SCIENCE

NAVIGATION
 CSM DIGITAL AUTOPILOT LM DIGITAL AUTOPILOT LUNAR LANDING ORBITS

COASTING FLIGHT NAVIGATION

The purpose of Coasting Flight Navigation is to estimate spacecraft position and velocity. The estimates are computed using orbital mechanics and navigation sightings to improve the accuracy of the orbital mechanics. The navigation sightings are incorporated into the position and velocity estimates using a modified
optimal estimator that is characterized by the following computational procedure.

1. Extrapolate the state vector ahead to time t_{n}, using the best estimate of the state at time $\mathrm{t}_{\mathrm{n}-1}$.

$$
\hat{\underline{x}}_{n}^{\prime}=10_{n-1} \mid \hat{\underline{x}}_{n-1}
$$

2. Fxtrapolate the error covariance matrix in a similar manner.

$$
\left|E_{n}^{\prime}\right|=\left|c_{n-1}\right|\left[\left.E_{n-1}| | c_{n-1}\right|^{T}+\left|U_{n-1}\right| \quad\left(U_{n-1}=\text { process noise }\right)\right.
$$

3. Compute the optimal gain matrix.

$$
\left\{\left.\mathrm{K}_{\mathrm{n}}^{*}\left|=\left|\mathrm{E}_{\mathrm{n}}^{\prime}\right|\right| \mathrm{H}_{\mathrm{n}}\right|^{\mathrm{T}}\left|\mathrm{H}_{\mathrm{n}} \mathrm{E}_{\mathrm{n}}^{\prime} \mathrm{H}_{\mathrm{n}}^{\mathrm{T}}+\mathrm{V}_{\mathrm{n}}\right|^{-1} \quad\left(\mathrm{~V}_{\mathrm{n}}=\text { measurement noise }\right)\right.
$$

4. Calculate a measurement vector for time t_{n}.

$$
\hat{\underline{\hat{x}}}_{\mathrm{n}}^{\prime}=\left\{\mathrm{H}_{\mathrm{n}} \mid \hat{\underline{x}}_{\mathrm{n}}^{\prime}\right.
$$

5. Update the estimate of the state vector, using the extrapolated state $\hat{\underline{X}}_{n}^{\prime}$, the optimal gain $\left\{\kappa_{n}^{*}\right\}$, the extrapolated measurement $\hat{\underline{Y}}_{n}^{\prime}$, and the actual measurement at time t_{n}, \underline{Y}_{n}.

$$
\hat{\underline{x}}_{n}=\hat{\underline{x}}_{n}^{\prime}+\left[\hat{K}_{n}^{*} \mid \underline{\underline{Y}}_{n}-\hat{\underline{Y}}_{n}^{\prime}\right)
$$

6. Update the error covariance matrix in a similar manner.

$$
\left|E_{n}\right|=\left|E_{n}^{\prime}\right|-\left[K_{n}^{*}| | H_{n}| | E_{n}^{\prime} \mid\right.
$$

This procedure is illustrated by the following block diagram.

Basic Recursive Procedure of Kalman Filterin

MODIFICATIONS TO THE BASIC KALMAN FILTER

The basic Kalman filter outlined on the previous page was modified for use in Coasting Flight Navigation in the following aspects.

1. Instead of extrapolating the error covariance matrix, $[\mathrm{E}]$, the square root of the error covariance matrix is extrapolated. This insures that the covariance matrix will always be positive semidefinite and avoids the usual difficulties that occur when computation techniques yield a negative error covariance matrix. The square root of the error covariance matrix is called the error transition matrix [W].
2. The state vector and error transition matrix are extrapolated by integrating their respective second order differential equations via the coasting integration routine. This is done in lied of the state transition approach and eliminates the necessity of computing a new time varying transition matrix for each measurement interval.
3. The update of the state vector after each measurement must first be displayed and approved by the astronaut before it is incorporated into the state vector. This eliminates the possibility of an erroneous update due to an improper mark.
4. Only one measurement is incorporated at a time. This reduces the dimension of the filter equations and changes the matrix inversion in the optimal gain equation to a scalar division.

STATE VECTOR DEFINITION
The state vector for coasting flight navigation is defined as the deviation of the spacecraft position and velocity from a reference conic.

$$
\text { State Vector }=\underline{\mathrm{x}}(\mathrm{t})=\left[\underline{\frac{\delta \mathrm{r}}{\delta \mathrm{v}}}\right]=\left[\begin{array}{c}
\delta \mathrm{r}_{\mathrm{x}} \\
\delta \mathrm{r}_{\mathrm{y}} \\
\delta \mathrm{r}_{\mathrm{z}} \\
\delta \mathrm{v}_{\mathrm{x}} \\
\delta \mathrm{v}_{\mathrm{y}} \\
\delta \mathrm{v}_{\mathrm{z}}
\end{array}\right]=\left[\begin{array}{c}
\text { Deviations from } \\
\text { conic position }
\end{array}\right]\left[\begin{array}{c}
\text { Deviations from } \\
\text { conic velocity }
\end{array}\right]
$$

Deviations from the reference conic are assumed to be Gaussian distributed with a known mean and variance. The mean is estimated via the precision integration routines or obtained from MSFN. The varance is given by the error covariance matrix, which is precomputed and entered via erasable data load.
 TERMINOLOGY

The following table lists the correlation between basic Kalman filter terminology as used on the previous page and Coasting Flight Navigation terminology to be used on the following pages.

Celestial navigation TERMINOLOGY	KALMAN FILTER TERMINOLOGY	CORRELATION
$\underline{\mathrm{b}} \quad=\underset{\text { geometry vector of }}{\text { dimension " } \mathrm{D} \text { " }}$	$[\mathrm{H}]=\underset{\text { matrix }}{\text { measuremt }}$	$\underline{\mathrm{b}}^{\mathrm{T}} \Rightarrow[\mathrm{H}]$
$\underline{\omega}=\begin{aligned} & \text { weighting vector of } \\ & \text { dimension " } \mathrm{D} \text { " } \end{aligned}$	$\left[K_{n}^{*}\right]=\underset{\text { matrix }}{\text { optimal gain }}$	$\underline{\omega} \Rightarrow\left[K_{n}^{*}\right]$
$[\mathrm{W}]=\underset{ }{\text { error transition matrix }} \begin{aligned} & \text { of dimension " } \mathrm{D} \times \mathrm{D} \text { " } \end{aligned}$	$\begin{aligned} & {[\mathrm{E}]=} \text { error covariance } \\ & \text { matrix } \end{aligned}$	
$\underline{\mathrm{x}}=$ state vector	$\underline{\mathrm{x}}=$ state vector	$\underline{x} \Rightarrow \underline{x}$
$\bar{\alpha}^{2}=\underset{\text { error variance (scalar) }}{\text { a priori measurement }}$	$\text { [V] }=\begin{aligned} \text { covariance of the } \\ \text { measurement noise } \end{aligned}$	$\bar{\alpha}^{2} \Rightarrow[\mathrm{~V}]$
$\delta Q=\underset{\text { (scalar) }}{\text { measurement deviation }}$	$\left(\underline{\mathrm{Y}}_{\mathrm{n}}-\hat{\underline{Y}}_{\mathrm{n}}^{\prime}\right)=\underset{\text { residual }}{=}$	${ }^{\delta Q} \Rightarrow\left(\underline{Y}_{n}-\hat{\underline{\underline{Y}}}^{\prime}\right)^{\prime}$

The Coasting Integration routine is a standardized subroutine used to integrate spacecraft state vectors to specific times. It is used during each of the three navigation programs (P20-Orbital Navigation, P22-Rendez vous Navigation, and P23 Cislunar Midcourse Navigation) to extrapolate the state vector and crror transition
matrix ahead to the measurement time by direct numerical integration of matrix ahead to the measurement time by direct numerical integration of their differential equations.

STATE VECTOR EQUATIONS
The basic equation describing spacecraft motion is

where

$$
\begin{aligned}
& \underline{\underline{r}}=\text { spacecraft position vector } \\
& \underline{\mathrm{v}}=\text { spacecraft velocity vector } \\
& \underline{\mathrm{a}}_{\mathrm{d}}=\text { disturbance acceleration vector } \\
& \mu=\text { primary planet gravitation constant }
\end{aligned}
$$

When the disturbance, ad, is small, then Encke's method of differential accelerations can be used to solve Equation 1. Encke's method divides spacecraft motion into two parts: (1) conic or osculating orbital mo-

$$
\underline{\mathrm{r}}=\underline{\mathrm{r}}_{\text {conic }}+\underline{\partial r}
$$

$$
\underline{v}=\underline{v}_{\text {conic }}+\underline{\dot{o}} \underline{y}
$$

where

$$
\underline{\mathbf{r}}, \underline{v}=\text { spacecraft position and velocity }
$$

$\underline{\underline{r}}_{\text {conic }}, \underline{\mathrm{Y}}_{\text {conic }}=$ conic position and velocity
$\underline{\hat{r}}, \underline{i} \mathbf{y}=$ deviations from conic position and velocity
Substitution of Equations 2 and 3 into the basic equation of motion, Equation 1, yields differential cquat cons for the conic position and velocity and the deviation from conic position and velocity.
Conic Motion Equation

$$
\left[\begin{array}{l}
\dot{\underline{\underline{x}}}_{\text {conic }} \\
\dot{\underline{\dot{v}}}_{\text {conic }}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{\mu}{\mid \mathrm{r}_{\mathrm{c}_{\text {conic }}{ }^{3}}} & 0
\end{array}\right]\left[\begin{array}{l}
\underline{r}_{\text {conic }} \\
\underline{v}_{\text {conic }}
\end{array}\right]
$$

The conic motion equation is solved explicitly using Kepler's subroutine. The deviation equation is solved by by direct numerical integration and is called the "state equation"; it can be written in the forn $\underline{\dot{x}}=[F] \underline{x}+\underline{C}$

ERror transition matrix equations

The accuracy of the state vector estimation process is characterized by the error conerince matrix which expresses the mean squared error of each state vector element in matrix form
state vector estimation error

$$
\underline{e}=\underline{\hat{x}}-\underline{x}
$$

- estimation error
$\hat{x}=$ estimated state vector
$\underline{x}=$ actual state vector
corarinnce matrix

$$
[\mathrm{E}]=\left\langle\underline{e}^{\mathrm{T}}\right\rangle
$$

$$
\begin{aligned}
& \mathrm{G}=\frac{\mu}{\mathrm{r}_{\text {conic }}^{5}}\left[{ }^{3} \underline{\mathrm{r}}_{\text {conic }} \underline{\underline{c}}_{\text {conic }}^{\mathrm{T}}-\mathrm{r}_{\text {conic }}{ }^{2}[\mathrm{I}]\right] \\
& \text { here }
\end{aligned}
$$

If the state vector is described by Equation 6, then the error covariance matrix is described by

$$
\dot{\mathrm{F}}=\mathrm{FE}+\mathrm{EF}^{\mathrm{T}} \text { (neglecting process noise) }
$$

and the crror transition matrix is described by

$$
\dot{\mathrm{W}}=\mathrm{FW}
$$

where

$$
\left|\mathrm{ww}^{\mathrm{T}}\right|=[\mathrm{F}]
$$

Fquation 10 is the differential equation describing the error transition matrix and is solved by direct numerical integration.

TIME DOMAIN EQUATIONS	STATE TRANSITION extrapolation	NUMERCIA L INTEGRATION EXTRAPOLATION
$\begin{aligned} & \underline{\dot{x}}=\mathrm{F} \underline{\underline{x}}+\underline{\mathrm{C}} \\ & \dot{\mathrm{E}}=\mathrm{FE}+\mathrm{EF}^{\mathrm{T}} \\ & \dot{\mathrm{~W}}=\mathrm{FW} \end{aligned}$	$\begin{aligned} & \hat{\underline{x}}^{\prime}=\{\delta\}_{\underline{\hat{x}}} \\ & E^{\prime}=\delta E_{\delta} T \end{aligned}$	$\begin{aligned} & \hat{\underline{x}}^{\prime}=\hat{\hat{x}}\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} F \underline{\hat{x}} d t \\ & w^{\prime}=w\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \mathrm{FW} d t \end{aligned}$

MEASCREMENT ENCORPORATION ROUTIN:

 The Measurement Incorporation routine, like the Coasting Incegration routine, is used in all three navigation programaIts purpose is to compute a state vector update based on the information obtained from the navigation -ighting. The procedure for updating the state vector can le divided into three parts.

1. Compute a geometry vector, \underline{b}, based on the state vector and type of navigation sighting that is beit made.
2. Compute a state vector update
3. Update the state vector and error transition matrix if the astronaut approves of the incorporation

GEOMETRY VECTOR
The geometry vector relates the measurement, \hat{Y}_{n}^{\prime}, to the state vector, $\hat{\underline{x}}_{n}^{\prime}$, according to Equation 11

$$
\begin{equation*}
\hat{\mathrm{Y}}_{\mathrm{n}}^{\prime}=\underline{\mathrm{t}}^{\mathrm{T}} \hat{\underline{\hat{x}}}_{\mathrm{n}}^{\prime} \tag{11}
\end{equation*}
$$

where
$\hat{\mathrm{Y}}_{\mathrm{n}}^{\prime}=$ the expected measurement (a scalar)
$\underline{\mathrm{b}}=$ geometry iector ($\mathrm{n} \times 1$ column seetor)
$\hat{X}_{n}^{\prime}=$ state vector extrapolated to the measurement time via the Coasting Integration routince.
The state vector for coasting night navigation is a deriation from a reference (osculating) orbit and the measurcmen variable can also be thought of as a deviation from a reference or nominal. Thus the measurement vector can be determined by taking the terivative of the measurement with respeet to the state vector. This can be illustrated for the case of cislunar midcourse navigation, where the navigation sighting is the angle between a known near planetary landmark and a star as shown below

$$
\mathrm{r}_{\mathrm{L}} \cos \mathrm{~A} \triangleq \underline{\mu}_{\mathrm{S}}^{\mathrm{T}} \underline{\mathrm{r}}_{\mathrm{L}}
$$

Taking partials

$$
\begin{aligned}
& \delta r_{L} \cos A-r_{L} \sin A \delta A=\underline{\mu}_{S}^{T} \delta \underline{\underline{r}}_{L} \\
& \delta A=\left(\delta r_{L} \cos A-\mu_{S}^{T} \underline{r}_{L} L^{/ / r} L^{\sin A}\right.
\end{aligned}
$$

By definition

$$
\delta r_{L}{ }^{r} L^{\text {a scalar }}=\underline{I}_{L}^{T} \delta \underline{r}
$$

therefore

$$
\delta r_{L}=\frac{\underline{r}_{\mathrm{L}}^{\mathrm{T}}}{r_{\mathrm{L}}} \delta \underline{\underline{r}}_{\mathrm{L}}=\mu_{\mathrm{L}}^{\mathrm{T}} \delta \underline{r}_{\mathrm{L}}
$$

and
$\delta A=\frac{\underline{\underline{L}}_{\mathrm{L}}^{\mathrm{T}} \delta \underline{\underline{r}}_{\mathrm{L}} \cos \mathrm{A}-\underline{\underline{H}}_{\mathrm{S}}^{\mathrm{T}}{ }^{\delta \underline{r}_{\mathrm{L}}}}{\mathrm{r}_{\mathrm{L}} \sin \mathrm{A}}$
$\delta A=\frac{\left(\underline{\underline{u}}_{\mathrm{L}}^{\mathrm{T}} \cos \mathrm{A}-\underline{\underline{u}}_{\mathrm{S}}^{\mathrm{T}}\right) \delta \underline{\underline{r}}_{\mathrm{L}}}{r_{\mathrm{L}} \sin \mathrm{A}}=\frac{\left(\underline{\underline{E}}_{\mathrm{L}}^{\mathrm{T}} \cos \mathrm{A}-\underline{\mu}_{\mathrm{S}}^{\mathrm{T}}\right)\left(-\delta \underline{\underline{r}}^{\prime}\right)}{\mathrm{r}_{\mathrm{L}} \sin \mathrm{A}}$
$\underline{b}=\frac{\underline{\mu}_{\mathrm{S}}-\underline{\mu}_{\mathrm{L}} \cos \mathrm{A}}{r_{\mathrm{L}} \sin \mathrm{A}}=\frac{1}{r_{\mathrm{L}}}$ Unit $\left.\mu_{\mathrm{S}}-\underline{\mu}_{\mathrm{L}}\left(\mu_{\mathrm{S}} \cdot \mu_{\mathrm{L}}\right)\right)$

The geometry vector can also be determined by geometrical relationship between the state vector and the type of measurement. Since \underline{b} is different for cach navigation program, its derivations are presented on the following pages which describe the individual navigation program

COMPUTE THE STATE VECTOR UPDATE

The computation of the state vector update encompasses Steps 3, 4, and 5 of the basic Kalman filtering procedure.

1. Compute the optimal gain matrix

$$
\begin{equation*}
\left|K_{n}^{*}\right|=\left|E^{\prime} H^{T} ;\left|H E^{\prime} H^{T}+V\right|^{-1}\right. \tag{12}
\end{equation*}
$$

or, in the terminology of coasting flight navigation,

$$
\begin{align*}
\underline{\omega} & =\left[\mathrm{w}^{\prime} \mathrm{w}^{\prime} \underline{b}\right]\left[\underline{b}^{\mathrm{T}} \mathrm{w}^{\prime} \mathrm{w}^{\prime} \mathrm{T} \underline{\mathrm{~b}}+\bar{\alpha}^{2}\right]^{-1} \\
& =\frac{\mathrm{w}^{\prime} \underline{z}}{\left(\mathrm{z}^{2}+\bar{\alpha}^{2}\right)} \tag{13}
\end{align*}
$$

where

$$
\underline{\underline{\omega}}=\text { optimal gain vector }
$$

$$
w^{\prime}=\text { error transition matrix extrapolated forward by the Coasting Integration routine }
$$

$$
\underline{z}=w^{\prime T} \underline{b} \text { (a vector used to simplify computations) }
$$

$z^{2}=\underline{z}^{T} \underline{z}=\underline{b}^{T} w w^{\prime} \underline{T} \quad$ (analogous to $\mathrm{HE}^{\prime} \mathrm{H}^{\mathrm{T}}$)
$\bar{\alpha}^{2}=$ measurement noise covariance (an erasable data load or fixed memory constant which depends on which navigation program is in use)
$\left(\mathrm{z}^{2}+\bar{\alpha}^{2}\right)$ is a scalar and eliminates the necessity of matrix inversion
2. Compute the expected measurement based on the extrapolated state vector.

$$
\hat{\mathrm{y}}_{\mathrm{n}}^{\prime}=\underline{b}^{\mathrm{T}} \underline{\mathrm{x}}_{\mathrm{n}}^{\prime}
$$

where
$\hat{\mathrm{Y}}_{\mathrm{n}}^{\prime}=$ expected measurement from current navigation sighting
b $=$ geometry vector
$\hat{\underline{\hat{x}}}_{n}^{\prime}=$ extrapolated state vector
3. Compute the state vector update

$$
\underline{\delta x}=\underline{\omega} \delta Q=\underline{\omega}\left(\mathrm{Y}_{\mathrm{n}}-\hat{\mathrm{Y}}_{\mathrm{n}}^{\prime}\right)
$$

where
$\underline{\hat{j} \underline{x}}=$ state vector update
$\underline{\boxed{w}}=$ optimal weighting vector
$\delta Q=$ measurement residual
$\mathrm{Y}_{\mathrm{n}}=$ information from current navigation sighting
$\hat{\mathrm{Y}}_{\mathrm{n}}^{\prime}=$ expected measurement
UPDATE THE STATE VECTOR AND ERROR TRANSITION MATRIX
Before the state vector update, $\underline{\delta x}$, is incorporated into the state vector, it is displayed to the astronaut for his approval. This is to prevent erroneous tracking data, such as improperly identified stars or landmarks,from being used to update the state. When astronaut approval has been issued, the state vector and error transition matrix are updated as follows:
UPDATE THE STATE VECTOR

$$
\hat{\underline{x}}_{\mathrm{n}}={\underline{\varepsilon_{n}^{\prime}}}^{\prime}+\underline{\delta x}
$$

where
$\underline{\hat{x}}_{\mathrm{n}}=$ best estimate of state at time t_{n}
$\hat{\hat{X}}_{n}^{\prime}=$ state vector extrapolated ahead from time t_{n-1} to t_{n}
$\underline{\underline{\delta} \mathrm{x}}=$ state vector update
update the error transition matrix
The equation governing updating of the error covariance matrix is given in Step 6 of the basic Kalman filtering procedure $\left|\mathrm{E}_{\mathrm{n}}\right|=\left|\mathrm{E}_{\mathrm{n}}{ }^{\prime}\right|-\left|K_{\mathrm{n}}{ }^{*}\right|\left|H_{\mathrm{n}}\right|\left|\mathrm{E}_{\mathrm{n}}^{\prime}\right|$

This can be rewritten in terms of coasting flight navigation terminology

$$
\left[w^{T}\right]=\left[w^{\prime} w^{\prime} T\right]-\underline{w} \underline{b}^{T}\left[w^{\prime} w^{\prime} T\right]
$$

Equation 18 can be separated to obtain an equation for updating only the error transition matrix [W] instead of the
product [WW] . product [ww^{T}].

$$
|w|=\left[w^{\prime}\right]-\frac{\underline{\omega} \underline{z}^{T}}{1+\sqrt{\frac{\bar{x}^{2}}{z^{2}+\bar{\alpha}^{2}}}}
$$

where
$[\mathrm{w} \mid=$ updated error transition matrix
$\left|W^{\prime}\right|=$ extrapolated error transition matrix
$\underline{\omega}=$ optimal gain vector
$\underline{z}=w^{\prime} \underline{\mathrm{b}}_{\underline{b}}$
$z^{2}=\underline{z}^{T} \underline{z}$
$\bar{\alpha}^{2}=$ measurement noise covariance

SUMMARY

The total spacecraft position and velocity is kept current through extrapolation, updating, and rectification. Rectification is a process used to redefine the reference trajectory by adding the deviations, $\underline{\delta r}$ and $\underline{\delta \mathrm{v}}$, to the osculating elements, $\underline{\underline{r}}$ conic and $\underline{\mathrm{y}}$ conic, thereby redefining the osculating orbit and reducing the deviation state vector to zero

$$
\left[\begin{array}{l}
\underline{\mathrm{r}}_{\text {conic }} \\
\underline{\mathrm{y}}_{\text {conic }}
\end{array}\right]=\left[\begin{array}{l}
\underline{\mathrm{r}}_{\text {conic }} \\
\underline{\mathrm{r}}_{\text {conic }}
\end{array}\right]+\left[\begin{array}{l}
\underline{\delta} \underline{\gamma} \\
\underline{\delta v}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
\underline{\delta} \underline{r} \tag{21}\\
\underline{\delta} \mathrm{v}
\end{array}\right]=\left[\begin{array}{l}
\underline{0} \\
\underline{0}
\end{array}\right]
$$

This process is used to preserve the efficiency of Encke's method and is illustrated below.

INITLALIZNG THE COASTING FLIGHT NAVIGATION PROGRAMS
Each of the navigation programs is initialized prior to use by specify ing the measurement variance, $\bar{\alpha}^{2}$, and the initial error transition matrix, |W|. The measurement variance gives a confidence level for the navigation instruments by specifying the variance of all the error sources associated with the instrument. The W matrix gives a confidence level
for the initial estimate of the state vector by specifying the mean squared error in the position and velocity estimates. [w]s initialized as a diagonal matrix which says that initially the position and velocity errors are independent.

MEASUREMENT VARIANCE	InITIAL 'W" MATRIX
CISLuNar midcourse navigation routine	
$\begin{aligned} \overline{\mathrm{a}}^{2} & =\operatorname{Var}_{\mathrm{Trun}}+\operatorname{Var}_{\mathrm{I}} / \mathrm{rcLL}^{2} \\ & =\{0.05 \mathrm{mr})^{2}+\frac{1 \mathrm{mm1}^{2}}{\mathrm{r}_{\mathrm{CL}}^{2}} \end{aligned}$	$[w]=\left[\begin{array}{c:c} w_{m}^{*}{ }^{*} & 0 \\ \hdashline 0 & w_{m v}^{*} \end{array}\right]$
Orbital navigation routine	
$\begin{aligned} \bar{\alpha}^{2} & =\operatorname{var}_{\mathrm{SCT}}+\operatorname{var}_{\mathrm{IMU}} \\ & =(1 \mathrm{mr})^{2}+(1.0 \mathrm{mr})^{2} \end{aligned}$	$\left[w_{1}=\left[\begin{array}{c:c:c} w_{i r}^{B r} & 0 & 0 \\ \hdashline \hdashline w_{2} r & 0 \\ \hdashline 0 & 0 & w_{2}^{r} \end{array}\right]\right.$
RENDEZVOUS NAVIGATTON PROGRAM (LEM)	
range measurement $\bar{\alpha}^{2}=\operatorname{Max}\left\{\operatorname{var}_{\mathrm{R}}^{*}, \frac{\mathrm{var}_{\mathrm{R} \text { min }}^{*}}{\mathrm{r}_{\mathrm{CL}}^{2}}\right\}$ range rate measurement $\bar{\alpha}^{2}=\operatorname{Max}\left\{\dot{\mathrm{r}}^{2} \operatorname{varar}_{\mathrm{v}}^{*}, \operatorname{var}_{\mathrm{V} \text { min }}^{*}\right\}$ shaft angle measurement $\bar{\alpha}^{2}=\operatorname{var}_{\beta}^{*}+\operatorname{VarimU~}=\operatorname{Var}_{\beta}^{*}+(1.0 \mathrm{mr})^{2}$ trunnion angle measurement $\bar{\alpha}^{2}=\operatorname{vara}_{\theta}^{*}+\operatorname{Var}_{\mathrm{IMUU}}=\operatorname{Var}_{\theta}^{*}+(1.0 \mathrm{mr})^{z}$	FOR RENDEZVUUS FOR LUNAR SURFACE NAVIGATION $\left[W_{1}\right]=\left[\begin{array}{c:c} w_{k r}^{*} & 0 \\ \hdashline 0 & w_{k v}^{*} \end{array}\right]$
RENDEZVOUS NAVIGATION PROGRAM (CSM)	
optical tracking $\begin{aligned} \bar{\alpha}^{2} & =\operatorname{var}_{\mathrm{SXT}}+\operatorname{var}_{\mathrm{IMU}}+\frac{\operatorname{varrinT}^{*}}{\mathrm{r}_{\mathrm{CL}}^{2}} \\ & =(0.2 \mathrm{mr})^{2}+(1.0 \mathrm{mr})^{2}+\frac{\operatorname{var}_{\mathrm{INT}}^{*}}{r_{\mathrm{CL}}^{2}} \end{aligned}$ vhf ranging $\bar{\alpha}^{2}=\operatorname{Max}\left\{\operatorname{var}_{\mathrm{R}}^{*}, \frac{\operatorname{var}_{\mathrm{R} \text { min }}^{*}}{\mathrm{~T}_{\mathrm{CL}}^{2}}\right\}$ alternate los $\begin{aligned} \bar{\alpha}^{2} & =\operatorname{var}_{\mathrm{ALT}}^{*}+\operatorname{var}_{\mathrm{IMU}} \\ & =\operatorname{var}_{\mathrm{ALT}}^{*}+(1.0 \mathrm{mr})^{2} \end{aligned}$	$\left[W_{]}\right]=\left[\begin{array}{c:c} w_{r r}^{*} & 0 \\ \hdashline 0 & w_{\pi v}^{*} \end{array}\right]$

* These values are stored in erasable memory.

CISLUNAR MIDCOURSE NAVIGATION PROGRAM

(P23)
ERASABLE DATA LOAD PARAMETERS

$\underset{\left(\bar{\alpha}^{2}\right)}{\text { PARAMETER }}$	DATA LOAD MNEMONIC	value	PARAMETER [W]	DATA LOAD MNEMONIC	value
$\operatorname{Var}_{\mathrm{R}}{ }^{\text {(LM) }}$	RANGEVAR	1.1111×10^{-5}	w_{mr} (${ }^{\text {CSM }}$)	WMIDPOS	$30,000 \mathrm{ft}$
$\operatorname{Var}_{R \text { min }}(\mathrm{LM})$	RVARMIN	$66 \mathrm{~m}^{2}$	w_{mv} (CSM)	WMidvel	$30 \mathrm{ft} / \mathrm{s}$
$\operatorname{Var}_{\mathrm{V}}(\mathrm{LM})$	Ratevar	1.8777×10^{-5}	$\mathrm{w}_{\mathrm{rar}(\mathrm{CSM})}$	worbpos	0.0
$\operatorname{Var}_{\mathrm{V} \text { min }}(\mathrm{LM})$	vvarmin	$0.017445 \mathrm{~m}^{2} / \mathrm{s}^{2}$	$\mathrm{w}_{\text {iv }}$ (CSM)	WORBVEL	0.0
$\operatorname{Var}_{\beta}(\mathrm{LM})$	ShaftVar	$(1 \mathrm{mrad})^{2}$	$W_{\text {d }}$ (CSM)	S22wSubl	$10,000 \mathrm{~m}$
$\operatorname{Var}_{\theta}$ (LM)	TRUNVAR	$(1 \mathrm{mrad})^{2}$	w_{rr} (LM)	WRENDPOS	$10,000 \mathrm{ft}$
$\operatorname{Var}_{\text {INT }}(\mathrm{CSM})$	IntVAR	$(14 \mathrm{~m})^{2}$	$\mathrm{w}_{\text {rv }}$ (LM)	WRENDVEL	$10 \mathrm{ft} / \mathrm{s}$
$\operatorname{Var}_{\mathrm{R}}(\mathrm{CSM})$	RVAR	0.0	W_{β} (LM)	WSHAFT	15 mrad
$\operatorname{Var}_{R \text { min }}(\mathrm{CSM})$	RVARMIN	$(200 \mathrm{ft})^{2}$	W_{0} (LM)	WTrun	15 mrad
$\operatorname{Var}_{\text {ALT }}(\mathrm{CSM})$	ALTVAR	(3.9 mrad) ${ }^{\text {2 }}$	$W_{\text {fr }}{ }^{\text {(LM }}$)	WSURFPOS	0.0
			$W^{\rho_{v}}$ (LM)	wSURFVEL	0.0
			w_{rr} (CSM)	WRENDPOS	$10,000 \mathrm{ft}$
			w_{rv} (CSM)	WRENDVEL	$10 \mathrm{ft} / \mathrm{s}$

During cislunar midcourse navigation the angle between the lines of sight to a known star and a planetary landmark is measured. This angle measurement is then used to update the state vector via the measurement incorporation routine. The geometry relating the angular measurement to the deviation state vector is given below.

The relationship between the state vector and measurement variable can bc
determined by redrawing part of the preceding figure.

where \underline{u}_{p} is a unit vector prependicular to $\underline{I}_{C L}$

$\underline{u}_{\mathrm{p}}=\operatorname{Unit}\left(\underline{\underline{s}}-\underline{\underline{u}}_{1}\right)$

u_{p} Unit (uss $\left.-\left(u_{s} \cdot u_{C 1}\right) \underline{u}_{C L}\right)$

During orbital navigation, the inertial line of sight from the spacecraft to a planetary landmark is measured by recording the optic shaft and trunnion angles, the MrU gimbal angles, and the time of the mark. Up to five marks are made on each landmark before .
Classical celestial mechanics says that if the angles between a planetary landmark and two different stars are measured then the ine of sight from the spacecraft to the landmark can be determined, or that two star//andmark measurements are equivalent to
one lineof-sight measurement. Orbtal navigation uses this equivalency to incorporate the line-of-sipht measurement It as two star/landmark measurements. The two fietitious star/landmark measurements are then incorporated in the thy same mangeting as real star/landmark measurements in P23.

The dimension of the state vector for orbital navigation is expanded from six to nine to inclute 1
where

$$
\underline{x}=\text { orbital navigation state vector }
$$

or $=$ deviation of spacecraft position from the reference conic
= deviation of spacecraft velocity from the reference conic

$$
\overline{\delta \hat{\delta}}_{\mathrm{L}}=\text { deviation of landmark position from the nominal }
$$

$\frac{\text { Rendezvots navigation procram }}{\text { (P20) }}$

The Rendezzous Navigation program, P20. is used during the rendezvous phases of fight. Both the CSM and LM computers have Program P20 so that the CSM can do rendezzous navigation by tracking the LM, or the LM can navigate by tracking the CSM. The CSM can navigate by measuring the line of sight to the LM using the SXT or the COAS, and/or the VHF ranging link. The LMf use the Rendezvous Radar to measure range, range rate, RR shaft angle bias, and RR trunnion angle bas.
The state vectors for rendezvous navigation are

$$
\underline{x}_{\mathrm{CSM}}-\left[\begin{array}{c}
\frac{\dot{\partial r}}{\dot{\partial v}}
\end{array}\right] \quad \underline{\mathrm{x}}_{\mathrm{L}, \mathrm{M}}=\left[\begin{array}{c}
\frac{\partial r}{} \\
\frac{\partial v}{\delta \beta} \\
\dot{\delta \theta} \\
0
\end{array}\right]
$$

where

> or $=$ deviation from conic positio
> 6区 $=$ deviaton from conic velocit
> $\delta^{\delta} \beta=\mathrm{RR}$ shaft angle bias
> $\hat{\delta} \theta=\mathrm{RR}$ trunnion angle bias

ined as follows.
Line-of-Sight Measurements Made mith the SXT or COAS. The linc-of-siqht measurements are incorporated into the
state vector bv adopting two fictitious star/lardmark sightings just as with the Los measurements made during orbital navigation.

- VHF Range Measurements Made by the CSM. The geometry vector for VHF ranging is derived in the same manner as the RR range measurement vector. The only difference is the dimension of the CSM which is only 6 versus 9 for the L.M.

$$
\underline{b}=\left[\begin{array}{c}
\pm \underline{\underline{C L}} \\
\underline{0}
\end{array}\right] \quad \begin{gathered}
\text { (}=\text { is used depending on whether the LM or CSM state veetor } \\
\text { is being updated.) }
\end{gathered}
$$

he genmetry relating the RR measurements to the state vector is described on the lollow ing pages,
ReNdeziots range (r_{m}) Meastrement

Rendezvous range rate measurement has a term due to deviation from conic velocity (GV)

The rendezvous range rate term due to position deviation is:

rendezvous radar shaft angle (B $_{\mathrm{m}}$) measulhements

rendezvous radar trunnon angle (o) afeastrempnts
 positions and a deviation term (Bo) which is an element of the Etate vector.

cSM digital autoplot

The CSM digital autopilot (DAP) provides a primary stabilization and control function and attitude error display for CSM or CSM/LM coasting flight, CSM or CSM/LM powered flight and CM entry, as well as a backup SATURN takeover function.

COASTING FLIGHT

The CSM coasting flight autopilot or reaction control system autopilot (RCS DAP) provides attitude and translation control in three CSM +axes during nonthrusting phases of flight. The RCS DAP has three majo
modes of operation, Auto, Hold and Free, as commanded by the S/C CONTROL switch.

The Hold mode maintains or holds the spacecraft (S/C) at a desired attitude within the limits of an attiude deadband specified by the crew. Rotational hand controller (RHC) commands will be processed as the discrete commanded rate specified in

The Auto mode enables rate and attitude commands from the steering routines to be processed by the DAP for maneuvering the S / C to a desired attitude at a specifled rate. With the absence of maneuver con mode as a discrete commanded rate and aut until resumed by action via the DSKY.

The Free mode of operation releases the S / C from all maneuvers and attitude hold commands, other than minimum impulse commands, and allows the S / C to drift freely. Minimum impulse commands are single 14-millisecond control jet firings which are commanded by the RHC or, if there are no RHC commands, by the minimum-impulse controller (MIC).
Translation hand controller (THC) commands are processed in any mode and are combined with rotation commands for the desired maneuver. When a combination rotation and translation is not possible, due to a quad fallure, the rotation command has priority.

ERROR DISPLAY

The DAP also provides attitude error display to the crew via the FDAI attitude error'meters. There are hree types of attitude error displays available.

- To provide a monitor of autopilot performance, the autopilot following errors or phase plane errors in control axis coordinates can be displayed by keying a V61E.
- To aid the crew in executing a manual maneuver, the total attitude error with respect to the desired maneuver angles in N 22 can be displayed by keying V62E
- Total Astronaut attitude error with respect to preloaded N17 angles can be displayed by keying V63E providing another manual maneuver aid. N17 can be loaded with a snapshot of the present CDU angles by keying V60E.

POWERED FLIGHT

The powered flight autopilot stablizes and controls the attitude of the spacecraft and maintains thrust vector control (TVC) during service propulsion system (SPS) thrusting. Pitch and Yaw axis control is achieved by TVC DAP generated commands to the SPS engine gimbal servos to maintain the thrust vector hrough the center of gravity of the vehicle. The TVC DAP also accepts angular rate commands from the steering program to position the thrust vector along a desired thrust direction

Roll axis attitude and rate control during powered flight is accomplished by the TVC Roll DAP. Its function is strictly to provide attitude hold about the roll axis of the spacecraft by means of RCS thrusters.
ENTRY
The entry autopilot provides attitude control of the command module (CM) from separation from the service module (SM) to deployment of the drogue chutes. The DAP has an extra-atmospheric phase and an atmospheric phase. The extra-atmospheric phase provides three-axis spacecraft control for the號 for the onset of 0.05 g . The atmospheric phase provides attitude control, after 0.05 g about entry roll or about the vector direction of S / C velocity relative to the air mass, to steer the S / C along the entry trajectory. The DAP accepts steering commands from the entry guidance programs.

SATURN TAKEOVER

In the event of a Saturn instrumentation unit (IU) fail, a capability is provided for the CMC to issue anguar rate steering commands to the IU autopilot. CMC takeover of Saturn control, which is accomplished by means of the LV GUIDANCE switch, may be an automatic or manual steering mode.
The manual or stick mode is available by keying V46E, which terminates computation of automatic mode attitude errors. Discrete rate commands, based on erasable parameters, are initiated by means of the RHC and transmitted to the IU autopilot.

DAP DATA

The DAP registers containing the variable parameters which determine DAP selection and desired DAP performance are accessible by keying V48E.

Register 1:

A	B	C	D	E
CONFIG	XTAC	XTBD	DB	RATE

CONFIG - Vehicle Configuration
$0=$ No DAP is requested
$1=\operatorname{CSM}$ alone
$3=$ SIVB, CSM and LM (SIVB control)
$6=$ CSM and L.M (ascent stage only)
XTAC - X-Translations 1 sing Quads AC
$0=$ Do not use AC
$1=$ Use $A C$
XTBD - X-Translations C 'sing Quads BD
$0=$ Do not use BL
$1=$ Use BD)
DB - Angular Deadband for Attitude Hold and Automatic Maneuvers
$0=+0.5 \mathrm{degree}$
$1=+5.0$ degrees
RATE - RotationalRate for RHC in HOLD or AUTO Mode and for Automatic Maneuvers.
$0=0.05 \mathrm{deg} / \mathrm{s}$
$1=0.2 \mathrm{deg} / \mathrm{s}$
$2=0.5 \mathrm{deg} / \mathrm{s}$
$2=0.5 \mathrm{deg} / \mathrm{s}$
$3=2.0 \mathrm{deg} / \mathrm{s}$
Register 2

AC Roll	Quad A	Quad B	Quad C	Quad D

1 - Roll-Jet selection
$0=$ Use BD roll Quads
$l=$ Use $A C$ roll Quads
A, B, C, D - Quad fails
$0=$ Quad has falled
$1=$ Quad operationa
Flashing V06 N47
Register 1: CSM weight in pounds
Register 2: LM weight in pounds
Flashing V06 N48
Register 1: Pitch-trim gimbal offset, in $1 / 100$ degree
Register 2: Yaw-trim gimbal offset, in $1 / 100$ degree

AUTOMATIC MODE
ATTITUDE HOLD MODE
Automatic three-axis rotation
2. Manual three-axis rotation and trans lation
Attitude hold to program or manual defined attitude.
. Automatic rate damping

Manual three-axis rotation and translation.
2. RHC produces a rotational rate as specified by N46 while out of detent.
3. Attitude hold to attitude selected vi hand controller.
Automatic rate damping.

POWERED CSM DIGITAL AUTOPILOT

LM DAP CONTROL

Flashing V04 N46
Register 1:

A	B	C	D	E
CONFIG	ACC	ACA	DB	RATE

CONFIG - Vehicle Configuratio

$1=$ Ascent stage only
$2=$ Ascent and descent stages
$3=$ LM and CSM docked
ACC - Acceleration Code
$0=T$ wo-jet translation (RCS System A)
$1=$ Two-jet translation (RCS System B
$3=$ Four-jet translation (RCS System B - minimum impulse) ACA - ACA Scaling
$0=$ Docked ($4 \mathrm{deg} / \mathrm{s}$, max. rate)
$i=$ Normal $(20 \mathrm{deg} / \mathrm{s}, \max$, rate $)$
DB - Deadband

$0=0.3$ degree
 $1=1.0$ degree $2=5.0$ degrees

$2=5.0$ degrees
RATE - Maneuver Rate (Automatic Mode)

$$
\begin{aligned}
0 & =0.2 \mathrm{dg} / \mathrm{s} \\
1 & =0.5 \mathrm{seg}
\end{aligned}
$$

$1=0.5 \mathrm{deg} / \mathrm{s}$
$2=2.0 \mathrm{deg} / \mathrm{s}$

Flashing V06 N47
Register 1: LM weight in pounds
Register 2: CSM weight in pounds
Flashing V06 N48
Register 1: Pitch-trim engine gimbal angle, in 0.01 degree
Register 2: Roll-trim engine gimbal angle, in 0.01 degre

AUTOMATIC MODE

ATTITUDE HOLD MODE

1. Automatic three-axis rotation and translation
2. Manual three-axis translation.
3. Manual X-axis rate command (inhibited in LPD phase)
4. Attitude bold to program defined attitude
5. Automatic rate damping

V77 - Used to pr Commanded rotational rate is command. to hand controller (ACA) deflection. Maximum commanded rotational rate is either $4 \mathrm{deg} / \mathrm{s}$ or $20 \mathrm{deg} / \mathrm{s}$ as chosen in DAP . Data Load routine.
V76 - Used to provide a minimum impulse command. Releases Attitude Hold mode and allows vehicle Releases Attitude Hold mode and allows vehicl
to drift freely. One impulse is produced for each hand controller (ACA) deflection greater than 2.5 degrees.

Lolido $\cap \forall$ 7 $\forall \perp$ ゆlは Wา

PHASE-PLANE FUNDAMENTALS

The equations describing spacecraft attitude errors and athade rate errors in the phase plane are derived as follows:
attitude rate errors
$\dot{e}(t)=\dot{\theta}(t)-\dot{\theta}_{D}(t)$
where
$\mathrm{e}(\mathrm{t})=$ Attitude rate error
$\dot{\dot{\theta}}_{\mathrm{D}}(\mathrm{t})=$ Desired attitude rate
$=\dot{\theta}_{D}\left(t_{0}\right)$ (desired rate is constant over
$\dot{\theta}(\mathrm{t})=$ Actual spacecraft rate
$=\dot{\theta}\left(t_{0}\right)+a\left(t-t_{0}\right)$
($a=$ control + disturbance acceleration interval)
$\dot{\dot{e}(t)}=\underbrace{\dot{\theta}\left(t_{0}\right)-\dot{\theta}_{D}\left(t_{0}\right)}+a\left(t-t_{0}\right)$
(1)
$\mathrm{e}(\mathrm{t})=$ Attitude error
$\theta_{\mathrm{D}}(\mathrm{l})=$ Desired spacecraft attitude
$=\theta_{D}\left(t_{0}\right)+\theta_{D}\left(t_{0}\right)\left(t-t_{0}\right)$
(desired attitude should be integral of desi red
$\theta(t)=$ Actual spacecraft attitude
$=\theta\left(\mathrm{t}_{0}\right)+\dot{b}\left(\mathrm{t}_{0}\right)\left(t-\mathrm{t}_{0}\right)+\frac{1}{2} \mathrm{a}\left(\mathrm{t}-\mathrm{t}_{0}\right)^{2}$
$\therefore e(t)=\underbrace{\theta\left(\mathrm{t}_{0}\right)-\theta_{\mathrm{D}}\left(\mathrm{t}_{0}\right)}_{0}+\underbrace{\left(\mathrm{t}-\mathrm{t}_{0}\right)+\frac{1}{2} a\left(\mathrm{t}-\mathrm{t}_{0}\right)^{2}}_{\dot{\left(\dot{\theta}\left(\mathrm{t}_{0}\right)-\dot{\theta}_{\mathrm{D}}\left(\mathrm{t}_{0}\right)\right)}}$ (2)
where

ATTITUDE ERRORS

$e_{\text {(t) }}=\theta(t)-\theta_{D}(t)$
here

LM UNDOCKED PHASE-PLANE

The purpose of the LM Undocked Phase-Plane logic is to compute and issue commands to the RCS thrusters in order to null spacecraft attitude and attitude rate errors. The thruster commands are in the form of a signed required to reach the phase-plane switching boundary. In order to achieve these ends, the phase-plane is divided into two principal regions, ROUGHLAW and FINELAW.
roughlaw
The ROUGHLAW phase-plane logic is used for coarse control of the spaceeraft when the phase-plane errors are greater than 11.25 degrees and/or 5.625 degrees/second. The division beween the positive and negative thrusting regions are shown in the diagram on the right.

finelail UuGLLAW DHASE:PLANE

The FINELAW phase-plane logic is used whenever the phase-plane errors are less than 11.25 degrees and 5. 625 degrees $/$ second. The FINELAW phase-plane is configured differently for powered and coasting flight
to compensate for offset accelerations caused by the DPS or APS engine not thrusting through the La center of gravity.

- drifting flight

The drifting filight phase-plane is set up to achieve a minimum in pulse limit cycle. When the phase-plane errors are in the minimum impulse zone, a 14 -millisecond jet firing
will be commanded. This should be sufficient to reverse the sign on \dot{e} and cause the spacecraft to drift hack to the other deadband.

To achieve a satisfactory mix of time and fuel optimal control and at the same time minimize the number of RCS jet firings by cstablishing coastin
deadbands.

- powered flight

When the DPS trim gimbal system is operating during powered flight, the offset accelerations (AOS) will be nulled and the phase-plane looks like the drifting flight phase-plane except that the minimum impulse zones are eliminated. When the gimbal trim system (GTS) is not in operation
or when AOS is too large to be nulled within 2 seconds, the phase-plane logic is set up according to the magnitude of AOS as shown below. The switching curves are then established based on AOS (disturbing acceleration).
 to negative jets + AOS) or
positive jets + AOS $)$ and the established deadband (DB). The DB is selected as $0.3,1$, or 5 degrees dependen upon the mission programs nad the

purpose:
To bring e and é to zero with minidiminishingly small for minimum due. This drastically increases response time.)

nion - a

time-optimal controller
double integral plant wist PLANE CONTROLLER
-

 PURPOSE: To bring e and è to zero with minimum fuel consumption. (f must be diminishingly small for minimum fuel. This drastically increases response time.)

PURPOSE:
To bring e and \dot{e} to zero in
minimum time.

LM/CSM DOCKED PHASE-PLANE

- The same RCS phase-plane is used for all three control axes,
- Only two-jet thrusting is alloted for each axis,
- Jets are turned on or off at control
to reach the target
- The target swich hing parabolas are replaced by straight line segments.

The desilign objectives of the simplifed nuttopllot are tos

- Enable low rate attitude maneuvers or attitude hold during driftting fight.
- Redice the probabblity of bending mode exceitution in excess of doeking-taunel load
- Perform the above tasks assuming that the mumber of jet firings and RCS fuel usage are noncrittical.
phase-plane mechanzation

In order to achieve the above desidn objectives the LM/CSM Docked phase--plane employs rate-lumiting, turget
rates, and jet inhibition logic in oddition to the normal phasceplane logic.
pate limiting
Rate limiting is incorporated to prevent the eCS jets from ond. This number was chosen to allow the henvees $/$ second. This number was chasen to allow the heaviest to
figuration to reach a limit cycle with zero overshhoots.

target rates
Target rates of +0.1 degree/ second for positive thrusting
and -0.1 degrre/second for negative thrusting are iscorpo and -0.1 degree/second for negative thrusting are incorpo-
rated during powered flight. (Target rate -0 tor driting. rated during powered dight, (Target rate -0 tor driting
night
This allows a steady state limit e cecle to be reached in minimum time by bypassing the phanese-plane loge wice w
the jets are on and thrusting toward the target tate.

JEt inhbit Logic
Jet intibition logic operates to reduce bending mode excl-
tation by preventing iet commands from reversing siem at
 phase plane logic callis for positive jets, then the jet in
tion logic tumss the jets off tor a period or 1 second $(0$. second for the pitch axis) before they can be turned on again.

GTS ATTITUDE CONTROL SYSTEM

The Descent Propulsion System (DPS) engine is mounted on gimbals so that it can rotate about the LM pitch and
toll axes thereby alligning the thrust vector with the LM center of gravity. This feature can be used for attitud roll axes thereby aligning the thrust vector with the LMM
control If the attlude error and error rates are small.

gimbal trim system mechanization

The Cimbal Trim System (GTS) is ecotrolled by the LCC which
ssues only on or off commands. The GTS responds
 produces an oftset torque on the 1.1 a wich chan be used as the
control acceleration. The relationship between this angular control acceleration. The relationship between this angular
icceleration and DPS engine deflection is given by Equation 1 .

$$
\ddot{\theta}=\frac{T}{1}=\frac{F L \hat{6}}{1}
$$

a
$1=$ spaceeraft angular acceleration
$1=$ spacecraft moment of inertia
(1)
where

- FL sin $\delta \approx$ FLS (small angle approximation
$\mathrm{F}=$ DPS engine thrust
$\mathrm{L}=$ trim gimbaf hinge pin to center of gravity distance
$\delta=$ gimbal deflection

aTS CONTROL LAW

The CTS control
acceleration nulling mode
The Acceleration Nulling mode is used when the RCS phase-plane errors lie outside the coast zone and the RCS jets are is aligned with the LMM center of gravity.
where

$$
\mathrm{T}=0.4 \mathrm{FLR} / 1
$$

$\mathrm{T}=$ drive time duration
$\mathrm{FLR/1}=$ contron effectivenes
$0.4-$ gain factor used to preve
attitude control mode
CONTROL MODE
The Attitude Control mode uses a "dime-pptimal" control law to control spacecrat
angular acceleration. The time-optimal control law was chosen for two reasons
Puel cost of the control effort is regligible becau
power required to drive the kimbal is ver
2. Response time is an important consideration because of the fixed, slow (0.2 degree/second) gimbal drive
rate. rate
The time-optimal control law is a three-dimensional phase-plane type controller designed to drive attitude error (e)
and its first two derivatives (é and $\overline{\text { en }}$ to zero simultaneously. The control law defines a switching surface and issues
 side of the surface. Control toop sampling rates and GDD risetime delays act to produce error rimits cycles with thereby modifying the switching surface

The purpose of the State Estimator is to compute spacecraft attitude, attitude rate, and angular acceleration based on The attitude information obtained from the CDC. The problem then is to estimate the state vector based on noisy meas urements of one element of the state vector. The solution of the problem is patterned after Kalman filtering and uses .

STATE EQUATION (Continuous System)
$\dot{\dot{x}}(t)=[A(t)] \underline{x}(t)+[B(t)] \underline{u}(t)+\underline{m}(t)$
(1)

$$
\begin{aligned}
& \text { STATE EQLATION (Discrete System) }
\end{aligned}
$$

$$
\begin{equation*}
\underline{x}\left(t_{m}\right)=\left[\phi\left(t_{m}, t_{m-1}\right)\right] \underline{x}\left(t_{m}\right)+\int_{t_{m-1}}^{t_{m}}\left[\phi\left(t_{m}, \tau\right)\right][B(\tau)] \underline{u}(\gamma) d \tau+\int_{t_{m-1}}^{t_{m}}\left[\phi\left(t_{m}, \tau\right)\right] \underline{m}(\tau) d \tau \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\underline{x}_{m}=\left[\Phi_{m-1}\right] \underline{x}_{m-1}+\left[G_{m-1}\right] \underline{u}_{m-1}+\underline{m}_{m-1} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \text { STATE TRANSITION MATRIX } \\
& {\left[\phi_{m-1}\right]=\left[\phi\left(t_{m}, t_{m-1}\right)\right]=\left[\begin{array}{ccc}
1 & t_{m}-t_{m-1} & \left(t_{m}-\tau_{m-n}\right)^{2} / 2 \\
0 & 1 & t_{m}-t_{m-1} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & T & T^{2 / 2} \\
0 & 1 & T \\
0 & 0 & 1 \\
T=t_{m}-t_{m-1}
\end{array}\right]} \tag{5}
\end{align*}
$$

DRIVING MATRIX

$$
\begin{align*}
& {\left[G_{m-1}\right]=\int_{t_{m-1}}^{t_{m}}\left[\phi\left(t_{m}, \tau\right)\right][B(\gamma)] d \tau=\int_{t_{m-1}}^{t_{m}}\left[\begin{array}{ccc}
1 & t_{m}-\tau & \left(t_{n}-\tau\right)^{2} / 2 \\
0 & 1 & t_{m}-\tau \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
b_{1}(\gamma) & 0 \\
0 & 1
\end{array}\right] d \tau} \tag{6}
\end{align*}
$$

MEASUREMENT EQUATIO

$$
\theta_{m}=\theta\left(\mathrm{t}_{m}\right)+n_{\text {cou }} \quad\left(m_{\text {cou }}=\text { measurement noise, primarily cDU quantizing error }\right)
$$

nomenclatur

State estimator mechanization

The State Estimator is mechanized as a two-part process: State Vector Extrapolation and State vector Updating.
State Vector Extrapolation
The state vector is extrapolated using Equation 4 where the state transition matrix $\left[\phi_{\mathrm{n}-1} \mid\right.$ is defined in Equation and the driving matrix $\left|\mathrm{G}_{\mathrm{n}-1}\right|$ in Equation 7 . The process noise is assumed to be random with zero mean so that the best estimate of its cffect on the state vector is zero.

$$
\begin{align*}
& \theta_{m}^{\prime}=\hat{\theta}_{m-1}+T \hat{\omega}_{m-1}+T_{/ 2}^{2} \hat{\alpha}_{m-1}+T_{j e t}\left(T-T_{j e t} / 2\right) u_{j}+T_{/ 6}^{3} u_{G} \tag{9}\\
& \omega_{m}^{\prime}=\hat{\omega}_{m-1}+T \hat{\alpha}_{m-1}+T_{j e t} u_{j}+T_{1 / 2}^{2} u_{G} \tag{17}\\
& \alpha_{m}^{\prime}=\hat{\alpha}_{m-1}+T u_{G} \tag{ii}
\end{align*}
$$

State Vector Updating
The state vector is updated based on the weighting functions and the measurement residual

$$
\begin{align*}
& \hat{\theta}_{m}=\theta_{m}^{\prime}+K_{\theta}\left(\theta_{m}-\theta_{m}^{\prime}\right) \tag{12}\\
& \hat{\omega}_{m}=\omega_{m}^{\prime}+K_{\omega} / T\left(\theta_{m}-\theta_{m}^{\prime}\right) \tag{13}\\
& \hat{\alpha}_{m}=\alpha_{m}^{\prime}+K_{\alpha / T^{2}}\left(\theta_{m}-\theta_{m}^{\prime}\right) \tag{14}
\end{align*}
$$

The measurement residual is the difference between the actual measurement, ${ }^{0} \mathrm{~m}$, and the expected measurement,
$\theta_{\mathrm{n}}^{\prime}$. The expected measurement is equal to the exxrapolated cstimate of spaceeraft attitude, because the measurement noise, ${ }^{n}{ }^{n}$ CDU . is assumed to be random with zero mean and the best estimate of its effect on the measurement is
therefore zero.

The weighting functions use a threshold logic to filter out CDU quantizing roise. This means that if the measurement residual is less than a preselected threshold, the weighting function is zero and the measurement residual is ignored. When the measurement residual is above the threshold, the kain is not zero and the measurement residual is used to update the state vector. In other words, emall variations between the measured and expected attitudes are assume
to be due to CDU quantizing and large variations due to spacecraft maneuvering

The weighting functions also vary as function of the time since the measurement residual last exceeded the thresholit

Weighting Functions
Attitude Gain
for $\left|\theta_{m}-\theta_{m}^{\prime}\right| s \theta_{\max }$: $K_{\theta}=0$
or $\left|\theta_{m}-\theta^{\prime}\right|>\theta_{\text {ax }}$
$\mathrm{a}_{m}-\theta_{m}^{\prime} \mid>$
$\mathrm{K}_{\theta}=1$

Attitude Rate Gain
for $\left|\theta_{m}-\theta_{m}^{\prime}\right| \leq \theta_{\text {max. }}: \quad K_{\omega}=0$
Acceleration Gain
for $\left|\theta_{m}-\theta_{m}^{\prime}\right| \leqslant \theta_{\max }: k_{\alpha}=0$

$m\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{m}_{\mathrm{n}-\mathrm{R}}\left(1-\frac{\Delta v}{\mathrm{v}_{\mathrm{e}}}\right)$
where
$\mathrm{m}\left(\mathrm{K}_{\mathrm{n}}\right)$ - veticle mases at current ume, t_{n}.
$\mathrm{m}\left(\mathrm{f}_{\mathrm{n}-1}\right)$ - vehicie mass at last tume incremeen.
$\Delta V=$ change in velocity as measured by the PIPN's between times t_{b-1} and t
$\mathrm{v}_{\mathrm{e}}=$ echaust velocity constant
V_{e} (DPS) $-2,255$. ss9 metero/econd
$\mathrm{v}_{\mathrm{e}}(\mathrm{APP})-3,030 \mathrm{metera} /$ /ccoose
The functions weed
are give below
RCS Jet Acceleratione
Oon-jet tecelerations an
tunctions of vehicle maso
$a_{1}=\frac{a}{m+c}+b$
a_{1},
where
$m=$ mass of vencele (Equation 1 above

Veticie Moment of loortis

BASIC GUIDANCE SCHEME

CAPABILITY OF THE BASIC GUIDANCE SCHEME
 THE FORM OF THE ACCELERATION PROFILE IS DETERMINED BY THE NUMBER OF TERMS INCLUDED IN THE TAYLOR SERIES EXPNNSION OF Y .

ORDER OF EXPANSION	$N=2$	$N=3$	$N=4$
POGITION EQUATION	$r(t)-r_{6}+N_{f}\left(t+\tau_{4}\right)+a_{f}\left(\frac{\left(1-t_{4}\right)^{2}}{2}\right.$		
vecherry EQuktion	$v(t)=N_{i}+a_{f}\left(t-\psi_{6}\right.$	$N(t)=N_{4}+a_{4}\left(t-\tau_{4}\right)+i_{f}\left(\frac{1+t_{4}}{2}\right)^{2}$	$N(t)=N_{f}+a_{f}\left(t-t_{4}\right)+j_{+} \frac{\left(t-t_{4}\right)^{2}}{2}+S_{f} \frac{\left(t-t_{6}\right)^{3}}{L}$
acceleration ProFilie	$\alpha_{\text {c }}(t)=a_{4}$	$a(t)=a_{6}+i_{5}\left(t-t_{4}\right)$	$a(t)=a_{f}+j_{f}\left(t-t_{f}\right)+s_{f} \frac{\left(t-t_{6}\right)^{2}}{2}$
	EFFECT OF INITIAL CONSTRAINTS ON THE ACCELERATION PROFILE		
	$\left.a_{4}=\left[r_{0}-T_{6}\right)-N_{4} T_{r}\right] \frac{2}{T_{r}}$		
	$a_{5}=\left(N_{0}-N_{q}\right) \frac{1}{T_{p}}$	$a_{f}=\left[\left(\omega_{0}-\nu_{f}^{\prime}\right)-j_{5} \frac{T_{p}}{2}\right] \frac{1}{T_{p}}$	
	$\begin{aligned} & 2 \text { equannous } / 2 \text { unkwowus } \\ & A_{5}, T_{0} \end{aligned}$	2 Equations/ 3 unkwowns A_{4}, i_{4}, T_{r}	2 equntions/ 4 unnaowns $A_{1}, j_{4}, s_{5}, T_{7}$
COMMENTS :	derearuveo sy (witial Constrants	- 1 DEGRER of KREEDOH $j_{\text {f che }}$ can be puespecified, TMEN A\& \& Ty ARK unguecty Deteanined	- 2 Deçres of FREEDOM - $A_{8}+\mathrm{H}_{\mathrm{f}}$ can se perstratied, THEN 3_{f} \& Tab MeE UNLQuELY детеаныед.

- REACH TERMINAL CONDITIONS WITH HIGH ACCURACY
- vertical descent for last 200 ft . at a rate of $-5 \mathrm{ft} / \mathrm{sec}$.
- LANDING SITE VISIBILITY FOR 200 SEc. beFORE TOUCHDOWN

MODIFICATIONS TO BASIC GUIDANCE SCHEME

THE FOLLOWING MODIFICATIONS WERE MADE TO THE BASIC QUADRATIC GUIDANCE SCHEME IN ORDER TO ACHIEVE THE SECONDARY CONSTRAINTS OF LUNAR LANDING

- the desired trajectory is redefined on every ITERATION CYCLE (2 SEC.) SUCH THAT THE INITIAL CONDITIONS $\left(\underline{r}\left(t_{0}\right), \underline{v}\left(\tau_{0}\right)\right)$ ARE THE CURRENT BEST ESTIMATE OF VEHICLE STATE AS DETERMINED BY THE STATE VECTOR UPDATE ROUTINE. THIS ENABLES PIN-POINT ACCURACY BY ELIMINATING CUMULATIVE ERRORS IN THE IMPLEMENTATION OF THE BASIC SCHEME.
- THE LANDING SEqUENCE IS DIVIDED INTO THREE PHASES EACH WITH ITS DWN FINAL CONDITIONS OR AIM POINTS.

1. BRAKING PHASE

THIS PHASE BRAKES THE LEM DOWN FROM ORBITAL VELOCITY AND IS TARGETED SUCH THAT THE LANDING SITE VISIBILITY CONSTRAINTS CAN BE MET DURING THE VISIBIUTY PHASE.
2. VISIBILITY PHASE (APPROACH PHASE)

THIS PHASE IS FLOWN WITH THE LEM ORIENTED SUCH THAT THE LANDING SITE IS VISIBLE FOR LANDING SITE REDESIGNATION. TARGETING IS CHOSEN TO YIELD THE PROPER INITIAL CONDITIONS FOR VERTICAL DESCENT CONSISTENT WITH THE VISIBILITY CONSTRAINTS.
3. VERTICAL DESCENT PHASE

THIS PHASE REDUCES THE SPACECRAFT HORIZONTAL VELOCITY TO ZERO AND VERTICAL VELOCITY TO $\approx 5 \mathrm{ft} / \mathrm{sEc}$ QUADRATIC GUIDANCE IS NOT USED.

SURFACE RANGE

EXPRESS THE POSITION, VELOCITY \&ACCELERATION EQUATIONS IN MATRIX FORM

REARRANGE THE MATRIX EQUATION SUCH THAT $\underline{q}(t), \underline{s}_{f} \& \dot{j}_{q}$, THE DEPENDANT VARIABLES, ARE EXPRESSED IN TERMS OF $\left.\underline{(t)}, \underline{r}(t), Q_{q}\right) \underline{f}_{f} \xi N_{f}$, THE INDEPENDANT
VARIABLES.

$$
\begin{aligned}
& {\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{ll}
C & D \\
E & F
\end{array}\right]\left[\begin{array}{l}
G \\
H
\end{array}\right]} \\
& \begin{array}{l}
A-C G+D H \\
B=E G+F H
\end{array} \\
& B=E G+F H \\
& \begin{array}{l}
A-C G=D H \\
-E G=-B+F H
\end{array} \\
& {\left[\begin{array}{cc}
I & -C \\
O & -E
\end{array}\right]\left[\begin{array}{l}
A \\
G
\end{array}\right]\left[\begin{array}{cc}
0 & D \\
-I & F
\end{array}\right]\left[\begin{array}{l}
B \\
H
\end{array}\right]}
\end{aligned}
$$

SOLVE THE ABOVE EQUATION FOR $\underline{Q}(t), \$_{f}$, ju $_{f}$.

THE FOLLOWING SEQUENCE OF COMPUTATIONS IS PERFORMED DURING EACH TWO SECOND GUIDANCE CYCLE.

1. COMPUTE TIME-TO-GO

2. COMPUTE ACCELERATION COMMAND

$$
\begin{aligned}
& +\left(-6 \frac{T_{g 0}^{*}}{T_{g 0}^{2}}+12 \frac{T_{g 0}{ }^{2}}{T_{g g^{3}}}\right) \underline{v}_{0}+\left(6 \frac{T_{g 0}^{* 2}}{T_{g 0} 0^{2}}-6 \frac{T_{g o}^{*}}{T_{g 0}}+1\right) \underline{a}_{f}-9
\end{aligned}
$$

WHERE:

$$
\begin{aligned}
& \text { RADIAL GUIDANCE } \\
& \text { IF THE DESIRED ACCELERATION IS GREATER THAN MAX. ENGINE } \\
& \text { THRUST, THEN DOWNRANGE THRUST IS LIMITED. }
\end{aligned}
$$

BASIC MECHANIZATION (cont.)

3. ALIGN THE GUIDANCE COORDINATE FRAME

THE GUIDANCE FRAME IS ALIGNED SO THAT THE CROSS-RANGE (Y-COMPONENT) OF JERK IS ZERO AT PHASE TERMINUS. THE Y-COMPONENT OF jf is GIVEN BY THE QUADRATIC GUIDANCE EQUATIONS.

$$
\begin{aligned}
& j_{f_{Y}}=-\frac{6}{T_{g 0}}{ }^{2}\left(N_{O_{Y}}+3 N_{f_{Y}}\right)-\frac{24}{T_{g 0}^{3}}\left(r_{f_{Y}}-r_{O_{Y}}\right)-\frac{6}{T_{g 0}} a_{f_{Y}} \\
& \text { THE Y-COMPONENTS OF THE AIM-POINT VECTORS } \\
& \begin{array}{l}
\text { THE Y-COMPONENTS OF THE AIM-POINT VEC } \\
\text { ARE SPECIFIED AS ZERO: } r_{f_{Y}}=N_{f Y}=a_{f_{Y}}=0
\end{array} \\
& \because \quad 0=-\frac{6}{T_{g 0}{ }^{2}} v_{O_{Y}}+\frac{24}{T_{g o}{ }^{3}} r_{O_{Y}} \\
& \underline{u}_{X_{G}}=\text { UNIT }\left(\underline{r}_{L S}\right) \\
& \underline{u}_{Y G}=\operatorname{UNIT}\left(\underline{r}_{L S} \times\left(\underline{r}_{0}-\underline{N}_{0} \frac{T_{g}}{4}\right)\right) \\
& \underline{u}_{z G}=\underline{u}_{x G} \times \underline{u_{V G}}
\end{aligned}
$$

or: $r_{O_{Y}}-\frac{T_{g 0}}{4} v_{O Y}=0 \Rightarrow\left(r_{0}-N_{0} \frac{T_{00}}{4}\right)_{Y}=0$
THUS, THE GUDANCE FRAME IS ALIGNED WITH ITS

THUS, THE GUIDANCE FRAME IS ALIGNED WITH ITS
Y-AXIS PERPENDICULAR TO THE VECTOR $\left(\underline{r}_{0}-\mathrm{NO}_{0} \frac{T_{g 0}}{4}\right)$
4. COMPUTE THE WINDOW POINTING VECTOR
(

SPACE-CRAFT
ORIENTATION
THE X-BODY AXIS IS DESIRED THRUST VECTOR AT-
(UNTT(-G) $\left.\times \underline{u}_{\times B P}\right) \cdot u_{Y_{G}}$
ANGLE BETWEEN IGEAT NORMALIZED FOR
ANYCROSS-RANGE
THE Z-BODY AXIS IS
ALLGNED IN THE PLANE
CONTAINING AT U UWD
5. COMPUTE THRUST MAGNITUDE

ACTUAL THROTTLE SETTINGS ARE IMITED BY ENGINE CONSIDERATIONS TO $\approx 93 \%$ OF FULL SCALE OR LESS THAN 63%.
ERASABLE DATA LOAD PARAMETERS
LOCRIT 5985 LBS $=57 \%$
HIGHCRIT 6615 LBS $=63 \%$

LUNAR LANDING - STATE VECTOR UPDATE RECURSIVE FILTER BLOCK DIAGRAM
LR data reasonablenes

$$
\hat{x}^{\prime}\left[\begin{array}{r}
r_{p} \\
\underline{y}_{p}
\end{array}\right]\left[\begin{array}{l}
\underline{r}_{n-1}+\left(t_{n}-t_{n-1}\right)\left(\underline{v}_{n-1}+\frac{\Delta \tilde{\underline{v}}_{p}}{2}+\frac{\underline{g}_{n-1} \Delta t}{2}\right) \\
\underline{v}_{n-1}+\Delta \tilde{\underline{v}}_{p}+\left(\underline{g}_{p}+\underline{g}_{n-1}\right) \frac{\Delta t}{2}
\end{array}\right]
$$

P = Platform frame

- state vector update
$\underline{\hat{x}}=\left[\begin{array}{l}\underline{r}_{P} \\ \underline{v}_{p}\end{array}\right]+\left[\begin{array}{l}\delta q_{h} \omega \underline{u}_{h P} \\ \delta q_{u} \omega_{u} \underline{u}_{\mathrm{APu}}\end{array}\right]$

Conditions necessary to update state using lr range data:

- Landing radar is not being switched from position no. 1 to position no. 2
- range data measurement tests are satisfied.

DATA GOOD DISCRETE HAS BEEN PRESENT FOR 4 SECONDS OR MORE
lr range scale has not been changed within last second.
MEASUREMENT RESIDUAL ((q) IS wITHIN SPECIFIED Limits \mid $\delta q \mid \leq$ DELQFIX* +0.25 (q^{\prime}) (only in P64)

- astronaut approval for updating has been given (v57).

CONDITIONS NECESSARY TO UPDATE STATE USING LR VELOCITY DATA:

- landing radar is not being switched from position no. 1 to position 2 .
- velocity data measurement tests are satisfied
data good discrete has been present for at least 4 Seconds
- MEASUREMENT RESIDUAL IS WITHIN SPECIFIED Limits $\left|\delta q_{u}\right|=$ VELbiAS* $+0.125\left(\underline{v}_{u}^{\prime}-\underline{w}_{p} \times \underline{r}_{p}\right)$.
- astronaut approval for updating has been given (v57).
- DELOFTX $=100 \mathrm{ft}$
-VELBIAS $=2.5 \mathrm{ft} / \mathrm{s}$

STATE VECTOR EXTRAPOLATION

State vector extrapolation is accomplished by an Average G routine at 2 -second intervals coincident with PIPA $\triangle \mathrm{V}$ processing.

LM position vector (r_{p}) is extrapolated assuming constant acceleration over the 2 -second interval

$$
\mathrm{r}=\mathrm{r}_{0}+\mathrm{v}_{0} \Delta \mathrm{t}+\frac{1}{2} \mathrm{a} \Delta \mathrm{t}^{2}
$$

$$
\underline{r}_{p}=\underline{r}_{n-1}+\underline{v}_{n-1}\left(t_{n}-t_{n-1}\right)+\frac{\Delta \tilde{r}}{2} p \Delta t+\frac{g_{n-1}}{2} \Delta t^{2}
$$

where
$\underline{r}_{n-1}=$ position vector (r_{p}) at end of previous interval
$\mathrm{v}_{\mathrm{n}-1}=$ velocity vector $\left(\mathrm{v}_{\mathrm{p}}\right)$ at end of previous interval
$\Delta \tilde{\mathrm{v}}_{\mathrm{p}}=$ accumulated PIPA $\Delta \mathrm{V}$ pulses during 2-second interval

$$
g_{\mathrm{n}-1}=\text { lunar gravitational acceleration at end of previous interval }
$$

L.M velocity vector (V_{p}) is extrapolated using PIPA $\Delta \mathrm{V}$ pulses and the average gravitational acceleration over the 2 -second interval

$$
\begin{aligned}
& \mathrm{v}=v_{0}+a \Delta t \\
& \underline{v}_{p}=\underline{v}_{\mathrm{n}-1}+\underline{\Delta \tilde{v}}_{p}+\left[\frac{\underline{g}_{\mathrm{n}-1}+\underline{g}_{p}}{2}\right] \Delta t
\end{aligned}
$$

where
$\underline{\mathrm{v}}_{\mathrm{n}-1}=$ velocity $\left(\underline{v}_{\mathrm{p}}\right)$ at end of previous interval
$\Delta \tilde{\mathrm{v}}_{\mathrm{p}}=$ accumulated PIPA $\Delta \mathrm{V}$ pulses over 2-second interval
$\mathrm{g}_{\mathrm{n}-1}=$ lunar gravitational acceleration at end of previous interval
$\mathrm{g}_{\mathrm{p}}=$ lunar gravitational acceleration at end of present interval
$\underline{g}_{\mathrm{p}}=\frac{-\mu_{\mathrm{M}}}{\mathrm{r}_{\mathrm{p}}{ }^{3} \underline{r}_{\mathrm{p}}, ~}$
In addition to the state vector update, the following terms are computed

$$
\text { Altitude } \quad h^{\prime}=r_{p}-r_{L s}
$$

where

$$
r_{p}=\text { magnitude of position, } \underline{r}_{p}
$$

$$
r_{\text {LS }}=\text { magnitude of landing site, } \underline{r}_{L S}
$$

Velocity	$v^{\prime}=\left\|v_{p}\right\|$
Mass	$m_{n}=m_{n-1}-\left\|\underline{\tilde{v}_{p}}\right\| m_{n-1} / v_{e} \quad\left(v_{e}=\right.$ Exhaust Velocity Constant)

Velocity Increment $\quad \Delta V=\Delta V+\left|\Delta \tilde{v}_{p}\right|$

$\mathrm{b}^{\prime}=\left|I_{p}\right|-\left|r_{L s}\right|$
where
h^{\prime} - eatimsted altutoce
$\left|I_{\mathrm{p}}\right|=$ magnitude of $L \mathrm{LM}$ position vector

$\left|F_{1 s}\right|=$ magntutue of Landing stit vector

- Comppute the measured alitutute
$\tilde{h}=b_{L R}+b_{T}$

${ }^{\text {where }}$ \qquad $\mathrm{B}_{\text {LR }}=$ =alturted derived from LR ragge data

$\mathrm{U}_{\mathrm{RB}_{\mathrm{p}}}$ - untit vector aloogs LR rarge beam

- Compate the measurement residual
mere
$\hat{h}=$ measured alitutue derived from LA slant range
$\mathrm{h}^{\prime}=$ estimated altitude
- Update the position vector using the precompoted grian and measurement restiduai

UPDATE THE STATE VECTOR USING LR VELOCITY DATA

The Landing Radar has three velocity components. They are used (one during eacis 2 -second interval) to update state according to the time line shown below.

$$
\begin{aligned}
& \tilde{q}_{u}=v_{x} \quad \tilde{q}_{u}=v_{y} \quad \tilde{q}_{u}=v_{z}
\end{aligned}
$$

- Compute the measurement residual corresponding to the time that the velocity data is read (t_{u}).
$\delta \mathrm{q}=\widetilde{\mathrm{q}}_{u}-\mathrm{q}_{u}^{\prime}$
$\widetilde{\mathrm{q}}_{\mathrm{u}}=\mathrm{LR}$ velocity component read at time t_{u}
$q_{u}^{\prime}=$ estimated component of LM relative velocity in the direction of \widetilde{q}_{u}

$$
\mathrm{q}_{\mathrm{u}}^{\prime}=\left(\underline{v}_{\mathrm{u}}^{\prime}-\omega_{\mathrm{p}} \times \underline{\underline{r}}_{\mathrm{p}}\right) \cdot \underline{u}_{A P_{u}}
$$

where

$$
\underline{\omega}_{p} \times \underline{\underline{r}}_{p}=\text { velocity of lunar surface }
$$

$\underline{\mathrm{AP}}_{\mathrm{u}}=$ unit vector in direction of LM velocity data
$\underline{v}_{u}^{\prime}-\underline{\omega}_{p} \times \underline{r}_{p}$ = velocity of LM relative to lunar surface
$\underline{v}_{\mathrm{u}}^{\prime}=$ estimated LM velocity at time t_{u}
$\underline{v}_{u}^{\prime}=\underline{v}_{\mathrm{n}-1}+\widetilde{\Delta v}_{\mathrm{u}}+\mathrm{g}_{\mathrm{n}-1}\left(\mathrm{t}_{\mathrm{u}}-\mathrm{t}_{\mathrm{n}-1}\right)$
where
$\underline{v}_{\mathrm{n}-1}=$ LM velocity at end of previous update cycle $\Delta \underline{v}_{u}=$ PIPA ΔV read at time of LR velocity data t_{u}
$\mathrm{g}_{\mathrm{n}-\mathrm{t}}=$ lunar gravitational acceleration at end of previous cycle

- Update the LM velocity vector at time t_{n} using measurement residual and extrapolate velocity $\left({ }_{\mathrm{p}}^{\mathrm{p}}\right)$

$$
\underline{v}_{\mathrm{p}}=\underline{\mathrm{v}}_{\mathrm{p}}+\omega_{\mathrm{u}} \delta \mathrm{q} \underline{\mathrm{u}}_{\mathrm{AP}}^{\mathrm{u}}
$$

LUNAR LANDING PARAMETERS (P63, P64) APOLLO 16

A. ORBITAL RELATIONSHIPS

Assuming a spherical planet, the equation of motion for a satellite is given by

$$
\begin{equation*}
\frac{d^{2} \vec{r}}{d t^{2}}=-\frac{\mu}{r^{3}} \vec{r} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu=\left(\mathrm{M}_{\text {Planet }}+\mathrm{M}_{\text {Satellite }}\right) \mathrm{G} \\
& \mathrm{G}=\text { gravitational constant }
\end{aligned}
$$

The solution of Equation 1 is:

$$
\begin{equation*}
r=\frac{h^{2} / \mu}{1+e \cos f} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{h}=\text { angular momentum of the satellite } \\
& \mathrm{e}=\text { eccentricity of the orbit } \\
& \mathrm{f}=\text { true anomaly }
\end{aligned}
$$

which is the polar equation of a conic. The conic will be an ellipse, a parabola, or a hyperbola. Treating the parabola as a special case of the ellipse and considering onl the hyperbola and ellipse, the following relationships are obtained:

Angular Momentum	$\overrightarrow{\mathrm{h}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{v}}=\mathrm{r}^{2} \dot{\mathrm{f}}=$ constant
Velocity	$\mathrm{v}^{2}=\mu(2 / \mathrm{r}-1 / \mathrm{a})$
Apogee	$\mathrm{r}_{\mathrm{a}}=\mathrm{a}(1+\mathrm{e})$
Semilatus Rectum	$\mathrm{p}=\mathrm{h}^{2} / \mu$
Semimajor Axis	$\mathrm{a}=\mathrm{r} \mu /\left(2 \mu-\mathrm{rv}^{2}\right) \quad$ Negative for hyperbola
Eccentricity	$\mathrm{e}=\left(1-\mathrm{h}^{2} / \mu \mathrm{a}\right)^{1 / 2}$
Perigee	$\mathrm{r}_{\mathrm{p}}=\mathrm{a}(1-\mathrm{e})$
True Anomaly	$\cos \mathrm{f}=\frac{\mathrm{p}}{\mathrm{re}}-\frac{1}{\mathrm{e}} \cdot \sin \mathrm{f}=\frac{\mathrm{h}}{\mu \mathrm{re}} \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{v}}$

Ellipse Only
Period
Mean Motion
Mean Anomaly
$\mathrm{P}=2 \pi\left(\mathrm{a}^{\left.3 / 2 / \mu^{1 / 2}\right)}\right.$

$$
\mathrm{n}=\mu^{1 / 2 / a^{3 / 3}}
$$

Eccentric Anomaly
$\tau=$ time of perigee passage
$\mathrm{E}-\mathrm{e} \sin \mathrm{E}=\mathrm{M}$ (Kepler's Equation) $\tan (E / 2)=[(1-e) /(1+e)]^{1 / 2} \tan (f / 2)$

Hyperbola Only

Mean Motion	$\gamma^{2}=\mu / a^{3}$
Mean Anomaly	$M=\gamma(\mathrm{t}-\tau)$
	$\tau=$ time of perigee passage
Eccentric Anomaly	$H-e \sinh H=M$
	$\tanh (H / 2)=\|(\mathrm{e}-1) /(\mathrm{e}+1)\|^{1 / 2} \tan (\mathrm{f} / 2)$

From these relationships, given an initial position and velocity vector, the orbit and rbit parameters are uniquely determined

B. THE ORBIT IN SPACE

The orbit in space is defined by an orthogonal set of axes along perigee, the semilatus rectum, and the angular momentum vector. The ordered set of right hand rotations (Euler angles) to achieve this orientation from the earth-centered-inertial (EC) frame are illustrated in Figure 1 and given by the expression

$$
\left[\begin{array}{l}
\mathrm{P} \\
\mathrm{Q} \\
\mathrm{w}
\end{array}\right]_{\text {Orbit }}=\left\{\mathrm{R}_{\mathrm{Z}}(\mathrm{w})\right\}\left\{\mathrm{R}_{\mathrm{X}}(\mathrm{i}) \left\lvert\,\left\{\mathrm{R}_{\mathrm{Z}}(\Omega) \left\lvert\,\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right]_{\mathrm{ECI}}=\{\mathrm{A}\}\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right]_{\mathrm{ECI}}\right.\right.\right.\right.
$$

(3)

where

$\Omega=$ longitude of ascending node

$\mathrm{i}=$ angle of incidence

$w=$ argument of perigee

Figure 1. The Orbit in Space
The angles Ω, i, and w are generally unknowns; therefore, the elements in $[\mathrm{A} \mid$ must be evaluated by some other means. To this end, Equation 3 is expressed as follows:

$$
\left[\begin{array}{c}
\mathrm{P} \tag{4}\\
\mathrm{Q} \\
\mathrm{~W}
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{P}_{\mathrm{X}} & \mathrm{P}_{\mathrm{Y}} & \mathrm{P}_{\mathrm{Z}} \\
\mathrm{Q}_{\mathrm{X}} & \mathrm{Q}_{\mathrm{Y}} & \mathrm{Q}_{\mathrm{Z}} \\
\mathrm{~W}_{\mathrm{X}} & W_{Y} & W_{Z}
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right]_{\mathrm{ECI}}=\quad \text { [} \mathrm{B} \left\lvert\,\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right]_{\mathrm{ECI}}\right.
$$

The unit vector along perigee that is, $\mathrm{P}_{\mathrm{X}}, \mathrm{P}_{\mathrm{Y}}, \mathrm{P}_{\mathrm{Z}}$) can be determined by Equation
141, Page 20 of Battin as follows:

$$
\begin{equation*}
\left.\overrightarrow{\mathrm{P}}=\frac{1}{\mu \mathrm{e}} \left\lvert\,\left(\mathrm{v}^{2}-\frac{\mu}{\mathrm{r}}\right) \overrightarrow{\mathrm{r}}-(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{v}}) \quad \overrightarrow{\mathrm{v}}\right.\right) \tag{5}
\end{equation*}
$$

$\mathrm{v}=$ absolute magnitude of velocity
$r=$ absolute magnitude of the radius vector
$\overrightarrow{\mathrm{v}}=$ inertial velocity
$\vec{r}=$ radius vector

This relationship is obtained as follows:

Figure 2
$\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{e}}_{\mathrm{r}} \cos \mathrm{f}-\overrightarrow{\mathrm{e}}_{\mathrm{n}} \sin \mathrm{f}$
(1) $\vec{e}_{r}=\frac{\vec{r}}{r}: \vec{e}_{h}=\frac{\vec{h}}{h} ; \vec{e}_{n}=\frac{\vec{h}}{h} \times \frac{\vec{r}}{r}$
(2) $r=\frac{h^{2} / \mu}{1+e \cos f}: \cos f=\frac{h^{2}}{\mu e} r^{-1}-\frac{1}{e}: \sin f=\frac{h}{\mu e} \dot{r}$;
but $\dot{r}=v \dot{e}_{r}=v \cos \beta=\frac{\vec{r} \cdot \vec{v}}{r}$
(3) $\sin f=\frac{h}{\mu e} \frac{\dot{r} \cdot \vec{v}}{r}$

Combining 1, 2, and 3 into Equation 6

$$
\vec{p}=\frac{\vec{r}}{r}\left|\frac{h^{2}}{\mu e r}-\frac{1}{e}\right|-\left(\frac{\vec{h}}{h} \times \frac{\vec{r}}{r}\right)\left|\frac{h}{\mu e} \frac{\vec{r} \cdot \vec{v}}{r}\right|
$$

By substituting

$$
\mathrm{h}=\mathrm{rv} \sin \beta, \cos \beta=\frac{\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{v}}}{\mathrm{rv}}
$$

and adding the factor

$$
r v^{2} \cos ^{2} \beta \vec{e}_{r}-r v^{2} \cos ^{2} \beta \vec{e}_{r}
$$

the above equation reduces to

$$
\overrightarrow{\mathrm{P}}=\frac{1}{\mu \mathrm{e}}\left|\left(\mathrm{v}^{2}-\frac{\mu}{r}\right) \overrightarrow{\mathrm{r}}-(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{v}})\left(\mathrm{v} \cos \beta \overrightarrow{\mathrm{e}}_{\mathrm{r}}+\mathrm{v} \sin \beta \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right)\right|
$$

but

$$
\overrightarrow{\mathrm{v}}=\mathrm{v} \cos \beta \overrightarrow{\mathrm{e}}_{\mathrm{r}}+\mathrm{v} \sin \beta \overrightarrow{\mathrm{e}}_{\mathrm{n}}
$$

therefore

$$
\overrightarrow{\mathrm{p}}=\frac{1}{\mu \mathrm{e}} \quad\left|\left(\mathrm{v}^{2}-\frac{\mu}{r}\right) \overrightarrow{\mathrm{r}}-(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{v}}) \overrightarrow{\mathrm{v}}\right|
$$

Since $\overrightarrow{\mathrm{h}}=$ constant, the unit vector along h (that is. $W_{X}, W_{Y}, W_{\%}$) is determined given any r and corresponding v in the orbit. That is

$$
\begin{equation*}
\vec{w}=\frac{\vec{h}}{\vec{h}}=\frac{\vec{r} \times \vec{r}}{r v \sin \beta} \tag{7}
\end{equation*}
$$

Having determined $\overrightarrow{\mathrm{P}}$ and \mathfrak{w}., the remaining unit vector, (c. is calculated as follows:

$$
\dot{Q}=\vec{w}, \vec{p}
$$

By using Equations 6, 7, and \& the matrix / B/ is determined. That is, the ..rbit is defined in inertial space. From Equations : : and d, $|\mathrm{A}|=|\mathrm{B}|$. Br equating elements
c. ORBIT DETERMINATION

The problem of orbit determination can be stated as follows: Given an initial r_{1} and corresponding v_{1} vector expressed in ECI coordinates, determine the position and velocity in ECI coordinates at some time. t_{2},

From what has been presented so far, the approach would be to determine if the conic is a hyperbola or an ellipse. Then use the corresponding form of Kepler's equation to solve for the true anomaly and through the orbit-in-space-transformation determine
the position and velocity at t_{2}.

This method has the undesirable feature of first determining if the conic is a hyperbol or an ellipse and requires two sets of equations.
A more unified approach as presented by Battin is the universal conic equations which are given by

The parameter X which is required for Equations 9 and 10 is determined as follows: An initial guess for X is given by

$$
\mathrm{X}=\mathrm{x}_{1}+\mathrm{S}_{1} 1-\mathrm{F}_{3} \mathrm{~S}\left(1-2 \mathrm{~F}_{3} \mathrm{~S}\right)-\frac{1}{6}\left(\frac{1}{r_{1}}-\alpha_{1}\right) \mathrm{S}^{3}
$$

where
$\mathrm{X}_{1}=0$ for the first iteration und X for subsequent iterations
$F_{3}=\frac{\dot{r}_{1} \cdot \dot{v}_{\mu}}{2 r_{1} \cdot \mu}$
$S=\frac{\bar{\mu}^{\bar{u}}}{2 \mathrm{r}_{1}}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
Having an initial guess for X , an improved value is obtained by a Newton-Raphson iteration scheme as follows:

$$
x_{n+1}=x_{n}-\frac{F\left(x_{n}\right)}{F^{\prime}\left(x_{n}\right)}
$$

where

$$
\mathrm{F}\left(\mathrm{X}_{\mathrm{n}}\right)=\left[\frac{\overrightarrow{\mathrm{r}}_{1} \cdot \overrightarrow{\mathrm{r}}_{1}}{\vec{\mu}} \mathrm{X}_{\mathrm{n}}{ }^{2} \mathrm{C}\left(\mathrm{X}_{\mathrm{n}}{ }^{2} \alpha_{1}\right)+\left(1-\mathrm{r}_{1} \alpha_{1}\right) \mathrm{X}_{\mathrm{n}}{ }^{3} \mathrm{~S}\left(\mathrm{X}_{\mathrm{n}}{ }^{2} \alpha_{1}\right)+\mathrm{r}_{1} \mathrm{X}_{\mathrm{n}}\right]
$$

$$
-\sqrt{\bar{\mu}} \Delta
$$

$\mathrm{F}^{\prime}\left(\mathrm{X}_{\mathrm{n}}\right)=\frac{\vec{r}_{1} \cdot \overrightarrow{\mathrm{v}}_{1}}{\sqrt{\mu}}\left[\mathrm{X}_{\mathrm{n}}-\alpha_{1} \mathrm{X}_{\mathrm{n}}{ }^{3} \mathrm{~s}\left(\mathrm{X}_{\mathrm{n}}{ }^{2} \alpha_{1}\right)\right]+\left[\begin{array}{r}\left(1-\mathrm{r}_{1} \alpha_{1}\right) \mathrm{X}_{\mathrm{n}}{ }^{2} \mathrm{C}\left(\mathrm{X}_{\mathrm{n}}{ }^{2} \alpha_{1}\right) \\ +\mathrm{r}_{1}\end{array}\right]$

$$
\begin{aligned}
& \dot{r}\left(h_{2}\right)=\left[1-\frac{x^{2}}{r_{1}} c\left(X^{2}\left(\alpha_{1}\right)\right] \vec{r}_{1}+\left[\Delta t-\frac{x^{3}}{\sqrt{\mu}} \mathrm{~s}\left(X^{2} \alpha_{1}\right)\right] \dot{v}_{1}\right. \\
& \text { where } \\
& c\left(X^{2} \alpha_{1}\right)=\frac{1}{2!}-\frac{x^{2} \alpha_{1}}{4!}+\frac{\left(X^{2} \alpha_{1}\right)^{2}}{6!}-\cdots \\
& \mathrm{S}\left(\mathrm{X}^{2} \alpha_{1}\right)=\frac{1}{3!}-\frac{\mathrm{X}^{2}\left(\alpha_{1}\right.}{5!}+\frac{\left(\mathrm{X}^{2} \alpha_{1}\right)^{2}}{7!}-\cdots \\
& \Delta t=b_{2}-t_{1} \\
& 0_{1} \quad=\frac{1}{a}=\frac{2}{r_{1}}-\frac{v_{1} z^{2}}{\mu} \\
& x \quad=\frac{E_{2}-E_{1}}{m_{1}} \text { for ellipse } \\
& X \quad=\frac{H_{3}-H_{1}}{-1 x_{1}} \quad \text { for hyperbola }
\end{aligned}
$$

The conic section concept uulizatd for naxigation requires the computation of

1- Kepler \& Problem giten ro. vor and \pm, solve tor r_{1}, v_{1}.
3. Time - Theta Problem siven r_{0}. Tor and θ,solve for 2 s .

4- Time - Radius Problem kiven r_{o}, vo, and $r_{\text {, }}$, solve for Δt
where:

f-truc amomaly measarest from periecenter
$\Delta t=$ fight time from r_{0} to r_{r}
$\alpha=1 / a \quad a=$ semima
$\gamma=$ nieht path angalc
$9=150$
The ryaztion set usenl for soltuion of the atowe problem is
13. $\mu د t={ }^{p} p \cot \%_{0} x^{2} C\left(\alpha x^{2}\right)-\left(1-r_{0} \alpha\right) x^{2} S\left(\alpha x^{2}\right)-r_{0} x$

15. $\frac{p}{r_{0}}=\frac{1-\cos \theta}{\left.r_{1}-r_{1}-\cos \theta \cdot \sin \theta \operatorname{con}\right)_{0}}$
10. $\frac{r}{\mu}=2=r a$

11. $\left.\frac{p}{r_{1}} \frac{2\left(\frac{r_{0}}{r_{1}}-1\right)}{\left(\frac{r_{0}}{r_{1}}\right)\left(1-\mathrm{sen}^{2} \gamma_{2}\right)-\left(1+\mathrm{cos}^{2} \gamma_{1} r_{1}\right.}\right)$

21. $\left.r_{1}=\frac{u}{r_{0} r_{1}} m^{2} \sin x^{2}\right)-x \cdot r_{0} \cdots 1-\frac{x^{2}}{r_{1}} c\left(m^{2}\right), v_{0}$
33. $\quad \mathrm{cot} \%=\frac{\mathrm{r} \cdot \mathrm{r}}{|\mathrm{rx} \times|}$

Ther.fore:

r_{1} and, , wrime Fquationn 20 ant 31 .

D. DISTURBANCE ACCELERATIONS

So far the planet in question has been assumed to be spherical which is not the case for either the earth or the moon. Nor have the effects of the sun and the moon on the earth or vice versa been considered. Therefore, Equation 1 must be modified as follows

$$
\frac{\mathrm{d}^{2} \vec{r}}{d t^{2}}+\frac{\mu}{\mathrm{r}^{3}} \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}_{\mathrm{d}}
$$

where
\vec{a}_{d} is the disturbance acceleration due to

1. oblateness of the earth or the nonspherical shape of the moon depending on which reference body is used,
2. the effects of the sun,
3. the effects of the secondary body on the primary body; that is, effects of moon on earth if earth is primary body and vice versa.

Analytical expressions for \vec{a}_{d} are given in $\mathrm{R}-577$, Section 5 . Since \vec{a}_{d} is small in comparison to $\frac{\mu}{r^{2}}$. the two-body orbit given by Equation 1 is used as a reference or osculating orbit which is perturbed by \vec{a}_{d}. The actual position and velocity vectors are, therefore, given by

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} & =\overrightarrow{\mathrm{r}}_{\mathrm{c}}+\vec{\sigma} \\
\overrightarrow{\mathrm{v}} & =\overrightarrow{\mathrm{v}}_{\mathrm{c}}+\vec{\sigma}
\end{aligned}
$$

where
\vec{r}_{c} and $\overrightarrow{\mathrm{v}}_{\mathrm{C}}$ are the position and velocity of the two-body conic solutions,
$\vec{\delta}$ and $\vec{\sigma}$ are the deviations from the two-body conic solutions of position and velocity. respectively.

Differentiating Equation 24 and substituting into Equation 23 gives the following expres sion for the differential acceleration

$$
\frac{\mathrm{d}^{2} \vec{\delta}}{\mathrm{~d} \mathrm{t}^{2}}=\frac{\mu}{\mathrm{r}_{\mathrm{c}}{ }^{3}}\left[\left[1-\frac{\mathrm{r}^{3}}{\mathrm{r}^{3}}\right] \overrightarrow{\mathrm{r}}-\vec{\delta}\right]+\overrightarrow{\mathrm{a}}_{\mathrm{d}}
$$

subject to the initial conditions

$$
\vec{\delta}\left(t_{0}\right)=0, \quad \frac{d \vec{\delta}}{d t}\left(t_{0}\right)=\vec{\sigma}\left(t_{0}\right)=0
$$

This method (Equation 25) is known as Encke's method of differential accelerations.
Since the coefficient of \vec{r} in Equation 25 requires the subtraction of nearly equal quantities, prohibitive errors are introduced by solving Equation 25 in its present form. This difficulty can be overcome by making the substitution

$$
\left(1-\frac{r_{c}{ }^{3}}{r^{J}}\right)=\frac{\vec{r}}{r^{2}}\left(1+\frac{\rho^{2}}{1+\rho}\right)\left[\left(\vec{r}_{\mathrm{c}}+\overrightarrow{\mathrm{r}}\right) \cdot \vec{\delta} \mid \text { where } \rho=r_{\mathrm{c}} / \mathrm{r}\right.
$$

Equation 25, therefore, becomes

$$
\frac{d^{2} \vec{\delta}}{d t^{2}}=\frac{\mu}{r_{\mathrm{c}}{ }^{3}}\left\{\frac{\vec{r}}{\mathrm{r}^{2}}\left(1+\frac{\rho^{2}}{1+\rho}\right)\left[\left(\vec{r}_{\mathrm{c}}+\overrightarrow{\mathrm{r}}\right) \cdot \vec{\delta}\right]-\vec{\delta}\right\}+\vec{a}_{\mathrm{d}}
$$

Equation 26 can be solved by any number of numerical integration schemes. The method used in the Apsid

In order to maintain the efficiency of Encke's method of differential accelerations, $\delta(t)$ must remain small. Therefore, a new osculating conic must be defined by the total position and velocity vectors $r(t)$ and $v(t)$ when $\delta(t)$ reaches a predetermined limit. The process of selecting a new conic orbit from which to calculate deviations is called rectification.
To sum up, the position and velocity, during freefall, at time t_{2}, given the position and velocity at time t_{1}, are computed as follows:

1. Position and velocity in the osculating orbit at time t_{2} are calculated according to Equations 9 and 10
2. Deviations are then obtained by numerical integration of Equation 26.
3. A new conic from which to calculate deviations is defined each time the deviations ($\vec{\delta}$ (t)) reach a predetermined limit.
E. DISTURBING FUNCTIONS AND THEIR APPLICABILITY

We define the following disturbance accelerations as applicable to Apollo:
$\vec{a}_{\mathrm{dE}}=$ acceleration due to the nonspherical gravitational perturbations of the earth
$\dot{a}_{\mathrm{dm}}=$ acceleration due to the nonspherical gravitational perturbations of the moon
${ }^{\mathrm{a}} \mathrm{dq}=$ acceleration due to the secondary body on the primary body; that is, moon is secondary body when earth is used as relerence and vice versa
$\vec{a}_{d s}=$ acceleration due to the sun
analytical expressions for which are given in R-577, Section 5 .
The applicable disturbance accelerations and their region of applicability for Apollo are given in Figure 3.

Region 1. $a_{d}=\vec{a}_{d E}$
Region 3. $\quad \dot{a}_{d}=\vec{a}_{\mathrm{ds}}+\vec{a}_{\mathrm{dqm}}$
Region 4. $\mathrm{a}_{\mathrm{d}}=\mathrm{a}_{\mathrm{ds}}+\mathrm{a}_{\mathrm{dqE}}$
Region 5. $\quad \vec{a}_{\mathrm{d}}=\vec{a}_{\mathrm{dm}}+\vec{a}_{\mathrm{ds}}+\vec{a}_{\text {chqE }}$
Region 6. $\mathrm{a}_{\mathrm{d}}=\mathrm{a}_{\mathrm{dm}}$
Figure 3. Apollo Disturbance Acceleration Regions

G. TPI TARGETING

The TPI targeting for the Apollo 16 mission is accomplished using the equations and techniques stated below utilizing the following information:

Targeting Procedure:

1. Compute the elevation angle of the LM-CSM LOS above the LM horizontal plane at the time of TPI.

$$
\begin{aligned}
& \left.\mathrm{E}_{\mathrm{A}}=\cos ^{-1}\left[\underline{\mathrm{U}}_{\mathrm{L}} \cdot \underline{\mathrm{U}}_{\mathrm{P}} \mathrm{SGN} \underline{\mathrm{U}}_{\mathrm{P}} \cdot \underline{\mathrm{U}} \times \underline{\mathrm{R}}_{\mathrm{LM}}\right)\right] \\
& \text { where: } \\
& \underline{\underline{V}}_{\mathrm{L}}=\operatorname{unit}^{\left[\underline{\underline{R}_{C M}}\right.}-\underline{\underline{\underline{R}}}_{\mathrm{LM}}{ }^{1} \\
& \underline{\mathrm{v}}=\operatorname{untit}_{\mathrm{I}_{\mathrm{IM}}} \times \underline{\mathrm{V}}_{\mathrm{LMM}}{ }^{\prime}
\end{aligned}
$$

if $E_{A}<0^{0}$ define $E_{A}=2 \pi-E_{A}$
2. Compute the time $\left(\mathrm{t}_{21}\right)$ required for the CSM to travel through the central angle ψ_{CM} using the Time-Theta method described on page SC-51.
3. Update the state vector of the CSM to the time of rendezvous ($\Delta \mathrm{T}=\mathrm{t}_{21}$) using Kepler's method as described on page $\mathrm{SC}-51$ obtaining ($\left.\underline{R}_{\mathrm{CMF}}, \underline{\mathrm{V}}_{\mathrm{CMF}}\right)$.
4. Compute the central angle ($\left.\psi_{\mathrm{LM}}\right)$ through which the LM must traverse between its position at TPI and the CSM's position at rendezvous.

$$
\begin{aligned}
& \left.\psi_{\mathrm{LM}}=\operatorname{SGN} \underline{R}_{\mathrm{LM}} \times \underline{\mathrm{R}}_{\mathrm{CMF}} \cdot \underline{\mathrm{U}}\right) \quad \cos ^{-1}\left(\underline{\mathrm{R}}_{\mathrm{LM}} \cdot \underline{\mathrm{R}}_{\mathrm{CMF}}\right) \\
& \text { if } \psi_{\mathrm{LM}}<0^{\circ} \text { define } \psi_{\mathrm{LM}}=\psi_{\mathrm{LM}}+2 \pi
\end{aligned}
$$

5 Using the Time-Theta method, determine the flight path angle γ required of the LM at the end of the TPI burn such that the time required by the LM to traverse the central angle of $\psi_{L M}$ is the same as t_{21}.
6. Calculate the velocity to be gained.

$$
\begin{aligned}
& \underline{\Delta V}_{\mathrm{g}}=\underline{\mathrm{V}} \mathrm{LM}^{-}-\underline{\mathrm{V}}_{\mathrm{LM}} \\
& \text { where: } \\
& \underline{\mathrm{V}}_{\mathrm{LM}}=\sqrt{\frac{\mathrm{P}_{\mu}}{\mathrm{R}_{\mathrm{LM}}}} \text { (cot } \gamma \cdot \text { unit } \underline{\mathrm{R}}_{\mathrm{LM}}+\underline{\mathrm{U}}_{\mathrm{N}} \times \text { unit } \underline{\mathrm{R}}_{\mathrm{LM}} \text {) } \\
& \mathrm{P}=\text { semilatus rectum of the TPI orbit } \\
& \underline{U}_{\mathrm{N}}=\text { unit }\left[\text { unit } \underline{\mathrm{R}}_{\mathrm{CMF}} \cdot \text { unit } \underline{R}_{\mathrm{LM}}\right]
\end{aligned}
$$

The velocity to be gained is burned out using the APS and Lambert Aimpoint Guidance.

