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AGC4 BASIC TRAINING MANUAL 

ABSTRACT 

This manual contains a concise description of that which a computer pro- 
grammer should know about the Apollo Guidance and Navigation Programming 
System to  be useful. That is we answer the following questions: What a r e  the Per-  
tinent machine characteristics ? What programming languages and conventions 
exist for my use? What systems subroutines may I rely upon? How do I commu- 
nicate with the system subroutines which I need? This manual does not concern 
itself with the Mission Programming System or  that which an engineer or mathe- 
matician must know t o  adequately program a phase of the mission after he has an 
adequate knowledge of the system. 

This manual attempts t o  be thorough while brief. It does not t ry  to  exhaust 
all there  is t o  know about a subject nor does it t r y  to  make the reader  an expert on 
any subject. It is designed so that someone fairly new to  the subject may acquire 
a practical understanding of it within the shortest time. Whenever a detailed and 
complete understanding is required the reader  should consult the program listing 
and/or  other technical documents. 

This manual is divided into four sections. Section I discusses the AGC4 
and how to program it in Assembly Language, Section TI describes the Interpreter 
and how to  program in  Interpretive Language. Section 111 describes the System 
Software subroutines and how to  interact with them. Section I V  contains an outline 
and suggestions fo r  teaching sections 1-111. Each section has a table of contents. 

by A. L. Drake 
B. I. Savage 
Computer Consultants, Incorporated 
January 196 7 
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I. BASIC TRAINING DOCUMENT: 
BASICS OF AGC PROGRAMMING 

1. 1 Introduction and Memory Outline 
" . . .. ~ - 

A word in AGC memory consists of 1 5  binary bits, schematically numbered 
from left t o  right as bit 15, 14, . , . , 1. A sixteenth bit called the parity bit is 
inaccessible t o  the programmer but se rves  as  a check against hardware malfunction. 
When a word is stored in memory, the count of the number of bits in the word which 
a r e  set  to  1 must be odd. If the count equals an  even number, the parity bit wi l l  be 
set to  1 so that the count is odd; otherwise the parity bit is set to  0. When the same 
word is read  from memory, the hardware ascertains that an  odd number of bits 
came from memory. If not, the implication is that a bit was  lost. This is called a 

parity e r r o r  and resul ts  in special processing. 

1 5  1 4  13  . . .  1 P 

Each word in AGC memory may be interpreted as data or as an instruction. 

1. 1. 1 ,Data " Representation 
One word by itself constitutes a Single Precision (SP) quantity. Bit 15  is the 

sign and bits 14 - 1 have magnitude of 2 1 4  - 1. If bit 1 5  = 1, the magnitude is nega- 
tive and is represented as the ones complement of the positive magnitude (discussed 
below). Bit 14 is the high order  bit (highest value) and bit one is the low order bit 
(lowest value). 

15, 14, . . . ,  1 

For arithmetic purposes the value in bits 14- 1 is thought of as a fraction. 
That is, the binary point is between the sign and bit 14. Fo r  instance, a one in bit 

1 4  is equivalent to 1 / 2 .  From a programmer 's  point of view, the programmer must 
keep t rack of the "imaginary" point's position within the word in. accordance with 
the appropriate scaling. 
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1 / 2  1 / 4  1 / 8  1 /16  l/z 1 / 6 4  
SI I I I I 1 1 

Point" Fractional Magnitude 

Fourteen magnitude bits may not always allow u s  sufficient precision. Thus 
we may represent data in a Double Precision (DP)  quantity within two adjacent words 
of memory. Since each single precision word has 1 4  magnitude bits, the combined 
quantity has 28 bits with a precision of 228-1. Bit 1 5  of the first word contains the 
sign. Bit 15 of the second word wil l  normally be the same as bit 1 5  of the first 
word but may differ in certain cases. Bits 1 4  - 1 of word 1 represent the high-order 
bits and bits 14-  1 of the second word represent the low-order bits. Al l  28 bits 
exist in complemented form if the sign ( s )  is negative. 

Word 1 Word 2 

+ High X - Low 

15 1 4 . .  . . . . . . 1 15 1 4 . .  . . . . . . . 1 
28 1 5  14 

For  even greater accuracy, a quantity may be contained within 3 adjacent 
words and is called a Triple Precision (TP)  quantity. (The third word serves the 
same function in T P  a s  word 2 does in DP. ) In essence, we add 1 4  low order bits 
so that we may represent a value of 242 - 1 (thought of as a fraction, we would say 
1 -  . ) Again, negative value would be represented in one's complement form 
within all 3 words, 

-42 

Word 1 Word 2 Word 3 
Low + High X Middle X - 

- 
15 1 4 .  . . . 1 15 1 4 .  . . . . 1 15 1 4 . .  . . . 1 

42 29 28 15 14 1 

Three double precision quantities a r e  used to  represent a 3-dimensional vec- 
tor,  Each DP "word" contains the value of one component of the vector. Again, a l l  
6 words must be adjacent and, normally, the first two words represent the X com- 
ponent, the next two words represent the Y component, and the last two words r e -  
present the Z component, Of course, the sign of each D P  component need not be 
the same. 
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+ Word 1 Word 2 + Word 3 Word 4 + Word 5 Word 6 

15 high low 
7 y- c_ 

15 h l g h Z  low 

Lastly, an  AGC word may be thought of as a full 15-bit quantity, where all 

15 bits are magnitude without sign, representing 215 - 1. This  representation could 
be used to  make a word into a counter. Fo r  logical purposes, each bit or some 
combination of bits  may be used as an  indjcator or may serve  boolean purposes. 

'". 
>\ 

The access  time for taking one word from memory is approximately 1 2  
microseconds or one memory cycle t ime (MCT). 

1. 1. 2 Instruction Representation ___ ~ 

The 15 bits of an  AGC word may be selected and executed by the AGC as an  

instruction. In this case, 3 bits, 1 5  - 13, form an octal value from 0 - 7 and repre-  
sent the op-code. The encoding of the op-code is what determines the particular 
behavior of each instruction, A s  3 bits have been specified for op-code selection, 
we may have Z 3  = 8 basic machine instructions, and indeed we do. Thus, any word 
taken by itself forms a legal instruction. This implies that a data word may be exe- 
cuted yielding storage and unexpected results, and,a  programmer must take pains 
t o  keep his data (constants, f o r  instance) separate from his instructions. Actually, 
we shall la ter  encounter a way of extending the basic machine instructions (discussed 
below) by using certain 2-word instruction sequences or by extending the 3-bit op- 
code to  include bits 1 2  and 11 for op-code purposes for instructions which apply t o  
erasable memory. 

The remaining 1 2  bits of an  instruction word form the address  portion. (De- 
pending upon the op-code, the address  is used to  render accessible the contents of 
the specified memory location o r  is used as a number to  point t o  a location in memo- 
r y  (to transfer control to  a location, for example. ) Twelve bits may form an address  
for the range 0-  7 7 7 7  octal or 212 (4096) decimal locations. The system require- 
ments necessitate a much larger  memory store. Thus, the address  portion is en- 
coded so as  to  be combined with another location called the Bank Register, allowing 
u s  to form an effective address  of 15 bits for the range 0 - 215  - 1. Further encoding 
allows combination with an indicator called the Super Rank Bit which enables us  to  
form a 16-bit effective operand address  for  the range 0 - 216 - 1. This method of 
encoding the address  portion of an instruction word is discussed under Addressing, 
below. 
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Op - Code Address 
1 5  1 4  1 3  1 2 . . . . . 1  

0 - 7  0 - 7777 
8 cases  4096 decimal addresses  

1. 1. 3 Quarter Codes - Op-code- 
1 5  1 4  1 3  12  11 1 0 .  . , , , . 1 

In cases  where only the 1 0  low-order bits a r e  necessary to form the address  
portion of a word, the 3-bit op-code may be extended by use of bits 12 and 11 to  form 
a 5-bit op-code nicknamed a quarter code. Quarter codes allow u s  to use more than 
8 op-codes when addressing erasable memory (as discussed below). 

1 . 1 . 4  Layout Memory 

The AGC memory may be divided broadly into erasable and fixed memory. 
Erasable memory i s  in the range 0 - 3777 octal. The contents of a location in eras- 
able memory may be altered by writing into it. Fixed memory is in the range 
10000 - 117777 octal, but there a r e  gaps. That is, not every location corresponding 
to one of the addresses  in this range exists. Fixed memory is a "read only" memory. 
The programmer may not al ter  the contents of any location in fixed memory, and in 
fact the hardware wil l  not permit it. Thus, only 2048 decimal locations exist for 
ordinary programming requirements that need modifiable storage. This is very 
little memory, and one crucial requirement of programmers is to design and imple- 
ment programs which use a minimum amount of erasable storage (the use of tem- 
porar ies  and switches is one example. ) 

1 . 1 . 5  Erasable Memory 

Although erasable memory is defined as that portion of memory locations 
within the range 0 - 3777 octal, an erasable memory location must also meet the r e -  
quirement of being defined within the 10 low-order address  bits, because bits 12  
and 11 must = 0 a s  a "signal" to the hardware that E-memory is being addressed, 
While no problem a r i se s  in addressing locations 0-  1377 octal, the use of an 11th 
bit is sometimes necessary in addressing the range 1400 - 3777 octal. For addresses  
within this range, then, we u6e a 3-bit Erasable Bank Register in conjunction with 
the 8 low order  address  bits to  form an effective address. 
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I .  

1. 1. 6 Special Registers 

The first 60 locations of erasable memory are used excl.usively as special 

__ ~ 

registers.  The accumulator (A)- octal pseudo-address 0000 - is a 16-bit arithmetic 
element. Bit 1 5  contains the sign, which is duplicated into bit 16. Bits 1 4  . . . 1 
contain the magnitude of the quantity. Bit 16  is used to indicate the cor rec ted  sign 
in the case of overflow (discussed below), 

The lower product register  (L) - octal pseudo-address 0001- is a 15-bit 
register  which forms the lower part of the accumulator when Double Precision quan- 
tities are used. It contains the 1 4  least  significant bits of a product af ter  multipli- 
cation and the remainder of a quotient after  division. 

The Z Register- octal pseudo-address 0005- serves  a s  a 12-bit program 
counter. It contains the next address  in memory f rom which a n  instr.uction will be 
fetched. These 1 2  bits a r e  inadequate to address  a l l  of memory and may be com- 
bined with bank bits to form up to  a 16-bit address. This shall be discussed under 
Addressing. The 16-bit Q Register contains, a f ter  a Transfer Control (TC) instruc- 
tion, what would normally be the contents of the Z Register. For example, when a 
"TC" instruction is executed at location L, the contents of the Z Register contain 
the address of the instruction to which the program has t ransferred control. The Q 
Register contains the address  of the instruction following the "TC" instruction, or  

L+ 1. If the instruction had been any other than a "TC", this address  would have 
been contained in the Z Register. When the subroutine initiated by the "TC" instruc- 
tion is finished, a "TC to  Q" instruction will re turn  control to the instruction 
following the "TC" instruction in the main program, or  L f 1. 

The Zero Register-  octal pseudo-address 0007- always contains only zeroes. 
When referenced, it wi l l  yield zeroes. One use of this is a s  a constant to clear a 
desired location. 

A value may be al tered by writing it into one of 4 special registers.  When a 
quantity is written into the Cycle Right Register-  octal pseudo-address 0020- bit 1. 
goes into the sign bit, while bits 1 5  . . , 2 shift right 1 bit. When a quantity is writ- 
ten into the Shift Right Register- octal pseudo address  0021 - the sign bit is dupli- 
cated into bit 14, while b i t s  14 , . . 1 a r e  shifted right 1 bit. By faithfully repro-  
ducing the sign bit, we  preserve the algebraic integrity of the value. The original 
contents of bit 1 a r e  lost. Shifting right n places is, of course, the equivalent of 
dividing by 2". When the Cycle Left Register - octal pseudo-address 0022 - is written 
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into, the sign bit goes into bit 1, while the contents of bits 1 4  . . . 1 shift left 1 bit. 
When the Edit Op-Code Register - octal pseudo address  0023- is written into, the 
sign bit is lost, while bits 14- 1 a r e  shifted right 7 places, displacing the original 
contents of bits 7 . . . 1, which a r e  consequently lost. This last regis ter  is not of 
general interest. It is used in implementing iqterpretive instructions. 

I 
Editing Register Transformations 

0020 CYR $15 14 13 1 2 .  . , . . 01+01 15 1 4  1 3 .  . . . 02 

(rotation right 1) 
P 

0021 SR 15 1 4  13 1 2 .  . , . . 01-15 15  1 4  1 3 .  . . . 02 O l * c  

(shift right 1) 
::: original contents of bit 1 a r e  lost 

0022 CYL 15, 1 4  13 1 2 .  . . . . 0 1 3 1 4  13 1 2 .  . . . . 01 1 5  

(rotation left 1 ) 
002 3 EDOP 15 1 4  13 12 . . . . . 01 7 places 

(edit [polish] opcode) - """ 1 4  1 3  1 2  11 10 09 08 

Figure 1 

1 .1 .7  Fixed Memory 

Fixed memory is that portion of memory addresses  in the range 4000 - 117777 
octal. These memory addresses  a r e  divided into 36 banks of 1024  words each. The 
first 2 banks of fixed memory-  banks 02 and 03-  with addresses  4000 - 7777, a r e  
known as "Fixed-Fixed" memory. Notice that Fixed-Fixed memory can be defined 
within the 1 2  address  bits. 

The remaining 34 banks of fixed memory, with addresses  in the range 
10000-  1177778, need additional bits within which to fully define their addresses.  
For these cases,  a 5-bit Fixed Bank Register, which is more definitively discussed 
below, is made available for combination with the 10 low-order address bits. These 
34 banks, which require the use of a bank register,  a r e  known a s  "Fixed-Switchable'' 
memory. Addresses in the range 100000- 1177778 require 16  bits for definition. 
A 16th bit is provided for  combination with the FCADR (Fixed Bank Complete Address), 
i. e. with the 5 bits from the FB and the 10 low-order address  bits. Addresses in 
the range 110000 -117777 comprise Super Bank 4 . Addresses in the range 70000- 
107777 comprise Super Bank 3. The reason for this wil l  be fully discussed under 
Addressing. 

:* Super Banks 0 and 1 have been renamed 3 and 4, respectively. 

* 
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Within the 15-bit word in AGC memory, we have only a 12-bit address  field 
t o  reference the 38,912 decimal locations in memory. 

on-code address  

Since many memory locations require a 13- to  16-bit address field f o r  definition, 
the following addressing schemes have been developed: 

. I -! j ! , ?  ~ '.!" . ? I  

I '> ' X ,  !'I '. ' 

(It is first important t o  distinguish between the terms ''address'', "pseudo- 2 
8 .  

5 '  :; :, .i :< 

address", and "effective operand address". "Address" refers  simply to  the 12-bit 
address  portion within a 15-bit word in memory. The "pseudo-address" (PA) is the 
absolute address  of memory locations 0 - 117777*. The t e r m  "pseudo-address", o r  
"absolute address", is used when discussing fixed-switchable memory addressing 
where the absolute addresses a r e  always 1000Os more than their  machine represen- 
tations. The "effective operand address" (EOA) is the f i n a l  address formed by the 
hardware at the execution time. ) 

The hardware recognizes a 00 configuration in bits  1 2  and 11 as  a "signal" 
that the address  re fe rs  to erasable memory, which we have said must be defined 
within the 10 low-order address  bits of a word. If bits  1 2  and 11 a r e  equal to  0 0 ,  

the hardware tests bits 1 0  and 9. An 112 configuration in bits 1 0  and 9 indicates 
that the pseudo-address is in Erasable-Switchable memory (i. e. in the range 
1400- 37778) and that we need the use of the 3-bit Erasable Bank Register (EB). 
The combination of the 3 bits from the EB and the 8 low-order address  bits  provides 
an  11-bit address  field, which is sufficient for the definition of all Erasable-Switch- 
able absolute-addresses. 

We set  the EB equal to  the particular bank number in the range 0 - 7 ,  which 
would be defined ordinarily in bits 11, 10, and 9 if we had the use of the 11 low-order 
address  bits  for defining Erasable-Switchable addresses.  The configuration in the 
8 low-order address  hits is the 0 - 3778 (=  25610 bank locations) augment within the 
bank specified in EB. For example, since the absolute address  3734*, which looks 
like 10 111 011 l o o 2  in machine representation, requires more  than 10 address  
bits for definition, we set  EB equal to  the value specified in bits 11, 10, and 9, or 

10 l2  = 58, We a lso  set  bits 1 0  and 9 equal to  1 l2  so that at execution ti.me the hard- 
ware wi l l  fetch the 3 EI3 bits, drop bits 10 and 9 (which is the equivalent of subtracting 
1400 from the 10-bit address),  and append the E13 bits to  the 8 low-order address  
bits. We now have 
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I 
EB Address Bits 

11 10 9 1 0  9 8 7 6 5 4 3 2 1  

(Bits) I 1 I 0 I 1 k - l  11111 d , '  I l l 1 0  1 1 1 1 1 . 1 0  0 

The absolute address  27348, then, can be expressed as an augment of 3348 in EB 5. 
We combine the above to get: 

1 1 1 0 9 8 7 6 5 4 3 2 1  

or 17348 from which 1400 is subtracted. 

Any configuration in bits 10 and 9 of the address  other than 112 indicates to 
the hardware that the pseudo-address is within erasable memory below 14008 and 
can be defined within the 10  low-order bits of a word. In this case, there is obvious- 
ly no need for the use of a bank register.  For example, the address  10348 would 
look like 1 000 011 1002 to the hardware. Finding no 1 l2  configuration in bits 10  
and 9, the hardware would merely form a 10-bit address  field. Of course, it is 
possible to address  a l l  of erasable memory via the EEL For instance, the absolute . 

address 10348 -001 000 011 loo2 ,  which we considered above, can be handled thus. 

We set the EB to OIOz - 2 8  and bits 10 and 9 equal to 112. At  execution time, the 
hardware, sensing the 112 configuration in bits 10 and 9, fetches the EB bits, drops 
bits 10  and 9, and appends the EB bits to  the 8 low-order bits, giving u s  

EB 
, < , I  

_I 

, I '.I: Address Bits 
i I  , ; 

(bits) 11 10 9 1 0 9  ' 8 7 6 5 4 3 2 1  

which is the expression of the absolute address  10348 as an augment of 34 within 
EB 2. This is obviously the equivalent of the configuration of 10348 a s  a low-order 
address  

(bits) 10 9 8 7 6 5 4 3 2 1 
1 1 0  0 0 1 0  1 1 1 0 0 

While it is therefore possible to address  erasable memory below 14008 via the EB, 
it  is usually preferable to define these addresses  within the 10 low-order addiess  
bits of a word. 

A step by step recapitulation of addressing Erasable-Switchable absolute 
addresses  follows: 

1. 27348+10 111 011 loo2*  
The octal address  is converted to machine language. 

specified in bits 11, 10, and 9 (10 111 011 loo2).  
2. The programmer se ts  the EB to 0- 7 (in this case, 5)- the value 
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Indicator Bits Address Bits 

5. The above is combined to  render the EOA 10 111 011 l o o 2 .  

We have now to consider the addressing schemes which develop when the 
hardware tes t s  bits  1 2  and 11 and finds a configuration other than 00. A one in  bit 
1 2  indicates that the address  is in Fixed-Fixed memory (i. e .  in the range 4000- 
77778), which we have defined as those addresses  which require fo r  definition no more 
than the 12  bits of the address  field of a word, Fo r  example, the address  54678 which 
is equivalent to  101 100 110 1112 and has a one in bit 12 ,  can indeed be defined 
within the 1 2  address  bits  and is indeed within the range 4000 - 7777g. The address  
76018, which is 111 110 000 0Ol2 in machine language, can likewise be defined 
within the 1 2  address  bits and is within the range 4000-  77778. 

On the other hand, if  an  address  cannot be defined within a 12-bit address  
field, a 0 l 2  configuration in bits 1 2  and 11 indicates that the address  is in Fixed- 
Switchable memory (i. e . ,  in the range 10000-  117,7778) and wil l  therefore require 
the use of a 5-bit Fixed Bank Register (FB). In Fixed-Switchable memory, an  address  
is always 100008 more than its actual address  representation in the machine since 
Fixed-Switchable memory begins in FB  0. Therefore, the first consideration to a 
programmer in converting the pseudo-address to  a representation that wi l l  permit the 
AGC to form an effective operand address  is to  subtract 10000 f rom the address.  
The programmer then se t s  the FB equal t o  the value in the range 0 - 378 which would 
ordinarily be specified in bits 15, 14, 13, 1 2  and 11 if we had the use of a 15-bit 
address  field. Let u s  take as  an  example the address  36774g which becomes 267748 
after subtracting from it 100008. Since its machine representation is 10 110 111 

111 l o o 2 ,  the programmer sets  the FB equal to  138 (010 110 111 111 loo2), se t s  
(usually via the Assembly) bits 1 2  and 11 equal to 0l2 ,  and leaves bits 1 0  - 1 unaltered. 
At execution time, the hardware senses the 01 configuration in bits  1 2  and 11 , fetches 
the 5 bits f r o m  the FB, and masks out all but the 1 0  low-order address  bits  of the 
word. Masking out bits 1 2  and 11 is obviously the equivalent of subtracting 20008 

f rom the 12-bit address.  The 5 bits  f rom the F B  a r e  now appendcd to  the 10 low- 

order  address  bits, giving u s  the address  10  110 111 111 loo2, identical to  the 
original address  minus 100008 (267748). 
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- F B  10 low-order address bits 
O I l [ O l l I l  ~ 0 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 [ 1 ~ 1 ~ 0 ~ 0  
-> the effective address: 10 110 111 111 loo2. 

\1 "& F B  

15 14 13 12 11. An 112 configuration in b i t s  15 and 14 indicates that a 16th bit 

After we have formed the  EOA, the hardware tests bits 15 and 14 of the FB: 

I ITzLLn  
\1 "& F B  

15 14 13 12 11. An 112 configuration in b i t s  15 and 14 indicates that a 16th bit 

After we have formed the  EOA, the hardware tests bits 15 and 14 of the FB: 

I ITzLLn  
may be required for address definition. If bits 15 and 14 a r e  not equal t o  112, the 
15-bit address field provided by the combination of the F B  with the 10 low-order bits 
will be sufficient for defining the effective operand address. In this case,  we would 
follow the procedure outlined above. A step by s tep description of the changes which 
affect the address 367748 follows: 

1. 100008 is subtracted from the pseudo-address 
367748 giving us the effective operand address 
267748. 

2. 2 6 7 7 4 8 3 1 0  110 111 111 loo2 
The octal address is converted t o  machine language. 

3. The programmer must provide that at execution time, 
the F B  is set  t o  138-the value specified in bits 15, 
14, 13, 12,  and 11. 

(010 110 111 111 1102) 
J.C& 4.c 

4. Now we mask out all but the 18 low-order address  
bits of the word, giving us - - - - - 0 111 111 loo2 
(bit position) 15 . . . . . .  11 10 . . . . . .  1 

5. The programmer (via assembly) sets  bits 1 2  and 11 equal 
t o  0 l 2 ,  thereby indicating the need for the F B  and now giving 
us - - - 010 111 111 loo2 

15 12 1 (bit positions) 

The value of the 12-bit address field for  all Fixed-Switchable addresses is in 
the range 2000 -37778, which we obtain by always adding 2000 (i. e. bits 1 2  and 11 

= 01) t o  the 10-bit augment of 0- 1777 (i. e. 0-102310 bank size). 

6. At execution time, the hardware fetches the 5 bits from 
the FB; drops bit 11, which is the equivalent of subtracting 
20008 from the 12-bit address; and appends the FB t o  the 10 
low-order address bits. W e  now have 

-1 10101  l O l l l l l l 1 1 1 1 1  l I O l O 1  

(bits) 15 14 13 12 11 1 1 2 1 J l O . .  . . . . . . . .  1 

7. Since the address does not sequire  a 16th bit for  definition 
b i t s  15 and 14 a# 112), the only s t e p  remaining is t o  combine 
the above t o  render the effective operand address 
10 110 111 111 loo2 = 267748. 
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8. 267748 t 1O0OO8 = 367748. The effective operand 
address is the Machine Equivalent of the pseudo-address. 

A l l  the Fixed-Switchable addresses  in the range 10000- 1077778, whose effec- 
tive operand addresses  a r e  between 0 and 777778, can now be referenced within the 
15-bit address  field provided by the combination of the 5-bit Fixed Bank Register 
and the 10 low-order address  bits of a word, There a r e  Fixed-Switchable addresses,  
however, in the range 110000 - 117777, whose effective operand addresses  (between 
100000 and 1077778) require  a 16th bit for  definition. W e  therefore provide a 16th 
bit called a Super Bank Bit or  Fixed Extension Bit (FEB) in the following fashion. 
The hardware recognizes an  1 l2  configuration in bits  15 and 14 of the F B  - 

F B  - 
15 1 4  1 3  12  11 

1 1  1 1 
as  a signal to  fetch a 16th bit - the Super Bank Bit - and append it to the Fixed Com- 
plete Address (FCADR).  

1 0  low-order address  bits  

F o r  those Fixed-Switchable addresses  in the range 70000- 1077778,  with 
effective operand addresses  in the range 60000- 777778, the Super Bank Bit must 
contain a 0 (since the addresses  can be defined within a 15-bit address  field). 
For  the range 110000-  117777 (EOA 100000- 1077778) the Super Bank Bit must = 
1. Let u s  consider for example the address  764538, which becomes 664538 = 1 1 0  
110  100 1 0 1  0 1 l 2  in machine representation. The programmer must provide that 
at execution time, the FB is set  to 338 (110112)-the value specified in bits 15, 14, 
13, 12,  and 11 (110 110 100  1 0 1  0 1 l 2 )  (bits 1 5  and 14 of the FB a r e  equal to 
112)-and that the Super Bank Bit is equal to  0.  At execution time, the hardware 
tests bits 15 and 14, and, sensing an  112 configuration in bits 15 and 14, it fetches 
and interrogates the Super Bank Bit. 

When the hardware senses  a 0 in the Super Bank Bit, it merely forms a 15- 
bit address  field j u s t  as for  Fixed-Switchable addresses  below FB 30. For i l lustra-  
tive purposes (i. e. this is not a description of how the hardware actually works) ,  

the value found in bit 16 is added to  the value in bit 14. If, a s  in this case, the 
Super Bank Bit is equal to  0, the configuration in bit 14 will not be altered by adding 
0 to  it, and there  will consequently be no overflow out of bit 15. 
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Super Bank Bit "-3 
"0 

JI 
110 110 100 101 011 - 
110  110 100 101 011 

1 5 . .  . . . . . . . .  .1 

Now, consider that the pseudo-address range 70000 - 777778 (witkin F B  30- 
33) and the pseudo-address range 110000-1177778 differ by 200008 (or a 1 in Bit 14), 
though we a lso  define F B  30 - 33 for the range 110000 - 1177778. We distinguish 
them thus: the address  range 70000- 777778 within FB 30- 33 has an 011 configura- 
tion in the Super Bank Bit while the address  range 110000- 1177778 within F B  30 -33 
has a 100 configuration in the Super Bank Bit (bit 16). 

We have just discussed the disassembling of address  764538. Let u s  now 
consider the address  1164538. Subtracting 100008, we obtain the effective operand 
address  1064538 ~1 000 110 100 101 0112. The programmer makes certain that, 
at execution time, all but the low-order 10  address  bits a r e  masked, and that the FB 
and Super Bank Bit a r e  set. Since the hardware interrogates the Super Bank Bit 
only on sensing a 112 configuration in  bits 1 5  and 14, and since bits 15 and 14 are 00 

in  the pseudo-address -1064538, i. e. 

1 000 110 100 101 01 

(bits) 16 15 14 . . . . . . . . . . .  1 

the programmer has had to  set the FB to  338 (1101l2) ,  so that 15 and 1 4  = 112. 

This is the same configuration a s  that of the FB for the effective operand address  
(EOA) 664538 above. Again, to distinguish between the addresses,  we can think of 
adding the value of the Super Bank Bit to the value of bit 14. Thus, 

EEB" - FB 10 low-order address bits 111 [ 1 1  1 1 0 1  11  1 1  o ~ l [ o ~ o ~ l [ o ~ l ~ o ~ l ~ l )  
16 15 14 13 12 11 1 0 9  8 7 6 5 4 3 2 1  

which gives us  

16 15 14 13 12 11 

10 lower address  bits 
0 1  I [  o ]  0 1  1 1  0 1  l l O l l I 1  

10 9 8 7 6 5 4 3 2 1  
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1. 2 .  1 13anl.r Sun1 t1lar-y 

The Erasable Bank Registcr, a s  wc havc sucn, is a 3-hit rcgistcr which, by 
having its 3 bits specifying a bank number in the range 0 - 711 a1)pendcd to thc 8 low-  

order  address  bits of a word, wi l l  provide u s  w i t h  a n  11-hit atldrcss field. Within 
an 11-bit address  field, wc can define all o f  erasable memory (i. e .  addresses 

. . . ~ ~  ~ " 

0 -  37778). 

By writing a bank number in thc rangc 0 - 37 into thc 5-bit Fixed Bank Regis- 
t e r  and having the 5 bits of the FB appended to  the 1 0  low-order address hits of a 

word, we obtain a 15-bit address  field. This 15-bit sddrcss  fic1.d is  sufficient f o r  
defining all of fixed memory except those pseudo-addresses in the range 110000-  

1177778 (i. e. 15 bits is sufficient for defining addrcsscs  in the range 10 ,  0000-  

107777 ,  after having subtracted 100008). 

The Super Bank E, which is not a bank or  register,  provides u s  with the 
16th bit necessary for defining the absolute addrcsscs  in the range 110000 - 1177TT8. 
Thus is all memory made addressable. 

The EB, and ET3 a r e  all locations i n  mcmory.  ,\ hank nunlhcr  Ivriltcn 
into EB o r  FB i s  automatically written into R R ,  and information t v r i t t r n  into 13R is 

automatically written into ET3 and FR. 

Octal Register 
Address Name 

11 1 0  9 

0 0 0 3  EB [ I  I I El El E ]  1 1 1 1  1 1 I 
1 5  1 4  13  1 2  11 

0004 

0006 

FB FI F F I; 
m 

Figure 2 
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The programmer sets  bank reg is te rs  by creating constants (via assembly 
process) which a r e  written into the bank reg is te rs  by his program at  execution time. 

A special 12-bit hardware register exists called the S Register, which is 
inaccessible to the programmer and contains the 12-bit address  portion of the re fer-  
enced word of memory. Depending upon the configuration i n  bits 1 2  and 11 and ins 
bits 10 and 9 of the contents of the S Register, the hardware will  form an 11 -bit 
address,  or a 16-bit address. These effective operand addresses  then go to the 
address  selection logic for selecting the referenced address.  A diagram of the 
logic upon which the hardware will  form an 11-, 15- or  16-bit EOA from the 12-bit 
address  in the S Register is presented in an appendix at the end of this document, 
(pages 1- 67,  1-68). 

A s  we have discussed previously under Special Registers, the Z Register 
has only 1 2  bits within which to  reference all 38, 91210 memory locations. In order 
to address  up to a 16-bit absolute address,  the Z Register bits a r e  combined with 
EB or  FB  and FEB bits, as in the previously discussed procedure, to obtain a 
fixed absolute address. 

Changing banks requires  that the programmer has set the EB or  FB  to the 
proper configuration of the bank he wishes to go to, and that he has set the Z Register 
so that the hardware wil l  form the proper EOA (with the aid of the bank register,  if 

necessary), Similarly, when we wish to fetch data from one bank while we a r e  in 
another .bank, 'we must set the EB o r  the FB  properly for combination with the address  
field of the fetch. One problem with fetching information from one fixed bank while 
we a r e  in another is that we may lose control from the bank we a r e  in to the bank 
containing the desired data to which the Z Register w i l l  be pointing. For example, 
let u s  consider that we a r e  in FB 23 and that we wish to fetch data from FB 20. By 
executing any instruction which will  fetch the data from FB 20, the Z Register wi l l  
be set so that when the bank bits a r e  appended, we shall then be in FB 20 rather 
than in FB 2 3  where we wish to be. Although methods of evading this problem wil l  
be discussed below, one common solution is to fetch the desired data via erasable 
memory, in which the previous setting of the FB will not be altered. 

At the end of this document in an appendix is a diagram showing how the 
38,912 memory locations fit the addressing schemes previously discussed (page 1-66).  
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As previously stated under Instruction Representation, the 15 bits ol  an AGC 
word may be selected and executed as in instruction. Since only bits 15, 14, and 
13 of the instruction a r e  specified to represent the op-code, we have only 8 op-codes 
with which to work. 

We therefore introduce a 16th bit called an extracode bit, which, when appen- 
ded to  the 3-bit op-code and set  to  1, provides u s  with twice the number of instruc- 
tions, giving u s  1 6  op-codes. The extracode bit is set  by an "Extend" instruction 
and is rese t  by any instruction other than an "index" instruction. 

Also, w e  have stated under Addressing that a 00 configuration in bits 1 2  and 
11 indicates that we a r e  referencing erasable memory, If we a r e  ab lc ,  then, to  de- 
tect  by the very nature of the instruction that we a r e  addressing only erasable 
111ernory, we may use bits 1 2  and 11 to represent op-codes. We call the combination 
of the 3 op-code bits and bits 1 2  and 11 (when an  instruction re fe rs  only to erasable 
memory) a quarter code (QC). The combination of the extracode bit, the 3 op-code 
bits, and bits 1 2  and 11 gives u s  a maximum of 6 bits for representing op-codes, 
thus giving u s  26 = 64 possible op-codes in  the range 0 - 778. In reality, however, 
there  are l e s s  than forty instructions. 

The following diagram presents the code names and high-order bit configura- 
tions of the 15  non-extracode instructions and the 19 extracode instructions. A de- 
tailed explanation of each instruction will h e  given in Section n. 

1 .  3. 1 Arithmetic and Overflow 

This brief discussion of the AGC mechanization of the arithmetic unit  is 

given from strictly a programming point of view and is therefore intended only to 
give some basis for analyzing program performance. 

Data is represented in the RGC with the positive ( 0 )  or negativc (1) sign of 
the magnitude in bit 15 and the binary magnitudc within thc range 0 - 214 - 1 in hits 

14-1. Positive data is represented within bits 1 4-  1 asbinary magnitudc uljto214-1. 
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For example, the positive octal quantity 73058 and its negative one's complement 
would be represented in an RGC word as : 

p o s i t i v e 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1  

bits: 1 5 1 4 1 3 1 2  1 1 1 0  9 8 7 6 5 4 3 2 1 

sign bit 

The sum of the negative and positive representation of a quantity will obviously 
equal a configuration of all one's. Consider the sum of the two previous examples: 

+ - 7 3 0 5 ~ 1  1 1 0 0 0 1 0 0 1 1 1 0 1 0 

- 0 0 0 0 - 1 1 1  1 1 1  1 1 1  1 1 1  1 1 1  

o r  
- 0  =777778 

Because the AGC uses only one's complement arithmetic when under pro- 
gram control, the quantity "zero" has two possible representations: O O O O O s  and 
777778, which a r e  designated respectively as + 0 and - 0. In most cases,  the "zero" 
that resul ts  from addition o r  subtraction will  be a negative zero, e.  g. the sum of 
-t 73058 and - 73058. 

The only difference between one's Complement arithmetic and two's comple- 
ment arithmetic is the addition of 1 to  the low-order bit (bit 1) of the one's comple- 
ment notation. For example, to  the one's complement form of -73058, we add 1, 

111 000 100 111 010 
f 1 

111 000 100 111 O H 2  

thus yielding the two's complement form 111 000 100 111 01l2. Positive 
ze ro  ( + O )  is the only representation of "zero" in two's complement arithmetic. 

For arithmetic purposes, the magnitude value in bits  14-  1 is thought of as  

a fraction, i. e. the binary point is between the sign and bit 14.  The magnitude value 
of bits 14-  1 can therefore be thaught of as being in the range 0 -  2 - 1 4  + l .  In this 
"fixed point" arithmetic, the programmer must keep t rack of the position of the 
imaginary binary point within a word according t o  the appropriate scaling, i. e.  the 
imaginary binary point is in places to  the right of the fixed binary machine point 
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between bits 1 5  and 14. For example, if we wish to add the quantities 

bits 15 1 4  13 1 2  11 10 9 8 7 6 5 4 3 2 1 

+ o . o  0 0 0 0 x 0 0 0 0 0 0 0 0  
0 . 0  0 0 0 o o o o o y o o o o ,  and 

where x is scaled 26 and y is scaled 21°, we would get no meaningful sum without 
shifting x to  the right 4 bits or y to the left 4 bits. 

In multiplication, where there is no need to shift the multiplier or multipli- 
cand rtght or left, the programmer need only keep t rack of where the imaginary 
binary point is in the product, For example, 

x .  2-4 : bits 1 5  14 13 1 2  11 10 9 8 7 6 5 4 3 2 1 
0 -  - - x -  -" " " "  

multiplied by 
y .  2-2: bits 1 5  1 4  13 1 2  11 10  9 8 7 6 5 4 3 2 1 

0 - y " -  - " " " "  

yields z .  2 -(m +n) or z . 2-6.  B we wished the product to  be scaled to 2 -3  or  to 
2-', we could either shift the product right o r  left, or we could have shifted the 
multiplier or multiplicand before multiplying. In any case, it is important that we 
be careful not to lose significant bits by shifting a t e rm right or  left. 

When a word is read out of memory into the 16-bit A Register, or accumu- 
lator, the magnitude bits 14  - 1 of the word go into the corresponding bits 1 4  - 1 of 
the accumulator. The sign bit goes into bit 15 of the accumulator, from which it is 
duplicated into bit 16. Carr ies  from bit 1 4  propagate to bit 15, identified a s  Signl, 
(S1), and from S1 to bit 16, identified a s  Sign 2 (S2). The S2 bit is considered to 
contain the sign of the word and is the bit sensed to determine the sign of the accumu- 
lator quantity. 

Under normal conditions, the S2 and S1 bits wil l  be equal. In an overflow 
situation, however, in which bits 14 - 1 a r e  insufficient to define the magnitude of 
the sum of two terms,  SI and S2 wil l  be unequal. For example, the addition of pos- 
max (the maximum positive quantity definable in 1 4  bits), which is 377778, and + 1  
resul ts  in 400008, thus causing an overflow into the 15th bit. Since 37777 is a 
positive quantity, bit 16  will  be zero, and the configuration of the sum of the two 
t e rms  wi l l  look thus: 

8 
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bits: 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1  

0 0 0 0 0 0 0 0 0 0 0  0 0 0 1 0  

Inequality between S1 and S may also result  f rom a case  of negative over- 2 
flow, For example, let u s  add negmax (the maximum negative quantity definable 
within 1 4  bits), which is -377778 or 400008 in complemented form, to  itself. 400008 

goes into the accumulator a s  1400008, with a 1 in S1 and S 2 t o  indicate the negative 
sign of the quantity. We have 

1400008 

1400008 
c 

which is 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
+ 1 .  ca r ry  1 

+ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2  + +  
s2 s1 

The S1 and S2 bits a r e  unequal, containing the negative overflow Configuration of a 

1 in bit 16  and a 0 in bit 15. 

If we  now use a TS instruction to  s tore  this quantity into memory, the h a r d -  

ware will combine bit 16,  the correct sign bit, and the 14 low-order bits (thus by- 
passing bit 15). The quantity ooo ooo ooo oo12 

or 40001 8, which is negmax + 1, wi l l  be the number stored into memory. 

The TS instruction also causes the hardware to look at bit 15, which is still  
in the accumulator as  the uncorrected sign bit, and to  set  the accumulator cqunl to  
f 1 depending upon the configuration of bit 15. Since bit 15 has a zero  configuration in 

this case,  the hardware w i l l  leave a -1 (7777G8) in the accumulator. In the Previous 
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example of posmax +I ,  the TS would leave -t 1 in the accumulator. Thus we may 
test  for overflow, leave the overflow in A, and store the modulus into memory. This 
procedure is basic to DP operations. 
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1. 4 Instructions 

1. 4. 1 Basic In&r_uctib% 
A detailed explanation is given below of each of the non-extracode instructions 

whose code names (with alternate spellings in brackets) a r e  given in the upper half 
of the chart in Fig. 3. The extracode bit is equal t o  zero in all of the instructions. 

I denotes "at this address. I '  (K) denotes the contents of location K, as dis- 

tinguished from K, which denotes the address K. (K)p re fe rs  to  the previous con- 
tents of K, The symbol 9 denotes "implies. " MCT denotes Machine Cycle Time, 
one NICT being approximately equal t o  12 microseconds. The average instruction 
requires 2 MCT, o r  2 4  microseconds. 

The next sequential instruction wi l l  always be taken f rom I + 1 unless specified 
otherwise. E-memory and F-memory denote, respectively, erasable memory and 
fixed memory. Since locations 0020-00238 in erasable memory a r e  special regis-  
t e r s  (see page 5), we edit out any address K where K is 0020-0023 unless otherwise 
specified, The Assembler gives a diagnostic (also spelled CUSS) as  printed output 
t o  indicate an assembly e r r o r  in using the instructions. 

TC 
Op-Code 00 TC K 

K f 3, 4, 6 
Transfer Control (to K) 1 MCT 

The address K goes into the Z Register, and the previous contents of 
the Z Register go into the Q Register. Thus the next instruction is taken 
from K. 

Indirect addressing is made possible because the op-code is zero, 
e. g., the contents of K, which a r e  equal t o  O/XXXX where XXXX is some 
address,  become TC XXXX. 

Since TC K may be used as a subroutine call, it is obviously necessary 
t o  preserve the contents of the Z Register in the Q Register s o  that we may 
return t o  the main program upon completion of the subroutine. Since a TC 
causes the previous contents of the Z Register t o  go into Q, Q is now pointing 
at "TC + 1'' and a TC Q at the end of a subroutine wi l l  re turn control indirectly 
t o  the place at which w e  had originally quit the main program. Fo r  this type 
of operation, TC may be spelled TCR, for Transfer  Control Setting up Return. 
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TC A will obviously t ransfer  control t o  the contents of the accumulator, 
where the op-code configuration of the accumulator bits wil l  determine the 
next operation to  be performed. If the programmer has made s u r e  that bits 
15-13 of the contents of A a r e  equal t o  zero, control will  be indirectly t rans-  
fe r red  to whatever address bits 12-  1 of the accumulator specify. 

i. .s 
Special cases of TC K occur when the address K is equal t o  3, 4, o r  6. 

.*, ,J,>'' 
<., ,; - In these three cases,  the indicator specified by K is set ,  and the next instruc- 

$:-I /?,,,'. tion is taken from I + 1. 
l,A;,,~ i 

TC 3 = RELINT (Allow Interrupt) 

TC 4 = INKINT (Inhibit Interrupt) 

TC 6 = EXTEND (Set Extracode Switch) 

The extracode switch causes the next instruction to be an extracode. 
A s  we have said above, any instruction except "INDEX" rese ts  the switch. 
Interrupt is inhibited while the switch is on. Other uses of "TC" wil l  be 
discussed under Special Codes. 

ccs 
Op-Code 01 ccs 
QC 0 Count, Compare, and Skip 
(Quarter Code) 

I 
1 + 1  
I + 2  
I + 3  
I + 4  

(K) go into the accumulator. 

K (K  must be in erasable) 
2 MCT 

If (K) > 0, then we take the instruction at I + 1, and (A) wi l l  be reduced 
by 1, i. e. (K) - 1. If (K) s + 0, we  take the instruction at I + 2, and (A)  wil l  
be set  to  +O.  If (K) < -0, we take the instruction at I + 3, and (A)  w i l l  be set  
t o  its absolute value less  1. If (K) = -0, we take the instruction at I + 4, and 
(A) wil l  be set to  + 0. CCS always leaves a positive quantity in A. 

This is the only compare instruction. It is also used for  loop control 
and indicator testing. For example, if we wish to t ransfer  out af a subroutine 
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when the positive contents of the accumulator become zero, a "CCS" will 
cause the contents of A t o  be reduced by 1. When (A) reaches + 0, a TC K 
placed two instructions after the CCS will cause the desired t ransfer  out of 

the subroutine. 

Also, we might wish t o  use a 1 configuration in bit 9 of some word 
which is ordinarily set t o  0 t o  indicate that jets should be turned on t o  propel 
the spacecraft in some direction. W e  would use a CCS A after isolating bit 
9 in A t o  tes t  (A) for a quantity greater than + 0. If we found a quantity > + 0, 
we would branch t o  a sequence of instructions controlling the operation of the 
jets. 

TCF 
Op-Code 1 TCF K (K must be in F-memory) 

QC d 0 
Transfer  Control t o  Fixed Memory 1 MCT 

Take the next instruction from K and proceed from there. Using TCF 
rather  than TC is a convenient way of having the assembler do address 
checking for you. Lf the operand, K, is not in fixed memory, a diagnostic 
wil l  come out of the assembler.  Moreover, TCF does not change the Q 
Register. 

DAS 
Op-Code 2 DAS K (K must be in E-memory) 
QC = 0 Note: this assembles a s  

DAS K + 1  
Double Add t o  Storage (to and from K) 3 MCT 

The contents of the accumulator and i ts  L Register a r e  added t o  the 

contents of K a& K + 1. The D P  sum is stored back into K and K + 1 .  I f  

positive (negative) overflow results from the D P  addition, the sum i s  stored 
into K and K + 1, and the net overflow ( 4 1  i f  positive; - I  if negative) is left 

is left in the A Register. If no  overflow resulted, + O  would be left in t h e  

A Register. + O  i s  left in the L Register. 

DAS A doubles the contents of the D P  accumulator. (The assembly 
mnemonic DDOURL assembles a s  DAS A).  



LXCH 
Op-Code 2 

& c = 1  

LXCH K (K  must be in E-memory) 

Exchange L and K 2 MCT 

The contents of the L Register are exchanged with the contents of K. 
W e  could LXCH A, in which case  A would be overflow-corrected before the 

swap. 

For example, the instruction LXCH 10378 would cause the contents of 
location 10378 t o  go into the L Register and the contents of location 10378 to  
be replaced by the previous contents of the L Register. 

INCR 
Qp-Code 2 IcNC R K (K must be in E-memory) 

&c = 2  
Increment (K) 2 MCT 

The contents of K a r e  replaced by the contents of K incremented by 

1. A is not affected. 

NOTE: INCR and two other codes AUG and DIM a r e  modified counter- 
increment sequences. Thus, if one of these three overflows when addressing 
a counter for which overflow during involuntary incrementing is supposed to  
cause an interrupt, the interrupt will occur. This is also t rue  for chain- 
reaction increments like T2, which is incremented after an overflow of T 1 .  
These three instructions INCR, AUG, and DIM always operate in one's com- 
plement arithmetic, even when addressing CDU counters, which normally 
use two's complement arithmetic, 

A DS 
Op-Code 2 
QC a 3 

A DS K (K  must be in E-memory) 

Add t o  Storage 2 MCT 

The contents of the accumulator and the contents of K a r e  replaced 
by the sum of the contents of the accumulator and of K. 
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Let us consider the instruction ADS 20748 where location 20T48 con- 

tains the quantity 7. The instruction causes 7 t o  be added t o  the contents of 
the accumulator. The sum will replace both 7 and the previous contents of 
the accumulator. Location 20748 now contains (7  t A p). The overflow- 
corrected result  is always stored, but overflow, if it occurred, would remain 

in A. 

CA 
Op-Code 3 CA K 

Clear and Add (K) 2 MCT 

The contents of K come into the accumulator, leaving the contents 
of K unchanged. Alternate spelling CAF (Clear and Add Fixed) or CAE (Clear 
and Add Erasable) may be used when referencing fixed or  erasable memory, 
i f  assembler-checking of the addresses is desired. 

F o r  example, CAF 46718 would clear  the accumulator, and the con- 
tents of location 47618 would be duplicated into the  accumulator. If w e  had 
said CAE 47618, we would have received an assembly diagnostic. 

cs 
Op-Code 4 cs K 

Clear and Subtract (K) 2 MCT 

The one's complement of K comes into the accumulator, leaving the 

previous contents of K unchanged. 

Fo r  example, if location 348 contained the quantity 2 2 ,  the instruction 
CS 34 would clear  the accumulator and 77755 would come into A. The 
contents of location 348 would still be 22. 

8 8 

TS 
@-Code 5 

w 2  

TS K (K  must be in E-memory) 

Transfer  t o  Storage 

The contents of the accumulator, bits 16, 14- 1 come into K. If 
there  is positive or negative overflow in the previous contents of the accumu- 
lator, we set the contents of the accumulator equal t o  plus or minus one, 



respectively, and take the next instruction from I + 2. If no overflow exists, 
take the next instruction from I f 1. 

TS A guarantees that the contents of the accumulator wil l  be equal to 
the previous contents of the accumulator, but if overflow existed in A it causes 
us to skip to  I + 2 for the next instruction. OVSK (Overflow Skip) is the im- 
plied-address code for this use of TS. 

Consider the instruction TS 0043*. The previous contents of the 

8' accumulator a r e  stored into location 43 and the contents of A a r e  replaced 
by a 4 1 if there was positive o r  negative overflow in the previous contents 
of A,  

INDEX 
@-Code 5 

Qc = o  
INDEX K (K must be in E-memory) 

Index Next Instruction 2 MCT 
See also Op-Code 15, page 42 

One basic idea of indexing is to  provide a method which wil l  enable us to  
access some element within a list which has s ta r t s  at a "base" address. For exam- 
ple, assume that we have a list of 100 elements in memory with a base address 
called TABL1, and assume that we wish to  bring random elements into the accurnu- 
lation for various operations. Since TABLl is the only address we have to reference 
the 100 elements, indexing allows us to address TABLli, where i is the address of 
the element relative to the base address. The instruction CAE TABL17 would clear 
the accumulator and bring into it the contents of the 7th element in TABL1. 

This method of modifying the base address is usually accomplished through 
the use of index registers ,  which contain the quantity to be added to or subtracted 
from the base address to access some element within the list. With the AGC, how- 
ever, we use an INDEX instruction to perform the function of an index register.  

INDEX K: The contents of K a r e  added, bit by bit, to  the next sequential 
~nstruct ion.  (We shall take this sum and execute it as  the next instruction. The 
contents of K remain unchanged as  do the contents of the next instruction. The 
Z Register is set to access  the second instruction beyond the  INDEX instruction). 
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If the contents of K a r e  equal to  o r  less  than 17778, we have just augmented 
the address portion of the next instruction, For example, if we say 

INDEX K [(K) " S58] 
CAE TABL1, 

we have modified the second instruction to read 

(CAE TABLl + 55), 

which means that we shall  replace the previous contents of the accumulator with the 
contents of the 558 th element in TABL1. 

If the contents of the address K are equal t o  or less  than 77778 but greater 
than 17778, we may change the quarter-code or  the Effective Operand Address to 
indicate the need for a bank (when none was called for by the original sequential in- 
struction). The reason for this is that, unlike the index register,  which modifies 
only the address portion of an instruction, INDEX K causes the contents of the ad- 
dress  K be added to  the entire following instruction. Thus we may change the 
quarter code bits which serve  as indicators for memory banks, and we may change 
bits 15-13 to  indicate an altogether different operation. F o r  example, INDEX A 
causes the contents of the accumulator to  be added to the next word in memory. If 
the next instruction was 000 000 000 000 000, we would then be executing the 
contents of A (which is the equivalent of the instruction XXALQ or  TC A). If the 
next instruction was not 000 000 000 000 000, we have, in effect, modified the 
contents of its address field or its op-code, or  both (because of overflow into the 
op-code field). 

, 

Another common use of indexing is to  control a loop through an a rea  of 
memory. Assume we have some positive count in a counter. A s  long as  this count 
remains positive, we wish to continue some operation, which we shall terminate 
when the count reaches + 0. Specifically, let us program the problems as  seen in  
Fig. 4 and Fig. 5 

1.4. 2 Special Codes 

INDEX 178 is a special use of INDEX, and means Resume Interrupted Pro-  
gram (which like INDEX K, requires 2 MCT). The contents of the z Register a r e  
se t  t o  the contents of location 15, and the next instruction is taken from the contents 
of location 17. The implied-address code RESUME assembles as INDEX 17. 
INDEX 1Y8 does &mean INDEX location 178. The interrupt processing, in which 
this instruction is used, wil l  be discussed later. 
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INDEX 17 and three other instructions: TC 3, TC 4, and TC 6, introduced on 
page 1- 22  under TC a r e  special codes: 

TC 3: INHINT 
TC 4: RELINT 

TC 6: EXTEND 
INDEX 17: RESUME 

The combination of the contents of the address of an,INDEX instruction and the in- 
struction following the INDEX wil l  never result in any one of the special codes. The 
reason for this lies in the following hardware scheme: 

1 .4 .  3 Op-Code Selection Logic 

W e  may get the instructions 

TC 3 
TC 4 
TC 6 

INDEX 17 
by preceding some instruction with an INDEX K, but the instruction wil l  be inter-  
preted literally as  

TC location 3 

TC location 4 

TC location 6 
INDEX location 17. 

Fo r  example, if we say 

INDEX K 
TC 0 

where K contained 4, we would execute the instruction TC 4 literally. 

Neither could we get the special wdes  INHINT, RELINT, EXTEND, or  
RESUME if we precede any instruction with an EXTEND instruction. EXTEND 
se ts  the extracode bit to  1, which immediately prevents us from getting any instruc- 
tion other than an extracode. The special codes a r e  al l  non-extracodes. For  
example, if we say 

EXTEND 
R E LINT 
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we would get a channel instruction (look at the instruction diagram on page 1-3  1). Like- 

wise, if we say 

EXTEND 
RESUME 

we would execute the instruction INDEX 17 (not RESUME). 

R ELINT 
Op-Code 00 RELi.INT 
K iz 0003 . 

Release (allow) Interrupt 1 MCT 

Allow interrupt after this instruction (subject t o  the restriction that 
interrupt cannot occur while there is positive or  negative overflow in the  

accumulator, nor between an interrupt and a subsequent RESUME. 

INHINT 
Op-Code 00 INHINT 
K = 0004 

Inhibit Interrupt 1 MCT 

Inhibit interrupt until a subsequent RELINT. The inhibition se t  by 
INHINT and removed by RELINT is entirely independent of the  one set by 
interrupt and removed by RESUME. Either one alone is sufficient t o  prevent 
interrupt , 

EXTEND 
Op-Code 00 EXTEND 
K =0006 

Extend Next Instruction 1 MCT 

Take the next instruction from I +1  and execute it as an extracode 
(i. e. set the extracode bit of the next instruction t o  1). If the next instruc- 
tion is INDEX, the instruction following the INDEX will be executed as an 
extracode instruction too. 

RESUME 
Op-Code 5 RESUME 

Q c o  
K = 17 

Resume Interrupted Program 2 MCT 
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The contents of location 15 come into the Z Register, replacing the 
previous contents of 2. Use the contents of location 17 as  the next instruction. 
Allow interrupt after this instruction (unless there  has been an INHINT with 
no following RELINT). 

1. 4. 4 Remaining Basic Instructions 

DXCH 
Op-Code 5 

w 1  

DXCH K (K  must be in E-memory) 

Double Exchange 3 MCT 

The contents of K a r e  exchanged with the contents of the accumulator, 
and the contents of K + 1 a r e  exchanged with the contents of the L Register. 
The final contents of the L Register wil l  be overflow-corrected. The opera- 
tion code should be treated as 520018 (See Note, Page 1- 23 ) .  

XCH 
Op-Code 5 

w 3  

XCH K (K must be in E-memory) 

Exchange A and K 2 MCT 

The 'contents of the accumulator a r e  exchanged with the contents of K. 
If location 17308 contained the quantity 7,  for  instance, the instruction 

XCH 17308 would cause 7 t o  come into the accumulator and the previous con- 
tents of the accumulator t o  go into location 1730 8' 

A D  
Op-Code 6 A D  K 

Add (K) 2 MCT 

The contents of K a r e  added to the contents of the accumulator, and 
the sum is stored back into the accumulator, The contents of K remain 
unchanged. 

If the accumulator contained the quantity 308, and the quantity lo8  was 
in location 44418, the instruction A D  44418 would cause 408 t o  replace the 
previous contents of the accumulator. Location 44418 would still contain the 
quantity lo8.  
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MASK K 
Op-Code 7 MASK K 

Mask A by K 2 MCT 

This instruction causes a logical AND operation. The contents of K 
a r e  “ANDed” with the contents of the accumulator, and the result  replaces 
the previous contents of the accumulator. The symbol Adenotes the logical 
AND fwction. The truth table for each bit position of the contents of A and 
K is as follows: 

A K A A K  

0 0 0 
0 1 
1 0 

0 

1 1 1 
0 

Mask 0020 - 0023 does not result in re-editing; i. e. (K) e (K)p. 

1 . 4 .  5 Extracode Instructions 

These instructions require the use of a 16th bit, called the extracode bit, 
f o r  op-code definition. Since the extracode bit is set  by an EXTEND instruction, 
all extracode instructions must be preceded by an EXTEND instruction. Any in- 
struction other than an INDEX instruction wil l  reset  the extracode bit t o  0. 

EXTEND plus a zero op-code (i. e .  0 -10) plus bits 12, 11, and 10 is broken 
down into sevewoeripheral codes (PC 0-PC 6). Each uses a 9-bit address to r e-  

ference an input-output channel (KC). The A and L Registers a r e  channels o and 1, 
respectively, to  facilitate complicated logic in an arithmetic register.  

READ 
Op-Code 10 
PC 0 

READ KC 

Read Channel KC 2 MCT 

The contents of channel KC, where KC is an inlout channel, come 
into the accumulator, replacing the previous contents of the accumulator. 

For  example, READ 1 would cause the contents of channel 1, which 
is the L Register, t o  come into the accumulator, 
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WRITE 
Op-Code 10 
PC 1 

WRITE KC 

Write Channel KC 2 MCT 

The contents of the accumulatdr come into KC, replacing the previous 
contents of channel KC. 

RAND 
Op-Code 10 RAND 
PC 2 

Read and Mask 

KC 

2 MCT 

The contents of the accumulator are ANDed with the contents of 
channel KC, and the sum is stored back into the accumulator, replacing the 
previous contents of A. The symbol A denotes the logical AND function ( see  

MASK, page 1-34) .  

WAND 
Op-Code 10 WAND KC 
PC 3 

Write and Mask 2 MCT 

The contents of the accumulator are ANDed with the contents of 
channel KC, and the sum is stored back into channel KC and is duplicated in- ’ 
t o  the accumulator. 

ROR 
Op-Code 10 
PC 4 

ROR 

Read and Superimpose 

KC 

2 MCT 

The contents of the accumulator are ORed with the contents of channel 
KC. The symbol v denotes the  logical OR function. The truth table for 
each bit position of the contents of the accumulator and of the channel KC is 
as follows : 
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A KC A v K C i n A  

0 0 
0 1 
1 0 
1 1 

WOR 
Op-Code 10 

PC 5 
WOR KC 

Write and Superimpose 2 MCT 

The contents of the accumulator a r e  ORed with the contents of channel 
KC. The sum is stored back into channel KC and is duplicated into the ac - 
cumulator, replacing the previous contents of both A and channel KC. 

RXOR 
Op-Code 10 RXOR KC 
PC 6 

Read and Invert 2 MCT 

The contents of the accumulator a r e  Exclusive ORed with the contents 
of channel KC, The symbol r denotes the logical Exclusive OR function. 
The t ruth table for each bit position of the contents of the accumulator and 
of the channel KC is as follows: 

A KC A v KC 

0 0 0 

0 1 

0 1 1 
1 1 0 

1 

This logical function is used to invert bit settings in channels for 
input-output. For  example, bit 5 in channel 7 controls the KEY RELEASE 
light'on the Display-Keyboard (DSKY). When bit 5 contains a zero, the KEY- 
RELEASE light is off, and remains off if we pulse another zero into bit 6. 
When bit 5 is set  to  1, the KEY RELEASE light blinks on and off, and it 
continues to blink if we pulse another 1 into bit 5. The behavior of the KEY- 
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RELEASE light will change only when bit 5 contains a zero  and we pulse a 

one into it, causing the light t o  start blinking, or  when bit 5 contains a one 
and we pulse a zero  into it, causing KEY-RELEASE t o  stop blinking. 

DV 
Op-Code 11 DV K 
QC = 0 

Divide (by K) 6 MCT 

The contents of the accumulator and of the L Register, the dividena, 
a r e  divided by the  contents of K, the divisor, leaving the quotient in A and 
the remainder in L. 

We determine the sign of the quotient by the usual arithmetic law of 
combining the signs of the  dividend and divisor. Since the  signs of the double- 
length dividend in A and L need not agree,  we  understand t h e  final sign of the 

dividend to  be the sign of the accumulator, unless the contents of the accumu- 
lator a r e  plus or minus zero. In this  latter case, the sign of the dividend 
will be  the sign of the L Register. The remainder bears the sign of the 
dividend, determined as discussed above. 

The instruction DV does not disturb the contents of the Q Register 
and does not re-edit an argument between 0020 - 0023. 

We may divide a larger  number into a smal ler  number, i. e. the 
divisor must be larger  than the dividend. 

If a quantity is divided into a quantity of equal magnitude, we get a 
quotient of either posmax o r  negmax and a remainder equal t o  the dividend. 
IY a smal ler  is divided into a larger  quantity, however, we get total nonsense 
which cannot be distinguished from significant data. No a larm light flashes, 
and the machine sends forth no diagnostic. Scaling may therefore be neces- 
s a r y  t o  assure  a legal divide and t o  properly position the  scale factor of 
quotient. Scaling may also be necessary to  guarantee maximum precision 
to  your answer. 

Consider the instruction DV 000158 preceded by an EXTEND instruc- 
tion. Assume location 000158 contains the quantity 4 and the accumulator 
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contains the quantity lo8. Since the divisor, 4, scaled 2-14, is smaller  than 
the dividend (the accumulator quantity lo8, also scaled 2-14),  we must scale  
the contents of 000158 to 2-12 by shifting it left two places. W e  may now 
legally divide the contents of the accumulator and the L Register by the con- 
tents of 15, giving us 

2-14 x l o 8  = 2 x 2 - 2  

2-12 x 208 

wbich looks like 

A L 

0 001 000 000 000 0001 000 000 000 000 000 

(bits) 16 15 . , . . . . . . . . . 1 l m .  . . , . . . . e . . 1 

BZF 
Op-Code 11 BZF K (K  must be in F-memory) 

Q C S O  
Branch Zero to  Fixed 1 o r  2 MCT 

If the contents of the accumulator a r e  equal to  positive or  negative 
zero, take the next instruction f rom K, and proceed from there (1 MCT). 
Otherwise, take the next instruction from I t 1  (2  MCT). 

F o r  example, assuming the quantity -777 was in the accumulator, we 
take the next instruction from I + 1 on the instruction BZF 43058. If positive 
zero o r  negative zero was in the accumulator, the instruction BZF 4305 
would cause us to  take the next instruction from location 4305, and proceed 
from there. 

MSU 
@-Code 12 MSU 

W O  
Modular Subtract 

K 

2 MCT 

The contents of K a r e  modular subtracted from the contents of the 
accumulator, and the difference is stored back into the accumulator. The 
contents of K remain unchanged. 
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The symbol 8 denotes modular subtraction, which forms a signed 
one's complement difference of two unsigned (modular or periodic) two's 
complement inputs. The method is t o  form the two's complement difference, 
t o  decrement it if  it is negative, and t o  take the overflow-uncorrected sum 
as the result. 

Fo r  exapple,  consider the modular subtraction of 300008 (135') f rom 
20000 (goo), the quantity in  the accumulator. We take the two's complement 
form of 300008, which is 147777 (duplicated sign) 

8 

+ 1 
1 500008 

and add to  it the quantity in the accumulator. 

1. 50000 

t o .  20000 

1. 700008 whose binary configuration in A is 

1 111 000 000 000 000 

bits 16 1 5 .  . . . . . . . . . . . 1 

Since this ia  in two's complement notation, we convert it t o  one's complement 
by subtracting one from it (adding the one's complement of one). 

170000 
t177776 

167776 
+ 1 

1. 677778 

which represents the one's complement of -10000 (or -45O). 

W e  may also do this problem by adding the one's complement form 
of the contents of K to  the contents of the accumulator, 

20000 
+47777  

67777 
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and test the sign bit, If bit 15 is a one, as in this case, we add a one t o  the 
sum, thus giving us 

6 7 7 7 7  
+ 1 

700008,  

which, when converted t o  one's complement form, gives us -10000, as be- 
fore. If bit 15 contained a zero, we would not add a one t o  the sum. 

CDU counters keep t rack  of the gimbal angles of the inertial  mea- 
surement unit and optics unit in two's complement notation, We take the 
difference between what the gimbal angles are and what we wish them to  be, 
and use this difference t o  drive the CDU's. Since the AGC uses only one's 
complement arithmetic, we use the modular subtraction instruction t o  re-  
solve the problem of having a one's complement computer and two's comple- 
ment counters. 

QXCH 
Op-Code 12 QXC H K (K must be in E-memory) 
QC = 1 

Exchange Q and K 2 MCT 

The contents of K a r e  exchanged with the contents of Q. 

Q may contain a return address after TC. Fo r  example, when w e  
leave a main program to  execute a subroutine, the Q Register wi l l  contain 
the instruction in the main program to  be executed immediately after com- 
pleting the subroutine. To t ransfer  out of the subroutine, then, w e  just say  
TC K, and we shall  resume the main program. A prior QXCH K saved 
(Q) in K and freed Q for use. 

AUG 
Op-Code 12 

w = 2  

AUG K (K must be in E-memory) 

Augment 2 MCT 

If the contents of K a r e  equal t o  o r  greater than + 0, w e  increment 
the contents of K by 1 and s tore  it back into K. If the contents of K a r e  equal 
to or less than -0, the contents of K are decremented by 1, and the result  
is stored back into K. 
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DIM 
Op-Code 12 
QC = 3 

DIM 

Diminish 

K (K  must be in E-memory) 

If the contents of K a r e  greater than + 0, w e  decrement the contents 
of K by 1 and s tore  the result back into K. ' If the contents of K are less  than 
-0, we increment the contents of K by 1 add s tore  the result  back into K. 

DCA 
@-Code 13  DCA K 

Double Clear and A'dd 3 MCT 

The contents of K come into the acqumulator, and the contents of 
K + 1 come into t h e  L Register. The contents of K and of K + 1 remain un- 
changed. The final contents of the L Register wi l l  be overflow-corrected. 
This instruction assembles as DCA K + 1 .  ~ 

For example, the instruction DCA hO0l8 would first clear the accumu- 
lator and the  L Register of their previous contents. The contents of location 
7000 would then go into the accumulator,  and the contents of the next location 
70018 would go into the L Register. The dontents of K and of K +1  would re- 

main unchanged. 

8 

DCS 
Op-Code 14 DCS K 

Double Clear and Subtiract (K)  3 MCT 

The one's complement of the contepts of K come into the aCCUlnulatOr, 
and the one's complement of the contents c$f K + 1  come into the L Register. 
The contents of K and K + 1 remain unchanged. The instruction DCS K 

assembles as DCS K + 1 .  I 

, 
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DCS A complements the double precision accumulator; the  implied- 
address code is DCOM. The final contents of the L Register will be over- 
flow-corrected, 

Consider the instruction DCS 22223, which would first c lear  the ac- 
cumulator and L Register. The one's complement of the contents of location 
22222 would go into the accumulator, and the one's complement of the con- 
tents of the next location 222238 would go into the L RegiSter. The contents 
of locations 222238 and 222228 would be left unaltered. 

INDEX 
Op-Code 15 INDEX K (anywhere in memory) 

Index Extracode Instruction 2 MCT 
(see INDEX, page 1- 26)  

This is the only extracode instruction that does not rese t  the extra- 
code switch. The way t o  index an extracode (e. g. M P )  is 

EXTEND 
INDEX 
MP 

ADDRWORD 
0 

The extracode switch will be maintained through any n-level nesting 
of extracode INDEX'S. This is logical, since INDEX does not reset  the 
extracode bit t o  zero. We can, therefore, precede an instruction with any 
number of INDEX'S without losing our extracode bit setting. 

This INDEX wi l l  never form a special op-code instruction (see INDEX, 

page 1 - 2 7). 

su 
@-Code 16 

QC = 0 
sw K (K  must be in E-memory) 

( K) 
Subtract 2 MCT 

The contents of K a r e  subtracted from the contents of the accumulator, 
and the difference is stored back into the accumulator. The contents of K 
remain unchanged. Overflow may result,  
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K " 

s 0 0 1 0 1 0 0 0 1 0 0 1 "  
4 4 \ binary point 1 

BZMF 
Op-Code 16  BZMF K (K must be  in F-memory) 

QC f 0 
Branch Zero or Minus t o  Fixed 1 or  2 MCT 

If the  contents of the accumulator a r e  equal t o  or less than positive 
zero, take the next instruction from K and proceed from there  ( 1 MCT). 
Otherwise, take the next instruction f rom I "1 (2 MCT). 

M P  
Op-Code 17 MP 

Multiply 
K 

3 MCT 

The contents of the accumulator are  multiplied by the contents of K. 
The product is stored back into the accumulator and the L Register, and the 
sign of the product is formed by the rules of algebra. 

The two words of the product agree  in sign. A zero  result is positive 
(unless the contents of the accumulator were equal to  positive or  negative 
zero, and the contents of K a r e  non-zero with the opposite sign). M P  does 
not re-edit an argument from 0020-0023. 

Scaling may be necessary to  assure sufficient andlor maximum pre-  
cision in the product, For example, if we multiply 1211g, scaled 2 , by 
1211g, scaled 2 , - 12  

- 10 

Accumulator 

t binary point f 

we get 37662llO, o r  13374558, scaled 2-22 

A L 

x 0 0 1 0 1 1 0 1  
binary point 
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Since the product 13374558 actually requires only 19 bits fo r  definition 
and since we have positioned it in A and L according to  i ts  scale  factor 2 , 

[(12118 x2-l’) (12118 ~ 2 - l ~ )  a 13374558 X2 -”] , we know that the three  
high-order bits in A are leading zeroes, Thus we can shift the product t o  the 
left th ree  places in order to have as many meaningful bits as possible in A 
without losing any significant high-order bits. 

- 22  

A L 

s 2 s 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1  0 1 1 0 1  1 
binary bit 

We now have as many meaningful bits as possible in the more signifi- 
cant of the two product registers ,  as seen above. 

1.4. 6 Implied-Address Codes 

Certain instructions, like RESUME, a r e  defined for  only one address value, 
and others have unusual results when used to address special registers.  Fo r  con- 
venience in using these instructions, the YUL System assembler recognizes implied- 
address codes written without an address,  and it fills in the address. These codes 
a r e  shown alphabeticallyonPage 1-45. Some of these codes a r i se  from the fact that 
certain special regis ters  a r e  adjoining locations in erasable memory: 

Location Register 

A (accumulator) 
L (low register)  

Q 
EB (erasable bank register)  
F B  (fixed bank register)  
Z (program counter) 
BB (both banks register)  

Below is an explanation of each implied-address code except INHINT, RE- 
LINT, EXTEND, and RESUME, discussed above under Special Codes on Page 1-27.  

=LQ 
Op-Code 0 

K o O  
XXALQ 

Execute Extracode 
Using A, L, and Q 

1-44 

(TC A)  
2 MCT 



Implied Address Codes 

lmplied Actual Register Word a s  NOTE 
Address Operation (If Assembled 
Code Code applicable) 

COM cs A 40000 
DCOM DCS A 40001 X 
DDOUBL DAS A 20001 
DOUBLE AD A 60000 
DTCB DXCH Z, & BB 52006 

DTCF DXCH FB, & Z 52005 

EXTEND TC 00006 S 
INHINT TC 00004 S 

NOOP TCF +I (I t 1) F 

NOOP CA A 30000 E 

OVSK TS A 54000 
R ELINT TC 00003 S 
RESUME INDEX BRUPT 50017 R 
RETURN TC Q 00002 
SQUARE M P  A 70000 X 

TCAA TS Z 54005 

XLQ TC L 00001 

XXALQ TC A 00000 

Z L  LXCH 22007 
QXCH 22007 X 

NOTE EXPLANATION: 

E Applies when I (location of instruction) is in erasable memory. 
F Applies when I is in fixed memory. 
R Special RESUME hardware responds t o  address 0017. 
S Special Indicator-setting hardware responds to addresses 

0003, 0004, and 0006. 
X Extracode instruction. 

Figure 7 
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Assume that the accumulator contains 00006 (EXTEND) and that L 

contains an extracode instruction. TC will set Q t o  contain the 12-bit address 
of the next instruction t o  be executed in the main program, XXALQ causes 
the machine t o  t ransfer  control (TC) t o  A, location 0. The EXTEND instruc- 
tion in the accumulator is executed; then the extracode instruction in L, the 
next location; and finally the (TC) contents of Q, the next location, which 
returns control t o  the main program. 

Main Program Memory 

XLQ 
Op-Code 0 XLQ 
K S l  (TC L)  

Execute Using L and Q 2 MCT 

Assume that L contains a basic instruction. Execute the instruction 
in L, and if it is not a successful branch, return t o  I + 1. 

The t ime ( 2  MCT) for XXALQ and XLQ includes the TC A o r  L and 
the return TC from Q, but it does not include the t ime spent in executing 
the contents of A o r  L. 

RETURN 
Op-Code 0 

K - 2  
RETURN 

(TC Q )  
Return from Subroutine 2 MCT 

Assume that the contents of Q contain the instruction TC K. Take 
the next instruction from K and proceed from there. 
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NOOP 
Op-Code 1 

&c rho 
K = I + l  

NOOP 
(TCF + 1) 

No Operation (in Fixed Memory) 1 MCT 

Take the next instruction from I +l .  NOOP is assembled TCF + 1 

in fixed memory, 

DDOUBL 
@-Code 2 

W O  
K a 0  

DDOUBL 

(DAS A )  
Double Precision Double 3 MCT 

The contents of the accumulator and L Register a r e  added to  itself, 
and the sum is stored back into A and L, replacing their previous contents. 
If the previous contents of the accumulator contained positive o r  negative 
overflow, the results a r e  messy, e. g. when the sign of the sum of the D P  
addition stored in A is unequal t o  the sign of the previous contents of A. If 
the previous contents of A were equal t o  or greater  than 1 / 2 ,  overflow wi l l  
be retained in the contents of A. 

ZL 
Op-Code 2 

QC 1 
K = 7  

ZL 

(LXCH 7 )  

Zero  the L Register 2 MCT 

Zeroes come into the L Register, replacing the previous contents of L. 

This code and its companion ZQ depend on two properties of address 
0007: no storage is associated with it, and references to it (in fact, t o  any 
of 0000- 0007) are not checked for  good parity. Address 0007 is therefore 
a generally good source of zeroes. 

NOOP 
@-Code 3 NOOP 
K = O  

No Operation (in Erasable Memory) 

NOOP is assembled as CA A in erasable memory. 
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COM 
Op-Code 4 COM 

K = O  (CS A )  

- Complement (the contents of A) 2 MCT 

The one's complement of the contents of the accumulator replaces the 
previous contents of A, A l l  16 bits of A a r e  complemented. 

QVSK 
Op-Code 5 

QC 2 
K = O  

QVSK 

Overflow Skip 2 MCT 

Do ndt change the contents of the accumulator. If the contents of A 

contain positive or  negative overflow, take the next instruction from I + 2 .  
If no overflow exists in the contents of A, take the next instruction from I f 1. 

Fo r  example, let us c lear  and add the contents of COUNTER into the 
accumulator. Suppose we now add the contents of CUM2 to the contents of 
A. If this addition operation caused either positive o r  negative overflow in 
A ,  we would leave the contents of A unchanged by an OVSK and skip the next 
sequential instruction, thus taking the next instruction f rom I + 2 .  If the 
addition caused no overflow in A ,  we  would leave the contents of A unaltered 
and merely take the next sequential instruction. 

TCAA 
Op-Code 5 TCAA 

QC 2 
K = 5  (TS  Z )  

Transfer  Control t o  the Address in A 2 MCT 

Bits 12-1 of the contents of the accumulator come into the 2 Register. 
If there  is positive or  negative overflow in the contents of the accumulator, 
the contents of A a r e  set t o  +1 if the overflow is positive and to  -1 if the over- 
flow is negative. We take the next instruction from the address specified in 
Z ,  as usual. 

F o r  example, suppose the contents of the accumulator are 
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A 

0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0  

bits 16 15 12 . . . . . . . . . . . . .  " 1  

The contents of bits 12-1 come into Z ,  

Z Register 
1 1 0 1 0 0 1 1 0 1 1 0  

bits 12. . . . . . . . . . . . . .  1 
and since the accumulator contains positive overflow because bits 
16 and 15 differ, and positive because we take the sign of the word from bit 
16, [ he re  containing 0 3 )  we clear  A and set  its contents equal to  -E 1. We 
then take the next instruction from the location specified in the Z Register. 
In this case, we would take the next instruction from location 6466 8' 

DOUBLE 
Op-Code 6 DOUBLE 
K = O  (AD A) 

Double (the contents of A )  2 MCT 

The contents of the accumulator a r e  added to itself, and the sum is 
stored back into A. 

See remarks on overflow under DDOUBL. 

ZQ 
Op-Code 12 

QC 1 
K = 7  (QXCH) 

Zero Q 2 MCT 

Positive zeroes replace the contents of the Q Register. (See the dis- 
cussion under the instruction ZL). 

DCOM 
@-Code 14 
K =  0 

DCOM 
(DCS A) 

Double Comrslement 3 MCT 

The one's complement of the contents of the accumulator and L- 
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.Register replace the previous contents of A and L. A l l  31 bits of A and L) 
a r e  complemented. 

SQUARE 
Op-Code 1 7  SQUARE 
K =  0 

Square (the contents of A)  3 MCT 

The contents of A are multiplied by itself, and the product is s tored 
back into the accumulator and into the Id Register. Results a r e  messy if the 
previous contents of A contain positive o r  negative overflow. 

1. 4. 7 Assembly Constants - 

A s  we saw under Instruction Representation (page 3), the assembly process  
enables us t o  change a YUL language instruction into a 15-bit instruction word which 
will be loaded into memory in binary machine language. At execution time, the 
hardware fetches the instruction word from memory and sends it t o  the instruction 
decoding logic, where it is interpreted and executed. 

Data (for example: the definition of a constant) is assembled into a 15-bit 
data word and is loaded into computer memory as  a binary number. When this 15- 

bit data word is fetched from memory, it is treated as a whole. If the programmer 
has placed the data in his program such that the computer interprets it as an * 

instruction, the program will yield unexpected results.  

Within the assembler is a location counter which keeps t rack  of what location 
we a r e  at in memory. It is important t o  distinguish between a location in memory, 
or the address at which a word is located, and the address field within a word, which 
references some memory address. 

Methods exist with which we can create  the arithmetic and address constants 
we wish t o  use in AGC programs. Those concerning the arithmetic constants w i l l  
be discussed later, ADRES, REMADR, AND GENADR each create  a 12-bit address. 
FCADR AND ECADR each create  a 15-bit constant word containing , respectively, 
a Fixed Complete Address and an Erasable Complete Address. EBANK = creates  
an Erasable Bank Declaration (which is not an AGC word) which tells  the assembler 
in which E-Bank the programmer wants subsequent E-Bank addresses t o  be. BBCON 
creates  a 15-bit Both-Bank-Constant word intended as data to  be placed in the BB 
regis ter  (Both Banks Hegister). The last  two codes 2BCADR and 2FCADR create  
Double Complete Addresses including, respectively, a BBCON and an FCADR. 

These address constants are necessary for interbank communication. W e  
are  able t o  change z by setting z t o  the contents of a 12-bit address created by a 
Constant, and w e  are able t o  specify the E-Bank or  F-Bank in which is the location * 

defined in through constants which set FB, EB, o r  BB. 
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We have said that ADRES, REMADR, and GENADR each create  a 12-bit ad- 
dress.  (The contents of the three high-order bits of the 15-bit words created wil l  
always be equal to  zero. ) ADRES requires that the current assembly location counter 
and address values of the ADRES operand be in the same F-Bank or  in the same E- 

Bank. 

LOCATION 
IN 

MEM,ORY 

CONSTANT ADDRESS 

t I 

V 
I 

Must be in  the same E or  F-Bank 

For  example, assume that at location 400008 in memory we have the constant ADRES 
4016l8. Both the location of the word (400008) and the address within the word 
(401618) a r e  in F-Bank 14, as required by the constant ADRES. Since the pseudo- 
address 401618 is in fixed-switchable memory, we subtract 10000 from the pseudo- 
address, getting 301618, the augment of 1618 within F-Bank 14, and we set  location 
400008 to: 

0 0 0 0 1 0 0 0 1 1 1 0 0 0 1  
1 5 . . . . . . . . . . . . . . . . . .  1 

FB  Indicators Augment 161 within FB  14 

The 0 l 2  configuration in bits 12 and 11 wil l  cause the FB bits t o  be appended 
to  t h e  address (at execution time) giving us the address 301618. 

REMADR requires that the location counter and address values be in different 

banks. 

LOCATION CONSTANT ADDRESS 
IN A 

MEMORY 

V 
Must be in different E or  F Banks 

For  exarhple, let us assume that at location 23148 in E-memory is the constant word 
REMADR 17008. The location and address values a r e  both in erasable memory but 
are in different E-Banks, as required by the constant, REMADR 17008 forms the 
15-bit constant word 
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0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 1 [ 1 ~ 1 ( 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~  

bits 15 1 0 9  . . . . .  o s . . .  1 

300 augment in EB 7 

The 11 configuration in bits 10 and 9 will signal that the EB bits b e  appended, giving 

us the address 17008, in EB 7.  
2 

GENADR will form a 15-bit. constant word without any checks. 

CADR AND FCADR are synonymous codes for the constant which w i l l  generate 
a fixed complete address. The address value within the word must fall in an F-Bank. 
The 15-bit word generated equals the pseudo-address value minus octal 10000. 
Bits 15 - 11 equal the F-Bank number and bits 10 -1 equal the relative location of 
the address in that bank. Let us assume we are in F-Bank 17 and we wish t o  fetch 
data f rom location 677668, which is in F-Bank 27.  FCADR 677668 will create  the 
15-bit constant word 

F F F F F  
1 1 1 1 1 ( 1 1 1 1 1 [ 1  O l l l l [ O  0 1 

bits 15 11 
FB 27 augment 17 6 6 

8 

which will ass is t  us in switching banks t o  fetch the data from location 6776€i8. 

ECADR will create  a 15-bit constant word containing an erasable complete 
address. The address value must be in erasable memory, 0000- 37778,  and the 15- 
bit word generated equals the 11-bit pseudo-address, Bits 15 - 12 equal zero. For 
example, assume we a r e  in FB 4 and wish t o  get data from location 24008 in EB 5. 
ECADR 24008 will create  the 15-bit constant word 

bits 15 11 9 .  . . . . . . . , . 1 

EB 5 Augment 0 

EBANK = creates  an Erasable Bank Declaration (which is not an AGC word) 
which tells the assembler  that all subsequent references t o  E-memory must fall 
within the specified (Operand) E-&nk. The assembler  complains whenever an ad- 
dress  is equivalent t o  a location in a different E-Bank. If the EBANK = code is 
followed by a BBCON, o r  a 2BCADR, this EBANK =value is good only for one sub- 
sequent code, and then the previous EBANK =setting is restored. This is called a 
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"one-shot EBANK = declaration. ' I  Let us assume we have se t  EBANK = 5, thus in- 
forming the assembler that all subsequent E-Bank addresses wi l l  be in EB 5. When- 
ever the assembler hereafter comes upon an address which is not within EB 5, we 
receive a diagnostic (CUSS). Now suppose that we are in EB 5 and we wish to  fetch 
data f rom EB 4 once and then return to EB 5. EBANK = 4 enables us to  switch (for 
assembly purposes) from EB 5 to  EB 4 for  one BBCON word, then to  switch back 
to  EB 5 for the remaining subsequent codes. This is the "one-shot EBANK = declara-  
tion. I '  

BBCON wil l  create  a 15-bit Both-Bank-Constant word intended as  data to  be 
placed in the BB register.  The address value must be a location in fixed memory 

(not fixed-fixed) or  it must be an F-Bank number (in the range 0 - 43). Bits 15- 11 
of the 15-bit word generated equal the address '  bank number. Bits 10- 8 and 4 a r e  
zeroes. Bits 7-  5 a r e  000 if  F-Bank is less  than 30, 011 if F-Bank is 30 - 37, or  
100 if  F-Bank is 40 43. Bits 3 - 1 equal the current EBANK = code. Recall that 
the BB register  has the following format: 

BB Register - 

F F F F F O B D S S S O E E E  

Assume that we have set  EBANK = 3, so that all subsequent E-Bank addresses wi l l  
be in E-Bank 3. A t  present, FB  13 is in the Location Counter, and we wish t o  
switch to  FB 14. BBCON (FB 148) will  create  the following 15-bit constant word: 

0 1 1 0 0 0 0 0 0 0 0 0 ' 0 1 1  

bits 15 
FB 14 

1 
EB 3 

2CADR and PBCADR a r e  synonymous codes which create  a Double Complete 
Address, i. e. a GENADR followed by a BBCON. The code is intended to  be used as 
the operand of a DTCB (DXCH 2)  instruction, discussed below. Two 15-bit constant 
codes are generated by this code. The f i rs t  word is formed under the rules for 
GENADR. If the operand address value is in fixed memory, the second word is 
formed under the rules for BBCON. For an address in erasaale memory, the 
second word becomes OOOOX where X = the address '  octal code EBANK number in 
the range 0 -  7.  For  example, assume we have set  EBANK = 5 s o  that al l  subsequent 
E-BANK addresses wil l  go into EB 5. We a r e  at present in EB 4 and wish  to  go to  
location 50000 in FB  20. 2 BCADR will create the following two words: 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0  
' FB 20 EB 5 
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The first word, formed under the rules of GENADR contains the  12-bit address which 
will become the contents of Z when this double precision word is used as  an operand 
under DTCB (DXCH Z ) .  The second word, formed under the rules of BBCON, con- 
tains the number of the F Bank which corresponds to  the address of the operand. It 
also contains the number of the E-Bank via our last EBANK = statement. 

Now consider that we a r e  in F B  20 and wish to  jump to  location 337 in E-  8 
Bank 3. 2BCADR 17778 would form the double precision constant word 

The first word, formed under the rules for  GENADR contains the erasable address 
which will go into Z .  The second word contains the address '  octal code E-Bank 
number . 

2FCADR creates a Double Complete Address, i. e. an FCADR followed by a 
GENADR. The address value must be a location in fixed memory, The code is in- 
tended as an operand for a DTCF (DXCH FBI instruction, discussed below. This 
code generates two 15-bit constant words. The first word is formed under the rules 
for FCADR, and the second is formed under the rules for GENADR. For  example, 
let us assume that we a r e  in EB 3 and wish to  jump t o  location 300418 in F B  lo8. 
2FCADR 300418 would create  the  following D P  word: 

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1  0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  
F B  lo8 Augment 41 

The first word was formed under the rules for FCADR, specifying the F-Bank num- 
ber  of the  address in bits 15-11 and the relative location of the address within that 
bank in bits 10-1. Bits 15-11 of this word become the FB setting when the D P  

word is used as  an operand of a DTCF instruction. The second word, formed under 
the rules for GENADR, contains the 12-bit address which wi l l  be set into Z when the 
DP word is used a s  an operand of DTCF. 

Two implied address codes remain t o  be discussed, 

DTC B 
@-Code 5 DTCB 

QC 1 
K = 5  (DXCH Z )  

Double Transfer Control Switching Both Banks 3 MCT 
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The contents of the Z and BB registers  come into the accumulator and 

L Register, and the contents of the accumulator and L Register go into the Z 
and BB registers.  For  example, suppose that one wants to  jump banks for  
ant interrupt. The sequence 

DCA OPERAND 1 (Operand 1 is the Address of a2BCADR) 
DTCB 

would first bring the two constant words created by BCADR (representing Z 
and BB) into the accumulator and L Register. DTCB would then cause the 
contents of A and L to  go into Z and BB. The present contents of Z and BB 
would be saved in A and L, and an immediate change of sequence would be 
in effect. 

DTCF 
@-Code 5 

w 1  
K = 4  

DTCF 

(DXCH FB) 
Switching F Banks 3 MCT 

The contents of FB  and Z come into the accumulator and L Register, 
and the contents of the accumulator and L Register go into FB  and 2. A 
BFCADR is used with this instruction. The f i rs t  word created by 

2FCADR 13177* 

se ts  FB  bits 15 “11 to  the F-Bank number within which this address is located 
and se ts  10-1 t o  the relative location of the address within that bank. The 
second word creates  a 12-bit address. The sequence 

DCA OPERAND 2 (OPERAND 2 is the address of aBFCADR) 
DTCF 

will cause the first word created by BFCADR to  come into A, and the Z ad- 
dress  in the second word created by BFCADR to  come into L. The DTCF 
wi l l  cause the 5-bit FB setting in A t o  go into FB  and the 12-bit address in 
L to  go into Z .  The present contents of F B  and Z will  go into A and L. 
Thus we have switched F-Banks, sequence control, and have preserved the 
previous setting of FB and 2 in A and L. 



List of Assembly Constants 

Constant (Q)p-Code) 

ADRES 
REMADR 
GENADR 
CADR (FCADR) 
ECADR 
EBANK 
BBCON 
2CADR 2(BCADR) 
2FCADR 

Operand (Address) 

TAG, P. A. (pseudo-address) 
TAG, P . A .  
TAG, P .A.  
TAG, P .A.  
TAG, P .A.  
TAG, P .A.  , E-BANK # 
TAG, P. A,  F-BANK # 
TAG, P.A.  
TAG, P . A .  

TAG = Symbolic Tag, e. g. DISRUPTSW 
P. A. = Pseudo-Address, e. g. 402738 
E-BANK # = EYBank number, e. g .  3 

F-B&NK # = F-BANK number, e. g. 27  

1. 4 . 8  Counters 

Counters a r e  addressable registers  in erasable memory which may be in- 
cremented or decremented by special unprogrammed sequences. Two adjacent 15- 
bit t ime counters comprise the AGC clock, which has accuracy up to  31 days. Other 
counters, upon overflow, cause an interrupt of the current program, enabling us to  
periodically accomplish special processing. 

The t ime counters, designated as Scaler 1 and 2 and Time 1-6, a r e  located 
in memory as follows: 

Octal Location 

24 
2 5  
26 
27 
30 
31 

C ount e r  

TIME 2 
TIME 1 

TIME 3 
TIME 4 
TIME 5 
TIME 6 

Scaler 1 and Scaler 2 are ,  respectively, Channels 4 and 3. 
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The function of counters is to  keep t rack  of the s tate  of an external device. 
For example, the CDU counters monitor the changing state of roll, pitch, and yaw 
of the spacecraft through the increments and decrements pulsed across  the 1/0 in- 
terface to the counters by the CDU's. Since the measurement unit of the counter is 
40 seconds of arc ,  the counter wi l l  not reflect a change in the position of the space- 
craft less  than 40 seconds of arc.  Increments and decrements to other counters r e -  
present different scaling, e. g. milliseconds of time. Counters may be incremented 
o r  decremented by making the following requests of the CPU. We describe these 
hardware sequences by mnemonics not meant to  be interpreted as  instructions. 

PINC 
Plus  Increment 1 MCT 

+ 1 is added to the low-order bit of the counter. If the addition r e-  
sults in overflow of the counter, the counter is reset  to  positive zero. 

COUNTER 

f l2  PINC : + 1 pulsed into bit 1 

PC DU 

+ 1 is added to  the low-order bit of the counter in two's complement 
modular (unsigned) notation. 

m l  COUNTER 

+1 PCDU: + 1 pulsed into bit 1 in 
two's complement 
unsigned notation 

The CDU counters 32- 36 a r e  incremented and decremented in two's 
complement notation and a r e  non-algebraic for the hardware sequences PCDU 
and MCDU. That is, while PINC and MINC would reset  the counters to posi- 
tive or negative zero upon overflow of the counter, PCDU and MCDU increment 
and decrement the counters in unsigned notation so that the quantity 400008 
would not represent overflow. Since the CDU's a r e  modulo 180°, we merely 
continue counting past POSMAX when we reach 180° (400008). 
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In order touse the  readings of the CDU's in one's complement arith-  
metic calculations, we must convert the two's complement quanties in the CDU 
counters tosignedonels complement notation, Our method of conversion is 
based on the following considerations. We designate positive zero as the 
beginning of a revolution and -180° as the midpoint of a revolution. Since 
the low-order bit of a CDU counter is equal t o  40", +180° -40" (377778) is 
the closest positive representation of the mid-point that we can have, Simi- 
larly, negative zero  must be represented as 360' -40" (777778). Thus the 
difference between + 180' and - 180' and between + 0 and -0 is represented 
by 40", which is equal t o  an increment of 1 to  the low-order bit of the CDU 
counters, This difference of 40" is equal to  the difference between one's 
and two's complement arithmetic. Therefore, when we read a negative two's 
complement quantity out of a CDU counter in order  to  perform one's comple- 
ment arithmetic with it, we subtract one f rom the quantity, We need to do 
nothing to  positive quantities since a positive number is identical in one's 
and two's complement arithmetic. At the end of the calculations, we add 
one to a negative one's complement number to  reconvert it to  two's comple- 
ment notation. A s  above, we have no need to change a positive one's comple- 
ment number. An extracode instruction MSU (Modular Subtract) accomplishes 
the above by differencing two quantities in two's complement notation and 
leaving the difference in one's complement form, 

n n 

A 

r\ 

n 

MINC 
Minus Increment 1 MCT 

- 1  is added to the low-order bit of the counter. If addition results in 
overflow of the counter, the contents of the counter a r e  reset  t o  negative zero. 

COUNTER 
1 7 1 4 1 3 1 q 8  

- l 2  MINC : - 1 pulsed into bit 1 

MCDU 
Minus Increment (CDU) 

- 1 is added to the low-order bit in two's complement modular 
(unsigned) notation. 
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DINC 

COUNTER 

mJ 
MCDU: -1 pulsed into bit 1 

in unsigned notation 

See remarks  under PCDU 

Diminishing Increment 1 MCT 

. 

If the contents of the counter are greater  than positive zero, the con- 
tents a r e  decremented by + 1. 

If the contents of the counter a r e  less than negative zero, the con- 
tents of the counter are incremented by +1. 

If the contents of the counter a r e  equal t o  positive or negative zero, 
the contents are left unchanged. 

In other words, we move toward zero from either a positive or nega- 

tive direction. 

SHINC 
Shift Increment 1 MCT 

The contents of the counter a r e  shifted left one bit. If positive over- 
flow resul ts ,  an interrupt request will be set  for the counter. 

COUNTER 

Contents of counter shifted 
left 1 bit 

SHANC 
Shift and Add Increment 1 MCT 

The contents of the counter are shifted left one bit and + 1 is added to  
the low-order bit of the counter. If positive overflow of the counter results,  

an interrupt request will be set for  the counter. 
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COUNTER 

[ W I  

m l  
Contents of counter shifted 
left 1 bit, 

+1 + 1 pulsed into low order  
bit. 

SHINC and SHANC a r e  used for serial t o  parallel  conversion (converting a 
s t ream of bits coming in bit by bit so that it may be accessed as a whole word). 

These unprogrammed sequences may occur only at the end of an instruction 
sequence. An instruction sequence may be only one instruction such as TC K or  
ADS K, o r  it may be a se r ies  of instructions such as 

EXTEND 
INDEX K 
DCA K. 

If a PINC, MINC, etc. request is made while an instruction sequence is still being 
processed, it wi l l  wait in a circuit until the instruction sequence processing is com- 
pleted. The request will then be serviced. These unprogrammed sequences causing 
counters t o  increment and decrement take place between instruct im sequences so 
that no counter will be in danger of changing while a sampling of the counter is being 
taken by the instruction processing. 

The counters vary in the type of overflow processing which they cause. The 
contents of some counters are reset  t o  zero upon overflow; in other cases,  the over- 
flow is lost. More frequently, overflow of a counter causes an interrupt. 

There are many types of counters other than t imers .  A list and partial 
description of the counters in the AGC is given in Chart I on Page 64. 

c 



1. 5 Interrupt Processing 

The normal sequence of instruction processing for the current program can 
be interrupted for special processing through RUPT's. The two main functions of 
RUPT's are t o  allow automatic monitoring and t o  allow control over intervals of 
t ime (AT).  

Concerning automatic monitoring, it is often necessary for the system t o  
respond immediately t o  some external signal or  situation. In the absence of inter- 
rupts, we would have t o  require all programs t o  frequently monitor such signals and 
situations. To the programmer, this could be easily a very burdensome task. In- 
stead, by having direct communication between external signals/conditions and hard- 
ware interrupts, external events can automatically lead t o  processing by some cen- 
tral program. W e  thus guarantee that the system will react  instantly t o  certain 
external signals and conditions, and we remove a programmer burden. 

Concerning control over intervals of time, we may assume that it will be 
necessary for a program t o  wai t  an interval of time before it resumes processing. 
We may also assume that there  exist some system functions which regularly (every 
AT) must be serviced. By connecting t ime counter overflows t o  hardware interrupts, 
we can preset the counters s o  that after AT they will yield special  processing, such 
as returning t o  a program that wished t o  wait AT, or returning t o  servicing some 
regular system function, 

When a RUPT has caused a t ransfer  of control from the main program to  a 

prespecified RUPT location, the states of the central  regis ters  A,  ( Z ,  B, ) Q, and 
BB may (will) be preserved, if desired, in temporary storage. Upon completion of 
the RUPT sequence, a RESUME instruction restores  the central  regis ters  t o  their  

previous states and returns  control t o  the previously interrupted program. 

An interrupt cannot occur under the following conditions: 

1. while a RUPT is currently being processed; 
2. while there  is overflow in A;  

3. while the extracode switch is on (implying that the instruction sequence has 

4. if the INHINT command has been given without a subsequent RELINT. 

not been processed to  completion); 



Condition 1 may be repealed by completing a RUPT processing and by giving the 
command RESUME. The INHINT command in condition 4 may be rescinded by 

. commanding RELINT. 

1 .5 .1  The Clock and Scalar 

A s  we have said above, the AGC clock is composed of two 15-bit adjacent 
counters in memory, called TIME 1 and TIME 2, which can keep time for 31 days. 
Time 1 is scaled to  be accurate to  10 ms. That is, 1 centisecond or 10 m s  must 
elapse before the low-order bit of TIME 1 can be incremented by 1 (PINC'd). 

For greater timing accuracy, we can access SCALER 1 (14 bits long) and 
SCALER 2 (the t ime counters in channel 4 and 3, respectively). The low-order 
bit of SCALER 1 is incremented by 1 every 1/1600th of a second, A pulse into bit 5 
of SCALER 1 not only increments bit 5 but PINC's bit 1 of TIME 1. Thus is TIME 1 

incremented every centisecond, or 10 ms. The overflow from bit 14 of SCALER 1 

increments bit 1 of SCALER 2, SCALER 2 is thus incremented every 10.24 seconds. 
Together, the scalers  can keep time for 23.3 hours. Overflow from bit 14 of TIME 1 
PINC's bit 1 of TIME 2 and rese ts  TIME 1 to + 0. Overflow from bit 14 of TIME 2 
is lost. Thus the scalers  and TIME 1 and 2 can monitor t ime up to 31 days. 

Time counters T3  and T4 a r e  incremented in the same manner as  T1, but 
overflow from bit 14 of these counters t r iggers  an interrupt. Thus, t o  cause an 
interrupt AT from now, as  is often necessary, we set a t imer  such as TIME3 equal 
t o  its maximum, plus one (or 1.0) minus AT. An interrupt wil l  occur within AT-X 
from now with X less  than 10 ms. This merely means that T3 may get i ts  f i rs t  
10 ms increment before a fu l l  10 ms has elapsed because the pulsing of the t imers  
is asynchronous to instruction execution time. Time 3 and TIME 4 a r e  phased to be 
5 ms apart in pulsing. A s  long as R U P T  processing does not exceed 4 ms, they wi l l  
not interfere with each other. 

Let us consider a T4RUPT as an example of a programmed interrupt. The 
following description may be followed in the diagram of Programmed Interrupts on 

I page 1-69. Overflowfrom bit 14 of TIME 4 generates a pulse which wil l  set  the RUPT 
indicator bit for T4RUPT. The hardware, scanning the RUPT indicator bits wil l  
service the RUPT of highest priority whose indicator bit is set ,by closing its RUPT 
switch. If the INHINT command has been given in the main program, the pulse w i l l  
wait at the open INHINT-RELINT switch until the switch is closed by a RELINT 
command. When the INHINT-RELINT switch closes, the pulse continues to the final 
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switch, The switch is open and the pulse wi l l  wait if the extracode bit is on (implying 
that an instruction sequence in the main program has not yet been processed to com- 
pletion), or  if overflow exists in A, or  if  a RUPT is already in progress,  When any 
of these conditions is removed (e. g .  a RESUME command closes the switch), there  
is no further switch to stop the pulse f rom triggering the special processing of the 
T4RUPT. 

A s  in all interrupts, the hardware now causes the contents of the Z Register 
t o  be aaved in a temporary storage register ZRUPT at location 158 and the contents 
of the B Register, containing the next instruction, t o  be saved in the temporary 
storage regis ter  BRUPT at location 178. , The hardware now transfers  control f rom 
the main program to the location at which the processing caused by a T4RUPT begins. 
At this new location, program processing ordinarily wil l  save the contents of A, L, 
Q, and BB in temporary storage regis ters  ARUPT (lo8) ,  LRUPT ( l lg) ,  QRUPT ( U 8 ) ,  
and BBRUPT (168),  and procede to fulfill whatever functions a r e  required of this 
particular RUPT. Afterwards, the program restores  A-L-Q-BBRUPT's to A, L, Q, 
and BB. The inqtruction RESUME causes the hardware to  res tore  Z from ZRUPT 
and select the contents of BRUPT as the next instruction. Thus, a program which 
was once interrupted for TCRUPT processing may now continue as if nothing has 
happened, 



CHART I 
Summary of Counters for CSM & LEM 

Note: ( ) Parenthesis indicates use of counter on LEM as different for CSM. 

Octal Location 

Elapsed Time 10 MS T 2  TIME 2 24 

Us e Scaling Name Symbol 

25 

Fine Time for  Clocking I /  1600 Sec. T 6  TIME 6 31 
Digital Auto Pilot 10 MS T 5  TIME 5 30 
T4RUPT 10 MS T 4  TIME 4 27 
Wait - List 10 MS T 3  TIME 3 26 
Elapsed Time 10 MS T 1  TIME 1 

32 - 34 Relate Stable Member Axis 40" Arc Inner, Middle, CDUX, Y, Z 
Outer-Gimbals 

Arc (or Radar) 
40" Optics Shaft OPTX 

Body Axis. Arc {or Radar) 

t o  Body Axis 
35 Relate Line of Sight t o  10" (or 40") Optics Trunnion OPTY 

36 I 
37 - 41 Measure Change invelocity 5.85 CMISec. X, Y, Z - Stable PIPA, X, Y, Z 

Member (or 1 CM/Sec.) 
42 - 4 4  (Manually Command a n  (1 up to  + 3 1 )  (Rotational Hand Spare in CSM 

(or RHCP, Y, R )  Attitude Roll, Pitch, Yaw). Controller Inputs 
for  Pitch, Yaw, 
Roll) 

45 Up-Telemetry Uplink INLINK 



Octa l  Locat ion 

46 

47 

50 - 52 

53 

54 

55  - 56 

57 

60 

Symbol  

RNRAD 

G y r o  CTR 

11 
CDUYCMD 

Z 

OPTYCMD 
~ ~~ 

OPTXCMD 

S p a r e  
Out Link 

(ALTM) 

CHART I continued 

Rendezvous & Landing 
R a d a r  Data 
RR Range  Low e. 38 ft.  
RR Range  Low ' 8 X9. 38 f t .  
LR VX High 1 +O. 6435 ft.  /sec. 

RR Range  +O. 6278 f t .  /sec. 
LR VY Y. 2525 ft.  /sec. 
LR V Z  +O. 8571 ft. /sec. 

LR Altitude, Low +l. 079 ft.  

LR Altitude, High +4.9977 x I .  079 ft .  

Out Coun te r  f o r  Gyros 2 s s  Rad. 

22 1 

Outcounters  for CDUs 

Outcounter  f o r  Opt ics  40" (or 160") 
(or R a d a r )  

Outcounter  f o r  Optics 160" A r c  
(or R a d a r )  

C r o s s - L i n k  

Us  e I 

Dr i f t  Compensa t i on  and  F i n e -  
Al ign  the P l a t f o r m  

U s e d  f o r  Changing  the DAC 
Error C o u n t e r  in CDU 

D r i v e s  Optics (or Rendezvous 
R a d a r )  or  is u s e d  by Digi tal  
Autopilot  

I 
Parallel to Serial L E M  and 
CSM T e l e m e t r y  I 
( D r i v e s  Inertial Data  Disp lay  
f o r  Al t i tude  on LEM) 



CHART 2 
MEMORY LAYOUT 

F HANU NAME SUBTRACT B A N K  SIZE PSEUDO ADDRESS 3-BIT BANK 

X E r a s a h l r  0 251; 0-377 
X Ernsable 0 400-777 

0 
1 

2 X 1:t~asahie 0 1000-1377 """"""_ 

02 

03  

00 

01 

O 2 1  03  
04 

05 

07  

10-13 
14-17 
20- 23  

24-27 
30-33 

30-33 
34-37 

c 

X Erpsah le  Switched 1400 & Append 1400- I777 3 

4 
5 

E r a s a h l r  Switchrd 

2400-2777 Hits 1 1 ,  10, 9 in Erasab le  Switched 
2000-2377 F I h n k  

Erasab le  Memory 
Erasab le  Switrhed Srlection Logic 3000-3377 
Erasab le  Switched 

6 

I f i 3400-3777 7 
"""""" """""""_ 

FixedIFixed 0 & Use 12-Rit Address  1024 1000-5777 X 
in 

FixcdlFixed Address  Selection 1024 0000-7777 

Fixed 2000 & Append 

Fixed Address  Selection 

Redundant Because 
Used Above 
Fixed 2000 

Fixed 
F i x 4  
Fixed 

Fixed 
Fixvd 

Fixed 
F i red  

S = 0 Suprr  Bank 0 
S = 1 Super Hank 1 

F15 - Fll in Fixed 

Non-Existent Addr r s s  

1024 11)OOO- 1 1 7 7 7  

1024 

I 
12000-13177 
14000-15777 

16000-17777 
IO24 20000-21777 

I 1 
260oo-zi177 
30000-37777 

40000-47777 
50000-57777 

60000-67777 

70000-77777 
110000- 1 I7777 

S I 0  1 100000-107777 
I 

""""""" """ 

36 Fixed Ranks and 2 Eraunhle Ranks or 36864 i204R = 38812 locations 
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,CHART 3 

ADDRESS SELECTION LOGIC 

r 
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CHART 3 continued 

- 
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CHART 4 
PROGRAMMED INTERRUPTS 

102.4 KC RATE 

<- SCALER I3 --> <-.SCALER A -+I 
(16 bits) (14 bits) I 

I f I 
D l  

I - 23.3 ________3 
1 I -1023 , 

0 I 
hours 1024 2 '  I 

4 1  I I 
14 13 12 11 , , , , . 514 3 2 11 I 

I I 

I-T2-l-Tl"-, 
I (15 hita) I ( I 5  h i t s )  

I 7 31 DAYS- 

I I 
I I I ;gos I 
I I 

1 / l f i O O  SEC 

1 5 1 4 . ,  . . . , . . . , 3 2 1  1 5 1 4 . .  , , . . . , .  . 3 2 1  

.1 OVER - 
FLOW u OVERFLOW 

I .1 
1/100 SEC or 10 MS """""- "-+ ""7" """" - """""" 
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TC 
CADR 
CADR 

three words of memory a r e  used just in calling the subroutine while additional 
words a r e  used for temporary storage. 

2 - 1  

2 .  THE INTERPRETER 

2 .  1 Introduction 

The Apollo Guidance Computer was designed with the idea that i t s  weight, 
size, and power supply were costly items. Mission requirements warrant a hard- 
ware compromise of a word-length with a minimum of 1 5  bits and an instruction 
repertoire  of 33 instructions with which to work, The result, therefore, is a small, 
fairly simple machine with limited abilities. While the AGC hardware provided for 
manipulation of single- and double-precision quantities, frequent need arose  to 
handle multi-precision quantities, trigonometric operations, vector and matrix 
operations, and extensive scalar  operations, Thus, to  fulfill the system require- 
ments planned for  the lunar missions within the constraints of hardware limitations, 
it is necessary to employ software to expand the capabilities of the AGC. 

One method of accomplishing this would be through a collection of subrou- 
tines. By creating within the computer a large l ibrary of subroutines which per-  
form various higher level arithmetic and language operations, we could save 
mission programmers the burden of having to code their complicated operations in 
extensive sequences of basic machine instructions, This approach has two dis-  

advantages, however. Firs t ,  since programmers  would be calling subroutines 
often, a great deal of memory would be taken up merely with the frequently r e -  
peated calling sequences, Secondly, much of memory would be taken up a s  tempor- 
a r y  storage for the contents of reg is te rs  which programmers needed for later pro- 
cessing. For example, to  call the subroutine X Y Z  which requires two arguments, 

X Y Z  
ARG 1 
ARC 2 



Thus, to  solve the memory wastage problem caused by frequent use of the 
calling sequences, it is expedient to  create a n  entirely special mnemonic language 
in which each mnemonic corresponds to  a subroutine. Since, in many cases, the 
new mnemonic instructions require no addresses,  we design a packed instruction 
format which s tores  two seven-bit operation codes in one word of memory and any 
required address  constants in the two following words: 

bits 15 14 8 7  1 

IOP-CODE 1 I OP-CODE 2 I 
 ADDRESS FOR OP-CODE 1 I 
ADDRESS FOR OP-CODE 2 J 

To interpret our special mnemonic language, we design a central subroutine which 
wi l l  encode the instruction formats (and use common temporaries) and execute the 
required subroutine sequence of AGC instructions. 

Each subroutine is constructed such that the combination of single-operation 
AGC instructions forms a particular method of doing some higher level operation 
(such as obtaining a square root) required frequently by mission programmers.  
Thus, programmers have access  to procedure-oriented operations without having 
to learn various subroutine-calling sequences. We similarly aid engineer-pro- 
grammers  by naming the mnemonics with the vocabulary oriented to their special- 
ized work. 

By building a "softwaref' machine with the kind of programming designs 
discussed above, we achieve, for programming purposes, a larger,  more diversi- 
fied computer than the basic AGC. In order to "build" our software machine, we 
need to  create the components which wil l  simulate their hardware counterparts. 

MPAC We design a multi-purpose accumulator with seven 15-bit reg is te rs  
so that multi-precision quantities may be easily manipulated. The three types of 
quantities which may be contained in the accumulator a r e  (1 )  a double-precision 
quantity occupying the pair of reg is te rs  MPAC and MPAC + 1 with magnitudes up to 
1 -2-28; 4 2 )  a triple-precision quantity occupying the three regis ters  MPAC, 

MPAC + 1, and MPAC + 2  with magnitudes up to l - f4 ' ;  and ( 3 )  a column vector 
quantity occupying the six regis ters  MPAC, MPAC + 1, MPAC + 3, MPAC + 4, 
MPAC + 5, and MPAC + 6 representing an X, Y, Z ,  D P  vector. 
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OVFIND An overflow indicator functions similarly to its AGC hardware 
counterpart in recording for the current program the fact that an instruction oper- 
ation has created overflow. Just as we could test for  overflow in an AGC program 
with an OVSK instruction, so we use the instructions BOV (Branch on Overflow) and 
BOVB (Branch on Overflow to Basic) t o  test  for overflow in interpretive programs. 

ADRLOC The address  location regis ter  is the interpretive counterpart of 
the basic regis ter  Z .  It is the program counter which contains the next address  in 
memory from which an interpretive instruction will be taken. 

QPRET We need a return address  regis ter  to serve as the counterpart of 
the AGC Q-Register in preserving the location at which we shall resume processing 
the main program when we return from a subroutine, Just as TC left in Q the com- 
plete address  of the next AGC instruction, so the interpretive instruction CALL 
leaves in QPRET the complete address  of the next interpretive instruction. 

X1 and X2 In case a programmer wishes to modify the address  portion of 
instructions through the use of index registers ,  we provide two for the purpose. If 
an address is indexed, the contents of the specified index regis ter  a r e  subtracted 
from the unmodified address,  yielding the net operand address,  

S1 and S2 The two step reg is te rs  may be used as temporary storage for 

single- '3r double-precision quantities, but a r e  designed principally to decrement 
X1 and X2 in loops. 

PUSHLOC We design the push-down location register  to function a s  a 
location pointer for the push-down l is t  just a s  Z functions a s  the program counter 
for  AGC instructions and ADRLOC for interpretive instructions. 

PUSH-DOWN LIST We create a "push-down" l is t  as a means of saving 
memory by using implied address  schemes to specify temporary storage, and as a 
means of providing the convenience of having our machine temporarily s tore 
quantities without programmer intervention. The list may contain 38 15-bit 
quantities with the characteristic that the last quantity to be entered (pushed down) 
is the first quantity to be withdrawn (pushed up). 
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Besides these registers,  we need to design instruction formats to accommo- 
date multi-precision scalar  arithmetic, trigonometric operations, and vector and 
matr ix  operations. Since many of our vector and scalar  instructions require no 
address,  we design the packed format for general instructions discussed above. 

We represent memory in three groups rather  than in banks. Local erasable 
memory corresponds to  the general erasable locations 618 to 13778 plus the cur-  
rent E-bank. * The low half-memory corresponds to fixed memory banks 4 - 1 7  and 
the high half-memory consists of fixed memory banks 21 - 37. 

To represent data, we create  formats for single-precision quantities, 
double-precision quantities, column vectors, and matrices.  

Lastly, we must of course design the software equivalent of a central 
processing unit to perform the functions of encoding instructions, creating 
effective operand addresses,  and executing the instructions. 

The Assembler creates packed-format mnemonics for interpretive instruc- 
tions in the same manner it t ranslates  basic machine language into executable code. 
Reading an interpretive instruction, the Assembler transforms the first mnemonic 
operation code to a 7-bit op-code which it packs into the left hand operand field, 
It packs the 7-bit translation of the second op-code into the right hand address  
field. If both op-codes take defined addresses,  the Assembler transforms the 
address  of the first op-code to a 15-bit address  field directly below the second 
op-code. The Assembler translation of the address  of the second op-code is placed 
directly below the first address. 

OP-CODE 1 

OP-CODE 3 

OP-CODE 2 
ADR 1 
ADR 2 

OP-CODE 4 

ADR 3 

ADR 4 

OP-CODE 5 etc. 

*-Soon to be changed such that local E-memory includes a l l  the erasable memory. 
** Soon to  be changed to  banks 22 - 37. 
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i .  

If a n  instruction contains only one operation code and its address,  it is coded thus: 

OP-CODE 1 
ADR 1 

At execution time, any address  found which does not have an operation code is con- 
sidered to be a n  address  in which data will be stored. Thus, the STORE operation 
code and the address  appear on the same line: 

STORE STORADR 

Unfortunately, confusion resul ts  when OP-CODE 1 takes an address, OP-CODE 2 
pushes up, and a s tore  operation is the next instruction. At execution time, this  
sequence would appear thus: 

OP-CODE 1 OP-CODE 2 

ADR 1 
STORADR 

Since STORADR would be considered the address  of OP-CODE 2, the Assembler 
requires that the STORADR address  be preceded by a STADR code. 

OP-CODE 1 OP-CODE 2 
ADR 1 

STORE STORADR 

Thus, the STORADR is not processed as the operand address of OP-CODE 2.  

The other situation requiring the use of a STADR code is: 

OP-CODE 1 STADR 

STORE STORADR 

This concludes the introduction to  the interpreter. Our discussion wi l l  
t rea t  the interpreter  a s  a machine. Bear in mind that we a r e  really describing 
a program. 
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2 . 2  Memory 

A word in interpretive language is composed of 15 binary bits, numbered 
from left to  right as bit 15, 14, . . . , 1. Bits 14-1 contain the magnitude of a 
quantity and bit 15, the sign of the quantity. A sixteenth "parity" bit exists solely 
for internally verifying that the hardware is functioning normally. 

bits 
15  14 1 3  1 2  11 10 9 8 7 . 6  5 4 3 2 1 

sign 
bit magnitude 

2. 2.  1 Data Representation 

We allow data to be represented as signed, fractional, single-precision 
quantities, double- and triple-precision quantities, column vectors, and matrices. 
The arithmetic is fixed-point throughout, with the binary point falling between bits 
1 5  and 14. 

Thus one word, which forms a Single Precision (SP) quantity, has magni- 
tudes up to l-2-14. If bit 15 contains a one, then bits 14-1 a r e  the ones comple- 
ment representation of the positive magnitude. 

bits 15 14 , . , 1 

1 

positive magnitude. 
Ones complement of the 

Since we frequently require precision beyond fourteen magnitude bits, a 
Double Precision (DP) quantity, which consists of two adjacent words, provides u s  
with magnitudes up to 1-2-28.  Although the sign in bit 15 of the second word may 
occasionally differ f rom the sign of the first word, the sign of the DP quantity is 
understood, usually, t o  be the sign in bit 15 of the first word. Bits 14-1 of the 
first word contain the high-order magnitude bits of the quantity, while bits 14-1 of 
the second word contain the low-order magnitude bits. 

WORD 1 WORD 2 

bits 15 14 . . . 1 15 1 4  . . . 1 

High- or  der Low-order 
magnitude 
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A s  in Single-Precision words, i f  a quantity is negative (i. e., bit 1 5  = 1) then the 
magnitude bits represent the ones complement form of the quantity's positive 
magnitude, 

For greater  precision, we provide a Triple-Precision (TP)  format which 
allows quantities to be defined within 3 words with magnitudes up to l -2 -42 .  A s  
above, a l l  42 magnitude bits exist in complemented notation if the sign is negative. 

WORD 1 WORD 2 WORD 3 

, 1 5 , 1 4 l .  . . 1 ,, , 1 5 , 1 4  . . . 1 , j 5 ,  14  . 0 1 , 
High- order 
magnitude 

A Vector quantity may 
Precision quantities: 

DP1 

DP2 

Middle-order 
magnitude 

Low-order 
magnitude 

be represented in six words as three Double- 

1 5  14  7 
1 5  1 4  . . . 1 

I 1 
1 5  1 4  ' 

1 5  1 4 . .  . ,  1 

I I 1 

1 5  1 4  . . . 1 
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DP5 

DP6 

2 . 2 . 2  Instruction Representation 

DP8 

DP9 

Since many of the interpretive instructions take no specified arguments, 
we save memory by packing two operation codes in one word and any required 
arguments in the two following words: 

bits , 1 5  , 1 4  ... 8 ,  7 . . . 1 , 
OP-CODE 1 OF-CODE 2 

Argument for OP-CODE 1 

Argument for OP-CODE 2 

Seven bits a r e  provided to define 27-1 ~ 1 2 7  different interpretive operations. 

bits 7 6 5 4 3 2 1 

> 

OP- CODE BITS 
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These 1 2 7  operations a r e  broadly divided into four classes  according to the 
configuration in op-code bits 2 and 1. Bit 1 is considered to be the address  bit, 
with a 1 configuration implying that the operation takes an argument. Bit 2 may be 
thought of as the index bit, with a 1 configuration indicating that the instruction may 
be indexed. 

A 00 configuration in bits 2 and 1 of an op-code implies, therefore, that the 
instruction does not take an argument and may not be indexed. Such unary instruc- 
tions include the scalar functions for obtaining a square root, cosine, sine, etc. 

Conversely, a 1 l2  configuration in bits 2 and 1 of the op-code indicates that 
the instruction takes an address and may be indexed. Bit 15  of the argument is 
used to specify which index register,  X1 or  X2, wil l  be utilized. 

bits 15  14 . . . 1 

ARGUMENT BITS 

A 0 in bit 1 5  implies that index register  1 ( X l )  is to be used; a 1 implies that X2 
wi l l  be used. The Assembler wi l l  of course t rea t  an argument with a 1 in bit 1 5  as 
a negative quantity and wil l  represent it in its ones complement form. Thus, if X1 
is specified, then the argument is a quantity equal to  or  greater than 0, and if  X2 
is specified, the argument is negative. (In fact, it is the positive address + 1, 
complemented. ) 

A 01 configuration in bits 2 and 1 of the operation code implies that the 
instruction takes an argument but m a y e b e  indexed. Since we therefore do not 
need bit 15  of the argument to specify an index register,  we use it to  distinguish 
between having a specified address  and requiring an address from the Push-down 
List, This is accomplished by giving all operation-code words the characteristic 
of having a 1 in bit 15. We then set  bit 15  of the arguments whose op-codes fall in 
class  01 equal to  0. Thus, i f  the Interpreter does not find the specified operand 
address  with bit 15 3 1, it wil l  encounter the next operation code with bit 15  = 1 
and wil l  know that since the op-code required an argument, it must fetch the argu- 
ment from the Push-down List. Arguments in the Push-down List may not be 
indexed, since we require the use of bit 1 5  jus t  to specify the Push-down List and 
it cannot conflict with using bit 1 5  to specify X2. 

* 
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Since we have exhausted the configurations of 00, 112, and 01 to indicate 
general c lasses  of operations, we group a l l  others under the remaining configu- 

. ration of l o2 .  These a r e  the branching instructions and the index instructions 
which modify the contents of the index registers ,  We may not index an index 
instruction since we need the use of bit 15 of the argument to specify which index 
register  is involved. Furthermore, a s  is true of branching instructions a s  well, 
we have no way of indicating any desired indexing as bit 2 of the op-code fo r  this 
class  is always 1 to signal the class  of BRANCHlINDEX instructions. 

Since the addresses  of s tore operations must be located in erasable 
memory, we create a special format which packs a 4-bit s tore operation code and 
its 10-bit erasable address  into one word: 

bits 15 14 . . . 11 1 0  1 

0 E-ADDRESS OP-CODE 

Thus we may reference erasable memory through location 1777 * (2 10 -1). 
8 

We categorize interpretive instructions into the following eight more 
specific instruction groups: 

1) Memory Load and/or  Store Instructions 
These instructions t ransfer  data to and from storage locations. 

2 )  Control Instructions 
This group effects sequence changes of instructions. 

3) Decision Instructions 
These instructions tes t  the resul ts  of arithmetic operations, 

4) Switch Instructions 
This group manipulates and tes t s  the switches. 

* A store instruction format is currently being implemented which wil l  provide 
for an 11-bit address  portion, thus rendering accessible all of erasable 
memory. Since this  11th bit is being taken from the op-code field, the op-code 
portion will consist only of bits 14, 13, and 12.  Because bit 11 has been used 
t o  indicate the indexable characteristic of some store op-codes, its loss resul ts  
in loss  of the ability to index the first operand of STODL and STOVL instruc- 
tions, and to  index both operands of STODL and STOVL instructions at the same 
time. 
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5) Index Register Instructions 
These instructions manipulate and test  the index register.  

6 )  MPAC Instructions 
These instructions manipulate data in the MPAC without affecting 
memory. 

7 )  Arithmetic Instructions 
These instructions perform arithmetic operations with both memory 
and the MPAC. 

8) Miscellaneous Instructions 
Instructions which do not fall into any of the previous categories. 

The characteristics of these instruction categories a r e  shown in the charts  
starting on page 12. For each instruction, the following information is provided: 

1) Whether the instruction takes 1, 2, or  no operands; 

2 )  The nature of the operands and how they may be modified; and 

3)  Significant side effects of the instruction, 

This information is discussed under the two headings OPERAND-1 and OPERAND-2. 
Under each heading a r e  the columns entitled A/C, Pa ::, i, E, and F. An instruc- 
tion takesnooperands  i f  column A / C  under OPERAND-1 is blank. An "A" in the 
column indicates that the instruction re fers  to the contents of an  address. A "C" 
indicates that the instruction uses  the numerical value (i. e. I is a constant) of the 
address,  A check under any of the following columns indicates that the argument 
may or must reference the Push-down List (PI, be indexed (#<), may indirectly 
address  (i), refer  to erasable memory (E), or  refer  to fixed memory (F) - both 
references a r e  possible. If column A / C  under OPERAND-2 is blank, the instruc- 
tion takes 1 operand address at most. Otherwise, the instruction takes two 
operands. 

Certain side effects of the instructions a r e  recorded by the columns MPAC, 
OVFIND, ABORT, and SEE. A check under MPAC denotes that the instruction may 
al ter  the contents of MPAC. Checks under OVFIND and ABORT have similar 
meanings. An "R" under OVFIND indicates that this instruction r e se t s  the over- 
flow indicator (OVFIND). 
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2 . 2 . 3  Memory Layout 

Since our "machine" is actually a program, it must occupy memory. Loca- 
tions 60008- 76728, most of bank some of bank l, and some FixedlFixed 
memory a r e  reserved for the Interpreter itself. Other a r e a s  of memory a r e  set  
aside for use by the Interpreter and no other programs. Five VAC (Vector 
Accumulator) Areas, which a r e  five Push-down Lists  each requiring 43 registers ,  
occupy memory locations 4318 through 7778. Registers in locations l o o 8  through 
137 may be used exclusively by interpretive programs for temporary storage. 
Five se ts  of 1 2  special "hardware" regis te rs  such as MPAC, ADRLOC, PUSHLOC, 
and QPRET a r e  located in addresses  1408 through 2648 for simultaneous use by a 
maximum of five interpretive programs. 

8 

We represent memory by the three groups called "local erasable, ' I  "high 
memory, ' I  and ''low memory. I '  Local erasable memory consists of non-switchable 
erasable locations 61 to 13778 plus the current E-bank we a r e  in (see footnote, 
page 2-4) .  Since it is assumed that all calculations can be accomplished within non- 
switchable erasable and one E-bank, interpretive programs wil l  change 
E-Banks. Fixed interpretive memory is composed of two "half-memories. Low 
memory is composed of fixed-switchable banks 48 through 178 and high memory, 
of fixed-switchable banks 218 through 378. 

8 

Low High 

Half- Memories 

(The cross-hatched area  may not be used by interpretive programs. ) 
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Variables may be stored anywhere in erasable memory locations other than 
0-778, and programs may be stored anywhere in high or low memory. Because 
the address of a branching instruction has 15  bits for definition, interpretive pro- 
grams may branch to any other program anywhere in memory. Programs stored 
in low memory, however, may refer  to constants stored only in low memory, 
while programs in high memory must re fer  to constants stored only in high 
memory. 
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2 . 3  Addressing 

Although our general instruction format provides a full 15-bit word-length 
for the definition of operand addresses, we ra re ly  have more than 14  bits available 
with which to define an argument. As  we discussed under Instruction Represen- 
tation, the class of indexed instructions which takes a n  argument (bits 2 and 
1 = 11 2 )  uses  bit 15 of the argument to  specify which index register  will be used. 
Thus, only 14 bits a r e  left fo r  defining magnitude. Also, the c lass  of indexable 
but unindexed instructions which takes an address  (bits 2 and 1 = 01) uses  a zero in 
bit 15  of a specified argument to indicate that an  address is not required from the 
Push-down List,  Push-up arguments are, therefore, indicated by a 1 in bit 15,  

found in the op-code word that lies where the address would otherwise have been. 

- 

To summarize then, only addresses  of branching instructions may use a 
full 15-bit word for definition. All other arguments must be contained with 14 
magnitude bits and thus reference but that part of memory (low o r  high) in which 
the current  interpretive program resides. 

Class 0 l2 ,  which consists of arithmetic instructions which take non-indexed 
arguments, may address  any location in local erasable o r  in the half-memory from 
which the instruction was taken. Thus, if the E-Bank is set  to 6 for  this inter- 
pretive program and we wish to  execute the instruction STORE X at location 
170008, X must be located in general erasable 618-13778 or in E-Bank 6 

( 30008- 33778).  

Class l o 2 ,  which contains branching and index-manipulating instructions 
taking non-indexed operands, may address a l l  of interpretive memory with the 
branching instructions. The index-manipulatirzg instructions may refer  to erasable; 
some use their  addresses as operands. 

Class 112# which consists of indexed arithmetic instructions requiring 
arguments, may address any location in local erasable o r  in the half-memory in 
which the instruction is located. The arguments of instructions in th i s  class wi l l  
of course be modified by subtracting the contents of either index register  1 or 2 to 
yield net operand addresses.  For example, if the E-Bank has been set  to 4 prior 
t o  processing the interpretive program, and if the instruction DAD X,  1 is located 

at the high half-memory address  576438, then the net operand address X, minus 
the contents of index register  1, must be located in erasable locations 618- 1 3778, 
in E-Bank 4 (20008-2377 1, or  in high memory (banks 218-378). 

8 
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Since an argument limited to defining an address  within 14 bits lacks space 
to re fer  to locaticns in high memory (octal locations 51024-107777), when a 

. program enters  the Interpretive Mode, the configuration of bit 15 (1 for high and 0 
for  low) is stored in the INTBITl5 register  and wil l  be appended to all 14-bit 
addresses.  Thus if INTBITl5 contains a 0, we a r e  programming in low memory 
and need no more than 1 4  bits to define operands. If INTBITl5 contains a 1, we 
are operating in high memory, Since the Interpreter appends the INTBIT15 con- 
figuration of 1 to all high memory addresses,  we require only the low-order 14 bits 
to  specify any high memory address.  

Because our sequence-changing or branching instructions may refer  to 
both half-memories, we may not modify their arguments through index registers.  
We use, instead, a system of indirect addressing. If the address  of a branching 
instruction re fers  to  erasable, the contents of this erasable location a r e  construed 
to be the address  of the next interpretive instruction, If this address  is also 
located in erasable, however, we take - its  contents to  be the address  of the next 
instruction. We continue in this manner until we find a fixed-memory address, 
which is processed as the next instruction. Thus if a t  erasable location X sits the 
quantity 13078, then the instruction GOT0 X resul ts  in transferring control to  the 
instruction located at  the erasable address  1 3078, a s  long a s  the contents of 13078 
is an address in fixed memory. 
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2 . 4  The Dispatcher (INTERPRETIVE CPU) 

The Dispatcher is the software Central Processing Unit of the Interpreter. 
Originally, a programmer must use the instruction TC INTPRET to  gain access  to 
the Dispatcher. If an interpretive program is interrupted, however, for  the basic 
processing of a higher priority job, for instance, then we may later  return to the 
Dispatcher via the EXECUTIVE program with a TC DANZIG call. 

The Dispatcher looks at the first word in an interpretive program and 
decides whether it contains an operation code o r  an address. If the word contains 
two operation codes, it divides the word into i t s  two 7-bit components and sends the 
first to the op-code selection logic. If the op-code requires an address,  the Dis- 
patcher looks at the next word, sending it to the address  selection logic if it is an 
address.  If it is not an address  and the op-code requires  an argument, the Dis- 
patcher fetches one from the Push-down List and sends that to the address  
selection logic, The Dispatcher finally executes the instruction, If the first word 
had contained a second op-code, it would have been treated in the same manner. 
When an instruction has been executed, the Dispatcher is ready to process the 
next word. 

Not shown nor previously discussed is the concept of Mode. At all t imes 
the Interpreter must know i f  it is dealing with single-, double-, or triple-pre- 
cision operators, or vector o r  matrix operators,  These modes a r e  determined by 
the particular op-code which is being processed. Some op-codes set the mode 
while others require that the mode be set by previous op-codes. Actually, the 
programmer need not usually concern himself with the mode, as during his pro- 
gramming the mode wil l  logically behave itself in accordance with his logical 
needs. There follows a chart which indicates the behavior of the mode according 
to  the sundry interpretive instructions, page 2-29.  

, 
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2 .  5 The Push-Down List 

A s  we mentioned in the Introduction, the Push-down List is a means of 
saving memory by using implied rather  than direct addresses  to reference tempo- 
r a r y  storage. It a lso aids  the programmer in allowing the machine itself to  tempo- 
rar i ly  s tore quantities. The list may contain 38 15-bit quantities with the distinc- 
tinction that the last quantity entered (pushed down) is the first to  be withdrawn 
(pushed up). For example, we would process the equation x = ab t cd - ef, as 
follows ; 

x a a b t c d -  ef 

Operation Push-Down List after Operation 

1) Form the product ab - ab 
and push it down. 

2) Fo rm the product cd 

and add to it ab f rom 
the Push-down List. 

3)  Push-down the sum ab t cd 
and form the product ef. 

4) Subtract the product ef f rom 
the Push-down List. Store 
the difference in x. 

- 
e . .  

... 

ab  + cd 

i . . .  

X = ab + cd - ef 

The Push-down Location Register functions as a pointer for  the Push-down 
List in the same manner as the Z-Register ac ts  as a pointer for AGC instructions. 
Initialized at 0 by the EXECUTIVE program, the contents of PUSHLOC a r e  
increased by 1 as MPAC quantities a r e  stored and pushed down word by word into 
the f ish-down List. Thus, we would process the equation 

a2 t b2 
c2 t d2 

X =  

a s  follows: 

2-26 



* 

1) Form a and push it down. 2 

2) Form b , and add to it a 2 2 

from the Push-down List. 
Push down the sum. 

3)  Form c and push that down. 2 

4) Form d and add to it the last 
quantity entered in Push-down 

List, 

2 

5)  Divide the sum of c .C d into 2 2  

Push- down List. Store quotient 
in x. 

2 a - - 
. . .  

a 2  -f- b2 

. . .  

2 

a2  $. b2 
C 

. . .  

c2 3. d2 

. * .  

e . .  

a 2  + b2 
c2  d2 

X '  

PUSH- 
LOC 

PUSH- 
LOC 

PUSH- 
LOC 

PUSH- 
LOC 

PUSH- 
LOC 

n 

When d is taken from the Push-down List in order to be added to c', a 2 

"push-up" operation is performed which causes the contents of the location at 
which FUSHLOC is pointing to come out of the Push-down List and into the MPAC. 
After each push-up operation, the contents of PUSHLOC a r e  decreased by one. 
The contents of PUSRLOC may be set or changed by a programmer with the 
instruction SETPD X (set  PUSHLOC) which wil l  cause the contents of PUSHLOC to 
be set equal to X (normally 0 C X  <4210) so as to point to a slot in the Push-down 
list. 

Whenever an op-code requires  an argument and one is not specified, the 
last quantity entered into the Push-down Lost is automatically pushed-up into 
MPAC to be used as the operand. We may push down quantities from the MPAC, 
however, only with 3 instructions: 



PUSH 

PDDL 

PDVL 

The contents of MPAC a r e  stored in the 
Push-down location whose address  is in 
PUSHLOC. 

The contents of MPAC are stored in the 
Push-down List. MPAC is then loaded 
in DP with the quantity at X. 

The contents of MPAC a r e  stored in the 
Push-down List. MPAC is then loaded 
with the vector at X. 

Quantities in the Push-down List never physically move up or down; only 
the pointer PUSHLOC moves as a result  of having its contents increased or 
decreased. 

Each of 5 interpretive jobs has a 43-word work area  associated with it. 
Within the work area, or VAC area, is the Push-down List in locations O-3710, 
the two index reg is te rs  X1 and X2, the two step reg is te rs  SI. and S2, and the 
QPRET register.  All 43 reg is te rs  a r e  available as push-down area  if the pro- 
grammer does not need X1- QPRET. 

VAC AREA 

s1 
s2 

QPRET 

The following instructions affect the mode of an operand. Wherever perti- 
nent, the mode is given for: meaningful mode as input to  the op-code (mode-in); 

what mode the op-code operates under (op-mode); and, how the mode is left upon 
completion of the op-code (mode-out). 
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In s t ruc t ion  Mode-In Op-Mode Mode-Out 

V LOA D 
Y.4 D 
SIGN 
MXSC 

CGOTO 
TLOA D 

D L 0 4  D 
v/sc 

SLOAD 

S S P  
P D D L  

MXV 
P D V L  

C C A L L  
VXM 
NORM 
DMPR 
DDV 
BDDV 
VAD 

vsu 
BVSU 

DOT 
vxv 
V P R O J  
DSU 
BDSU 

DP, T P  
- 

DP, TP, V 

- 
- 
- 

DP,  TP, V 

- 
- 
- 
V 
- 
- 
V 

DP, TP 
DP,  T P  
DP, T P  
DP,  TP 

V 
V 
V 
V 
V 

V 

DP,  TP  
DP,  TP  

V 
T P  
D P  

V, D P  

S P  
T P  
D P  

V, D P  

SP 
SP 
D P  

224TRIX 
V 

S P  
MATRM 

SP 
DP 
D P  
D P  
V 
V 
V 

V 
V 
V 

D P  
DP 

I I n s t r u c t i o n  Mode- In Op-IMode Mode-Out 

D-4 D 

DAMP 
S E T P D  
VSLI-8, 
VSR1--8 

SL1-4, 
SR 1-4 

SL1--4R, 
SR 1-4R 

SIN, cos, 
ASIK, ACOS 
SQRT, DSQ, 
DCOMP,  
ABS 

ROUND 
VDEF 

VSQ 
UNIT 
VCOMP 
I B V A L  

DP, TP 

DP,  TP  

- 
- 

- 

D P ,  TP 

D P ,  TP 

DP,  TP 
DP, T P  

V 
v 
v 
V 

D P  
D P  
S P  

- 
- 
- 

V 

DP. T P  

- 
- 

D P  - 
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2 .  6 The Instructions 

As we stated under Instruction Representation, we divide the 127 interpretive 
instructions into 8 categories according to what the instructions generally do. A s  
each group is discussed, it w i l l  be helpful to re fer  to the instruction chart between 
pages 2 -  11 and 2 -  18 for a concise summary of the characteristics of each instruction set. 

2 . 6 . 1  Memory Load and/or  Store Instructions 

This group of instructions merely t ransfers  data to and from storage loca- 
tions. 

STORE X t ransfers  the double-precision, triple-precision, o r  vector con- 
tents of the Multi-Purpose Accumulator (MPAC) to the E-memory location specified 
by X, where X may be an indexed or direct address.  A double-precision MPAC 
quantity would be stored in X and X + 1; a triple-precision quantity in X, X + 1 ,  and 

X 3. 2; and a vector quantity in X through X + 5. 

S, D, T, or V-LOAD'instructions a r e  al l  concerned with loading the MPAC 
with some quantity stored in location X. We have the option of loading MPAC with 
a single-precision quantity (SLOAD X), a DP quantity (DLOAD X), a T P  quantity 
(TLOAD X),  or a vector quantity (VLOAD X). If we load MPAC with an SP quantity, 
we clear  the two MPAC regis te rs  following the regis ter  containing the SP number to 
allow for  la ter  arithmetic computations. Similarly, we load a D P  quantity into MPAC 
such that the regis ter  following the two containing the DP number is cleared. Loading 
MPAC with either an SP o r  DP quantity se ts  the store mode to DP. TLOAD and 
VLOAD simply load MPAC with a T P  o r  vector quantity and set the s tore mode to 
T P  or  vector, respectively. The location X from which a quantity is loaded may be 
a direct,  indexed, or push-up address  for a l l  load instructions except SLOAD, which 
requires  that X be either direct o r  indexed. 

It is often convenient t o  combine the abilities to s tore and load into one opera- 
tion. We therefore have an instruction which s tores  the DP, TP,  or vector quantity 
located in MPAC into memory locations starting at X and reloads MPAC with the 
quantity a t  location Y. After storing MPAC, we may load it with either a DP quan- 
tity (STODL X) in T P  form so that the first and second reg is te rs  in MPAC contain 

( - Y) 
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I 
I -  

C 

the DP quantity and the third is cleared of its previous contents, or we  may reload 
it with a vector quantity (STOVL X). Reloading MPAC with a D P  quantity se t s  the 

s tore  mode to DP while reloading it with a vector s e t s  the s tore  mode to vector. 
The memory address  X may be either indexed o r  direct, and the address  Y may be 
indexed, direct, o r  push-up. 

( - Y )  

We also combine storing operations with the capacity to call a subroutine: 
STCALL X. Without changing the store mode, the DP, TP ,  o r  vector quantity in 

MPAC is stored into memory starting at location X,  and the subroutine at Y is called 
while the return address  of the location af ter  the second address  is left in the QPRET 
register.  Both the storage address  X and the address  Y f rom which we call a sub- 
routine must be direct addresses.  

- Y 

A specialized use of the s tore  operation is the function of the instruction 

" 
STQ X which s tores  the contents of the QPRET regis ter  into one 15-bit word a t  the 
erasable location X. We would want to  save QPRET in this manner if we wished to 
call  a routine within a subroutine. X would have to be an erasable location since we 
would la ter  reference it with a GOTO X t o  return from a secondary subroutine, 
via indirect addressing. 

2.  6 .  2 Control Instructions 

These instructions contain the branching operations which bring about changes 
in the sequence of instructions. All of the following instructions with the exception 
of EXIT and RVQ take a direct address.  If any direct address  except one taken by 
RTB, which branches to basic language, re fe rs  to erasable memory, it is interpreted 
- - 
- 

\\ as an indirect address.  See Addressing: Indirect Addressing, page 2- 2 2 .  

As we mentioned in the Introduction, the return address  regis ter  QPRET is 

the interpretive counterpart of the Q-Register in the AGC. It contains the address  
a t  which we shall continue processing upon return from a subroutine, Further  de- 
tails  of its use will be discussed with the instructions below. 

The branching instruction GOTO X initiates a sequence change which w i l l  

cause instruction processing t o  be resumed at the address  X. The contents of QPRET 
a r e  unaffected, GOTO is a right-hand operation code, meaning that if it is in the 
left-hand position of an op-code pair, the right-hand op-code must be blank. A 
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variation of this  instruction is the Computed GOTO, o r  (CGOTO X, ) which is an in- 

dexed GOTO instruction. The contents of the erasable location X a r e  added to the 
' fixed address  Y .  Instruction execution wil l  resume at whatever location is referenced 

( - Y )  

by the sum Y +S(X). Like GOTO, CGOTO is a right-hand op-code. 

The CALL X instruction calls the subroutine beginning at  location X and 
leaves a return address  in QPRET. The Computed Call (CCALL X)  is the indexed 

form of CALL, causing a branch in instruction execution to  the location referenced 
by the sum Y + S(X). CCALL differs f rom CGOTO in that CCALL leaves a return 
address  in QPRET. 

( - Y] 

Two interpretive instructions provide for  return from a subroutine initiated 
by a CALL (or  CCALL) instruction. If the subroutine itself contains no CALL or 
CCALL instructions, a Return Via QPRET (RVQ) wil l  effect a resumption of instruc- 
tion execution at the address  left in QPRET. If, however, a subroutine is to be 
called with a CALL or CCALL instruction in the midst of processing another sub- 
routine, QPRET must be stored temporarily with an STQ,X as discussed above. 
Upon completion of subroutine processing, a GOTO X wil l  provide a return to the 
current program. 

9 

If, for some reason, a transition from interpretive to basic language is de- 
sired, a Return to Basic (RTB X) instruction wil l  cause basic instruction execution 
to begin at the fixed memory location X. The exit from the subroutine via a TC Q 
wil l  re turn control to  the Interpreter. :: 

If, however, a more prolonged departure f rom the Interpreter is necessary 
than that implied with an - RTB, an Exit f rom Interpreter instruction (EXIT) is avail- 
able. If MJT is in the left-hand position of a pair of op-codes, basic instruction 
execution begins at  the word af ter  the EXIT instruction. If EXIT is in the right- 
hand position of a pair  of op-codes, basic instruction execution begins at  the word 
following the last address  used by the left-hand op-code. EXIT is a right-hand 
operation code. 

2.  6 .  3 Decision Instructions 

This group consists of the branching instructions which cause sequence 
changes upon testing the resul ts  of arithmetic operations. 

9~ TC DANZIG i s  always a safe return from basic, if Q is not to be trusted. 
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Within th i s  category is a subgroup of instructions which effects a GOTO X if 

the T P  quantity in MPAC is greater  than, equal to, or  l e s s  than 0. The Branch Plus 
instruction (BPL X)  causes a GOTO X if the T P  number in MPAC is greater  than or  
equal to 0. Branch Zero (BEE X) branches to X if the MPAC T P  quantity is equal 
to 0, and Branch Minus (BMN X) branches to X if the T P  quantity is less  than 0. 
Otherwise, in all these cases,  no operation occurs. 

" 

" 

By testing the single-precision quantity in MPAC for  a configuration equal 
to 0, we may cause a GOTO X with a Branch High Order Zero instruction (BHIZ,). 
If the SP quantity in MPAC is unequal to 0, no operation occurs. 

In the Introduction, we briefly mentioned the existence of an OVFIND register  
which records overflow caused by a number of instructions. Two interpretive 
instructions interrogate the state of the regis ter  for use by the current program: 

- BOV X Branch an Overflow 
BOVB X Branch an Overflow to Basic 

No operation occurs if the overflow indicator is off; i. e . ,  the contents of OVFIND 
a r e  equal to + 0. If the contents of OVFIND a r e  equal to 1 ,  however, OVFIND is 
reset  to + 0 and m V  becomes the instruction GOTO X while BOVB becomes the 
instruction RTB X, where X is a fixed-memory address  (for BOVB only). The 
Executive Program initializes OVFIND to + 0 at the beginning of every new inter- 
pretive job. 

2 .  6 . 4  Switch Instructions 

Since many on-off indicators a r e  required by Apollo lunar missions, four 
erasable locations a r e  set aside to contain 120  switches numbered 0-119D. Four- 
teen instructions test  and manipulate the switches. Every instruction but 3 effects 
two levels of operation: f i rs t ,  it may set the switch to 1 ,  clear  it to 0, invert it 
( 0  becomes 1;  1 becomes 0), o r  cause no-operation; secondly, it may branch if the 
switch was initially on, branch if the switch was initially off, branch uncondition- 
ally, or  cause no operation. 

The fourteen instructions easily divide themselves into pairs. 

" SET X se ts  switch X ( to 1 )  while SETGO Z sets  switch X and branches to Y. 
Y - 

If Y references erasable memory it is construed as an indirect address.  
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BONSET X and BOFSET X set switch X and branch to Y if X was initially on 
Y - Y - 

or off, respectively. 

CLEAR Xand CLRGO X set switch X and CLRGO branches unconditionally 
Y 

to  Y. 
- 

BONCLR & and BOFCLR X clear  switch X and branch to Y if X was initially 
Y - Y - 

on or  off respectively. 

INVERT and INVGO invert switch X and INVGO branches unconditionally to Y .  

BONINV X and BOFINVX invert switch X and branch to Y if X was initially 
Y - 

Y - Y - 
on or  off respectively. 

" BON X and BOF X branch to Y if X is on or  off respectively. 
- Y - Y 

Two address  words a r e  required by a l l  of the above instructions except SET, 
CLEAR, and INVERT. 

2. 6. 5 Index Register Instructions 

Two 15-bit index regis ters  (X1 and X2) may be used for simple arithmetic 
computations with single-precision numbers a s  well as for  address modification. 
The number of the index register  (1 or  2) involved with an index register  operation 
follows any of the 10 different instructions and is separated from the instruction by 
a comma, AXT, 1 for  example re fers  to X1 while L T ,  2 indicates that X2 is in- 
volved. Six different operations load and store the two index registers.  
" 

AXT (1, 2) X loads the single-precision constant X into the specified index --- 
register  X1 o r  X2. Similarly the instruction AXC (1, 2)X loads the complement 
of the SP quantity X into the specified index register.  Examples of a single-preci- 
sion constant would be an interpretive address  or  an octal o r  decimal constant. 
Under no condition a r e  the contents of X loaded into X1 o r  X2 by an &T or m. 

LXA (1, 2 ) X  loads the specified index regis ter  with the contents of the e ras-  
able regis ter  X, while LXC (1, 2 )  X,  which loads the specified index register  with 
the complement of the contents of erasable location X can complement the index 
regis ter  with=, 1, or  u, 2- 152, 
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=A ( L 2 )  simply s tores  the contents of the specified index register  in 
erasable regis ter  X. XCHX (1, 2)X exchanges the contents of the specified index 
regis ter  with the contents of the erasable location X. 

C 

Three different instructions modify the contents of index registers.  

INCR (1, 2)X adds any single-precision constant X to the contents of the 
specified index register ,  
- XAD ( 1 , ) X a d d s  the contents of the erasable location X to the contents of 

the specified index register ,  and 
- XSU (1,)s subtracts the contents of erasable location X from the contents 

of the specified index register ,  

Besides the two index registers  which accompany every interpretive job a r e  
two 15-bit step reg is te rs  (S1 and S2) which may be used a s  temporary storage but 
which a r e  principally designed to count. Along with the index registers,  they a r e  
used to count with the TM instruction: TIX ( L 2 ) s  (Count and branch on index). 
If a difference grea ter  than zero may be obtained by reducing the contents of the 
specified index register (X1 and X2) by the contents of i t s  corresponding step regis- 
ter ,  then the reduced value replaces the index and the instruction GOT0 X is executed. 
If the difference is equal to  or less  than zero, no operation occurs. Thus, loop-cont 
t ro l  may be initiated by pre-setting a step- register to some decrement and using a 
T S  at a loop-decision point in a program. 

2 .  6 . 6  MPAC Manipulation Instructions 

These instructions manipulate data in the Multi-Purpose Accumulator with- 
out affecting memory. 

We combine two of the Loading instructions with a push-down operation. 

" PDDL X pushes down the DP, TP, or  vector quantity located in MPAC into the 
push-down list  and reloads MPAC with the D P  quantity located at X. The register 
following the two containing the D P  number is cleared, and the store mode is set 
DP. The memory address X may be direct,  indexed, or  push-up. W e  may vary 
the above instruction by reloading MPAC with a vector quantity (PDVL X), thereby 
setting the s tore mode to vector. 
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The instruction SIGN X is a D P  sign test,  where X must reference erasable 
memory. If the C P  quantity at  location X and X + 1 is equal to o r  greater  than zero, 

, no operation occurs,  If the D P  quantity is less  than zero, however, and if the s tore 
mode is DP o r  TP,  the T P  quantity in MPAC is replaced by i ts  complement. If the 
DP quantity is less  than zero and the store mode is vector, the vector contents of 
MPAC a r e  replaced by their  complement. 

The scalar  function D P  Square Root (SQRT) causes the T P  quantity in MPAC 
to be replaced by the square root of the DP quantity in MPAC; i. e . ,  the initial con- 
tents of MPAC a re  normalized, the DP square root of the normalized number com- 
puted, and that result  unnormalized in accordance with the original normalizing 
shift, so that MPAC + 2 has marginal significance. Receiving an argument less  

than -IOw4 causes an abort, The DP Square instruct im (DSQ) causes the T P  quantity 
in MPAC to be replaced by the DP quantity in MPAC, squared. The Square of 
Vector Length instruction (VSQ) causes the square of the absolute value of the vector 
quantity in MPAC to become a T P  MPAC quantity, thus changing the store mode to 
DP. If the absolute value of the vector quantity in MPAC is greater  than or  equal 
to 1, we set OVFIND and leave an overflow-corrected result  in MPAC. 

" " 

ROUND TO D P  (ROUND) causes the T P  quantity in MPAC to be rounded to 
DP so that the f i rs t  two regis ters  in MPAC contain the DP number and the third 
regis ter  is cleared. If overflow occurs, OVFIND is set and the overflow-corrected 
result  3. 0 is left in MPAC. 

A Triple-Precision Complement instruction (DCOMP) causes the T P  quantity 
in MPAC to replaced by i ts  complement. Similarly, the Vector Complement instruc- 
tion (VCOMP) replaces the vector quantity in MPAC with i ts  complement. 

The Triple-Precision Absolute Value instruction ( A B S )  causes the triple 
precision quantity in MPAC to be replaced by i t s  absolute value. The Vector Length 
instruction (ABVAL) replaces the absolute value of the vector quantity in MPAC with 
a T P  quantity, thereby changing the store mode to DP. Furthermore, the vector 
quantity in MPAC, squared, replaces the D P  contents of push-down location 34D. 
If the absolute value of the vector in MPAC is less  than 2'21, then the result  is zero. 
If the absolute value of the MPAC vector quantity is greater  than or equal to 1 , 
OVFIND is set to  indicate an unspecified result. The Unit Vector Function instruction 
(UNIT) causes the vector in MPAC to be replaced by the quotient of the MPAC vector 
divided by twice the absolute value of the MPAC vector. Also, the absolute value 

. 
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of the MPAC vector quantity, squared, replaces the contents of 34D in D P  form, 
and the absolute value of the MPAC vector replaces 36D in D P  form, OVFIND is 
set if the absolute value of the vector quantity is less  than 2 - 2 1  or if it is grea te r  
than o r  equal to 1, in which case the result  is incorrect. 

Vector Define (VDEF) pushes up for Vy and again for Vz so that the DP 
quantity in MPAC, the DP quantity in Vy and the D P  quantity in Vz becomes the 
vector contents of MPAC, setting the s tore  mode to vector. 

The scalar  function DP Sine (SINrSINE1 ) replaces the T P  quantity in MPAC 
with the product of 0. 5 and the sine of (2n multiplied'by the DP quantity in MPAC). 
The scalar  function DP Cosine (COS[COSINE]) replaces the T P  quantity in MPAC 
with 0. 5 multiplied by the cosine of (the product of 27r and the DP contents of MPAC). 

The DP Arc-sine instruction (ARCSINrASINl) replaces the T P  quantity in 
MPAC with 2n multiplied by the Arc-sine of twice the D P  contents of MPAC. This 
is the inverse of the SIN function. Receipt of an  argument greater  than 0. 5001 in 
magnitude causes an abort. The DP Arc-cosine function (ARCCOSrACOS7) replaces 
the TP contents of MPAC with multiplied by the Arc-Cosine of twice the D P  con- 
tents of MPAC. This is the inverse of Cos. As with ASIN, receipt of an argument 
whose magnitude exceeds 0. 5001 induces an abort. 

1 

The T P  contents of MPAC may be shifted right or  left 1 through 4 t imes by a 
SCALAR SHIFT instruction. SCALAR SHIFT RIGHT (a through m) replaces 
the T P  quantity in MPAC with the product of the MPAC T P  quantity and 2-J where j 
may be 1 through 4. Shifting a quantity right one place is obviously the equivalent 
of dividing the quantity by 2.  SCALAR SHIFT LEFT (m through 4) replaces the T P  
contents of MPAC with the product of the T P  quantity in MPAC and Z 9  where j equals 
1 ,  2, 3, or 4. Of course, shifting a quantity left one place is the equivalent of mul- 
tiplying the quantity by 2 .  If significant bits a r e  lost, we set OVFIND but leave the 
overflow-corrected result  a s  the T P  contents of MPAC. We have the option of 
rounding with the above instructions, thus creating the instructions Scalar Shift Right 
and Round (SRIR, "" SR2R, SRJR, SR4R) in which the T P  quantity in MPAC multiplied 
by 2-j ,  where j equals 1-4, is rounded to a DP number, X, and is followed by a word 
cf + 0, which replaces the TP contents of MPAC. Likewise, w e  have a Scalar Shift 
Left and Round instruction (SL1R - SL48) which rounds the T P  MPAC quantity mul- 
tiplied by 2'j to  a DP number, X, and replaces the T P  contents of MPAC with X 
followed by a + 0 word. 



The General Vector Shift instruction (VSR X) replaces each component of the 

vector quantity in MPAC by its original value multiplied by a 2-x and rounded to D P  
form, If X is an indexed address  and the resulting address  is negative, execute a 
VAL - Xinstead.  X must be greater  than zero and less than 29  i f  it is a direct ad- 
d re s s  and i f  indexed, it must be greater  than -128 and l e s s  than 128. Similarly, 
the General Vector Shift Left instruction (VSL X) replaces each component of the 
vector in MPAC by its original component multiplied by 2 . Upon overflow of any 
component, OVFIND is set  and the overflow-corrected result  is left in MPAC. If 
the address  is indexed and the resulting address is negative, execute a V J  - X in- 
stead. X must be greater  than 0 and l e s s  than 28 i f  i t  is a direct address.  

X 

General Scalar Shift Right and Left instructions exist which take direct o r  
indexed addresses.  General Scalar Shift Right (SR X )  replaces the T P  quantity in 
MPAC with the MPAC T P  quantity multiplied by 2-X-where X is greater  than -42 and 
less than 42. X can be negative only i f  the address  was indexed. X must be greater  
than 0 and l e s s  than 42 i f  it is a direct address,  and i f  indexed, Xs must be greater  
than -128 and l e s s  than 128. Xs is the stored address  before index modification; in 
al l  cases ,  X is the net address.  When overflow occurs,  OVFIND is s e t  and the over- 
flow-corrected result  is left in MPAC. General Scalar Shift Left (SL X )  has the 
same format as SR X except that the T P  quantity in MPAC multiplied by 2x r e -  

places the MPAC T P  quantity. Again we have the option to  include the capacity to  
round in the above instructions. General Scalar Shift Right and Round (SRR X) is 

the same as SR except that the T P  quantity in MPAC multiplied by 2-' is rounded 

- 

" 

to a D P  number which replaces the T P  contents of MPAC, with a word equal to 
+ 0 following the D P  quantity. X must be greater  than 0 and less than 29 i f  i t  is a 
direct address.  General Scalar Shift Left and Round (SLR X)  is the same as S& 

except that the T P  quantity in MPAC multiplied by Z X  is rounded to  a D P  number 
which replaces the T P  contents of MPAC with a word equal to + 0 occupying the 
third register in MPAC. X must be greater  than 0 and less  than 14  i f  i t  is a direct 
address.  

Vector Shift Right (1- 8 )  may also include the capacity to  round quantities. 
Vector Shift Right and Round (VSRl"VSR8) replaces each component of the MPAC 
vector by its original value multiplied by 2 - j  (where j = 1-8) and rounded to  a D P  
quantity. Vector Shift Left (VSL1-VSL8) replaces each component of the vector in 
MPAC by its original contents multiplied by Z q  where j 1- 8. If overflow occurs 
in any component, OVFIND is set  and the overflow-corrected result  is left in 
MPAC. 
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In situations where we know w e  have enough bits t o  define the resul t  of an 
arithmetic computation, we still may not know whether we will have any-and how 
many-leading zeroes.  Instead of shifting the result  left once and testing OVFIND 
ourselves, we use the instruction SCALAR NORMALIZE (NORM) to  give u s  maxi- 
mum precision by shifting the MPAC T P  quantity left N number of t imes. Provided 
the T P  quantity is not zero, the triple-precision contents of MPAC a r e  shifted 2 N 

until greater  than o r  equal to 0. 5. The complement of the number of shifts-left ( -N)  
is stored in the specified operand location X. The T P  MPAC quantity multiplied 
by 2N replaces the TP contents of MPAC. If the T P  quantity in MPAC is 0, how- 
ever,  -0 goes into the specified operand location X and the tr iple precision contents 
of MPAC a r e  left unchanged, 
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2 .7  Arithmetic Instructions 

This group of instructions uses  operations involving both memory locations 
and MPAC. As before, the programmer must keep t rack of the imaginary point in 
his computations since he is manipulating his quantities in the fixed point accumu- 
lator format with the binary point falling between bits 1 5  and 14. 

An ADD instruction enables us  to  add the quantity at memory location X to 
the contents of MPAC, replacing the previous contents of MPAC with the new sum. 
We have the option to add in DP, TP, or vector form. D P  Add (DAD X) replaces 
the DP contents on MPAC with the sum of the MPAC quantity and the DP quantity at  
X, which may be a direct, indexed, or push-up address. If overflow results,  
OVFIND is set, and the overflow-corrected result  is left in MPAC. T P  Add 
(TAD X) replaces the triple-precision contents of MPAC with the sum of the MPAC 
quantity and the T P  quantity at location X. Similarly, Vector A (VAD X) replaces 
the vector in MPAC with the sum of the MPAC vector and the vector starting at 
location X. As with DAD, both TAD and set  OVFIND upon overflow and leave 
the overflow-corrected result  in MPAC. 

The subgroup of Subtract instructions reduces the contents of MPAC by the 
quantity at location X. In all arithmetic forms, OVFIND is set  on overflow and the 
overflow-corrected result  is left in MPAC. DP Subtract (DSU X) reduces the DP 
contents of MPAC by the D P  quantity in memory location X, where X may be direct, 
indexed, or pushed-up. BDSU X, the DP Subtract From or  DP Backwards Subtract 
instruction is a very convenient instruction which reduces the D P  quantity stored at 
memory location X by the DP contents of MPAC and s tores  the difference in MPAC. 
Thus, if  we wished to replace the contents of MPAC, which a r e  2, by the contents 
of X2 = ( l o l o )  minus the quantity in MPAC, we may simply subtract 2 from 10  and 
store 8 in MPAC. Otherwise, we would have to push-down MPAC and bring the 
contents of X2 into MPAC before we could calculate a difference of 8. 

Vector Subtract (VSU X) reduces the vector in MPAC by the vector at  X, 
leaving the vector difference in MPAC. BVSU X, or Backwards Vector Subtract, 
se rves  the same convenience as BDSU in allowing us  to subtract the vector con- 
tents of MPAC f rom the vector at X, storing the difference in MPAC. A s  usual, 
overflow with either or  BVSU causes OVFIND to be set and the overflow- 
corrected result to  be stored in MPAC. 

The group of Multiply instructions replaces the contents of MPAC with the 
quantity at X multiplied by the quantity in MPAC. DP Multiply (DMP X) stores  the 
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product of the DP contents of MPAC and the DP quantity at X in triple-precision 
form, We have a rounding option with this instruction, giving u s  DMPR X, D P  
Multiply and Round which rounds to  DP the product of the DP contents of MPAC 
and the DP quantity at X. The rounded DP product is followed by a word equal t o  
+ 0 replaces the T P  contents of MPAC. 

- 

The Vector Dot Product instruction (DOT X) s tores  in T P  form the product 
of the vector in MPAC and the vector at X, thus setting the s tore mode to DP. 
Upon the overflow of any component, OVFIND is set  and the overflow-corrected 
result  is stored in MPAC. 

Under VXSC X, or Vector Times Eicalar, if the initial s tore mode is Vector, 
each component of the vector in MPAC is multiplied by the DP quantity at X, with 
the rounded products replacing their respective components of the MPAC vector. 
If the initial s tore mode is DP or TP, it is changed to Vector, and each component 
of the vector at X is multiplied by the DP quantity in MPAC to form the vector in 
MPAC, as above. 

DDV X (DP Divide By) and BDDV X (Backwards DP Divide) a r e  our two 
divide instructions. If the absolute value of the DP contents of MPAC is l e s s  than 
the DP quantity at X; i. e., if the divisor is larger  than'the dividend, then DDV X 
divides the DP contents of MPAC by the D P  quantity at  X to  yield a D P  quotient 
which will  be stored along with a word equal t o  i- 0 in MPAC. If overflow results, 
OVFIND is set  and * 0.99999999 is left in the DP contents of MPAC. The Back- 
wards Divide is the same as DDV X, except that the DP quantity at X will be the 
dividend, and the D P  contents of MPAC wil l  be the divisor, as  long as the D P  
quantity in MPAC is la rger  than the DP quantity at X. 

The Vector Divided by Scalar instruction (V/SC X) divides each component 
of the vector in MPAC by the DP quantity at X if  the s tore mode is se t  to  Vector, 
Each of the DP quotients replaces its respective vector components of MPAC. If 
the initial s tore mode is DP or TP, it is changed to  Vector, and each component of 
the vector at X is divided by the DP quantity in MPAC to form an MPAC vector. 
If overflow occurs in any component, the operation is terminated with OVFIND set 
and unspecified resul ts  left in MPAC. 

. 

The Vector Cross  Product (VXV X) replaces the vector in MPAC with the 
product of the MPAC vector and the vector at X. If overflow results, OVFIND is 
set, leaving an overflow-corrected result  in MPAC. 
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vPROJ X (Vector Pro'ection) causes the vector contents of MPAC to be r e-  

placed by the product of V(MPAC) V(X)l  and V(X). OVFIND is set  if overflow 
results,  and the result  obtained with overflow-corrected 1 V(MPAC) V(X)J is left 
in MPAC. 

" I  

The Matrix Pre-Multiplication by Vector instruction (VXM X) replaces the 
vector in MPAC with the product of h (MPAC)  M(X)]. OVFIND is set on overflow, 
leaving an overflow-corrected result  in MPAC. 

The last of the arithmetic codes is MXV X, the Matrix Post-Multiplication 
by Vector instruction. This causes the p r o a ( X )  V(MPAC)I to replace the 
vector contents of MPAC. A s  usual, OVFIND is set  on overflow, leaving an  over- 
flow-corrected result  in MPAC. 
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2 .  8 Miscellancous Instructions 

Under this  group a r e  classed the four instructions PUSH, SETPD, Ssp, and 
STADR. 

PUSH causes the DP, TP, or Vector quantity in MPAC to be pushed down 
into the Push-down List. 

The instruction SETPD ( Set PUSHLOC ) is discussed on page 2- 2 7 .  SSP X 
Y 

(Set Single-Precision) replaces the single-precision contents of X with quantity 
Y. Y may be any arithmetic, logical o r  address constant. 

STADR, a s  we discussed in the Introduction, distinguishes a positive store 
code from a positive operand address by causing it to be assembled in comple- 
mented form. At execution time, it is recognized as a "STADR'D" code, recom- 
plemented and executed as a STORE X. 
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