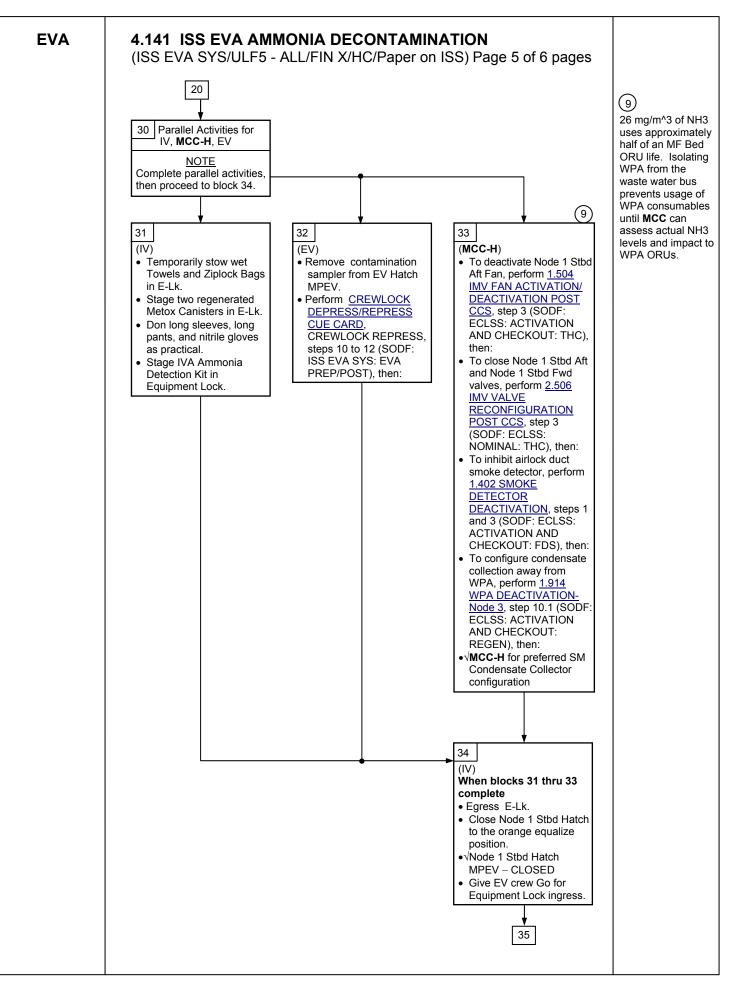
,

.

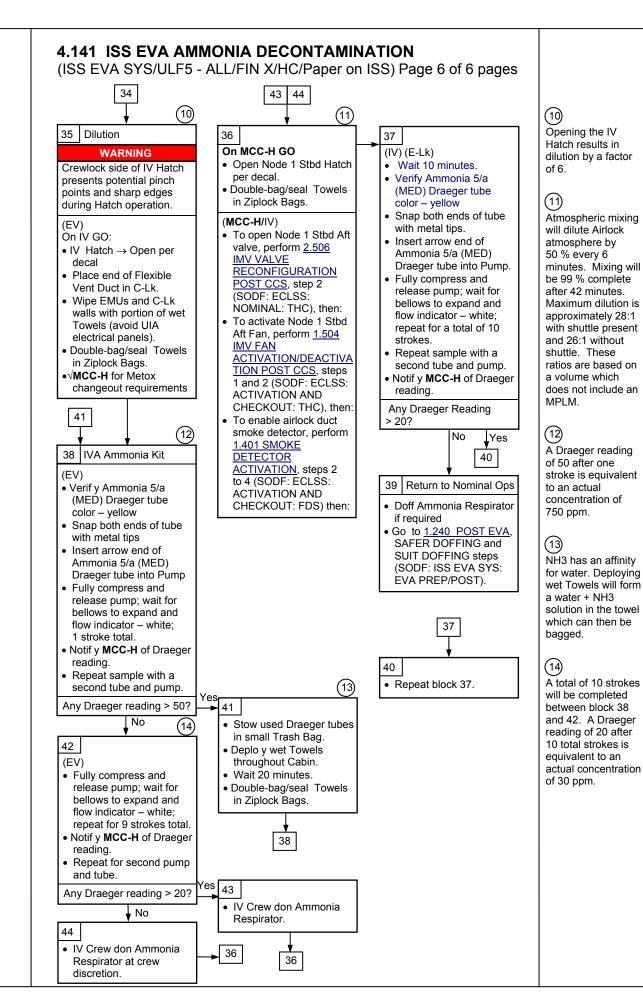

ATTACHMENT 2

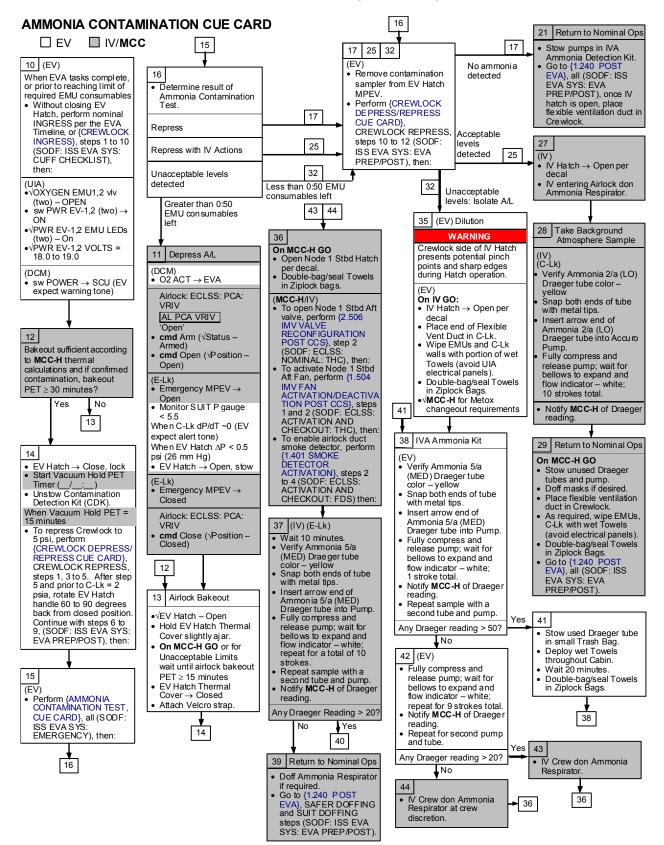

4.141 ISS EVA AMMONIA DECONTAMINATION


(ISS EVA SYS/ULF5 - ALL/FIN X/HC/Paper on ISS) Page 2 of 6 pages



contamination, 2:20 consumables must be available to support activities from ingress through EMU doffing. For suspected contamination, 1:05 of consumables required. EVA tasks must be deferred to protect these consumables. MCC-H will calculate consumables remaining and bakeout time left. See Flight Rule B15-108 for rational on consumables.


Crew should remain in Crewlock throughout Airlock bakeout. However, if temporary egress is required, SCU strain relief hook must be connected to EMU D-Ring.



EVA

AMMONIA CONTAMINATION CUE CARD

(EVA SYS/E24 - ALL/FIN X/Paper on ISS) Page 1 of 2 pages

27 OCT 10

AMMONIA CONTAMINATION CUE CARD

(EVA SYS/E24 - ALL/FIN X/Paper on ISS) Page 2 of 2 pages

AMMONIA CONTAMINATION TEST

IV		-	ualization valve – OFF		
EV	C-Lk		wlock Pressure Contamination Sampler over EV Hatch MPEV.		
L v	0 ER	2. 1 1000 100 0	WARNING		
		testing can		ntamination Sampler during sults. All tethers should be	
		 √Crewlock lig 	ners from ISS Contaminatio hts (two) – ON, maximum i retrieve Ammonia Detector Kit.	ntensity	
			jer tube color – yellow		
			CAUTION		
		Minimize contact with the fracture regions of the Draeger tu Minor glove RTV damage is possible, but protective pressure bladders and restraints are unaffected.			
		7. Using RET a Detector.	as a lever, break off both te	ther points on Ammonia	
		9. √ISS Contam	onia Detector into ISS Cont ination Sampler fully seated etector fully seated in ISS C	d on EV Hatch MPEV	
			WARNING		
		Precise san	-	accurate testing. IV should	
		10. EV Hatch M			
IV		11. Start timer (04:30 sampling time).		
EV			expired, EV Hatch MPEV – mines if valid test from C-L		
MCC-	H/IV				
		 13. Verify EV Hatch Thermal Cover – Closed, √MCC-H if open <u>NOTE</u> 1. If ammonia is present, Draeger tube will turn deep blue. 2. It is acceptable to remove adapter from airlock valve to obtain a clearer view of Draeger tube. 			
		14.1 To	$\Delta P \ge 0.1 \text{ psi}$ (indicates leak repress Crewlock to 5.0 psi		
			IV hatch equalization $vlv \rightarrow$		
			to step 1 to repeat test with est results based on Table		
			able 1. Ammonia Test Pass		
		Reaction Line	Assumed Concentration (2X Factor of Safety)	Report Status	
		0 < X < 2	10 ppm	Repress	
		2 < X < 5	30 ppm		
		5 < X < 10	60 ppm	Repress with IV Actions	
N7		10 < X < 30	180 ppm		
IV		16. Go to block	16 in <u>4.141 ISS EVA AMMC</u>	DINIA DECUNTAMINATION,	

Go to block 16 in <u>4.141 ISS EVA AMMONIA DECONTAM</u> all (SODF: ISS EVA SYS: EMERGENCY).

EVA SYS-4b/17A - ALL/X

ATTACHMENT 3

25-0309 3.119 RADIATION AREA MONITOR DOSIMETERS -INSTALLATION OF DOSIMETERS ON ISS

(JNT OPS/ULF5 - ALL/FIN 14) Page 1 of 5 pages

OBJECTIVE:

To provide instructions and locations for collecting (white and blue) Radiation Area Monitors from previous expeditions for return, for deploying the new (cherry-colored) Radiation Area Monitors throughout ISS, and for photographing each newly deployed Monitor for ground verification purposes.

PARTS:

Radiation Area Monitor Hardware Ziplock Bag

Radiation Area Monitors Ziplock Bag (contains loose monitors) Radiation Area Monitors (cherry, quantity 26) P/N SEZ33111519-313 S/Ns 2418-2443

New RAM Location Subpacks (4) P/N SEG46116951-605 (each contains 1 monitor plus tether and label)

Radiation Area Monitors (cherry) P/N SEZ33111519-313 S/Ns 2446-2449

JLP1A0-01:

New RAM Location Subpack P/N SEG46116951-605 (contains 1 monitor plus tether and label)

Radiation Area Monitor (white) P/N SEZ33111519-313 S/N 2406

ISS (various locations):

Radiation Area Monitors (blue, quantity 26) P/N SEZ33111519-313 S/Ns 2356-2381

LAB1PD3:

Ziploc Bag:

Radiation Area Monitor (blue) P/N SEZ33111519-313 S/N 2133

Digital Camera

	<u>NOTE</u>
1.	Radiation Area Monitors are color-coded.
	For the ULF5 mission:
	Deploy: ULF5 cherry Radiation Area Monitors (30)
	Return: 20A blue Radiation Area Monitors (26)
	Return: ULF4 white Radiation Area Monitor (1)
	Return: 13A.1 blue Radiation Area Monitor (1)
2.	Refer to Table 1 (SM), Table 2 (NOD1), Table 3 (A/L), Table 4 (NOD3/Cupola),
	Table 5 (LAB), Table 6 (NOD2), Table 7 (COL), Table 8 (JEM) for exact locations.
3.	A total of 30 monitors will be deployed. 25 of the deployment locations should
	have a piece of Velcro with a tether attached to it from previous installations. 5
	locations will require Velcro, tethers, and labels be applied, which are provided in
	the New RAM Location Subpacks.

1. Unstow Radiation Area Monitor Hardware Ziplock Bag using the ULF5 Transfer Resupply List as a reference.

25-0309 3.119 RADIATION AREA MONITOR DOSIMETERS -INSTALLATION OF DOSIMETERS ON ISS

(JNT OPS/ULF5 - ALL/FIN 14) Page 2 of 5 pages

2. DEPLOYING NEW RADIATION AREA MONITORS

For all RAM locations listed in Tables 1-8

- If deploying RAM in an OLD location (refer to last column in table)
 - 2.1 Remove blue Radiation Area Monitor from deployed location leaving the tether at the location.

Stow blue Radiation Area Monitor in Ziplock Bag containing the loose Monitors.

2.2 Attach tether to cherry ULF5 Radiation Area Monitor and secure monitor to Velcro affixed to deploy location.

If deploying RAM in a NEW location (refer to last column in table)

- 2.3 Retrieve new RAM Location Label from the proper New RAM Location Subpack and affix next to location where the Radiation Area Monitor will be deployed. Refer to Location Description column.
- 2.4 Retrieve cherry ULF5 Radiation Area Monitor with attached tether and Velcro from the proper New RAM Location Subpack.

Verify monitor location corresponds to location decal.

- 2.5 Affix Velcro to deploy location adjacent to the label (if necessary).
 - $\sqrt{\text{Tether}}$ is attached to Radiation Area Monitor, and secure RAM to Velcro affixed to deploy location.
- 2.6 Photograph the deployment site so that the field of view is approximately 3 feet wide and the Radiation Area Monitor is identifiable in the approximate center of the frame.

Verify RAM label corresponds to location decal.

NOTE

Radiation Area Monitor S/N 2133 was reported lost during 1J/A docked operations (March 2008). It was found in 2010 and was reported to be stowed in a Ziploc bag at LAB1PD3 on GMT 2010/113.

- 3. Retrieve Radiation Area Monitor (blue) S/N 2133 from a Ziploc bag at LAB1PD3.
- 4. Stow Ziplock Bag with twenty-six loose blue 20A Radiation Area Monitors, one loose white ULF4 Radiation Area Monitor, and one loose blue 13A.1 Radiation Area Monitor for return using the ULF5 Transfer List as reference.

25-0309 3.119 RADIATION AREA MONITOR DOSIMETERS - INSTALLATION OF DOSIMETERS ON ISS

(JNT OPS/ULF5 - ALL/FIN 14) Page 3 of 5 pages

RAM S/N	RAM Label	Location Description	New/Old Location?
2421	ULF5/SM-P339	Panel 339: aft, overhead of Treadmill, upper center part of the panel.	Old
2422	ULF5/SM-P327	Panel 327: overhead, forward of Treadmill.	Old
2423	ULF5/SM-P307	Panel 307: overhead of Central Post, next to panel label.	Old
2424	ULF5/SM-W14	Window #14, Transfer Compartment Adapter section, starboard nadir quadrant.	Old
2425	ULF5/SM-P242	Panel 242: port wall of Port Crew Quarters (каюта), aft, upper corner of panel.	Old
2426	ULF5/SM-P442	Panel 442: starboard wall of Starboard Crew Quarters (каюта), aft, upper corner of panel.	Old

Table 1. Radiation Area Monitor Locations in Service Module

Table 2. Radiation Area Monitor Locations in Node 1

RAM S/N	RAM Label	Location Description	New/Old Location?
2418	ULF5/NOD1P4_03	Closeout panel on the port side of aft hatch, upper edge of panel.	Old
2419	ULF5/NOD1OP2	On the zenith side of the footbridge across the port hatch.	Old
2420	ULF5/NOD1S1_02	Closeout panel on starboard side of forward hatch, upper edge of panel.	Old

Table 3. Radiation Area Monitor Locations in Joint Airlock

RAM S/N	RAM Label	Location Description	New/Old Location?
2432	ULF5/A/L1 AD3	Aft wall, low outboard in large section.	Old
2433	ULF5/A/L1 OF3	Forward wall, high outboard in large section	Old

Table 4. Radiation Area Monitor Locations in Node 3 and Cupola

RAM S/N	RAM Label	Location Description	New/Old Location?
2446	ULF5/NOD3FD5	Forward, deck standoff panel between T2 and WRS-1 racks. Center of panel, between UOP and Fire Port.	New
2447	ULF5/NOD3OA2	On the zenith side of the footbridge across the aft hatch. (Compare to similar RAM deployment locations in Node 1 and Node 2.)	New
2448	ULF5/Cupola	Crew preference. Area above windows 2 or 3 preferred (nadir end of module).	New

25-0309 3.119 RADIATION AREA MONITOR DOSIMETERS - INSTALLATION OF DOSIMETERS ON ISS

(JNT OPS/ULF5 - ALL/FIN 14) Page 4 of 5 pages

Table 5. Radiation Area Monitor Locations in US Lab

RAM S/N	RAM Label	Location Description	New/Old Location?
2427	ULF5/LAB1_OS6	Overhead, starboard standoff panel between DDCU-2 and TCS racks.	Old
2428	ULF5/LAB1_D3	Inside of the WORF rack, in the vicinity of the D3 window.	Old
2429	ULF5/LAB1_PD2	Port, deck standoff panel between the Avionics-3 and ExPRESS-7 racks.	Old
2430	ULF5/LAB1_OS0	Closeout panel on starboard side of forward hatch, upper edge of panel.	Old
2431	ULF5/CHeCS_Meds	CHeCS RSR (LAB1D4), centered on inner side of D2 locker door.	Old

Table 6. Radiation Area Monitor Locations in Node2

RAM S/N	RAM Label	Location Description	New/Old Location?
2434	ULF5/NOD2S5_CQ	Center of the outer (Starboard) wall of the Node 2 Starboard Crew Quarters. Should not be covered by any shielding material.	Old
2435	ULF5/NOD2P5_CQ	Center of the outer (Port) wall of the Node 2 Port Crew Quarters. Should not be covered by any shielding material.	Old
2436	ULF5/CQ-3 (Deck)	Center of the outer (Deck) wall of the Node 2 Deck Crew Quarters. Should not be covered by any shielding material.	Old
2437	ULF5/NOD2OP2	On the zenith side of the footbridge across the port hatch.	Old
2449	ULF5/OVHD_CQ	Center of the outer (Overhead) wall of the Node 2 Overhead Crew Quarters. Should not be covered by any shielding material.	New

Table 7. Radiation Area Monitor Locations in Columbus

RAM S/N	RAM Label	Location Description	New/Old Location?
2438	ULF5/Col_EPM	Face of the European Physiology Module Rack (COL1A3), above the Right Utility Distribution Panel.	Old
2439	ULF5/Col_EDR	Face of the European Drawer Rack (COL1F1), on the Lower Utility Distribution Panel.	Old
2443	ULF5/TEPC	Monitor should be deployed directly on the surface of the ISS TEPC DETECTOR ASSY and can be secured with Kapton Tape if necessary. Refer to execute note for exact location of TEPC Detector.	Old

Table 8. Radiation Area Monitor Locations in Japanese Experiment Module

RAM	RAM Label	Location Description	New/Old
S/N			Location?
2440	ULF5/JPM1FD4	Forward, deck standoff panel between	Old

25-0309 3.119 RADIATION AREA MONITOR DOSIMETERS - INSTALLATION OF DOSIMETERS ON ISS

(JNT OPS/ULF5 - ALL/FIN 14) Page 5 of 5 pages

		MELFI Rack (D4) and Work Station Rack (F4), next to JAXA Area Dosimeter.	
2441	ULF5/JPM1F8- OVHD	Next to JAXA Area Dosimeter on forward overhead corner on port endcone	Old
2442	ULF5/JLP1A0-01	Deploy next to JAXA Area Dosimeter on aft side of vestibule between JLP and JPM. Tether and label should still be in ziplock with old (ULF4) RAM; they will be needed to complete the deployment of the ULF5 RAM.	New