
(r.

.

.

! b
i
I
I

GUIDANCE, NAVlGATlO
AND CONTROL

I Approve

I Approv

Approv

E. M. COPPS, J R . , DIRECTOR, GUIDANCE
PROGRAMING, APOLLO GUIDANCE A N D
NAVIGATION PROGRAM

n

: 2 w " L 7 I'

VIGATION PROGRA
J

ItL Date:@* 'd 7
RAGANVDEPUTY DIRECTOR

INSTRUMENTATI~N LABORATORY

E-2052

Vol I of I1

AGC4 BAS I C TRAIN ING MANUAL
by

B e r n a r d I. Savage*
Alice Drake'*

I .

I J a n u a r y 1967

M

I IN'STRUIMENTATION
CAMBRIDGE 39, MASSACHUSETTS

L.AIBORATORV

COPY #

ACKNOWLEDGMENT

Many people have helped us while we were writing this man.ua1. We a r e
particularly grateful to Hugh Blair-Smith fo r reviewing the manual and for his
suggestions, and to Charles Muntz f o r his expertise and consultation on many of
the systems programs.

This report w a s prepared under MIT Instrumentation Laboratory Purchase
Order No. ILK 222242 and under DSR Project 55-23850 sponsored by the Manned
Spacecraft Center of the National Aeronautics and Space Administration through
Contract NASS-4065.

The publication of this report does not constitute approval by the National
Aeronautics and Space Administration of the findings o r the conclusions contained
therein. It is published only for the exchange and stimulation of ideas.

. I

ii

#-

.I

E-2052
AGC4 BASIC TRAINING MANUAL

ABSTRACT

This manual contains a concise description of that which a computer pro-
grammer should know about the Apollo Guidance and Navigation Programming
System to be useful. That is we answer the following questions: What a r e the Per-
tinent machine characteristics ? What programming languages and conventions
exist for my use? What systems subroutines may I rely upon? How do I commu-
nicate with the system subroutines which I need? This manual does not concern
itself with the Mission Programming System or that which an engineer or mathe-
matician must know t o adequately program a phase of the mission after he has an
adequate knowledge of the system.

This manual attempts t o be thorough while brief. It does not t ry to exhaust
all there is t o know about a subject nor does it t r y to make the reader an expert on
any subject. It is designed so that someone fairly new to the subject may acquire
a practical understanding of it within the shortest time. Whenever a detailed and
complete understanding is required the reader should consult the program listing
and/or other technical documents.

This manual is divided into four sections. Section I discusses the AGC4
and how to program it in Assembly Language, Section TI describes the Interpreter
and how to program in Interpretive Language. Section 111 describes the System
Software subroutines and how to interact with them. Section I V contains an outline
and suggestions fo r teaching sections 1-111. Each section has a table of contents.

by A. L. Drake
B. I. Savage
Computer Consultants, Incorporated
January 196 7

iii

TABLE OF CONTENTS

Section Page

1 . 'BASIC TRAINING DOCUMENT: BASICS OF
AGC PROGRAMMING . 1-1

1 . 1 Introduction and Memory Outline 1 - 1
1 . 2 Addressing . 1 - 7

1 .4 Instructions . 1-21
1 . 3 Instruction Representation ' 1 . 15

1 . 5 Interrupt Processing 1- 61

2 . 1 Introduction
2 . 2 Memory
2 . 3 Addressing

2 . 5 The Push-Down List
2 . 6 The Instructions
2 . 7 Arithmetic Instructions
2 . 8 Miscellaneous Instructions

2 . 4 The Dispatcher (INTERPRETIVE CPU).

3 . IN SEPARATELY BOUND VOL 11

.

.

.

.

.

.

.

.

2 - 1
- 2 - 6

2 - 2 1
2 - 2 4
2-26
2-30

2-40
2-43

4 . IN SEPARATELY BOUN?) VOL I1

V

I. BASIC TRAINING DOCUMENT:
BASICS OF AGC PROGRAMMING

1. 1 Introduction and Memory Outline
" ~ -

A word in AGC memory consists of 1 5 binary bits, schematically numbered
from left t o right as bit 15, 14, . , . , 1. A sixteenth bit called the parity bit is
inaccessible t o the programmer but se rves as a check against hardware malfunction.
When a word is stored in memory, the count of the number of bits in the word which
a r e set to 1 must be odd. If the count equals an even number, the parity bit wi l l be
set to 1 so that the count is odd; otherwise the parity bit is set to 0. When the same
word is read from memory, the hardware ascertains that an odd number of bits
came from memory. If not, the implication is that a bit was lost. This is called a

parity e r r o r and resul ts in special processing.

1 5 1 4 13 . . . 1 P

Each word in AGC memory may be interpreted as data or as an instruction.

1. 1. 1 ,Data " Representation
One word by itself constitutes a Single Precision (SP) quantity. Bit 15 is the

sign and bits 14 - 1 have magnitude of 2 1 4 - 1. If bit 1 5 = 1, the magnitude is nega-
tive and is represented as the ones complement of the positive magnitude (discussed
below). Bit 14 is the high order bit (highest value) and bit one is the low order bit
(lowest value).

15, 14, . . . , 1

For arithmetic purposes the value in bits 14- 1 is thought of as a fraction.
That is, the binary point is between the sign and bit 14. Fo r instance, a one in bit

1 4 is equivalent to 1 / 2 . From a programmer 's point of view, the programmer must
keep t rack of the "imaginary" point's position within the word in. accordance with
the appropriate scaling.

1 - 1

1 / 2 1 / 4 1 / 8 1 /16 l/z 1 / 6 4
SI I I I I 1 1

Point" Fractional Magnitude

Fourteen magnitude bits may not always allow u s sufficient precision. Thus
we may represent data in a Double Precision (DP) quantity within two adjacent words
of memory. Since each single precision word has 1 4 magnitude bits, the combined
quantity has 28 bits with a precision of 228-1. Bit 1 5 of the first word contains the
sign. Bit 15 of the second word wil l normally be the same as bit 1 5 of the first
word but may differ in certain cases. Bits 1 4 - 1 of word 1 represent the high-order
bits and bits 14- 1 of the second word represent the low-order bits. Al l 28 bits
exist in complemented form if the sign (s) is negative.

Word 1 Word 2

+ High X - Low

15 1 4 1 15 1 4 1
28 1 5 14

For even greater accuracy, a quantity may be contained within 3 adjacent
words and is called a Triple Precision (TP) quantity. (The third word serves the
same function in T P a s word 2 does in DP.) In essence, we add 1 4 low order bits
so that we may represent a value of 242 - 1 (thought of as a fraction, we would say
1 - .) Again, negative value would be represented in one's complement form
within all 3 words,

-42

Word 1 Word 2 Word 3
Low + High X Middle X -

-
15 1 4 1 15 1 4 1 15 1 4 1

42 29 28 15 14 1

Three double precision quantities a r e used to represent a 3-dimensional vec-
tor, Each DP "word" contains the value of one component of the vector. Again, a l l
6 words must be adjacent and, normally, the first two words represent the X com-
ponent, the next two words represent the Y component, and the last two words r e -
present the Z component, Of course, the sign of each D P component need not be
the same.

1-2

+ Word 1 Word 2 + Word 3 Word 4 + Word 5 Word 6

15 high low
7 y- c_

15 h l g h Z low

Lastly, an AGC word may be thought of as a full 15-bit quantity, where all

15 bits are magnitude without sign, representing 215 - 1. This representation could
be used to make a word into a counter. Fo r logical purposes, each bit or some
combination of bits may be used as an indjcator or may serve boolean purposes.

'".
>\

The access time for taking one word from memory is approximately 1 2
microseconds or one memory cycle t ime (MCT).

1. 1. 2 Instruction Representation ___ ~

The 15 bits of an AGC word may be selected and executed by the AGC as an

instruction. In this case, 3 bits, 1 5 - 13, form an octal value from 0 - 7 and repre-
sent the op-code. The encoding of the op-code is what determines the particular
behavior of each instruction, A s 3 bits have been specified for op-code selection,
we may have Z 3 = 8 basic machine instructions, and indeed we do. Thus, any word
taken by itself forms a legal instruction. This implies that a data word may be exe-
cuted yielding storage and unexpected results, and,a programmer must take pains
t o keep his data (constants, f o r instance) separate from his instructions. Actually,
we shall la ter encounter a way of extending the basic machine instructions (discussed
below) by using certain 2-word instruction sequences or by extending the 3-bit op-
code to include bits 1 2 and 11 for op-code purposes for instructions which apply t o
erasable memory.

The remaining 1 2 bits of an instruction word form the address portion. (De-
pending upon the op-code, the address is used to render accessible the contents of
the specified memory location o r is used as a number to point t o a location in memo-
r y (to transfer control to a location, for example.) Twelve bits may form an address
for the range 0- 7 7 7 7 octal or 212 (4096) decimal locations. The system require-
ments necessitate a much larger memory store. Thus, the address portion is en-
coded so as to be combined with another location called the Bank Register, allowing
u s to form an effective address of 15 bits for the range 0 - 215 - 1. Further encoding
allows combination with an indicator called the Super Rank Bit which enables us to
form a 16-bit effective operand address for the range 0 - 216 - 1. This method of
encoding the address portion of an instruction word is discussed under Addressing,
below.

1 - 3

Op - Code Address
1 5 1 4 1 3 1 2 1

0 - 7 0 - 7777
8 cases 4096 decimal addresses

1. 1. 3 Quarter Codes - Op-code-
1 5 1 4 1 3 12 11 1 0 . . , , , . 1

In cases where only the 1 0 low-order bits a r e necessary to form the address
portion of a word, the 3-bit op-code may be extended by use of bits 12 and 11 to form
a 5-bit op-code nicknamed a quarter code. Quarter codes allow u s to use more than
8 op-codes when addressing erasable memory (as discussed below).

1 . 1 . 4 Layout Memory

The AGC memory may be divided broadly into erasable and fixed memory.
Erasable memory i s in the range 0 - 3777 octal. The contents of a location in eras-
able memory may be altered by writing into it. Fixed memory is in the range
10000 - 117777 octal, but there a r e gaps. That is, not every location corresponding
to one of the addresses in this range exists. Fixed memory is a "read only" memory.
The programmer may not al ter the contents of any location in fixed memory, and in
fact the hardware wil l not permit it. Thus, only 2048 decimal locations exist for
ordinary programming requirements that need modifiable storage. This is very
little memory, and one crucial requirement of programmers is to design and imple-
ment programs which use a minimum amount of erasable storage (the use of tem-
porar ies and switches is one example.)

1 . 1 . 5 Erasable Memory

Although erasable memory is defined as that portion of memory locations
within the range 0 - 3777 octal, an erasable memory location must also meet the r e -
quirement of being defined within the 10 low-order address bits, because bits 12
and 11 must = 0 a s a "signal" to the hardware that E-memory is being addressed,
While no problem a r i se s in addressing locations 0- 1377 octal, the use of an 11th
bit is sometimes necessary in addressing the range 1400 - 3777 octal. For addresses
within this range, then, we u6e a 3-bit Erasable Bank Register in conjunction with
the 8 low order address bits to form an effective address.

1-4

I .

1. 1. 6 Special Registers

The first 60 locations of erasable memory are used excl.usively as special

__ ~

registers. The accumulator (A)- octal pseudo-address 0000 - is a 16-bit arithmetic
element. Bit 1 5 contains the sign, which is duplicated into bit 16. Bits 1 4 . . . 1
contain the magnitude of the quantity. Bit 16 is used to indicate the cor rec ted sign
in the case of overflow (discussed below),

The lower product register (L) - octal pseudo-address 0001- is a 15-bit
register which forms the lower part of the accumulator when Double Precision quan-
tities are used. It contains the 1 4 least significant bits of a product af ter multipli-
cation and the remainder of a quotient after division.

The Z Register- octal pseudo-address 0005- serves a s a 12-bit program
counter. It contains the next address in memory f rom which a n instr.uction will be
fetched. These 1 2 bits a r e inadequate to address a l l of memory and may be com-
bined with bank bits to form up to a 16-bit address. This shall be discussed under
Addressing. The 16-bit Q Register contains, a f ter a Transfer Control (TC) instruc-
tion, what would normally be the contents of the Z Register. For example, when a
"TC" instruction is executed at location L, the contents of the Z Register contain
the address of the instruction to which the program has t ransferred control. The Q
Register contains the address of the instruction following the "TC" instruction, or

L+ 1. If the instruction had been any other than a "TC", this address would have
been contained in the Z Register. When the subroutine initiated by the "TC" instruc-
tion is finished, a "TC to Q" instruction will re turn control to the instruction
following the "TC" instruction in the main program, or L f 1.

The Zero Register- octal pseudo-address 0007- always contains only zeroes.
When referenced, it wi l l yield zeroes. One use of this is a s a constant to clear a
desired location.

A value may be al tered by writing it into one of 4 special registers. When a
quantity is written into the Cycle Right Register- octal pseudo-address 0020- bit 1.
goes into the sign bit, while bits 1 5 . . , 2 shift right 1 bit. When a quantity is writ-
ten into the Shift Right Register- octal pseudo address 0021 - the sign bit is dupli-
cated into bit 14, while b i t s 14 , . . 1 a r e shifted right 1 bit. By faithfully repro-
ducing the sign bit, we preserve the algebraic integrity of the value. The original
contents of bit 1 a r e lost. Shifting right n places is, of course, the equivalent of
dividing by 2". When the Cycle Left Register - octal pseudo-address 0022 - is written

1- 5

into, the sign bit goes into bit 1, while the contents of bits 1 4 . . . 1 shift left 1 bit.
When the Edit Op-Code Register - octal pseudo address 0023- is written into, the
sign bit is lost, while bits 14- 1 a r e shifted right 7 places, displacing the original
contents of bits 7 . . . 1, which a r e consequently lost. This last regis ter is not of
general interest. It is used in implementing iqterpretive instructions.

I
Editing Register Transformations

0020 CYR $15 14 13 1 2 . . , . . 01+01 15 1 4 1 3 02

(rotation right 1)
P

0021 SR 15 1 4 13 1 2 . . , . . 01-15 15 1 4 1 3 02 O l * c

(shift right 1)
::: original contents of bit 1 a r e lost

0022 CYL 15, 1 4 13 1 2 0 1 3 1 4 13 1 2 01 1 5

(rotation left 1)
002 3 EDOP 15 1 4 13 12 01 7 places

(edit [polish] opcode) - """ 1 4 1 3 1 2 11 10 09 08

Figure 1

1 .1 .7 Fixed Memory

Fixed memory is that portion of memory addresses in the range 4000 - 117777
octal. These memory addresses a r e divided into 36 banks of 1024 words each. The
first 2 banks of fixed memory- banks 02 and 03- with addresses 4000 - 7777, a r e
known as "Fixed-Fixed" memory. Notice that Fixed-Fixed memory can be defined
within the 1 2 address bits.

The remaining 34 banks of fixed memory, with addresses in the range
10000- 1177778, need additional bits within which to fully define their addresses.
For these cases, a 5-bit Fixed Bank Register, which is more definitively discussed
below, is made available for combination with the 10 low-order address bits. These
34 banks, which require the use of a bank register, a r e known a s "Fixed-Switchable''
memory. Addresses in the range 100000- 1177778 require 16 bits for definition.
A 16th bit is provided for combination with the FCADR (Fixed Bank Complete Address),
i. e. with the 5 bits from the FB and the 10 low-order address bits. Addresses in
the range 110000 -117777 comprise Super Bank 4 . Addresses in the range 70000-
107777 comprise Super Bank 3. The reason for this wil l be fully discussed under
Addressing.

:* Super Banks 0 and 1 have been renamed 3 and 4, respectively.

*

1- 6

Within the 15-bit word in AGC memory, we have only a 12-bit address field
t o reference the 38,912 decimal locations in memory.

on-code address

Since many memory locations require a 13- to 16-bit address field f o r definition,
the following addressing schemes have been developed:

. I -! j ! , ? ~ '.!" . ? I

I '> ' X , !'I '. '

(It is first important t o distinguish between the terms ''address'', "pseudo- 2
8 .

5 ' :; :, .i :<

address", and "effective operand address". "Address" refers simply to the 12-bit
address portion within a 15-bit word in memory. The "pseudo-address" (PA) is the
absolute address of memory locations 0 - 117777*. The t e r m "pseudo-address", o r
"absolute address", is used when discussing fixed-switchable memory addressing
where the absolute addresses a r e always 1000Os more than their machine represen-
tations. The "effective operand address" (EOA) is the f i n a l address formed by the
hardware at the execution time.)

The hardware recognizes a 00 configuration in bits 1 2 and 11 as a "signal"
that the address re fe rs to erasable memory, which we have said must be defined
within the 10 low-order address bits of a word. If bits 1 2 and 11 a r e equal to 0 0 ,

the hardware tests bits 1 0 and 9. An 112 configuration in bits 1 0 and 9 indicates
that the pseudo-address is in Erasable-Switchable memory (i. e. in the range
1400- 37778) and that we need the use of the 3-bit Erasable Bank Register (EB).
The combination of the 3 bits from the EB and the 8 low-order address bits provides
an 11-bit address field, which is sufficient for the definition of all Erasable-Switch-
able absolute-addresses.

We set the EB equal to the particular bank number in the range 0 - 7 , which
would be defined ordinarily in bits 11, 10, and 9 if we had the use of the 11 low-order
address bits for defining Erasable-Switchable addresses. The configuration in the
8 low-order address hits is the 0 - 3778 (= 25610 bank locations) augment within the
bank specified in EB. For example, since the absolute address 3734*, which looks
like 10 111 011 l o o 2 in machine representation, requires more than 10 address
bits for definition, we set EB equal to the value specified in bits 11, 10, and 9, or

10 l2 = 58, We a lso set bits 1 0 and 9 equal to 1 l2 so that at execution ti.me the hard-
ware wi l l fetch the 3 EI3 bits, drop bits 10 and 9 (which is the equivalent of subtracting
1400 from the 10-bit address), and append the E13 bits to the 8 low-order address
bits. We now have

1- 7

I
EB Address Bits

11 10 9 1 0 9 8 7 6 5 4 3 2 1

(Bits) I 1 I 0 I 1 k - l 11111 d , ' I l l 1 0 1 1 1 1 1 . 1 0 0

The absolute address 27348, then, can be expressed as an augment of 3348 in EB 5.
We combine the above to get:

1 1 1 0 9 8 7 6 5 4 3 2 1

or 17348 from which 1400 is subtracted.

Any configuration in bits 10 and 9 of the address other than 112 indicates to
the hardware that the pseudo-address is within erasable memory below 14008 and
can be defined within the 10 low-order bits of a word. In this case, there is obvious-
ly no need for the use of a bank register. For example, the address 10348 would
look like 1 000 011 1002 to the hardware. Finding no 1 l2 configuration in bits 10
and 9, the hardware would merely form a 10-bit address field. Of course, it is
possible to address a l l of erasable memory via the EEL For instance, the absolute .

address 10348 -001 000 011 loo2 , which we considered above, can be handled thus.

We set the EB to OIOz - 2 8 and bits 10 and 9 equal to 112. At execution time, the
hardware, sensing the 112 configuration in bits 10 and 9, fetches the EB bits, drops
bits 10 and 9, and appends the EB bits to the 8 low-order bits, giving u s

EB
, < , I

_I

, I '.I: Address Bits
i I , ;

(bits) 11 10 9 1 0 9 ' 8 7 6 5 4 3 2 1

which is the expression of the absolute address 10348 as an augment of 34 within
EB 2. This is obviously the equivalent of the configuration of 10348 a s a low-order
address

(bits) 10 9 8 7 6 5 4 3 2 1
1 1 0 0 0 1 0 1 1 1 0 0

While it is therefore possible to address erasable memory below 14008 via the EB,
it is usually preferable to define these addresses within the 10 low-order addiess
bits of a word.

A step by step recapitulation of addressing Erasable-Switchable absolute
addresses follows:

1. 27348+10 111 011 loo2*
The octal address is converted to machine language.

specified in bits 11, 10, and 9 (10 111 011 loo2).
2. The programmer se ts the EB to 0- 7 (in this case, 5)- the value

1-8

Indicator Bits Address Bits

5. The above is combined to render the EOA 10 111 011 l o o 2 .

We have now to consider the addressing schemes which develop when the
hardware tes t s bits 1 2 and 11 and finds a configuration other than 00. A one in bit
1 2 indicates that the address is in Fixed-Fixed memory (i. e . in the range 4000-
77778), which we have defined as those addresses which require fo r definition no more
than the 12 bits of the address field of a word, Fo r example, the address 54678 which
is equivalent to 101 100 110 1112 and has a one in bit 12 , can indeed be defined
within the 1 2 address bits and is indeed within the range 4000 - 7777g. The address
76018, which is 111 110 000 0Ol2 in machine language, can likewise be defined
within the 1 2 address bits and is within the range 4000- 77778.

On the other hand, if an address cannot be defined within a 12-bit address
field, a 0 l 2 configuration in bits 1 2 and 11 indicates that the address is in Fixed-
Switchable memory (i. e . , in the range 10000- 117,7778) and wil l therefore require
the use of a 5-bit Fixed Bank Register (FB). In Fixed-Switchable memory, an address
is always 100008 more than its actual address representation in the machine since
Fixed-Switchable memory begins in FB 0. Therefore, the first consideration to a
programmer in converting the pseudo-address to a representation that wi l l permit the
AGC to form an effective operand address is to subtract 10000 f rom the address.
The programmer then se t s the FB equal t o the value in the range 0 - 378 which would
ordinarily be specified in bits 15, 14, 13, 1 2 and 11 if we had the use of a 15-bit
address field. Let u s take as an example the address 36774g which becomes 267748
after subtracting from it 100008. Since its machine representation is 10 110 111

111 l o o 2 , the programmer sets the FB equal to 138 (010 110 111 111 loo2), se t s
(usually via the Assembly) bits 1 2 and 11 equal to 0l2 , and leaves bits 1 0 - 1 unaltered.
At execution time, the hardware senses the 01 configuration in bits 1 2 and 11 , fetches
the 5 bits f r o m the FB, and masks out all but the 1 0 low-order address bits of the
word. Masking out bits 1 2 and 11 is obviously the equivalent of subtracting 20008

f rom the 12-bit address. The 5 bits f rom the F B a r e now appendcd to the 10 low-

order address bits, giving u s the address 10 110 111 111 loo2, identical to the
original address minus 100008 (267748).

1 - 9

- F B 10 low-order address bits
O I l [O l l I l ~ 0 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 [1 ~ 1 ~ 0 ~ 0
-> the effective address: 10 110 111 111 loo2.

\1 "& F B

15 14 13 12 11. An 112 configuration in b i t s 15 and 14 indicates that a 16th bit

After we have formed the EOA, the hardware tests bits 15 and 14 of the FB:

I ITzLLn
\1 "& F B

15 14 13 12 11. An 112 configuration in b i t s 15 and 14 indicates that a 16th bit

After we have formed the EOA, the hardware tests bits 15 and 14 of the FB:

I ITzLLn
may be required for address definition. If bits 15 and 14 a r e not equal t o 112, the
15-bit address field provided by the combination of the F B with the 10 low-order bits
will be sufficient for defining the effective operand address. In this case, we would
follow the procedure outlined above. A step by s tep description of the changes which
affect the address 367748 follows:

1. 100008 is subtracted from the pseudo-address
367748 giving us the effective operand address
267748.

2. 2 6 7 7 4 8 3 1 0 110 111 111 loo2
The octal address is converted t o machine language.

3. The programmer must provide that at execution time,
the F B is set t o 138-the value specified in bits 15,
14, 13, 12, and 11.

(010 110 111 111 1102)
J.C& 4.c

4. Now we mask out all but the 18 low-order address
bits of the word, giving us - - - - - 0 111 111 loo2
(bit position) 15 11 10 1

5. The programmer (via assembly) sets bits 1 2 and 11 equal
t o 0 l 2 , thereby indicating the need for the F B and now giving
us - - - 010 111 111 loo2

15 12 1 (bit positions)

The value of the 12-bit address field for all Fixed-Switchable addresses is in
the range 2000 -37778, which we obtain by always adding 2000 (i. e. bits 1 2 and 11

= 01) t o the 10-bit augment of 0- 1777 (i. e. 0-102310 bank size).

6. At execution time, the hardware fetches the 5 bits from
the FB; drops bit 11, which is the equivalent of subtracting
20008 from the 12-bit address; and appends the FB t o the 10
low-order address bits. W e now have

-1 10101 l O l l l l l l 1 1 1 1 1 l I O l O 1

(bits) 15 14 13 12 11 1 1 2 1 J l O 1

7. Since the address does not sequire a 16th bit for definition
b i t s 15 and 14 a# 112), the only s t e p remaining is t o combine
the above t o render the effective operand address
10 110 111 111 loo2 = 267748.

1- 10

- I

8. 267748 t 1O0OO8 = 367748. The effective operand
address is the Machine Equivalent of the pseudo-address.

A l l the Fixed-Switchable addresses in the range 10000- 1077778, whose effec-
tive operand addresses a r e between 0 and 777778, can now be referenced within the
15-bit address field provided by the combination of the 5-bit Fixed Bank Register
and the 10 low-order address bits of a word, There a r e Fixed-Switchable addresses,
however, in the range 110000 - 117777, whose effective operand addresses (between
100000 and 1077778) require a 16th bit for definition. W e therefore provide a 16th
bit called a Super Bank Bit or Fixed Extension Bit (FEB) in the following fashion.
The hardware recognizes an 1 l2 configuration in bits 15 and 14 of the F B -

F B -
15 1 4 1 3 12 11

1 1 1 1
as a signal to fetch a 16th bit - the Super Bank Bit - and append it to the Fixed Com-
plete Address (FCADR).

1 0 low-order address bits

F o r those Fixed-Switchable addresses in the range 70000- 1077778, with
effective operand addresses in the range 60000- 777778, the Super Bank Bit must
contain a 0 (since the addresses can be defined within a 15-bit address field).
For the range 110000- 117777 (EOA 100000- 1077778) the Super Bank Bit must =
1. Let u s consider for example the address 764538, which becomes 664538 = 1 1 0
110 100 1 0 1 0 1 l 2 in machine representation. The programmer must provide that
at execution time, the FB is set to 338 (110112)-the value specified in bits 15, 14,
13, 12, and 11 (110 110 100 1 0 1 0 1 l 2) (bits 1 5 and 14 of the FB a r e equal to
112)-and that the Super Bank Bit is equal to 0. At execution time, the hardware
tests bits 15 and 14, and, sensing an 112 configuration in bits 15 and 14, it fetches
and interrogates the Super Bank Bit.

When the hardware senses a 0 in the Super Bank Bit, it merely forms a 15-
bit address field j u s t as for Fixed-Switchable addresses below FB 30. For i l lustra-
tive purposes (i. e. this is not a description of how the hardware actually works) ,

the value found in bit 16 is added to the value in bit 14. If, a s in this case, the
Super Bank Bit is equal to 0, the configuration in bit 14 will not be altered by adding
0 to it, and there will consequently be no overflow out of bit 15.

1-11

Super Bank Bit "-3
"0

JI
110 110 100 101 011 -
110 110 100 101 011

1 51

Now, consider that the pseudo-address range 70000 - 777778 (witkin F B 30-
33) and the pseudo-address range 110000-1177778 differ by 200008 (or a 1 in Bit 14),
though we a lso define F B 30 - 33 for the range 110000 - 1177778. We distinguish
them thus: the address range 70000- 777778 within FB 30- 33 has an 011 configura-
tion in the Super Bank Bit while the address range 110000- 1177778 within F B 30 -33
has a 100 configuration in the Super Bank Bit (bit 16).

We have just discussed the disassembling of address 764538. Let u s now
consider the address 1164538. Subtracting 100008, we obtain the effective operand
address 1064538 ~1 000 110 100 101 0112. The programmer makes certain that,
at execution time, all but the low-order 10 address bits a r e masked, and that the FB
and Super Bank Bit a r e set. Since the hardware interrogates the Super Bank Bit
only on sensing a 112 configuration in bits 1 5 and 14, and since bits 15 and 14 are 00

in the pseudo-address -1064538, i. e.

1 000 110 100 101 01

(bits) 16 15 14 1

the programmer has had to set the FB to 338 (1101l2) , so that 15 and 1 4 = 112.

This is the same configuration a s that of the FB for the effective operand address
(EOA) 664538 above. Again, to distinguish between the addresses, we can think of
adding the value of the Super Bank Bit to the value of bit 14. Thus,

EEB" - FB 10 low-order address bits 111 [1 1 1 1 0 1 11 1 1 o ~ l [o ~ o ~ l [o ~ l ~ o ~ l ~ l)
16 15 14 13 12 11 1 0 9 8 7 6 5 4 3 2 1

which gives us

16 15 14 13 12 11

10 lower address bits
0 1 I [o] 0 1 1 1 0 1 l l O l l I 1

10 9 8 7 6 5 4 3 2 1

1- 12

1. 2 . 1 13anl.r Sun1 t1lar-y

The Erasable Bank Registcr, a s wc havc sucn, is a 3-hit rcgistcr which, by
having its 3 bits specifying a bank number in the range 0 - 711 a1)pendcd to thc 8 low-

order address bits of a word, wi l l provide u s w i t h a n 11-hit atldrcss field. Within
an 11-bit address field, wc can define all o f erasable memory (i. e . addresses

. . . ~ ~ ~ "

0 - 37778).

By writing a bank number in thc rangc 0 - 37 into thc 5-bit Fixed Bank Regis-
t e r and having the 5 bits of the FB appended to the 1 0 low-order address hits of a

word, we obtain a 15-bit address field. This 15-bit sddrcss fic1.d is sufficient f o r
defining all of fixed memory except those pseudo-addresses in the range 110000-

1177778 (i. e. 15 bits is sufficient for defining addrcsscs in the range 10 , 0000-

107777 , after having subtracted 100008).

The Super Bank E, which is not a bank or register, provides u s with the
16th bit necessary for defining the absolute addrcsscs in the range 110000 - 1177TT8.
Thus is all memory made addressable.

The EB, and ET3 a r e all locations i n mcmory. ,\ hank nunlhcr Ivriltcn
into EB o r FB i s automatically written into R R , and information t v r i t t r n into 13R is

automatically written into ET3 and FR.

Octal Register
Address Name

11 1 0 9

0 0 0 3 EB [I I I El El E] 1 1 1 1 1 1 I
1 5 1 4 13 1 2 11

0004

0006

FB FI F F I;
m

Figure 2

1-13

The programmer sets bank reg is te rs by creating constants (via assembly
process) which a r e written into the bank reg is te rs by his program at execution time.

A special 12-bit hardware register exists called the S Register, which is
inaccessible to the programmer and contains the 12-bit address portion of the re fer-
enced word of memory. Depending upon the configuration i n bits 1 2 and 11 and ins
bits 10 and 9 of the contents of the S Register, the hardware will form an 11 -bit
address, or a 16-bit address. These effective operand addresses then go to the
address selection logic for selecting the referenced address. A diagram of the
logic upon which the hardware will form an 11-, 15- or 16-bit EOA from the 12-bit
address in the S Register is presented in an appendix at the end of this document,
(pages 1- 67, 1-68).

A s we have discussed previously under Special Registers, the Z Register
has only 1 2 bits within which to reference all 38, 91210 memory locations. In order
to address up to a 16-bit absolute address, the Z Register bits a r e combined with
EB or FB and FEB bits, as in the previously discussed procedure, to obtain a
fixed absolute address.

Changing banks requires that the programmer has set the EB or FB to the
proper configuration of the bank he wishes to go to, and that he has set the Z Register
so that the hardware wil l form the proper EOA (with the aid of the bank register, if

necessary), Similarly, when we wish to fetch data from one bank while we a r e in
another .bank, 'we must set the EB o r the FB properly for combination with the address
field of the fetch. One problem with fetching information from one fixed bank while
we a r e in another is that we may lose control from the bank we a r e in to the bank
containing the desired data to which the Z Register w i l l be pointing. For example,
let u s consider that we a r e in FB 23 and that we wish to fetch data from FB 20. By
executing any instruction which will fetch the data from FB 20, the Z Register wi l l
be set so that when the bank bits a r e appended, we shall then be in FB 20 rather
than in FB 2 3 where we wish to be. Although methods of evading this problem wil l
be discussed below, one common solution is to fetch the desired data via erasable
memory, in which the previous setting of the FB will not be altered.

At the end of this document in an appendix is a diagram showing how the
38,912 memory locations fit the addressing schemes previously discussed (page 1-66).

1- 14

As previously stated under Instruction Representation, the 15 bits ol an AGC
word may be selected and executed as in instruction. Since only bits 15, 14, and
13 of the instruction a r e specified to represent the op-code, we have only 8 op-codes
with which to work.

We therefore introduce a 16th bit called an extracode bit, which, when appen-
ded to the 3-bit op-code and set to 1, provides u s with twice the number of instruc-
tions, giving u s 1 6 op-codes. The extracode bit is set by an "Extend" instruction
and is rese t by any instruction other than an "index" instruction.

Also, w e have stated under Addressing that a 00 configuration in bits 1 2 and
11 indicates that we a r e referencing erasable memory, If we a r e ab lc , then, to de-
tect by the very nature of the instruction that we a r e addressing only erasable
111ernory, we may use bits 1 2 and 11 to represent op-codes. We call the combination
of the 3 op-code bits and bits 1 2 and 11 (when an instruction re fe rs only to erasable
memory) a quarter code (QC). The combination of the extracode bit, the 3 op-code
bits, and bits 1 2 and 11 gives u s a maximum of 6 bits for representing op-codes,
thus giving u s 26 = 64 possible op-codes in the range 0 - 778. In reality, however,
there are l e s s than forty instructions.

The following diagram presents the code names and high-order bit configura-
tions of the 15 non-extracode instructions and the 19 extracode instructions. A de-
tailed explanation of each instruction will h e given in Section n.

1 . 3. 1 Arithmetic and Overflow

This brief discussion of the AGC mechanization of the arithmetic unit is

given from strictly a programming point of view and is therefore intended only to
give some basis for analyzing program performance.

Data is represented in the RGC with the positive (0) or negativc (1) sign of
the magnitude in bit 15 and the binary magnitudc within thc range 0 - 214 - 1 in hits

14-1. Positive data is represented within bits 1 4- 1 asbinary magnitudc uljto214-1.

bits 15 - 1 3 = 0

RELINT

INHINT

EXTENI

TC

(TCR 1

1 4 2

DAS
bits 12, I1
= 50

LXCH
bits 12, 11 = 01

INCR
bits 12, 11 = 10

ADS
bi t s 12, 11 = 11

MSU
bi t s 12, 11
= 00

QXCH
bits 12, 11
= 0 1

AUG
bits 12, 11
= 10

DIM
bits 12, 11
= 11

1 2

3

CA

(CA F

(CAE

5 6 7

R e s u m e (1 7)
Index
WDX)
bits 12, 11 = 00

DXCH
bits 12, 11
= 01

TS
bits 1 2 , 11
= 10

XCH
bits 1 2 , 11
= 11

ccs
bits 12, 11 = 00

TC F
bits 12, 11
P 00

Nah-
ext racode
ins t ruc t ions

:xtracode
ns t ruc t ions

its 16 -13 =

cs AD

su
bits 12, 11
= 00

B Z M F

MASK

(MSK:

NIP

~~

INDEX

(NDX)

15

READ

WRITE

RAND

WAND

3 0 R

NOR

3 XOR

."

DV
(b i t s
12, 11
= 00)

BZF

*I9

"_
11

DCA DCS

1 3 14 1 7 10

1

16

Figure 3

c

For example, the positive octal quantity 73058 and its negative one's complement
would be represented in an RGC word as :

p o s i t i v e 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1

bits: 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1

sign bit

The sum of the negative and positive representation of a quantity will obviously
equal a configuration of all one's. Consider the sum of the two previous examples:

+ - 7 3 0 5 ~ 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0

- 0 0 0 0 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o r
- 0 =777778

Because the AGC uses only one's complement arithmetic when under pro-
gram control, the quantity "zero" has two possible representations: O O O O O s and
777778, which a r e designated respectively as + 0 and - 0. In most cases, the "zero"
that resul ts from addition o r subtraction will be a negative zero, e. g. the sum of
-t 73058 and - 73058.

The only difference between one's Complement arithmetic and two's comple-
ment arithmetic is the addition of 1 to the low-order bit (bit 1) of the one's comple-
ment notation. For example, to the one's complement form of -73058, we add 1,

111 000 100 111 010
f 1

111 000 100 111 O H 2

thus yielding the two's complement form 111 000 100 111 01l2. Positive
ze ro (+ O) is the only representation of "zero" in two's complement arithmetic.

For arithmetic purposes, the magnitude value in bits 14- 1 is thought of as

a fraction, i. e. the binary point is between the sign and bit 14. The magnitude value
of bits 14- 1 can therefore be thaught of as being in the range 0 - 2 - 1 4 + l . In this
"fixed point" arithmetic, the programmer must keep t rack of the position of the
imaginary binary point within a word according t o the appropriate scaling, i. e. the
imaginary binary point is in places to the right of the fixed binary machine point

1 - 1 7

between bits 1 5 and 14. For example, if we wish to add the quantities

bits 15 1 4 13 1 2 11 10 9 8 7 6 5 4 3 2 1

+ o . o 0 0 0 0 x 0 0 0 0 0 0 0 0
0 . 0 0 0 0 o o o o o y o o o o , and

where x is scaled 26 and y is scaled 21°, we would get no meaningful sum without
shifting x to the right 4 bits or y to the left 4 bits.

In multiplication, where there is no need to shift the multiplier or multipli-
cand rtght or left, the programmer need only keep t rack of where the imaginary
binary point is in the product, For example,

x . 2-4 : bits 1 5 14 13 1 2 11 10 9 8 7 6 5 4 3 2 1
0 - - - x - -" " " "

multiplied by
y . 2-2: bits 1 5 1 4 13 1 2 11 10 9 8 7 6 5 4 3 2 1

0 - y " - - " " " "

yields z . 2 -(m +n) or z . 2-6. B we wished the product to be scaled to 2 -3 or to
2-', we could either shift the product right o r left, or we could have shifted the
multiplier or multiplicand before multiplying. In any case, it is important that we
be careful not to lose significant bits by shifting a t e rm right or left.

When a word is read out of memory into the 16-bit A Register, or accumu-
lator, the magnitude bits 14 - 1 of the word go into the corresponding bits 1 4 - 1 of
the accumulator. The sign bit goes into bit 15 of the accumulator, from which it is
duplicated into bit 16. Carr ies from bit 1 4 propagate to bit 15, identified a s Signl,
(S1), and from S1 to bit 16, identified a s Sign 2 (S2). The S2 bit is considered to
contain the sign of the word and is the bit sensed to determine the sign of the accumu-
lator quantity.

Under normal conditions, the S2 and S1 bits wil l be equal. In an overflow
situation, however, in which bits 14 - 1 a r e insufficient to define the magnitude of
the sum of two terms, SI and S2 wil l be unequal. For example, the addition of pos-
max (the maximum positive quantity definable in 1 4 bits), which is 377778, and + 1
resul ts in 400008, thus causing an overflow into the 15th bit. Since 37777 is a
positive quantity, bit 16 will be zero, and the configuration of the sum of the two
t e rms wi l l look thus:

8

1 - 1 8

bits: 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Inequality between S1 and S may also result f rom a case of negative over- 2
flow, For example, let u s add negmax (the maximum negative quantity definable
within 1 4 bits), which is -377778 or 400008 in complemented form, to itself. 400008

goes into the accumulator a s 1400008, with a 1 in S1 and S 2 t o indicate the negative
sign of the quantity. We have

1400008

1400008
c

which is
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ 1 . ca r ry 1

+ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 + +
s2 s1

The S1 and S2 bits a r e unequal, containing the negative overflow Configuration of a

1 in bit 16 and a 0 in bit 15.

If we now use a TS instruction to s tore this quantity into memory, the h a r d -

ware will combine bit 16, the correct sign bit, and the 14 low-order bits (thus by-
passing bit 15). The quantity ooo ooo ooo oo12

or 40001 8, which is negmax + 1, wi l l be the number stored into memory.

The TS instruction also causes the hardware to look at bit 15, which is still
in the accumulator as the uncorrected sign bit, and to set the accumulator cqunl to
f 1 depending upon the configuration of bit 15. Since bit 15 has a zero configuration in

this case, the hardware w i l l leave a -1 (7777G8) in the accumulator. In the Previous

1 - 1 9 ,

example of posmax +I , the TS would leave -t 1 in the accumulator. Thus we may
test for overflow, leave the overflow in A, and store the modulus into memory. This
procedure is basic to DP operations.

1 - 2 0

1. 4 Instructions

1. 4. 1 Basic In&r_uctib%
A detailed explanation is given below of each of the non-extracode instructions

whose code names (with alternate spellings in brackets) a r e given in the upper half
of the chart in Fig. 3. The extracode bit is equal t o zero in all of the instructions.

I denotes "at this address. I ' (K) denotes the contents of location K, as dis-

tinguished from K, which denotes the address K. (K)p re fe rs to the previous con-
tents of K, The symbol 9 denotes "implies. " MCT denotes Machine Cycle Time,
one NICT being approximately equal t o 12 microseconds. The average instruction
requires 2 MCT, o r 2 4 microseconds.

The next sequential instruction wi l l always be taken f rom I + 1 unless specified
otherwise. E-memory and F-memory denote, respectively, erasable memory and
fixed memory. Since locations 0020-00238 in erasable memory a r e special regis-
t e r s (see page 5), we edit out any address K where K is 0020-0023 unless otherwise
specified, The Assembler gives a diagnostic (also spelled CUSS) as printed output
t o indicate an assembly e r r o r in using the instructions.

TC
Op-Code 00 TC K

K f 3, 4, 6
Transfer Control (to K) 1 MCT

The address K goes into the Z Register, and the previous contents of
the Z Register go into the Q Register. Thus the next instruction is taken
from K.

Indirect addressing is made possible because the op-code is zero,
e. g., the contents of K, which a r e equal t o O/XXXX where XXXX is some
address, become TC XXXX.

Since TC K may be used as a subroutine call, it is obviously necessary
t o preserve the contents of the Z Register in the Q Register s o that we may
return t o the main program upon completion of the subroutine. Since a TC
causes the previous contents of the Z Register t o go into Q, Q is now pointing
at "TC + 1'' and a TC Q at the end of a subroutine wi l l re turn control indirectly
t o the place at which w e had originally quit the main program. Fo r this type
of operation, TC may be spelled TCR, for Transfer Control Setting up Return.

1 - 2 1

- I

TC A will obviously t ransfer control t o the contents of the accumulator,
where the op-code configuration of the accumulator bits wil l determine the
next operation to be performed. If the programmer has made s u r e that bits
15-13 of the contents of A a r e equal t o zero, control will be indirectly t rans-
fe r red to whatever address bits 12- 1 of the accumulator specify.

i. .s
Special cases of TC K occur when the address K is equal t o 3, 4, o r 6.

.*, ,J,>''
<., ,; - In these three cases, the indicator specified by K is set , and the next instruc-

$:-I /?,,,'. tion is taken from I + 1.
l,A;,,~ i

TC 3 = RELINT (Allow Interrupt)

TC 4 = INKINT (Inhibit Interrupt)

TC 6 = EXTEND (Set Extracode Switch)

The extracode switch causes the next instruction to be an extracode.
A s we have said above, any instruction except "INDEX" rese ts the switch.
Interrupt is inhibited while the switch is on. Other uses of "TC" wil l be
discussed under Special Codes.

ccs
Op-Code 01 ccs
QC 0 Count, Compare, and Skip
(Quarter Code)

I
1 + 1
I + 2
I + 3
I + 4

(K) go into the accumulator.

K (K must be in erasable)
2 MCT

If (K) > 0, then we take the instruction at I + 1, and (A) wi l l be reduced
by 1, i. e. (K) - 1. If (K) s + 0, we take the instruction at I + 2, and (A) wil l
be set to +O. If (K) < -0, we take the instruction at I + 3, and (A) w i l l be set
t o its absolute value less 1. If (K) = -0, we take the instruction at I + 4, and
(A) wil l be set to + 0. CCS always leaves a positive quantity in A.

This is the only compare instruction. It is also used for loop control
and indicator testing. For example, if we wish to t ransfer out af a subroutine

1 - 2 2

c

when the positive contents of the accumulator become zero, a "CCS" will
cause the contents of A t o be reduced by 1. When (A) reaches + 0, a TC K
placed two instructions after the CCS will cause the desired t ransfer out of

the subroutine.

Also, we might wish t o use a 1 configuration in bit 9 of some word
which is ordinarily set t o 0 t o indicate that jets should be turned on t o propel
the spacecraft in some direction. W e would use a CCS A after isolating bit
9 in A t o tes t (A) for a quantity greater than + 0. If we found a quantity > + 0,
we would branch t o a sequence of instructions controlling the operation of the
jets.

TCF
Op-Code 1 TCF K (K must be in F-memory)

QC d 0
Transfer Control t o Fixed Memory 1 MCT

Take the next instruction from K and proceed from there. Using TCF
rather than TC is a convenient way of having the assembler do address
checking for you. Lf the operand, K, is not in fixed memory, a diagnostic
wil l come out of the assembler. Moreover, TCF does not change the Q
Register.

DAS
Op-Code 2 DAS K (K must be in E-memory)
QC = 0 Note: this assembles a s

DAS K + 1
Double Add t o Storage (to and from K) 3 MCT

The contents of the accumulator and i ts L Register a r e added t o the

contents of K a& K + 1. The D P sum is stored back into K and K + 1 . I f

positive (negative) overflow results from the D P addition, the sum i s stored
into K and K + 1, and the net overflow (4 1 i f positive; - I if negative) is left

is left in the A Register. If no overflow resulted, + O would be left in t h e

A Register. + O i s left in the L Register.

DAS A doubles the contents of the D P accumulator. (The assembly
mnemonic DDOURL assembles a s DAS A).

LXCH
Op-Code 2

& c = 1

LXCH K (K must be in E-memory)

Exchange L and K 2 MCT

The contents of the L Register are exchanged with the contents of K.
W e could LXCH A, in which case A would be overflow-corrected before the

swap.

For example, the instruction LXCH 10378 would cause the contents of
location 10378 t o go into the L Register and the contents of location 10378 to
be replaced by the previous contents of the L Register.

INCR
Qp-Code 2 IcNC R K (K must be in E-memory)

&c = 2
Increment (K) 2 MCT

The contents of K a r e replaced by the contents of K incremented by

1. A is not affected.

NOTE: INCR and two other codes AUG and DIM a r e modified counter-
increment sequences. Thus, if one of these three overflows when addressing
a counter for which overflow during involuntary incrementing is supposed to
cause an interrupt, the interrupt will occur. This is also t rue for chain-
reaction increments like T2, which is incremented after an overflow of T 1 .
These three instructions INCR, AUG, and DIM always operate in one's com-
plement arithmetic, even when addressing CDU counters, which normally
use two's complement arithmetic,

A DS
Op-Code 2
QC a 3

A DS K (K must be in E-memory)

Add t o Storage 2 MCT

The contents of the accumulator and the contents of K a r e replaced
by the sum of the contents of the accumulator and of K.

1 2 4

c

Let us consider the instruction ADS 20748 where location 20T48 con-

tains the quantity 7. The instruction causes 7 t o be added t o the contents of
the accumulator. The sum will replace both 7 and the previous contents of
the accumulator. Location 20748 now contains (7 t A p). The overflow-
corrected result is always stored, but overflow, if it occurred, would remain

in A.

CA
Op-Code 3 CA K

Clear and Add (K) 2 MCT

The contents of K come into the accumulator, leaving the contents
of K unchanged. Alternate spelling CAF (Clear and Add Fixed) or CAE (Clear
and Add Erasable) may be used when referencing fixed or erasable memory,
i f assembler-checking of the addresses is desired.

F o r example, CAF 46718 would clear the accumulator, and the con-
tents of location 47618 would be duplicated into the accumulator. If w e had
said CAE 47618, we would have received an assembly diagnostic.

cs
Op-Code 4 cs K

Clear and Subtract (K) 2 MCT

The one's complement of K comes into the accumulator, leaving the

previous contents of K unchanged.

Fo r example, if location 348 contained the quantity 2 2 , the instruction
CS 34 would clear the accumulator and 77755 would come into A. The
contents of location 348 would still be 22.

8 8

TS
@-Code 5

w 2

TS K (K must be in E-memory)

Transfer t o Storage

The contents of the accumulator, bits 16, 14- 1 come into K. If
there is positive or negative overflow in the previous contents of the accumu-
lator, we set the contents of the accumulator equal t o plus or minus one,

respectively, and take the next instruction from I + 2. If no overflow exists,
take the next instruction from I f 1.

TS A guarantees that the contents of the accumulator wil l be equal to
the previous contents of the accumulator, but if overflow existed in A it causes
us to skip to I + 2 for the next instruction. OVSK (Overflow Skip) is the im-
plied-address code for this use of TS.

Consider the instruction TS 0043*. The previous contents of the

8' accumulator a r e stored into location 43 and the contents of A a r e replaced
by a 4 1 if there was positive o r negative overflow in the previous contents
of A,

INDEX
@-Code 5

Qc = o
INDEX K (K must be in E-memory)

Index Next Instruction 2 MCT
See also Op-Code 15, page 42

One basic idea of indexing is to provide a method which wil l enable us to
access some element within a list which has s ta r t s at a "base" address. For exam-
ple, assume that we have a list of 100 elements in memory with a base address
called TABL1, and assume that we wish to bring random elements into the accurnu-
lation for various operations. Since TABLl is the only address we have to reference
the 100 elements, indexing allows us to address TABLli, where i is the address of
the element relative to the base address. The instruction CAE TABL17 would clear
the accumulator and bring into it the contents of the 7th element in TABL1.

This method of modifying the base address is usually accomplished through
the use of index registers , which contain the quantity to be added to or subtracted
from the base address to access some element within the list. With the AGC, how-
ever, we use an INDEX instruction to perform the function of an index register.

INDEX K: The contents of K a r e added, bit by bit, to the next sequential
~nstruct ion. (We shall take this sum and execute it as the next instruction. The
contents of K remain unchanged as do the contents of the next instruction. The
Z Register is set to access the second instruction beyond the INDEX instruction).

1-26

If the contents of K a r e equal to o r less than 17778, we have just augmented
the address portion of the next instruction, For example, if we say

INDEX K [(K) " S58]
CAE TABL1,

we have modified the second instruction to read

(CAE TABLl + 55),

which means that we shall replace the previous contents of the accumulator with the
contents of the 558 th element in TABL1.

If the contents of the address K are equal t o or less than 77778 but greater
than 17778, we may change the quarter-code or the Effective Operand Address to
indicate the need for a bank (when none was called for by the original sequential in-
struction). The reason for this is that, unlike the index register, which modifies
only the address portion of an instruction, INDEX K causes the contents of the ad-
dress K be added to the entire following instruction. Thus we may change the
quarter code bits which serve as indicators for memory banks, and we may change
bits 15-13 to indicate an altogether different operation. F o r example, INDEX A
causes the contents of the accumulator to be added to the next word in memory. If
the next instruction was 000 000 000 000 000, we would then be executing the
contents of A (which is the equivalent of the instruction XXALQ or TC A). If the
next instruction was not 000 000 000 000 000, we have, in effect, modified the
contents of its address field or its op-code, or both (because of overflow into the
op-code field).

,

Another common use of indexing is to control a loop through an a rea of
memory. Assume we have some positive count in a counter. A s long as this count
remains positive, we wish to continue some operation, which we shall terminate
when the count reaches + 0. Specifically, let us program the problems as seen in
Fig. 4 and Fig. 5

1.4. 2 Special Codes

INDEX 178 is a special use of INDEX, and means Resume Interrupted Pro-
gram (which like INDEX K, requires 2 MCT). The contents of the z Register a r e
se t t o the contents of location 15, and the next instruction is taken from the contents
of location 17. The implied-address code RESUME assembles as INDEX 17.
INDEX 1Y8 does &mean INDEX location 178. The interrupt processing, in which
this instruction is used, wil l be discussed later.

1-27

rl-l T R A N S F E R 1 LOOP 1 O U T OF

Figure 4

1-28

.

COUNT

-

IS C O U N T
d

LOOPAGIN Yes G R E A T E R T H A N Z E R O ?

No

r

START

LOOPAGIN

LOOPTEST

YINE

ZOUNT

ROUTINE TO HALVE 10 E L E M E N T S OF T A B L 1

OP-CODE

CA

TS

INDEX

CA

TS

CA

INDEX

TS

ccs
TCF

TCF

DEC

DEC

OPERANE

NINE

COUNT

COUNT

T A B L 1

SR

SR

COUNT

T A B L 1

COUNT

LOOPAGII

EXIT

9

0

COMMENT

ENTER H E R E

INITIALIZE COUNTER T O t 9*

COUNT GOES FROM 9 t o 0

G E T T A B L 1 " (COUNT)

DIVIDE (T A B L li) by 2

(T A B L ai) A
2

(A) T A B L 2i +(COUNT)

NOW TEST IF COUNT = 0

NO: A NOW HAS (COUNT) p - 1

LEAVE L O O P

CCS wi l l never come
here in this case,

TEMPORARY S O these words may
be used in any way.

* Subsequently, se t (COUNT) = (COUNT) p - 1

Figure 5

1- 2 9

INDEX 17 and three other instructions: TC 3, TC 4, and TC 6, introduced on
page 1- 22 under TC a r e special codes:

TC 3: INHINT
TC 4: RELINT

TC 6: EXTEND
INDEX 17: RESUME

The combination of the contents of the address of an,INDEX instruction and the in-
struction following the INDEX wil l never result in any one of the special codes. The
reason for this lies in the following hardware scheme:

1 .4 . 3 Op-Code Selection Logic

W e may get the instructions

TC 3
TC 4
TC 6

INDEX 17
by preceding some instruction with an INDEX K, but the instruction wil l be inter-
preted literally as

TC location 3

TC location 4

TC location 6
INDEX location 17.

Fo r example, if we say

INDEX K
TC 0

where K contained 4, we would execute the instruction TC 4 literally.

Neither could we get the special wdes INHINT, RELINT, EXTEND, or
RESUME if we precede any instruction with an EXTEND instruction. EXTEND
se ts the extracode bit to 1, which immediately prevents us from getting any instruc-
tion other than an extracode. The special codes a r e al l non-extracodes. For
example, if we say

EXTEND
R E LINT

1-30

1

BITS 15 - 1
OF A WORD
COME OUT OF
MEMORY AND
GO INTO THE
B-REGISTER

WAS THE PREVIOUS
INSTRUCTION

INSTRUCTION

I NO

P

INHINT, RELINT,
EXTEND, RESUME

1 'Y

I EXECUTE
IMMEDIATE LY I

YES

PREVIOUS

1

Figure 6

1 - 3 1

v\

we would get a channel instruction (look at the instruction diagram on page 1-3 1). Like-

wise, if we say

EXTEND
RESUME

we would execute the instruction INDEX 17 (not RESUME).

R ELINT
Op-Code 00 RELi.INT
K iz 0003 .

Release (allow) Interrupt 1 MCT

Allow interrupt after this instruction (subject t o the restriction that
interrupt cannot occur while there is positive or negative overflow in the

accumulator, nor between an interrupt and a subsequent RESUME.

INHINT
Op-Code 00 INHINT
K = 0004

Inhibit Interrupt 1 MCT

Inhibit interrupt until a subsequent RELINT. The inhibition se t by
INHINT and removed by RELINT is entirely independent of the one set by
interrupt and removed by RESUME. Either one alone is sufficient t o prevent
interrupt ,

EXTEND
Op-Code 00 EXTEND
K =0006

Extend Next Instruction 1 MCT

Take the next instruction from I +1 and execute it as an extracode
(i. e. set the extracode bit of the next instruction t o 1). If the next instruc-
tion is INDEX, the instruction following the INDEX will be executed as an
extracode instruction too.

RESUME
Op-Code 5 RESUME

Q c o
K = 17

Resume Interrupted Program 2 MCT

1 - 3 2

http://RELi.INT

The contents of location 15 come into the Z Register, replacing the
previous contents of 2. Use the contents of location 17 as the next instruction.
Allow interrupt after this instruction (unless there has been an INHINT with
no following RELINT).

1. 4. 4 Remaining Basic Instructions

DXCH
Op-Code 5

w 1

DXCH K (K must be in E-memory)

Double Exchange 3 MCT

The contents of K a r e exchanged with the contents of the accumulator,
and the contents of K + 1 a r e exchanged with the contents of the L Register.
The final contents of the L Register wil l be overflow-corrected. The opera-
tion code should be treated as 520018 (See Note, Page 1- 23) .

XCH
Op-Code 5

w 3

XCH K (K must be in E-memory)

Exchange A and K 2 MCT

The 'contents of the accumulator a r e exchanged with the contents of K.
If location 17308 contained the quantity 7, for instance, the instruction

XCH 17308 would cause 7 t o come into the accumulator and the previous con-
tents of the accumulator t o go into location 1730 8'

A D
Op-Code 6 A D K

Add (K) 2 MCT

The contents of K a r e added to the contents of the accumulator, and
the sum is stored back into the accumulator, The contents of K remain
unchanged.

If the accumulator contained the quantity 308, and the quantity lo8 was
in location 44418, the instruction A D 44418 would cause 408 t o replace the
previous contents of the accumulator. Location 44418 would still contain the
quantity lo8.

1- 33

MASK K
Op-Code 7 MASK K

Mask A by K 2 MCT

This instruction causes a logical AND operation. The contents of K
a r e “ANDed” with the contents of the accumulator, and the result replaces
the previous contents of the accumulator. The symbol Adenotes the logical
AND fwction. The truth table for each bit position of the contents of A and
K is as follows:

A K A A K

0 0 0
0 1
1 0

0

1 1 1
0

Mask 0020 - 0023 does not result in re-editing; i. e. (K) e (K)p.

1 . 4 . 5 Extracode Instructions

These instructions require the use of a 16th bit, called the extracode bit,
f o r op-code definition. Since the extracode bit is set by an EXTEND instruction,
all extracode instructions must be preceded by an EXTEND instruction. Any in-
struction other than an INDEX instruction wil l reset the extracode bit t o 0.

EXTEND plus a zero op-code (i. e . 0 -10) plus bits 12, 11, and 10 is broken
down into sevewoeripheral codes (PC 0-PC 6). Each uses a 9-bit address to r e-

ference an input-output channel (KC). The A and L Registers a r e channels o and 1,
respectively, to facilitate complicated logic in an arithmetic register.

READ
Op-Code 10
PC 0

READ KC

Read Channel KC 2 MCT

The contents of channel KC, where KC is an inlout channel, come
into the accumulator, replacing the previous contents of the accumulator.

For example, READ 1 would cause the contents of channel 1, which
is the L Register, t o come into the accumulator,

1- 34

WRITE
Op-Code 10
PC 1

WRITE KC

Write Channel KC 2 MCT

The contents of the accumulatdr come into KC, replacing the previous
contents of channel KC.

RAND
Op-Code 10 RAND
PC 2

Read and Mask

KC

2 MCT

The contents of the accumulator are ANDed with the contents of
channel KC, and the sum is stored back into the accumulator, replacing the
previous contents of A. The symbol A denotes the logical AND function (see

MASK, page 1-34) .

WAND
Op-Code 10 WAND KC
PC 3

Write and Mask 2 MCT

The contents of the accumulator are ANDed with the contents of
channel KC, and the sum is stored back into channel KC and is duplicated in- ’
t o the accumulator.

ROR
Op-Code 10
PC 4

ROR

Read and Superimpose

KC

2 MCT

The contents of the accumulator are ORed with the contents of channel
KC. The symbol v denotes the logical OR function. The truth table for
each bit position of the contents of the accumulator and of the channel KC is
as follows :

1 - 3 5

A KC A v K C i n A

0 0
0 1
1 0
1 1

WOR
Op-Code 10

PC 5
WOR KC

Write and Superimpose 2 MCT

The contents of the accumulator a r e ORed with the contents of channel
KC. The sum is stored back into channel KC and is duplicated into the ac -
cumulator, replacing the previous contents of both A and channel KC.

RXOR
Op-Code 10 RXOR KC
PC 6

Read and Invert 2 MCT

The contents of the accumulator a r e Exclusive ORed with the contents
of channel KC, The symbol r denotes the logical Exclusive OR function.
The t ruth table for each bit position of the contents of the accumulator and
of the channel KC is as follows:

A KC A v KC

0 0 0

0 1

0 1 1
1 1 0

1

This logical function is used to invert bit settings in channels for
input-output. For example, bit 5 in channel 7 controls the KEY RELEASE
light'on the Display-Keyboard (DSKY). When bit 5 contains a zero, the KEY-
RELEASE light is off, and remains off if we pulse another zero into bit 6.
When bit 5 is set to 1, the KEY RELEASE light blinks on and off, and it
continues to blink if we pulse another 1 into bit 5. The behavior of the KEY-

1- 36

RELEASE light will change only when bit 5 contains a zero and we pulse a

one into it, causing the light t o start blinking, or when bit 5 contains a one
and we pulse a zero into it, causing KEY-RELEASE t o stop blinking.

DV
Op-Code 11 DV K
QC = 0

Divide (by K) 6 MCT

The contents of the accumulator and of the L Register, the dividena,
a r e divided by the contents of K, the divisor, leaving the quotient in A and
the remainder in L.

We determine the sign of the quotient by the usual arithmetic law of
combining the signs of the dividend and divisor. Since the signs of the double-
length dividend in A and L need not agree, we understand t h e final sign of the

dividend to be the sign of the accumulator, unless the contents of the accumu-
lator a r e plus or minus zero. In this latter case, the sign of the dividend
will be the sign of the L Register. The remainder bears the sign of the
dividend, determined as discussed above.

The instruction DV does not disturb the contents of the Q Register
and does not re-edit an argument between 0020 - 0023.

We may divide a larger number into a smal ler number, i. e. the
divisor must be larger than the dividend.

If a quantity is divided into a quantity of equal magnitude, we get a
quotient of either posmax o r negmax and a remainder equal t o the dividend.
IY a smal ler is divided into a larger quantity, however, we get total nonsense
which cannot be distinguished from significant data. No a larm light flashes,
and the machine sends forth no diagnostic. Scaling may therefore be neces-
s a r y t o assure a legal divide and t o properly position the scale factor of
quotient. Scaling may also be necessary to guarantee maximum precision
to your answer.

Consider the instruction DV 000158 preceded by an EXTEND instruc-
tion. Assume location 000158 contains the quantity 4 and the accumulator

1 - 3 7

contains the quantity lo8. Since the divisor, 4, scaled 2-14, is smaller than
the dividend (the accumulator quantity lo8, also scaled 2-14), we must scale
the contents of 000158 to 2-12 by shifting it left two places. W e may now
legally divide the contents of the accumulator and the L Register by the con-
tents of 15, giving us

2-14 x l o 8 = 2 x 2 - 2

2-12 x 208

wbich looks like

A L

0 001 000 000 000 0001 000 000 000 000 000

(bits) 16 15 . , 1 l m . . . , e . . 1

BZF
Op-Code 11 BZF K (K must be in F-memory)

Q C S O
Branch Zero to Fixed 1 o r 2 MCT

If the contents of the accumulator a r e equal to positive or negative
zero, take the next instruction f rom K, and proceed from there (1 MCT).
Otherwise, take the next instruction from I t 1 (2 MCT).

F o r example, assuming the quantity -777 was in the accumulator, we
take the next instruction from I + 1 on the instruction BZF 43058. If positive
zero o r negative zero was in the accumulator, the instruction BZF 4305
would cause us to take the next instruction from location 4305, and proceed
from there.

MSU
@-Code 12 MSU

W O
Modular Subtract

K

2 MCT

The contents of K a r e modular subtracted from the contents of the
accumulator, and the difference is stored back into the accumulator. The
contents of K remain unchanged.

1- 3 8

The symbol 8 denotes modular subtraction, which forms a signed
one's complement difference of two unsigned (modular or periodic) two's
complement inputs. The method is t o form the two's complement difference,
t o decrement it if it is negative, and t o take the overflow-uncorrected sum
as the result.

Fo r exapple, consider the modular subtraction of 300008 (135') f rom
20000 (goo), the quantity in the accumulator. We take the two's complement
form of 300008, which is 147777 (duplicated sign)

8

+ 1
1 500008

and add to it the quantity in the accumulator.

1. 50000

t o . 20000

1. 700008 whose binary configuration in A is

1 111 000 000 000 000

bits 16 1 5 1

Since this ia in two's complement notation, we convert it t o one's complement
by subtracting one from it (adding the one's complement of one).

170000
t177776

167776
+ 1

1. 677778

which represents the one's complement of -10000 (or -45O).

W e may also do this problem by adding the one's complement form
of the contents of K to the contents of the accumulator,

20000
+47777

67777

1- 3 9

and test the sign bit, If bit 15 is a one, as in this case, we add a one t o the
sum, thus giving us

6 7 7 7 7
+ 1

700008,

which, when converted t o one's complement form, gives us -10000, as be-
fore. If bit 15 contained a zero, we would not add a one t o the sum.

CDU counters keep t rack of the gimbal angles of the inertial mea-
surement unit and optics unit in two's complement notation, We take the
difference between what the gimbal angles are and what we wish them to be,
and use this difference t o drive the CDU's. Since the AGC uses only one's
complement arithmetic, we use the modular subtraction instruction t o re-
solve the problem of having a one's complement computer and two's comple-
ment counters.

QXCH
Op-Code 12 QXC H K (K must be in E-memory)
QC = 1

Exchange Q and K 2 MCT

The contents of K a r e exchanged with the contents of Q.

Q may contain a return address after TC. Fo r example, when w e
leave a main program to execute a subroutine, the Q Register wi l l contain
the instruction in the main program to be executed immediately after com-
pleting the subroutine. To t ransfer out of the subroutine, then, w e just say
TC K, and we shall resume the main program. A prior QXCH K saved
(Q) in K and freed Q for use.

AUG
Op-Code 12

w = 2

AUG K (K must be in E-memory)

Augment 2 MCT

If the contents of K a r e equal t o o r greater than + 0, w e increment
the contents of K by 1 and s tore it back into K. If the contents of K a r e equal
to or less than -0, the contents of K are decremented by 1, and the result
is stored back into K.

1-40

DIM
Op-Code 12
QC = 3

DIM

Diminish

K (K must be in E-memory)

If the contents of K a r e greater than + 0, w e decrement the contents
of K by 1 and s tore the result back into K. ' If the contents of K are less than
-0, we increment the contents of K by 1 add s tore the result back into K.

DCA
@-Code 13 DCA K

Double Clear and A'dd 3 MCT

The contents of K come into the acqumulator, and the contents of
K + 1 come into t h e L Register. The contents of K and of K + 1 remain un-
changed. The final contents of the L Register wi l l be overflow-corrected.
This instruction assembles as DCA K + 1 . ~

For example, the instruction DCA hO0l8 would first clear the accumu-
lator and the L Register of their previous contents. The contents of location
7000 would then go into the accumulator, and the contents of the next location
70018 would go into the L Register. The dontents of K and of K +1 would re-

main unchanged.

8

DCS
Op-Code 14 DCS K

Double Clear and Subtiract (K) 3 MCT

The one's complement of the contepts of K come into the aCCUlnulatOr,
and the one's complement of the contents c$f K + 1 come into the L Register.
The contents of K and K + 1 remain unchanged. The instruction DCS K

assembles as DCS K + 1 . I

,

1- 4 1

DCS A complements the double precision accumulator; the implied-
address code is DCOM. The final contents of the L Register will be over-
flow-corrected,

Consider the instruction DCS 22223, which would first c lear the ac-
cumulator and L Register. The one's complement of the contents of location
22222 would go into the accumulator, and the one's complement of the con-
tents of the next location 222238 would go into the L RegiSter. The contents
of locations 222238 and 222228 would be left unaltered.

INDEX
Op-Code 15 INDEX K (anywhere in memory)

Index Extracode Instruction 2 MCT
(see INDEX, page 1- 26)

This is the only extracode instruction that does not rese t the extra-
code switch. The way t o index an extracode (e. g. M P) is

EXTEND
INDEX
MP

ADDRWORD
0

The extracode switch will be maintained through any n-level nesting
of extracode INDEX'S. This is logical, since INDEX does not reset the
extracode bit t o zero. We can, therefore, precede an instruction with any
number of INDEX'S without losing our extracode bit setting.

This INDEX wi l l never form a special op-code instruction (see INDEX,

page 1 - 2 7).

su
@-Code 16

QC = 0
sw K (K must be in E-memory)

(K)
Subtract 2 MCT

The contents of K a r e subtracted from the contents of the accumulator,
and the difference is stored back into the accumulator. The contents of K
remain unchanged. Overflow may result,

1-42

K "

s 0 0 1 0 1 0 0 0 1 0 0 1 "
4 4 \ binary point 1

BZMF
Op-Code 16 BZMF K (K must be in F-memory)

QC f 0
Branch Zero or Minus t o Fixed 1 or 2 MCT

If the contents of the accumulator a r e equal t o or less than positive
zero, take the next instruction from K and proceed from there (1 MCT).
Otherwise, take the next instruction f rom I "1 (2 MCT).

M P
Op-Code 17 MP

Multiply
K

3 MCT

The contents of the accumulator are multiplied by the contents of K.
The product is stored back into the accumulator and the L Register, and the
sign of the product is formed by the rules of algebra.

The two words of the product agree in sign. A zero result is positive
(unless the contents of the accumulator were equal to positive or negative
zero, and the contents of K a r e non-zero with the opposite sign). M P does
not re-edit an argument from 0020-0023.

Scaling may be necessary to assure sufficient andlor maximum pre-
cision in the product, For example, if we multiply 1211g, scaled 2 , by
1211g, scaled 2 , - 12

- 10

Accumulator

t binary point f

we get 37662llO, o r 13374558, scaled 2-22

A L

x 0 0 1 0 1 1 0 1
binary point

1-43

Since the product 13374558 actually requires only 19 bits fo r definition
and since we have positioned it in A and L according to i ts scale factor 2 ,

[(12118 x2-l’) (12118 ~ 2 - l ~) a 13374558 X2 -”] , we know that the three
high-order bits in A are leading zeroes, Thus we can shift the product t o the
left th ree places in order to have as many meaningful bits as possible in A
without losing any significant high-order bits.

- 22

A L

s 2 s 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1
binary bit

We now have as many meaningful bits as possible in the more signifi-
cant of the two product registers , as seen above.

1.4. 6 Implied-Address Codes

Certain instructions, like RESUME, a r e defined for only one address value,
and others have unusual results when used to address special registers. Fo r con-
venience in using these instructions, the YUL System assembler recognizes implied-
address codes written without an address, and it fills in the address. These codes
a r e shown alphabeticallyonPage 1-45. Some of these codes a r i se from the fact that
certain special regis ters a r e adjoining locations in erasable memory:

Location Register

A (accumulator)
L (low register)

Q
EB (erasable bank register)
F B (fixed bank register)
Z (program counter)
BB (both banks register)

Below is an explanation of each implied-address code except INHINT, RE-
LINT, EXTEND, and RESUME, discussed above under Special Codes on Page 1-27.

=LQ
Op-Code 0

K o O
XXALQ

Execute Extracode
Using A, L, and Q

1-44

(TC A)
2 MCT

Implied Address Codes

lmplied Actual Register Word a s NOTE
Address Operation (If Assembled
Code Code applicable)

COM cs A 40000
DCOM DCS A 40001 X
DDOUBL DAS A 20001
DOUBLE AD A 60000
DTCB DXCH Z, & BB 52006

DTCF DXCH FB, & Z 52005

EXTEND TC 00006 S
INHINT TC 00004 S

NOOP TCF +I (I t 1) F

NOOP CA A 30000 E

OVSK TS A 54000
R ELINT TC 00003 S
RESUME INDEX BRUPT 50017 R
RETURN TC Q 00002
SQUARE M P A 70000 X

TCAA TS Z 54005

XLQ TC L 00001

XXALQ TC A 00000

Z L LXCH 22007
QXCH 22007 X

NOTE EXPLANATION:

E Applies when I (location of instruction) is in erasable memory.
F Applies when I is in fixed memory.
R Special RESUME hardware responds t o address 0017.
S Special Indicator-setting hardware responds to addresses

0003, 0004, and 0006.
X Extracode instruction.

Figure 7

1- 45

Assume that the accumulator contains 00006 (EXTEND) and that L

contains an extracode instruction. TC will set Q t o contain the 12-bit address
of the next instruction t o be executed in the main program, XXALQ causes
the machine t o t ransfer control (TC) t o A, location 0. The EXTEND instruc-
tion in the accumulator is executed; then the extracode instruction in L, the
next location; and finally the (TC) contents of Q, the next location, which
returns control t o the main program.

Main Program Memory

XLQ
Op-Code 0 XLQ
K S l (TC L)

Execute Using L and Q 2 MCT

Assume that L contains a basic instruction. Execute the instruction
in L, and if it is not a successful branch, return t o I + 1.

The t ime (2 MCT) for XXALQ and XLQ includes the TC A o r L and
the return TC from Q, but it does not include the t ime spent in executing
the contents of A o r L.

RETURN
Op-Code 0

K - 2
RETURN

(TC Q)
Return from Subroutine 2 MCT

Assume that the contents of Q contain the instruction TC K. Take
the next instruction from K and proceed from there.

1 - 4 6

NOOP
Op-Code 1

&c rho
K = I + l

NOOP
(TCF + 1)

No Operation (in Fixed Memory) 1 MCT

Take the next instruction from I +l . NOOP is assembled TCF + 1

in fixed memory,

DDOUBL
@-Code 2

W O
K a 0

DDOUBL

(DAS A)
Double Precision Double 3 MCT

The contents of the accumulator and L Register a r e added to itself,
and the sum is stored back into A and L, replacing their previous contents.
If the previous contents of the accumulator contained positive o r negative
overflow, the results a r e messy, e. g. when the sign of the sum of the D P
addition stored in A is unequal t o the sign of the previous contents of A. If
the previous contents of A were equal t o or greater than 1 / 2 , overflow wi l l
be retained in the contents of A.

ZL
Op-Code 2

QC 1
K = 7

ZL

(LXCH 7)

Zero the L Register 2 MCT

Zeroes come into the L Register, replacing the previous contents of L.

This code and its companion ZQ depend on two properties of address
0007: no storage is associated with it, and references to it (in fact, t o any
of 0000- 0007) are not checked for good parity. Address 0007 is therefore
a generally good source of zeroes.

NOOP
@-Code 3 NOOP
K = O

No Operation (in Erasable Memory)

NOOP is assembled as CA A in erasable memory.

1- 47

2 MCT

COM
Op-Code 4 COM

K = O (CS A)

- Complement (the contents of A) 2 MCT

The one's complement of the contents of the accumulator replaces the
previous contents of A, A l l 16 bits of A a r e complemented.

QVSK
Op-Code 5

QC 2
K = O

QVSK

Overflow Skip 2 MCT

Do ndt change the contents of the accumulator. If the contents of A

contain positive or negative overflow, take the next instruction from I + 2 .
If no overflow exists in the contents of A, take the next instruction from I f 1.

Fo r example, let us c lear and add the contents of COUNTER into the
accumulator. Suppose we now add the contents of CUM2 to the contents of
A. If this addition operation caused either positive o r negative overflow in
A , we would leave the contents of A unchanged by an OVSK and skip the next
sequential instruction, thus taking the next instruction f rom I + 2 . If the
addition caused no overflow in A , we would leave the contents of A unaltered
and merely take the next sequential instruction.

TCAA
Op-Code 5 TCAA

QC 2
K = 5 (TS Z)

Transfer Control t o the Address in A 2 MCT

Bits 12-1 of the contents of the accumulator come into the 2 Register.
If there is positive or negative overflow in the contents of the accumulator,
the contents of A a r e set t o +1 if the overflow is positive and to -1 if the over-
flow is negative. We take the next instruction from the address specified in
Z , as usual.

F o r example, suppose the contents of the accumulator are

1- 4 8

A

0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0

bits 16 15 12 " 1

The contents of bits 12-1 come into Z ,

Z Register
1 1 0 1 0 0 1 1 0 1 1 0

bits 12. 1
and since the accumulator contains positive overflow because bits
16 and 15 differ, and positive because we take the sign of the word from bit
16, [he re containing 0 3) we clear A and set its contents equal to -E 1. We
then take the next instruction from the location specified in the Z Register.
In this case, we would take the next instruction from location 6466 8'

DOUBLE
Op-Code 6 DOUBLE
K = O (AD A)

Double (the contents of A) 2 MCT

The contents of the accumulator a r e added to itself, and the sum is
stored back into A.

See remarks on overflow under DDOUBL.

ZQ
Op-Code 12

QC 1
K = 7 (QXCH)

Zero Q 2 MCT

Positive zeroes replace the contents of the Q Register. (See the dis-
cussion under the instruction ZL).

DCOM
@-Code 14
K = 0

DCOM
(DCS A)

Double Comrslement 3 MCT

The one's complement of the contents of the accumulator and L-

1- 4 9

.Register replace the previous contents of A and L. A l l 31 bits of A and L)
a r e complemented.

SQUARE
Op-Code 1 7 SQUARE
K = 0

Square (the contents of A) 3 MCT

The contents of A are multiplied by itself, and the product is s tored
back into the accumulator and into the Id Register. Results a r e messy if the
previous contents of A contain positive o r negative overflow.

1. 4. 7 Assembly Constants -

A s we saw under Instruction Representation (page 3), the assembly process
enables us t o change a YUL language instruction into a 15-bit instruction word which
will be loaded into memory in binary machine language. At execution time, the
hardware fetches the instruction word from memory and sends it t o the instruction
decoding logic, where it is interpreted and executed.

Data (for example: the definition of a constant) is assembled into a 15-bit
data word and is loaded into computer memory as a binary number. When this 15-

bit data word is fetched from memory, it is treated as a whole. If the programmer
has placed the data in his program such that the computer interprets it as an *

instruction, the program will yield unexpected results.

Within the assembler is a location counter which keeps t rack of what location
we a r e at in memory. It is important t o distinguish between a location in memory,
or the address at which a word is located, and the address field within a word, which
references some memory address.

Methods exist with which we can create the arithmetic and address constants
we wish t o use in AGC programs. Those concerning the arithmetic constants w i l l
be discussed later, ADRES, REMADR, AND GENADR each create a 12-bit address.
FCADR AND ECADR each create a 15-bit constant word containing , respectively,
a Fixed Complete Address and an Erasable Complete Address. EBANK = creates
an Erasable Bank Declaration (which is not an AGC word) which tells the assembler
in which E-Bank the programmer wants subsequent E-Bank addresses t o be. BBCON
creates a 15-bit Both-Bank-Constant word intended as data to be placed in the BB
regis ter (Both Banks Hegister). The last two codes 2BCADR and 2FCADR create
Double Complete Addresses including, respectively, a BBCON and an FCADR.

These address constants are necessary for interbank communication. W e
are able t o change z by setting z t o the contents of a 12-bit address created by a
Constant, and w e are able t o specify the E-Bank or F-Bank in which is the location *

defined in through constants which set FB, EB, o r BB.

1-50

We have said that ADRES, REMADR, and GENADR each create a 12-bit ad-
dress. (The contents of the three high-order bits of the 15-bit words created wil l
always be equal to zero.) ADRES requires that the current assembly location counter
and address values of the ADRES operand be in the same F-Bank or in the same E-

Bank.

LOCATION
IN

MEM,ORY

CONSTANT ADDRESS

t I

V
I

Must be in the same E or F-Bank

For example, assume that at location 400008 in memory we have the constant ADRES
4016l8. Both the location of the word (400008) and the address within the word
(401618) a r e in F-Bank 14, as required by the constant ADRES. Since the pseudo-
address 401618 is in fixed-switchable memory, we subtract 10000 from the pseudo-
address, getting 301618, the augment of 1618 within F-Bank 14, and we set location
400008 to:

0 0 0 0 1 0 0 0 1 1 1 0 0 0 1
1 5 1

FB Indicators Augment 161 within FB 14

The 0 l 2 configuration in bits 12 and 11 wil l cause the FB bits t o be appended
to t h e address (at execution time) giving us the address 301618.

REMADR requires that the location counter and address values be in different

banks.

LOCATION CONSTANT ADDRESS
IN A

MEMORY

V
Must be in different E or F Banks

For exarhple, let us assume that at location 23148 in E-memory is the constant word
REMADR 17008. The location and address values a r e both in erasable memory but
are in different E-Banks, as required by the constant, REMADR 17008 forms the
15-bit constant word

1- 51

0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 1 [1 ~ 1 (1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~

bits 15 1 0 9 o s . . . 1

300 augment in EB 7

The 11 configuration in bits 10 and 9 will signal that the EB bits b e appended, giving

us the address 17008, in EB 7.
2

GENADR will form a 15-bit. constant word without any checks.

CADR AND FCADR are synonymous codes for the constant which w i l l generate
a fixed complete address. The address value within the word must fall in an F-Bank.
The 15-bit word generated equals the pseudo-address value minus octal 10000.
Bits 15 - 11 equal the F-Bank number and bits 10 -1 equal the relative location of
the address in that bank. Let us assume we are in F-Bank 17 and we wish t o fetch
data f rom location 677668, which is in F-Bank 27. FCADR 677668 will create the
15-bit constant word

F F F F F
1 1 1 1 1 (1 1 1 1 1 [1 O l l l l [O 0 1

bits 15 11
FB 27 augment 17 6 6

8

which will ass is t us in switching banks t o fetch the data from location 6776€i8.

ECADR will create a 15-bit constant word containing an erasable complete
address. The address value must be in erasable memory, 0000- 37778, and the 15-
bit word generated equals the 11-bit pseudo-address, Bits 15 - 12 equal zero. For
example, assume we a r e in FB 4 and wish t o get data from location 24008 in EB 5.
ECADR 24008 will create the 15-bit constant word

bits 15 11 9 , . 1

EB 5 Augment 0

EBANK = creates an Erasable Bank Declaration (which is not an AGC word)
which tells the assembler that all subsequent references t o E-memory must fall
within the specified (Operand) E-&nk. The assembler complains whenever an ad-
dress is equivalent t o a location in a different E-Bank. If the EBANK = code is
followed by a BBCON, o r a 2BCADR, this EBANK =value is good only for one sub-
sequent code, and then the previous EBANK =setting is restored. This is called a

1-52

"one-shot EBANK = declaration. ' I Let us assume we have se t EBANK = 5, thus in-
forming the assembler that all subsequent E-Bank addresses wi l l be in EB 5. When-
ever the assembler hereafter comes upon an address which is not within EB 5, we
receive a diagnostic (CUSS). Now suppose that we are in EB 5 and we wish to fetch
data f rom EB 4 once and then return to EB 5. EBANK = 4 enables us to switch (for
assembly purposes) from EB 5 to EB 4 for one BBCON word, then to switch back
to EB 5 for the remaining subsequent codes. This is the "one-shot EBANK = declara-
tion. I '

BBCON wil l create a 15-bit Both-Bank-Constant word intended as data to be
placed in the BB register. The address value must be a location in fixed memory

(not fixed-fixed) or it must be an F-Bank number (in the range 0 - 43). Bits 15- 11
of the 15-bit word generated equal the address ' bank number. Bits 10- 8 and 4 a r e
zeroes. Bits 7- 5 a r e 000 if F-Bank is less than 30, 011 if F-Bank is 30 - 37, or
100 if F-Bank is 40 43. Bits 3 - 1 equal the current EBANK = code. Recall that
the BB register has the following format:

BB Register -

F F F F F O B D S S S O E E E

Assume that we have set EBANK = 3, so that all subsequent E-Bank addresses wi l l
be in E-Bank 3. A t present, FB 13 is in the Location Counter, and we wish t o
switch to FB 14. BBCON (FB 148) will create the following 15-bit constant word:

0 1 1 0 0 0 0 0 0 0 0 0 ' 0 1 1

bits 15
FB 14

1
EB 3

2CADR and PBCADR a r e synonymous codes which create a Double Complete
Address, i. e. a GENADR followed by a BBCON. The code is intended to be used as
the operand of a DTCB (DXCH 2) instruction, discussed below. Two 15-bit constant
codes are generated by this code. The f i rs t word is formed under the rules for
GENADR. If the operand address value is in fixed memory, the second word is
formed under the rules for BBCON. For an address in erasaale memory, the
second word becomes OOOOX where X = the address ' octal code EBANK number in
the range 0 - 7. For example, assume we have set EBANK = 5 s o that al l subsequent
E-BANK addresses wil l go into EB 5. We a r e at present in EB 4 and wish to go to
location 50000 in FB 20. 2 BCADR will create the following two words:

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
' FB 20 EB 5

1- 53

The first word, formed under the rules of GENADR contains the 12-bit address which
will become the contents of Z when this double precision word is used as an operand
under DTCB (DXCH Z) . The second word, formed under the rules of BBCON, con-
tains the number of the F Bank which corresponds to the address of the operand. It
also contains the number of the E-Bank via our last EBANK = statement.

Now consider that we a r e in F B 20 and wish to jump to location 337 in E- 8
Bank 3. 2BCADR 17778 would form the double precision constant word

The first word, formed under the rules for GENADR contains the erasable address
which will go into Z . The second word contains the address ' octal code E-Bank
number .

2FCADR creates a Double Complete Address, i. e. an FCADR followed by a
GENADR. The address value must be a location in fixed memory, The code is in-
tended as an operand for a DTCF (DXCH FBI instruction, discussed below. This
code generates two 15-bit constant words. The first word is formed under the rules
for FCADR, and the second is formed under the rules for GENADR. For example,
let us assume that we a r e in EB 3 and wish to jump t o location 300418 in F B lo8.
2FCADR 300418 would create the following D P word:

0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
F B lo8 Augment 41

The first word was formed under the rules for FCADR, specifying the F-Bank num-
ber of the address in bits 15-11 and the relative location of the address within that
bank in bits 10-1. Bits 15-11 of this word become the FB setting when the D P

word is used as an operand of a DTCF instruction. The second word, formed under
the rules for GENADR, contains the 12-bit address which wi l l be set into Z when the
DP word is used a s an operand of DTCF.

Two implied address codes remain t o be discussed,

DTC B
@-Code 5 DTCB

QC 1
K = 5 (DXCH Z)

Double Transfer Control Switching Both Banks 3 MCT

1-54

The contents of the Z and BB registers come into the accumulator and

L Register, and the contents of the accumulator and L Register go into the Z
and BB registers. For example, suppose that one wants to jump banks for
ant interrupt. The sequence

DCA OPERAND 1 (Operand 1 is the Address of a2BCADR)
DTCB

would first bring the two constant words created by BCADR (representing Z
and BB) into the accumulator and L Register. DTCB would then cause the
contents of A and L to go into Z and BB. The present contents of Z and BB
would be saved in A and L, and an immediate change of sequence would be
in effect.

DTCF
@-Code 5

w 1
K = 4

DTCF

(DXCH FB)
Switching F Banks 3 MCT

The contents of FB and Z come into the accumulator and L Register,
and the contents of the accumulator and L Register go into FB and 2. A
BFCADR is used with this instruction. The f i rs t word created by

2FCADR 13177*

se ts FB bits 15 “11 to the F-Bank number within which this address is located
and se ts 10-1 t o the relative location of the address within that bank. The
second word creates a 12-bit address. The sequence

DCA OPERAND 2 (OPERAND 2 is the address of aBFCADR)
DTCF

will cause the first word created by BFCADR to come into A, and the Z ad-
dress in the second word created by BFCADR to come into L. The DTCF
wi l l cause the 5-bit FB setting in A t o go into FB and the 12-bit address in
L to go into Z . The present contents of F B and Z will go into A and L.
Thus we have switched F-Banks, sequence control, and have preserved the
previous setting of FB and 2 in A and L.

List of Assembly Constants

Constant (Q)p-Code)

ADRES
REMADR
GENADR
CADR (FCADR)
ECADR
EBANK
BBCON
2CADR 2(BCADR)
2FCADR

Operand (Address)

TAG, P. A. (pseudo-address)
TAG, P . A .
TAG, P .A.
TAG, P .A.
TAG, P .A.
TAG, P .A. , E-BANK #
TAG, P. A, F-BANK #
TAG, P.A.
TAG, P . A .

TAG = Symbolic Tag, e. g. DISRUPTSW
P. A. = Pseudo-Address, e. g. 402738
E-BANK # = EYBank number, e. g . 3

F-B&NK # = F-BANK number, e. g. 27

1. 4 . 8 Counters

Counters a r e addressable registers in erasable memory which may be in-
cremented or decremented by special unprogrammed sequences. Two adjacent 15-
bit t ime counters comprise the AGC clock, which has accuracy up to 31 days. Other
counters, upon overflow, cause an interrupt of the current program, enabling us to
periodically accomplish special processing.

The t ime counters, designated as Scaler 1 and 2 and Time 1-6, a r e located
in memory as follows:

Octal Location

24
2 5
26
27
30
31

C ount e r

TIME 2
TIME 1

TIME 3
TIME 4
TIME 5
TIME 6

Scaler 1 and Scaler 2 are , respectively, Channels 4 and 3.

1-56

The function of counters is to keep t rack of the s tate of an external device.
For example, the CDU counters monitor the changing state of roll, pitch, and yaw
of the spacecraft through the increments and decrements pulsed across the 1/0 in-
terface to the counters by the CDU's. Since the measurement unit of the counter is
40 seconds of arc , the counter wi l l not reflect a change in the position of the space-
craft less than 40 seconds of arc. Increments and decrements to other counters r e -
present different scaling, e. g. milliseconds of time. Counters may be incremented
o r decremented by making the following requests of the CPU. We describe these
hardware sequences by mnemonics not meant to be interpreted as instructions.

PINC
Plus Increment 1 MCT

+ 1 is added to the low-order bit of the counter. If the addition r e-
sults in overflow of the counter, the counter is reset to positive zero.

COUNTER

f l2 PINC : + 1 pulsed into bit 1

PC DU

+ 1 is added to the low-order bit of the counter in two's complement
modular (unsigned) notation.

m l COUNTER

+1 PCDU: + 1 pulsed into bit 1 in
two's complement
unsigned notation

The CDU counters 32- 36 a r e incremented and decremented in two's
complement notation and a r e non-algebraic for the hardware sequences PCDU
and MCDU. That is, while PINC and MINC would reset the counters to posi-
tive or negative zero upon overflow of the counter, PCDU and MCDU increment
and decrement the counters in unsigned notation so that the quantity 400008
would not represent overflow. Since the CDU's a r e modulo 180°, we merely
continue counting past POSMAX when we reach 180° (400008).

1- 5 7

In order touse the readings of the CDU's in one's complement arith-
metic calculations, we must convert the two's complement quanties in the CDU
counters tosignedonels complement notation, Our method of conversion is
based on the following considerations. We designate positive zero as the
beginning of a revolution and -180° as the midpoint of a revolution. Since
the low-order bit of a CDU counter is equal t o 40", +180° -40" (377778) is
the closest positive representation of the mid-point that we can have, Simi-
larly, negative zero must be represented as 360' -40" (777778). Thus the
difference between + 180' and - 180' and between + 0 and -0 is represented
by 40", which is equal t o an increment of 1 to the low-order bit of the CDU
counters, This difference of 40" is equal to the difference between one's
and two's complement arithmetic. Therefore, when we read a negative two's
complement quantity out of a CDU counter in order to perform one's comple-
ment arithmetic with it, we subtract one f rom the quantity, We need to do
nothing to positive quantities since a positive number is identical in one's
and two's complement arithmetic. At the end of the calculations, we add
one to a negative one's complement number to reconvert it to two's comple-
ment notation. A s above, we have no need to change a positive one's comple-
ment number. An extracode instruction MSU (Modular Subtract) accomplishes
the above by differencing two quantities in two's complement notation and
leaving the difference in one's complement form,

n n

A

r\

n

MINC
Minus Increment 1 MCT

- 1 is added to the low-order bit of the counter. If addition results in
overflow of the counter, the contents of the counter a r e reset t o negative zero.

COUNTER
1 7 1 4 1 3 1 q 8

- l 2 MINC : - 1 pulsed into bit 1

MCDU
Minus Increment (CDU)

- 1 is added to the low-order bit in two's complement modular
(unsigned) notation.

1- 58

DINC

COUNTER

mJ
MCDU: -1 pulsed into bit 1

in unsigned notation

See remarks under PCDU

Diminishing Increment 1 MCT

.

If the contents of the counter are greater than positive zero, the con-
tents a r e decremented by + 1.

If the contents of the counter a r e less than negative zero, the con-
tents of the counter are incremented by +1.

If the contents of the counter a r e equal t o positive or negative zero,
the contents are left unchanged.

In other words, we move toward zero from either a positive or nega-

tive direction.

SHINC
Shift Increment 1 MCT

The contents of the counter a r e shifted left one bit. If positive over-
flow resul ts , an interrupt request will be set for the counter.

COUNTER

Contents of counter shifted
left 1 bit

SHANC
Shift and Add Increment 1 MCT

The contents of the counter are shifted left one bit and + 1 is added to
the low-order bit of the counter. If positive overflow of the counter results,

an interrupt request will be set for the counter.

1- 59

COUNTER

[W I

m l
Contents of counter shifted
left 1 bit,

+1 + 1 pulsed into low order
bit.

SHINC and SHANC a r e used for serial t o parallel conversion (converting a
s t ream of bits coming in bit by bit so that it may be accessed as a whole word).

These unprogrammed sequences may occur only at the end of an instruction
sequence. An instruction sequence may be only one instruction such as TC K or
ADS K, o r it may be a se r ies of instructions such as

EXTEND
INDEX K
DCA K.

If a PINC, MINC, etc. request is made while an instruction sequence is still being
processed, it wi l l wait in a circuit until the instruction sequence processing is com-
pleted. The request will then be serviced. These unprogrammed sequences causing
counters t o increment and decrement take place between instruct im sequences so
that no counter will be in danger of changing while a sampling of the counter is being
taken by the instruction processing.

The counters vary in the type of overflow processing which they cause. The
contents of some counters are reset t o zero upon overflow; in other cases, the over-
flow is lost. More frequently, overflow of a counter causes an interrupt.

There are many types of counters other than t imers . A list and partial
description of the counters in the AGC is given in Chart I on Page 64.

c

1. 5 Interrupt Processing

The normal sequence of instruction processing for the current program can
be interrupted for special processing through RUPT's. The two main functions of
RUPT's are t o allow automatic monitoring and t o allow control over intervals of
t ime (AT).

Concerning automatic monitoring, it is often necessary for the system t o
respond immediately t o some external signal or situation. In the absence of inter-
rupts, we would have t o require all programs t o frequently monitor such signals and
situations. To the programmer, this could be easily a very burdensome task. In-
stead, by having direct communication between external signals/conditions and hard-
ware interrupts, external events can automatically lead t o processing by some cen-
tral program. W e thus guarantee that the system will react instantly t o certain
external signals and conditions, and we remove a programmer burden.

Concerning control over intervals of time, we may assume that it will be
necessary for a program t o wai t an interval of time before it resumes processing.
We may also assume that there exist some system functions which regularly (every
AT) must be serviced. By connecting t ime counter overflows t o hardware interrupts,
we can preset the counters s o that after AT they will yield special processing, such
as returning t o a program that wished t o wait AT, or returning t o servicing some
regular system function,

When a RUPT has caused a t ransfer of control from the main program to a

prespecified RUPT location, the states of the central regis ters A, (Z , B,) Q, and
BB may (will) be preserved, if desired, in temporary storage. Upon completion of
the RUPT sequence, a RESUME instruction restores the central regis ters t o their

previous states and returns control t o the previously interrupted program.

An interrupt cannot occur under the following conditions:

1. while a RUPT is currently being processed;
2. while there is overflow in A;

3. while the extracode switch is on (implying that the instruction sequence has

4. if the INHINT command has been given without a subsequent RELINT.

not been processed to completion);

Condition 1 may be repealed by completing a RUPT processing and by giving the
command RESUME. The INHINT command in condition 4 may be rescinded by

. commanding RELINT.

1 .5 .1 The Clock and Scalar

A s we have said above, the AGC clock is composed of two 15-bit adjacent
counters in memory, called TIME 1 and TIME 2, which can keep time for 31 days.
Time 1 is scaled to be accurate to 10 ms. That is, 1 centisecond or 10 m s must
elapse before the low-order bit of TIME 1 can be incremented by 1 (PINC'd).

For greater timing accuracy, we can access SCALER 1 (14 bits long) and
SCALER 2 (the t ime counters in channel 4 and 3, respectively). The low-order
bit of SCALER 1 is incremented by 1 every 1/1600th of a second, A pulse into bit 5
of SCALER 1 not only increments bit 5 but PINC's bit 1 of TIME 1. Thus is TIME 1

incremented every centisecond, or 10 ms. The overflow from bit 14 of SCALER 1

increments bit 1 of SCALER 2, SCALER 2 is thus incremented every 10.24 seconds.
Together, the scalers can keep time for 23.3 hours. Overflow from bit 14 of TIME 1
PINC's bit 1 of TIME 2 and rese ts TIME 1 to + 0. Overflow from bit 14 of TIME 2
is lost. Thus the scalers and TIME 1 and 2 can monitor t ime up to 31 days.

Time counters T3 and T4 a r e incremented in the same manner as T1, but
overflow from bit 14 of these counters t r iggers an interrupt. Thus, t o cause an
interrupt AT from now, as is often necessary, we set a t imer such as TIME3 equal
t o its maximum, plus one (or 1.0) minus AT. An interrupt wil l occur within AT-X
from now with X less than 10 ms. This merely means that T3 may get i ts f i rs t
10 ms increment before a fu l l 10 ms has elapsed because the pulsing of the t imers
is asynchronous to instruction execution time. Time 3 and TIME 4 a r e phased to be
5 ms apart in pulsing. A s long as R U P T processing does not exceed 4 ms, they wi l l
not interfere with each other.

Let us consider a T4RUPT as an example of a programmed interrupt. The
following description may be followed in the diagram of Programmed Interrupts on

I page 1-69. Overflowfrom bit 14 of TIME 4 generates a pulse which wil l set the RUPT
indicator bit for T4RUPT. The hardware, scanning the RUPT indicator bits wil l
service the RUPT of highest priority whose indicator bit is set ,by closing its RUPT
switch. If the INHINT command has been given in the main program, the pulse w i l l
wait at the open INHINT-RELINT switch until the switch is closed by a RELINT
command. When the INHINT-RELINT switch closes, the pulse continues to the final

1-62

switch, The switch is open and the pulse wi l l wait if the extracode bit is on (implying
that an instruction sequence in the main program has not yet been processed to com-
pletion), or if overflow exists in A, or if a RUPT is already in progress, When any
of these conditions is removed (e. g . a RESUME command closes the switch), there
is no further switch to stop the pulse f rom triggering the special processing of the
T4RUPT.

A s in all interrupts, the hardware now causes the contents of the Z Register
t o be aaved in a temporary storage register ZRUPT at location 158 and the contents
of the B Register, containing the next instruction, t o be saved in the temporary
storage regis ter BRUPT at location 178. , The hardware now transfers control f rom
the main program to the location at which the processing caused by a T4RUPT begins.
At this new location, program processing ordinarily wil l save the contents of A, L,
Q, and BB in temporary storage regis ters ARUPT (lo8) , LRUPT (l lg) , QRUPT (U 8) ,
and BBRUPT (168), and procede to fulfill whatever functions a r e required of this
particular RUPT. Afterwards, the program restores A-L-Q-BBRUPT's to A, L, Q,
and BB. The inqtruction RESUME causes the hardware to res tore Z from ZRUPT
and select the contents of BRUPT as the next instruction. Thus, a program which
was once interrupted for TCRUPT processing may now continue as if nothing has
happened,

CHART I
Summary of Counters for CSM & LEM

Note: () Parenthesis indicates use of counter on LEM as different for CSM.

Octal Location

Elapsed Time 10 MS T 2 TIME 2 24

Us e Scaling Name Symbol

25

Fine Time for Clocking I / 1600 Sec. T 6 TIME 6 31
Digital Auto Pilot 10 MS T 5 TIME 5 30
T4RUPT 10 MS T 4 TIME 4 27
Wait - List 10 MS T 3 TIME 3 26
Elapsed Time 10 MS T 1 TIME 1

32 - 34 Relate Stable Member Axis 40" Arc Inner, Middle, CDUX, Y, Z
Outer-Gimbals

Arc (or Radar)
40" Optics Shaft OPTX

Body Axis. Arc {or Radar)

t o Body Axis
35 Relate Line of Sight t o 10" (or 40") Optics Trunnion OPTY

36 I
37 - 41 Measure Change invelocity 5.85 CMISec. X, Y, Z - Stable PIPA, X, Y, Z

Member (or 1 CM/Sec.)
42 - 4 4 (Manually Command a n (1 up to + 3 1) (Rotational Hand Spare in CSM

(or RHCP, Y, R) Attitude Roll, Pitch, Yaw). Controller Inputs
for Pitch, Yaw,
Roll)

45 Up-Telemetry Uplink INLINK

Octa l Locat ion

46

47

50 - 52

53

54

55 - 56

57

60

Symbol

RNRAD

G y r o CTR

11
CDUYCMD

Z

OPTYCMD
~ ~~

OPTXCMD

S p a r e
Out Link

(ALTM)

CHART I continued

Rendezvous & Landing
R a d a r Data
RR Range Low e. 38 ft.
RR Range Low ' 8 X9. 38 f t .
LR VX High 1 +O. 6435 ft. /sec.

RR Range +O. 6278 f t . /sec.
LR VY Y. 2525 ft. /sec.
LR V Z +O. 8571 ft. /sec.

LR Altitude, Low +l. 079 ft.

LR Altitude, High +4.9977 x I . 079 ft .

Out Coun te r f o r Gyros 2 s s Rad.

22 1

Outcounters for CDUs

Outcounter f o r Opt ics 40" (or 160")
(or R a d a r)

Outcounter f o r Optics 160" A r c
(or R a d a r)

C r o s s - L i n k

Us e I

Dr i f t Compensa t i on and F i n e -
Al ign the P l a t f o r m

U s e d f o r Changing the DAC
Error C o u n t e r in CDU

D r i v e s Optics (or Rendezvous
R a d a r) or is u s e d by Digi tal
Autopilot

I
Parallel to Serial L E M and
CSM T e l e m e t r y I
(D r i v e s Inertial Data Disp lay
f o r Al t i tude on LEM)

CHART 2
MEMORY LAYOUT

F HANU NAME SUBTRACT B A N K SIZE PSEUDO ADDRESS 3-BIT BANK

X E r a s a h l r 0 251; 0-377
X Ernsable 0 400-777

0
1

2 X 1:t~asahie 0 1000-1377 """"""_

02

03

00

01

O 2 1 03
04

05

07

10-13
14-17
20- 23

24-27
30-33

30-33
34-37

c

X Erpsah le Switched 1400 & Append 1400- I777 3

4
5

E r a s a h l r Switchrd

2400-2777 Hits 1 1 , 10, 9 in Erasab le Switched
2000-2377 F I h n k

Erasab le Memory
Erasab le Switrhed Srlection Logic 3000-3377
Erasab le Switched

6

I f i 3400-3777 7
"""""" """""""_

FixedIFixed 0 & Use 12-Rit Address 1024 1000-5777 X
in

FixcdlFixed Address Selection 1024 0000-7777

Fixed 2000 & Append

Fixed Address Selection

Redundant Because
Used Above
Fixed 2000

Fixed
F i x 4
Fixed

Fixed
Fixvd

Fixed
F i red

S = 0 Suprr Bank 0
S = 1 Super Hank 1

F15 - Fll in Fixed

Non-Existent Addr r s s

1024 11)OOO- 1 1 7 7 7

1024

I
12000-13177
14000-15777

16000-17777
IO24 20000-21777

I 1
260oo-zi177
30000-37777

40000-47777
50000-57777

60000-67777

70000-77777
110000- 1 I7777

S I 0 1 100000-107777
I

""""""" """

36 Fixed Ranks and 2 Eraunhle Ranks or 36864 i204R = 38812 locations

1- 65

,CHART 3

ADDRESS SELECTION LOGIC

r

1- 6 7

CHART 3 continued

-

1-68

CHART 4
PROGRAMMED INTERRUPTS

102.4 KC RATE

<- SCALER I3 --> <-.SCALER A -+I
(16 bits) (14 bits) I

I f I
D l

I - 23.3 ________3
1 I -1023 ,

0 I
hours 1024 2 ' I

4 1 I I
14 13 12 11 , , , , . 514 3 2 11 I

I I

I-T2-l-Tl"-,
I (15 hita) I (I 5 h i t s)

I 7 31 DAYS-

I I
I I I ;gos I
I I

1 / l f i O O SEC

1 5 1 4 . , . . . , . . . , 3 2 1 1 5 1 4 . . , , . . . , . . 3 2 1

.1 OVER -
FLOW u OVERFLOW

I .1
1/100 SEC or 10 MS """""- "-+ ""7" """" - """"""

1- 6 9

TC
CADR
CADR

three words of memory a r e used just in calling the subroutine while additional
words a r e used for temporary storage.

2 - 1

2 . THE INTERPRETER

2 . 1 Introduction

The Apollo Guidance Computer was designed with the idea that i t s weight,
size, and power supply were costly items. Mission requirements warrant a hard-
ware compromise of a word-length with a minimum of 1 5 bits and an instruction
repertoire of 33 instructions with which to work, The result, therefore, is a small,
fairly simple machine with limited abilities. While the AGC hardware provided for
manipulation of single- and double-precision quantities, frequent need arose to
handle multi-precision quantities, trigonometric operations, vector and matrix
operations, and extensive scalar operations, Thus, to fulfill the system require-
ments planned for the lunar missions within the constraints of hardware limitations,
it is necessary to employ software to expand the capabilities of the AGC.

One method of accomplishing this would be through a collection of subrou-
tines. By creating within the computer a large l ibrary of subroutines which per-
form various higher level arithmetic and language operations, we could save
mission programmers the burden of having to code their complicated operations in
extensive sequences of basic machine instructions, This approach has two dis-

advantages, however. Firs t , since programmers would be calling subroutines
often, a great deal of memory would be taken up merely with the frequently r e -
peated calling sequences, Secondly, much of memory would be taken up a s tempor-
a r y storage for the contents of reg is te rs which programmers needed for later pro-
cessing. For example, to call the subroutine X Y Z which requires two arguments,

X Y Z
ARG 1
ARC 2

Thus, to solve the memory wastage problem caused by frequent use of the
calling sequences, it is expedient to create a n entirely special mnemonic language
in which each mnemonic corresponds to a subroutine. Since, in many cases, the
new mnemonic instructions require no addresses, we design a packed instruction
format which s tores two seven-bit operation codes in one word of memory and any
required address constants in the two following words:

bits 15 14 8 7 1

IOP-CODE 1 I OP-CODE 2 I
 ADDRESS FOR OP-CODE 1 I
ADDRESS FOR OP-CODE 2 J

To interpret our special mnemonic language, we design a central subroutine which
wi l l encode the instruction formats (and use common temporaries) and execute the
required subroutine sequence of AGC instructions.

Each subroutine is constructed such that the combination of single-operation
AGC instructions forms a particular method of doing some higher level operation
(such as obtaining a square root) required frequently by mission programmers.
Thus, programmers have access to procedure-oriented operations without having
to learn various subroutine-calling sequences. We similarly aid engineer-pro-
grammers by naming the mnemonics with the vocabulary oriented to their special-
ized work.

By building a "softwaref' machine with the kind of programming designs
discussed above, we achieve, for programming purposes, a larger, more diversi-
fied computer than the basic AGC. In order to "build" our software machine, we
need to create the components which wil l simulate their hardware counterparts.

MPAC We design a multi-purpose accumulator with seven 15-bit reg is te rs
so that multi-precision quantities may be easily manipulated. The three types of
quantities which may be contained in the accumulator a r e (1) a double-precision
quantity occupying the pair of reg is te rs MPAC and MPAC + 1 with magnitudes up to
1 -2-28; 4 2) a triple-precision quantity occupying the three regis ters MPAC,

MPAC + 1, and MPAC + 2 with magnitudes up to l - f4 ' ; and (3) a column vector
quantity occupying the six regis ters MPAC, MPAC + 1, MPAC + 3, MPAC + 4,
MPAC + 5, and MPAC + 6 representing an X, Y, Z , D P vector.

2- 2

OVFIND An overflow indicator functions similarly to its AGC hardware
counterpart in recording for the current program the fact that an instruction oper-
ation has created overflow. Just as we could test for overflow in an AGC program
with an OVSK instruction, so we use the instructions BOV (Branch on Overflow) and
BOVB (Branch on Overflow to Basic) t o test for overflow in interpretive programs.

ADRLOC The address location regis ter is the interpretive counterpart of
the basic regis ter Z . It is the program counter which contains the next address in
memory from which an interpretive instruction will be taken.

QPRET We need a return address regis ter to serve as the counterpart of
the AGC Q-Register in preserving the location at which we shall resume processing
the main program when we return from a subroutine, Just as TC left in Q the com-
plete address of the next AGC instruction, so the interpretive instruction CALL
leaves in QPRET the complete address of the next interpretive instruction.

X1 and X2 In case a programmer wishes to modify the address portion of
instructions through the use of index registers , we provide two for the purpose. If
an address is indexed, the contents of the specified index regis ter a r e subtracted
from the unmodified address, yielding the net operand address,

S1 and S2 The two step reg is te rs may be used as temporary storage for

single- '3r double-precision quantities, but a r e designed principally to decrement
X1 and X2 in loops.

PUSHLOC We design the push-down location register to function a s a
location pointer for the push-down l is t just a s Z functions a s the program counter
for AGC instructions and ADRLOC for interpretive instructions.

PUSH-DOWN LIST We create a "push-down" l is t as a means of saving
memory by using implied address schemes to specify temporary storage, and as a
means of providing the convenience of having our machine temporarily s tore
quantities without programmer intervention. The list may contain 38 15-bit
quantities with the characteristic that the last quantity to be entered (pushed down)
is the first quantity to be withdrawn (pushed up).

2- 3

Besides these registers, we need to design instruction formats to accommo-
date multi-precision scalar arithmetic, trigonometric operations, and vector and
matr ix operations. Since many of our vector and scalar instructions require no
address, we design the packed format for general instructions discussed above.

We represent memory in three groups rather than in banks. Local erasable
memory corresponds to the general erasable locations 618 to 13778 plus the cur-
rent E-bank. * The low half-memory corresponds to fixed memory banks 4 - 1 7 and
the high half-memory consists of fixed memory banks 21 - 37.

To represent data, we create formats for single-precision quantities,
double-precision quantities, column vectors, and matrices.

Lastly, we must of course design the software equivalent of a central
processing unit to perform the functions of encoding instructions, creating
effective operand addresses, and executing the instructions.

The Assembler creates packed-format mnemonics for interpretive instruc-
tions in the same manner it t ranslates basic machine language into executable code.
Reading an interpretive instruction, the Assembler transforms the first mnemonic
operation code to a 7-bit op-code which it packs into the left hand operand field,
It packs the 7-bit translation of the second op-code into the right hand address
field. If both op-codes take defined addresses, the Assembler transforms the
address of the first op-code to a 15-bit address field directly below the second
op-code. The Assembler translation of the address of the second op-code is placed
directly below the first address.

OP-CODE 1

OP-CODE 3

OP-CODE 2
ADR 1
ADR 2

OP-CODE 4

ADR 3

ADR 4

OP-CODE 5 etc.

*-Soon to be changed such that local E-memory includes a l l the erasable memory.
** Soon to be changed to banks 22 - 37.

2 - 4

.

i .

If a n instruction contains only one operation code and its address, it is coded thus:

OP-CODE 1
ADR 1

At execution time, any address found which does not have an operation code is con-
sidered to be a n address in which data will be stored. Thus, the STORE operation
code and the address appear on the same line:

STORE STORADR

Unfortunately, confusion resul ts when OP-CODE 1 takes an address, OP-CODE 2
pushes up, and a s tore operation is the next instruction. At execution time, this
sequence would appear thus:

OP-CODE 1 OP-CODE 2

ADR 1
STORADR

Since STORADR would be considered the address of OP-CODE 2, the Assembler
requires that the STORADR address be preceded by a STADR code.

OP-CODE 1 OP-CODE 2
ADR 1

STORE STORADR

Thus, the STORADR is not processed as the operand address of OP-CODE 2.

The other situation requiring the use of a STADR code is:

OP-CODE 1 STADR

STORE STORADR

This concludes the introduction to the interpreter. Our discussion wi l l
t rea t the interpreter a s a machine. Bear in mind that we a r e really describing
a program.

2- 5

2 . 2 Memory

A word in interpretive language is composed of 15 binary bits, numbered
from left to right as bit 15, 14, . . . , 1. Bits 14-1 contain the magnitude of a
quantity and bit 15, the sign of the quantity. A sixteenth "parity" bit exists solely
for internally verifying that the hardware is functioning normally.

bits
15 14 1 3 1 2 11 10 9 8 7 . 6 5 4 3 2 1

sign
bit magnitude

2. 2. 1 Data Representation

We allow data to be represented as signed, fractional, single-precision
quantities, double- and triple-precision quantities, column vectors, and matrices.
The arithmetic is fixed-point throughout, with the binary point falling between bits
1 5 and 14.

Thus one word, which forms a Single Precision (SP) quantity, has magni-
tudes up to l-2-14. If bit 15 contains a one, then bits 14-1 a r e the ones comple-
ment representation of the positive magnitude.

bits 15 14 , . , 1

1

positive magnitude.
Ones complement of the

Since we frequently require precision beyond fourteen magnitude bits, a
Double Precision (DP) quantity, which consists of two adjacent words, provides u s
with magnitudes up to 1-2-28. Although the sign in bit 15 of the second word may
occasionally differ f rom the sign of the first word, the sign of the DP quantity is
understood, usually, t o be the sign in bit 15 of the first word. Bits 14-1 of the
first word contain the high-order magnitude bits of the quantity, while bits 14-1 of
the second word contain the low-order magnitude bits.

WORD 1 WORD 2

bits 15 14 . . . 1 15 1 4 . . . 1

High- or der Low-order
magnitude

2- 6

magnitude

A s in Single-Precision words, i f a quantity is negative (i. e., bit 1 5 = 1) then the
magnitude bits represent the ones complement form of the quantity's positive
magnitude,

For greater precision, we provide a Triple-Precision (TP) format which
allows quantities to be defined within 3 words with magnitudes up to l -2 -42 . A s
above, a l l 42 magnitude bits exist in complemented notation if the sign is negative.

WORD 1 WORD 2 WORD 3

, 1 5 , 1 4 l . . . 1 ,, , 1 5 , 1 4 . . . 1 , j 5 , 14 . 0 1 ,
High- order
magnitude

A Vector quantity may
Precision quantities:

DP1

DP2

Middle-order
magnitude

Low-order
magnitude

be represented in six words as three Double-

1 5 14 7
1 5 1 4 . . . 1

I 1
1 5 1 4 '

1 5 1 4 . . . , 1

I I 1

1 5 1 4 . . . 1

2- 7

DP5

DP6

2 . 2 . 2 Instruction Representation

DP8

DP9

Since many of the interpretive instructions take no specified arguments,
we save memory by packing two operation codes in one word and any required
arguments in the two following words:

bits , 1 5 , 1 4 ... 8 , 7 . . . 1 ,
OP-CODE 1 OF-CODE 2

Argument for OP-CODE 1

Argument for OP-CODE 2

Seven bits a r e provided to define 27-1 ~ 1 2 7 different interpretive operations.

bits 7 6 5 4 3 2 1

>

OP- CODE BITS

2- 8

These 1 2 7 operations a r e broadly divided into four classes according to the
configuration in op-code bits 2 and 1. Bit 1 is considered to be the address bit,
with a 1 configuration implying that the operation takes an argument. Bit 2 may be
thought of as the index bit, with a 1 configuration indicating that the instruction may
be indexed.

A 00 configuration in bits 2 and 1 of an op-code implies, therefore, that the
instruction does not take an argument and may not be indexed. Such unary instruc-
tions include the scalar functions for obtaining a square root, cosine, sine, etc.

Conversely, a 1 l2 configuration in bits 2 and 1 of the op-code indicates that
the instruction takes an address and may be indexed. Bit 15 of the argument is
used to specify which index register, X1 or X2, wil l be utilized.

bits 15 14 . . . 1

ARGUMENT BITS

A 0 in bit 1 5 implies that index register 1 (X l) is to be used; a 1 implies that X2
wi l l be used. The Assembler wi l l of course t rea t an argument with a 1 in bit 1 5 as
a negative quantity and wil l represent it in its ones complement form. Thus, if X1
is specified, then the argument is a quantity equal to or greater than 0, and if X2
is specified, the argument is negative. (In fact, it is the positive address + 1,
complemented.)

A 01 configuration in bits 2 and 1 of the operation code implies that the
instruction takes an argument but m a y e b e indexed. Since we therefore do not
need bit 15 of the argument to specify an index register, we use it to distinguish
between having a specified address and requiring an address from the Push-down
List, This is accomplished by giving all operation-code words the characteristic
of having a 1 in bit 15. We then set bit 15 of the arguments whose op-codes fall in
class 01 equal to 0. Thus, i f the Interpreter does not find the specified operand
address with bit 15 3 1, it wil l encounter the next operation code with bit 15 = 1
and wil l know that since the op-code required an argument, it must fetch the argu-
ment from the Push-down List. Arguments in the Push-down List may not be
indexed, since we require the use of bit 1 5 jus t to specify the Push-down List and
it cannot conflict with using bit 1 5 to specify X2.

*

2-0

Since we have exhausted the configurations of 00, 112, and 01 to indicate
general c lasses of operations, we group a l l others under the remaining configu-

. ration of l o2 . These a r e the branching instructions and the index instructions
which modify the contents of the index registers , We may not index an index
instruction since we need the use of bit 15 of the argument to specify which index
register is involved. Furthermore, a s is true of branching instructions a s well,
we have no way of indicating any desired indexing as bit 2 of the op-code fo r this
class is always 1 to signal the class of BRANCHlINDEX instructions.

Since the addresses of s tore operations must be located in erasable
memory, we create a special format which packs a 4-bit s tore operation code and
its 10-bit erasable address into one word:

bits 15 14 . . . 11 1 0 1

0 E-ADDRESS OP-CODE

Thus we may reference erasable memory through location 1777 * (2 10 -1).
8

We categorize interpretive instructions into the following eight more
specific instruction groups:

1) Memory Load and/or Store Instructions
These instructions t ransfer data to and from storage locations.

2) Control Instructions
This group effects sequence changes of instructions.

3) Decision Instructions
These instructions tes t the resul ts of arithmetic operations,

4) Switch Instructions
This group manipulates and tes t s the switches.

* A store instruction format is currently being implemented which wil l provide
for an 11-bit address portion, thus rendering accessible all of erasable
memory. Since this 11th bit is being taken from the op-code field, the op-code
portion will consist only of bits 14, 13, and 12. Because bit 11 has been used
t o indicate the indexable characteristic of some store op-codes, its loss resul ts
in loss of the ability to index the first operand of STODL and STOVL instruc-
tions, and to index both operands of STODL and STOVL instructions at the same
time.

2 - 10

5) Index Register Instructions
These instructions manipulate and test the index register.

6) MPAC Instructions
These instructions manipulate data in the MPAC without affecting
memory.

7) Arithmetic Instructions
These instructions perform arithmetic operations with both memory
and the MPAC.

8) Miscellaneous Instructions
Instructions which do not fall into any of the previous categories.

The characteristics of these instruction categories a r e shown in the charts
starting on page 12. For each instruction, the following information is provided:

1) Whether the instruction takes 1, 2, or no operands;

2) The nature of the operands and how they may be modified; and

3) Significant side effects of the instruction,

This information is discussed under the two headings OPERAND-1 and OPERAND-2.
Under each heading a r e the columns entitled A/C, Pa ::, i, E, and F. An instruc-
tion takesnooperands i f column A / C under OPERAND-1 is blank. An "A" in the
column indicates that the instruction re fers to the contents of an address. A "C"
indicates that the instruction uses the numerical value (i. e. I is a constant) of the
address, A check under any of the following columns indicates that the argument
may or must reference the Push-down List (PI, be indexed (#<), may indirectly
address (i), refer to erasable memory (E), or refer to fixed memory (F) - both
references a r e possible. If column A / C under OPERAND-2 is blank, the instruc-
tion takes 1 operand address at most. Otherwise, the instruction takes two
operands.

Certain side effects of the instructions a r e recorded by the columns MPAC,
OVFIND, ABORT, and SEE. A check under MPAC denotes that the instruction may
al ter the contents of MPAC. Checks under OVFIND and ABORT have similar
meanings. An "R" under OVFIND indicates that this instruction r e se t s the over-
flow indicator (OVFIND).

2-11

-1 a

,

d

c

, "_
,

2 - 12

----"
I

1 r"

I

2- 1 3

r

OP-CODE OPERAND - 1

AIC P Q i E F

SWITCHES (0-119) Cont.

I iVGO A

BONINV A

BOFINV

INDEX REGISTERS

t I

OP-CODE

MPAC MANIPULATIONS

PDDL

PDVL

SIGN

ABVAL

UNIT

VDEF

SIN, COS

ASIN, ACOS

OPERAND - 1

OP-CODE
I

OPERAND
rn T~ MPAC MANIPULATIONS Cont

VSL (1-8)

VSR (1-8)

ARITHMETIC CODES I I l l

VAD

DSU

BDSU

,

I "_

,I

I c -1 I
-i "_

c

2 - 1 7

2 . 2 . 3 Memory Layout

Since our "machine" is actually a program, it must occupy memory. Loca-
tions 60008- 76728, most of bank some of bank l, and some FixedlFixed
memory a r e reserved for the Interpreter itself. Other a r e a s of memory a r e set
aside for use by the Interpreter and no other programs. Five VAC (Vector
Accumulator) Areas, which a r e five Push-down Lists each requiring 43 registers ,
occupy memory locations 4318 through 7778. Registers in locations l o o 8 through
137 may be used exclusively by interpretive programs for temporary storage.
Five se ts of 1 2 special "hardware" regis te rs such as MPAC, ADRLOC, PUSHLOC,
and QPRET a r e located in addresses 1408 through 2648 for simultaneous use by a
maximum of five interpretive programs.

8

We represent memory by the three groups called "local erasable, ' I "high
memory, ' I and ''low memory. I ' Local erasable memory consists of non-switchable
erasable locations 61 to 13778 plus the current E-bank we a r e in (see footnote,
page 2-4) . Since it is assumed that all calculations can be accomplished within non-
switchable erasable and one E-bank, interpretive programs wil l change
E-Banks. Fixed interpretive memory is composed of two "half-memories. Low
memory is composed of fixed-switchable banks 48 through 178 and high memory,
of fixed-switchable banks 218 through 378.

8

Low High

Half- Memories

(The cross-hatched area may not be used by interpretive programs.)

2 - 18

Variables may be stored anywhere in erasable memory locations other than
0-778, and programs may be stored anywhere in high or low memory. Because
the address of a branching instruction has 15 bits for definition, interpretive pro-
grams may branch to any other program anywhere in memory. Programs stored
in low memory, however, may refer to constants stored only in low memory,
while programs in high memory must re fer to constants stored only in high
memory.

2 - 19

I N l Z R P R n l V E OP-COD(SElECTlON LOGIC

Q v START

1; OPERATOR" TURN ON

"UNARY

INDICATOR

(NEXT)
OP-CODE
BITS 7-1.

LEAVE
INTERPRETIVE

MODE
YES ,
EXIT

I I "
TURN OFF

NEEDED"AND
''ARGUMENT

"INDEX" INSTRUCTION:

TURN ON
" A R G I M N T

NEEDED''
INDICATOR.

R l T H M T l C TURN O f F
INSTRUCTION "INDEX" INDICATOR

BlTS2, I

WITH N O N - I N W E D
ADDRESS

I No

i
TURN O N

"ARGUMENT
NEEDED" INDICATOR.

"INW' INDICATOR.
TURN OFF

BITS 2, 1

OR INDEXING
BRANCHING

INSTRUCTION

INSTRUCTION WITH
A R I T H M I C

TURN O N

"14-817 ARGUMENT
"INDEX" AND

(BITS 2, 1 * 112)

rh BRANCH
INSTRUC-

TURN ON " W B I T

NEEDED'INDICATOR
A R G U M N l

TURN ON "15-BIT
ARGUMM

NLEDED'\NDICATOR

2 - 2 0

2 . 3 Addressing

Although our general instruction format provides a full 15-bit word-length
for the definition of operand addresses, we ra re ly have more than 14 bits available
with which to define an argument. As we discussed under Instruction Represen-
tation, the class of indexed instructions which takes a n argument (bits 2 and
1 = 11 2) uses bit 15 of the argument to specify which index register will be used.
Thus, only 14 bits a r e left fo r defining magnitude. Also, the c lass of indexable
but unindexed instructions which takes an address (bits 2 and 1 = 01) uses a zero in
bit 15 of a specified argument to indicate that an address is not required from the
Push-down List, Push-up arguments are, therefore, indicated by a 1 in bit 15,

found in the op-code word that lies where the address would otherwise have been.

-

To summarize then, only addresses of branching instructions may use a
full 15-bit word for definition. All other arguments must be contained with 14
magnitude bits and thus reference but that part of memory (low o r high) in which
the current interpretive program resides.

Class 0 l2 , which consists of arithmetic instructions which take non-indexed
arguments, may address any location in local erasable o r in the half-memory from
which the instruction was taken. Thus, if the E-Bank is set to 6 for this inter-
pretive program and we wish to execute the instruction STORE X at location
170008, X must be located in general erasable 618-13778 or in E-Bank 6

(30008- 33778).

Class l o 2 , which contains branching and index-manipulating instructions
taking non-indexed operands, may address a l l of interpretive memory with the
branching instructions. The index-manipulatirzg instructions may refer to erasable;
some use their addresses as operands.

Class 112# which consists of indexed arithmetic instructions requiring
arguments, may address any location in local erasable o r in the half-memory in
which the instruction is located. The arguments of instructions in th i s class wi l l
of course be modified by subtracting the contents of either index register 1 or 2 to
yield net operand addresses. For example, if the E-Bank has been set to 4 prior
t o processing the interpretive program, and if the instruction DAD X, 1 is located

at the high half-memory address 576438, then the net operand address X, minus
the contents of index register 1, must be located in erasable locations 618- 1 3778,
in E-Bank 4 (20008-2377 1, or in high memory (banks 218-378).

8

2 - 2 1

Since an argument limited to defining an address within 14 bits lacks space
to re fer to locaticns in high memory (octal locations 51024-107777), when a

. program enters the Interpretive Mode, the configuration of bit 15 (1 for high and 0
for low) is stored in the INTBITl5 register and wil l be appended to all 14-bit
addresses. Thus if INTBITl5 contains a 0, we a r e programming in low memory
and need no more than 1 4 bits to define operands. If INTBITl5 contains a 1, we
are operating in high memory, Since the Interpreter appends the INTBIT15 con-
figuration of 1 to all high memory addresses, we require only the low-order 14 bits
to specify any high memory address.

Because our sequence-changing or branching instructions may refer to
both half-memories, we may not modify their arguments through index registers.
We use, instead, a system of indirect addressing. If the address of a branching
instruction re fers to erasable, the contents of this erasable location a r e construed
to be the address of the next interpretive instruction, If this address is also
located in erasable, however, we take - its contents to be the address of the next
instruction. We continue in this manner until we find a fixed-memory address,
which is processed as the next instruction. Thus if a t erasable location X sits the
quantity 13078, then the instruction GOT0 X resul ts in transferring control to the
instruction located at the erasable address 1 3078, a s long a s the contents of 13078
is an address in fixed memory.

2- 2 2

ADDRESS SELECTION LOGIC

0 START

ADDRESS

I N
ADD B I T 15

FROM INTBlT

0 1 FROM INTBlT

ARGUMENT

ADDRESS

" I R E S S ADDRESS + P. D.
BASE FlXLOC

- - A D D R W D

DIVIDE INTO
E-BANK +

10 BITS. E"EMORY7
A U I

t "I

2- 2 3

2 . 4 The Dispatcher (INTERPRETIVE CPU)

The Dispatcher is the software Central Processing Unit of the Interpreter.
Originally, a programmer must use the instruction TC INTPRET to gain access to
the Dispatcher. If an interpretive program is interrupted, however, for the basic
processing of a higher priority job, for instance, then we may later return to the
Dispatcher via the EXECUTIVE program with a TC DANZIG call.

The Dispatcher looks at the first word in an interpretive program and
decides whether it contains an operation code o r an address. If the word contains
two operation codes, it divides the word into i t s two 7-bit components and sends the
first to the op-code selection logic. If the op-code requires an address, the Dis-
patcher looks at the next word, sending it to the address selection logic if it is an
address. If it is not an address and the op-code requires an argument, the Dis-
patcher fetches one from the Push-down List and sends that to the address
selection logic, The Dispatcher finally executes the instruction, If the first word
had contained a second op-code, it would have been treated in the same manner.
When an instruction has been executed, the Dispatcher is ready to process the
next word.

Not shown nor previously discussed is the concept of Mode. At all t imes
the Interpreter must know i f it is dealing with single-, double-, or triple-pre-
cision operators, or vector o r matrix operators, These modes a r e determined by
the particular op-code which is being processed. Some op-codes set the mode
while others require that the mode be set by previous op-codes. Actually, the
programmer need not usually concern himself with the mode, as during his pro-
gramming the mode wil l logically behave itself in accordance with his logical
needs. There follows a chart which indicates the behavior of the mode according
to the sundry interpretive instructions, page 2-29.

,

2 - 2 4

”

C P U - D I S P A T C H E R C O N T R O 1 - T C INTPRET

Y

1 4

EXECUTE GET lST (NEXT)

I N S T R U C T I O N
W O R D V I A
AORLOC

Y

EXECUTE

I N S T R U C T I O N

\ OPERATOR ? /

D I V I D E WORD

A N D A D D R E S S .
INTO “STORE ” -

2 - 2 5

2 . 5 The Push-Down List

A s we mentioned in the Introduction, the Push-down List is a means of
saving memory by using implied rather than direct addresses to reference tempo-
r a r y storage. It a lso aids the programmer in allowing the machine itself to tempo-
rar i ly s tore quantities. The list may contain 38 15-bit quantities with the distinc-
tinction that the last quantity entered (pushed down) is the first to be withdrawn
(pushed up). For example, we would process the equation x = ab t cd - ef, as
follows ;

x a a b t c d - ef

Operation Push-Down List after Operation

1) Form the product ab - ab
and push it down.

2) Fo rm the product cd

and add to it ab f rom
the Push-down List.

3) Push-down the sum ab t cd
and form the product ef.

4) Subtract the product ef f rom
the Push-down List. Store
the difference in x.

-
e . .

...

ab + cd

i . . .

X = ab + cd - ef

The Push-down Location Register functions as a pointer for the Push-down
List in the same manner as the Z-Register ac ts as a pointer for AGC instructions.
Initialized at 0 by the EXECUTIVE program, the contents of PUSHLOC a r e
increased by 1 as MPAC quantities a r e stored and pushed down word by word into
the f ish-down List. Thus, we would process the equation

a2 t b2
c2 t d2

X =

a s follows:

2-26

*

1) Form a and push it down. 2

2) Form b , and add to it a 2 2

from the Push-down List.
Push down the sum.

3) Form c and push that down. 2

4) Form d and add to it the last
quantity entered in Push-down

List,

2

5) Divide the sum of c .C d into 2 2

Push- down List. Store quotient
in x.

2 a - -
. . .

a 2 -f- b2

. . .

2

a2 $. b2
C

. . .

c2 3. d2

. * .

e . .

a 2 + b2
c2 d2

X '

PUSH-
LOC

PUSH-
LOC

PUSH-
LOC

PUSH-
LOC

PUSH-
LOC

n

When d is taken from the Push-down List in order to be added to c', a 2

"push-up" operation is performed which causes the contents of the location at
which FUSHLOC is pointing to come out of the Push-down List and into the MPAC.
After each push-up operation, the contents of PUSHLOC a r e decreased by one.
The contents of PUSRLOC may be set or changed by a programmer with the
instruction SETPD X (set PUSHLOC) which wil l cause the contents of PUSHLOC to
be set equal to X (normally 0 C X <4210) so as to point to a slot in the Push-down
list.

Whenever an op-code requires an argument and one is not specified, the
last quantity entered into the Push-down Lost is automatically pushed-up into
MPAC to be used as the operand. We may push down quantities from the MPAC,
however, only with 3 instructions:

PUSH

PDDL

PDVL

The contents of MPAC a r e stored in the
Push-down location whose address is in
PUSHLOC.

The contents of MPAC are stored in the
Push-down List. MPAC is then loaded
in DP with the quantity at X.

The contents of MPAC a r e stored in the
Push-down List. MPAC is then loaded
with the vector at X.

Quantities in the Push-down List never physically move up or down; only
the pointer PUSHLOC moves as a result of having its contents increased or
decreased.

Each of 5 interpretive jobs has a 43-word work area associated with it.
Within the work area, or VAC area, is the Push-down List in locations O-3710,
the two index reg is te rs X1 and X2, the two step reg is te rs SI. and S2, and the
QPRET register. All 43 reg is te rs a r e available as push-down area if the pro-
grammer does not need X1- QPRET.

VAC AREA

s1
s2

QPRET

The following instructions affect the mode of an operand. Wherever perti-
nent, the mode is given for: meaningful mode as input to the op-code (mode-in);

what mode the op-code operates under (op-mode); and, how the mode is left upon
completion of the op-code (mode-out).

2 - 2 8

In s t ruc t ion Mode-In Op-Mode Mode-Out

V LOA D
Y.4 D
SIGN
MXSC

CGOTO
TLOA D

D L 0 4 D
v/sc

SLOAD

S S P
P D D L

MXV
P D V L

C C A L L
VXM
NORM
DMPR
DDV
BDDV
VAD

vsu
BVSU

DOT
vxv
V P R O J
DSU
BDSU

DP, T P
-

DP, TP, V

-
-
-

DP, TP, V

-
-
-
V
-
-
V

DP, TP
DP, T P
DP, T P
DP, TP

V
V
V
V
V

V

DP, TP
DP, TP

V
T P
D P

V, D P

S P
T P
D P

V, D P

SP
SP
D P

224TRIX
V

S P
MATRM

SP
DP
D P
D P
V
V
V

V
V
V

D P
DP

I I n s t r u c t i o n Mode- In Op-IMode Mode-Out

D-4 D

DAMP
S E T P D
VSLI-8,
VSR1--8

SL1-4,
SR 1-4

SL1--4R,
SR 1-4R

SIN, cos,
ASIK, ACOS
SQRT, DSQ,
DCOMP,
ABS

ROUND
VDEF

VSQ
UNIT
VCOMP
I B V A L

DP, TP

DP, TP

-
-

-

D P , TP

D P , TP

DP, TP
DP, T P

V
v
v
V

D P
D P
S P

-
-
-

V

DP. T P

-
-

D P -

1

2 . 6 The Instructions

As we stated under Instruction Representation, we divide the 127 interpretive
instructions into 8 categories according to what the instructions generally do. A s
each group is discussed, it w i l l be helpful to re fer to the instruction chart between
pages 2 - 11 and 2 - 18 for a concise summary of the characteristics of each instruction set.

2 . 6 . 1 Memory Load and/or Store Instructions

This group of instructions merely t ransfers data to and from storage loca-
tions.

STORE X t ransfers the double-precision, triple-precision, o r vector con-
tents of the Multi-Purpose Accumulator (MPAC) to the E-memory location specified
by X, where X may be an indexed or direct address. A double-precision MPAC
quantity would be stored in X and X + 1; a triple-precision quantity in X, X + 1 , and

X 3. 2; and a vector quantity in X through X + 5.

S, D, T, or V-LOAD'instructions a r e al l concerned with loading the MPAC
with some quantity stored in location X. We have the option of loading MPAC with
a single-precision quantity (SLOAD X), a DP quantity (DLOAD X), a T P quantity
(TLOAD X), or a vector quantity (VLOAD X). If we load MPAC with an SP quantity,
we clear the two MPAC regis te rs following the regis ter containing the SP number to
allow for la ter arithmetic computations. Similarly, we load a D P quantity into MPAC
such that the regis ter following the two containing the DP number is cleared. Loading
MPAC with either an SP o r DP quantity se ts the store mode to DP. TLOAD and
VLOAD simply load MPAC with a T P o r vector quantity and set the s tore mode to
T P or vector, respectively. The location X from which a quantity is loaded may be
a direct, indexed, or push-up address for a l l load instructions except SLOAD, which
requires that X be either direct o r indexed.

It is often convenient t o combine the abilities to s tore and load into one opera-
tion. We therefore have an instruction which s tores the DP, TP, or vector quantity
located in MPAC into memory locations starting at X and reloads MPAC with the
quantity a t location Y. After storing MPAC, we may load it with either a DP quan-
tity (STODL X) in T P form so that the first and second reg is te rs in MPAC contain

(- Y)

2 - 3 0

I "

I
I -

C

the DP quantity and the third is cleared of its previous contents, or we may reload
it with a vector quantity (STOVL X). Reloading MPAC with a D P quantity se t s the

s tore mode to DP while reloading it with a vector s e t s the s tore mode to vector.
The memory address X may be either indexed o r direct, and the address Y may be
indexed, direct, o r push-up.

(- Y)

We also combine storing operations with the capacity to call a subroutine:
STCALL X. Without changing the store mode, the DP, TP , o r vector quantity in

MPAC is stored into memory starting at location X, and the subroutine at Y is called
while the return address of the location af ter the second address is left in the QPRET
register. Both the storage address X and the address Y f rom which we call a sub-
routine must be direct addresses.

- Y

A specialized use of the s tore operation is the function of the instruction

"
STQ X which s tores the contents of the QPRET regis ter into one 15-bit word a t the
erasable location X. We would want to save QPRET in this manner if we wished to
call a routine within a subroutine. X would have to be an erasable location since we
would la ter reference it with a GOTO X t o return from a secondary subroutine,
via indirect addressing.

2. 6 . 2 Control Instructions

These instructions contain the branching operations which bring about changes
in the sequence of instructions. All of the following instructions with the exception
of EXIT and RVQ take a direct address. If any direct address except one taken by
RTB, which branches to basic language, re fe rs to erasable memory, it is interpreted
- -
-

\\ as an indirect address. See Addressing: Indirect Addressing, page 2- 2 2 .

As we mentioned in the Introduction, the return address regis ter QPRET is

the interpretive counterpart of the Q-Register in the AGC. It contains the address
a t which we shall continue processing upon return from a subroutine, Further de-
tails of its use will be discussed with the instructions below.

The branching instruction GOTO X initiates a sequence change which w i l l

cause instruction processing t o be resumed at the address X. The contents of QPRET
a r e unaffected, GOTO is a right-hand operation code, meaning that if it is in the
left-hand position of an op-code pair, the right-hand op-code must be blank. A

2 - 3 1

variation of this instruction is the Computed GOTO, o r (CGOTO X,) which is an in-

dexed GOTO instruction. The contents of the erasable location X a r e added to the
' fixed address Y . Instruction execution wil l resume at whatever location is referenced

(- Y)

by the sum Y +S(X). Like GOTO, CGOTO is a right-hand op-code.

The CALL X instruction calls the subroutine beginning at location X and
leaves a return address in QPRET. The Computed Call (CCALL X) is the indexed

form of CALL, causing a branch in instruction execution to the location referenced
by the sum Y + S(X). CCALL differs f rom CGOTO in that CCALL leaves a return
address in QPRET.

(- Y]

Two interpretive instructions provide for return from a subroutine initiated
by a CALL (or CCALL) instruction. If the subroutine itself contains no CALL or
CCALL instructions, a Return Via QPRET (RVQ) wil l effect a resumption of instruc-
tion execution at the address left in QPRET. If, however, a subroutine is to be
called with a CALL or CCALL instruction in the midst of processing another sub-
routine, QPRET must be stored temporarily with an STQ,X as discussed above.
Upon completion of subroutine processing, a GOTO X wil l provide a return to the
current program.

9

If, for some reason, a transition from interpretive to basic language is de-
sired, a Return to Basic (RTB X) instruction wil l cause basic instruction execution
to begin at the fixed memory location X. The exit from the subroutine via a TC Q
wil l re turn control to the Interpreter. ::

If, however, a more prolonged departure f rom the Interpreter is necessary
than that implied with an - RTB, an Exit f rom Interpreter instruction (EXIT) is avail-
able. If MJT is in the left-hand position of a pair of op-codes, basic instruction
execution begins at the word af ter the EXIT instruction. If EXIT is in the right-
hand position of a pair of op-codes, basic instruction execution begins at the word
following the last address used by the left-hand op-code. EXIT is a right-hand
operation code.

2. 6 . 3 Decision Instructions

This group consists of the branching instructions which cause sequence
changes upon testing the resul ts of arithmetic operations.

9~ TC DANZIG i s always a safe return from basic, if Q is not to be trusted.

2- 3 2

Within th i s category is a subgroup of instructions which effects a GOTO X if

the T P quantity in MPAC is greater than, equal to, or l e s s than 0. The Branch Plus
instruction (BPL X) causes a GOTO X if the T P number in MPAC is greater than or
equal to 0. Branch Zero (BEE X) branches to X if the MPAC T P quantity is equal
to 0, and Branch Minus (BMN X) branches to X if the T P quantity is less than 0.
Otherwise, in all these cases, no operation occurs.

"

"

By testing the single-precision quantity in MPAC for a configuration equal
to 0, we may cause a GOTO X with a Branch High Order Zero instruction (BHIZ,).
If the SP quantity in MPAC is unequal to 0, no operation occurs.

In the Introduction, we briefly mentioned the existence of an OVFIND register
which records overflow caused by a number of instructions. Two interpretive
instructions interrogate the state of the regis ter for use by the current program:

- BOV X Branch an Overflow
BOVB X Branch an Overflow to Basic

No operation occurs if the overflow indicator is off; i. e . , the contents of OVFIND
a r e equal to + 0. If the contents of OVFIND a r e equal to 1 , however, OVFIND is
reset to + 0 and m V becomes the instruction GOTO X while BOVB becomes the
instruction RTB X, where X is a fixed-memory address (for BOVB only). The
Executive Program initializes OVFIND to + 0 at the beginning of every new inter-
pretive job.

2 . 6 . 4 Switch Instructions

Since many on-off indicators a r e required by Apollo lunar missions, four
erasable locations a r e set aside to contain 120 switches numbered 0-119D. Four-
teen instructions test and manipulate the switches. Every instruction but 3 effects
two levels of operation: f i rs t , it may set the switch to 1 , clear it to 0, invert it
(0 becomes 1; 1 becomes 0), o r cause no-operation; secondly, it may branch if the
switch was initially on, branch if the switch was initially off, branch uncondition-
ally, or cause no operation.

The fourteen instructions easily divide themselves into pairs.

" SET X se ts switch X (to 1) while SETGO Z sets switch X and branches to Y.
Y -

If Y references erasable memory it is construed as an indirect address.

2 - 3 3

BONSET X and BOFSET X set switch X and branch to Y if X was initially on
Y - Y -

or off, respectively.

CLEAR Xand CLRGO X set switch X and CLRGO branches unconditionally
Y

to Y.
-

BONCLR & and BOFCLR X clear switch X and branch to Y if X was initially
Y - Y -

on or off respectively.

INVERT and INVGO invert switch X and INVGO branches unconditionally to Y .

BONINV X and BOFINVX invert switch X and branch to Y if X was initially
Y -

Y - Y -
on or off respectively.

" BON X and BOF X branch to Y if X is on or off respectively.
- Y - Y

Two address words a r e required by a l l of the above instructions except SET,
CLEAR, and INVERT.

2. 6. 5 Index Register Instructions

Two 15-bit index regis ters (X1 and X2) may be used for simple arithmetic
computations with single-precision numbers a s well as for address modification.
The number of the index register (1 or 2) involved with an index register operation
follows any of the 10 different instructions and is separated from the instruction by
a comma, AXT, 1 for example re fers to X1 while L T , 2 indicates that X2 is in-
volved. Six different operations load and store the two index registers.
"

AXT (1, 2) X loads the single-precision constant X into the specified index ---
register X1 o r X2. Similarly the instruction AXC (1, 2)X loads the complement
of the SP quantity X into the specified index register. Examples of a single-preci-
sion constant would be an interpretive address or an octal o r decimal constant.
Under no condition a r e the contents of X loaded into X1 o r X2 by an &T or m.

LXA (1, 2) X loads the specified index regis ter with the contents of the e ras-
able regis ter X, while LXC (1, 2) X, which loads the specified index register with
the complement of the contents of erasable location X can complement the index
regis ter with=, 1, or u, 2- 152,

2- 34

.

=A (L 2) simply s tores the contents of the specified index register in
erasable regis ter X. XCHX (1, 2)X exchanges the contents of the specified index
regis ter with the contents of the erasable location X.

C

Three different instructions modify the contents of index registers.

INCR (1, 2)X adds any single-precision constant X to the contents of the
specified index register ,
- XAD (1 ,) X a d d s the contents of the erasable location X to the contents of

the specified index register , and
- XSU (1,)s subtracts the contents of erasable location X from the contents

of the specified index register ,

Besides the two index registers which accompany every interpretive job a r e
two 15-bit step reg is te rs (S1 and S2) which may be used a s temporary storage but
which a r e principally designed to count. Along with the index registers, they a r e
used to count with the TM instruction: TIX (L 2) s (Count and branch on index).
If a difference grea ter than zero may be obtained by reducing the contents of the
specified index register (X1 and X2) by the contents of i t s corresponding step regis-
ter , then the reduced value replaces the index and the instruction GOT0 X is executed.
If the difference is equal to or less than zero, no operation occurs. Thus, loop-cont
t ro l may be initiated by pre-setting a step- register to some decrement and using a
T S at a loop-decision point in a program.

2 . 6 . 6 MPAC Manipulation Instructions

These instructions manipulate data in the Multi-Purpose Accumulator with-
out affecting memory.

We combine two of the Loading instructions with a push-down operation.

" PDDL X pushes down the DP, TP, or vector quantity located in MPAC into the
push-down list and reloads MPAC with the D P quantity located at X. The register
following the two containing the D P number is cleared, and the store mode is set
DP. The memory address X may be direct, indexed, or push-up. W e may vary
the above instruction by reloading MPAC with a vector quantity (PDVL X), thereby
setting the s tore mode to vector.

2- 3 5

The instruction SIGN X is a D P sign test, where X must reference erasable
memory. If the C P quantity at location X and X + 1 is equal to o r greater than zero,

, no operation occurs, If the D P quantity is less than zero, however, and if the s tore
mode is DP o r TP, the T P quantity in MPAC is replaced by i ts complement. If the
DP quantity is less than zero and the store mode is vector, the vector contents of
MPAC a r e replaced by their complement.

The scalar function D P Square Root (SQRT) causes the T P quantity in MPAC
to be replaced by the square root of the DP quantity in MPAC; i. e . , the initial con-
tents of MPAC a re normalized, the DP square root of the normalized number com-
puted, and that result unnormalized in accordance with the original normalizing
shift, so that MPAC + 2 has marginal significance. Receiving an argument less

than -IOw4 causes an abort, The DP Square instruct im (DSQ) causes the T P quantity
in MPAC to be replaced by the DP quantity in MPAC, squared. The Square of
Vector Length instruction (VSQ) causes the square of the absolute value of the vector
quantity in MPAC to become a T P MPAC quantity, thus changing the store mode to
DP. If the absolute value of the vector quantity in MPAC is greater than or equal
to 1, we set OVFIND and leave an overflow-corrected result in MPAC.

" "

ROUND TO D P (ROUND) causes the T P quantity in MPAC to be rounded to
DP so that the f i rs t two regis ters in MPAC contain the DP number and the third
regis ter is cleared. If overflow occurs, OVFIND is set and the overflow-corrected
result 3. 0 is left in MPAC.

A Triple-Precision Complement instruction (DCOMP) causes the T P quantity
in MPAC to replaced by i ts complement. Similarly, the Vector Complement instruc-
tion (VCOMP) replaces the vector quantity in MPAC with i ts complement.

The Triple-Precision Absolute Value instruction (A B S) causes the triple
precision quantity in MPAC to be replaced by i t s absolute value. The Vector Length
instruction (ABVAL) replaces the absolute value of the vector quantity in MPAC with
a T P quantity, thereby changing the store mode to DP. Furthermore, the vector
quantity in MPAC, squared, replaces the D P contents of push-down location 34D.
If the absolute value of the vector in MPAC is less than 2'21, then the result is zero.
If the absolute value of the MPAC vector quantity is greater than or equal to 1 ,
OVFIND is set to indicate an unspecified result. The Unit Vector Function instruction
(UNIT) causes the vector in MPAC to be replaced by the quotient of the MPAC vector
divided by twice the absolute value of the MPAC vector. Also, the absolute value

.
2-36

of the MPAC vector quantity, squared, replaces the contents of 34D in D P form,
and the absolute value of the MPAC vector replaces 36D in D P form, OVFIND is
set if the absolute value of the vector quantity is less than 2 - 2 1 or if it is grea te r
than o r equal to 1, in which case the result is incorrect.

Vector Define (VDEF) pushes up for Vy and again for Vz so that the DP
quantity in MPAC, the DP quantity in Vy and the D P quantity in Vz becomes the
vector contents of MPAC, setting the s tore mode to vector.

The scalar function DP Sine (SINrSINE1) replaces the T P quantity in MPAC
with the product of 0. 5 and the sine of (2n multiplied'by the DP quantity in MPAC).
The scalar function DP Cosine (COS[COSINE]) replaces the T P quantity in MPAC
with 0. 5 multiplied by the cosine of (the product of 27r and the DP contents of MPAC).

The DP Arc-sine instruction (ARCSINrASINl) replaces the T P quantity in
MPAC with 2n multiplied by the Arc-sine of twice the D P contents of MPAC. This
is the inverse of the SIN function. Receipt of an argument greater than 0. 5001 in
magnitude causes an abort. The DP Arc-cosine function (ARCCOSrACOS7) replaces
the TP contents of MPAC with multiplied by the Arc-Cosine of twice the D P con-
tents of MPAC. This is the inverse of Cos. As with ASIN, receipt of an argument
whose magnitude exceeds 0. 5001 induces an abort.

1

The T P contents of MPAC may be shifted right or left 1 through 4 t imes by a
SCALAR SHIFT instruction. SCALAR SHIFT RIGHT (a through m) replaces
the T P quantity in MPAC with the product of the MPAC T P quantity and 2-J where j
may be 1 through 4. Shifting a quantity right one place is obviously the equivalent
of dividing the quantity by 2. SCALAR SHIFT LEFT (m through 4) replaces the T P
contents of MPAC with the product of the T P quantity in MPAC and Z 9 where j equals
1 , 2, 3, or 4. Of course, shifting a quantity left one place is the equivalent of mul-
tiplying the quantity by 2 . If significant bits a r e lost, we set OVFIND but leave the
overflow-corrected result a s the T P contents of MPAC. We have the option of
rounding with the above instructions, thus creating the instructions Scalar Shift Right
and Round (SRIR, "" SR2R, SRJR, SR4R) in which the T P quantity in MPAC multiplied
by 2-j , where j equals 1-4, is rounded to a DP number, X, and is followed by a word
cf + 0, which replaces the TP contents of MPAC. Likewise, w e have a Scalar Shift
Left and Round instruction (SL1R - SL48) which rounds the T P MPAC quantity mul-
tiplied by 2'j to a DP number, X, and replaces the T P contents of MPAC with X
followed by a + 0 word.

The General Vector Shift instruction (VSR X) replaces each component of the

vector quantity in MPAC by its original value multiplied by a 2-x and rounded to D P
form, If X is an indexed address and the resulting address is negative, execute a
VAL - Xinstead. X must be greater than zero and less than 29 i f it is a direct ad-
d re s s and i f indexed, it must be greater than -128 and l e s s than 128. Similarly,
the General Vector Shift Left instruction (VSL X) replaces each component of the
vector in MPAC by its original component multiplied by 2 . Upon overflow of any
component, OVFIND is set and the overflow-corrected result is left in MPAC. If
the address is indexed and the resulting address is negative, execute a V J - X in-
stead. X must be greater than 0 and l e s s than 28 i f i t is a direct address.

X

General Scalar Shift Right and Left instructions exist which take direct o r
indexed addresses. General Scalar Shift Right (SR X) replaces the T P quantity in
MPAC with the MPAC T P quantity multiplied by 2-X-where X is greater than -42 and
less than 42. X can be negative only i f the address was indexed. X must be greater
than 0 and l e s s than 42 i f it is a direct address, and i f indexed, Xs must be greater
than -128 and l e s s than 128. Xs is the stored address before index modification; in
al l cases , X is the net address. When overflow occurs, OVFIND is s e t and the over-
flow-corrected result is left in MPAC. General Scalar Shift Left (SL X) has the
same format as SR X except that the T P quantity in MPAC multiplied by 2x r e -

places the MPAC T P quantity. Again we have the option to include the capacity to
round in the above instructions. General Scalar Shift Right and Round (SRR X) is

the same as SR except that the T P quantity in MPAC multiplied by 2-' is rounded

-

"

to a D P number which replaces the T P contents of MPAC, with a word equal to
+ 0 following the D P quantity. X must be greater than 0 and less than 29 i f i t is a
direct address. General Scalar Shift Left and Round (SLR X) is the same as S&

except that the T P quantity in MPAC multiplied by Z X is rounded to a D P number
which replaces the T P contents of MPAC with a word equal to + 0 occupying the
third register in MPAC. X must be greater than 0 and less than 14 i f i t is a direct
address.

Vector Shift Right (1- 8) may also include the capacity to round quantities.
Vector Shift Right and Round (VSRl"VSR8) replaces each component of the MPAC
vector by its original value multiplied by 2 - j (where j = 1-8) and rounded to a D P
quantity. Vector Shift Left (VSL1-VSL8) replaces each component of the vector in
MPAC by its original contents multiplied by Z q where j 1- 8. If overflow occurs
in any component, OVFIND is set and the overflow-corrected result is left in
MPAC.

2- 38

In situations where we know w e have enough bits t o define the resul t of an
arithmetic computation, we still may not know whether we will have any-and how
many-leading zeroes. Instead of shifting the result left once and testing OVFIND
ourselves, we use the instruction SCALAR NORMALIZE (NORM) to give u s maxi-
mum precision by shifting the MPAC T P quantity left N number of t imes. Provided
the T P quantity is not zero, the triple-precision contents of MPAC a r e shifted 2 N

until greater than o r equal to 0. 5. The complement of the number of shifts-left (-N)
is stored in the specified operand location X. The T P MPAC quantity multiplied
by 2N replaces the TP contents of MPAC. If the T P quantity in MPAC is 0, how-
ever, -0 goes into the specified operand location X and the tr iple precision contents
of MPAC a r e left unchanged,

2 - 3 9

2 .7 Arithmetic Instructions

This group of instructions uses operations involving both memory locations
and MPAC. As before, the programmer must keep t rack of the imaginary point in
his computations since he is manipulating his quantities in the fixed point accumu-
lator format with the binary point falling between bits 1 5 and 14.

An ADD instruction enables us to add the quantity at memory location X to
the contents of MPAC, replacing the previous contents of MPAC with the new sum.
We have the option to add in DP, TP, or vector form. D P Add (DAD X) replaces
the DP contents on MPAC with the sum of the MPAC quantity and the DP quantity at
X, which may be a direct, indexed, or push-up address. If overflow results,
OVFIND is set, and the overflow-corrected result is left in MPAC. T P Add
(TAD X) replaces the triple-precision contents of MPAC with the sum of the MPAC
quantity and the T P quantity at location X. Similarly, Vector A (VAD X) replaces
the vector in MPAC with the sum of the MPAC vector and the vector starting at
location X. As with DAD, both TAD and set OVFIND upon overflow and leave
the overflow-corrected result in MPAC.

The subgroup of Subtract instructions reduces the contents of MPAC by the
quantity at location X. In all arithmetic forms, OVFIND is set on overflow and the
overflow-corrected result is left in MPAC. DP Subtract (DSU X) reduces the DP
contents of MPAC by the D P quantity in memory location X, where X may be direct,
indexed, or pushed-up. BDSU X, the DP Subtract From or DP Backwards Subtract
instruction is a very convenient instruction which reduces the D P quantity stored at
memory location X by the DP contents of MPAC and s tores the difference in MPAC.
Thus, if we wished to replace the contents of MPAC, which a r e 2, by the contents
of X2 = (l o l o) minus the quantity in MPAC, we may simply subtract 2 from 10 and
store 8 in MPAC. Otherwise, we would have to push-down MPAC and bring the
contents of X2 into MPAC before we could calculate a difference of 8.

Vector Subtract (VSU X) reduces the vector in MPAC by the vector at X,
leaving the vector difference in MPAC. BVSU X, or Backwards Vector Subtract,
se rves the same convenience as BDSU in allowing us to subtract the vector con-
tents of MPAC f rom the vector at X, storing the difference in MPAC. A s usual,
overflow with either or BVSU causes OVFIND to be set and the overflow-
corrected result to be stored in MPAC.

The group of Multiply instructions replaces the contents of MPAC with the
quantity at X multiplied by the quantity in MPAC. DP Multiply (DMP X) stores the

2 -40

product of the DP contents of MPAC and the DP quantity at X in triple-precision
form, We have a rounding option with this instruction, giving u s DMPR X, D P
Multiply and Round which rounds to DP the product of the DP contents of MPAC
and the DP quantity at X. The rounded DP product is followed by a word equal t o
+ 0 replaces the T P contents of MPAC.

-

The Vector Dot Product instruction (DOT X) s tores in T P form the product
of the vector in MPAC and the vector at X, thus setting the s tore mode to DP.
Upon the overflow of any component, OVFIND is set and the overflow-corrected
result is stored in MPAC.

Under VXSC X, or Vector Times Eicalar, if the initial s tore mode is Vector,
each component of the vector in MPAC is multiplied by the DP quantity at X, with
the rounded products replacing their respective components of the MPAC vector.
If the initial s tore mode is DP or TP, it is changed to Vector, and each component
of the vector at X is multiplied by the DP quantity in MPAC to form the vector in
MPAC, as above.

DDV X (DP Divide By) and BDDV X (Backwards DP Divide) a r e our two
divide instructions. If the absolute value of the DP contents of MPAC is l e s s than
the DP quantity at X; i. e., if the divisor is larger than'the dividend, then DDV X
divides the DP contents of MPAC by the D P quantity at X to yield a D P quotient
which will be stored along with a word equal t o i- 0 in MPAC. If overflow results,
OVFIND is set and * 0.99999999 is left in the DP contents of MPAC. The Back-
wards Divide is the same as DDV X, except that the DP quantity at X will be the
dividend, and the D P contents of MPAC wil l be the divisor, as long as the D P
quantity in MPAC is la rger than the DP quantity at X.

The Vector Divided by Scalar instruction (V/SC X) divides each component
of the vector in MPAC by the DP quantity at X if the s tore mode is se t to Vector,
Each of the DP quotients replaces its respective vector components of MPAC. If
the initial s tore mode is DP or TP, it is changed to Vector, and each component of
the vector at X is divided by the DP quantity in MPAC to form an MPAC vector.
If overflow occurs in any component, the operation is terminated with OVFIND set
and unspecified resul ts left in MPAC.

.

The Vector Cross Product (VXV X) replaces the vector in MPAC with the
product of the MPAC vector and the vector at X. If overflow results, OVFIND is
set, leaving an overflow-corrected result in MPAC.

2-41

vPROJ X (Vector Pro'ection) causes the vector contents of MPAC to be r e-

placed by the product of V(MPAC) V(X)l and V(X). OVFIND is set if overflow
results, and the result obtained with overflow-corrected 1 V(MPAC) V(X)J is left
in MPAC.

" I

The Matrix Pre-Multiplication by Vector instruction (VXM X) replaces the
vector in MPAC with the product of h (MPAC) M(X)]. OVFIND is set on overflow,
leaving an overflow-corrected result in MPAC.

The last of the arithmetic codes is MXV X, the Matrix Post-Multiplication
by Vector instruction. This causes the p r o a (X) V(MPAC)I to replace the
vector contents of MPAC. A s usual, OVFIND is set on overflow, leaving an over-
flow-corrected result in MPAC.

2 -42

2 . 8 Miscellancous Instructions

Under this group a r e classed the four instructions PUSH, SETPD, Ssp, and
STADR.

PUSH causes the DP, TP, or Vector quantity in MPAC to be pushed down
into the Push-down List.

The instruction SETPD (Set PUSHLOC) is discussed on page 2- 2 7 . SSP X
Y

(Set Single-Precision) replaces the single-precision contents of X with quantity
Y. Y may be any arithmetic, logical o r address constant.

STADR, a s we discussed in the Introduction, distinguishes a positive store
code from a positive operand address by causing it to be assembled in comple-
mented form. At execution time, it is recognized as a "STADR'D" code, recom-
plemented and executed as a STORE X.

2-43

c E - 2052

DISTRIBUTION LIST

Internal

4

M. Adams (MIT/GAEC)

J. Alexshun

R. Battin

P. Bowditch/F. Siraco

R. Boyd

R. Byers

G, Cherry (10)

N. Cluett

E. Copps (30)

R. Cr isp

J. Dahlen

J. DeLisle

E. Duggan

J. B. Feldman

P. Felleman (5)

S. Felix

J. Flanders (MIT/KSC)

J. Fleming (5)

J. Gilmore

F. Grant

Eldon Hall

T. Hemker (MIT/NAA)

D. Hoag

F. Houston

L. B. Johnson

M. Johnston

A. Kosmala (10)

A. Laats

L. Larson

S. Laquidara (MIT/FOD)

J. Lawrence (MIT/GAEC)

J. Lawson

T. M. Lawton (MIT/MSC)

D. Lickly

F. Martin (10)

G. Mayo

James Miller (10)

John Miller

J. Nevins

J. Nugent

M. Petersen

R. Ragan

J. Rhode

D. Russell

R. Scholt en

N. Sears (10)

J. Shillingford

W. Shotwell (MIT/AC)

W. Stameris

J. Suomala

W. Tanner

M. Trageser

R. Weatherbee

R. White

W. Widnall (5)

R. Woodbury

W. Wrigley

Apollo Library (2)

MIT/IL Library (6)

External:

W . Rhine (NASA/MSC) (2)
NASA/RASPO (1)
AC Electronics (3)

Kollsman (2)
Raytheon (2)
Major H. Wheeler (AFSC/MIT) (1)

MSC :

LRC :

GAEC:

NAA:

(18 + 1 R)
National Aeronautics and Space Administration
Manned Spacecraft Center
Apollo Document Distribution Office (P A 2)
Houston, Texas 77058

(2)
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virgin ia
Attn: Mr . A. T. Mattson

(3 + 1 R)
Grumman Aircraft Engineering Corporation
Data Operations and Services, Plant 25
Bethpage, Long Island, New York
Attn: Mr . E. Stern

(18 + 1 R)

North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California
Attn: Apollo Data Requirements

Dept. 096- 340, Bldg. 3 , CA 99

NAA RASPO: (1)
NASA Resident Apollo Spacecraft Program Office
North American Aviation, Inc.
Space and Information Systems Division
Downey, California 90241

ACSP RASPO: (1)
National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
Dept. 32-31
AC Electronics Division of General Motors
Milwaukee 1 , Wisconsin
Attn: Mr . W. Swingle
Defense Contract Administration (1)
Service Office, R
Raytheon Company
Hartwell Road
Bedford, Massachusetts 01730
Mr. S. Schwartz (1)
DOD. DCASD, Garden City
605 Stewart Avenue
Garden City, L. I . , New York
Attn: Quality Assurance
M r . D. F. Khols (1)
AFPRO (CMRKKA)
AC Electronics Division of General Motors
Milwaukee 1 , Wisconsin 53201

. I

	AGC PROGRAMMING
	1 1 Introduction and Memory Outline
	1.2 Addressing
	1.4 Instructions
	1.5 Interrupt Processing
	2.1 Introduction
	2.3 Addressing
	2.4 The Dispatcher (INTERPRETIVE CPU
	2.5 The Push-Down List
	2.6 The Instructions

	2 7 Arithmetic Instructions
	3 IN SEPARATELY BOUND VOL
	Erasable Switched3400-3777
	Fixed

