

Approved: u C h&. D a t e : f&,
E.C. HALL, DIR. DIGITAL DEVEL I’
APOL,LO GUIDANCE AND NAVIGATION PROGRAM

Approved: Date: L ,&)h?b7

E ,4ND NAVIGATION PROGRAM

Approved:
R. R. gAGAN,

Date: jd$%- h-P 7
DEtiTY DIRECTOR

INSTRUMENTATION LABORATORY

E-2097

A MULTIPROCESSING STRUCTURE

bY
R.L. Aionso, A.L. Hopkins Jr., H.A. Thaler

March 1967

CAMBRIDGE 39, MASSACHUSETTS

ACKNOWLEDGMENT

This report was prepared under DSR Project 55-36200, sponsored by the

Manned Spacecraft Center of the National Aeronaut.1‘cs and Space Administration

through Contract NAS 9-4065.

The publication of this report does no t constitute approval by the National

Aeronautics and Space Administration of the findings or the conclusions therein,

It is published only for the exchange and stimulation of ideas.

Extrapolation of Apollo experience to spacecraft computers of the next

generation indicates a need for digitai systems of greater computing and interface

activity, and of greater reliability, than has been realized to date.

An idealized collaborative multiprocessor structure in which a number

of processing elements are tied together by means of a single multiplexed data

bus is explored. At least one Job assignment procedure is possible for which no

one processor has to act as ‘master’, and which can survive processor mal-

functions or the deletion or addition of processors to the bus, thus accomplishing
‘graceful degradation’ and ‘reconfiguration’ of sorts. The single bus structure

as used here implies things about compilers for it, and also certain bandwidth
relationships between processors, bus and common memory. Rough estimates

based on short extrapolations of circuit technology show that the structure is

probably realistic.

by R. L. Alonso
A. L. Hopkins, Jr.
H. A. Thaler
March 1967

3

TABL,E OF CONTENTS

See? ion Page

1. Introduction . . * a ” * * . . * . * . . . a a . 7

a.

1. 1 Design ‘Trends . 7

I. 2 Multiprocessors . 7

1 . 3 H a r d w a r e . 9

Idealized Multiprocessor Structllre 11

2. 1 System Structure . 11

2.2 Processing Element Properties 13

2.2. 1 Program Storage 13

2.2.2 Message Transmitter and Receiver 13

2.2. 3 Self Error Detection 13

3 . Operation . 15

3.1 Job Assignment . 15

3 . 2 JobStack . 17

3.3 Degradation . 18

4. Implications . 19

4.1 Softwa.re Considerations 19

4.2 Estimates of Performance 19

4.3 Example of Job Assignments 20

4.4 Failure Processing 22

5 . Common Erasable Memory Organization 23

1 . IN-lXODT’C”I’ION

This report is based on a paper’ by klonso, Hopkins and Thaler with

some minor modifications and addition.;, mostly in the way of examples. I t

represents an approach (from among many) to computer organization which

seems to hold promise for both reliability and flexibility. Many obvious areas

of great importance have not been delt with, however, and this note is offered

more as a stimulant than as a serious, completed proposal.

1.1 Design Trends

In manned spacecarft to date, more uses have been identified for on-board
data processing than could be provided by the computers therein. Computer

designers are incli.ned to anticipate this sort of problem by their natural tendency

to supply greater performance than the application seems to require, but have

been inhibited in the spacecraft area by apparently inelastic size, power and

reliability constraints. These constraints are relaxed when it is discovered that

mission success is imperiled by lack of adequate computer performance. This
very likely arises at a time too late to reconfigure the computer within the mission

schedule. Instead, mission objectives are apt to be restricted and a large soft-

ware effort is mounted to prepare and verify programs which squeeze out maxi-

mum performance. A lesson for the next spacecraft generation is that graceful

expandabil.ity should be a fundamental requirement for the data processor and

other systems. This can result in the ability to profit from lessons learned in

the development phases of a mission by reconfiguring the on-board systems with

a minimum of impact upon the spacecraft.

In this paper, we review some general requirements for the next space-

craft computer generation and the forecast for hardware available in the coming

years. In the absence of the development of a suitable self-organizing automaton,

the multiprocessor structure appears to be best suited to both the requirements

and the hardware available. We describe an idealized multiprocessor organiza-

tion and examine its performance in terms of the performance of its components.

1.2 Multiprocessors

Extrapolating the Apollo mission to a planetary mission has many pitfalls,

1. Alonso, R. L. , A. L. Hopkins, Jr. and H. A. Thaler, Design Criteria for a
Spacecraft Computer, NASA Electronics Research Center, Spaceborne
Multiprocessing Seminar, Cambridge, Massachusetts, October 1966.

as entire;)’ n e w prohi.en?s a n d ;olution:; are j.j?volved. From the computer’s

point of view, howex:er, the r>:~uirements can be expressed independently of many

of the attributes of the total sphiczcrait. Size and power constraints should not

be expected to be much different than they are today. However, reliability over

a period of several years adds a new dimension to the problem; for in a system of

perhaps millions of soii d-&ate electronic elements, it must be assumed that

sevcrai) perhaps many, will become inoperative either due to poor quality or to

severity of environment, A hat is needed i 3 a system whose performance will not
be reduced beloT,+ the minimum required for survival of the spacecraft, unless

failures of calamitous proportions occur. -4 new concept has arisen to supplement

the old notion of redundancy in which elements may fail, but the circuits which

contain them continue to function with no degradation. If more elements fail than
the redundancy can cope with, the circuit will fail, and with it, the system.

The new concept, graceful degradation, implies an organization in which circuit

failure reduces, but does not suppress, the machine’s throughput. The brain has

this characteristic, but neuron-based automata have not yet exhibited promise

for miniature control computer applications.

In a multiprocessor organization, graceful degradation and graceful ex-

pansion are related properties, both made possible by the independence of the
constituent functional units: processors and memories. A multiprocessor is

more complex and expensive than a like-sized array of independent computers.

Its value is greater, for its performance depends on the number of units

functioning at any time. To increase the power of the machine, processors and

memories can be added without affecting parts previously present and, at least

equally important, without affecting existing programs. Each processor may be

made as powerful as the technology allows, but in the face of the reliability

problem, it appears more desirable to build simple, reliable processors in

greater quantity so as to minimize the impact of a single processor’s loss.

The multiprocessor structure is compatible with several of the require-

ments of the spacecraft application besides that of reliability. For one thing,
communication between the multiprocessor and all other spacecraft systems can

be handled in the same fashion as communication among the processors, thus

affording a unified treatment of the problem of input-output involving perhaps

hundreds of external functions. In a time-multiplexed serial transmission

structure, for example, a new system can be added to the multiprocessor’s

interface with virtually no changes other than the addition of access lines for the

new system to the coaxial cable (or waveguide) run. Today, multiwire cable and

connector problems probably constitute nalf the battle in making spacecraft systems

work.

8

Another example ot the muitiprocessor’s well-suitedness is the natural

division of many spacecraft data processing tasks into short Jobs of fractional

second duration. This is a result of the multiplicity of independent programs

serving the many systems involved, and also of the sampled nature of control

computations. Each program typically has a low duty cycle, requiring brief

serv ice several times per second. Each instance of service can be treated as a

c;eparate job to be handled by any available and competent processor. In the

Apoilo spacecraft, repetition rates for jobs vary from a few tens per second

down, with no more than eight Jobs running at a time. In the future we can expect

on the order of a hundred programs running at once and tons or hundreds of

samples per second per program,

1.3 Hardware

Regardless of what organization may be used, increased performance

without increased size can be obtained only with smaller and/or faster components.

Size is the key to speed by virtue of the finite velocity of information transmission

and of the power (hence size) of an element which drives a long (hence reactive)

line. The first effect, moreover, requires characteristic impedance termination
to avoid reflections, which further aggravates the power problem. Efforts to

shrink components are hampered by the difficulty of interconnecting components

reliably in a small volume with adequate yield.

An area in which great progress is being made, with promise of improve-

ment, is in the creation and interconnection of large numbers of semiconductor

elements on a single wafer. Within a wafer, signals can be transmitted at a
higher rate than from wafer to wafer. Likewise, the propagation delay of an

element no larger than required to drive an internal interconnection will be less

than that of an element large enough to drive an external line. The designer is

challenged by this technology to organize his equipment into local high-speed

areas , interconnected by as few lines as possible. How to do this depends on

the number of elements per wafer that can be realized. If it is hundreds, then

we think in terms of arithmetic and error detection circuits, multiplexers,

digital-analog converters, sequence generators, scalers, and small scratch

pad memories. If it is thousands, then small processors medium-sized scratch

pad memories and small associative memories could be made. If tens of

thousands or more, possibilities of rather elegant processors come to mind.

In any event, logic is becoming inexpensive, indeed virtually expendable,

to a point where using wire, cable and connections to save it is uneconomical.

Thus it is anticipated that all spacecraft systems will have local digital circuitry

for encoding, decoding, and multiplexing information for transmission in a

common language to the computer and elsewhere. One of the outstanding jobs

of the computer designer is to coordinate with the manufacturers of large

integrated semi-conductor circuits to best exploit this new technology.

Memory will be of several types to serve the various functions of scratch

pad, data storage, and program storage, either in a common area or associated

with a given processor, or both. Enough separate memories with separate

driving circuits must be supplied to meet the graceful degradation criterion, and

enough words must be supplied in each memory to do the job. Scratch pad

memories might be from Z7 to Z9 words; common erasable storage will perhaps

require 50 words per program, or more than ten thousand words in all. Program

memory would have on the order of a thousand words per program, hence

hundreds of thousands of words in all. All three sizes are an order of magnitude
beyond Apollo wihtout even considering the additional cost of redundancy. In the

light of the growth of computer sizes and requirements in the last ten years these

estimates may be somewhat conservative.

10

2 . 1DEALIZI:D MULTIPROCESSOR STRUCTURE

2.1 System Structure

As a model upon which to base our size and performance estimates we

use an organization which is simple, yet contains the elements of a general class

of multiprocessors. Starting with a group of processing elements (roughly

computers) each of which has its own program and scratch pad data memories,

we create a combination in which there is no one supervisory element or pro-

cessor, but which is truly collaborative.

The first item needed in addition to the processors is an infallible data

distributor by which information is transferred among units. A simple form of

distributor. is a time-multiplexed bus. Every unit having access to this bus can

receive all data which appears thereon. Every such unit can also transmit data

upon the bus by means of a mllltiplexer circuit, associated with the unit, which

emits the data at an appropriate time. The problem of scheduling time is handled

by making each multiplexer enable the next in line as soon as it is through sending
data. The next multiplexer will then send its data unless it has nothing to send,

in which case it will skip the enable on to the following multiplexer (see Fig. 1).

The next item needed is a common erasable memory in which to store data

needed to start jobs. This memory must either be infallible, or else have grace-

ful degradation properties of a sort which will be left unexplored in t.his paper.

The memory has access to the bus as do the other units of the multiprocessor.
It is interrogated by means of a message sent from a processor specifying its

own identity and that the contents of memory address k is desired. Upon receipt
of this message, the memory places it in a waiting stack. W’hen its turn comes,

the message causes a memory cycle to be executed, and both address and content

to be delivered to another waiting stack for transmission on the bus. The re-

questing processor will recognize its answer as it appears on the bus.

The last item in the multiprocessor is an input-output buffer unit, capable

of relaying messages between multiprocessor units and external system data

terminals. Although it is possible in principle simply to extend the multiprocessor

bus out to the external units, it is probably preferable to accommodate the

11

/ PROGRAM 1, ,

PROCESSOR $
NO. 1 b MULTIPLEXER 1

If I
L I I f.. /

. I I I
:
1 PROGRAM 1

I- I ei

COMMON zr-----rERASABLE 2
MEMORY Z

MULTIPLEXER4lT

I NO.1 1 EI J
. E
: ti
.

Fig. I Collabora ive multiprocessor model.

12

external data transfers on a separate bus system. This not only isolates the

mutliprocessor from its environment for conceptual analysis, but as a practical

matter permits the use of different sequencing techniques for the mutually

distant remote multiplexers than for the internal, closely packaged ones. Except

for this, the remote systems may be considered to be specialized processors,

and treated accordingly in the analysis.

2.2 Processing Element Properties

The processing elements P are thought of as small general purpose

computers with a number of features not normally presumed in connection with

processing elements. These are:

2.2.1 Program Storage

Each processor has its own copy of all programs. The programs

are written as pure procedure. This redundant program storage can be dispensed

with by having one or several memories which the various processors can

interrogate, but it simplifies discussion to have it. In particular, each processor

has a list of jobs it can undertake, plus any additional information required by

each job, such as starting address, data locations, elc.

2.2.2 Message Transmitter and Receiver

A processor is connected to the data bus multiplexer by way of

a transmitter and receiver section. This section may have a job request stack,

as discussed below, and does have means for discriminating among or originating

various messages, such as common memory transfers, job requests, job
acceptances (see below). An important property is that this section be “infallible”,

meaning as reliable as we can make it; more to the point, it cannot fail in such

a way as to disable the data bus.

2.2.3 Self Error Detection

Each processor must be capable of diagnosis at least to the extent

of detecting any errors within itself. The result of an error in a processor must

be a special job request message put on the data bus so as to have each processor

inform all others when it malfunctions or when it becomes inactive (e.g. , power

failure); this is the reason for requiring an “infallible” message transmitter and

receiver. Error detection need not be instantaneous; it is probably sufficient

to detect errors within a job execution interval and not issue false job results.

The detection of certain kinds of errors such as inactivity, or programs be-

coming “lost”, requires either a certain minimum time or else an uneconomical

amount of equipment. The area of error detection and/or correction may be one

of the more difficult ones in multiprocessor element design.

13

In addition each processing element has a scratch pad storage, an arith-

metic unit and rudimentary interrupt system which will enable single memory

cycles out of sequence. The latter should permit a check within several memory

cycles to see if a job requested is available in this processor’s repertoire of

procedures.

14

3 . OPERATION

3. 1 Job Assignment

A view of the detailed process of Job assignment is important in ascer-

taining if the single data bus structure is either possible or desirable, and if

graceful degradation will occur.

Definitions

P

pl’ or P.1
J

J1’ or J.
1

Y

Y1’ Yi

C R

R (J, Y, T)

A (J, P)

E (J, P)

T

Processor

A specific processor

Job

A specific job

Prior i ty

A specific priority Yi + 1 >

Conditional Request
<Job request message

Job acceptance message

End of job message

Time - floating point

‘i

The general job assignment can be as follows:

1 . R (J, Y, T) appears on the data bus, issued by either a processor or

an input-output unit. This is a request to do job .J, which has priority

Y, and to do it at time T. The time at which the job is to be done,

can be ‘now’, or ‘as soon as possible’, or some specified time in

the future.

2 . Each P capable of doing J records R, whether busy or not, in a

stack with certain associative properties. The messages may be

retrieved by keying on J, on T, or on the maximum value of Y.

Processors are either free or not. If not, they are doing a job J

of a certain priority Y.

3a. Suppose J = Ji; when message R (Ji, Y, T) appears on the bus the

free processors PI, P2 . . . Pj each compose a response message

1 5

A (J.,1 PI), A (Ji, P,), . . . A (Ji, Pj). Some one of the free pro-

cessors will have first turn at the data bus (because the bus is

time multiplexed) and will issue an A-message. All P, free or not,

then elide R (J.,1
P, T) and also any redundant A (Ji, P) they may

have prepared, and which is waiting its P’S turn on the bus. After

A is issued by Pjj Pi must bring all pertinent information about Jl

from the common memory into itself.

3b. If there had been no free P, then R (JI, Y, T) would remain out-

standing in all P. All those P doing jobs with lower priority than

that of the job requested also prepare response messages A (J1, PI.

Again, some processor will be first to issue A (Jl, P) because of the

bus multiplexing, and all other R (Jl, Y, T) and A (Jl, P) are

annihilated.

The P that undertakes a new J2 of priority Y2 higher than the priority

Yl of Jl has a choice: it may take on the new job J2 while keeping

all the information about Jl within itself, if it knows J2 to be short

(such information can be part of the job name itself, or of its

priority measure). Or, if J2 is not short, 1’ must, after issuing

A (j,, Y,) but before actually doing any work, transfer all pertinent

information used by and about Jl to the common memory and issue

R (Jl, YI, T). In this way another P can undertake Jl, Common

Practice is to program jobs with “bump points”, which minimize the

information that must be sent to or brought from common memory

in the event of interruption. The value of knowing when J2 is short

enough to allow the same P that was doing JI to resume J1 after

doing J2 is in the saving of common memory transfers.

4 . The end of a job, or the interruption of a job, also requires a
message E (J, P).

5 . Each A (J, I’) issued is recorded in every stack, and annihiliated

by the subsequent E (J, P) with matching J. In this way there is

at all times a record of which J are being executed and by which P.

This information permits restarts in the event of a P failure, as
will be discussed below. Each stack must have as many extra cells

for A messages as there are processors.

6 . Jobs to be executed at appointed times are of importance in sampled

data systems such as spacecraft. The same stack used for storing
2

unsatisfied job requests can be used to solve the problem. T h e d

1 6

outstanding ;)i: requests R (J, Y; T) may be sorted (or retrieved

assocjatrvtly) bv T > T, where -To is the present time, and further
o-

sorted by priority. For each new To the stack is interrogated to

see if 3ne or more jobs arc outstanding. If so, an A-message is

prepared, as in 3.

It is sometimes desirable to initiate a JOT as a result of the completion of
severai previous jobs, whose order of execution is uncertain. For example, it
might be desired to initiate J 5 when ail of J1, J2 and J,,, have been completed; butI
J1, ‘J2 and J3 are independent jobs, executed in arbitrary order. There are some

potential synchronism problems in this sort of scheduling which can be eliminated

by the modification of the joh request message format to include conditional

information; for instance, let J issue R (<J(1 5, Y, T, K1), where K1 means
“condition 1” similarly, let J2 issue R (J5, Y, T, KZ), and J3 issue R (J5, Y, T,

K3)* if J1 issues its R message first, R (J5, Y, T, K1) will be in all stacks.
No processor accepts J5 because only one of the three necessary condition has

been met thus far. Suppose that J3 then issues R (J5, Y, T, KS), and let this

message be merged with the previous conditional request, so that the stacks will

then hold R (J5, Y, T, K1, K?). When R (J5, Y, T, K2) is eventually issued,
the merging process is repeated and the stacks hold R (J5, Y, T, K1, K2, KQ).

The stacks can be made so that all three conditions must be present for a

processor to accept that job.

Unconditional job requests can be made by issuing messages R (J1, Y, T,

K1> K2, KS), i. e. , by simply fulfilling all necessary conditions with one
message.

3.2 Job Stack

The stack associated with each processor which contains the job request is

a potential problem area. On the basis of estimations of system size and speed,

and of future integrated circuit sizes, we have guessed the stack size to be

100 words of 50 bits each. The required associative properties might be simu-

lated by circulating the contents of the entire memory in between job requests,

and for each increment of titne. A recirculation time of the order of a few

microseconds looks reasonable from the point of view of circuit technology

(10 nsec per bit, for word-parallel shifting). This access time is consistent

with a time is granularity and a job request interval of the order of ten micro-

seconds, which appear adequate. It is not yet clear, however, whether room for

100 outstanding job requests is enough.

The job assignment and interrupt structure which has been defined pre-

~vio~uslv assumes that every processor contains a job request stack with associativeY

17

and comparative properties. In order to avoid the N-tuplication of this potentially

expensive stack, the structure can be modified slightly. One “infallible” copy of

the stack is maintained in common memory, and is capable of initiating jobs in

any processor. The primary difference in the message traffic flow is that a

Bump Message [B (P) must be defined and transmitted at bump points.i]

Additionally, the bumping option available to the distributed table system which

eliminates unnecessary common memory transfers is unavailable to the single

table system.

3. 3 Degradation

The multiprocessor can degrade gracefully if, together with the postulated

infallible common memory, the message bus and the part of each processor

concerned with message handling are also infallible. It is necessary that a

processor failure generate a message, i. e., a job request. The job undertaken

by some other processor is to reissue all job requests shown outstanding for the

failed processor. Since the input information (the list of outstanding A-messages)

is still available in common memory, recovery can be effected by having other

P’s do the jobs over again.

There are other interesting degraded conditions. One of these is when there

is one processor. The message bus then has only one occupant, Pl. When Pl

issues R, Pl receives it, stores it, computes A (J, P,) issues it, annihilates K,

and gets on with the job. Hence the bus structure must be such as to allow
message sending processors to receive their own messages. The single processor

will also behave appropriately in the event of a higher priority J2 appearing while

it is doing a job J1.

General system overload’is another case of interest. Suppose the number

of job requests becomes large for the system, and the list of R messages stored

in each P increases to the point of taxing that stack. If by “graceful degradation”

we mean that jobs of higher Y get done first, and that jobs of lower Y get post-

poned, but done eventually, then we must provide means for making room in the

“pending R ” stacks. Other strategies are possible, such as proportioned pro-

cessor occupancy. One way to do this is to have each processor store in common

memory (or in its own scratch pad, if it has one big enough) the job requests of

lower priority and later time of execution. One interesting point is that, if a

processor has many unserviced R’s in its stack, other processors are apt to have

the same messages in their stacks. Hence, as the lower priority job requests

are stored in common memory, a message must be issued for annihilating the

same requests stacked in other processors. After making room in the stack the

original processor must issue a job request that the demoted job requests now in

common memory be reissued.

18

4. IMPLICATIONS

4. 1 Software Considerations

Despite the fact that most of the calculations for a spacecraft are sampled
by nature, there exists a substantial programming burden in sectioning programs

into jobs of proper length and establishing the packages of data required to shelve
and resume the program for interruption and restart. This burden cannot be

placed on the programmer because, as a practical matter, computer users do

not (and should not have to) know very much about the computer they use. The

onus clearly falls upon a compiler. Programs written as a single job must be

segmented automatically so as to be able to restart and permit efficient

interruption. Writing such a compiler probably represents a task of the same

order of magnitude as the design of the multiprocessor itself, and also represents

an advance over present compilers. The above multiprocessor design (and very
likely, any other) would not be attractive without either the prior existence of a

suitable compiler, or knowledge that one can be written.

An interesting extreme from of program segmentation into jobs consists

of letting each job be an instruction of an elementary type such as multiply (or

perhaps as complicated as a floating point vector operation). The job name must

in this case contain data addresses and a next instruction address; or else the

job name can be simply the address of an instruction. This would undoubtly re-

sult in inefficient processor usage, but it might lead to useful segmentation

techniques.

4.2 Estimates of Performance

An order of magnitude estimate of performance requirements for this

ideal multiprocessor can be derived from an extrapolation of Apollo experience.

Within a few years time we shall desire a machine which can handle on the order

of a hundred programs at a time on a sampled basis, out of a total program

assembly of hundreds of programs. Each program would periodically receive a

sample update; an average sample rate of about 50 samples per second per program

would probably be adequate. This means that some 5,000 samples, or jobs,

would be executed every second. The overall bit transfer rate fcr common

19

memory, input-output, and II?< stages is estimated as follows. An average of

25 words must be brought from common memory and 25 words stored there per

Job. This number is based on experience with Uthe executive program structure of

the Apollo Guidance Computer. Assume 50 bits per word for address and data.

Assume an average of one input and on,0 output message and four Job assignment

messages of 50 bits each per Job. The minimum bit rate which could possibly

serve this system is

’ 5o word
bits
or message = 14 megabits/set

This rate takes no account of delays occasioned by stacked up requests

or other access times, but is well within reach of today’s technology for memory

and transmission systems.

The instruction execution rate is estimated by assuming an average number,

again borrowing from Apollo experience, of the order of a thousand instructions

executed per job, and an average job duration of a millisecond. The latter figure

is chosen on the basis of wanting the multiprocessor to react to an input event

or job request within that space of time. This yields a figure of one microsecond

per average instruction, and also implies that at least five processors need to be

on line to handle the 5,000 jobs per second. Both of these figures seem extremely

reasonable in the light of our expectations of the technologies involved; indeed, we

expect that the technologies will soon substantially surpass these levels. This,
added to the fact that we have been describing a somewhat primitive form of

system organization, suggests that we may expect to have more powerful space-

craft data processors in a decade that there are on the ground today.

4. 3 Example of Job Assignments

Figure 2 shows the various states, as time passes, of a system composed
of three processors and a common memory. The heavy line is the Internal Data

Bus, and the arrows to and from the processors or common memory indicate

which paths are active at that time. For clarity, only the stack associated

with each processor is shown, and not the processors themselves. The single

cell to the left of the stack is a transmitter; outgoing messages are placed there

for issuance to the Internal Data Bus at the proper time. The group of three

cells represents the associative stack,

20

-
m

5
’

!a.
27

i

F
L
-l

t
f f

21

At time T =: to processor PI issues a request that job J1, or priority Y,

be executed at time T1. _?I1 three processors, including PI, record the request

in their stacks.

When time T1 arrives, two processors, PI and Py find themselves in a

position to accept the Job. Both prepare acceptance messages A (J1, PI) and

A (JI> P3) and place them in their respective transmission cells, waiting for

their turn at the bus. In our example Pg happens to be the first to gain access

to the bus, and hence the message that appears on the bus is A (J1, P,).

Processor PI, upon receipt of A (J1’ P,), at time T1 + e both records the

message and elides its own waiting A (J1, PI). In fact, all processors record

A (J,, Py), and all other recorded messages which have J1 in them are deleted.

Processor P2 still had the request R (J1, Y, T1) in its stack at t = T1, but that

message is deleted and A (J1, P,) recorded.

This system avoids the problem of multiple requests for the same Job

Notice also that every processor has within its stack information as to which

JO& the other processors are doing.

After Pg accepts J1, it obtains from common memory all the pertinent

data. Since each processor is presumed to have within it all programs, each

processor also has, associated with each Job name, a list of the necessary

information to be obtained from common memory.

Some time later, at T + tJ, processor Py finishes its calculations and

sends to the appropriate place in common memory the results of its calculations.

After this step (or as part of the same message) P3 issues an end of Job message

E (J1, P3) which deletes from all the stacks the acceptance messages A (J1, P3).
Part of J1 could have been to issue other Job requests, or even to issue a new

Job request R (J1, Y, T2) for performing J1 again at time T2. There is no

problem with E (J1, P3) deleting a possible R (J1, Y, T2) which might have been

issued during the course of J1 because E messages can only delete A messages.

4. 4 Failure Processing

Suppose P3 had failed in the middle of J1. Under our assumptions any

failure within a processor will be detected before the end of its current job,

and before issuing false results. Let failure of a processor result in the issuing

of a failure message F (Pi), or F (P,) in our example. Then all the acceptance

messages with P3 in them, which are stored in all the stacks, can be reverted

to R messages, so that failure of a job in progress has the same result as

reissuing the original job request. The worth of this procedure is naturally highly

dependent on error detection.

22

5. COMMON ERASABLE MEMORY ORGANIZATION

In the foregoing analysis it was assumed that the common erasable memory

was an infallible monolithic structure. In a real common memory design it will

be necessary to employ some form of redundancy to meet the reliability require-

ment. To simultaneously provide high reliability and bandwidth, the graceful

degradation concept may be used.

As an example of gracefully degrading (and expanding) memory structure

consider a system in which several electrically independent memories communicate

with the message bus via a multiplexer and a data interface unit. The latter
contains three lists, or stacks, which are used respectively for paging (like a
table of contents), data requests, and output data.

Each memory is logically divided into groups of words called pages,

which would probably be from 2 6 to 2 10 words depending on the designer’s choice

One of the functions of the data interface unit is to assign physical pages to

logical addresses upon command from a processor via a job request. There is

no a nriori restriction on how many memories shall assign a physical page to
a single address block for the sake of redundancy. The paging stack is similar

to a job stack in a processor, responding to every access request with an in-

dication of whether or not the memory unit contains the referenced data, and

its physical address if so.

Also contained in the data interface unit is a data request stack, similar to

a job stack, which buffers data access or storage requests until they can be

honored. Data to be stored is held in this stack along with the address. Data

which has been accessed is passed along to a third stack where all output data is

buffered and fed to the message bus multiplexer for transmission along to a

third stack where all output data is buffered and fed to the message bus multiplexer

for transmission along with its address and other appropriate identification to

the requesting processor.

This scheme allows simultaneous operation of different memories to the

extent that requested accesses are distributed among them. It is a graceful

expansion and degradation system because there is no interaction between

memories save by the message bus. This interaction would occur when accessed

23

.
data is redundantly stored in more than one memory unit. When one unit

succeeds in delivering the data to the bus, the other memory units trying to do
so would be retired from doing it by an annihilation of the request from either

the data request stack or from the data output stack.

It is perhaps, noteworthy that logically the individual parts of common

memory may be considered to be processors, although likely specialized ones.
These memory processors are capable of storing and delivering messages

composed of strings of words to be used by the other processors. To achieve

redundancy, for example, one or more of these can record a message that

appears on the bus. Redundantly recorded messages can be delivered by a

memory processor chosen in the same way as the more general kind.

24

E-2097

DISTRIBUTION LIST

Internal
M. Adams (MIT/GAEC)
W. Aldrich
J. Alekshun
R. Alonso
R . Battin
P. Bowditch/F. Siraco
G. Cherry
N. Cluett
E. Copps
R. Crisp
J. Dahlen
J . DeLisle
J. B. Feldman
P. Felleman
S. Felix
J. Flanders
J . Gilmore
Eldon Hall
T. Hemker (MIT/NAA)
D. Hoag
F. Houston
A. Hopkins
L. B. Johnson
A. Laats

A. Lapointe (25)
L. Larson
S. Laquideira (MIT/FOD)
T. M. Lawton (MIT/MSC)
D. Lickly
L. Martinage
G. Mayo
R. McKern
James Miller
John Miller
J. Nevins
J. Nugent
R . Ragan
G. Schmidt
R. Scholten
N. Sears
J. Shillingford
G. Silver (MIT/KSC)
W. Stameris
M. Trageser
R. Weatherbee
R. Woodbury
Apollo Library (2)
MIT/IL Library (6)

External:

IV ASAi RASP0 (1)
Maj. H. Wheeler (AFSCiMIT) (1)

MSC: (10)

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058
A T T N : R. Chilton (1)

P. Ebersole (1)
W. Rhine (1)
T. Chambers (1)
G. Xenakis (6)

ERC: (2)

National Aeronautics and Space Administration
Electronics Research Center
Technology Square
Kendall Square
Cambridge. Massachusetts
ATTN: Dr. R.C. Duncan

NAS4:

NASA Headquarters
600 Independence Avenue SW
Washington, D.C. 20546
ATTN: J. Kantor

Paul Schrock

(2)

(1)
(1)

	Acknowledgement
	Abstract
	Table of Contents
	1. Introduction
	2. Idealized Multiprocessor Structure
	3. Operation
	4. Implications
	5. Common Erasable Memory Organization
	Distribution List

