
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

AC Series Circuits

© 2018-2024 by Tony R. Kuphaldt – under the terms and conditions of the
Creative Commons Attribution 4.0 International Public License

Last update = 9 September 2024

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

1.1 Recommendations for students . 3
1.2 Challenging concepts related to series AC circuits . 5
1.3 Recommendations for instructors . 7

2 Case Tutorial 9

2.1 Example: series RL circuit . 10
2.2 Example: series RC circuit . 14
2.3 Example: series RLC circuit . 16
2.4 Example: measuring series voltage phase shift . 17
2.5 Example: solving for an unknown inductance . 20
2.6 Example: sine versus non-sine AC sources . 22

3 Tutorial 27

3.1 AC versus DC . 28
3.2 Series network properties . 32
3.3 Example circuit analysis using complex calculator . 33
3.4 Example circuit analysis using ordinary calculator 37

4 Derivations and Technical References 41

4.1 Equivalent series and parallel XR networks . 42
4.2 Complex-number arithmetic . 48

4.2.1 Negating complex numbers . 49
4.2.2 Adding complex numbers . 49
4.2.3 Subtracting complex numbers . 49
4.2.4 Multiplying complex numbers . 50
4.2.5 Dividing complex numbers . 50
4.2.6 Reciprocating complex numbers . 51
4.2.7 Calculator tips . 51

5 Programming References 53

5.1 Programming in C++ . 54
5.2 Programming in Python . 58
5.3 Modeling series RLC circuits using C++ . 63

iii

CONTENTS 1

6 Questions 69

6.1 Conceptual reasoning . 73
6.1.1 Reading outline and reflections . 74
6.1.2 Foundational concepts . 75
6.1.3 Capacitive voltage divider . 76

6.2 Quantitative reasoning . 77
6.2.1 Miscellaneous physical constants . 78
6.2.2 Introduction to spreadsheets . 79
6.2.3 Series RL impedances . 82
6.2.4 Series RC impedances . 82
6.2.5 Inductor with winding resistance . 83
6.2.6 VIZ table for series RC circuit . 84
6.2.7 Sound system calculations . 85
6.2.8 LL and RL phasor diagrams . 86
6.2.9 RL network and phasor diagram . 87
6.2.10 Unknown capacitance . 87

6.3 Diagnostic reasoning . 88
6.3.1 Failed doorbell . 89

A Problem-Solving Strategies 91

B Instructional philosophy 93

C Tools used 99

D Creative Commons License 103

E Version history 111

Index 112

2 CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

The fundamental distinction between an AC circuit and a DC circuit is that voltages and currents
in an AC circuit alternate polarity and direction over time rather than remain steady as is the
case in a DC circuit. The rate at which an AC quantity alternates is called frequency. While DC
is conceptually simpler, AC is useful for many more applications such as electrically representing
vibrations (e.g. sound waves represented as AC voltages or currents in an audio recording or playback
system) as well as electric power transmission over long distances.

Due to the fact that AC quantities persistently change and are not steady like DC, analysis of
AC circuits is necessarily more complicated than DC circuits. However, it is possible to represent
AC voltages, currents, and impedances in the form of complex numbers, and doing so permits all
the fundamental properties of DC circuits to be applied to these AC quantities as well. With regard
to series AC networks, voltages still add in series, currents are still equal in series, and impedances
still add in series. Ohm’s Law and Kirchhoff’s Laws equations look very much the same, the only
difference with AC being that each variable represents a complex number rather than a simple
number.

Important concepts related to AC series networks include DC versus AC electricity, phasors,
frequency, phase shift, apparent power, true power, reactive power, Kirchhoff’s Voltage

Law, Kirchhoff’s Current Law, properties of series networks, sources versus loads, complex
numbers in polar and rectangular forms, Conservation of Energy, Conservation of Charge,
diagram annotation, and polarity.

A very important problem-solving strategy applied throughout the Tutorials is that of annotating
diagrams with labels showing voltages, polarities, and currents (with direction). Mapping calculated
values onto these diagrams is a helpful way to avoid confusion and to maintain proper context for
all the quantities. Another important point about problem-solving is the need for patience, and the
willingness to proceed with calculations even if the final strategy for solving the problem eludes one’s
immediate grasp.

When reading any mathematically-based presentation, a useful habit for effective learning is to
actually perform the mathematics being shown in the text. Don’t just passively read what the

3

4 CHAPTER 1. INTRODUCTION

text tells you and trust that the math works – try the math for yourself. Not only will this serve
to confirm what you are reading, but it is also an excellent way to practice those mathematical
techniques.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to demonstrate the properties of series
electrical networks? What hypotheses (i.e. predictions) might you pose for that experiment,
and what result(s) would either support or disprove those hypotheses?

• What does it mean to say that an AC quantity has a frequency?

• How does true power differ from apparent or reactive power in an AC circuit?

• Which principles from DC circuit analysis still apply to AC circuits?

• Which principles from DC circuit analysis do not apply to AC circuits?

• Why do we say that the phase angle of an inductor’s impedance is positive 90 degrees?

• Why do we say that the phase angle of a capacitor’s impedance is negative 90 degrees?

• What defines a series connection between two or more components?

• How may we explain all the properties of series networks in terms of more fundamental
principles?

• How do we analyze a series network step-by-step?

• What is a “phasor diagram” and what does it show us?

• Why is it a good practice to store all calculated values in memory, rather than re-type those
values into your calculator when needed for other calculations?

• What are some good ways to check our mathematical work when finishing a complex circuit-
analysis problem?

1.2. CHALLENGING CONCEPTS RELATED TO SERIES AC CIRCUITS 5

1.2 Challenging concepts related to series AC circuits

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Defining a series network – series networks are defined by having a single path for current
between the components. From this definition, and from the Conservation of Electric Charge,
follows the conclusion that series-connected components must experience the same amount
of continuous current. One challenge is that sometimes series-connected components do not
physically or pictorially align to suggest a single path, even though they have but one electrical
path for current. Another challenge is reasoning logically from this definition of “one path” to
the necessary conclusion of “same current”, as many students are so accustomed to memorizing
facts without seeing the logical connections between those facts.

• Phasors representing AC amplitudes and phase shifts – a powerful tool used for
understanding the operation of AC circuits is the phasor diagram, consisting of arrows pointing
in different directions: the length of each arrow representing the amplitude of some AC
quantity (voltage, current, or impedance), and the angle of each arrow representing the shift
in phase relative to the other arrows. By representing each AC quantity thusly, we may
more easily calculate their relationships to one another, with the phasors showing us how to
apply trigonometry (Pythagorean Theorem, sine, cosine, and tangent functions) to the various
calculations. An analytical parallel to the graphic tool of phasor diagrams is complex numbers,
where we represent each phasor (arrow) by a pair of numbers: either a magnitude and angle
(polar notation), or by “real” and “imaginary” magnitudes (rectangular notation). Where
phasor diagrams are helpful is in applications where their respective AC quantities add : the
resultant of two or more phasors stacked tip-to-tail being the mathematical sum of the phasors.
Complex numbers, on the other hand, may be added, subtracted, multiplied, and divided; the
last two operations being difficult to graphically represent with arrows.

• Complex numbers in calculators – while the ability of certain scientific calculators to
perform complex-number arithmetic is an enormously helpful tool for students first learning to
analyze AC circuits, some of these calculators prove to be finicky in their handling and entry
of these quantities. Advice proven to be sound for all complex-number calculators is to save
each and every complex-valued quantity into a memory location and then perform arithmetic
operations on those stored variables rather than enter the complex numbers directly into the
computation. For example, storing 3 - j4 into memory location A and 25 6 30o into memory
location B, then multiplying A × B rather than entering 3 - j4 × 25 6 30o. Storing values
into calculator memory and then retrieving them as needed for calculations is actually sound
advice for many reasons, but many students resist taking these “extra” steps and as a result
incur all the risks of hand-entering values (e.g. rounding errors due to truncating, keystroke
errors when the same value must be used more than once, crowded displays where you cannot
see the whole calculation, order-of-operations errors when complex numbers aren’t enclosed in
parentheses, etc.). Complex-number calculations reward good practices through consistently
good results!

• Complex numbers in measurement – complex numbers may be expressed in either
rectangular or polar form, either one of these being perfectly valid. However, measurement

6 CHAPTER 1. INTRODUCTION

instruments such as multimeters only provide the magnitude of the polar form of the voltage
or current in question. For example, if a component’s voltage is 4.8 Volts RMS 6 35o with
the circuit’s source voltage being the phase reference (0o), an voltmeter reading that voltage
will simply register 4.8 Volts RMS. An oscilloscope simultaneously measuring that component
voltage on one channel and the source voltage on another will show the 35o shift on the
horizontal axis between the two waveforms.

• Resistance versus Reactance versus Impedance – these three terms represent different
forms of opposition to electric current. Despite the fact that they are measured in the same unit
(ohms: Ω), they are not the same concept. Resistance is best thought of as electrical friction,
whereas reactance is best thought of as electrical inertia. Whereas resistance creates a voltage
drop by dissipating energy, reactance creates a voltage drop by storing and releasing energy.
Impedance is a term encompassing both resistance and reactance, usually a combination of
both.

The Case Tutorial chapter contains several worked problems for series AC circuits, showing
solutions using complex numbers as well as solutions using scalar calculations.

1.3. RECOMMENDATIONS FOR INSTRUCTORS 7

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how quantitative results were obtained by the author in the
Tutorial chapter’s examples.

• Outcome – Apply the concepts of reactance and impedance to series AC circuits

Assessment – Calculate all component voltages and currents in a series AC circuit given
component values.

Assessment – Sketch phasor diagrams of all component voltages and currents in a series
AC circuit given component values.

• Outcome – Apply the concept of power factor to realistic circuits

Assessment – Calculate the various powers (P , Q, S) and/or power factor for a series AC
circuit given component values.

• Outcome – Independent research

Assessment – Read and summarize in your own words reliable historical documents on
the subject of applying complex numbers to AC circuit calculations. Recommended readings
include books written by Charles Proteus Steinmetz.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

9

10 CHAPTER 2. CASE TUTORIAL

2.1 Example: series RL circuit

5 V RMS
350 Hz

2.2 kΩ

680 mH

R

L

Scalar calculations

R = 2.2 kΩ XL = 2πfL = 1.495 kΩ

Zseries =
√

R2 +XL
2

Zseries =
√
22002 + 14952 = 2660 Ω

I = V
Zseries

= 5

2660
= 1.8796 mA

VR = IR = (1.8796× 10−3)(2200) = 4.1352 V
VL = IXL = (1.8796× 10−3)(1495) = 2.8108 V

Phasor calculations

R = 2.2 kΩ XL = 2πfL = 1.495 kΩ

ZR = 2.2 kΩ 6 0o ZL = 1.495 kΩ 6 90o (Polar form)
ZR = 2.2 kΩ + j0 Ω ZL = 0 Ω + j1.495 kΩ (Rectangular form)

Zseries = Z1 + Z2 + · · ·Zn (General rule of series impedances)
Zseries = ZR + ZL (Specific application to this circuit)

Zseries = 2.2 kΩ 6 0o + 1.495 kΩ 6 90o = 2.66 kΩ 6 34.2o

Zseries = (2.2 kΩ + j0 Ω) + (0 Ω + j1.495 kΩ) = 2.2 kΩ + j1.495 kΩ

I = V
Zseries

= 5 6 0
o

2660 6 34.21o
= 1.8796 mA 6 − 34.21o

VR = IZR = (1.8796× 10−3 6 − 34.21o)(22006 0o) = 4.1352 V 6 − 34.21o = 3.420− j2.325 V
VL = IZL = (1.8796× 10−3 6 − 34.21o)(14956 90o) = 2.8108 V 6 55.80o = 1.580 + j2.325 V

2.1. EXAMPLE: SERIES RL CIRCUIT 11

The Python programming language is interpreted in nature, which means any command entered
into a Python interpreter application is immediately executed by the interpreter. Like most modern
programming languages, Python offers extensive libraries of mathematical functions, making it useful
as a powerful scientific calculator. Here we see Python being used to perform all the previously-shown
scalar calculations.

Every line of text beginning with the prompt (>>>) is entered by the user. Every line of text
missing this prompt is displaying a result computed by the Python interpreter.

Using Python to perform scalar calculations

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from math import *

>>> r = 2200

>>> xl = 2*pi*350*680e-3

>>> xl

1495.3981031087415

>>> zseries = sqrt(r**2 + xl**2)

>>> zseries

2660.1156904881454

>>> i = 5/zseries

>>> i

0.0018796174985466416

>>> i * r

4.135158496802611

>>> i * xl

2.810776441896645

12 CHAPTER 2. CASE TUTORIAL

Python’s mathematics capabilities include complex numbers, and the “complex math” (cmath)
library provides certain functions useful for manipulating complex numbers (such as the “phase”
function). Here we see Python being used as a scientific calculator to perform all the previously-
shown phasor calculations.

Note the use of the semicolon character (;) to instruct Python to execute multiple commands in
one entry, used here to show polar magnitude and polar phase angles for certain variables.

Using Python to perform phasor calculations

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from math import *

>>> from cmath import *

>>> r = 2200

>>> xl = 2*pi*350*680e-3

>>> xl

1495.3981031087415

>>> zl = complex(0,xl)

>>> zl

1495.3981031087415j

>>> zseries = r + zl

>>> zseries

(2200+1495.3981031087415j)

>>> i = 5 / zseries

>>> i

(0.001554503253970803-0.0010566369169383205j)

>>> abs(i) ; degrees(phase(i))

0.0018796174985466416

-34.20498172920196

>>> vr = i * r

>>> vl = i * zl

>>> vr

(3.4199071587357666-2.324601217264305j)

>>> vl

(1.5800928412642332+2.324601217264305j)

>>> abs(vr) ; degrees(phase(vr))

4.135158496802611

-34.204981729201954

>>> abs(vl) ; degrees(phase(vl))

2.8107764418966457

55.79501827079805

2.1. EXAMPLE: SERIES RL CIRCUIT 13

Here we see the SPICE circuit simulation program being used to simulate this simple RL circuit.

SPICE netlist

* Series RL circuit

v1 1 0 ac 5

r1 1 2 2200

l1 2 0 680e-3

.control

set units=degrees

.endc

.ac lin 1 350 350

.print ac vm(1,2) vp(1,2)

.print ac vm(2) vp(2)

.end

NGSPICE simulation results

--

Index frequency mag(v(1)-v(2)) ph(v(1)-v(2))

--

0 3.500000e+02 4.135158e+00 -3.42050e+01

--

Index frequency vm(2) vp(2)

--

0 3.500000e+02 2.810776e+00 5.579502e+01

14 CHAPTER 2. CASE TUTORIAL

2.2 Example: series RC circuit

R1

C1

Printed circuit board (PCB)

0.033 µF

850 Hz
12 V

4.7 kΩ

Scalar calculations

R = 4.7 kΩ XC = 1

2πfC
= 5.674 kΩ

Zseries =
√

R2 +XC
2

Zseries =
√
47002 + 56742 = 7368 Ω

I = V
Zseries

= 12

7368
= 1.6287 mA

VR = IR = (1.6287× 10−3)(4700) = 7.6550 V
VL = IXL = (1.6287× 10−3)(5674) = 9.2413 V

Phasor calculations

R = 4.7 kΩ XC = 1

2πfC
= 5.674 kΩ

ZR = 4.7 kΩ 6 0o ZC = 5.674 kΩ 6 − 90o (Polar form)
ZR = 4.7 kΩ + j0 Ω ZC = 0 Ω− j5.674 kΩ (Rectangular form)

Zseries = Z1 + Z2 + · · ·Zn (General rule of series impedances)
Zseries = ZR + ZC (Specific application to this circuit)

Zseries = 4.7 kΩ 6 0o + 5.674 kΩ 6 − 90o = 7.368 kΩ 6 − 50.36o

Zseries = (4.7 kΩ + j0 Ω) + (0 Ω− j5.674 kΩ) = 4.7 kΩ− j5.674 kΩ

I = V
Zseries

= 12 6 0
o

7368 6 −50.36o
= 1.6287 mA 6 50.36o

VR = IZR = (1.6287× 10−3 6 50.36o)(47006 0o) = 7.6550 V 6 50.36o

VC = IZC = (1.6287× 10−3 6 50.36o)(56736 − 90o) = 9.2413 V 6 − 39.64o

2.2. EXAMPLE: SERIES RC CIRCUIT 15

SPICE netlist

* Series RC circuit

v1 1 0 ac 12

r1 1 2 4700

c1 2 0 0.033e-6

.control

set units=degrees

.endc

.ac lin 1 850 850

.print ac vm(1,2) vp(1,2)

.print ac vm(2) vp(2)

.end

NGSPICE simulation results

--

Index frequency mag(v(1)-v(2)) ph(v(1)-v(2))

--

0 8.500000e+02 7.654967e+00 5.036356e+01

--

Index frequency vm(2) vp(2)

--

0 8.500000e+02 9.241292e+00 -3.96364e+01

16 CHAPTER 2. CASE TUTORIAL

2.3 Example: series RLC circuit

C R L

µ22 3k3 1R75

V

48 V
400 Hz

Scalar calculations

R = 3.3 kΩ XL = 2πfL = 4.3982 kΩ XC = 1

2πfC
= 1.8086 kΩ

Zseries =
√

R2 + (XL −XC)2

Zseries =
√

33002 + (4398.2− 1808.6)2 = 4194.8 Ω

I = V
Zseries

= 48

4194.8
= 11.443 mA

VR = IR = (11.443× 10−3)(3300) = 37.761 V
VL = IXL = (11.443× 10−3)(4398.2) = 50.328 V
VC = IXC = (11.443× 10−3)(1808.6) = 20.695 V

Phasor calculations

R = 3.3 kΩ XL = 2πfL = 4.3982 kΩ XC = 1

2πfC
= 1.8086 kΩ

ZR = 3.3 kΩ 6 0o ZL = 4.3982 kΩ 6 90o ZC = 1.8086 kΩ 6 − 90o (Polar form)
ZR = 3.3 kΩ + j0 Ω ZL = 0 Ω + j4.3982 kΩ ZC = 0 Ω− j1.8086 kΩ (Rectangular form)

Zseries = Z1 + Z2 + · · ·Zn (General rule of series impedances)
Zseries = ZR + ZL + ZC (Specific application to this circuit)

Zseries = (3.3 kΩ 6 0o) + (4.3982 kΩ 6 90o) + (1.8086 kΩ 6 − 90o) = 4.1948 kΩ 6 38.123o

Zseries = (3.3 kΩ + j0 Ω) + (0 Ω + j4.3982 kΩ) + (0 Ω− j1.8086 kΩ) = 3.3 kΩ + j2.5897 kΩ

I = V
Zseries

= 48 6 0
o

4194.8 6 33.123o
= 11.443 mA 6 − 38.123o

VR = IZR = (11.443× 10−3 6 − 38.123o)(33006 0o) = 37.761 V 6 − 38.123o

VL = IZL = (11.443× 10−3 6 − 38.123o)(4398.26 90o) = 50.328 V 6 51.877o

VC = IZC = (11.443× 10−3 6 − 38.123o)(1808.66 − 90o) = 20.695 V 6 − 128.12o

2.4. EXAMPLE: MEASURING SERIES VOLTAGE PHASE SHIFT 17

2.4 Example: measuring series voltage phase shift

Suppose we wished to measure the resistor and capacitor voltages in this AC circuit using an
oscilloscope, comparing those two AC waveforms on the oscilloscope’s screen to measure the phase
shift between them:

C

R VR

VC
A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

How should we connect the oscilloscope’s probes across each of the components to perform this
test? At first it may seem like this would be the best way, connecting each probe similarly across
the two components:

C

R VR

VC
A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

OscilloscopeThis is incorrect!

short

However, the fact that both of the oscilloscope’s input channels share a common ground (chassis)
connection means that there will be a short-circuit imposed between the two ground clips in this
circuit, effectively bypassing the resistor!

18 CHAPTER 2. CASE TUTORIAL

When using ordinary oscilloscope probes sharing a common ground connection, we must ensure
both channels reference the same point in the circuit under test. This means there is only one
electrically valid way to connect these two channels to measure both components’ voltage drop:

C

R VR

VC
A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

Given that the two channels’ ground clips are electrically common to each other, we can actually
eliminate either one of them and still have the same result:

C

R VR

VC
A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

The only problem with this scheme is that we have inadvertently inverted these two channels
with respect to one another. This is easy to see if we imagine this circuit being a simple voltage
divider with two resistors (no capacitor) at an instant in time where the AC source is positive on
top and negative on bottom: with reference to ground (the mid-point between the two components)
channel A’s probe tip will sense a positive potential while channel B’s probe tip will sense a negative,
even though we the voltages dropped by a pair of series-connected resistors should be exactly in-
phase with one another. What the oscilloscope would show on its display for a two-resistor AC
circuit is two waveforms 180 degrees out of phase with each other! For the resistor-capacitor circuit
in our example, the resistor’s voltage waveform would have an extra 180o of phase shift, confusing
our attempt to measure the true phase shift.

2.4. EXAMPLE: MEASURING SERIES VOLTAGE PHASE SHIFT 19

Oscilloscopes typically provide a feature to compensate for this accidental inversion, appropriately
named invert. On the oscilloscope shown in this illustration we see Channel B’s “invert” feature
activated by a button:

C

R VR

VC
A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

Invert Channel B

By intentionally inverting Channel B’s displayed waveform, we “un-do” the 180o inversion
imposed by the necessary probe connection with respect to the oscilloscope’s common ground. With
this feature engaged, we may correctly interpret the oscilloscope’s display to discern the true phase
shift between these two components’ voltages.

20 CHAPTER 2. CASE TUTORIAL

2.5 Example: solving for an unknown inductance

Suppose we wish this series RL circuit to have a total impedance of 3 kΩ at a power supply frequency
of 500 Hz:

L = ???

500 Hz

1k5

This is an example of a problem that cannot be solved simply by using a calculator with complex-
number capability and applying the standard series network principle that total impedance is equal
to the sum of the individual component impedances, because we do not know what the phase angle of
the total impedance will be when its magnitude is 3000 Ohms. In other words, there is information
missing that would be necessary for a complex-arithmetic solution. Therefore, we must resort to
phasor diagrams and trigonometry, treating the phasor magnitudes and angles separately:

ZR = 1500 Ω

ZL = ???
Ztotal = 3000 Ω ∠ ???o

Ztotal =
√

Z2
R + Z2

L

Z2

total = Z2

R + Z2

L

Z2

L = Z2

total − Z2

R

ZL =
√

Z2

total − Z2
R

ZL =
√

30002 − 15002

ZL = 2598.08 Ω

2.5. EXAMPLE: SOLVING FOR AN UNKNOWN INDUCTANCE 21

Assuming a pure inductance (i.e. no parasitic resistance or capacitance within its windings), the
magnitude of its impedance (ZL) will be equal to its reactance (XL). Thus,

ZL = XL = 2πfL

L =
XL

2πf

L =
2598.08

2π500

L = 0.82699 H

Incidentally, the total impedance phase angle may be easily calculated at this point using the
arc-cosine function, relating phase angle to the adjacent (ZR) and hypotenuse (Ztotal) side-lengths
of this right triangle:

θ = arccos
ZR

Ztotal

θ = arccos
1500

2598.08

θ = 60o

Therefore, Ztotal has a complex-number value of 3000 Ohms at 60 degrees, which means our
original phasor diagram was not drawn to scale, and will actually look like this instead:

ZR = 1500 Ω ∠ 0 ο

ZL = 2598.08 Ω ∠ 90oZtotal = 3000 Ω ∠ 60o

60o

22 CHAPTER 2. CASE TUTORIAL

2.6 Example: sine versus non-sine AC sources

Students learning to analyze RLC networks powered by AC voltage sources typically rely on
expensive signal generators to produce the pure sine-wave AC excitation voltage necessary for
voltmeter measurements to closely match predictions. However, robust triangle-wave oscillator
circuits are much less complicated to design and build than sine-wave oscillator circuits, so if students
wish to build their own signal generators for these introductory AC experiments it is good to know
that triangle-wave excitation yields results very close to sine-wave excitation.

A simple and versatile signal generator circuit appears below, outputting triangle, square, and
PWM (pulse-width-modulated) signals. The first image is the schematic diagram, followed by a
PCB layout:

−

+
+V

−

+

Triangle
output

DC

AC

−

+

+V

PWM
output

Square
output

PWM
input

−

+

1/4 TL084

1/4 TL084

1/4 TL084

1/4 TL084

1/6 CD40106B (each)

1/6 CD40106B (each)

R1

C1

C2

C3

R2 R3 (coarse)(fine)

R4

R5

R6

+V

C4

C5

+V

C6

(decoupling)

R7

R8

U1

U1

U2

U2

U2

U2

(range)

(ext)

(int)

Gnd

(duty cycle)

2.6. EXAMPLE: SINE VERSUS NON-SINE AC SOURCES 23

Here are some test results on simple RC networks:

Tri/Squ/PWM
oscillator

Jpower+

Jpower-

6 V

Triangle
output AC

GND

2k

0µ15

R1

C1
1 kHz

Connected to the RC network, frequency was measured using a Fluke model 87-III multimeter
and adjusted to 1 kHz, and then total voltage measured across the series R1 ↔ C1 combination as
233.0 mVAC.

Parameter Measured (triangle-wave) Predicted (sine-wave)

VR1 205.7 mVAC 205.8 mVAC

VC1 109.3 mVAC 109.2 mVAC

Testing a slightly more complex circuit at a frequency of 300 Hz, the loaded voltage output of
the oscillator being 231.6 mVAC this time:

Tri/Squ/PWM
oscillator

Jpower+

Jpower-

6 V

Triangle
output AC

GND

0µ15

R1

C1
300 Hz

C2 1µ1k

Parameter Measured (triangle-wave) Predicted (sine-wave)

VR1 23.7 mVAC 27.43 mVAC

VC1 207.5 mVAC 207.0 mVAC

VC2 23.7 mVAC 27.43 mVAC

In both applications, the greatest error between measured voltage and predicted voltage as a
percentage of total voltage was in the second circuit across R1||C1 (23.7 milliVolts rather than 27.43
milliVolts), and this is only −1.61% of the source voltage which is considerably less than the ± 5%
tolerance of the resistor and capacitors!

24 CHAPTER 2. CASE TUTORIAL

If we compare the Fourier series for a sine wave and a triangle wave (both having unity peak values
and a frequency of ω) we see that the first harmonic of the triangle wave function is identical to the
sine wave, and that all the other harmonics in the triangle wave are significantly smaller-amplitude
than the fundamental:

Sine wave

cosωt

Triangle wave

cosωt+
1

9
cos 3ωt+

1

25
cos 5ωt+

1

49
cos 7ωt+ · · ·+ 1

n2
cosnωt

This tells us any deviations between the measured (triangle-wave) and predicted (sine-wave)
voltage values are likely to be minimal, the third harmonic being only 11.1% of the fundamental’s
amplitude, the fifth harmonic being only 4% of the fundamental’s amplitude, etc. The effects of
higher-order harmonics are truly negligible due to their vastly smaller amplitudes as well as due to
the fact that most digital multimeters suffer “cut off” in the audio-frequency range and therefore
cannot measure signal components in the tens of thousands of Hertz.

With access to a digital oscilloscope having FFT capability1 to show precise voltage values for
each harmonic of a measured waveform, we have an even better solution for obtaining voltage
measurements in agreement with predicted values when not using perfectly sinusoidal signal
generators. Since the oscilloscope’s FFT algorithm separates and displays each of the sinusoidal
harmonics apart from one another in any non-sinusoidal waveform, if we simply pay attention to the
magnitudes of a common harmonic frequency within each voltage measurement we will essentially
take circuit measurements on purely sinusoidal voltages of the same frequency. For example, we
could measure the fundamental (i.e. the first harmonic)2 amplitude of source voltage, then the
fundamental amplitudes of each of the other components’ voltages, and check to see that these
measured voltage values match well with our predictions at that frequency. This technique, in
effect, lets us measure the effects of a purely sinusoidal signal even when the real signal is not
sinusoidal at all, by taking measurements only on a common harmonic of the measured voltages!

1At the time of this writing (2022) some inexpensive oscilloscopes may be found with rather poor FFT resolution,
resulting in wide spectral peaks with uncertain height (voltage) values. You know you are working with a sufficiently
precise instrument when the harmonic peaks show as thin lines rather than exaggerated bell-curves.

2There is no particular reason why we might choose the first harmonic over any of the others, other than the fact
that with triangle and square waves this fundamental will be vastly stronger than any of the other harmonics.

2.6. EXAMPLE: SINE VERSUS NON-SINE AC SOURCES 25

This testing technique deserves some elaboration, and so we shall explore it by example. Consider
the following test circuit where a signal generator configured to output a square-wave AC signal at
1000 Hz energizes a simple RC network consisting of a 4.7 kΩ resistor and a 0.01 µF capacitor:

R
C A B Alt Chop Add

Volts/Div A

Volts/Div B

DC Gnd AC

DC Gnd AC

Invert Intensity Focus

Position

Position

Position

Off

Beam find

Line
Ext.

A
B

AC
DC

Norm
Auto
Single

Slope

Level

Reset

X-Y

Holdoff

LF Rej
HF Rej

Triggering

Alt

Ext. input

Cal 1 V Gnd Trace rot.

Sec/Div
0.5 0.2 0.1

1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

0.5 0.2 0.1
1

10

5

2

20

50 m

20 m

10 m

5 m

2 m

1 m
5 m

25 m

100 m

500 m

2.5
1

250 µ
50 µ

10 µ

2.5 µ

0.5 µ

0.1 µ
0.025 µ

off

Oscilloscope

1 kHz

4.7 kΩ

0.01 µF

We know from Fourier analysis that a square wave is actually equivalent to a sine wave at the
same fundamental frequency added to another sine wave one-third the amplitude at three times that
frequency (3rd harmonic) added to another sine wave one-fifth the amplitude of the fundamental
at five times that frequency (5th harmonic), and so on. If we examine the frequency-domain plots
of the signal generator’s output (channel A) versus the capacitor’s voltage drop (channel B), we see
the circuit’s response to pure sine waves at each of those frequencies:

1 kHz 5 kHz3 kHz

1 V

2 V

3 V
A = 3 V

B = 2.88 V

A = 1 V
B = 0.75 V

A = 0.6 V

B = 0.336 V

The relative peak heights of the channel A signal (3 Volts, 1 Volt, 0.6 Volts) are simply the result
of the Fourier series for a square wave and has nothing to do with the RC network. The ratios
between peak heights of channel A and channel B at each harmonic frequency, however, are unique
to the 4.7 kΩ and 0.01 µF RC network because those voltage pairs represent the attenuation of this
particular network at each of those sinusoidal frequencies.

26 CHAPTER 2. CASE TUTORIAL

If we mathematically analyze this same RC network for each of the square wave’s harmonic
amplitudes and frequencies used in the test circuit, we should obtain results verifiable by using the
oscilloscope in FFT mode:

1 kHz

4.7 kΩ

0.01 µF
3 V

1 V
3 kHz

0.6 V
5 kHz

0.01 µF

4.7 kΩ

0.01 µF

4.7 kΩ

0.8497 V ∠ 73.55o

2.877 V ∠ -16.45o

0.6631 V ∠ 48.46o

0.7485 V ∠ -41.54o

0.3365 V ∠ -55.89o

0.4968 V ∠ 34.11o

For students with access to oscilloscopes having fine-resolution FFT capability, this not only
means it is unnecessary to secure a signal generator with pure sinusoidal output, but it also means
the ability to energize any AC circuit with any waveshape and test its response at multiple sinusoidal
frequencies simultaneously !

Chapter 3

Tutorial

27

28 CHAPTER 3. TUTORIAL

3.1 AC versus DC

The study of electricity always begins with Direct Current (DC) because circuits where current
direction and voltage polarity remain constant are conceptually easier to grasp than circuits where
current direction and voltage polarity switch over time (i.e. Alternating Current or AC circuits).
However, AC circuits are every bit as prevalent as DC, and so no study of electricity or electronics
would be complete without a thorough exploration of alternating current.

Just a few principal differences exist between DC and AC circuits from the perspective of analysis:

• The magnitudes of all AC voltage and currents must be carefully quantified, because unlike
the steady voltages and currents of DC these quantities continually change over time. One
way to do this is to express an AC quantity by its peak value over time: its greatest magnitude
over all the points in its cycle. Another way is to regard its peak-to-peak value. Perhaps
the most common expression is RMS (Root-Mean-Square), which refers to the equivalent DC
magnitude that would deliver the same amount of power to a load.

• With AC we have a new quantity called frequency (f): the rate at which voltages and currents
complete their alternating cycles. Frequency is typically expressed in the unit of Hertz (Hz),
equivalent to cycles per second. Alternatively, frequency may be expressed as an angular
velocity in the unit of circular radians per second, symbolized as ω.

• With AC we have another new quantity called phase shift : the degree to which two alternating
voltages’ or currents’ cycles are out of step with each other in time. Phase shift is typically
expressed in the unit of degrees, there being 360 degrees in one complete cycle.

• In order to mathematically account for phase shift in an AC circuit, every quantity needs to
be quantified as a complex number called a phasor.

• Power takes three different forms in an AC circuit: apparent power (S), true power (P),
and reactive power (Q). Apparent power is the product of voltage and current magnitudes,
as given by a voltmeter and ammeter, measured in Volt-Amperes. True power is the actual
rate of energy leaving the circuit, measured in Watts. Reactive power is the rate of energy
exchanged losslessly by inductance and/or capacitance, measured in Volt-Amperes Reactive.
Power factor is the unitless ratio of true power to apparent power, also given by the cosine of
the circuit impedance phase angle.

• Certain components exist for AC circuits that have no equivalent in DC. Transformers are
a good example of this, with their ability to “step up” and “step down” AC voltages and
currents.

3.1. AC VERSUS DC 29

The list of similarities between AC and DC is thankfully longer:

• Energy is still that which is able to set matter into motion, and it is always conserved.
This should come as no surprise, as energy and its conservation are fundamental features
of our universe. Electric charges moving though electric fields, like masses moving through
gravitational fields, are able to gain or lose potential energy in AC and DC circuits alike.

• Voltage (symbolized as V , measured in Volts) is still defined as the amount of potential energy
gained or lost by electric charges moving from one location to another, and is always a relative
quantity between two points. Current (symbolized as I, measured in Amperes) is still defined
as the drift rate of electric charges past a given point.

• Resistance (symbolized as R, measured in Ohms) is still defined as that which causes energy to
be dissipated from moving electric charges to leave the circuit entirely. A new quantity called
Reactance (symbolized as X, also measured in Ohms) is defined as that which causes energy
to be alternately extracted from and then returned to moving electric charges. Impedance
(symbolized as Z, also measured in Ohms) is a general term encompassing resistance, reactance,
or any combination of the two.

• Sources still infuse energy into passing electric charges, and Loads still extract energy from
passing charges. Resistance always acts as a load, while reactance alternately acts as a source
and a load within each AC cycle.

• Ohm’s Law in DC circuits defines resistance as the ratio of voltage to current (R = V
I
).

The only difference with AC is that we substitute the more general concept of impedance for
resistance, and so Ohm’s Law becomes Z = V

I
, and we represent all variables as complex

numbers (phasors).

• Kirchhoff’s Voltage Law still holds true for modest frequencies1, in that an electric charge
moved from one location to another until it arrives at its starting location will experience a
net voltage (energy gain/loss) of zero. This means the phasor sum of all AC voltages in any
loop must be zero.

• Kirchhoff’s Current Law still holds true for modest frequencies2, in that the flow of electric
charges into any location must be balanced by an equal flow of charges out of that location.
This means the phasor sum of all AC currents entering and exiting any point must be zero.

• Series networks still experience the same current through all components, a total voltage equal
to the phasor sum of all component voltages, and a total impedance equal to the phasor sum
of all component impedances.

• Parallel networks still experience the same voltage across all components, a total current equal
to the phasor sum of all component currents, and a total impedance equal to the reciprocal of
the phasor sum of all components’ reciprocated impedances.

1At very high frequencies – high enough that the rate of alternation is faster than the electric field is able to
propagate along the entire length of the circuit – electric charges cannot be conceived as existing within a steady
electric field, and therefore one of the fundamental assumptions of Kirchhoff’s Voltage Law is no longer true. In most
applications the frequency must be in the megaHertz range before such effects become noticeable.

2At very high frequencies, typically megaHertz and beyond, the pulsations of electric charge flow become so rapid
that it is possible for the direction of current to switch before the propagation reaches all portions of the circuit.

30 CHAPTER 3. TUTORIAL

The major challenge facing students learning to analyze AC circuits is how to represent all
numerical quantities as phasors, in order to make AC circuit analysis as similar to DC circuits as
possible. For any voltage or current value in an AC circuit, the polar representation of the phasor
will be the magnitude (usually RMS unless otherwise specified) and a phase angle expressing how
far shifted that quantity’s waveform is from some reference voltage or current at the same frequency.
If an AC circuit is powered by a single voltage or current source, that source will typically serve as
the phase reference (i.e. the source’s phase angle will be zero degrees by default).

Phasor angles for impedances, by contrast, require no such reference3. The phase angle for an
impedance represents the phase shift between that component’s voltage versus that component’s
current and therefore its value intrinsic to that component.

For example, a pure resistance has an impedance with a phase angle of 0o because zero phase
shift exists between a resistance’s voltage and current waveforms. A pure inductor’s impedance is
simply its reactance with a phase angle of +90o because an inductor’s voltage leads its current by
+90o. Capacitive impedance is reactance with a phase angle of −90o because a capacitor’s voltage
lags its current by −90o:

time
P P

V

I

V I

R
V

I I

V
L

time
P

VI

I

V

time

C

ZR = R ∠ 0o ZL = XL ∠ +90o ZC = XC ∠ -90o

V leads I by 90 degreesV and I are in-phase V lags I by 90 degrees

ZR = R + j0 ZL = 0 + jXL ZC = 0 - jXC

Graphical expressions of complex-number resistance and reactance values are called phasor
diagrams. Three such diagrams illustrate the difference between a 50 Ω resistor versus an inductor
having 50 Ω of reactance and a capacitor also having 50 Ω of reactance:

+imag

-imag

+real-real

R = 50 Ω
ZR = 50 Ω ∠ 0o

ZR = 50 + j0 Ω

+imag

-imag

+real-real

XC = 50 Ω

ZC = 50 Ω ∠ -90o

ZC = 0 - j50 Ω

+imag

-imag

+real-real

XL = 50 Ω
ZL = 50 Ω ∠ 90o

ZL = 0 + j50 Ω

3Technically, impedance is not a true phasor even though it is a complex-number quantity, because a phasor
fundamentally represents a waveform. Impedance is really the ratio between two different waveforms and not a
waveform unto itself. However, you will sometimes find the term phasor in reference to any AC circuit quantity in
complex-number form.

3.1. AC VERSUS DC 31

Some examples4 of component impedances are shown here:

• A 570 Ω resistor at any frequency will have an impedance of:

570 Ω 6 0o (polar form)

570 + j0 Ω (rectangular form)

• A 3.5 H inductor at a frequency of 120 Hz will have an impedance of:

2.639 kΩ 6 +90o (polar form)

0 + j2.639 kΩ (rectangular form)

• A 0.01 µF capacitor at a frequency of 3 kHz will have an impedance of:

5.305 kΩ 6 −90o (polar form)

0 − j5.305 kΩ (rectangular form)

4Try calculating these impedance values from the given component values, to check your understanding of how
reactances related to impedances. This is a good learning strategy to apply when reading any mathematical text:
work through the presented examples on your own to see if you achieve the same results! Please note that when you
apply either the XL = 2πfL formula or the XC = 1

2πfC
formula using your calculator to compute reactance, the

result will only be a reactance value and not a (complex) impedance value. In order to attach the desired phase angle
to your computed reactance value, you will have to perform the additional step of multiplying that reactance by a
unit phasor which is nothing more than the quantity of 1 with the correct phase angle. For example, a capacitive
reactance of 5.305 kΩ would be multiplied by 1 6

−90o to yield a capacitive impedance of 5.305 kΩ 6
−90o.

32 CHAPTER 3. TUTORIAL

3.2 Series network properties

Now that we have reviewed some fundamentals of AC electric circuits and drawn comparisons to DC
circuits, let us move on to the topic at hand: series AC circuits. A “series” network, by definition,
is one where all components are connected in-line with each other, such that they all share a single
path for electric charge carriers to flow. The following illustration shows four components (each one
represented as a nondescript rectangle) connected in series with each other, with lettered points for
reference:

Series-connected components

Only one path for current

A B C D E

This definition of a series network naturally leads to a set of properties unique to this network
type:

Definition: Series-connected electrical components provide exactly one path for current.

Property #1 Series-connected components experience the same current at any

given time, due to the Conservation of Electric Charge (i.e. electric charges cannot
disappear nor come into being, and so every charge entering one portion of a series
network must eventually exit that portion). I1 = I2 = I3 · · · = In

Property #2 Voltages add in series: total voltage across a string of series-

connected components is equal to the phasor sum of the components’ voltages, due
to the Conservation of Energy (i.e. the sum of all energy gains and losses must equal
the total gain/loss). Vtotal = V1 + V2 + V3 · · · + Vn, which is graphically equivalent
to stacking voltage phasors tip-to-tail in a phasor diagram.

Property #3 Impedances add in series: total impedance for a string of series-

connected impedances is equal to the phasor sum of those impedance values.
Ztotal = Z1+Z2+Z3 · · ·+Zn, which is graphically equivalent to stacking impedance
phasors tip-to-tail in a phasor diagram.

These properties hold true for any series network because they are rooted in fundamental
conservation laws. They apply for AC as well as DC circuits, and they apply for any types of
components thusly connected. The major difference between these properties as applied to AC
versus DC is that all calculations must be done using phasors in AC rather than simple numbers as
in DC. If we use phasor diagrams to represent additive quantities in a series network (e.g. voltages,

3.3. EXAMPLE CIRCUIT ANALYSIS USING COMPLEX CALCULATOR 33

impedances), we may stack those phasors tip-to-tail to graphically determine resultant phasors
representing those sums.

3.3 Example circuit analysis using complex calculator

Let’s analyze the following series circuit containing a resistor, inductor, and a capacitor all powered
by an AC voltage source:

R

L

C

12 Ω

270 µF

85 VRMS
100 Hz 0.033 H

A good first step is to express each of the passive components’ values as an impedance in complex-
number form, recalling that resistance has an impedance phase angle5 of zero degrees, inductance
an angle of +90o, and capacitance an angle of −90o. The resistor’s impedance will simply be its
resistance value with a phase angle of zero degrees. For each of the reactive components, though,
we must first calculate the amount of reactance (in Ohms) and then apply the proper phase angles:

ZR = 12 Ω6 0o

XL = 2πfL = (2π)(100 Hz)(0.033 H) = 20.735 Ω ZL = 20.735 Ω6 90o

XC =
1

2πfC
=

1

(2π)(100 Hz)(270× 10−6 F)
= 5.895 Ω ZC = 5.895 Ω6 − 90o

The source in this circuit outputs 85 Volts (RMS), but being a series circuit we know this voltage
will be divided somehow between the three passive components. Therefore, the next logical step is to
combine the three passive components’ impedances together to form a single equivalent impedance
for the whole circuit, just as we would do in a three-resistor series DC circuit.

5The phase angle value of any impedance represents the phase shift between voltage and current sinusoidal
waveforms for that component.

34 CHAPTER 3. TUTORIAL

Since we know impedances, like resistances, add in series, we may use our calculator’s complex
addition capability to compute this total circuit impedance:

ZT = ZR + ZL + ZC = (12 Ω6 0o) + (20.735 Ω6 90o) + (5.895 Ω6 − 90o) = 19.085 Ω6 51.04o

85 VRMS
100 Hz ZT 19.085 Ω ∠ 51.04o

Now we are properly staged to apply Ohm’s Law to the calculation of circuit current. Taking
source voltage and dividing by circuit impedance will yield source current, and since the source
voltage was specified in Volts RMS this means the calculated current result will also be expressed
in RMS units. Since no phase reference was specified in the circuit, we will arbitrarily set the source
voltage at 0 degrees:

I =
V

Z
=

85 V6 0o

19.085 Ω6 51.04o
= 4.454 A (RMS) 6 − 51.04o

At this point we have all the information we need to compute circuit powers and power factor.
Apparent power (S) is just the product of V and I RMS magnitudes6 with no phase angles
considered:

S = (85 V)(4.454 A) = 378.58 VA

True power (P) and reactive power (Q) are equal to apparent power (S) multiplied by the cosine
and sine of the impedance phase angle7, respectively:

P = IV cos θ = S cos θ = (378.58 VA)(cos 51.04o) = 238.04 W

Q = IV sin θ = S sin θ = (378.58 VA)(sin 51.04o) = 294.38 VAR

Only the true power value of 238.04 Watts represents the rate of energy leaving this circuit,
and only the resistor dissipates this power. The reactive power value represents the rate of energy
alternately absorbed and released by the reactive components (i.e. capacitor and inductor). Power
factor is simply the cosine of the circuit impedance phase angle, equivalent to the ratio between true
power and apparent power:

P.F. = cos θ = cos 51.04o = 0.6288

6Any electronic calculator capable of performing complex-number arithmetic should provide a function to deliver
just the polar-form magnitude (and not the angle) of any complex quantity. Applying this function to the complex
current value of 4.454 6

−51.04o yields the simple value of 4.454 with no rounding.
7Similarly, any electronic calculator with complex-number functions will provide a means to extract the polar-form

angle from any complex quantity so that the angle by itself may be used with no rounding resulting from re-typing.
Applying this function to the total impedance value of 19.085 Ω 6 51.04o yields 51.04o precisely.

3.3. EXAMPLE CIRCUIT ANALYSIS USING COMPLEX CALCULATOR 35

Power factor is a unitless quantity, but we may further qualify this value by saying it is equal
to 0.6288 lagging, because the negative phase angle of current (−51.04o) means current lags behind
voltage in this circuit.

Returning to our analysis of voltages and currents, we are ready to “expand” this single-
impedance equivalent circuit to its original form. Since we are expanding ZT into three series-
connected impedances, and we know it is current that is common throughout any series network,
we may transfer the calculated value for circuit current to each of the three impedances:

85 VRMS
100 Hz

12 Ω ∠ 0o

ZR4.454 A ∠ -51.04o

20.735 Ω ∠ 90o ZL

ZC

5.895 Ω ∠ -90o 4.454 A ∠ -51.04o

4.454 A ∠ -51.04o

Now we have all the information needed to calculate voltage drop across each of the passive
components, using Ohm’s Law:

VR = IZR = (4.454 A6 − 51.04o)(12 Ω6 0o) = 53.45 V6 − 51.04o

VL = IZL = (4.454 A6 − 51.04o)(20.735 Ω6 90o) = 92.35 V 6 38.96o

VC = IZC = (4.454 A6 − 51.04o)(5.895 Ω6 − 90o) = 26.25 V6 − 141.04o

As a final check on our work, we can apply Kirchhoff’s Voltage Law by adding these three
component voltages together to verify that they do indeed add up to the source voltage. Recalling
all values from our calculator’s memory to avoid rounding errors, the result is exactly 85 Volts at 0
degrees:

(53.45 V6 − 51.04o) + (92.35 V6 38.96o) + (26.25 V6 − 141.04o) = 85.00 V6 0o

Note just how non-intuitive this sum is. If we focus only on the voltage magnitudes, it seems
implausible that 53.45 Volts plus 92.35 Volts plus 26.25 Volts could somehow equal 85 Volts.
However, we must remember these are all phasor quantities, possessing angles as well as magnitudes.
A phasor diagram makes the result more comprehensible:

85 V ∠ 0o

53.45 V ∠
 -51.04 o

92.35 V
 ∠

 38.96
o

26.25 V ∠ -141.04o

36 CHAPTER 3. TUTORIAL

A final step we should take is the assignment of polarity symbols on the circuit diagram. Even
though this is AC and not DC, those + and − symbols are still useful in order to give meaning8

to the calculated voltage angles, just as arrows showing the direction of (conventional) current give
context to the phase angle of any AC current. You will notice the clockwise direction of current in
this circuit was arbitrarily chosen, since the original circuit gave no hint as to either current direction
or voltage polarity. The general rule in AC circuit analysis is this: Assign voltage polarities and
current arrows to the AC energy source as though it was a DC source, and to all reactive and resistive
components as though they were DC loads. We could have done this at the very beginning of our
analysis, but in this rather uncomplicated circuit it works just as well to do it now:

100 Hz

12 Ω ∠ 0o

ZR4.454 A ∠ -51.04o

20.735 Ω ∠ 90o ZL

ZC

5.895 Ω ∠ -90o 4.454 A ∠ -51.04o

4.454 A ∠ -51.04o

85 V ∠ 0o

53.45 V ∠ -51.04o

92.35 V ∠ 38.96o

26.25 V ∠ -141.04o

Voltage polarity and current arrow annotations become essential when applying Kirchhoff’s Laws,
because they indicate to us whether the quantities in question must be added to each other or
subtracted from each other. Our last analytical step of adding the three passive component voltages
together to check that the sum equals the source voltage really didn’t require us to have polarity
symbols written on the diagram because the concept was familiar enough to anyone well-practiced
in DC circuit analysis. However, now that the polarity symbols have been included in the diagram,
it is clear to see how the resistor, inductor, and capacitor voltages must add up to equal the source
voltage: the passive component voltages are all aiding each other, but are all opposed to the source
voltage.

8+ and − voltage polarity symbols represent the actual polarity of the voltage at the instant its waveform reaches
the 0o point in time, just as arrow symbols show the actual direction of current at the instant in time its waveform
reaches 0o. The inductor and capacitor voltages, for example, appear in the schematic diagram as though they are
aiding each other, with the capacitor’s + connected to the inductors −. However, their phase angles are entirely
opposed to each other, with −141.04o and 38.96o being a full 180 degrees apart. The phasor diagram makes this clear,
with the capacitor’s voltage phasor pointed opposite to the inductor’s voltage phasor. Thus, the + and − annotations
must be considered in tandem with the phase angle of each voltage, and not as simultaneous indicators.

3.4. EXAMPLE CIRCUIT ANALYSIS USING ORDINARY CALCULATOR 37

3.4 Example circuit analysis using ordinary calculator

Calculators capable of complex-number arithmetic ease the burden of AC circuit analysis because
they make that analysis almost as simple as for DC circuits: simply represent each and every quantity
as a complex number rather than a scalar number, and nearly all the same principles (e.g. Ohm’s
Law, Kirchhoff’s Laws, properties of series and parallel networks) still apply. However, it is good
to know how to perform these same analyses without the benefit of an advanced calculator not just
for occasions where such a calculator is unavailable, but also for scenarios with missing information
that might make it impossible to represent all the given information in full complex form. In this
section we will analyze a series RLC circuit using arithmetic functions provided by any scientific
calculator:

50 Hz

2.2 µF

680 Ω
C

R

L

1.5 H
16 VRMS

As usual, we will begin by translating each of these passive component values into an impedance:

ZR = 680 Ω6 0o

XL = 2πfL = (2π)(50 Hz)(1.5 H) = 471.24 Ω ZL = 471.24 Ω6 90o

XC =
1

2πfC
=

1

(2π)(50 Hz)(2.2× 10−6 F)
= 1446.9 Ω ZC = 1446.9 Ω6 − 90o

We know that impedances, like resistances, always add in a series network. However, we must
respect the phase angles of each impedance when we add them, which means we cannot simply
compute 680 Ω + 471.24 Ω + 1446.9 Ω as though these were three series-connected resistors.

38 CHAPTER 3. TUTORIAL

A helpful aid in complex-number addition is the phasor diagram where every quantity is shown as
a vector with both a magnitude (length) and direction (angle). Here we see these three impedances
represented graphically, the sum represented by the resultant vector from the tail of the first to the
tip of the last9:

ZR = 680 Ω ∠ 0o

Ztotal

ZL = 471.24 Ω ∠ 90o

ZC = 1446.9 Ω ∠ -90o

Since these stacked vectors comprise a right-triangle, we may calculate total impedance (Ztotal)
magnitude using the Pythagorean Theorem with just the magnitudes10 of ZR, ZL, and ZC :

Ztotal =
√

Z2
R + (ZL − ZC)2

Ztotal =
√

(680 Ω)2 + ((471.24 Ω)− (1446.9 Ω))2

Ztotal = 1189.2 Ω

We still need to find the angle of this total impedance in order to fully quantify it, though. The
Pythagorean Theorem only yields the length of the hypotenuse vector, not its angle. To find the
angle relative to the horizontal, we must apply a trigonometric arc-function. In this case we will use
the arc-tangent, with ZR’s magnitude as the adjacent side-length and the magnitude of ZL −ZC as
the opposite side-length:

θ = arctan

(

ZL − ZC

ZR

)

θ = arctan

(

471.24 Ω− 1446.9 Ω

680 Ω

)

θ = −55.124o

9Alternatively, we may represent each of these phasors in rectangular form, add up their real and imaginary portions
respectively, and then convert back to polar form. In this case, (680+j0)+(0+j471.24)+(0−j1446.9) = 680−j975.62.
This rectangular-form sum may be converted to polar form using the Pythagorean Theorem to calculate magnitude
and the arctangent function to calculate angle, yielding 1189.26 − 55.124o.

10Since we are doing this calculation using only scalar quantities, we could have just as accurately written the

Pythagorean Theorem formula as Ztotal =
√

G2 + (XL −XC)2, being the square-root of the sum of the square of
conductance and the square of the difference in reactances.

3.4. EXAMPLE CIRCUIT ANALYSIS USING ORDINARY CALCULATOR 39

Therefore, the total impedance for this circuit is:

Ztotal = 1189.2 Ω6 − 55.124o

The total impedance’s phase angle may be used to calculate the circuit’s power factor:

P.F. = cos θ = cos−55.124o = 0.57180

We can tell that this power factor is leading because the total impedance phase angle is negative
rather than positive. In other words, the capacitive influence is greater than the inductive influence
in this circuit.

Apparent power may be calculated from source current and total impedance magnitude, and the
other powers from that:

S =
V 2

Ztotal

=
16 V

1189.2 Ω
= 215.27 mVA

P = S cos θ = cos(−55.124o) = 123.09 mW

Q = S sin θ = sin(−55.124o) = 176.60 mVAR leading

Now that we know the circuit’s total impedance, we may calculate the current through all four
series components by applying Ohm’s Law. Division of polar complex numbers is simple, consisting
of the quotient of the magnitudes and the difference of the angles:

Itotal =
Vtotal

Ztotal

Itotal =
16 V 6 0o

1189.2 Ω6 − 55.124o

Itotal =
16 V

1189.2 Ω
6 (0− (−55.124o))

Itotal = 13.454 mA 6 55.124o

50 Hz

2.2 µF

680 Ω
C

R

L

1.5 H
16 VRMS

13.454 mA ∠ 55.124o

40 CHAPTER 3. TUTORIAL

Now we are prepared to calculate voltages across each of the passive components using Ohm’s
Law, multiplying these polar complex quantities by finding the products of the magnitudes and sums
of the angles:

VR = ItotalZR = (13.454 mA6 55.124o)(680 Ω6 0o) = 9.1489 V6 55.124o

VL = ItotalZL = (13.454 mA 6 55.124o)(471.24 Ω6 90o) = 6.3401 V6 145.12o

VC = ItotalZC = (13.454 mA 6 55.124o)(1446.9 Ω6 − 90o) = 19.466 V6 − 34.876o

Chapter 4

Derivations and Technical

References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

41

42 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.1 Equivalent series and parallel XR networks

It is often useful in AC circuit analysis to be able to convert a series combination of resistance and
reactance into an equivalent parallel combination of resistance and reactance, or vise-versa:

"equivalent to"

Ztotal(series) = Ztotal(parallel)

RS

XS

RPXP

We know that while resistances and reactances add (as phasor quantities) in series, the same
cannot be said in parallel. However, the reciprocal of resistance (called conductance, G) and the
reciprocal of reactance (called susceptance, B) do add as phasor quantities in parallel to yield a sum
known as admittance (Y) which is the reciprocal of impedance (Z):

"equivalent to"
RS

XS

BP GP

Ztotal(series) =
Ytotal(parallel)

1

4.1. EQUIVALENT SERIES AND PARALLEL XR NETWORKS 43

These sums may be computed using scalar numbers, with series impedance (Z) being the
Pythagorean sum of R and X being Z, and parallel admittance (Y) being the Pythagorean sum of
G and B:

θ

θ

ZS = RS
2 + XS

2

RS

XS

GPBP

ZS

RS

XS

GP

YP
BP

YP = GP
2 + BP

2

If these two circuits are truly equivalent to one another, having the same total impedance, then
their representative triangles should be geometrically similar (identical angles, same proportions of
side lengths). With equal proportions, RS

ZS
in the series circuit triangle should be the same ratio as

GP

YP
in the parallel circuit triangle, that is RS

ZS
= GP

YP
.

44 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

We may derive an equation relating resistance in the series network to resistance in the parallel
network (and to the total resistance of each network) by taking this proportionality and substituting
1

RP
for GP and 1

ZP
for YP :

RS

ZS

=
GP

YP

RS

ZS

=
1

RP

1

ZP

RS

ZS

=
ZP

RP

RSRP = ZSZP

If these are truly equivalent circuits, then they must have the same total impedance. In other
words, ZS = ZP . Simply calling this equal impedance Z and substituting for both ZS and ZP :

RSRP = ZZ

RSRP = Z2

The same proportionality applies just as well to reactance in the two equivalent networks, with
similar results:

XS

ZS

=
BP

YP

XS

ZS

=
1

XP

1

ZP

XS

ZS

=
ZP

XP

XSXP = ZSZP

XSXP = ZZ

XSXP = Z2

With that, we have two equations useful for finding the resistance and reactance values necessary
to create an equivalent parallel network for a given series network, or vice-versa:

RSRP = Z2 XSXP = Z2

4.1. EQUIVALENT SERIES AND PARALLEL XR NETWORKS 45

Let’s apply this to a practical example to see how it works. Take for instance a series network
comprised of a 470 Ω resistor and an 80 mH inductor operating at a frequency of 1 kHz, with the
goal of determining component values necessary to build an equivalent parallel LR network.

80 mH470 Ω
???

???
@ 1 kHz

The 80 mH inductor will have a reactance of 502.65 Ω at 1 kHz. Together, the 470 Ω resistor
and the 80 mH inductor make a series impedance value of:

Z =
√

R2 +X2

Z =
√

(470 Ω)2 + (502.65 Ω)2 = 688.16 Ω

Now that we know the total impedance of the series network, we may calculate both the parallel
resistance and parallel reactance values for the equivalent parallel network using the two equations
previously derived:

RSRP = Z2

RP =
Z2

RS

RP =
(688.16 Ω)2

470 Ω
= 1007.58 Ω

XSXP = Z2

XP =
Z2

XS

XP =
(688.16 Ω)2

502.65 Ω
= 942.12 Ω

Solving for inductance at 1 kHz:

XL = 2πfL

L =
XL

2πf
=

942.12 Ω

(2π)(1000 Hz)
= 149.94 mH

Therefore the equivalent parallel network consists of a 1007.58 Ω resistor in parallel with a 149.94
mH inductor (assuming a frequency of 1 kHz).

46 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

Let’s apply this to another practical example. Take for instance a parallel network comprised of a
330 Ω resistor and a 10 µF capacitor operating at a frequency of 60 Hz, with the goal of determining
component values necessary to build an equivalent series RC network.

??????
 60 Hz

330 Ω

10 µF

The 10 µF capacitor will have a reactance of 265.26 Ω at 60 Hz. Avoiding the use of complex
numbers, we may convert 330 Ω into a conductance (G) and the 10 µF capacitor’s reactance into a
susceptance (B) to compute the parallel network’s total impedance:

XC =
1

2πfC
=

1

(2π)(60)(10 µF)
= 265.26 Ω

B =
1

XC

=
1

265.26 Ω
= 3.770 mS

G =
1

R
=

1

330 Ω
= 3.0303 mS

Y =
√

G2 +B2 =
√

(3.0303 mS)2 + (3.770 mS)2 = 4.837 mS

Z =
1

Y
= 206.75 Ω

Now that we know the parallel network’s impedance magnitude, we may calculate resistance and
reactance for the equivalent series network using our two equations:

RSRP = Z2

RP =
Z2

RS

RP =
(206.75 Ω)2

330 Ω
= 129.53 Ω

XSXP = Z2

XP =
Z2

XS

XP =
(206.75 Ω)2

265.26 Ω
= 161.14 Ω

4.1. EQUIVALENT SERIES AND PARALLEL XR NETWORKS 47

Calculating the necessary capacitance to yield 161.14 Ω of reactance at 60 Hz:

XC =
1

2πfC

C =
1

2πfXC

C =
1

(2π)(60 Hz)(161.14 Ω)
= 16.46 µF

Therefore the equivalent series network consists of a 129.53 Ω resistor in series with a 16.46 µF
capacitor (assuming a frequency of 60 Hz).

48 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.2 Complex-number arithmetic

Complex numbers are very useful in AC circuit analysis because each one has the ability to represent
both a magnitude and a phase shift between that quantity and some other reference quantity. Despite
the existence of electronic calculators and computer software capable of performing arithmetic on
complex-number quantities, there are still times when we must perform some calculation on these
quantities “by hand”. This technical reference reviews the basic arithmetic operations on complex
numbers, complete with examples.

Recall that complex numbers may be represented in either rectangular or polar form, rectangular
being a quantity with both a “real” and an “imaginary” component, and polar being a quantity
with a magnitude and an angle. Graphically, these two forms relate to the sides of a right triangle:

x
θ

(hypotenuse)

(opposite of θ)

(adjacent to θ)

jy

+imaginary

-imaginary

+real-real

M

Rectangular form: x+ jy (where j =
√
−1)

Polar form: M 6 θ

To convert from rectangular form to polar form, M =
√

x2 + y2 and θ = arctan y
x

To convert from polar form to rectangular form, x = M cos θ and y = M sin θ

As we will see, addition and subtraction is easiest to do with rectangular-form notation while
multiplication and division is easiest to do with polar-form notation. Thus, circuit analysis
doing “long-hand” complex-number arithmetic often involves conversions back and forth between
rectangular and polar forms in order to set up the quantities before applying Ohm’s Law, Kirchhoff’s
Laws, etc. This can be tedious, and it is also prone to rounding errors. The reader is advised to store
all intermediate results in their calculator’s memory and recall when needed, rather than re-type
quantities and thereby incur rounding errors due to truncation.

4.2. COMPLEX-NUMBER ARITHMETIC 49

4.2.1 Negating complex numbers

The sign of a complex number may be reversed just as easily in rectangular form as in polar form.
Rectangular-form negation consists of multiplying −1 through to both the real and imaginary terms.
Polar-form negation consists solely of adding 180 degrees to the angle, or alternatively, by reversing
the sign of the magnitude and leaving the angle alone.

Example: reverse the sign of 5− j4

−(5− j4)

−5 + j4

Example: reverse the sign of 66 30o

−(66 30o)

66 210o = 66 − 150o = −66 30o

4.2.2 Adding complex numbers

Complex numbers are most easily added in rectangular form: simply add the real portions and then
add the imaginary portions.

Example: add 5− j4 to −1− j3

(5− j4) + (−1− j3)

(5 + (−1)) + (−j4 + (−j3))

4− j7

4.2.3 Subtracting complex numbers

Complex numbers are most easily subtracted in rectangular form: simply subtract the real portions
and then subtract the imaginary portions.

Example: subtract 5− j4 from −1− j3

(−1− j3)− (5− j4)

(−1− (5)) + (−j3− (−j4))

−6 + j1

50 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

4.2.4 Multiplying complex numbers

Complex numbers are most easily multiplied in polar form: simply multiply the magnitudes and
add the angles.

Example: multiply 66 30o by 26 − 10o

(66 30o)× (26 − 10o)

(6× 2) 6 (30o + (−10o))

126 20o

Multiplication of rectangular-form complex numbers less straight-forward then with polar-form
numbers, and resembles multiplication of algebraic polynomials:

Example: multiply 5− j4 by −1− j3

(5− j4)× (−1− j3)

(5× (−1)) + (5× (−j3)) + (−j4× (−1)) + (−j4× (−j3))

(−5) + (−j15) + (j4) + (j212)

(−5) + (−j15) + (j4) + ((−1)12)

(−5) + (−j15) + (j4) + (−12)

−17− j11

4.2.5 Dividing complex numbers

Complex numbers are most easily divided in polar form: simply divide the magnitudes and subtract
the angles.

Example: divide 66 30o by 26 − 10o

66 30o

26 − 10o

6

2
6 (30o − (−10o))

36 40o

4.2. COMPLEX-NUMBER ARITHMETIC 51

4.2.6 Reciprocating complex numbers

Reciprocation is division into one, and so complex numbers are reciprocated most easily in polar
form just as division is best performed in polar form: simply reciprocate the magnitude and negate
the angle.

Example: reciprocate 26 − 10o

1

26 − 10o

1

2
6 − (−10o)

0.56 10o

4.2.7 Calculator tips

Here is some advice when using calculators to do complex-number arithmetic:

• When manually entering a complex-number value, enclose that value in parentheses. Some
calculators struggle to properly perform order-of-operations with complex numbers. For
example, some calculators will interpret 456 30o×5 as 456 (30o×5) to give 456 150o when what
was really intended was (456 30o)× 5 = 2256 30o. Also, note that the practice of highlighting
previous results in a multi-line display and then “pasting” those results into a new calculation
may suffer similar problems.

• Never re-enter a non-round computed result, but instead save that to a memory location
and then recall from memory when needed for further calculations. You will find that
rounding errors compound aggressively in complex-number arithmetic, and so the general good
habit of using memory locations becomes a near-necessity with these calculations. Another
important benefit to using memory locations is the avoidance of the order-of-operations
problem mentioned previously: when recalling a complex-number value from memory and
then placing that variable name (e.g. x) into subsequent calculations, the calculator treats the
memory variable as a complete number rather than incorrectly operating on only one of its
parts.

52 CHAPTER 4. DERIVATIONS AND TECHNICAL REFERENCES

Chapter 5

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

53

54 CHAPTER 5. PROGRAMMING REFERENCES

5.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.

5.1. PROGRAMMING IN C++ 55

Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.

56 CHAPTER 5. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.

5.1. PROGRAMMING IN C++ 57

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.

58 CHAPTER 5. PROGRAMMING REFERENCES

5.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.

5.2. PROGRAMMING IN PYTHON 59

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.

60 CHAPTER 5. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.

5.2. PROGRAMMING IN PYTHON 61

assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.

62 CHAPTER 5. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.

5.3. MODELING SERIES RLC CIRCUITS USING C++ 63

5.3 Modeling series RLC circuits using C++

The following program written in C++ analyzes a series RLC circuit energized by a voltage source:

#include <iostream>

#include <complex>

#include <cmath>

using namespace std;

int main (void)

{

double vsrc = 30.0;

double f = 55.0;

double r = 30.0;

double l = 110e-3;

double c = 100.0e-6;

complex <double> zc, zl, zseries, vc, vl, vr, i;

cout << "+--V---R---L---C--+ " << " V_source = " << vsrc << " Volts " << endl;

cout << "| | " << " f_source = " << f << " Hertz " << endl;

cout << "+-----------------+ " << " R = " << r << " Ohms " << endl;

cout << " L = " << l << " Henrys " << endl;

cout << " C = " << c << " Farads " << endl << endl;

zl = complex <double> (0.0, 2 * M_PI * f * l);

zc = complex <double> (0.0, -1 / (2 * M_PI * f * c));

zseries = zc + zl + r;

i = vsrc / zseries;

vr = i * r;

vl = i * zl;

vc = i * zc;

cout << "Z_L = " << abs (zl) << " Ohms @ " << arg (zl) * 180 /

M_PI << " deg " << endl;

cout << "Z_C = " << abs (zc) << " Ohms @ " << arg (zc) * 180 /

M_PI << " deg " << endl;

cout << "Z_total = " << abs (zseries) << " Ohms @ " << arg (zseries) * 180 /

M_PI << " deg " << endl;

cout << endl;

cout << "Current = " << abs (i) * 1e3 << " mA @ " << arg (i) * 180 /

64 CHAPTER 5. PROGRAMMING REFERENCES

M_PI << " deg " << endl;

cout << "Resistor voltage = " << abs (vr) << " V @ " << arg (vr) * 180 /

M_PI << " deg " << endl;

cout << "Inductor voltage = " << abs (vl) << " V @ " << arg (vl) * 180 /

M_PI << " deg " << endl;

cout << "Capacitor voltage = " << abs (vc) << " V @ " << arg (vc) * 180 /

M_PI << " deg " << endl;

cout << endl;

cout << "Apparent power = " << abs (i) * abs (vsrc) << " VA " << endl;

cout << "True power = " << abs (i) * abs (vsrc) *

cos (arg (zseries)) << " W " << endl;

cout << "Reactive power = " << abs (i) * abs (vsrc) *

abs (sin (arg (zseries))) << " VAR " << endl;

cout << "Power factor = " << cos (arg (zseries));

if (arg (zseries) < 0)

cout << " leading";

else

cout << " lagging";

cout << endl;

return 0;

}

5.3. MODELING SERIES RLC CIRCUITS USING C++ 65

When run, the output displays as follows:

+--V---R---L---C--+ V_source = 30 Volts

| | f_source = 55 Hertz

+-----------------+ R = 30 Ohms

L = 0.11 Henrys

C = 0.0001 Farads

Z_L = 38.0133 Ohms @ 90 deg

Z_C = 28.9373 Ohms @ -90 deg

Z_total = 31.3428 Ohms @ 16.8323 deg

Current = 957.156 mA @ -16.8323 deg

Resistor voltage = 28.7147 V @ -16.8323 deg

Inductor voltage = 36.3846 V @ 73.1677 deg

Capacitor voltage = 27.6975 V @ -106.832 deg

Apparent power = 28.7147 VA

True power = 27.4844 W

Reactive power = 8.31497 VAR

Power factor = 0.957156 lagging

66 CHAPTER 5. PROGRAMMING REFERENCES

This next C++ program analyzes a series RLC circuit energized by a current source:

#include <iostream>

#include <complex>

#include <cmath>

using namespace std;

int main (void)

{

double i = 7.5e-3;

double f = 1.8e3;

double r = 1.5e3;

double l = 81e-3;

double c = 0.047e-6;

complex <double> zc, zl, zseries, vc, vl, vr, vsrc;

cout << "+--I---R---L---C--+ " << " I_source = " << i << " Amperes " << endl;

cout << "| | " << " f_source = " << f << " Hertz " << endl;

cout << "+-----------------+ " << " R = " << r << " Ohms " << endl;

cout << " L = " << l << " Henrys " << endl;

cout << " C = " << c << " Farads " << endl << endl;

zl = complex <double> (0.0, 2 * M_PI * f * l);

zc = complex <double> (0.0, -1 / (2 * M_PI * f * c));

zseries = zc + zl + r;

vsrc = i * zseries;

vr = i * r;

vl = i * zl;

vc = i * zc;

cout << "Z_L = " << abs (zl) << " Ohms @ " << arg (zl) * 180 /

M_PI << " deg " << endl;

cout << "Z_C = " << abs (zc) << " Ohms @ " << arg (zc) * 180 /

M_PI << " deg " << endl;

cout << "Z_total = " << abs (zseries) << " Ohms @ " << arg (zseries) * 180 /

M_PI << " deg " << endl;

cout << endl;

cout << "Source voltage = " << abs (vsrc) << " V @ " << arg (vsrc) * 180 /

M_PI << " deg " << endl;

cout << "Resistor voltage = " << abs (vr) << " V @ " << arg (vr) * 180 /

5.3. MODELING SERIES RLC CIRCUITS USING C++ 67

M_PI << " deg " << endl;

cout << "Inductor voltage = " << abs (vl) << " V @ " << arg (vl) * 180 /

M_PI << " deg " << endl;

cout << "Capacitor voltage = " << abs (vc) << " V @ " << arg (vc) * 180 /

M_PI << " deg " << endl;

cout << endl;

cout << "Apparent power = " << abs (i) * abs (vsrc) << " VA " << endl;

cout << "True power = " << abs (i) * abs (vsrc) *

cos (arg (zseries)) << " W " << endl;

cout << "Reactive power = " << abs (i) * abs (vsrc) *

abs (sin (arg (zseries))) << " VAR " << endl;

cout << "Power factor = " << cos (arg (zseries));

if (arg (zseries) < 0)

cout << " leading";

else

cout << " lagging";

cout << endl;

return 0;

}

68 CHAPTER 5. PROGRAMMING REFERENCES

When run, the output displays as follows:

+--I---R---L---C--+ I_source = 0.0075 Amperes

| | f_source = 1800 Hertz

+-----------------+ R = 1500 Ohms

L = 0.081 Henrys

C = 4.7e-08 Farads

Z_L = 916.088 Ohms @ 90 deg

Z_C = 1881.26 Ohms @ -90 deg

Z_total = 1783.69 Ohms @ -32.7593 deg

Source voltage = 13.3777 V @ -32.7593 deg

Resistor voltage = 11.25 V @ 0 deg

Inductor voltage = 6.87066 V @ 90 deg

Capacitor voltage = 14.1095 V @ -90 deg

Apparent power = 0.100333 VA

True power = 0.084375 W

Reactive power = 0.0542911 VAR

Power factor = 0.840951 leading

Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

69

70 CHAPTER 6. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

71

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

72 CHAPTER 6. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

6.1. CONCEPTUAL REASONING 73

6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

74 CHAPTER 6. QUESTIONS

6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

6.1. CONCEPTUAL REASONING 75

6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Voltage

Current

Source

Load

Frequency

RMS

Phasor

Resistance

Reactance

Impedance

76 CHAPTER 6. QUESTIONS

Ohm’s Law

Kirchhoff’s Voltage Law

Kirchhoff’s Current Law

Series network

Parallel network

6.1.3 Capacitive voltage divider

Voltage divider circuits may be constructed from reactive components just as easily as they may be
constructed from resistors. Take this capacitive voltage divider, for instance:

0.1 µF

0.47 µFVout

Vin

10 VAC
250 Hz

C1

C2

Describe what advantages a capacitive voltage divider might have over a resistive voltage divider.

Challenges

• Calculate Vout in this circuit.

• Will the capacitors introduce a phase shift to the divided voltage signal?

6.2. QUANTITATIVE REASONING 77

6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

78 CHAPTER 6. QUESTIONS

6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

6.2. QUANTITATIVE REASONING 79

6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

80 CHAPTER 6. QUESTIONS

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

6.2. QUANTITATIVE REASONING 81

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

82 CHAPTER 6. QUESTIONS

6.2.3 Series RL impedances

Calculate the total impedances (complete with phase angles) for each of the following inductor-
resistor circuits:

100 Hz

0.5 H

470 Ω 290 Hz

1 H

200 mH

1.5 kΩ

Challenges

• Predict the effect on impedance magnitude and phase angle if the frequency of each source
decreases.

6.2.4 Series RC impedances

Calculate the total impedances (complete with phase angles) for each of the following capacitor-
resistor circuits:

100 Hz 470 Ω 290 Hz 1.5 kΩ

3.3 µF 0.1 µF

0.22 µF

Challenges

• Predict the effect on impedance magnitude and phase angle if the frequency of each source
decreases.

6.2. QUANTITATIVE REASONING 83

6.2.5 Inductor with winding resistance

Calculate the magnitude and phase shift of the current through this inductor, taking into
consideration its intrinsic winding resistance:

Vin

10 VAC

Inductor

1.5 H

65 Ω

135 Hz

Challenges

• Why are inductors generally considered less “pure” than capacitors?

84 CHAPTER 6. QUESTIONS

6.2.6 VIZ table for series RC circuit

Complete the table of values for this circuit, representing all quantities in complex-number form
(either polar or rectangular, your choice):

R1 Total

R1

C1

3.3 µF

C1

17 V

V

I

Z

470 Ω 60 Hz

17 V ∠ 0o

Lastly, calculate power factor, apparent power, reactive power, and true power for this circuit.

Challenges

• Sketch a phasor diagram for all additive quantities in this circuit, showing graphically how
their sum equals the sum shown in the table.

• At what source frequency will the phase angle in this circuit be 45o?

6.2. QUANTITATIVE REASONING 85

6.2.7 Sound system calculations

Calculate the voltage dropped across the inductor, the capacitor, and the 8-Ohm speaker in this
sound system at the following frequencies, given a constant source voltage of 15 Volts:

Amplifier

8 Ω

8 Ω

47 µF 2 mH

15 VAC

• f = 200 Hz

• f = 550 Hz

• f = 900 Hz

Regard the speaker as nothing more than an 8-Ohm resistor.

Challenges

• If the source frequency were higher, would we need a smaller or larger capacitor to achieve the
same total impedance?

86 CHAPTER 6. QUESTIONS

6.2.8 LL and RL phasor diagrams

Calculate the total impedance for these two PCB-mounted 100 mH inductors at 2.3 kHz, and draw
a phasor diagram showing all circuit impedances:

L1

L2

100m

100m

Ztotal @ 2.3 kHz = ???

Now, re-calculate impedance and re-draw the phasor impedance diagram supposing the second
inductor is replaced by a 1.5 kΩ resistor:

L1

100m
Ztotal @ 2.3 kHz = ???

R1

1k5

Challenges

• What is the significance of an impedance phasor pointing in a vertical direction?

6.2. QUANTITATIVE REASONING 87

6.2.9 RL network and phasor diagram

Calculate the total impedance of this series LR circuit and then calculate the total circuit current:

3 kHz
34 V RMS

250m

5k1

Also, draw a phasor diagram showing how the individual component impedances relate to the
total impedance.

Challenges

• If the source frequency were higher, would we need a smaller or larger capacitor to achieve the
same total impedance?

6.2.10 Unknown capacitance

Calculate the necessary size of the capacitor to give this circuit a total impedance (Ztotal) of 4 kΩ,
at a power supply frequency of 100 Hz:

100 Hz

2k2

C = ???

Challenges

• If the source frequency were higher, would we need a smaller or larger capacitor to achieve the
same total impedance?

88 CHAPTER 6. QUESTIONS

6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

6.3. DIAGNOSTIC REASONING 89

6.3.1 Failed doorbell

Doorbell circuits connect a small lamp in parallel with the doorbell pushbutton so that there is light
at the button when it is not being pressed. The lamp’s filament resistance is such that there is not
enough current going through it to energize the solenoid coil when lit, which means the doorbell will
ring only when the pushbutton switch shorts past the lamp:

60 Hz
18 V

Doorbell switch

Solenoid

Lamp

Suppose that such a doorbell circuit suddenly stops working one day, and the home owner assumes
the power source has quit since the bell will not ring when the button is pressed and the lamp never
lights. Although a dead power source is certainly possible, it is not the only possibility. Identify
another possible failure in this circuit which would result in no doorbell action (no sound) and no
light at the lamp.

Challenges

• If you have identified multiple fault possibilities, determine which of these might be the most
likely based on your knowledge of this circuit’s construction. In other words, which of those
faults might be the most likely, based on no knowledge other than how each component is
made.

90 CHAPTER 6. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

91

92 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

93

94 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

95

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

96 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

97

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

98 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

99

100 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

101

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

102 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

103

104 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

105

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

106 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

107

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

108 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

109

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

110 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

9 September 2024 – divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

10 February 2023 – added power factor calculations to the “VIZ table” quantitative question.

28 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

28 June 2022 – minor edits to instructor answers.

23 May 2022 – added Python calculation examples to the Case Tutorial section “Example: series
RL circuit”.

16 May 2022 – added a Case Tutorial section showing the effective use of a triangle-wave signal
generator rather than a sine-wave signal generator to provide AC excitatin in simple RLC network
experiments. It’s not “perfect” like a sine-wave signal generator would (ideally) be, but the results
are quite close to what they ought to be, usually within the tolerances of the components.

23 December 2021 – added a Tutorial section to provide a thematic break between the AC-DC
review and the rest of the Tutorial.

8 September 2021 – added a Case Tutorial example of an RLC series circuit.

1 September 2021 – added content to the Tutorial elaborating on how to analyze AC circuits
using “long-hand” mathematics rather than a calculator capable of complex-number calculations.

20 August 2021 – added a Case Tutorial example where we must solve for a component value

111

112 APPENDIX E. VERSION HISTORY

given a desired total impedance.

8 May 2021 – commented out or deleted empty chapters.

17-18 February 2021 – added a Programming References chapter with C++ examples showing
series RLC circuits energized by both voltage and current sources.

28 January 2021 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

6 January 2021 – added another Case Tutorial example (RC), and added SPICE simulations to
each of the Case Tutorial examples.

5 January 2021 – added Derivations and Technical References chapter.

4 January 2021 – added Case Tutorial examples and Questions.

26 May 2019 – added more detail to the review section, which caused page formatting to change
a bit in the final document.

October 2018 – document first created.

Index

ω, 28

AC, 3, 28
Adding quantities to a qualitative problem, 92
Alternating Current, 28
Ampere, 29
Angular velocity, 28
Annotating diagrams, 3, 91
Apparent power, 28

C++, 54
Checking for exceptions, 92
Checking your work, 92
Code, computer, 99
Compiler, C++, 54
Complex arithmetic, “by hand”, 48
Complex number, 3, 48
Computer programming, 53
Conservation of Electric Charge, 32
Conservation of Energy, 32
Current, 29

DC, 3, 28
Dimensional analysis, 91
Direct Current, 28

Edwards, Tim, 100

Fast Fourier Transform, 24
FFT, 24
Frequency, 3, 28

Graph values to solve a problem, 92
Greenleaf, Cynthia, 69

Hertz, 28
How to teach with these modules, 94
Hwang, Andrew D., 101

Hz, 28

Identify given data, 91
Identify relevant principles, 91
Impedance, 29
Instructions for projects and experiments, 95
Intermediate results, 91
Interpreter, Python, 58
Inverted instruction, 94

Java, 55

Kirchhoff’s Current Law, 29, 36
Kirchhoff’s Voltage Law, 29, 35, 36
Knuth, Donald, 100

Lamport, Leslie, 100
Limiting cases, 92
Load, 29

Metacognition, 74
Moolenaar, Bram, 99
Murphy, Lynn, 69

Ohm, 29
Ohm’s Law, 29, 34, 35, 40
Open-source, 99

Parallel, 29
Peak, 28
Peak to peak, 28
Phase, 28
Phasor, 28
Phasor diagram, 30
Polar form, 48
Power factor, 39
Problem-solving: annotate diagrams, 3, 91
Problem-solving: check for exceptions, 92

113

114 INDEX

Problem-solving: checking work, 92
Problem-solving: dimensional analysis, 91
Problem-solving: graph values, 92
Problem-solving: identify given data, 91
Problem-solving: identify relevant principles, 91
Problem-solving: interpret intermediate results,

91
Problem-solving: limiting cases, 92
Problem-solving: qualitative to quantitative, 92
Problem-solving: quantitative to qualitative, 92
Problem-solving: reductio ad absurdum, 92
Problem-solving: simplify the system, 91
Problem-solving: thought experiment, 91
Problem-solving: track units of measurement, 91
Problem-solving: visually represent the system,

91
Problem-solving: work in reverse, 92
Programming, computer, 53
Pythagorean Theorem, 38
Python, 58

Qualitatively approaching a quantitative
problem, 92

Radians per second, 28
Reactance, 29
Reactive power, 28
Reading Apprenticeship, 69
Rectangular form, 48
Reductio ad absurdum, 92–94
Resistance, 29
RMS, 28

Schoenbach, Ruth, 69
Scientific method, 74
Series, 29, 32
Simplifying a system, 91
Socrates, 93
Socratic dialogue, 94
Source, 29
Source code, 54
SPICE, 69
Stallman, Richard, 99

Thought experiment, 91
Torvalds, Linus, 99

Transformer, 28
True power, 28

Unit phasor, 31
Units of measurement, 91

Visualizing a system, 91
Volt, 29
Volt-Amperes, 28
Volt-Amperes Reactive, 28
Voltage, 29

Watts, 28
Whitespace, C++, 54, 55
Whitespace, Python, 61
Work in reverse to solve a problem, 92
WYSIWYG, 99, 100

	Introduction
	Recommendations for students
	Challenging concepts related to series AC circuits
	Recommendations for instructors

	Case Tutorial
	Example: series RL circuit
	Example: series RC circuit
	Example: series RLC circuit
	Example: measuring series voltage phase shift
	Example: solving for an unknown inductance
	Example: sine versus non-sine AC sources

	Tutorial
	AC versus DC
	Series network properties
	Example circuit analysis using complex calculator
	Example circuit analysis using ordinary calculator

	Derivations and Technical References
	Equivalent series and parallel XR networks
	Complex-number arithmetic
	Negating complex numbers
	Adding complex numbers
	Subtracting complex numbers
	Multiplying complex numbers
	Dividing complex numbers
	Reciprocating complex numbers
	Calculator tips

	Programming References
	Programming in C++
	Programming in Python
	Modeling series RLC circuits using C++

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Capacitive voltage divider

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Series RL impedances
	Series RC impedances
	Inductor with winding resistance
	VIZ table for series RC circuit
	Sound system calculations
	LL and RL phasor diagrams
	RL network and phasor diagram
	Unknown capacitance

	Diagnostic reasoning
	Failed doorbell

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	Version history
	Index

