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Chapter 2

Tutorial

Mathematics is the investigation of an artificial world: a universe populated by abstract entities
and rigid rules governing those entities. Mathematicians devoted to the study and advancement of
pure mathematics have an extremely well-developed respect for these rules, for the integrity of this
artificial world depends on them. In order to preserve the integrity of their artificial world, their
collective work must be rigorous, never allowing for sloppy handling of the rules or allowing intuitive
leaps to be left unproven.

However, many of the tools and techniques developed by mathematicians for their artificial
world happen to be extremely useful for understanding the real world in which we live and work,
and therein lies a problem. In applying mathematical rules to the study of real-world phenomena,
we often take a far more pragmatic approach than any mathematician would feel comfortable with.

The tension between pure mathematicians and those who apply math to real-world problems is
not unlike the tension between linguists and those who use language in everyday life. All human
languages have rules (though none as rigid as in mathematics!), and linguists are the guardians
of those rules, but the vast majority of human beings play fast and loose with the rules as they
use language to describe and understand the world around them. Whether or not this “sloppy”
adherence to rules is good depends on which camp you are in. To the purist, it is offensive; to the
pragmatist, it is convenient.

I like to tell my students that mathematics is very much like a language. The more you understand
mathematics, the larger “vocabulary” you will possess to describe principles and phenomena you
encounter in the world around you. Proficiency in mathematics also empowers you to grasp
relationships between different things, which is a powerful tool in learning new concepts.

This book is not written for (or by!) mathematicians. Rather, it is written for people wishing to
make sense of electricity, electronics, and industrial process measurement and control. This Tutorial
is devoted to a very pragmatic coverage of certain mathematical concepts, for the express purpose
of applying these concepts to real-world systems.

Mathematicians, cover your eyes for the rest of this Tutorial!

5
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2.1 Introduction to calculus

Few areas of mathematics are as powerfully useful in describing and analyzing the physical world as
calculus: the mathematical study of changes. Calculus also happens to be tremendously confusing
to most students first encountering it. A great deal of this confusion stems from mathematicians’
insistence on rigor1 and denial of intuition.

Look around you right now. Do you see any mathematicians? If not, good – you can proceed
in safety. If so, find another location to begin reading this Tutorial. I will frequently appeal to
practical example and intuition in describing the basic principles of single-variable calculus, for the
purpose of expanding your mathematical “vocabulary” to be able to describe and better understand
phenomena of change related to mechanical and electrical systems.

Silvanus P. Thompson, in his wonderful book Calculus Made Simple originally published in 1910,
began his text with a short chapter entitled, “To Deliver You From The Preliminary Terrors2.” I
will follow his lead by similarly introducing you to some of the notations frequently used in calculus,
along with very simple (though not mathematically rigorous) definitions.

When we wish to speak of a change in some variable’s value (let’s say x), it is common to precede
the variable with the capital Greek letter “delta” as such:

∆x = “Change in x”

An alternative interpretation of the “delta” symbol (∆) is to think of it as denoting a difference
between two values of the same variable. Thus, ∆x could be taken to mean “the difference between
two values of x”. The precise nature and cause of this difference is not important right now: it may
be the difference between the value of x at one point in time versus another point in time, it may
be the difference between the value of x at one point in space versus another point in space, or it
may simply be the difference between values of x as it relates to some other variable (e.g. y) in a
mathematical function. If we have some variable such as x that is known to change value relative to
some other variable (e.g. time, space, y), it is nice to be able to express that change using precise
mathematical symbols, and this is what the “delta” symbol does for us.

1In mathematics, the term rigor refers to a meticulous attention to detail and insistence that each and every step
within a chain of mathematical reasoning be thoroughly justified by deductive logic, not intuition or analogy.

2The book’s subtitle happens to be, Being a very-simplest introduction to those beautiful methods of reckoning

which are generally called by the terrifying names of the differential calculus and the integral calculus. Not only did
Thompson recognize the anti-pragmatic tone with which calculus is too often taught, but he also infused no small
amount of humor in his work.
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For example, if the temperature of a furnace (T ) increases over time, we might wish to describe
that change in temperature as ∆T :

Furnace

Fuel gas
inlet

Air flow

Blower
Valve

E
xh
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st
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ck

Burner

Refractory brick

Refractory brick

Temperature of furnace at 9:45 AM = 1255 oF

Furnace

Fuel gas
inlet

Air flow

Blower
Valve

E
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Refractory brick

Refractory brick

Temperature of furnace at 10:32 AM = 1276 oF

∆T = 1276 oF - 1255 oF = 21 oF

T9:45 = 1255 oF T10:32 = 1276 oF

∆T = T10:32 - T9:45

The value of ∆T is nothing more than the difference (subtraction) between the recent temperature
and the older temperature. A rising temperature over time thus yields a positive value for ∆T , while
a falling temperature over time yields a negative value for ∆T .

We could also describe differences between the temperature of two locations (rather than a
difference of temperature between two times) by the notation ∆T , such as this example of heat
transfer through a heat-conducting wall where one side of the wall is hotter than the other:

ThotTcold

∆T = Thot - Tcold

HeatHeat

Once again, ∆T is calculated by subtracting one temperature from another. Here, the sign
(positive or negative) of ∆T denotes the direction of heat flow through the thickness of the wall.
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One of the major concerns of calculus is changes or differences between variable values lying very
close to each other along a continuum of values. In the context of a heating furnace, this could mean
increases in temperature over miniscule time periods. In the context of heat flowing through a wall,
this could mean differences in temperature sampled between points within the wall immediately
adjacent each other. If our desire is to express the change in a variable between neighboring points
along a continuum rather than over some discrete period, we may use a different notation than the
capital Greek letter delta (∆); instead, we use a lower-case Roman letter d (or in some cases, the
lower-case Greek letter delta: δ).

Thus, a change in furnace temperature from one instant in time to the next could be expressed
as dT (or δT ), and likewise a difference in temperature between two adjacent positions within the
heat-conducting wall could also be expressed as dT (or δT ). Just as with the “delta” (∆) symbol,
the changes denoted by either d or δ may apply to space or time.

We even have a unique name for this concept of extremely small differences: while ∆T is called a
difference in temperature, dT is called a differential of temperature. This distinction may not seem
useful right now, but it is meaningful when describing continuous changes versus changes sampled
at discrete points.

Another major concern in calculus is how quantities accumulate, especially how differential
quantities add up to form a larger whole. A furnace’s temperature rise since start-up (∆Ttotal),
for example, could be expressed as the accumulation (sum) of many temperature differences (∆T )
measured periodically. The total furnace temperature rise calculated from a sampling of temperature
once every minute from 9:45 to 10:32 AM could be written as:

∆Ttotal = ∆T9:45 +∆T9:46 + · · ·∆T10:32 = Total temperature rise over time, from 9:45 to 10:32

A more sophisticated expression of this series uses the capital Greek letter sigma (meaning “sum
of” in mathematics) with notations specifying which temperature differences to sum:

∆Ttotal =

10:32
∑

n=9:45

∆Tn = Total temperature rise over time, from 9:45 to 10:32

However, if our furnace temperature monitor scans at an infinite pace, measuring temperature
differentials (dT ) and summing them in rapid succession, we may express the same accumulated
temperature rise as an infinite sum of infinitesimal (infinitely small) changes, rather than as a
finite sum of temperature changes measured once every minute. Just as we introduced a unique
mathematical symbol to represent differentials (d) over a continuum instead of differences (∆) over
discrete periods, we will introduce a unique mathematical symbol to represent the summation of
differentials (

∫

) instead of the summation of differences (
∑

):

∆Ttotal =

∫ 10:32

9:45

dT = Total temperature rise over time, from 9:45 to 10:32

This summation of infinitesimal quantities is called integration, and the elongated “S” symbol
(
∫

) is the integral symbol.

These are the two major ideas and notations of calculus: differentials (tiny changes represented
by d or δ) and integrals (accumulations represented by

∫

). Now that wasn’t so frightening, was it?
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2.2 The concept of differentiation

Suppose we wished to measure the rate of propane fuel gas flow through a hose to a torch:

Propane
fuel
tank

Shut-off
valve

Torch

Flowmeters appropriate for measuring low flow rates of any gas are typically very expensive,
making it impractical to directly measure the flow rate of propane fuel gas consumed by this torch
at any given moment. We could, however, indirectly measure the flow rate of propane gas by placing
the tank on a scale where its mass (m) could be monitored over time. By taking measurements of
mass over short time periods (∆t), we could calculate the corresponding differences in mass (∆m),
then calculate the ratio of mass lost over time to calculate average mass flow rate (W ):

W =
∆m

∆t
= Average mass flow rate

Where,
W = Average mass flow rate within each time period (kilograms per minute)
∆m = Measured mass difference over time period (kilograms)
∆t = Time period of mass measurement sample (minutes)

Note that flow rate is a ratio (quotient) of mass change over time change. The units used to
express flow even reflect this process of division: kilograms per minute.

W =
[kg]

[min]
= Average mass flow rate =

[

kg

min

]
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Graphed as a function over time, the tank’s mass will be seen to decrease as time elapses.
Each dot represents a mass and time measurement coordinate pair (e.g. 20 kilograms at 7:38, 18.6
kilograms at 7:51, etc.):

Propane
mass

(m)

Time (t)

∆m

∆t

W =
∆m
∆t

Average flow rate

We should recall from basic geometry that the slope of a line or line segment is defined as its rise
(vertical height) divided by its run (horizontal width). Thus, the average mass flow rate calculated
within each time period may be represented as the pitch (slope) of the line segments connecting
dots, since mass flow rate is defined as a change in mass per (divided by) change in time.

Periods of high propane flow (large flame from the torch) appear as steeply-pitched line segments.
Periods of no propane flow reveal themselves as flat portions on the graph (no rise or fall over time).

If the determination of average flow rates between significant gaps in time is good enough for
our application, we need not do anything more. However, if we wish to detect mass flow rate at any
particular instant in time, we need to perform the same measurements of mass loss, time elapse,
and division of the two at an infinitely fast rate.
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Supposing such a thing were possible, what we would end up with is a smooth graph showing
mass consumed over time. Instead of a few line segments roughly approximating a curve, we would
have an infinite number of infinitely short line segments forming a seamless curve. The flow rate at
any particular point in time would be the ratio of the mass and time differentials (the slope of the
infinitesimal line segment) at that point:

Propane
mass

(m)

Time (t)

W =

dt

dm

Instantaneous flow rate
dm
dt

W =
dm

dt
= Instantaneous mass flow rate

Where,
W = Instantaneous mass flow rate at a given time (kilograms per minute)
dm = Mass differential at a single point in time (kilograms)
dt = Time differential at a single point in time (minutes)

Flow is calculated just the same as before: a quotient of mass and time differences, except here
the differences are infinitesimal in magnitude. The unit of flow measurement reflects this process of
division, just as before, with mass flow rate expressed in units of kilograms per minute. Also, just as
before, the rate of flow is graphically represented by the slope of the graph: steeply-sloped points on
the graph represent moments of high flow rate, while shallow-sloped points on the graph represent
moments of low flow rate.
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Such a ratio of differential quantities is called a derivative in calculus3. Derivatives – especially
time-based derivatives such as flow rate – find many applications in the physical world. Some of
the most common time-based derivative functions include the relationships between position (x),
velocity (v), and acceleration (a).

Velocity (v) is the rate at which an object changes position over time. Since position is typically
denoted by the variable x and time by the variable t, the derivative of position with respect to time
may be written as such:

v =
dx

dt
[meters/second] =

[meters]

[seconds]

The metric units of measurement4 for velocity (meters per second, miles per hour, etc.) betray
this process of division: a differential of position (meters) divided by a differential of time (second).

Acceleration (a) is the rate at which an object changes velocity over time. Thus, we may express
acceleration as the time-derivative of velocity, just as velocity was expressed as the time-derivative
of position:

a =
dv

dt
[meters/second

2
] =

[meters/second]

[seconds]

We may even express acceleration as a function of position (x), since it is the rate of change of
the rate of change in position over time. This is known as a second derivative, since it is applying
the process of “differentiation” twice:

a =
d

dt

(

dx

dt

)

=
d2x

dt2
[meters/second

2
] =

[meters]

[seconds2]

As with velocity, the units of measurement for acceleration (meters per second squared, or
alternatively meters per second per second) suggest a compounded quotient.

3Isaac Newton referred to derivatives as fluxions, and in Silvanus Thompson’s day they were known as differential
coefficients.

4British units of measurement for velocity indicate this same process of division: the number of feet traveled in a
time period of seconds yields a velocity in feet per second. There is nothing unique about metric units in this regard.
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It is also possible to express rates of change between different variables not involving time. A
common example in electronics is the concept of gain, generally defined as the ratio of output change
to input change. An electronic amplifier, for example, with an input signal of 2 volts (peak-to-peak)
and an output signal of 8.6 volts (peak-to-peak), would be said to have a gain of 4.3, since the
change in output measured in peak-to-peak volts is 4.3 times larger than the corresponding change
in input voltage:

2 volts P-P

Amplifier
8.6 volts P-P

Gain = 4.3

∆Vin

∆Vout

This gain may be expressed as a quotient of differences (∆Vout

∆Vin

), or it may be expressed as a
derivative instead:

Gain =
dVout

dVin

If the amplifier’s behavior is perfectly linear, there will be no difference between gain calculated
using differences and gain calculated using differentials (the derivative), since the average slope of
a straight line is the same as the instantaneous slope at any point along that line. If, however, the
amplifier does not behave in a perfectly linear fashion, gain calculated from voltage values sampled
over discrete intervals (∆Vout

∆Vin

) will not be the same as gain calculated from infinitesimal changes at
different points along the amplifier’s operating voltage range.
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2.3 The concept of integration

Suppose we wished to measure the consumption of propane fuel gas over time for a large propane
storage tank supplying a building with heating fuel, because the tank lacked a level indicator to
show how much fuel was left at any given time. The flow rate is sufficiently large, and the task
sufficiently important, to justify the installation of a mass flowmeter5, which registers flow rate at
an indicator inside the building:

FlowmeterPropane tank

Gas pipe

By measuring true mass flow rate, it should be possible to indirectly measure how much propane
gas has been consumed at any time following the most recent filling of the tank. For example, if the
mass flow rate of propane out of the tank happened to be a constant 5 kilograms per hour for 30
hours straight, it would be a simple matter of multiplication to calculate the consumed mass:

(

5 kg

hr

)(

30 hrs

1

)

= 150 kg of propane consumed

Expressing this mathematically as a function of differences in mass and differences in time, we
may write the following equation:

∆m = W ∆t

Where,
W = Average mass flow rate within the time period (kilograms per hour)
∆m = Mass difference over time period (kilograms)
∆t = Time period of flow measurement sample (hours)

It is easy to see how this is just a variation of the quotient-of-differences equation used previously
in this Tutorial to define mass flow rate:

W =
∆m

∆t
= Average mass flow rate

Inferring mass flow rate from changes in mass over time periods is a process of division. Inferring
changes in mass from flow rate over time periods is a process of multiplication. The units of
measurement used to express each of the variables makes this quite clear.

5Most likely a thermal mass flowmeter or a Coriolis-effect flowmeter.



2.3. THE CONCEPT OF INTEGRATION 15

As we learned previously, the process of differentiation is really just a matter of determining the
slope of a graph. A graph of propane fuel mass (m) plotted over discrete points in time (t) has
a slope corresponding to mass flow rate (W = ∆m

∆t
). Here, we are attempting to do the opposite:

the data reported by the sensing instrument is propane mass flow rate (W ), and our goal is to
determine total mass lost (∆m) as the propane is consumed from the storage tank over a period of
time (∆t). This operation is fundamentally distinct from differentiation, which means its graphical
interpretation will not be the same. Instead of calculating the slope of the graph, we will have to do
something else.

Using the previous example of the propane flowmeter sensing a constant mass flow rate (W ) of
5 kilograms of propane per hour for 30 hours (for a total consumption of 150 kilograms), we may
plot a trend graph showing flow rate (vertical) as a function of time (horizontal). We know the
consumed propane quantity is the simple product (multiplication) of constant flow rate and time,
which relates to the geometric area enclosed by the graph, since the area of any rectangle is height
times width:

Propane

Time (t)

flow rate
(W)

0
5 10 15 20 25 30 35 40

kg/hr

hours
0

1

2

3

4

5

6

7

8

45

5 kg/hr

30 hours

∆m = W∆t

∆m = 150 kg

To summarize: the height of this graph represents the rate at which propane exits the storage
tank, the width of the graph represents the length of time propane has been consumed from the
storage tank, and the geometric area enclosed by these two boundaries represents the total mass
of propane consumed during that time. Height in kilograms per hour multiplied by width in hours
equals kilograms.
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Inferring consumed propane fuel mass over time is easy when the propane flow rate is constant,
because that produces a simple rectangular enclosed area on the graph, the area of which is trivial
to compute. However, real-world applications are rarely this easy. Consider the following graph,
showing periods of increased and decreased flow rate due to different gas-fired appliances turning on
and off inside the building:

Propane

Time (t)

flow rate
(W)

Here, the propane gas flow rate does not stay constant throughout the entire time interval covered
by the graph. This graph is obviously more challenging to analyze than the previous example where
the propane flow rate was constant. From that previous example, though, we have learned that
the geometric area enclosed by the boundaries of the graph’s height (flow rate) and width (time
duration) has physical meaning, representing the total quantity of propane passed through the
flowmeter. Despite the fact that the graph’s enclosed area is more challenging to calculate, the basic
principle remains the same as before: the enclosed area – regardless of how we must compute that
area – still represents the amount of propane consumed over the represented time interval.
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In order to accurately calculate the amount of propane mass consumed over time, we must
treat each period of constant flow as its own propane quantity, calculating the mass lost during each
period, then summing those mass differences to arrive at a total mass loss for the entire time interval
covered by the graph. Since we know the difference (loss) in mass over a time period is equal to
the average flow rate for that period multiplied by the period’s duration (∆m = W ∆t), we may
calculate each period’s mass as an area underneath the graph line, each rectangular area being equal
to height (W ) times width (∆t):

Propane

Time (t)

flow rate
(W)

W1∆t1

W2∆t2

W3∆t3

W4∆t4

W5∆t5

W6∆t6

W7∆t7

W8∆t8

Each rectangular area underneath the flow line on the graph (Wn∆tn) represents a quantity of
propane gas consumed during that time period. To find the total amount of propane consumed in
the time represented by the entire graph, we simply sum these mass quantities together:

∆m = (W1∆t1) + (W2∆t2) + (W3∆t3) + (W4∆t4) + (W5∆t5) + (W6∆t6) + (W7∆t7) + (W8∆t8)

A “shorthand” notation for this sum uses the capital Greek letter sigma to represent a series
of repeated products (multiplication) of mass flow and time periods for the eight rectangular areas
enclosed by the graph:

∆m =
8

∑

n=1

Wn ∆tn

While Wn∆tn represents the area of just one of the rectangular periods,
∑8

n=1
Wn∆tn represents

the total combined areas, which in this example represents the total mass of propane consumed over
the eight time periods shown on the graph.
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The task of inferring total propane mass consumed over time becomes even more complicated
if the flow does not vary in stair-step fashion as it did in the previous example. Suppose the
building were equipped with throttling gas appliances instead of on/off gas appliances, thus creating
a continuously variable flow rate demand over time. A typical flow rate graph might look something
like this:

Propane

Time (t)

flow rate
(W)

The physics of gas flow and gas mass over time has not changed: total propane mass consumed
over time must still be the area enclosed beneath the flow curve. The only difference between this
example and the two previous examples is the complexity of actually calculating that enclosed area.



2.3. THE CONCEPT OF INTEGRATION 19

We can, however, approximate the area underneath this curve by overlaying a series of rectangles,
the area of each rectangle being height (W ) times width (∆t):

Propane

Time (t)

flow rate
(W)

∆t

W

Each rectangular area represents
a mass (m) equal in magnitude to W∆t

This strategy of approximating the area underneath a curve improves with the number of
rectangles used: each rectangle still has an area W∆t, but using more rectangles makes each
∆t period shorter, which in turn makes it easier to fit the rectangles to the exact curve of the
graph. The summation of a series of rectangular areas intended to approximate the area enclosed
by a graphed function is commonly referred to as a Riemann Sum in honor of the mathematician
Bernhard Riemann:

Propane

Time (t)

flow rate
(W)

A better approximation of area
underneath the curve

(using narrower rectangles)

∆t

W
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Taking this idea to its ultimate realization, we could imagine a super-computer sampling mass
flow rates at an infinite speed, then calculating the rectangular area covered by each flow rate
(W ) times each infinitesimal increment of time (dt). With time increments of negligible width, the
“approximation” of area underneath the graph found by the sum of all these rectangles would be
perfect – indeed, it would not be an approximation at all, but rather an exact match:

Propane

Time (t)

flow rate
(W) underneath the curve

A perfect representation of area

(using infinitely narrow rectangles)

dt
0 x

If we represent infinitesimal time increments using the notation “dt” as opposed to the notation
“∆t” used to represent discrete time periods, we must also use different notation to represent the
mathematical sum of those quantities. Thus, we will replace the “sigma” symbol (

∑

) used for
summation and replace it with the integral symbol (

∫

), which means a continuous summation of
infinitesimal quantities:

∆m =

x
∑

n=0

W ∆tn Summing discrete quantities of W∆t

∆m =

∫ x

0

W dt Summing continuous quantities of W dt

This last equation tells us the total change in mass (∆m) from time 0 to time x is equal to
the continuous sum of mass quantities found by multiplying mass flow rate measurements (W ) over
corresponding increments of time (dt). We refer to this summation of infinitesimal quantities as
integration in calculus. Graphically, the integral of a function is the geometric area enclosed by the
function over a specified interval.
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An important detail to note is that this process of integration (multiplying flow rates by
infinitesimal time increments, then summing those products) only tells us how much propane mass
was consumed – it does not tell us how much propane remains in the tank, which was the purpose
of installing the mass flowmeter and performing all this math! The integral of mass flow and time
(
∫

W dt) will always be a negative6 quantity in this example, because a flow of propane gas out of
the tank represents a loss of propane mass within the tank. In order to calculate the amount of
propane mass left in the tank, we would need to know the initial value of propane in the tank before
any of it flowed to the building, then we would add this initial mass quantity (m0) to the negative
mass loss calculated by integration.

Thus, we would mathematically express the propane mass inside the tank at time x as such7:

mx =

∫ x

0

W dt+m0

This initial value must always be considered in problems of integration if we attempt to absolutely
define some integral quantity. Otherwise, all the integral will yield is a relative quantity (how much
something has changed over an interval).

6Although we will measure time, and differentials of time, as positive quantities, the mass flowmeter should be
configured to show a negative flow rate (W ) when propane flows from the tank to the building. This way, the integrand
(the product “inside” the integration symbol; W dt) will be a negative quantity, and thus the integral over a positive
time interval (from 0 to x) will likewise be a negative quantity.

7According to calculus convention, the differential dt represents the end of the integrand. It is safe to regard the
long “S” symbol and the differential (dx, dt, etc.) as complementary grouping symbols declaring the beginning and
end of the integrand. This tells us m0 is not part of the integrand, but rather comes after it. Using parentheses to
explicitly declare the boundaries of the integrand, we may re-write the expression as mx = (

∫ x

0
W dt) +m0
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The problem of initial values is very easy to relate to common experience. Consider the odometer
indication in an automobile. This is an example of an integral function, the distance traveled (x)
being the time-integral8 of speed (or velocity, v):

∆x =

∫

v dt

0
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Although the odometer does accumulate to larger and larger values as you drive the automobile,
its indication does not necessarily tell me how many miles you have driven it. If, for example, you
purchased the automobile with 32411.6 miles on the odometer, its current indication of 52704.8 miles
means you have driven it 20293.2 miles. The automobile’s total distance traveled since manufacture
is equal to the distance you have accumulated while driving it (

∫

v dt) plus the initial mileage
accumulated at the time you took ownership of it (x0):

xtotal =

∫

v dt+ x0

8Recall from the previous section (“The Concept of Differentiation”) that velocity could be defined as the time-
derivative of position: v = dx

dt
All we have done here is algebraically solved for changes in x by first multiplying both

sides of the equation by dt to arrive at dx = v dt. Next, we integrate both sides of the equation in order to “un-do”
the differential (d) applied to x:

∫

dx =
∫

v dt. Since accumulations (
∫

) of any differential (dx) yields a discrete

change for that variable, we may substitute ∆x for
∫

dx and get our final answer of ∆x =
∫

v dt.
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2.4 How derivatives and integrals relate to one another

First, let us review some of the properties of differentials and derivatives, referencing the expression
and graph shown below:

• A differential is an infinitesimal increment of change (difference) in some continuously-changing
variable, represented either by a lower-case Roman letter d or a lower-case Greek letter “delta”
(δ). Such a change in time would be represented as dt; a similar change in temperature as dT ;
a similar change in the variable x as dx.

• A derivative is always a quotient of differences : a process of subtraction (to calculate the
amount each variable changed) followed by division (to calculate the rate of one change to
another change).

• The units of measurement for a derivative reflect this final process of division: one unit divided
by some other unit (e.g. gallons per minute, feet per second).

• Geometrically, the derivative of a function is its graphical slope (its “rise over run”).

• When computing the value of a derivative, we must specify a single point along the function
where the slope is to be calculated.

• The tangent line matching the slope at that point has a “rise over run” value equal to the
derivative of the function at that point.

x

y

dy

dx

Slope at this point =
dy
dx

y = f(x)

Derivative = slope of the function

tangent lin
e

= 
Rise of tangent line

Run of tangent line

dy
dx

≈ ∆x
=

Small changes in x

∆y Small changes in y
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Next, let us review some of the properties of integrals, referencing the expression and graph shown
below:

• An integral is always a sum of products : a process of multiplication (to calculate the product
of two variables) followed by addition (to sum those quantities into a whole).

• The units of measurement for an integral reflect this initial process of multiplication: one unit
times some other unit (e.g. kilowatt-hours, foot-pounds, volt-seconds).

• When computing the value of an integral, we must specify both the starting and ending points
along the function defining the interval of integration (a and b).

• Geometrically, the integral of a function is the graphical area enclosed by the function and the
interval boundaries.

• The area enclosed by the function may be thought of as an infinite sum of extremely narrow
rectangles, each rectangle having a height equal to one variable (y) and a width equal to the
differential of another variable (dx).

x

y

dx

y = f(x)

Integral = area enclosed by the function

a b

y

a

b

∫ y dx

Upper boundary of area = 
Lower boundary of area =

y
0

a
b

Enclosed area =

Starting boundary of area =
Ending boundary of area =



2.4. HOW DERIVATIVES AND INTEGRALS RELATE TO ONE ANOTHER 25

Just as division and multiplication are inverse mathematical functions (i.e. one “un-does” the
other), differentiation and integration are also inverse mathematical functions. The two examples
of propane gas flow and mass measurement highlighted previously illustrates this complementary
relationship. We may use differentiation with respect to time to convert a mass measurement (m)
into a mass flow measurement (W , or dm

dt
). Conversely, we may use integration with respect to time

to convert a mass flow measurement (W , or dm
dt

) into a measurement of mass gained or lost (∆m).
Likewise, the common examples of position (x), velocity (v), and acceleration (a) used to illustrate

the principle of differentiation are also related to one another by the process of integration. Reviewing
the derivative relationships:

v =
dx

dt
Velocity is the derivative of position with respect to time

a =
dv

dt
Acceleration is the derivative of velocity with respect to time

Now, expressing position and velocity as integrals of velocity and acceleration, respectively9:

x =

∫

v dt Position is the integral of velocity with respect to time

v =

∫

a dt Velocity is the integral of acceleration with respect to time

Differentiation and integration may be thought of as processes transforming these quantities into
one another. Note the transformation of units with each operation – differentiation always divides
while integration always multiplies:

Position
(x)

Differentiate Velocity
(v)

Differentiate Acceleration
(a)

Position
(x)

Velocity
(v)

Acceleration
(a)

Integrate Integrate

dx
dt dt

dv

∫ v dt ∫ a dt

meters meters/second meters/second2

meters meters/second meters/second2

9To be perfectly accurate, we must also include initial values for position and velocity. In other words, x =
∫

vdt+x0

and v =
∫

a dt+ v0
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The inverse nature of these two calculus operations is codified in mathematics as the Fundamental
Theorem of Calculus, shown here:

d

dx

[

∫ b

a

f(x) dx

]

= f(x)

What this equation tells us is that the derivative of the integral of any continuous function is
that original function. In other words, we can take any mathematical function of a variable that we
know to be continuous over a certain range – that function represented by f(x), with the range of
integration starting at a and ending at b – and integrate that function over that range, then take
the derivative of that result and end up with the original function. By analogy, we can take the
square-root of any quantity, then square the result and end up with the original quantity, because
these are inverse functions as well.

A feature of this module which may be helpful to your understanding of derivatives, integrals,
and their relation to each other is found in the Animations chapter (animation 4.1 beginning on page
68). This animation takes the form of illustrations arranged in sequence you may “flip” through to
view the filling and emptying of a water storage tank, with graphs showing stored volume (V ) and
volumetric flow rate (Q). Since flow rate is the time-derivative of volume (Q = dV

dt
) and volume

change is the time-integral of volumetric flow rate (∆V =
∫

Qdt), the animation demonstrates both
concepts in action.



2.5. SYMBOLIC VERSUS NUMERICAL CALCULUS 27

2.5 Symbolic versus numerical calculus

Calculus has a reputation for being difficult to learn, and with good reason. The traditional
approach begins by manipulating symbols (variables) in equations, learning how different types
of mathematical functions become transformed by the calculus operations of differentiation and
integration. For example, suppose a first-semester calculus student were given the following function
to differentiate. The function is expressed as y in terms of x:

y =
3x2 − 2x+ 5

x2 − 8

That calculus student would first apply two basic rules of symbolic differentiation (namely, the
Power Rule and the Quotient Rule) followed by algebraic distribution and combination of like terms
to arrive at the derivative of y with respect to x (written as dy

dx
) in terms of x:

dy

dx
=

(x2 − 8)(6x− 2)− (3x2 − 2x+ 5)(2x)

(x2 − 8)2

dy

dx
=

6x3 − 2x2 − 48x+ 16− (6x3 − 4x2 + 10x)

x4 − 16x2 + 64

dy

dx
=

2x2 − 58x+ 16

x4 − 16x2 + 64

The resulting derivative expresses the rate-of-change of y with respect to x of the original function
for any value of x. In other words, anyone can now plug any arbitrary value of x they wish into the
derivative equation, and the result ( dy

dx
) will tell them how steep the slope is of the original function

at that same x value10.
Rules such as the Power Rule and even the Quotient Rule are not difficult to memorize, but

they are far from intuitive. Although it is possible to formally prove each one of them from more
fundamental principles of algebra, doing so is tedious, and so most students simply resign themselves
to memorizing all the calculus rules of differentiation and integration. There are many such rules to
memorize in symbolic calculus.

Symbolic integration is even more difficult to learn than symbolic differentiation. Most calculus
textbooks reserve pages at the very end listing the general rules of differentiation and integration.
Whereas a table of derivatives might occupy a single page in a calculus text, tables of integrals may
fill five or more pages!

The next logical topic in the sequence of a calculus curriculum is differential equations. A
“differential equation” is a function relating some variable to one or more of its own derivatives. To
use the variables y and x, a differential equation would be one containing both y and at least one

derivative of y ( dy
dx
, d2y

dx2 ,
d3y
dx3 , etc.).

dV
dt

= −kV is an example of a simple differential equation. The
various forms and solution techniques for different kinds of differential equations are numerous and
complex.

10For instance, at x = 1, the original function tells us that y will be equal to −

6

7
. If we plug this same value of 1

into x of the derivative function, the result dy

dx
= −

40

49
tells us the original function y = f(x) has a slope of − 40

49
when

x = 1.
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It has been said that the laws of the universe are written in the language of calculus. This is
immediately evident in the study of physics, but it is also true for chemistry, biology, astronomy,
and other “hard sciences.” Areas of applied science including engineering (chemical, electrical,
mechanical, and civil) as well as economics, statistics, and genetics would be impoverished if not for
the many practical applications of symbolic calculus. To be able to express a function of real-life
quantities as a set of symbols, then apply the rules of calculus to those symbols to transform them
into functions relating rates of change and accumulations of those real-life quantities, is an incredibly
powerful tool.

Two significant problems exist with symbolic calculus, however. The first problem with symbolic
calculus is its complexity, which acts as a barrier to many people trying to learn it. It is quite
common for students to drop out of calculus or to change their major of study in college because
they find the subject so confusing and/or frustrating. This is a shame, not only because those
students end up missing out on the experience of being able to see the world around them in a new
way, but also because mastery of calculus is an absolute requirement of entry into many professions.
One cannot become a licensed engineer in the United States, for example, without passing a series
of calculus courses in an accredited university and demonstrating mastery of those calculus concepts
on a challenging exam.

The second significant problem with symbolic calculus is its limitation to a certain class of
mathematical functions. In order to be able to symbolically differentiate a function (e.g. y = f(x))
to determine its derivative ( dy

dx
), we must first have a function written in mathematical symbols to

differentiate. This rather obvious fact becomes a barrier when the data we have from a real-life
application defies symbolic expression. It is trivial for a first-semester calculus student to determine
the derivative of the function V = 2t2 − 4t+ 9, but what if V and t only exist as recorded values in
a table, or as a graph appearing on the display of an oscilloscope? Without a mathematical formula
showing V as a function of t, none of the rules learned in a calculus course for manipulating those
symbols directly apply. The problem is even worse for differential equations, where a great many
examples exist that have so far defied solution by the greatest mathematicians.

An alternative approach to calculus exists which is easily understood by anyone with the ability to
perform basic arithmetic (addition, subtraction, multiplication, and division) and sketching (drawing
lines and points on a graph). Numerical calculus uses simple arithmetic to approximate derivatives
and integrals on real-world data. The results are not as precise as with symbolic calculus, but the
technique works on any data as well as most mathematical functions written in symbolic form.
Furthermore, the simplicity of these techniques opens a door to those people who might otherwise
be scared away by the mathematical rigor of symbolic calculus. Any way we can find to showcase
the beauty and practicality of calculus principles to more people is a good thing!
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Suppose we needed to calculate the derivative of some real-world function, such as the volume
of liquid contained in a storage vessel. The derivative of volume (V ) with respect to time (t) is
volumetric flow rate (dV

dt
), thus the time-derivative of the vessel’s volume function at any specified

point in time will be the net flow rate into (or out of) that vessel at that point in time.

To numerically determine the derivative of volume from tabulated data, we could follow these steps:

• Choose two values of volume both near the point in time we’re interesting in calculating flow
rate.

• Subtract the two volume values: this will be ∆V .

• Subtract the two time values corresponding to those volume values: this will be ∆t.

• Divide ∆V by ∆t to approximate dV
dt

between those two points in time.

A slightly different approach to numerical differentiation follows these steps:

• Sketch a graph of the volume versus time data for this vessel (if not already provided for you).

• Locate the point in time on this graph you are interested in, and sketch a tangent line to that
point (a straight line having the same slope as the graphed data at that point).

• Estimate the rise-over-run slope of this tangent line to approximate dV
dt

at this point.

An illustration is a helpful reminder of what differentiation means for any graphed function: the
slope of that function at a specified point:

x

y

dy

dx

Slope at this point =
dy
dx

y = f(x)

Derivative = slope of the function

tangent lin
e

= 
Rise of tangent line

Run of tangent line

dy
dx

≈ ∆x
=

Small changes in x

∆y Small changes in y
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Suppose we needed to calculate the integral of some real-world function, such as the flow rate of
liquid through a pipe. The integral of volumetric flow (Q) with respect to time (t) is total volume
(V ), thus the time-integral of the flow rate over any specified time interval will be the total volume
of liquid that passed by over that time.

To numerically determine the integral of flow from tabulated data, we could follow these steps:

• Identify the time interval over which we intend to calculate volume, and the duration of each
measured data point within that interval.

• Multiply each measured value of flow by the duration of that measurement (the interval
between that measurement and the next one) to obtain a volume over each duration.

• Repeat the last step for each and every flow data point up to the end of the interval we’re
interested in.

• Add all these volume values together – the result will be the approximate liquid volume passed
through the pipe over the specified time interval.

A slightly different approach to numerical integration follows these steps:

• Sketch a graph of the flow versus time data for this pipe (if not already provided for you).

• Mark the time interval over which we intend to calculate volume (two straight vertical lines
on the graph).

• Use any geometrical means available to estimate the area bounded by the graph and the two
vertical time markers – the result will be the approximate liquid volume passed through the
pipe over the specified time interval.

An illustration is a helpful reminder of what integration means for any graphed function: the
area enclosed by that function within a specified set of boundaries:

x

y

dx

y = f(x)

Integral = area enclosed by the function

a b

y

a

b

∫ y dx

Upper boundary of area = 
Lower boundary of area =

y
0

a
b

Enclosed area =

Starting boundary of area =
Ending boundary of area =
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The next sections of this Tutorial delve into more specific details of numerical differentiation and
integration, with realistic examples to illustrate.

2.6 Numerical differentiation

As we have seen, the concept of differentiation is finding the rate-of-change of one variable compared
to another (related) variable. In this section, we will explore the practical application of this concept
to real-world data, where actual numerical values of variables are used to calculate relative rates of
change.

In industrial instrumentation, for example, we are often interested in knowing the rate of change
of some process variable (pressure, level, temperature, flow, etc.) over time, and so we may use
computers to calculate those rates of change, either after the fact (from recorded data) or in real
time (as the data is being received by sensors and acquired by the computer). We may be similarly
interested in calculating the rate at which one process variable changes with respect to another
process variable, both of which measured and recorded as tables of data by instruments.

Numerical (data-based) differentiation is fundamentally a two-step arithmetic process. First, we
must use subtraction to calculate the change in a variable between two different points. Actually,
we perform this step twice to determine the change in two variables which we will later compare.
Then, we must use division to calculate the ratio of the two variables’ changes, one to the other (i.e.
the “rise-over-run” steepness of the function’s graph).

For example, let us consider the application of pressure measurement for a pipeline. One of the
diagnostic indicators of a burst pipeline is that the measured pressure rapidly drops. It is not the
existence of low pressure in and of itself that suggests a breach, but rather the rate at which the
pressure falls that reveals a burst pipe. For this reason, pipeline control systems may be equipped
with automatic shut-down systems triggered by rate-of-change pressure calculations.

The association of rapid pressure drop with pipeline ruptures is nothing new to pipeline
operations. Here is an illustration taken from page 566 of volume 8 of Cassier’s Magazine published
in the year 1895, showing water pressure measurements taken by a paper strip chart recorder on a
city water main line. The pressure drop created by a burst in that 36-inch pipe is clearly seen and
commented on the recording:
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An example of a modern11 pressure-trend recording during a pipeline rupture is shown here:

Time

0

100

0:30 1:000:15 0:45 1:15 1:30 1:45 2:00 2:15 2:30 2:45

P

200

300

400

(PSI)

(Hours:Minutes)

Trend recording of pipeline pressure over time

Time of rupture

While it may seem surprising that pipeline pressure should recover after the low point
immediately following the pipe’s rupture, it is important to bear in mind that many pipelines
are pressure-controlled processes. After a pipeline ruptures, the pumping equipment will attempt
to compensate for the reduced pressure automatically, which is why the pressure jumps back up
(although not to its previous level) after the initial drop.

This phenomenon helps explain why pressure rate-of-change is a more reliable diagnostic indicator
of a ruptured pipe than pressure magnitude alone: any automatic rupture-detection scheme based
on a simple comparison of pipeline pressure against a pre-set threshold may fail to reliably detect
a rupture if the pressure-regulating equipment is able to quickly restore pipeline pressure following
the rupture. A rate-of-change system, on the other hand, will still detect the rupture based on the
sharp pressure decrease following the break, even if the pressure quickly recovers.

11Unlike the recording shown from Cassier’s Magazine, which runs chronologically from right to left, modern chart
recordings all run from left to right.
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A computer tasked with calculating the pressure’s rate of change over time (dP
dt
) would have

to continuously sample the pressure value over short time periods, then calculate the quotient of
pressure changes over time changes. Given a sample rate of once every 5 minutes, we see how the
computer would tabulate the pressure data over time:

100

1:30 1:45 2:00

200

300

Pressure Time

217.5 PSI 1 hour, 20 minutes
215.0 PSI 1 hour, 25 minutes
222.5 PSI 1 hour, 30 minutes
226.3 PSI 1 hour, 35 minutes
150.0 PSI 1 hour, 40 minutes
150.0 PSI 1 hour, 45 minutes
151.3 PSI 1 hour, 50 minutes
148.8 PSI 1 hour, 55 minutes
145.0 PSI 2 hours, 0 minutes
145.0 PSI 2 hours, 5 minutes
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To calculate the rate of pressure change over time in each of these periods, the computer would
subtract the two adjacent pressure values, subtract the two corresponding adjacent time values, and
then divide those two differences to arrive at a figure in units of PSI per minute. Taking the first
two data coordinates in the table as an example:

∆P

∆t
=

215.0 PSI− 217.5 PSI

1:25− 1:20
=

−2.5 PSI

5 min
= −0.5

PSI

min

The sample period where the computer would detect the pipeline rupture lies between 1:35 and
1:40. Calculating this rate of pressure change:

∆P

∆t
=

150.0 PSI− 226.3 PSI

1:40− 1:35
=

−76.3 PSI

5 min
= −15.26

PSI

min

Clearly, a pressure drop rate of −15.26 PSI per minute is far greater than a typical drop of −0.5
PSI per minute, thus signaling a pipeline rupture.

As you can see, the pipeline monitoring computer is not technically calculating derivatives (dP
dt
),

but rather difference quotients (∆P
∆t

). Being a digital device, the best it can ever do is perform
calculations at discrete points in real time. It is evident that calculating rates of change over 5-
minute period misses much detail12. The actual rate of change at the steepest point of the pressure
drop far exceeds −15.26 PSI per minute.

It is possible for us to calculate the instantaneous rate-of-change of pressure (dP
dt
) at the moment

of the rupture by examining the graph and sketching a straight line called a tangent line matching
the slope where the graph is steepest. Our goal is to calculate the exact slope of that single (steepest)
point on that graph, rather than an estimate of slope between two points as the computer did. In
essence, the computer “drew” short line segments between pairs of points and calculated the slopes
(rise-over-run) of those line segments. The slope of each line segment13 is a difference quotient: ∆P

∆t
.

The slope of a tangent line matching the slope at a single point on the function graph, however, is
a derivative: dP

dt
.

12Not only does a 5-minute rate calculation period miss a lot of detail, but it also results in a time delay of (up to)
5 minutes detecting a pipeline rupture.

13The technical term for a line passing through a pair of points on a curve is called a secant line.
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First we sketch a tangent line (by hand) matching the steepest portion of the pressure trend
graph. Then, we calculate the slope of a tangent line by marking convenient points14 where the line
intersects major division marks on the graph’s graduated scale, then calculating rise over run:

100

1:30 1:45 2:00

200

300

Tangent line

@ 1:37:30

@ 1:40:00

340.0 PSI

150.0 PSI

dP

dt
=

150.0 PSI− 340.0 PSI

1:40:00− 1:37:30
=

−190.0 PSI

2.5 min
= −76.0

PSI

min

This distinction between calculating difference quotients (∆P
∆t

) and calculating true derivative

values (dP
dt
) becomes less and less significant as the calculation period shortens. If the computer

could sample and calculate at infinite speed, it would generate true derivative values instead of
approximate derivative values.

14Please note that the pipeline pressure is not actually 340.0 PSI at a time of 1:37:30. This is simply a coordinate
convenient to mark because it how it lines up with the divisions on the trend display. We choose coordinate points
on the tangent line easy to visually discern, then calculate the tangent line’s slope using those coordinates.
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An algorithm applicable to calculating rates of change in a digital computer is shown here, using
a notation called pseudocode15. For more information on pseudocode, refer to section 3.1 beginning
on page 55. Each line of text in this listing represents a command for the digital computer to follow,
one by one, in order from top to bottom. The LOOP and ENDLOOP markers represent the boundaries
of a program loop, where the same set of encapsulated commands are executed over and over again
in cyclic fashion:

Pseudocode listing

LOOP

SET x = analog_input_N // Update x with the latest measured input

SET t = system_time // Sample the system clock

SET delta_x = x - last_x // Calculate change in x

SET delta_t = t - last_t // Calculate change in t (time)

SET rate = (delta_x / delta_t) // Calculate ratio of changes

SET last_x = x // Update last_x value for next program cycle

SET last_t = t // Update last_t value for next program cycle

ENDLOOP

Each SET command tells the computer to assign a numerical value to the variable on the left-hand
side of the equals sign (=), according to the value of the variable or expression on the right-hand
side of the equals sign. Text following the double-dash marks (//) are comments, included only to
help human readers interpret the code, not for the computer’s benefit.

This computer program uses two variables to “remember” the values of the input (x) and time
(t) from the previous scan, named last x and last t, respectively. These values are subtracted
from the current values for x and t to yield differences (delta x and delta t, respectively), which
are subsequently divided to yield a difference quotient. This quotient (rate) may be sampled in
some other portion of the computer’s program to trigger an alarm, a shutdown action, or simply
display and/or record the rate value for a human operator’s benefit.

The time period (∆t) for this program’s difference quotient calculation is simply how often
this algorithm “loops,” or repeats itself. For a modern digital microprocessor, this could be many
thousands of times per second.

15“Pseudocode” is a name given to any imaginary computer language used for the purpose of illustrating some
procedure or concept without having to make reference to any particular (real) computer programming language. I
could have just as well shown you the same algorithm using BASIC, C, or Java code, but pseudocode does just as
well without the burden of introducing unfamiliar syntax to the reader.
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If a nearly-instantaneous calculation is required for a rate-of-change variable, we may turn to an
older technology using analog16 electronic circuitry. Such a differentiator circuit uses the natural
behavior of a capacitor to generate an output voltage proportional to the instantaneous rate-of-
change of the input voltage:

−

+

C R
Vin

Vout

Vout = −RC
dVin

dt

The negative feedback of the operational amplifier forms a virtual ground at the node where
the capacitor, resistor, and inverting input connect. This means the capacitor “sees” the full input
voltage (Vin) at all times. Current through a capacitor is a direct function of the voltage’s time-
derivative:

I = C
dV

dt

This current finds its way through the feedback resistor, developing a voltage drop that becomes
the output signal (Vout). Thus, the output voltage of this analog differentiator circuit is directly
proportional to the time-derivative of the input voltage (i.e. the input voltage’s rate-of-change).

It is indeed impressive that such a simple circuit, possessing far fewer components than a
microprocessor, is actually able to do a better job at calculating the real-time derivative of a
changing signal than modern digital technology. The only real limitations to this device are accuracy
(tolerances of the components used) and the bandwidth of the operational amplifier.

It would be a mistake, though, to think that an analog differentiator circuit is better suited
to industrial applications of rate calculation than a digital computer, even if it does a superior
job differentiating live signals. A very good argument for favoring difference quotients over actual
derivatives is the presence of noise in the measured signal. A true differentiator, calculating the
actual time-derivative of a live signal, will pick up on any rise or fall of the signal over time, no
matter how brief. This is a serious problem when differentiating real-world signals, because noise
(small amounts of “jittering” in the signal caused by any number of phenomena) will be interpreted
by a perfect differentiator as very large rates of change over time.

16An analog system is one where some continuously-variable quantity is analogously represented by another
continuously-variable quantity. In this case, we are using variable DC voltages to represent varying numerical
quantities (e.g. pipeline pressure).
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A close look at the previous pipeline pressure trend illustrates this problem. Note the areas circled
(in red) on the graph, representing relatively small increases and decreases in signal occurring over
very short periods of time:
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1:30 1:45 2:00

200

300

Although each “step” in pressure at these circled locations is small in amplitude, each one occurs
over an extremely brief time increment. Thus, each of these steps has a nearly infinite rate of
change (i.e. a vertical slope). Any rate-of-change sensing system able to apply true differentiation
to the pressure signal would falsely declare an alarm (high rate-of-change) condition every time
it encountered one of these “steps” in the signal. This means that even under perfectly normal
operating conditions the rate-detection system would periodically declare an alarm (or perhaps shut
the pipeline down!) given the inevitable presence of small noise-induced17 “jitters” in the signal.

The best solution to this problem is to use a digital computer to calculate rates of change, setting
the calculation period time slow enough that these small “jitters” will be averaged to very low values,
yet fast enough that any serious pressure rate-of-change will be detected if it occurs. Back in the
days when analog electronic circuits were the only practical option for calculating rates of signal
change, the solution to this problem was to place a low-pass filter before the differentiator circuit to
block such noise from ever reaching the differentiator.

17Another source of trouble for differentiation of live signals is when the signal originates from a digital sensor.
Digital devices, by their very nature, break analog signals into a series of discrete amplitude steps. As a digital
process transmitter encounters a steadily increasing or decreasing process variable, its output rises or falls in discrete
“jumps” rather than continuously as a fully analog transmitter would. Now, each of these jumps is quite small, but
since each one occurs almost instantly it still translates into an extremely large rate-of-change when detected by a
differentiator sampling over small time increments or sampling continuously (as in the case of an analog differentiator
circuit). This means the problem of false rates-of-change exists even in perfectly noiseless systems, when the detection
device (and/or the information channel to the monitoring system) is digital rather than analog.
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Differentiation with respect to time has many applications, but there are many other applications
of differentiation that are not time-based. For example, we may use differentiation to express the
sensitivity of a non-linear mechanism in terms of the rate-of-change of output over input. One
such application is the sensitivity of a legacy mechanism called a baffle/nozzle assembly used in
pneumatic (compressed-air-powered) instruments to convert a small physical motion (x) into an air
pressure signal (P ). This very simple mechanism uses a flat piece of sheet metal (the baffle) to
restrict air flow out of a small nozzle, causing a variable “backpressure” at the nozzle to develop as
the baffle-to-nozzle clearance changes:

From compressed 
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The graph expressing the relationship between P and x is clearly non-linear, having different
slopes (dP

dx
) at different points along its range. When used as part of the feedback mechanism for

a self-balancing instrument, the purpose of the baffle/nozzle assembly is to detect baffle motion as
sensitively as possible: that is, to generate the greatest change in pressure (∆P ) for the least change
in motion (∆x). This means the designer of the pneumatic instrument should design it in such a
way that the normal baffle/nozzle clearance gap rests at a point of maximum slope (maximum dP

dx
)

on the graph.
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Sketching a tangent line near the point of maximum slope (maximum “steepness” on the graph)
allows us to approximate the rate of change at that point:
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Choosing convenient points18 on this tangent line aligning with major divisions on the graph’s
scales, we find two coordinates we may use to calculate the derivative of the curve at its steepest
point:

dP

dx
=

0 PSI− 18 PSI

0.0025 inch− 0.001 inch
=

−18 PSI

0.0015 inch
= −12000 PSI per inch

The phenomenally large value of −12000 PSI per inch is a rate of pressure change to clearance
(baffle-nozzle gap) change. Do not mistakenly think that this value suggests the mechanism could
ever develop a pressure of 12000 PSI – it is simply describing the extreme sensitivity of the mechanism
in terms of PSI change per unit change of baffle motion. By analogy, just because an automobile
travels at a speed of 70 miles per hour does not mean it must travel 70 miles in distance!

It should be clear from an examination of the graph that this high sensitivity extends
approximately between the pressure values of 9 and 14 PSI. Outside of those pressure values, the
graph’s slope begins to decrease. While still sensitive, the baffle/nozzle mechanism will not be as
sensitive to baffle motion outside those pressure values as it is within.

18Once gain, we are looking for points where the tangent line happens to intersect with major divisions on the
graph’s scale. This makes it relatively easy to calculate the line’s slope, since the pressure and distance values for
those coordinates are easy to read.
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2.7 Numerical integration

As we have seen, the concept of integration is finding the accumulation of one variable multiplied by
another (related) variable. In this section, we will explore the practical application of this concept to
real-world data, where actual numerical values of variables are used to calculate accumulated sums.

In industrial instrumentation, for example, we are often interested in calculating the accumulation
of some process fluid based on a measured flow rate of that fluid. The rate is, of course, expressed
in either mass or volume units per unit time (e.g. gallons per minute), but the total accumulated
quantity will be expressed plainly in either mass or volume units (e.g. gallons). We may use
computers to calculate those accumulated quantities, either after the fact (from recorded data) or
in real time.

Numerical (data-based) integration is fundamentally a two-step arithmetic process. First, we
must use multiplication to calculate the product of a variable and a small increment of another
variable (a change in the second variable between two different points). Then, we must use addition
to calculate the accumulated sum of the products.

To illustrate, we will first focus on the integration of a flow measurement signal with respect
to time. The flow rate of any fluid is always expressed in units of volume or mass per unit time.
Common volumetric flow units are gallons per minute, liters per second, cubic feet per day, etc.
Common mass flow units are pounds per hour, kilograms per minute, slugs per second, etc. If we
desire to calculate the volume or mass of fluid passed through a pipe – representing fluid added to
or removed from a system – over some interval of time, we may do so by integrating flow rate with
respect to time:

∆V =

∫ b

a

Q dt

∆m =

∫ b

a

W dt

Where,
∆V = Volume of fluid added or removed
Q = Volumetric flow rate of fluid
∆m = Mass of fluid added or removed
W = Mass flow rate of fluid
a = Starting point of integration interval
b = Ending point of integration interval
t = Time

As always, integration is fundamentally a matter of multiplying one variable by small increments
of another variable. If a flow rate is integrated with respect to time, the result is that the unit
for time becomes eliminated. Gallons per minute, for example, becomes gallons after integration;
kilograms per second becomes kilograms; etc.
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The elimination of time units is also evident if we re-write the integrands in the previous equations
to show volumetric and mass flow rates (Q and W , respectively) as the rates of change they are
(Q = dV

dt
and W = dm

dt
):

∆V =

∫ b

a

dV

dt
dt

∆m =

∫ b

a

dm

dt
dt

It should be clear that the time differentials (dt) cancel in each integrand, leaving:

∆V =

∫ b

a

dV

∆m =

∫ b

a

dm

Since we know the integral symbol (
∫

) simply means the “continuous sum of” whatever follows
it, we may conclude in each case that the continuous sum of infinitesimal increments of a variable is
simply a larger change of that same variable. The continuous summation of dV is simply the total
change in V over the interval beginning at time a and ending at time b; likewise, the continuous
summation of dm is simply the total change in m over the interval beginning at time a and ending
at time b.

A flowmeter measuring the flow rate of a fluid outputs a signal representing either volume or
mass units passing by per unit time. Integrating that signal with respect to time yields a value
representing the total volume or mass passed through the pipe over a specific interval. A physical
device designed to perform this task of integrating a signal with respect to time is called an integrator
or a totalizer :

Volumetric
flowmeter

∫ dt

Integrator
(totalizer)

Gallons per minute Gallons
dV
dt

Q = ∆V
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An example of a flow integrator, or flow totalizer, made for pneumatic instrument systems is the
legacy Foxboro model 14. A view of this instrument’s front face shows an odometer-style display, in
this particular case showing the total number of pounds (lbs) of fluid passed through the pipe, with
a multiplying factor of 10:

The fact that this instrument’s display resembles the odometer of an automobile is no coincidence.
Odometers are really just another form of mechanical integrator, “totalizing” the distance traveled
by a vehicle. If the speedometer of a vehicle registers speed (v) in units of miles per hour, then the
odometer will accumulate a distance (∆x) in units of miles, since distance (miles) is the time-integral
of speed (miles per hour):

∆x =

∫ b

a

v dt . . . or . . . ∆x =

∫ b

a

dx

dt
dt

[miles] =

∫ b

a

([

miles

hour

]

[hours]

)

In this particular case, where the flowmeter measures pounds per hour, and the integrator
registers accumulated mass in pounds, the integration of units is as follows:

∆m =

∫ b

a

W dt . . . or . . . ∆m =

∫ b

a

dm

dt
dt

[pounds] =

∫ b

a

([

pounds

hour

]

[hours]

)
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Like many pneumatic instruments of its era, the Foxboro model 14 totalizer operated on rather
ingenious mechanical principles. In this design, a turbine wheel was driven by a jet of compressed
air from a nozzle, that wheel’s speed proportional to the sensed fluid flow rate reported by a
pneumatic flowmeter. As fluid flow rate increased through the pipe, the wheel was made to spin
faster. This spinning wheel drove a gear-reduction mechanism to slowly turn the odometer-style
numerals, registering total fluid quantity passed through the flowmeter:

As pneumatic signal pressure (3-15 PSI) from a pneumatic flowmeter entered the brass bellows of
this instrument, pressing down on a lever, forcing a baffle toward a nozzle. This created an increased
nozzle backpressure, which was then amplified by a small pneumatic amplifier mechanism and sent
through a nozzle to spin the turbine wheel to drive the integrating “odometer” display. Mounted on
the turbine wheel was a set of fly-weights, which under the influence of centrifugal force would press
upward on the lever to re-establish a condition of force-balance to maintain a (relatively) constant
baffle-nozzle gap. Thus, the force-balance mechanism worked to establish an accurate and repeatable
relationship19 between instrument signal pressure and integration rate.

19The true ingenuity of the Foxboro model 14 totalizer’s design is more evident when we consider that fact that
centrifugal force varies with the square of angular velocity. This had the effect of naturally performing the square-root

characterization required of most pneumatic flowmeter instruments due to the quadratic nature of most primary
flow-sensing elements (e.g. orifice plate, venturi tubes, pitot tubes, etc.). For example, a doubling of fluid flow
rate naturally results in the pressure differential across the flow element quadrupling, and therefore the pneumatic
flowmeter’s air pressure signal would quadruple in represented value. This would only result in a doubling of the
totalizer’s turbine wheel, though, because that is how much of a speed increase would be necessary to generate a
centrifugal force four times stronger to balance the flowmeter’s quadrupled air pressure signal.
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A very different style of integrator appears here, an electronic unit used in a ball mill operation for
totalizing the amount of crushed limestone applied toward the manufacture of concrete. Limestone
is fed into the ball mill on a device called a weighfeeder, continuously sensing the mass of crushed
limestone as it passes over a conveyor belt. The controller maintains a limestone “flow rate” at a
setpoint specified in tons per hour (mass flow of solid material). The red LED digital display shows
the total number of tons passed through the mill:

The units involved in the integration of limestone “flow” into the ball mill are slightly different
from the example shown with the Foxboro model 14 totalizer, but the concept is the same:

∆m =

∫ b

a

W dt

[tons] =

∫ b

a

([

tons

hour

]

[hours]

)

As with all cases of numerical integration, an essential piece of information to know when
“totalizing” any rate is the initial quantity at the start of the totalization interval. This is the
constant of integration mentioned previously. For flow totalization, this constant would be the
initial volume of fluid recorded at the starting time. For an automobile’s odometer, this constant is
the initial “mileage” accumulated prior to driving on a trip20.

20Vehicles equipped with a trip odometer allow the driver to reset this integration constant to zero at will, thus
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An algorithm applicable to integrating real signals with respect to time in a digital computer
is shown here, once again using “pseudocode” as the computer language. Each line of text in this
listing represents a command for the digital computer to follow, one by one, in order from top to
bottom. The LOOP and ENDLOOP markers represent the boundaries of a program loop, where the
same set of encapsulated commands are executed over and over again in cyclic fashion:

Pseudocode listing

LOOP

SET x = analog_input_N // Update x with the latest measured input

SET t = system_time // Sample the system clock

SET delta_t = t - last_t // Calculate change in t (time)

SET product = x * delta_t // Calculate product (integrand)

SET total = total + product // Update the running total

SET last_t = t // Update last_t value for next program cycle

ENDLOOP

This computer program uses a variable to “remember” the value of time (t) from the previous
scan, named last t. This value is subtracted from the current value for t to yield a difference
(delta t), which is subsequently multiplied by the input value x to form a product. This product is
then added to an accumulating total (named total), representing the integrated value. This “total”
value may be sampled in some other portion of the computer’s program to trigger an alarm, a
shutdown action, or simply display and/or record the totalized value for a human operator’s benefit.

The time period (∆t) for this program’s difference quotient calculation is simply how often this
algorithm “loops,” or repeats itself. For a modern digital microprocessor, this could be upwards of
many thousands of times per second. Unlike differentiation, where an excessive sampling rate may
cause trouble by interpreting noise as extremely high rates of change, there is no danger of excessive
sampling when performing numerical integration. The computer may integrate as fast as it can with
no ill effect.

One of the fundamental characteristics of integration is that it ignores noise, which is a very
good quality for industrial signal processing. Small “jittering” in the signal tends to be random,
which means for every “up” spike of noise, one may expect a comparable “down” spike (or collection
of “down” spikes having comparable weight) at some later time. Thus, noise tends to cancel itself
out when integrated over time.

As with differentiation, applications exist for integration that are not time-based. One such
application is the calculation of mechanical work, defined as the product of force and displacement
(distance moved). In mechanical systems where there is no energy dissipated due to friction, work
results in a change in the energy possessed by an object.

allowing the tracking of mileage for individual trips instead of over the life of the automobile.
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For example, if we use a hoist to lift a mass weighing 700 pounds straight up against gravity a
distance of 3 feet, we will have done 2100 foot-pounds of work. The work done on the mass increases
its potential energy (∆E) by 2100 foot-pounds:

∆E = Fx

Where,
∆E = Change in potential energy resulting from work, in Joules (metric) or foot-pounds (British)
F = Force doing the work, in Newtons (metric) or pounds (British)
x = Displacement over which the work was done, in meters (metric) or feet (British)

We may also express this change in potential energy as an integral of force (F ) multiplied
by infinitesimal increments in displacement (dx) over some interval (from a to b), since we know
integration is nothing more than a sophisticated way to multiply quantities:

∆E =

∫ b

a

F dx

Like any other integral, the energy change effected by lifting this mass a vertical distance may
be represented graphically as the area enclosed by the graph. In this case, the area is very simple
to calculate, being a simple rectangle (height times width):
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Lifting the mass vertically constitutes a positive change in potential energy for this object,
because each displacement differential (dx) is a positive quantity as we move from a height of 0 feet
to a height of 3 feet:

2100 ft-lbs =

∫ 3ft

0ft

(700 lbs) dx



48 CHAPTER 2. TUTORIAL

A natural question to ask at this point is, what would the resulting change in energy be if we
lowered the mass from its height of 3 feet back down to 0 feet?. Doing so would cover the exact
same distance (3 feet) while exerting the exact same amount of suspending force (700 lbs), and so
we can safely conclude the work will have an absolute magnitude of 2100 ft-lbs. However, if we
lower the mass, each displacement differential (dx) will be a negative quantity21 as we move from a
greater height to a lesser height. This makes the work – and the resulting energy change – a negative
quantity as well:

−2100 ft-lbs =

∫ 0ft

3ft

(700 lbs) dx

This means if we raise the mass to a height of 3 feet, then lower it back to its original starting
height of 0 feet, the total change in potential energy will be zero:

0 ft-lbs =

∫ 3ft

0ft

(700 lbs) dx+

∫ 0ft

3ft

(700 lbs) dx

This is true for any integral having an interval of zero (same starting and ending values),
regardless of the integrand’s value at any point in time:

0 ft-lbs =

∫ a

a

F dx

21As we lower the mass to ground level, height (x) goes from being a positive value to zero. This means each
differential (infinitesimal change in value) for x will be negative, thus causing the integrand F dx to have a negative
value and thus causing the integrated total (work) to be negative as well.
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The integration of force and displacement to calculate potential energy change really shows its
utility when the force changes as a function of displacement. A practical example of this sort
of calculation is the determination of energy stored in an archer’s bow when drawn to a certain
displacement. The so-called force-draw curve of a longbow is nearly ideal for a theoretical spring,
with force increasing linearly as the string is drawn back by the archer. The force-draw curve for a
compound bow22 is quite nonlinear, with a much lesser holding force required to maintain the bow
at full draw:

Force
(F)

Draw (x)

Force
(F)

Draw (x)

Longbow force-draw curve Compound bow force-draw curve

Holding force
at full draw

Holding force
at full draw

The force required to draw a compound bow rises sharply during the first few inches of draw,
peaks during the region where the archer’s arms are ideally angled for maximum pulling strength,
then “lets off” toward the end where the archer’s drawing arm is weakest in the “holding” position.
The result is a bow that requires substantial force to draw, but is relatively easy to hold in fully-
drawn position.

22While a longbow is really nothing more than a long and flexible stick with a straight string drawn across it,
a compound bow is a sophisticated machine with multiple passes of string and cam-shaped pulleys providing the
nonlinear force-draw relationship.
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While the compound bow may be easier to hold at full draw than the longbow, for any given
holding force the compound bow stores much more energy than the longbow, owing to the far greater
area (force-displacement integral) enclosed by the curve:

Force
(F)

Draw (x)

Force
(F)

Draw (x)

Area = 
energy stored

Area = 
energy stored

Longbow force-draw curve Compound bow force-draw curve

∆E = ∫F dx

∆E = ∫F dx

This is why a compound bow is so much more powerful than a longbow or a “recurve” bow with
the same holding force: the energy represented by the greater area underneath the force-draw curve
equates to greater energy imparted to the arrow when released, and therefore greater kinetic energy
in the arrow during flight.

Like any other form of mechanical work, the energy invested into the bow by the archer is
readily calculated and expressed in units of force × displacement, typically newton-meters (Joules)
in metric units and foot-pounds in British units. This stands to reason, since we know integration is
fundamentally a matter of multiplying quantities together, in this case force (pull) and displacement
(draw).

To actually calculate the amount of energy stored in a fully-drawn bow, we could measure both
force and displacement with sensors as the archer draws the bow, with a computer numerically
integrating force over increments of draw in real time. Another method would be to simply graph
force versus draw as we have done here, then use geometric methods23 to approximate the area
underneath the curve.

23One simple way to do this is to cover the entire integration area using nothing but rectangles and triangles, then
measuring all the sketched shapes to totalize their areas.
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A more sophisticated example of numerical integration used to calculate work is that of a heat
engine, where a piston compresses an enclosed gas:

Piston
Cylinder

F

x

F

x

(Gas)

As the piston is pushed farther into the cylinder, the gas becomes compressed, exerting more force
on the piston. This requires an ever-increasing application of force to continue the piston’s motion.
Unlike the example where a mass of constant weight was lifted against the pull of gravity, here the
force is a dynamically changing variable instead of a constant. The graph shows this relationship
between piston displacement and piston force.
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If we push the piston into the cylinder, the force increases as the displacement decreases. The
change in energy is described by the integral of force with respect to displacement, graphically
equivalent to the area underneath the force curve:

F

F

x

F

ab ab

ab

∆E = ∫F dx

∆E =

∫ b

a

F dx

If we slowly allow the piston to return to its original position (letting the pressure of the enclosed
gas push it back out), the piston’s force decreases as displacement increases. The force/displacement
relationship is the same as before, the only difference being the direction of travel is opposite. This
means the change in energy is happening over the same interval, in reverse direction (from b to a

now instead of from a to b). Expressed as an integral:

∆E =

∫ a

b

F dx

As we have already learned, a reversal of direction means the sign of the integral will be opposite.
If pushing the piston farther inside the cylinder represented work being done on the enclosed gas by
the applied force, now the gas will be doing work on the source of the applied force as the piston
returns to its extended position.

This means we will have done zero net work by pushing the piston into the cylinder and then
letting it spring back out to its original position, just as we performed zero net work by lifting a
mass 3 feet in the air and then letting it back down.
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In order that this piston/cylinder mechanism might function as an engine, we must have some
way of making the energy change greater in one direction than the other. This is done by heating
the enclosed gas at the point of greatest compression. In a spark-ignition engine, the gas is actually
a mixture of air and fuel, ignited by an electric spark. In a compression-ignition (diesel) engine, the
gas is pure air, with fuel injected at the last moment to initiate combustion. The addition of heat
(from combustion) will cause the gas pressure to rise, exerting more force on the piston than what
it took to compress the gas when cold. This increased force will result in a greater energy change
with the piston moving out of the cylinder than with the piston moving in:
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Representing the work done by the hot gas as the area enclosed by the curve makes this clear:
more mechanical energy is being released as the piston travels from b to a during the “power stroke”
than the amount of energy invested in compressing the gas as the piston traveled from a to b during
the “compression stroke.” Thus, an internal combustion engine produces mechanical power by
repeatedly compressing a cold gas, heating that gas to a greater temperature, and then expanding
that hot gas to extract energy from it.
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At the conclusion of the power stroke, a valve opens to exhaust the hot gas and another valve
opens to introduce cold gas. This places the piston and cylinder in the original condition, ready for
another set of compression, ignition, and power strokes. This cycle is sometimes represented as a
closed “loop” on the force/displacement graph, like this:

F

b x a

Exhaust /
IntakeCompression

Ignition

Power (expansion)

Net energy output by the engine at the conclusion of each cycle is equivalent to the area enclosed
by the loop. This is the difference in areas (integrals) between the “compression” and “power”
strokes. Any design change to the engine resulting in a greater “loop” area (i.e. less energy required
to compress the gas, and/or more energy extracted from its expansion) results in a more powerful
engine. This is why heat engines output the most power when the difference in temperatures (cold
gas versus heated gas) is greatest: a greater temperature shift results in the two curves being farther
apart vertically, thus increasing the area enclosed by the “loop.”



Chapter 3

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

3.1 Introduction to pseudocode

Pseudocode is a form of text-based programming intended only for human reading, yet similar enough
in syntax and structure to real computer programming languages for a human programmer to be
able to easily translate to a high-level programming language such as C++, Python, etc. Since
pseudocode is not a formal computer language, we may use it to very efficiently describe certain
algorithms (procedures) without having to abide by strict “grammatical” rules as we would if writing
in a formal programming language. There is no agreed-upon standard for pseudocode, but here I
will outline my own conventions.
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3.1.1 Program loops

Each line of text in the following listing represents a command for the digital computer to follow,
one by one, in order from top to bottom. The LOOP and ENDLOOP markers represent the boundaries
of a program loop, where the same set of encapsulated commands are executed over and over again
in cyclic fashion:

Pseudocode listing 1

LOOP

PRINT "Hello World!" // This line prints text to the screen

OUTPUT audible beep on the speaker // This line beeps the speaker

ENDLOOP

In this particular case, the result of this program’s execution is a continuous printing of the words
“Hello World!” to the computer’s display with a single “beep” tone accompanying each printed line.
The words following a double-slash (//) are called comments, and exist only to provide explanatory
text for the human reader, not the computer. Admittedly, this example program would be both
impractical and annoying to actually run in a computer, but it does serve to illustrate the basic
concept of a program “loop” shown in pseudocode.

1I have used a typesetting convention to help make my pseudocode easier for human beings to read: all formal
commands appear in bold-faced blue type, while all comments appear in italicized red type. All other text appears as
normal-faced black type. One should remember that the computer running any program cares not for how the text
is typeset: all it cares is that the commands are properly used (i.e. no “grammatical” or “syntactical” errors).
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3.1.2 Assigning values

For another example of pseudocode, consider the following program. This code causes a variable (x)
in the computer’s memory to alternate between two values of 0 and 2 indefinitely:

Pseudocode listing

DECLARE x to be an integer variable

SET x = 2 // Initializing the value of x

LOOP

// This SET command alternates the value of x with each pass

SET x = 2 - x

ENDLOOP

The first instruction in this listing declares the type of variable x will be. In this case, x will be
an integer variable, which means it may only represent whole-number quantities and their negative
counterparts – no other values (e.g. fractions, decimals) are possible. If we wished to limit the scope
of x even further to represent just 0 or 1 (i.e. a single bit), we would have to declare it as a Boolean
variable. If we required x to be able to represent fractional values as well, we would have to declare it
as a floating-point variable. Variable declarations are important in computer programming because
it instructs the computer how much space in its random-access memory to allocate to each variable,
which necessarily limits the range of numbers each variable may represent.

The next instruction initializes x to a value of two. Like the declaration, this instruction need only
happen once at the beginning of the program’s execution, and never again so long as the program
continues to run. The single SET statement located between the LOOP and ENDLOOPmarkers, however,
repeatedly executes as fast as the computer’s processor allows, causing x to rapidly alternate between
the values of two and zero.

It should be noted that the “equals” sign (=) in computer programming often has a different
meaning from that commonly implied in ordinary mathematics. When used in conjunction with the
SET command, an “equals” sign assigns the value of the right-hand quantity to the left-hand variable.
For example, the command SET x = 2 − x tells the computer to first calculate the quantity 2− x

and then set the variable x to this new value. It definitely does not mean to imply x is actually
equal in value to 2 − x, which would be a mathematical contradiction. Thus, you should interpret
the SET command to mean “set equal to . . .”
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3.1.3 Testing values (conditional statements)

If we mean to simply test for an equality between two quantities, we may use the same symbol (=)
in the context of a different command, such as “IF”:

Pseudocode listing

DECLARE x to be an integer variable

LOOP

// (other code manipulating the value of x goes here)

IF x = 5 THEN

PRINT "The value of the number is 5"

OUTPUT audible beep on the speaker

ENDIF

ENDLOOP

This program repeatedly tests whether or not the variable x is equal to 5, printing a line of text
and producing a “beep” on the computer’s speaker if that test evaluates as true. Here, the context
of the IF command tells us the equals sign is a test for equality rather than a command to assign a
new value to x. If the condition is met (x = 5) then all commands contained within the IF/ENDIF
set are executed.

Some programming languages draw a more explicit distinction between the operations of equality
test versus assignment by using different symbol combinations. In C and C++, for example, a single
equals sign (=) represents assignment while a double set of equals signs (==) represents a test for
equality. In Structured Text (ST) PLC programming, a single equals sign (=) represents a test
for equality, while a colon plus equals sign (:=) represents assignment. The combination of an
exclamation point and an equals sign (!=) represents “not equal to,” used as a test condition to
check for inequality between two quantities.
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3.1.4 Branching and functions

A very important feature of any programming language is the ability for the path of execution to
change (i.e. the program “flow” to branch in another direction) rather than take the exact same
path every time. We saw shades of this with the IF statement in our previous example program:
the computer would print some text and output a beep sound if the variable x happened to be equal
to 5, but would completely skip the PRINT and OUTPUT commands if x happened to be any other
value.

An elegant way to modularize a program into separate pieces involves writing portions of the
program as separate functions which may be “called” as needed by the main program. Let us
examine how to apply this concept to the following conditional program:

Pseudocode listing

DECLARE x to be an integer variable

LOOP

// (other code manipulating the value of x goes here)

IF x = 5 THEN

PRINT "The value of the number is 5"

OUTPUT audible beep on the speaker

ELSEIF x = 7 THEN

PRINT "The value of the number is 7"

OUTPUT audible beep on the speaker

ELSEIF x = 11 THEN

PRINT "The value of the number is 11"

OUTPUT audible beep on the speaker

ENDIF

ENDLOOP

This program takes action (printing and outputting beeps) if ever the variable x equals either 5,
7, or 11, but not for any other values of x. The actions taken with each condition are quite similar:
print the numerical value of x and output a single beep. In fact, one might argue this code is ugly
because we have to keep repeating one of the commands verbatim: the OUTPUT command for each
condition where we wish to computer to output a beep sound.
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We may streamline this program by placing the PRINT and OUTPUT commands into their own
separate “function” written outside the main loop, and then call that function whenever we need
it. The boundaries of this function’s code are marked by the BEGIN and END labels shown near the
bottom of the listing:

Pseudocode listing

DECLARE n to be an integer variable

DECLARE x to be an integer variable

DECLARE PrintAndBeep to be a function

LOOP

// (other code manipulating the value of x goes here)

IF x = 5 OR x = 7 OR x = 11 THEN

CALL PrintAndBeep(x)

ENDIF

ENDLOOP

BEGIN PrintAndBeep (n)

PRINT "The value of the number is" (n) "!"

OUTPUT audible beep on the speaker

RETURN

END PrintAndBeep

The main program loop is much shorter than before because the repetitive tasks of printing the
value of x and outputting beep sounds has been moved to a separate function. In older computer
languages, this was known as a subroutine, the concept being that flow through the main program
(the “routine”) would branch to a separate sub-program (a “subroutine”) to do some specialized
task and then return back to the main program when the sub-program was done with its task.

Note that the program execution flow never reaches the PrintAndBeep function unless x happens
to equal 5, 7, or 11. If the value of x never matches any of those specific conditions, the program
simply keeps looping between the LOOP and ENDLOOP markers.
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Note also how the value of x gets passed on to the PrintAndBeep function, then read inside
that function under another variable name, n. This was not strictly necessary for the purpose of
printing the value of x, since x is the only variable in the main program. However, the use of a
separate (“local”) variable within the PrintAndBeep function enables us at some later date to use
that function to act on other variables within the main program while avoiding conflict. Take this
program for example:

Pseudocode listing

DECLARE n to be an integer variable

DECLARE x to be an integer variable

DECLARE y to be an integer variable

DECLARE PrintAndBeep to be a function

LOOP

// (other code manipulating the value of x and y goes here)

IF x = 5 OR x = 7 OR x = 11 THEN

CALL PrintAndBeep(x)

ENDIF

IF y = 0 OR y = 2 THEN

CALL PrintAndBeep(y)

ENDIF

ENDLOOP

BEGIN PrintAndBeep (n)

PRINT "The value of the number is" (n) "!"

OUTPUT audible beep on the speaker

RETURN

END PrintAndBeep

Here, the PrintAndBeep function gets used to print certain values of x, then re-used to print
certain values of y. If we had used x within the PrintAndBeep function instead of its own variable
(n), the function would only be useful for printing the value of x. Being able to pass values to
functions makes those functions more useful.

A final note on branching and functions: most computer languages allow a function to call itself
if necessary! This concept is known as recursion in computer science.
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3.2 Solving RC and LR circuit differential equations using
C++

A differential equation is a mathematical equation containing both a variable and at least one of
its derivatives (i.e. its rate-of-change). Differential equations are extremely useful for describing
a wide range of physical phenomena including the energization and de-energization of energy-
storing components such as capacitors and inductors. While differential equations require calculus
techniques to solve analytically, their solutions may be approximated quite closely using repeated
calculations of simple arithmetic. Computers excel at doing such tasks, and so here we will view
multiple programs written in C++ to solve for voltages and currents in resistor-capacitor and
resistor-inductor networks.

Each of these programs outputs data in comma-separated variable (CSV) text format, suitable
for plotting using mathematical visualization software such as gnuplot or spreadsheets such as
Microsoft Excel.
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3.2.1 Differential equation solver for an RC circuit and voltage source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----R-----+

| |

Vs C Ic = C dVc/dt

| |

+-----------+

*/

int main (void)

{

double Ic, C = 33e-6, R = 10e3, Vr, Vs = 0.0, Vc = 10.0, dVc, t, dt = 0.0001;

cout << "Time , Vc" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Vr = Vs - Vc; // Kirchhoff’s Voltage Law

Ic = Vr / R; // Ohm’s Law

dVc = dt * (Ic / C); // I = C dV/dt "Ohm’s Law" for capacitors

Vc = Vc + dVc; // Integrating capacitor voltage from small changes

cout << t << " , " << Vc << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute capacitor
voltages at 0.1 millisecond intervals assuming an initial capacitor voltage of 10 Volts and discharging
toward zero volts (i.e. the voltage source value Vs is set to 0.0). Of course, any combination of Vs
and initial Vc values will work perfectly well, as this program will show the gradual progression from
initial to final voltage over time.
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3.2.2 Differential equation solver for an RC circuit and current source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----+-----+

| | |

Is R C I = C dVc/dt

| | |

+-----+-----+

*/

int main (void)

{

double Ic, C = 33e-6, R = 10e3, Is = 1e-3, Ir, Vc = 0.0, dVc, t, dt = 0.0001;

cout << "Time , Vc" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Ir = Vc / R; // Ohm’s Law

Ic = Is - Ir; // Kirchhoff’s Current Law

dVc = dt * (Ic / C); // I = C dV/dt "Ohm’s Law" for capacitors

Vc = Vc + dVc; // Integrating capacitor voltage from small changes

cout << t << " , " << Vc << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute capacitor
voltages at 0.1 millisecond intervals assuming an initial capacitor voltage of 0 Volts and charging
toward 10 Volts (i.e. the source current of 1 milliAmpere passing entirely through the 10 kΩ resistor
once the capacitor reaches full voltage). Of course, any combination of source current (Is) and
initial capacitor voltage Vc values will work perfectly well, as this program will show the gradual
progression from initial to final voltage over time.
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3.2.3 Differential equation solver for an LR circuit and voltage source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----R-----+

| |

Vs L Vl = L dIl/dt

| |

+-----------+

*/

int main (void)

{

double Vl, L = 50.0, R = 100.0, Vs = 100.0, Vr, Il = 0.0, dIl, t, dt = 0.0001;

cout << "Time , Il" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Vr = Il * R; // Ohm’s Law

Vl = Vs - Vr; // Kirchhoff’s Voltage Law

dIl = dt * (Vl / L); // V = L dI/dt "Ohm’s Law" for capacitors

Il = Il + dIl; // Integrating inductor current from small changes

cout << t << " , " << Il << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute inductor currents
at 0.1 millisecond intervals assuming zero initial inductor current and charging toward 1 Ampere
(i.e. the voltage source value Vs of 100 Volts divided by 100 Ohms). Of course, any combination of
Vs and initial Il values will work perfectly well, as this program will show the gradual progression
from initial to final current over time.
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3.2.4 Differential equation solver for an LR circuit and current source

#include <iostream>

#include <cmath>

using namespace std;

/* Schematic:

+-----+-----+

| | |

Is R L Vl = L dIl/dt

| | |

+-----+-----+

*/

int main (void)

{

double Vl, L = 50.0, R = 100.0, Is = 100e-3, Ir, Il = 0.0, dIl, t, dt = 0.0001;

cout << "Time , Il" << endl;

for (t = 0 ; t < 2.0 ; t = t + dt)

{

Ir = Is - Il; // Kirchhoff’s Current Law

Vl = Ir * R; // Ohm’s Law

dIl = dt * (Vl / L); // V = L dI/dt "Ohm’s Law" for capacitors

Il = Il + dIl; // Integrating inductor current from small changes

cout << t << " , " << Il << endl;

}

return 0;

}

With the initialized values shown in the double line of this program, it will compute inductor
currents at 0.1 millisecond intervals assuming zero initial inductor current and charging toward 100
milliAmperes. Of course, any combination of Is and initial Il values will work perfectly well, as
this program will show the gradual progression from initial to final current over time.



Chapter 4

Animations

Some concepts are much easier to grasp when seen in action. A simple yet effective form of animation
suitable to an electronic document such as this is a “flip-book” animation where a set of pages in the
document show successive frames of a simple animation. Such “flip-book” animations are designed
to be viewed by paging forward (and/or back) with the document-reading software application,
watching it frame-by-frame. Unlike video which may be difficult to pause at certain moments,
“flip-book” animations lend themselves very well to individual frame viewing.
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4.1 Differentiation and integration animated

The following animation shows the calculus concepts of differentiation and integration (with respect
to time) applied to the filling and draining of a water tank.

The animation shows two graphs relating to the water storage tank: one showing the volume of
stored water in the tank (V ) and the other showing volumetric flow rate in and out of the tank (Q).
We know from calculus that volumetric flow rate is the time-derivative of volume:

Q =
dV

dt

We also know that change in volume is the time-integral of volumetric flow rate:

∆V =

∫ t1

t0

Q dt

Thus, the example of a water storage tank filling and draining serves to neatly illustrate both
concepts in relation to each other.
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Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

205
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?



5.1. CONCEPTUAL REASONING 209

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results



212 CHAPTER 5. QUESTIONS

Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???
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5.1.3 Identifying integral areas

Graph #1

Shade the area on this graph representing the following integrals (assuming each horizontal and
vertical division on the graph has an incremental value of 1):

x

y

z

w

∫ 5

0

y dx

∫

−6

−1

w dx

Also, determine whether the numerical values of these integrals are positive or negative.
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Graph #2

Shade the area on this graph representing the following integral (assuming each horizontal and
vertical division on the graph has an incremental value of 1):

x

y

z

w

∫ 3

−6

(w − y) dx

Also, determine whether the numerical value of this integral is positive or negative.

Challenges

• Identify intervals for each integral expression that would result in a net value of zero.
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5.1.4 Integral expressions for identified graph areas

Graph #1

Write the integral expression represented by the shaded area on this graph (assuming each
horizontal and vertical division on the graph has an incremental value of 1). The integral for this
shaded area has a positive value:

x

y

z

w
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Graph #2

Write the integral expression represented by the shaded area on this graph (assuming each
horizontal and vertical division on the graph has an incremental value of 1). The integral for this
shaded area has a positive value:

x

y

z

w
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Graph #3

Write the integral expression represented by the shaded area on this graph (assuming each
horizontal and vertical division on the graph has an incremental value of 1). The integral for this
shaded area has a positive value:

x

y

z

w

Challenges

• Identify intervals for each integral expression that would result in a net value of zero.
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5.1.5 Second conceptual question

Challenges

• ???.

• ???.

• ???.

5.1.6 Applying foundational concepts to ???

Identify which foundational concept(s) apply to each of the declarations shown below regarding the
following circuit. If a declaration is true, then identify it as such and note which concept supports
that declaration; if a declaration is false, then identify it as such and note which concept is violated
by that declaration:

(Under development)

• ???

• ???

• ???

• ???

Here is a list of foundational concepts for your reference: Conservation of Energy,
Conservation of Electric Charge, behavior of sources vs. loads, Ohm’s Law, Joule’s Law,
effects of open faults, effect of shorted faults, properties of series networks, properties
of parallel networks, Kirchhoff’s Voltage Law, Kirchhoff’s Current Law. More than one of
these concepts may apply to a declaration, and some concepts may not apply to any listed declaration
at all. Also, feel free to include foundational concepts not listed here.

Challenges

• ???.

• ???.

• ???.
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5.1.7 Explaining the meaning of calculations

Below is a quantitative problem where all the calculations have been performed for you, but all
variable labels, units, and other identifying data are unrevealed. Assign proper meaning to each
of the numerical values, identify the correct unit of measurement for each value as well as any
appropriate metric prefix(es), explain the significance of each value by describing where it “fits” into
the circuit being analyzed, and identify the general principle employed at each step:

Schematic diagram of the ??? circuit:

(Under development)

Calculations performed in order from first to last:

1. x+ y = z

2. x+ y = z

3. x+ y = z

4. x+ y = z

5. x+ y = z

6. x+ y = z

Challenges

• ???.

• ???.

• ???.
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5.1.8 Explaining the meaning of code

Shown below is a schematic diagram for a ??? circuit, and after that a source-code listing of a
computer program written in the ??? language simulating that circuit. Explain the purpose of each
line of code relating to the circuit being simulated, identify the correct unit of measurement for
each computed value, and identify all foundational concepts of electric circuits (e.g. Ohm’s Law,
Kirchhoff’s Laws, etc.) employed in the program:

Schematic diagram of the ??? circuit:

(Under development)

Code listing:

#include <stdio.h>

int main (void)

{

return 0;

}

Challenges

• ???.

• ???.

• ???.
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5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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5.2.3 Determining derivative values from graphed functions

Determine approximate derivative ( dy
dx
) values for the following functions at the specified points:

Function #1

0 1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10

0
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3

4

5

6

7

8

9

10

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

y

x

• dy
dx

at x = +5

• dy
dx

at x = +10

• dy
dx

at x = −2
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Function #2

0 1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10
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-7

-8

-9

-10

y

x

• dy
dx

at x = +6

• dy
dx

at x = +9

• dy
dx

at x = +3
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Function #3

0 1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10

0
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7

8

9

10

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

y

x

• dy
dx

at x = −9

• dy
dx

at x = +1

• dy
dx

at x = +3

Challenges

• Identify any sources of error in your estimations of these derivative values.
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5.2.4 Determining integral values from graphed functions

Determine approximate integral values for the following functions over the specified intervals:

Function #1

0 1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10
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-9

-10

y

x

∫

−4

−8

f(x) dx

∫ +2

−1

f(x) dx
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Function #2

0 1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10
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-9

-10

y

x

∫ +10

−3

f(x) dx

∫ 0

−10

f(x) dx
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Function #3

0 1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8-9-10
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7

8

9

10

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

y

x

∫ +2

−1

f(x) dx

∫

−4

8

f(x) dx

Challenges

• Identify any sources of error in your estimations of these derivative values.
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5.2.5 Determining vehicle speed from distance and time

A bored child is traveling in a car with his parents, and decides to pass the time by writing mileage
values displayed by the odometer at different times, and then noting those times next to the distances:

Odometer reading (km) Time (hour:minute)

60,344.1 2:14

60,346.3 2:17

60,347.1 2:18

60,351.7 2:25

60,353.9 2:27

60,357.4 2:30

60,359.5 2:35

Calculate the average speed of the car between the following times:

• Between 2:17 and 2:18, average speed =

• Between 2:18 and 2:25, average speed =

• Between 2:25 and 2:27, average speed =

• Between 2:17 and 2:27, average speed =

Then, compare the average speeds taken in the first three intervals with the average speed over
the sum of those intervals (2:17 to 2:27). What does this tell us about the calculation of speed based
on distance and time measurements.

Challenges

• What could this bored child to in order to arrive at more precise estimations of speed?
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5.2.6 Determining vehicle travel distance from speed and time

A bored child is traveling in a car with his parents, and decides to pass the time by writing speed
values displayed by the speedometer at different times, and then noting those times next to the
distances:

Speedometer reading (km) Time (hour:minute)

55 2:14

57 2:17

60 2:18

61 2:25

58 2:27

55 2:30

60 2:35

Describe how you may calculate the distance traveled by this car between 2:14 and 2:35 based
on speed values from this table.

Challenges

• What could this bored child to in order to arrive at more precise estimations of speed?
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5.2.7 Power rule for derivatives

The “Power Rule” in differential calculus tells us how to find a formula for the derivative of a function
consisting of an integer power of the independent variable:

Using the Power Rule, differentiate the following functions:

y = x
dy

dx
=

y = x2 dy

dx
=

y = x3 dy

dx
=

y = x4 dy

dx
=

y = x5 dy

dx
=

y = x−1 dy

dx
=

y =
√
x

dy

dx
=

y = 11
dy

dx
=

Challenges

• ???.
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• ???.

• ???.

5.2.8 ??? simulation program

Write a text-based computer program (e.g. C, C++, Python) to calculate ???

Challenges

• ???.

• ???.

• ???.
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5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.
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5.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

251



252 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

13-14 February 2025 – document first created, sampling content from my Lessons In Industrial
Instrumentation textbook and modifying that content somewhat. Also added questions from the
Socratic Instrumentation project.
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