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MAN/MACHINE ALLOCATION
IN THE APOLLO NAVIGATION, GUIDANCE, AND CONTROL SYSTEM
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, INSTRUMENTATION LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS

Introduction

Man' s role in spacecraft guidance and navigation is that of
supervisor of automatic systems and performer of specific sensing
and control functions ({ref. 1). However, as technology improves in
capability and reliability, many of these specific tasks will be replaced
by automatic systems. It is unlikely, however, that man's unique

‘lexibility and decision capability will be replaceable in the foreseeable

future.

To serve effectively as a supervisor during critical mission
phases, the human operator mu‘st continuously keep abreast of all
vehicle systems and the environment. In the case of certain critical
functions, several levels of back-up subsystems demand continual
time-shared attention in order that the astronaut know the status of
these systems when they are required. The total system must be
designed to provide sufficient crew involvement in system functions

to enable smooth and rapid transition to a back-up mode.

It is this requirement of continual crew awareness of and
involvement in many levels of redundant systems, operating in
parallel, which places a heavy burden on vehicle flight crews of

aircraft and spacecraft.
*Associate Professor, MIT
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To illustrate, the nature of the astronaut's supervisory and
functional tasks and the levels of system redundancy will be explored
by reference to the rendezvous phase of an Apollo mission, including

the required thrusting maneuvers.

The paper is organized as follows:
Description of the nominal lunar orbit rendezvous phase

a
b. Outline of the navigation process for rendezvous

e]

Detailed functional time line for a CSM active rendezvous

[oN

Exploration of future man/machine allocation, relieving
man of specific tasks and expanding his role as supervisor

and decision-maker.

Lunar Orbit Rendezvous

For the basic lunar landing mission (Fig. 1) there are fifteen
distinct guidance and navigation phases. The lunar orbit rendezvous
phase starts when the powered ascent injects the Lunar Module into a
safe perilune orbit. Termination of rendezvous occurs when the

desired conditions for manual docking have been achieved.

In order to maximize crew safety, the Primary Guidance,
Navigation, and Control Systems {PGNCS) on both the Lunar Module (L M)
(Fig. 2) and Command Service Module (CSM) (Fig. 3) have been designed
to give each vehicle independent "on board" capability (ref. 2, 3,4 and 5).
Fig. 4 is a functional outline of both systems. The systems have
also been designed to complement one another. Thus, during the

rendezvous phase when one vehicle is active*, the other vehicle is

#* That vehicle is active which performs the thrust maneuver.




constantly monitoring* and updaling the state vectorT of the active
vehicle with data from its own sensors. In addition, thrusting
maneuvers by the active vehicle are relayed over the voice link
to enable updating of the active vehicle's state vector in the
passive vehicle' s computer. If problems occur, the vehicle
roles (passive to active) can be reversed instantaneously and

the rendezvous continued.

The techniques under active consideration for rendezvous
are the Stable Orbit Rendezvous (SOR) technique and the Concentric
Flight Plan (CFP) (ref. 8). SOR (Fig. 5) is a modified direct
ascent rendezvous in that the ascent trajectory is controlled to
intercept the orbit of the passive vehicle a given distance ahead
of, or behind, the passive vehicle. Additional maneuvers place
the active vehicle in the same orbit as the passive vehicle with the
desired separation and control the final transfer from the stable

orbit point to the terminal rendezvous point.

The CEFP rendezvous prbfile, to which we will devote our
attention in detail, is a special parking orbit concept as illustrated
by Fig. 6. Initiation of the CFP occurs after the LM has been
injected into an elliptical orbit, approximately 50, 000 feet by 30
nautical miles, coplanar with the CSM orbit. Initiation is accomplished
by a horizontal thrust maneuver approximately 90° (central ingle) from
the injection point. This Concentric Sequence Initiation (CS!) maneuver,

raises the LM apolune to a new altitude at time tz.

During these maneuvers the "ground' systems are constantly monitoring
and supporting except for the period when the vehicles are behind the moon.

Tposition and Velocity at a specified time.




When the LM reaches this time, t_, its orbit is circularized by a

constant delta height (CDH) maneuzver. The LM stays in this

new orbit until the line of sight to the CSM achieves a preset angle
(approx. 26. 50) with the LM local horizontal plane. At this time,
t3, the transfer phase initiation (TPI) maneuver is performed,
placing the LM on a direct intercept trajectory with the CSM.

This intercept trajectory covers a central angle of approximately
1400. During this period, midcourse corrections may be made to

insure intercept. A series of terminal rendezvous braking maneuvers

are performed to establish the desired docking conditions.

Rendezvous Navigation Process (ref. 6, 7, 8 and 9)

In order to compute the AV* corrections to establish the proper
intercept trajectory, an estimate of the other vehicle' s position and
velocity must be processed by the on-board PGNC system. The PGNCS
carries out this navigation function in all phases of the rendezvous
maneuver. The only difference between the two vehicle systems is
that navigation data (range, range rate, and line-of-sight angle) is
obtained by radar on the LM while only line-of-sight angie data is
obtained from a precision optical Sj;rstem on the CSM. A range-only

capability is being added to the CSM VHF communications system.

The rendezvous navigation concept is illustrated in Fig. 7.
For initialization, each vehicle guidance computer must contain the
following information: (a) the state vector for each vehicle (this data

may be obtained from previous on-board navigation phases or from

* velocity change, direction and magnitude




Mission Control via telemetry), and (b) predetermined stored
statistical data for the uncertainties in the state vector and each
navigation sensor, and a geometry vector (b) which is a function

of the type of navigation measurement.

AThe estimated LM trajectory (—%L’ i}L) and CSM tra jectory
A

(BC, l/'c) are computed at designated times by integrating the
equations of motion. A radar tracker in the LM tracks the CSM,
yielding relative position and/or velocity data. The estimates of
the LM position and velocity and the tracking measurement biases
are improved by processing the tracking data through an optimum
filter. FEach measurement (e.g., range rate, elevation angle) is
processed separately with the estimates updated after each
processing. Measurements are typically processed every 60
seconds during the rendezvous midcourse and terminal phases.

In this way the on-board estimate of the LM' s position and velocity
and the measurement biases are continually improved as the filter

smooths the tracking data.

Thefilter consists of an optimum weighting vector W, which,
when multiplied by the difference between the actual measurement
(é) and an estimate of the measurement ((5), yields an estimate of
the deviation (6 _,E_\{, ) _\IZ') from the previous estimate of LM position
and velocity. These deviation estimates are then added to the previous
estimates to produce the improved LM position and velocity estimates,
(RL, VL)as shown in Fig 7. The filter also produces a new estimate

of the measurement bias if desired.




After each measurement processing, W is updated by sub-
tracting the step change (6 W) from the extrapolated value of W.
During long rendezvous profiles, it is necessary for the astro-
naut to reinitialize the weighting vector computation (W matrix).

Timing for this process is shown in Fig. 11 and 12B.

In the CMC rendezvous navigation program optical tracking
data is typically processed once per minute during those phases
in which the target vehicle can be tracked. If the magnitudes of
the changes in the estimated position and velocity vectors, ér
and § v respectively, are both less than preset update alarm
levels, the selected vehicle' s state vector is automatically updated
by the computed deviation, é§x. If either 6 r or § v exceeds its
alarm level, the state vector is not updated, and the astronaut is
alerted to this condition by a display of 6 r and § v. In this case,
‘he astronaut should recheck the optical tracking and verify that
he is tracking the target vehicle. Under certain conditions it is
conceivable that a star could be mistaken for target-reflected
sunlight, and it may take a few minutes to identify positively the
target vehicle by watching the relative motion of the target and
star background in the optics field of view. The CMC automatically
points* the optics along the estimated line of sight, so the object
that generally follows the optics reticle is the orbiting target, while
star images will drift across the optics field. After tracking has
been verified, the astronaut has the option of commanding a state

vector update if the tracking alarm is exceeded, or of repeating

* When the crewman desires to point the optics exactly at the target vehicle

he does so by changing the optics mode to manual.




optical checks before incorporating the measurement data. Once
the target has been positively identified, the state vector update
should be commanded regardless of the tracking alarm. The
primary purpose of the tracking alarm is to avoid false target
acquisition and tracking, and only alerts the astronaut that the
state vector update is larger than normally expected. The alarm
level can be adjusted in flight. At present it is set to zero to
maximize the crew's ability to monitor the rendezvous navigation

process.

As shown in Fig. 7, either of the two state vectors may be
updated by the tracking process. This option is normally chosen
when the rendezvous navigation program is first called, but can be
changed at any time by the astronaut. The vehicle having the larger
uncertainty in its initial state vector is the one normally chosen for
updating. If the relative accuracy of the two state vectors is unknown,

the passive vehicle is usually updated.

During an active CSM rendezvous, the CSM state vector is
automatically updated during powered rendezvous maneuvers by a
routine called Average-G which integrates the output of an orthogonal
set of accelerometers mounted on an inertially stabilized platform.

If the CSM is monitoring a LLM-active rendezvous, the LM state vector
in CSM computer memory is updated after a rendezvous maneuver as
an impulsive AV by a special en’try* into the CSM computer display-
keyboard (DSKY) during which time optical tracking data is suspended

#(Maneuver AV input of Fig. 7 ).




In review, the five major operations required of the astronaut

during the CSM rendezvous navigation are:

1. Optical tracking of the target vehicle, which includes
initial target acquisition followed by a uniform optical
tracking and marking operation.

State vector update monitoring.

Vehicle update option.

Input target AV maneuvers.

[S2 Y N VR

Weighting vector reinitialization.

Functional Time Line of the CSM Active Rendezvous

Of the two possible operating modes, CSM active or LM active,
the former is the more interesting, for this discussion, because the
CSM is manned by only one crewman during rendezvous, whereas the
LM has two crewmen. Therefore, in order to illustrate adequately
the role of the man as a supervisor and monitor, we shall limit the
remainder of our discussion to a CSM active rendezvous from the

CDH burn to final braking phase.

During rendezvous, the crew must activate, control, and
monitor spacecraft systems for prime and backup navigation, thrust
guidance, and attitude control. Vehicle housekeeping systems such
as environmental control, fuel cells, and communications must also

be monitored.




1.  Navigation
a. Primary

The navigation portion of the PGNCS is shown in
Fig. 8. Navigation data, in early missions, will be derived from two
optical devices, a Scanning Telescope (SCT) and a Space Sextant
(SXT). 1In later missions range data will also be available for navi-
gation. The SCT is a unit power, 60°-field instrument, used for
acquisition and pointing. The SXT is a two-line-of-sight, 28X, 1. 8°-
field instrument used for obtaining high accuracy pointing data. Navi-
gation angle data derived from these units is referenced to the
inertial measurement unit (IMU), a three-gimbal, inertially-stabilized
platform, which is the primary attitude reference. When the astronaut
optically aréquires and accurately points the optics at the target vehicle,
he signals this event to the Command Module Computer (CMC)* by

activating the optics mark computer discrete. This discrete causes

* The PGNCS Command Module Computer (CMC) is the primary on-
board sequence controller. It monitors the sensors' (optics, acceler-
ometers, IMU gimbal angles)'information and determines thrust times
nnd vectors, vehicle trajectory parameters, and optics target lines of
sight, maintains attitude control, and guides the CSM during thrust
maneuvers. The CMC and crew interface at the display/keyboard
(DSKY), which consists of a numeric keyboard and electreluminescent
digital displays. The CMC sequences are separated into functional
blocks called programs (¥ig. 9). Two kinds of codes are used for
crew/CMC communication: {a) verbs, indicating the kind of action to
be taken, and (b) nouns, defining the data to be processed or displayed.

Some of the most-commonly-used verbs and nouns are listed in Fig. 9.




the CMC to read the optics and IMU angles and the time of mark. The
computer compares the measured target elevation with the predicted
value and weighs the data with the W matrix (Fig. 7) to derive vehicle

state vector update parameters, 6 r and § v.

b. Backup Navigation
Backup rendezvous navigation has two modes, one for
long distances and one for close distances. For long distances, navi-
gation data is determined from ground tracking. Orbital maneuvers
for rendezvous are targeted from the ground and accomplished by crew

performance of fixed attitude burns using the backup guidance systems.

At close distances (determined by the maximum unaided target
visibility) elevation angle data is taken by boresight fixes along the
CSM longitudinal axis with the COAS*, a single-power collimated
reticle attached to the commander' s window. The COAS is used for
monitoring the primary system, and for backup rendezvous navigation

sightings. The COAS can also be used to align the IMU in a degraded

mode.

(continued from previous page)

There are designed-in "holds'" in the program sequences to permit crew
review of all calculations and operations before enabling execution.

Fig. 10 indicates the general nature of the crew/CMC interface. This
design permits the crew to exercise complete sequence contrlol, but
also causes the crew to monitor the CMC continuously during a mission

operation.

* Crew Optical Alignment Sight
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For navigation the crewman measures the target vehicle elevation
angle above, or below, the local horizontal as a function of time. Range,
range rate, and the maneuvers required to achieve intercept are ob-
tained from charts. During the final braking phase the crewman employs
a fixed braking schedule based on range, starting at about one mile.
Range is determined by the targetl vehicle angle subtended on the COAS

reticle.

2. Attitude Control
Primary attitude control is achieved with a CMC digital

autopilot (DAP) which maintains attitude rates and deadbands, and cal-
culates attitude maneuvers based on input values from thrusting direc-
tions determined by the CMC targeting programs, by ground largeting, or
from the crew. Manual control with the rotation hand control (RFHC)
through the DAP, the spacecraft Stabilization and Control System (SCS),
or dircctly to the spacecraft reaction control system (RCS) jot solenoids
are three levels of redundant attitude control. Manual attitude control
through the DAP can be perf ormed in fixed-rate or acceleration modes
with the RHC, and an attitude impulse mode (minimum RCS jet firing time)
with a pencil-stick minimum=-impulse control. RCS manual
attitude control through the SCS may be performed in proportional-rate,

minimum-impulse, or acceleration modes.

Spacecraft attitude is displayed with respect to the inertially
referenced IMU on one of two Flight Director Attitude Indicators
(FDAI) which display total attitude, attitude error, and spacecraft

angular rate. The backup aftitude reference consists of two sets of
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BMAG!' s* (one set for angular rate and one for attitude) and an Euler
angle computer called a gyro display coupler (GDC). The GDC is
either initialized from the IMU via the DSKY or by the crew using the
COAS and stars. A local horizontal attitude reference is available
from ORDEAL** which drives the FDAI display in pitch to indicate
vehicle attitude with respect to local horizontal.

3. Guidance

Primary guidance is achieved by a CMC thrust vector control
(TVC) DAP which controls the RCS roll jets and the Service Propulsion
System (SPS)*** gimbal drives. Both fixed and variable attitude
guided propulsion maneuvers can be performed by the CMC. Fixed
attitude burns may also be made automatically by using the SCS system,
or manually through the SCS system in either a rate damped or accel-
eration modes by RHC control of the SPS gimbals. For these backup
TVC modes, thrust is monitored by a single accelerometer mounted
on the spacecraft longitudinal axis. The change in spacecraft velocity
is displayed to the crew via the backup AV counter which is part of the

Entry Monitoring Systems (EMS).

Body-mounted attitude gyro
*% Orbital Rate Display, Earth and Lunar

There are two propulsion systems on the CSM. The Service Propulsion

System (SPS) is an approximately 20,000 pound thrust, gimballed engine
for large translation maneuvers. The reaction control system (RCS)
consists of four quads of 100 pound thrust jets. The RCS is used for

translations too small for efficient use of the SPS and attitude control.




-13~

4. Integrated Crew Functions

There are two stations in the CSM for crew operations. The
primary station is at the Main Display Console (MDC) (Fig. 3), located
in front of the astronaut couches. I.ocated on the MDC are all the
PGNCS, SPS, RCS and SCS switches and controls, a DSKY, the two
FDAIL' s,and controls for power, environment and communications. The
other station is fhe Lower Equipment Bay (LEB). Here the PGNCS
prime sensors, switches and controllers for manually operating the optics,
a second DSKY,and auxiliary mounts for the RHC and THC are located.
"1l optics sightings are performed and RCS attitude and translation
maneuvers may be executed in the LEB. This arrangement necessitates

movement between the MDC and LEB as operations demand (wig. 12).

Figure 11 is a relative position plot of the Active CSM and
passive target during the rendezvous transfer phases. The major
navigation and maneuver activities are indicated as a function of time
from docking. Figure 12 is a functional time line showing crew
activities, DSKY operations and backup system interfaces. During
each step, prime and backup systems are initiated and updated in
parallel. When the IMU is aligned, for example, the backup attitude
gyro package is initialized (periodically it has to be re-aligned to
compensate for system drift), Peak activity periods center around
the thrusting maneuvers. Satisfactory thrust execution and rapid
verification of the expected effect on the rendezvous are prime require-
ments. As intercept approaches, increasingly manual performance is
manifested by increased reliance on desired range and range rate by
crew monitoring of target elevation and time, correlated with onboard

charts,
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The attitude reference for the IMU is established first by
optics sightings on two of the thirty-seven navigation stars whose
coordinates are stored in the CMC. The transfer-phase conditions
are set up by a CDH burn using the CMC targeting program (P-30)
and SPS thrust maneuver program (P-40). (The nominal CMC/Crew
sequence for these programs is shown in Appendix A.) This sequence
places the orbits at a constant-differential height, permitting the CSM

to catch the target at a prescribed rate.

The rendezvous navigation CMC program (P-20) (App. A) is
selected to maintain the required CSM attitude for optical and radar
transponder coverage of the target and to process optics data for
state vector updating. Trajectories are defined and sighfings are
scheduled to maximize target visibility during rendezvous tracking.

For the nominal plan, tracking from TPI to intercept is done in darkness
and intercept occurs in daylight just after sunrise. Sightings in darkness
rely upon a high-intensity flashing beacon mounted on the target. Upon
initiation of P-20 the crew specifies which state vector is to be updated,
normally that of the passive vehicle. This choice may be changed at

any time during the rendezvous by keying in a special DSKY code. The
CMC maneuvers the spacecraft to the tracking attitude and automatically
points the optics at the target vehicle. Acquisition of the target may be

monitored at this time by the crew as described in the first section.

After the P-20 maneuver, the transfer phase initiation (TPI)
targeting program (P-34) (App. A) is selected to specify the time of
ignition for a target elevation angle at TPI. (At crew option, the TPI

solution can be specified to be ignition time instead of elevation angle.)




The duration of the transfer time from TPI to docking is also specified
by the crew and the CMC calculates and displays the velocity incre-
ments for the TPI and transfer phase final (TPF) maneuvers., Also
displayed are post-TPI perigee, tirne {rom ignition, and the number
of navigation sighting marks made during this sequence. This com-

1

putation cycle may be executed several fimes concurrently with the
navigation mark process. When the crew desires sighting marks,
the optics are enabled to acquire the target automatically, Upon ac-
quisition, the navigator performs manual centering of the target in
the optics field, For monitoring purposes, range, range rate, and
the target elevation DSKY display may be requested by the crew and
compared with the backup charts. As new navigation data is incor-
porated, the computed values displayed in P-34 will change to reflect

this new information.

During the TPI thrust program (P-41) (App. A) the CSM is man-
euvered to the thrust attitude. The CMC monitors thrust and calculates

<

and displays the new CS5M orbital parameters. The crew is responsikle

for monitoring attitude and adding the correct AV with the translation

hand control at the specified tirne of ignition.

After the burn, {urther comparison between the CMC target
variables (range, range rate, and elevation angle e) and COAS target
evation data are made. The rendezvous tracking atfitude is re-
established and further optics marks are made in parallel with ex-
ecution of the TPM targeting program (PP-35). Target data are per-

iodically monitored and the transfer phase midcourse (TPM) sequence

(P-35, P-41) is performed to minimize dispersions at the specified

docking time., If, however, the indicated AV corrections from P-35
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are very small,this sequence would be omitted. P~35 calculates

the thrust vector at an ignition time which is a fixed time delay after
program selection. Time from ignition, AV values for the midcourse
and TPF thrusts, and the post~TPM burn perigee are displayed. P-41

is repeated in the same manner as for the TPI burn.

During this final phase, more reliance is made upon out-the-
window monitoring of the target. The residual maneuvers and docking

are performed manually without onboard computation assistance.

As the time to TPF is counting down, the crew prepares to burn
the RCS manually for the AV calculated in P-35. The CSM is maneuvered
so that the longitudinal axis is directed at the target, permitting out-the-

window monitoring during thrust.

The PGNCS burn monitor program (P-47) is called to display the
TPF AV along spacecraft axes to verify crew THC AV inputs and to

enable update of the CMC state vector.

Summary

The crew functions illustrated by Fig. 12 (A, B, and C) can be

categorized as follows:

a. Monitoring of and decision making associated with the
rendezvous navigation process including the effects of target
sighting data on state vector updates and compariéon of onboard
data with backup charts and ground tracking,

b. Sequencing and initialization of primary guidance, navigation,
sensing systems, propulsion and timing systems.

c. Initializationand sequencing of backup systems. '

d. Monitoring of the spacecraft housekeeping systems. Note: This

function is not shown in Fig. 12 but it is implicit at all times.
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Approximately 70 crew functions can be identified, for item a,
b, ¢ above. These functions range from a complete IMU alignment
sequence to monitoring an automatic spacecraft maneuver. Of these
functions approximately half are associated with items b and ¢. Ap-
proximately 25 - 40% of the crew work load is devoted to these items.
More exact figures await full mission simulation on the NASA Apollo
Mission Simulator tied into the Mission Control Center and actual

earth orbit simulations of these lunar orbit mission phases.




Future Trends of Man-Mechine Allocation

The advances in component technology coupled with the
requirement to increase the efficiency and reliability of each mission
(flight), be it airplane or spacecraft, have resulted in continuous
pressure to increase the number and complexity of functions performed
in the cockpit. For example, Fig. 13 and 14 from ref. 10 detail the
increase in cockpit functions from the DC-3 to the DC-9 and from

Mercury to Apollo.

To view the man/machine development during this period with
some perspective, consider the following model - a fully automatic
machine or robot, capable of accomplishing Apollo or performing SST
functions without man. At the very least, this mechanism would have
large spectral bandwidth with extremely low thresholjd, high signal-to-
noise ratio, great flexibility in choice of signal procéssing, associated
adaptive dynamical systems, the capability to perform many tasks in
parallel, and sufficient reliability to achieve efficient, low-cost missions.
A machine of this nature does not now exist, nor will it for at least a
decade or so. We make up for this lack, interestingly, by using a low band-
width, low signal-to-noise, serial, but highly-flexible, processor (man)
to serve as performer of unique sensing tasks and as monitor and super-
visor of redundant systems. Thus, man/machine design ;has meant
utilizing man to fill technological gaps which limit the desired system
capability, flexibility, and reliability. At the existing level of technology,
such design activity is oriented toward integrating redundant systems
that individually do not have the required inherent reliability and/or

capability to achieve mission objectives,
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The major difficulty of this technique is indicated in Fig, 13
and 14 . Iow many functions that interface directly with man can
we add to the cockpit load before chaos results? Fortunately the
next generation of airborne computers and integrated display

techniques appears to offer hope of reducing this trend.

Large scale integrated circuits coupled with the multi-
processor approach (ref., 11 and 12) will allow a central processor
design with capability and reliability high enough to allow man to be
removed from continual direct control over the multiplicity of sub-
systems. This technique should be a strong tool for reducing crew

workloads as follows:

1. Minimize the details of vehicle pre-flight checkout.
All systems should be capable of being selected and sequenced by
the computer. Thus, automatic checkout and sequencing may be

employed in one of two modes:

a.  All checkout is performed automatically; man

might be required only if some system could not pass the required

testis,

b.  Certain sequences could be performed cooperatively;
i.e.,, the computer would do the sequencing, but at each point in the
checkout where a measurement is made, the computer would hold the
sequence until the crew v-erified the data. This method would probably
be used on mission- or safety-critical systems. The crew could also

have the option of changing the cooperative system checkout list in flight.
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2. Maximize crew safety during mission-critical phases
by automatically initiating all redundant systems. During these
periods, the central processor would continuously monitor all
active systems for failure or marginal performance and would
keep the crew informed. Switchover from a marginal or failed
system to a good system could be automatic or manual depending

on crew option.

3. Maximize information availability while minimizing
display space by utilizing integrated general-purpose graphical dis-
plays. These flexible graphical display devices may be used:

a. To reduce the total number of individual displays by
time-sharing. For example, during boost, entry, and thrust vector
control, data may be displayed which are relevant and/or unique
to that mission phase. Thus, panel clutter and instrument weight

can be substantially reduced.

b. To display time-shared graphical displays of rendez-
vous, entry, navigation, etc., to aid the crew in visualizing the problem
in process. Diagrams for systemi maintenance may also be integrated
into this type of display. Displays of target vehicles, maneuvers,
scientific data, etc. may be more easily utilized by the crew than purely

digital data.

c. To act as an integral part of the onboard training package
necessary to re-train the crew prior to a mission-critical phase (midcourse
or entry maneuver) during very long space flights. It is expected that air-
borne programs would be modified or changed during long flights by ground

uplink and this, too, would require inflight training.
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To summarize, present technology permits heavy burdening of
flight crews by forcing performance of extensive redundant system
integration to accomplish mission objectives. New technology offers
a chance to reduce the cockpit load and increase the number, complexity,

and reliability of mission functions.

By placing the crew in a more administrative or supervisory role
and limiting their use to unique, carefully-prescribed decision processes,
the burden on the crew can be reduced significantly. At the very least,
the crew can be released to perform other functions (scientific experiments,

onboard data analysis) divorced from aircraft or spacecraft control.
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Inertial Measurement Unit (IMU)

Rendezvous Radar

LM Gu idance Computer (LGC) ‘

Electronic CDU
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Alignment Optical Telescope
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