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Chapter 1

Introduction

1.1 Recommendations for students

Counters are one of the first types of practical digital circuits students learn to build using flip-flops.
In particular, the JK flip-flop finds widespread use as a fundamental building-block of counters due
to its ability to toggle between one state and the other at every clock pulse. When in toggle mode,
a JK flip-flop essentially acts as a 2:1 frequency divider, which is precisely the characteristic needed
to generate binary count sequences.

Counter circuits see widespread application in digital electronics, especially in digital computing
circuits, for their ability to generate binary sequences.

Important concepts related to counters include binary numeration, latches, flip-flops, edge-
triggering, significant bits, frequency division, timing diagrams, synchronous versus
asynchronous circuits, propagation delay, set-up time, ripple, strobing, modulus, octave,
decade, and duty cycle.

Here are some good questions to ask of yourself while studying this subject:

e How might an experiment be designed and conducted to determine whether a counter IC of
unknown model number has synchronous or asynchronous outputs? What hypothesis (i.e.
prediction) might you pose for that experiment, and what result(s) would either support or
disprove that hypothesis?

e How might an experiment be designed and conducted to determine whether a counter IC
of unknown model number has a synchronous or asynchronous clear (reset) input? What
hypothesis (i.e. prediction) might you pose for that experiment, and what result(s) would
either support or disprove that hypothesis?

e What distinguishes a flip-flop from a latch?
e What distinguishes a JK flip-flop from an SR flip-flop?

e How do multiple flip-flops work together to form a counter?

3



CHAPTER 1. INTRODUCTION

What is ripple and why does it arise in certain counter circuits?

What do the Preset and Clear inputs do on a flip-flop or latch?

Why are adequate set-up and hold times important for digital circuits?

What is the “toggle” mode for a JK flip-flop, and how is this exploited within counter circuits?
What causes propagation delay in digital circuits?

What does it mean to “strobe” a digital circuit?

Why is set-up time an important concept for synchronous counter circuit design?

What is the difference between the terms “synchronous” versus “asynchronous” as they are
applied to counter circuits, compared to how these same terms are applied to Preset and Clear
inputs on individual flip-flops?

How do logic gates work to give a counter circuit up/down counting ability?
What must we do to a counter circuit to truncate its maximum count value?
What frequency ratio is represented by an octave?

What frequency ratio is represented by a decade?

How may we combine counters to achieve larger frequency division ratios?

Why does the synchronous or asynchronous nature of a flip-flop’s clear input matter when
using a number of them to make a reduced-modulus counter?
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1.2 Challenging concepts related to digital counters

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

e Synchronous versus Asynchronous inputs — counter circuits rely on a “clock” signal to
increment or decrement their count values, with some inputs having effect only when the clock
pulse permits (i.e. “synchronous”) and other inputs having immediate effect regardless of clock
state (i.e. “asynchronous”). Clear and preset inputs may fall into either of these categories
depending on the internal design of the flip-flops comprising the counter. This challenging
concept is made even more confusing by the fact that counters may be broadly categorized
as either “synchronous” or “asynchronous” in terms of their output states updating together
(synchronous) versus in a rippling fashion (asynchronous), and this has absolutely nothing to
do with the counter’s preset or clear inputs being synchronous or asynchronous!

e Counter modulus — this is nothing more than a measure of how many unique counter states
a counter offers in total. Modulus may be reduced by adding external logic to force the counter
to either clear or preset to a specified count before it normally would.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

e Outcome — Demonstrate effective technical reading and writing

Assessment — Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment — Students show how timing diagrams were obtained by the author in the
Tutorial chapter’s examples.

e Outcome — Apply foundational circuit concepts to the analysis of counter circuits made of
individual flip-flops

Assessment — Identify counter characteristics such
as count direction, synchronous/asynchronous output, etc. based on an analysis of a given
schematic diagram; e.g. pose problems in the form of the “Up-counter or down-counter?” and
“Synchronous counter direction” and “Counter circuit identification” Conceptual Reasoning
questions.

e Outcome — Design a frequency divider circuit
Assessment — Identify how counter(s) and logic gates may be combined to form frequency
dividers with given division ratios; e.g. pose problems in the form of the “Frequency division”
and “Frequency division using clear versus using preset” Quantitative Reasoning questions.

e Outcome — Independent research

Assessment — Locate counter IC datasheets and properly interpret some of the information
contained in those documents including proper logic levels, maximum clock frequency, set-up
and hold time requirements, synchronous versus asynchronous inputs, etc.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?
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2.1 Example: timing diagrams for latches and flip-flops

2.1.1 Example: enabled SR latch timing diagram

o
O

_E
R

High

Low

High - -

Low

el 1] i N

High

Low

High

Ol

Low

Time —>

The red-colored output signals assume @ began in a low state and @ in a high state.
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2.1.2 Example: enabled D latch timing diagram

o[ e

E|

Q.

The red-colored output signals assume @ began in a low state and @Q in a high state.
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2.1.3 Example: SR flip-flop timing diagram

s — —Q

VDD

S
—_— Gnd
VDD

R
Gnd
VDD

C
Gnd
VDD
Q Gnd
— VDD
Q Gnd

The red-colored output signals assume @ began in a low state and @ in a high state.
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2.1.4 Example: JK flip-flop timing diagram

Q

= Jo |o

3

The red-colored output signals assume @ began in a low state and @ in a high state.
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VDD

Gnd
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2.1.5 Example: D flip-flop timing diagram

D Q

e

Q.

VDD

D
—_— Gnd
VDD

C
_— Gnd
VDD
Q EE—— Gnd
_ —— VDD
Q Gnd

The red-colored output signals assume @ began in a low state and @Q in a high state.
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2.1.6 Example: cascaded flip-flops timing diagram

A
o e A9 ]e
SN SN
QL LK Q.

B

Gnd

13

The red-colored output signals assume both @ outputs began in a low state and both @ outputs

in a high state.
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2.1.7 Example: cascaded latch/flip-flops timing diagram

Note that the first element is a D-type latch while the second is a D-type flip-flop. Also, note that
the JK flip-flop is negative edge-triggered rather than positive:

A B
n — B e, b Q J Q -
Clk —-E C oS
o 2 LK 2
VDD
In
Gnd
VDD
Clk
E— — Gnd
VDD
A
—‘ Gnd
VDD
B
Gnd
VDD
C
Gnd

The red-colored output signals assume all @ outputs began in a low state and all Q outputs in
a high state.
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2.2 Example: clock pulse generator

When testing prototype counter circuits, we need a reliable source of clock pulses to drive the
counter(s). One readily available IC to do this is the model 555 timer circuit which uses combinations
of resistance and capacitance to create time delays and/or oscillations. Here we see a 555 timer wired
to be an astable circuit which means its output terminal will endlessly toggle between “high” and
“low” states, thus constituting a clock pulse suitable for driving a counter circuit:

+V

1 w
Count indicators

Y RST

R, % cc ee RST % —\AA/\—%
JUL N

Disch out > Counter @ |\ —ph—rt

Clk

R, S Thresh Q& —W—h—t
T Ctrl — % o N

rng VVV ( E 2 1
1 S

Gnd —

% Pulse indicator
\\n

0
\|
/1

Pressing the pushbutton switch causes this circuit to begin oscillating. Releasing the pushbutton
causes it to cease oscillations, leaving the Out terminal waiting in its “high” state.
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If you would like to have two different speeds of clock pulse (e.g. a fast versus a slow), you may
add another pushbutton switch and resistor:

+V
V,
R, R, cc e RST
Disch out—J LIL
R, % Thresh
) Ctrl —
Trig
C,—/— Gnd

The larger the resistor placed in series with the pushbutton switch, the longer the “high” time
of the clock pulse, which in turn decreases its frequency. You may calculate the duration of each
portion of the clock pulse using the following formulae:

thigh = 0693(R1 + RQ)C tiow = 0.693R,C
Where,

t = Time, in seconds
R = Resistance, in Ohms
C' = Capacitance, in Farads

Clock pulse frequency is given by this formula, with frequency (f) in Hertz:

1.44

/= (R1 +2Ry)C

f— thigh——>]

b tiow—
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2.3 Example: reduced-modulus counters

The timing diagram for this counter circuit assumes all @ output lines begin in the low state (i.e.
that the count starts at zero).

Vee
SPEl
Po P Py Pg
PE
TE 74HCT163 TC —
(synchronous Reset)
ITUL——Ppcep
Q Q1 Q Qs

MR \ \
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The timing diagram for this counter circuit assumes all () output lines begin in the low state
(i.e. that the count starts at zero).

Vee
SPEl
Po P1 Py Pg
PE
TE 74HCT161 TC —
(asynchronous Reset)
ITUL——Ppcep
Q Q Q Q

MR \ \
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19

The timing diagram for this counter circuit assumes all (Q output lines begin in the high state
(i.e. that the count starts at fifteen).

Ve
st -
P, P, P, P,
PE (synchronous Preset)
TE 74HCC)3':I'161 TC
cp T74HCT163
Q Q1 Q Qs

Count 15
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2.4 Switch contact bounce
When mechanical switch contacts open and close, they tend to do so in a “noisy” fashion, making

intermittent contact when opening and when closing. We may capture these intermittent contact
events using an oscilloscope to graphically plot voltage over time:

Press switch once
L
_r
Measure with
9V 2.2kQ } oscilloscope

This particular oscillograph was captured during the time when the pushbutton switch was
pressed a single time. What we see the oscilloscope detect during this time is actually three distinct
closures of the switch’s contacts, with jagged rising and falling edges. The reason we see three
closures of the switch over a span of less than 1 millisecond is because the metal contact surfaces
are literally bouncing of of one another as the pushbutton force acts to press them together. This
phenonenon is not unlike dropping a ball on a hard floor surface, the ball bouncing several times
before coming to rest on that floor.

Switch bounce is a common problem when any mechanical switch contact generates a signal for
the input of a digital counter circuit, the purpose being for that counter to increment or decrement
once for each switch actuation. “Bouncing” switch contacts will “fool” the counter into counting
multiple times per switch actuation instead of just once.

Various techniques exist to mitigate switch bounce:

e Use mercury-wetted switch contacts — these are special switch contacts housed in a
hermetically-sealed glass tube with a small amount of liquid mercury present. This liquid
mercury adheres to the metal switch contact faces, providing a mercury “bridge” maintaining
continuity between the contact faces when they are separated by very small distances, thereby
maintaining contact during the “bouncing” period.

e Use an electronic switch — eliminating mechanical switch contacts altogether is a direct
way of solving this problem. “Switches” using magnetic-field sensors and transistors as the
switching elements may be used to sense the operation of a pushbutton actuator, and in the
case of limit switches used to detect machine motion there exist both inductive-style and
capacitive-style proximity switches that will do the same task in a bounce-less manner.

e Connect a capacitor in the circuit — inserting a small capacitor into the circuit to stabilize
the voltage signal is another way to “de-bounce” mechanical switch contacts, preventing those
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contacts from generating transient voltage pulses of too-short duration. This technique works
especially well in digital electronic circuits if the capacitor-stabilized voltage signal is sampled
by the input of a Schmitt-trigger style of logic gate, this type of gate circuit designed to tolerate
voltage levels between valid “high” and valid “low” states.

Use a shift register — a digital shift register circuit sampling the switch’s signal in its serial
input terminal, driven by a clock pulse signal of suitable frequency, will populate that register’s
bits with successive states of the switch. An AND logic function reading all parallel bits from
the register then provides a “de-bounced” signal that will be “high” (1) only if all previous
states of the switch were also “high” (i.e. only if the switch contacts have remained closed for
a certain duration of time established by the clock pulse frequency and the number of parallel
bits offered by the shift register).

Use software sampling — if the switch’s signal goes to the input of a microcontroller or other
similarly programmable digital device, that device may be programmed to perform the same
repeated sampling and testing of the switch signal described in the shift register technique.
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2.5 Example: arbitrary waveform generator using an analog
multiplexer

Multiplexer (mux) ICs are made for both digital (high/low) and analog (variable-voltage) signals.
The model CD4051 and 74HC4051 integrated circuits are examples of analog multiplexers, which are
also capable of functioning as demultiplexers since the inputs and output may both sink and source
current. This particular analog mux/demux model also features an “inhibit” input which controls
an internal MOSFET to either connect or disconnect the common terminal from the selected 1/O
pin. A functional diagram is shown below:

CD4051 analog mux/demux

J>|w|l\.>|._\|o

Analog channels

Common

|~ | |@

| | | |

"Select" ! Szl Sll So | .

inputs ulnhlblt"
Input

All digital inputs (the three select bits plus the inhibit) are active-high. Therefore, making the
inhibit input pin high forces the internal MOSFET on the common terminal to turn off and places
the device into an analog “high-impedance” mode where none of the eight analog channels connects
to the common pin, while making the inhibit pin low connects the common pin to whichever analog
channel is selected by the three select bits.

One useful circuit you can build with such an IC is a simple arbitrary waveform generator where
a digital counter cycles through all the channel values for the mux, and the mux in turn sequentially
connects eight adjustable DC voltage signals one at a time with the common signal to create a
stepped waveform having whatever shape you desire using eight steps.
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A schematic diagram of such a circuit appears below, DC power supply terminals omitted from
the schematic for simplicity:

+V +V +V +V +V +V

—|=|=|=|= 0
T CD4051 Raw waveform
sel [ [ [ ] :
P, P, P, P, 2 Filtered waveform
PE 3 e
Com

TE 74HC161/163 TC [— 4
5

- e I

7 -

JUL—PCP g Q1 @ & cCBA
| |

i

The clock signal may be supplied by a benchtop signal generator, by the output terminal of a
555 timer IC connected for astable operation, or any other suitable digital pulse signal source. Since
the mux cycles through all its channels every eight counts of the counter IC, the final output signal
will have a frequency one-eighth that of the digital clock pulse driving the counter.

Such a circuit is useful as a crude signal generator in its own right, as well as a source of interesting
audio tones (for electronic music synthesis). The R and C values for the low-pass “smoothing”
filter should be chosen to avoid loading down the eight signal-programming potentiometers; i.e.
select a value for R that is at least ten times larger than the whole-resistance value of any single
potentiometer, and select a suitable C value to provide a cutoff frequency that works well to soften
the stair-step edges of the raw signal. This filter network’s cutoff value, of course, depends on your
intended analog signal frequency: the higher the signal frequency, the higher the cutoff needs to be
in order to properly “smooth” the signal’s wave-shape without attenuating it too much.

Note how the CD4051 IC’s inhibit input is tied to ground, forcing it to be “low” all the time. This
enables, rather than inhibits, the mux and allows the three select bits to choose which potentiometer
signal gets passed along to the common output terminal and into the RC filter network. An
alternative way to use this inhibit input is to connect it to a digital pulse waveform with a variable
duty cycle (i.e. a pulse-width modulated or PWM signal). If this PWM pulse signal’s frequency
is substantially greater than the counter’s clock frequency, the inhibit pin will be activated and
de-activated multiple times during each of the eight “steps” of the arbitrary waveform, serving as an
analog amplitude control for the arbitrary waveform. When the PWM duty cycle is low (i.e. “low”
for more time each period than “high”) the arbitrary waveform signal will largely pass through the
4051 mux unimpeded, but when the PWM signal is adjusted to a greater duty cycle value the mux
will spend more and more time in its high-impedance mode which means the RC filter’s capacitor
won’t be charged or discharged to as great a degree with each step of the eight-step cycle, resulting
in a filtered output waveform with the same basic wave-shape but being smaller in peak-to-peak
amplitude.
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A more conventional use of the multiplexer’s inhibit input is to permit multiple muxes to work
together, allowing for more than eight analog signals to be sampled. Here we see two CD4051 analog
mux ICs connected to the four-bit 74HC161/163" counter IC to allow a sixteen-step analog waveform
to be synthesized:

+V
Tﬁ CD4051 Raw waveform
sel [ [ ]
P, P, P, P Filtered waveform
PE /
Com
TE 74HC161/163 TC L
MR T
JutL CPQ & Q Q B A Inh =
[
CD4051
Com
B A Inh

In this circuit, the counter’s most-significant bit (MSB) output Q5 will be “low” during the first
eight counts (0 through 7) and then “high” during the last eight counts (8 through 15), enabling the
upper CD4051 mux for the first eight and the lower CD4051 mux for the latter eight count states.
When each of these mux ICs are disabled, only the other mux will be able to send a potentiometer
voltage value through to the RC filter.

Having a sixteen-step arbitrary waveform gives one the ability to generate a wave-shape with a
“smoother” profile, having sixteen steps to work with rather than just eight. Of course, this means
the synthesized analog signal will have a frequency that is now sixteen times slower than that of the
digital clock.

IThe only functional difference between the model 74HC161 and 74HC163 counters is the behavior of their reset
inputs, the 161 being asynchronous reset and the 163 being synchronous. Since we’re not using the reset input at
all, this distinction is irrelevant and therefore either model of counter will suffice. Both of these counter ICs happen
to be synchronous in their counting, though, which is good for this application because otherwise a counter with
asynchronous (“ripple”) count bits might cause the mux to falsely select the wrong channel as it transitions from one
count state to the next.
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Simplified Tutorial

3.1 Binary count sequences

If we closely examine the bit states of a binary count sequence (as shown below), it becomes evident
that the respective bits of the binary word are toggling (oscillating) between 0 and 1 on a periodic
basis. Beginning with the least-significant bit (LSB), scan the sequence of numbers vertically to see
how that bit alternates between 0 and 1 with every step of the count sequence. Then, examine the
next-most significant bit to identify the alternating pattern there:

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

25
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This pattern of decreasing frequency becomes more apparent when we represent each bit as a
digital pulse waveform and plot them adjacent to one another for comparison:

wsB) | 0 Ji1lofrfofrilofilofr]ofrlof1]o 1]

00j1 17001 1211001 1|10 01 1

0000 1 111[/0000J1 11 1|

Binary

(MsB)L O 0 00 00001111111 1]

Decimal 0 1 2 3 4 5 6 7 8 9 101112 13 1415

Hex 0 1 2 3 4 5 6 7 8 9 A B CDEF

Note how each successive bit — from the LSB to the MSB — toggles at half the frequency as the bit
before it. If we wish to build a digital circuit that counts in binary, then, all we need is a collection
of elements capable of dividing the frequency of a pulse signal by a factor of two. Fortunately, there
is such a digital “building block” element well-suited for this purpose, and it is called a JK flip-flop.
Below is a schematic diagram of this device performing the 2:1 frequency division necessary to create
a two-bit binary “up” counting sequence from a single square-wave “clock” signal:

Vdd
signal B
signal A >—J &/
\ c
K Q.

A o102 |0|2]0]2 |0 |10 |2

Binary

B o001 1001 12]0o 01 1|

Decimal/Hex 012 3012 3012 3

Also note how the count sequence naturally “rolls over” back to zero after reaching the maximum
count value, as a function of the simple frequency-division method of counting. If we cascade multiple
JK flip-flops, each one triggered by the output of the previous flip-flop, we may construct binary
counter circuits with as many bits as there are flip-flops. For a deeper exploration of counter circuit
design, consult the Full Tutorial chapter of this module.
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3.2 Counter ICs

Complete counters are manufactured as integrated circuit (IC) assemblies, one such counter shown
below:

SPE

L]

Po P1 Py Ps

—PE
—TE  74HCT163 TC —

—]P>CP
Q Q1 Q2 Qs

R

MR

While counter models differ in features and not all match those of the 74HCT163, it is nevertheless
instructive to identify the inputs and outputs of this counter to get a general idea of what IC counters
can do:

e Outputs Qg through Q3 are the bits of the count, from LSB (Qg) to MSB (Q3)

e Output 7C is the Terminal Count which goes “high” when the count value reaches its
maximum (“terminus”) before resetting back to zero, which is useful when cascading multiple
counter ICs

e Input MR is the Master Reset, in this case being active-low which means a “low” state resets
the count value to zero and a “high” state permits normal counting

e Input C'P is the Clock Pulse, which for this particular counter IC increments the count value
at every rising edge

e Inputs TF and PFE are both active-high enables but function in slightly different ways, the
TE forcing the T'C' output in addition to “freezing” the count value when disabled

e Inputs SPFE and P, through P; work together to “preset” or “force” the count to a specified
value; the bit states driven to Py, P;, P», and Pj taking effect at the next clock pulse when
the SPFE input is enabled (active-low)

Some common features of IC counters not present in the model 74HCT163 include up/down count
direction control and BCD versus binary count range. It is also important to realize the distinction
between synchronous versus asynchronous inputs: a “synchronous” input is one where an active
input state does not have an effect on the count value until the next clock pulse arrives, whereas
an “asynchronous” input is one whose active status immediately affects the count. For example,
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some counters’ reset inputs are synchronous while other models have asynchronous reset inputs — the
model 74HCT163 happens to sport a synchronous M R input while the model 74HCT161’s Master
Reset input is asynchronous.

3.3 Extending count range

All counter ICs are inherently limited in the number of bits they offer, for the simple reason that
every counter has a limited number of internal flip-flop circuits and a limited number of pins. If we
have an application where more bits are needed than what our available counter ICs offer, we may
either build our own counter from individual flip-flops or, more practically, cascade multiple counter
ICs together. This is what the “T'C” (Terminal Count) and enable inputs are for on a counter IC:
a way for the preceding counter to control when the next counter increments or decrements.

An example of counter cascading is shown below, again using the model 74HCT163:

Voo Voo

SPE SPE

Po P, P, P Po P, P, P
Vpp  ° L 2 3 Vpp O 1 2 3
PE TC PE TC —
74HCT163 TE 74HCT163
TR L eNer 1

—9 CP — —49 CP —
MR A Q Q Q Qg MR A Qo Q1 Qp Qg

g NN

The left-hand counter increments with every clock pulse, but the right-hand counter waits until
the left-hand counter has reached its terminal count value (i.e. 1111) before recognizing the next
clock pulse. This way, the right-hand counter will increment when the left-hand counter “rolls over”
from 1111 back to 0000. Together, these cascaded four-bit counter ICs comprise an eight-bit counter.
Not surprisingly, we may cascade more than two counters to achieve a counter array with as many
bits as we might require.
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3.4 Limiting count range

Another practical concern with using counter circuits is how to limit the terminal count value if
necessary. For example, suppose we needed a four-bit counter to count from 0000 (zero) to 1011
(eleven) rather than all the way up to 1111 (fifteen)? How may we reduce the number of total states
in the counter’s count sequence (also known as the modulus of the counter) from sixteen to twelve?

A simple method for reducing the modulus of a counter is to use logic to decode for a count
value exceeding the desired maximum, and trigger a reset when that happens. For example, if we
wish to limit a four-bit counter to a modulus of 12 (i.e. make it count from zero to a maximum of
eleven), we could connect an AND gate or a NAND gate (depending on whether the reset input is
active-high or active-low) to activate the counter’s master reset input when we wish the count value
to return to zero.

Here is an example of the 74HCT163 counter configured for a modulus of twelve:

Veo

SPEL

Po P1 Py Ps

PE

TE 74HCT163 TC —
(synchronous Reset)
I L——pcP

Q Q Q Qs

—0

M
Reset activates (low) ___»
when count = 1011
ready to reset at next

clock pulse
T\ T\ T\ QO
A N Q Counts from
I, N 0000 to 1011
Qs

The model 74HCT163 counter happens to have a synchronous Master Reset function, which
means the reset occurs when the M R input is active and the next clock pulse arrives. If we want
this IC’s count to progress from 0000 to 1011, then the NAND gate needs to activate the MR
input at the count value of 1011 so that the next clock pulse brings the counter to 0000 rather than
incrementing to 1100.
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If our counter IC happens to have an asynchronous reset input (i.e. it resets as soon as the reset
input activates, without waiting for the next clock pulse) then we need to have the gate decode for
the first illegitimate count value (in this case, 1100 = twelve) so that it counts all the way to the
maximum value we want, and then as soon as it tries to increment to the next count value it very
quickly resets itself back to zero. The model 74HCT161 differs from the 74HCT163 only in the fact
that its M R input is asynchronous rather than synchronous:

Veo

SPEL

Po P1 Py Ps

PE

TE 74HCT161 TC [—

(asynchronous Reset)
I L——pcP
Q Q Q Qs

, MR
Reset activates (low) ___»

when count = 1100
to reset immediately

Q Counts from
M o, [[0000to 1011

A practical example of reduced-modulus counting is found in the BCD counters used to drive
digits of a time clock display. Each “hour” count needs to increment after 59 seconds, which means
the “minutes” count must have its modulus limited to 60. Similarly, the “hour” count must be
modulus-limited to either 12 or 24 (depending on whether it is a 12-hour or 24-hour clock), and
furthermore the “reset” must force the “hour” counter to one® rather than zero, since a clock rolls
over from its terminal count value to 1:00 rather than 0:00!

IThis is a good application for the SPE and Py through Ps inputs on the 74HCT163 counter, using the “preset”
inputs to force the counter to 0001 rather than using the “reset” input to force the counter to 0000.
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4.1 Latches and flip-flops

Latch circuits are an important category of digital logic. A “latch” is a logic function designed to
retain its last output state under certain input conditions. Like a toggle switch able to remain in
either of its two possible states in the absence of any motivating force, latch circuits do the same at
the command of electrical input signals.

The critical feature of latch circuits granting them their ability to “remember” previous states is
feedback"': where the output of one or more logic gates is “fed back” to one or more inputs of other
logic gates so that the circuit has a natural tendency to drive itself into one of two different states.
Feedback is clearly evident in the logic gate diagrams of the Set-Reset latch, two versions of which
are shown in the following illustration, along with a truth table describing the latch’s function:

Set-Reset (SR) latch

S _ S—]
Q Q
R Q R— Q
S RQTO S RQTO
0 |0 |Latch 01]0 |1 |1
0(11]0]1 0Of11]1]0
11|01 |0 11010 |1
1 (11010 1 (1 [Latch

SR latches based on NOR, gates latch whenever both inputs are low, whereas SR latches based
on NAND gates latch whenever both inputs are high. A latch is considered to be “set” when Q is
high and Q is low. The “reset” state is just the opposite: @ low and @Q high. If ever a latch’s two
outputs are found in the same state, it is considered invalid.

ISpecifically, latch circuits employ positive (a.k.a. regenerative) feedback, so named because the effect of the
fed-back signal is to reinforce the system’s existing condition.
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When packaged as integrated circuits (rather than built up from individual logic gates) SR latches
are typically represented by “box” symbols, as shown in the following illustration. Note how the
NOR-based SR latch has active-high inputs while the NAND-based SR latch has active-low inputs?:

_S Q S Q
NOR-based NAND-based
_R Q. R Q.

A more useful variation of the SR latch is the enabled SR latch with a third input line (E). This
additional input line’s state either enables or disables the set (S) and reset (R) inputs’ functions.
When enabled, this latch behaves as any normal SR latch; when disabled, this latch circuit remains
in its “latched” state regardless of either the S or R input states:

Enabled SR latch internal schematic Q0 Enabled SR latch symbol

Q

S — Latch
Latch
Latch
Latch

Latch

Q

2 |m o

Q.

Rlr|r[r|lo|lo|lo]lo|m
Rlr|lo|olr|r|lo]loln
NEIENEIEEIENEE

2An input’s “active” state is the logical state necessary for that input to force a certain output condition. An SR
latch’s inputs are considered to both be inactive when the circuit is in its “latch” state. If you examine the truth table
on the previous page, you will see how the NOR-based SR latch requires a 1 (high) input state to either set or reset,
while the NAND-based SR latch requires the input to be 0 (low) to force either a set or reset state. This, in turn, is
based on the truth tables of NOR and NAND gates, respectively. Any 1 (high) state input to a NOR gate forces its
output low regardless of the other input state(s). Likewise, with NAND gates it is a 0 (low) input state which forces
the output high regardless of the other input condition(s).
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Another variation on this theme is to equip the latch circuit with a “one-shot”? circuit designed
to detect either the rising or falling edge of a square-wave pulse signal, enabling the latch only during
that brief transition from low to high (positive edge) or from high to low (negative edge) depending
on the detection network. With this addition, the latch becomes a flip-flop. An internal diagram of
a NOR-based SR flip-flop appears in the following diagram:

SR flip-flop internal schematic B SR flip-flop symbol
Q

o)
O

S—

o]

R—

Q

2 lo |o

Q.

eSS XXX X0
Rl |lolo|r|r|lolo]|ln
Plo|lr|lo|r|o|r|o|xD

—

2

o

0

The D-type latch and D-type flip-flop are simplified versions of the SR latch and flip-flop,
respectively, having just a single “data” (D) input rather than separate set (S) and reset (R)
inputs. With this alteration, the device no longer has an “invalid” state:

D latch internal schematic D latch symbol
EDQRQ
D D Q
o 0 |0 [Latch — —
0 |1 [Latch _E|
E 1]00 |1 5
Q 1 (1110 o—
D flip-flop internal schematic D flip-flop symbol
C D Q
b Q Q 5 Q
C o X |0 |Latch — —
X |1 |Latch _C|
flojo |1 9
Q i1 11 o o—

3The term “one-shot” refers to the fact that the edge-detecting circuit outputs a single pulse for each transition of
the input signal. Even if the input signal transitions to its new state and remains in that new state for a long time,
the one-shot responds only with a pulse at the transition time and nothing afterward.
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Perhaps the most useful type of flip-flop is the JK form. This uses an additional layer of feedback
to give it a novel mode called toggle. When both J and K inputs are simultaneously active, and
the clock pulse signal transitions, the “toggle” mode results in the @ and Q output states reversing.
This feature is very useful for creating larger-scale digital circuits such as frequency dividers and
counters:

JK flip-flop internal schematic

L

J — —

c

A
o)
o)

JK flip-flop symbol
Q

'_
(=4
5}
>

= lo |o

Q.

K—

—

s [s]S]XX[X]X] o
R r|lololr|r|lo]lo|aw
P |O|IP|O|FR,P|O|FL,]|O

Toggle

As with other flip-flops, JK flip-flops are designed in both positive-edge- and negative-edge-
triggered versions. If a flip-flop’s clock input happens to be a negative-edge style, an inversion
“bubble” will be shown at that input terminal of the device. Both versions of a JK flip-flop appear
in the following illustration:

Positive edge-triggering Negative edge-triggering
J Q J Q

J_L—:

7

K

_K Q. _K Q.
J and K input states are J and K input states are
recognized by the flip-flop recognized by the flip-flop
only when the clock signal only when the clock signal
rises falls

Latches and flip-flops alike require their input states to be stable for a certain amount of time
prior to the reception of a clock (or enable) pulse, and for a certain amount of time following. These
minimum signal times are called set-up time and hold time, respectively. Failure to abide by these
limits may result in inconsistent operation. In some applications these set-up and hold times are
viewed as limiting factors, particularly in high-speed digital logic circuitry where clock frequencies are
so high that achieving the necessary set-up and hold times may be challenging. In other applications
these minimum times are an exploitable feature, particularly in the case of synchronous counter and
shift register circuits where the need for set-up time in particular halts the progression of data from
one cascaded flip-flop to the next even though all the flip-flops receive the exact same clock pulse at
the exact same times.
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Some flip-flops provide one or more additional inputs designed to force the output lines to
particular states, overriding the other input(s). These additional inputs are called Preset and Clear,
the purpose of the Preset input being to force the flip-flop to a “set” state (Q = 1 and @ = 0) and the
purpose of the Clear input being to force the flip-flop to a “reset” state (Q = 0 and Q = 1). Below
we see schematic diagram symbols of a D-type flip-flop that happens to have active-high Preset and
Clear inputs, as well as a JK flip-flop that happens to have active-low Preset and Clear inputs:

D-type flip-flop with JK-type flip-flop with
active-high Preset active-low Preset
and Clear inputs and Clear inputs
PRE PRE
_b Q. _J Q.
C C

> P

Q. _K Q.

1

CLR R
In the case of the D flip-flop, an active Preset or Clear input will override the state of the D
input. In the case of the JK flip-flop, an active Preset or Clear input will override both J and K
inputs.

In addition to active-high versus active-low varieties for Preset and Clear inputs, another
important distinction is synchronous versus asynchronous Preset and Clear inputs. The term
“synchronous” refers to events happening at the same time, and so a synchronous Preset or Clear
input will not have any effect until the clock pulse arrives — i.e. its effect is always synchronized with
the clock signal. In contrast, an asynchronous Preset or Clear input effects the @ and @ outputs
immediately without waiting for a clock pulse. In other words, asynchronous Preset or Clear inputs
function like the S and R inputs on a plain (non-enabled) SR latch, affecting the output states
immediately when activated. One cannot tell whether Preset and/or Clear inputs are synchronous
or asynchronous from the schematic symbols — only the datasheet for that particular integrated
circuit will show you!
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4.2 Counter circuit fundamentals

An important application of flip-flops is in the construction of digital counter circuits. A “counter”
simply increments or decrements a binary number value with every pulse of a clock signal. We may
begin our exploration of counter circuits by studying the count sequence of a four-bit binary number
(from 0000 to 1111):

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Note how the least significant bit (LSB) toggles (i.e. reverses its logical state) at every step in
the count sequence, and each succeeding bit toggles at one-half the frequency of the prior bit. The
most significant bit (MSB) only toggles once during the entire sixteen-step count sequence, at the
transition between 7 (0111) and 8 (1000).
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This pattern of decreasing frequency becomes more apparent when we represent each bit as a
digital pulse waveform and plot them adjacent to one another for comparison:

wsB) | 0 Ji1lofrfofrilofilofr]ofrlof1]o 1]

00j1 17001 1211001 1|10 01 1

0000 1 111[/0000J1 11 1|

Binary

(MsB)L O 0 00 00001111111 1]

Decimal 0 1 2 3 4 5 6 7 8 9 101112 13 1415

Hex 0 1 2 3 4 5 6 7 8 9 A B CDEF

Realizing that the key to a binary count sequence is a 2:1 frequency division ratio for each bit
from the LSB through the MSB, we may investigate the use of JK flip-flops for this task. Recall that
when a JK flip-flop is in its “toggle” mode, its outputs change state once for every two changes of
state at the clock input. A single JK flip-flop* configured to always be in toggle mode will yield such
a 2:1 frequency ratio, and by comparing its clock and @ output logic levels we see a decrementing
two-bit binary counting sequence:

Vdd
signal B
signal A >—J &/
\ ol
K Q.

A o102 |0|2]0]2 |0 |10 |2

Binary

B 0of1 1]o 01 1|0 01 1|0

Decimal/Hex 0 32103210321

4Power supply connections have been omitted for the flip-flop circuit for the sake of simplicity. It should be clearly
understood, though, that all digital integrated circuits require power applied to their supply pins in order to function.
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If we desire an incrementing binary count, all we need to do is use a negative-edge triggered
flip-flop so that the toggle action occurs every time the clock signal transitions from a 1 to a 0

instead of when it transitions from a 0 to a 1:

Vvdd
signal B
signal A >—J &/
\ c
| K Q.

A o101 (0101 [0]1]0]1
B o001 1]/0 01 1[0 01 1|

012 3012 3012 3

Binary

Decimal/Hex
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4.3 Asynchronous counters

Building a counter with more bits is as simple as cascading JK flip-flops together so that each
successive stage divides the signal frequency by two. Note that we typically do not include the clock
pulse itself as one of the counter bits, as that was something we did simply for the proof-of-concept
example using a single flip-flop. Instead, we let the clock pulse oscillate freely and limit ourselves to
the @ outputs of the flip-flops for our counter bits.

The following circuit shows a four-bit binary counter using four JK flip-flops:

Q (LSB) Q Q Q (MSB)
Vdd Vdd Vdd Vdd
J Q J Q J Q J Q
C C C C
e e e
K Q K Q K Q K Q
| CLR —| CLR —| CLR —| CLR

= | 37 g I i

Clear counter

Clock

@ O0J1lof1lofrfo]f1 o 1lofar[o]f1 o1 lo]1[o]1]

Qo0o0j1 100jJ1 120 0J1 1[0 0J1 1[0 011 1

Q 0000f1111]0000f1111[0000]

Q000000001 1111111[0000

Note how each flip-flop toggles when it receives a downward-transitioning pulse signal from the
less-significant flip-flop before it, thanks to the negative-edge triggering feature of these flip-flops.
If we wished the counter to decrement instead of increment, we could replace all the flip-flops with
positive-edge triggered units®.

Note also how all the flip-flops’ clear inputs have been paralleled and fed by a single switch. This
gives us the ability to force our four-bit counter circuit to an all-clear (i.e. 0000) state at will. Since
the Clear input is asynchronous, we may clear the counter independent of the clock pulse signal.

5 Alternatively, we could use the Q outputs instead of the Q outputs, and this would also result in a decrementing

count value.
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An interesting characteristic of this counter circuit is that bit transitions which are supposed to
be simultaneous aren’t perfectly simultaneous. The reason for this imperfection is the propagation
delay inherent to digital logic circuits: a small time delay between the flip-flop receiving the clock
pulse and the flip-flop’s toggle response at its @) output terminal. The following timing diagram will
show the same four-bit incrementing count sequence, but with exaggerated propagation delays and
angled indicator arrows to better illustrate the effect:

Cock LTI MMM NNNNI
Ve Ve Ve VPV P VA VA VA A VY
@ 0J1lof1fo]f1fof1fof1[o]1[o]1]o]1]o]1]

\
0101010101010101o||_
) ) ) ) ) ) ) ) )

QlOOllOOllOOllOOllOOll

onooo|1111|oooo|111|oooo[
Y Y
Q_ 000000001 111111 1[0000

1

For this reason, this design of digital counter is called an asynchronous or ripple counter. The
more flip-flop stages inside an asynchronous counter, the greater the total time delay between bit
transitions from LSB to MSB.

The time delay inherent to asynchronous counters may be serious or negligible depending on the
application. If, for example, the counter is being used to drive a digital display and nothing more,
these tiny delay times will go unnoticed by human vision. However, if the counter’s binary output
feeds some high-speed digital device capable of reading the counter’s bit states before all the bits
have “settled” to their correct values, errors will result. An example is shown here with exaggerated
propagation delay times, focusing on the transition between the binary count 0111 and 1000, which
is a worst-case example because every one of the JK flip-flops must toggle:

Q 1 0000
Q 1 110 0 0
Q 1 1100 0
Q 0 oooF

Decimal/Hex 7 6 4 0,68
%—J
False
counts

Instead of cleanly transitioning from a “count” value of seven to eight, the value jumps from
seven to six, four, and zero (in rapid succession) and then finally settles at eight.
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A clever solution to the problem of a “rippling” count generating false result for a receiving
device is to strobe® that device. Many types of digital circuits receiving multi-bit binary inputs (e.g.
decoders and multiplexers) are equipped with at least one enable input similar in function to the E
input on an enabled SR or D latch. Such a circuit will respond to input states only when all of its
enable inputs are active. The technique of “strobing” connects one of the receiving circuit’s “enable”
inputs to a digital signal timed to disable the receiving chip during the period when rippling may
occur. Often the strobing signal may be the same clock pulse driving the counter circuit:

Receiving circuit

Clock signal

EN

. Outputs
Binary
count

input

Vvdd Vvdd Vvdd Vvdd

(&
o
(&)
o)
(&)
o
[
o)

o
;
;
;

K
ﬁ?
Counter circuit

The counter increments on every falling edge of the clock pulse, but the receiving circuit (with
its active-high EN enable input) ignores the counter’s output as soon as the clock pulse goes low.
Only when the clock pulse goes high again will the receiver read the four bit states of the binary
count, which should be plenty of time for the counter’s outputs to “ripple” and settle to their proper
states.

6The concept of “strobing” a digital circuit is really the same as using a flashing strobe light to “freeze” the motion
of a rotating object: if the strobe light brightly illuminates the object in the same position every time, the object will
appear to be still rather than moving. It’s the precise timing of the strobe light’s pulse that “hides” the rest of the
object’s motion from our vision. For the digital counter circuit the clock signal’s strobe effect on the latch hides the
ripple phenomenon so that all we “see” at the latch’s output is a clean count.
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4.4 Synchronous counters

In order to create a truly synchronous counter circuit devoid of ripple, we must somehow ensure
all of its flip-flops clock simultaneously instead of each flip-flop waiting on the previous flip-flop to
toggle. Yet, if we simply connect the clock pulse signal in common to all the flip-flop clock inputs
and keep the J and K inputs tied high, the circuit will not count in a binary sequence. Instead, it
will alternate between 0000 and 1111:

Failed synchronous counter design!

Q@ Q Q <
vdd vdd vdd vdd
J Q J Q J Q J Q
= > = > = > = >
K 2| LK 2 | LK 2| LK 2

Returning to our four-bit binary count sequence for inspiration’, our task is to find some pattern
within the bit states we may use to selectively toggle each stage of the counter, instead of having
each flip-flop toggle with every clock pulse:

Binary Decimal Hex
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

It should be apparent that as the count value increments, each higher-order bit toggles only when

7This is not meant to be humorous. When faced with a design problem it is usually necessary to “go back” and
review basic concepts, in this case the sequence of a four-bit binary count, and try as hard as we can to look at those
familiar concepts afresh.
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all lower-order bits are high. Thus, we may redesign our synchronous counter so that each flip-flop’s
J and K inputs go high only when all lower @ bits are high.

The following diagram shows the necessary connections to make a four-bit synchronous “up”
counter:

A four-bit synchronous "up" counter

Q Q
Vdd
J Q] Q
C
LK Q. Q.
This flip-flop This flip-flop This flip-flop This flip-flop
toggles on every toggles only if toggles only if toggles only if
clock pulse Qq is "high" Qo AND Q, Qo AND Q; AND Q,
are "high" are "high"

In the circuit shown, we happen to be using positive-edge-triggered JK flip-flops rather than
negative-edge, but this is no longer of of any importance. In the asynchronous counter design this
distinction determined the counting direction, but here in the synchronous design the count direction
is a function of the AND gate logic rather than the clock pulse polarity. We could replace all four
flip-flops with units having the opposite clock input type and its count value would still increment.

If we analyze this synchronous counter closely, a design flaw seems to be evident. Suppose a
low-order flip-flop happens to have its @) output in the low state, ready to toggle to high with the
next clock pulse. What is there to prevent that flip-flop’s @ output from switching to the high state
and the next higher-order flip-flop from also toggling because it will see the first flip-flop’s @ output
go high simultaneous with the clock pulse? Stating the problem differently, we may ask the question
“What does a JK flip-flop do when both J and K inputs go from low to high at the same moment
in time it receives a clock pulse?”

The answer to this apparent problem is two-fold. First, the next flip-flop actually will not see its
J and K inputs go high at the same time the clock pulse arrives, thanks to the inherent propagation
delay of the previous flip-flop; instead, its J and K inputs will remain low for a brief moment in time
after the clock pulse arrives because the previous flip-flop cannot instantaneously toggle. Second,
even if the J and K high states arrived perfectly simultaneous with the clock pulse, the flip-flop
would still not be able to toggle because those high states at the J and K inputs would not have
been present for the minimum required set-up time. The phenomenon of “set-up time” is also a
consequence of gate propagation delay, but internal to the flip-flop’s own gates rather than in the
gates of the previous flip-flop.
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To make a synchronous down counter, we need to enable each higher-order flip-flop to prepare
to toggle when all lower-order bits are low. Fortunately, the @ outputs on each flip-flop provide a
convenient source of inverted logic signals to trigger AND gates at the necessary times:

A four-bit synchronous "down" counter

G Q Q G
Vdd
J Q | Q J Q J Q
c c [ [
> > > >
[« Q K J?_l K 9
This flip-flop This flip-flop This flip-flop This flip-flop
toggles on every toggles only if toggles only if toggles only if
clock pulse Q, is "high" Q, AND Q; Q, AND Q; AND @,
are "high" are "high"

Taking this idea one step further, we may build a synchronous counter circuit with selectable
between “up” and “down” count modes by having dual lines of AND gates detecting the appropriate
bit conditions for incrementing and decrementing count sequences, respectively, then use OR gates
to combine the AND gate outputs to the J and K inputs of each succeeding flip-flop:

A four-bit synchronous "up/down" counter

vad Q Q Q Q
Up/Down
Q
Clk
5 Dg
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Analyzing this up/down counter in its “up” count mode, showing the disabled gates in grey:

Counter in "up” counting mode

vdd vdd Q
T e 1
iy
) Q
o

Next, showing the counter in its “down” count mode, with disabled gates colored grey:

Counter in "down" counting mode

Vdd Vdd Q Q
/Down

Q
o

. .

Comparing asynchronous (ripple) and synchronous counter circuits, we see the asynchronous type
is simpler to build but suffers from the ripple effect on its output bits. The synchronous counter
type lacks that weakness but is a more complex circuit.



4.5. MODULUS 47

4.5 Modulus

The modulus of a counter is its maximum number of unique and stable output states. For a plain
binary counter, modulus is simply two raised to the power of the number of output bits. Our four-bit
counter examples would therefore have moduli of 2% = 16. In some applications, though, we may
desire to truncate the counter’s range so that it cannot count to its full maximum.

One such application is a BCD counter, where the count range of the four-bit counter circuit
must be limited from 0000 (zero) to 1001 (nine) in order to represent a single digit of a decimal
number. A normal 4-bit counter has a modulus of sixteen (i.e. a count sequence from zero to fifteen,
inclusive), but to serve as a BCD counter the modulus must be ten.

A simple method to limit modulus is to add logic gates wired to detect the first invalid count
value, and immediately trigger the counter to reset back to zero when that occurs. The following
example of an asynchronous BCD counter shows how a four-input NAND gate may be wired to
sense a count value of 1010 and immediately reset so that the counter seems to only cycle from zero
through nine:

Asynchronous BCD counter

Q (LSB) Q Q Q; (MSB)

Vdd Vdd Vdd Vdd
o el e el Lo el i el

C C C C

| L LY |
K Q K Q K Q K 9]
—|1 clR P ] ] crR —|1 clR P ] ] crR
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Here we can see how useful it is for each flip-flop to have complementary outputs (i.e. both
Q and Q): we exploit this fact in connecting the four inputs of the NAND gate to the respective
flip-flops, connecting to @ if we wish to detect a high output state and connecting to @ if we wish
to detect a low output state®. Here, the CLR line goes low to reset all flip-flops when Q3 is high
and @2 is low and @7 is high and @ is low: the combination of states representing “ten” which is
our first invalid state for an incrementing BCD counter.

Forcing a reduced modulus for a down counter is more complicated, because now the task is to
pre-set” the flip flops to the highest valid count value whenever the first invalid state (all 1’s for a
down-counter) is detected. Again, a multiple-input NAND gate may be used to sense the invalid

8This works because for any JK flip-flop any time Q is low, Q is guaranteed to be high.

9A simple “thought experiment” proves why this is necessary. Imagine a four-bit BCD “down” counter whose
count sequence should be 9-8-7-6-5-4-3-2-1-0. The next state after zero should be nine, but a regular (non-truncated)
four-bit “down” counter will naturally cycle back to sixteen (binary 1111). Therefore, the logic gate must be wired
to detect sixteen, and then force the flip-flops to a state of 1001 which is nine.
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RN

state, but instead of activating all the flip-flops
flip-flops and set others.

clear” inputs it now must selectively clear some

Decoding a value of ten (binary 1010) and clearing all flip-flops when that unwanted count is
detected is a method that works to create a BCD counter only if the flip-flops’ clear inputs are
asynchronous in nature. Here we use the term “asynchronous” to refer to the immediacy of those
inputs’ effect, rather than describing the simultaneity of the four output bit transitions. In other
words, resetting all the flip-flops to zero as soon as we detect a count value of ten results in a
zero-through-nine count range only if those clear inputs don’t have to wait for the next clock pulse
to act. If we were to build the exact same counter using JK flip-flops that had synchronous clear
inputs instead, what would happen is a count sequence of 0-1-2-3-4-5-6-7-8-9-10 and then back to
0: the NAND gate would still properly decode the 1010 output bit states, but the activated clear
inputs would not clear the flip-flops until the next clock pulse which would mean the “ten” count
value would persist just as long as the others. In order to build a BCD counter using JK flip-flops
having synchronous clear inputs, we would have to wire the NAND gate to decode a count value of
nine (binary 1001) rather than ten.

Although we may build reduced-modulus counter circuits using JK flip-flops having either type
of clear input (synchronous or asynchronous), if we choose to use asynchronous-clear flip-flops we
must know that for a brief moment in time our BCD counter circuit actually will output an invalid
(ten) count, for as long as it takes for the combined propagation delay of the NAND gate and the
flip-flop clear inputs. However, the solution of strobing mentioned previously works just as well to
mask this problem as it does to mask the problem of ripple.

Generalizing to all reduced-modulus up-direction counter applications where we use external
logic to “decode” a particular count value (n) which will trigger the reset:

e With synchronous reset the count sequence will proceed from 0 to n and then return to 0,
resulting in a modulus equal to n + 1

e With asynchronous reset the count sequence will proceed from 0 to n — 1 and then return to
0 immediately following an extremely brief count value of n, effectively resulting in a modulus
equal to n
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4.6 Frequency division

In addition to the obvious application of converting pulse signals into sequential binary count values,
counters may also serve as frequency dividers for digital pulse signals. This is somewhat ironic, as
our introduction to binary counting began with the observation that successive bits of a binary
number represent doubled or halved pulse frequencies. After seeing how frequency division could be
employed to count in binary, we are now exploring the use of counters to divide frequency.

A single JK flip-flop configured for “toggle” mode divides frequency by two. Two cascaded JK
flip-flops divide frequency by four. We may revisit our plan for an asynchronous (ripple) counter
and see how this might be used for power-of-two frequency division:

Octave frequency divider

o f
o /2
o /4
o /8
/16
vdd vdd Vdd vdd
J Q J Q J Q J Q
c c
" >
Q K Q K Q
CLR [ —| CLR P —| CLR P

Clear counter

Interestingly, dividing or multiplying frequency by two (or any power of two) results in a musical
octave. For example, if the clock pulse signal for the above divider oscillated at 440 Hz (used as the
“concert pitch” frequency standard by many orchestras for the A4 pitch in scientific pitch notation),
then the f/2 output would produce 220 Hz (A3) and the f/4 output would produce 110 Hz (A42),
etc. All these tones would correspond to the musical pitch “A” but each within a different octave.
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If we desire a frequency division ratio other than some power-of-two, we may use a truncated
(i.e. reduced-modulus) counter for the purpose. For example, the BCD counter shown earlier (with
JK flip-flops having asynchronous clear inputs) would generate a f/10 (divide-by-ten) signal:

Divide-by-ten counter with asynchronous clear inputs
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The decade-divided signal is not a symmetrical square wave, because it originates from the NAND
gate, the purpose of which is to generate a “resetting” pulse only when the count value reaches ten
(1010 binary). This means the pulse width will be very narrow — lasting just long enough for the
flip-flops to clear and return the count to zero — but long enough to be useful as a triggering pulse
for some other edge-triggered digital circuit.

If instead we chose to build a divide-by-ten counter using four JK flip-flops having synchronous
clear inputs and a NAND gate wired to decode a count value of nine (binary 1001) instead of ten,
the NAND gate’s output pulse would remain active (low) for one whole clock cycle rather than for
the very short time equivalent to the sum of the NAND gate and one flip-flop’s propagation delays:

Divide-by-ten counter with synchronous clear inputs

vdd Vdd vdd vdd
J Q J Q J Q J Q
C c C C
> 1 > L > >
f K Q K Q K Q K Q
— CLR CLR ] CLR [ ] CLR P
= 1 1 1 7

AN d _r

(o]

/10




4.6. FREQUENCY DIVISION 51

If we need a divide-by-ten pulse with a 50% duty cycle, one solution is to re-wire the NAND gate
to make a mod-5 counter, then take the resulting divide-by-five pulse signal and use it to trigger
another JK flip-flop to divide the frequency again by two, resulting in a f/10 ratio. Here we show
a counter made using JK flip-flops with asynchronous clear inputs, the NAND gate wired to decode

a count value of five:

Divide-by-five counter with asynchronous clear inputs
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Represented in block-diagram form, we can see the f/10 division achieved by the compound
process of f/5 and f/2:

f/5
f—— +5 | +2 — /10
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Chapter 5

Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.
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5.1 Counter circuits in the IBM Automatic Sequence
Controlled Calculator

On the 7th of August 1944 the International Business Machine Corporation (IBM) presented an
electromechanical computer called the IBM Automatic Sequence Controlled Calculator to Harvard
University. This room-size calculating machine used thousands of electromechanical relays, switches,
paper tape reels, motors, and other devices to perform mathematical calculations. It was used by
the United States Navy for classified work over a period of many years.

A photograph showing the front panel of this massive! machine appears next, taken from the
Historical Introduction chapter of A Manual of Operation for the Automatic Sequence Controlled
Calculator published by Harvard University Press in 1946:

This early computer was entirely electromechanical, using no semiconductor components.
Everything was based on electromechanical devices such as relays and switch contacts. As such,
it could be best described as an electric computer rather than an electronic computer. It was,
however, digital rather than analog because all numerical quantities were represented by discrete
electrical states rather than by continuously-variable voltages. Interestingly, its design was not based
on binary (“base-two”) numeration, but rather decimal (“base-ten”): counter and register circuits
operated on the principle of one out of ten lines (numbered 0 through 9) being energized to represent
a single decimal digit.

LA quote from page 11 of the Manual states that the machine measured 8 feet high, 51 feet long, and weighed
approximately 5 tons.



5.1. COUNTER CIRCUITS IN THE IBM AUTOMATIC SEQUENCE CONTROLLED CALCULATORb5

Counters played a large role in the Automatic Sequence Controlled Calculator, and many of
these counters relied on an electric drive motor to spin internal wheels. An illustration of the shaft,
gear, chain, and sprocket mechanisms used to couple the four horsepower electric motor (B) to the
wheels of the sequence and interpolator units is shown here:
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Figure 22

Each of these particular counters consisted of the following components, shown disassembled in
the following photograph:

XVl Storage Counter

Two paragraphs found on page 59 of the computer’s operating manual describes how these
“storage counters” functioned. The first of these paragraphs describes each counter’s internal
construction:

Each counter wheel is an electro-mechanical assembly consisting of the following major
components shown in plate XVII: (1) a commutator mounted in a molded plastic part,
B and J, commonly called a “molding”, having a half slip ring and ten segmental
contacts numbered 0 through 9; (2) a pair of stranded wire brushes, C and F, which
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rotate to connect one of the contact segments with the commutator half slip ring; (3)
a magnetically controlled clutch, D, which engages to connect a continuously rotating
gear, A, with the sleeve on which the rotating brushes are mounted; (4) a ten’s carry
contact which operates in conjunction with an external relay circuit to provide carry
to the counter wheel in the next higher columnar position when the counter wheel
under consideration passes through ten; (5) a nine’s carry contact which also operates
in conjunction with an external relay circuit to provide carry to the next higher contact
wheel when the wheel under consideration stands on nine and the next lower wheel has
passed through ten; (6) and finally, a socket, G and K, by which the counter assembly
may be jack-connected to the calculator wiring.

The next of these two paragraphs gives a brief description of how the counters were incremented:

The ten segments of the commutator are usually called the number “spots”. The time
interval necessary for the brush to traverse the distance between two successive spots
is one-sixteenth of a cycle, the number spots being so spaced in the commutator as to
minimize the ratio of the mechanical backlash to the distance traversed between spots.
In order to read, say, a seven into a counter, the counter magnet is picked up at “seven
time”, thus engaging the clutch. The brushes are spun past six spots and the clutch is
magnetically disengaged or knocked off at “zero time”. Obviously, nine equally timed
and spaced impulses must be provided to pick up the counter magnets in order to read
in the nine digits and all counters must be knocked off at zero time, (Fig. 23).

A sentence found earlier on that same page of the manual (page 59) makes an interesting
observation about the common motor drive for these counters:

Since the sequence and interpolator mechanisms and counter wheels are all driven by
a single gear-connected mechanical system, it is clear that all mechanical parts of the
machine revolve in synchronism with each other.

Describing these counters in more modern terms, we could say they are all synchronous units
with the motor’s mechanical drive system being a common clock “signal”’. Each counter is enabled
to count by means of a clutch which engages the counting wheel with the continuously-spinning
shaft (i.e. clock signal).

These “storage counters” were not the only counting mechanisms in the Automatic Sequence
Controlled Calculator, but they do serve to illustrate some of the parallels between 1944-era digital
computer technology and modern digital circuitry.



Chapter 6

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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6.1 Digital pulse criteria

Ideal “pulse” signals have infinitely-steep rise and fall times, level “high” and “low” states well within
the specified voltage ranges, and no other imperfections or artifacts. Real pulses always deviate from
ideal, often in multiple ways:

Ideal pulse Imperfect pulse

Overshoot

e Fall time
Ringing

S(-tz_ttling

)

(Rise)

¥

Undershoot
(backswing)

Ringing

Rise and fall times are strongly influenced by parasitic capacitance existing on the signal line
with reference to ground, as well as the current-sourcing and current-sinking capability of the logic
gate or other device generating the pulse signal. The capacitive “Ohm’s Law” formula I = C%/
predicts how much current will be necessary to create a linear rate-of-rise or rate-of-fall of voltage
for a given capacitance. Note that to achieve infinitely steep rise or fall times an infinite amount
of current would be necessary to charge/discharge whatever capacitance happens to exist on that
signal line!

Ringing is caused by resonance occurring between parasitic capacitance and parasitic inductance,
those two phenomena naturally exchanging energy back and forth with each other to produce the
oscillatory waves we call “ringing”. Overshoot and undershoot are also the result stored energy
within these parasitic L and C' circuit properties, and since parasitic capacitance and parasitic
inductance can never be fully eliminated from any real circuit it means the effects of over/undershoot
and ringing is likewise unavoidable. If you don’t see these effects in your pulses, you just aren’t
viewing them at a fast enough time scale!
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Clock-synchronized digital logic circuits such as counters, shift registers, and microprocessors
require their input signals to be at stable states immediately before and immediately after the clock
pulse arrives. For example, the following timing diagram shows input and output states for a D-type
flip-flop circuit (positive-edge triggered), showing the effects of some signal timing violations:

Inadequate set-up time Inadequate hold time

D

Adequate set-up time

| <~ <] =/

Clk

Q o ol

High state "clocked in" High state "clocked in"
on time Low state "clocked in" on time
one cycle too late due
to set-up time violation High state not "clocked

in" at all due to hold
time violation

Datasheets for digital circuits often provide timing diagrams showing criteria related to pulse
signal timing and logic states. These diagrams don’t typically show ideal square-edged pulses, but
rather trapezoidal pulse profiles intended to exaggerate realistic features such as rise and fall times,
propagation delays, and minimum set-up/hold times. Such diagrams usually confuse students who
are accustomed to seeing square-edged pulses in their textbook timing diagrams. This technical
reference will show some typical timing diagrams and explain what they represent.
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For example, consider this timing diagram for a positive-edge-triggered JK flip-flop having both
its J and K inputs tied high so as to maintain the circuit in its “toggle” mode. As such we would
expect its output (Q) to change state with every rising edge of the clock pulse:

Each of the labels found in this diagram is defined as follows:

trise = Rise time of input signal, typically measured from 10% of signal amplitude to 90% of
signal amplitude

trau = Fall time of input signal, typically measured from 90% of signal amplitude to 10% of
signal amplitude

try = Low-to-High transition time of output signal, typically measured from 10% of signal
amplitude to 90% of signal amplitude (the same concept as rise time, but applied to the output
signal instead of the input signal)

trgr = High-to-Low transition time of output signal, typically measured from 90% of signal
amplitude to 10% of signal amplitude (the same concept as fall time, but applied to the output
signal instead of the input signal)

tpr g = Propagation delay time of output signal when switching from low to high
tpyr, = Propagation delay time of output signal when switching from high to low

Vs = Switching threshold voltage, typically defined as 50% of signal amplitude

This timing diagram shows how a digital logic circuit reacts to a single input signal, in this case
the clock pulse. Although this example happens to be for a JK flip-flop in toggle mode, the same
type of timing diagram with its exaggerated rise/fall times and propagation delays could be applied
to any digital logic gate whose output state depended solely on the state of a single input.
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For synchronous digital logic circuits where input signals must coordinate with the clock pulse
signal in order to be properly accepted by the circuit, we typically find timing diagrams comparing
these input states to each other, often without showing the output(s) at all. Instead of showing us
how the digital logic circuit will react to an input signal, this sort of timing diagram shows what the
digital logic circuit expects of its multiple input signals.

The example is shown here for a positive-edge-triggered D register' having multiple data lines
(Do through D,,), one asynchronous” reset line (RST), and one clock input. The arbitrary logic
levels of the multiple data lines are shown as a pair of complementary-state pulse waveforms, the
only relevant features being the timing of the data and not the particular voltage levels of the data
signals:
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Data valid —| tyy —>]
D 0- Dn Vs Vs > ’4‘ trem
Ty ty —
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Labels shown in this diagram refer to minimum time durations the logic circuit requires for
reliable operation:

e tgy = Minimum set-up time before the arrival of the next clock pulse
e ty; = Minimum hold time following the last clock pulse
e ty = Minimum width (duration) of the asynchronous reset pulse

e trpy = Minimum removal time before the arrival of the next clock pulse

Violations of any of these minimum times may result in unexpected behavior from the logic
circuit, and is an all-too-common cause of spurious errors in high-speed digital circuit designs. The
assessment of digital pulse signals with regard to reliable circuit operation is generally known as
digital signal integrity.

Mn this case, a “D register” is synonymous with multiple D-type flip-flops sharing a common clock input, passing
data through from each D input to each corresponding @ output synchronously with each clock pulse.

2To review, a synchronous input depends on a clock pulse while an asynchronous input is able to affect the circuit
independent of the clock pulse.
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Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

e Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.
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GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.
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Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?
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7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning
as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.
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7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Thought experiments as a problem-solving strategy

Truth table

Logic function

NOR function

‘ NAND function ‘

‘ Positive feedback ‘

Active-low versus Active-high

‘ Latch behavior ‘

| Flip-flop behavior |

Set-up time

Binary number ‘
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MSB versus LSB ‘

Frequency division ‘

Ripple

Strobing

Asynchronous versus Synchronous

Hexadecimal

Modulus

Octave

Duty cycle

CHAPTER 7. QUESTIONS
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7.1.3 Timing diagram of a binary count sequence

Count from zero to fifteen, in binary, keeping the bits lined up in vertical columns like this:

0000
0001
0010

Now, reading from top to bottom, notice the alternating patterns of 0’s and 1’s in each place (i.e.
one’s place, two’s place, four’s place, eight’s place) of the four-bit binary numbers. Note how the
least significant bit alternates more rapidly than the most significant bit. Draw a timing diagram
showing the respective bits as waveforms, alternating between “low” and “high” states, and comment
on the frequency of each of the bits.

e Modify the timing diagram to show a backwards counting sequence (i.e. from 1111 to 0000).

7.1.4 Up-counter or down-counter?

Shown here is a simple two-bit binary counter circuit:

VDD

v
—2 LSB — MSB

s 2

The @ output of the first flip-flop constitutes the least significant bit (LSB), while the second
flip-flop’s @) output constitutes the most significant bit (MSB).

Based on a timing diagram analysis of this circuit, determine whether it counts in an up sequence
(00, 01, 10, 11) or a down sequence (00, 11, 10, 01). Then, determine what would have to be altered
to make it count in the other direction.

e Is this an example of a synchronous counter or an asynchronous counter?
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7.1.5 A counter with no ripple

A style of counter circuit that completely circumvents the “ripple” effect is called the synchronous
counter:

Qo Q

Voo
J Q J Q
C C
Clock —1> —1>
K Q K Q

Complete a timing diagram for this circuit, and explain why this design of counter does not
exhibit “ripple” on its output lines:

VDD

Clock
Gnd
VDD
QO Gnd
VDD

Q

Gnd

e Show the location of and describe the effects of all flip-flop propagation delays in this circuit.
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7.1.6 Synchronous counter direction

Complete a timing diagram for this synchronous counter circuit, and identify the direction of its
binary count:

Voo Qo Q
J Q J Q
C C
Clock —1> —1>
K Q | |K Q

VDD
Clock

Gnd

VDD
Qo

Gnd

VDD
Q1

e Show the location of and describe the effects of all flip-flop propagation delays in this circuit.



74 CHAPTER 7. QUESTIONS

7.1.7 Counter circuit identification

Complete a timing diagram for this circuit, and determine its direction of count, and also whether
it is a synchronous counter or an asynchronous counter:

Qo Q1 Q.

Voo Voo Voo
J Q J Q J Q
C C C
Clock —————] —> —>
K Q K Q K Q
VDD
Clock
Gnd
VDD
QO Gnd
VDD
Ql Gnd
VDD

Q;

e Identify how you could reverse the direction of this circuit’s counting sequence.

e Why is it important that all the J and K inputs be tied to Vpp?
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7.1.8 Cascading counter circuits

Suppose we had two four-bit synchronous up/down counter circuits, which we wished to cascade to
make one eight-bit counter. Draw the necessary connecting wires (and any extra gates) between the
two four-bit counters to make this possible:

Up/Down
Q Qs
Q J ﬂ
C
Clock T >
Q ‘ K Q
Up/Down
Qs Q;
J Q J d
Clock rc> 3 > rc>
T 8

After deciding how to cascade these counters, imagine that you are in charge of building and
packaging four-bit counter circuits. The customers who buy your counters might wish to cascade
them as you did here, but they won’t have the ability to “go inside” the packaging as you did to
connect to any of the lines between the various flip-flops. This means you will have to provide any
necessary cascading lines as inputs and outputs on your pre-packaged counters. Think carefully
about how you would choose to build and package your four-bit “cascadable” counters, and then
draw a schematic diagram.

e Why go through the trouble of designing cascadable four-bit counters, when you could
alternatively manufacture 8-bit, 12-bit, and higher-bit counters as different products to suit
customer’s needs? In other words, why bother to make your product line eztensible when you
could instead just sell a wider range of products?
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7.1.9 T74HCT143 counter IC

CHAPTER 7. QUESTIONS

The model 74HCT163 integrated circuit is a high-speed CMOS, four-bit, synchronous binary counter.
It is a pre-packaged unit, will all the necessary flip-flops and selection logic enclosed to make your
design work easier than if you had to build a counter circuit from individual flip-flops. Its block
diagram looks something like this (power supply terminals omitted, for simplicity):

SPE

l

—|PE
TE
—>CP

Po P1 P

74HCT163

Qo Q1 Q

Ps

TC

Qs

T

MR

Research the function of this integrated circuit, from manufacturers’ datasheets, and explain the
function of each input and output terminal.

L PO7P17P27andP3:

Qo, Q1, Q2, and Q3 =
o CP =

e MR =
e SPE =
e PE =
o TC =
e TE =

Also, identify whether this is an up-counter or a down-counter, or capable of counting both

directions.

e Both the (M R) and (SPE) inputs are synchronous for this particular counter circuit. Explain
the significance of this fact in regard to how we use this IC.
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7.1.10 Cascaded 7T4HCT143 counters

The following eight-bit counter is comprised of two four-bit 74HCT163 synchronous binary counters

cascaded together:

Voo
SPE
P, P, P, P
VDD 0 1 2 3
PE TC
74HCT163
GND
L4 cp
MR Q Q1 Q2 Qs
el B

Explain how this counter circuit works, and also determine which output bit is the LSB and

which is the MSB.

TC —

GND—_|_

Voo
SPE
P, P, P, P
VDD 0 1 2 3
PE
74HCT163
L4 cp
MR A Q Q1 Q Qs
T
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Now, examine this eight-bit counter comprised of the same two ICs:

Voo Voo
SPE SPE
P P P P P P P P
Vpp  ° L 2 3 Vop O 1 2 3
PE TC PE TC —
74HCT163 TE 74HCT163
SN GNP
—9 CP - —49 CP -
MR A Q Q1 Q2 Qs MR A Q Q1 Q Qg
e T

Explain how this counter circuit works, and how its operation differs from the previous eight-bit
counter circuit.

e Comment on which method of cascading is preferred for this type of counter IC. Is the
functional difference between the two circuits significant enough to warrant concern?
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7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

49

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (o) = 1.25663706212(19) x 1076 Henrys per meter (H/m)
Electric permittivity of free space (€y) = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46. 9 Kiloneters
Time el apsed 1.18 Hour s
Aver age speed = Bl / B2 knm h

G |W|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common’ arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4n2) - (4*B3*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4A2) - (4*B3*B5))) / (2*B3)
3 a = 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coeflicients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = V/b% — dac z=2a

_—bEy
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4r2) - (4*B3*B5))
2 X_2 = (-B4 - c1) / Cc2 |= 2*B3

3 a= 9

4 b = 5

5 c = )

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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7.2.3 Determining up/down counter state

Determine the count value held by this counter circuit after the final clock pulse shown in the timing
diagram:

Up/Down
Q Qs
o o
Clock
7% e
VDD
Clock
Gnd
— VDD
Up/Down
Gnd
_— Voo
Qo
Gnd
VDD
Q
e Gnd
VDD
Q,

i Gnd

e Suppose the Up/Down input remains in its last state shown on the diagram while the clock
pulse continues. Identify the next few count values output by the counter.
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7.2.4 Frequency division

Suppose we need to design a set of frequency divider circuits using no digital components except
four-bit asynchronous counters and miscellaneous logic gates. Describe how each of the following
division ratios could be achieved:

o 2:1
e 13:1
e 51
o 8:1
e 24:1

e 19:1

e Which of your designs would naturally output a divided pulse signal with a 50% duty cycle,
versus a divided pulse signal with a very brief “active” pulse time.
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7.2.5 One-minute pulse

Suppose you had an astable multivibrator circuit that output a very precise 1 Hz square-wave signal,
but you had an application which requires a pulse once every minute rather than once every second.
Engineer a solution to this problem using these two counter ICs, added additional components to
the circuit as necessary:

Decade CTR Decade CTR
—ENP EN P
—ENT RCO ENT RCO
—> CLK > CLK
Qn Qs Q¢ Qo Qn Qe Qc Qp
CLR CLR

e Design a circuit using these same two decade counter ICs so that the output is a square wave
with a duty cycle of 50% (i.e. “high” for 30 seconds, then “low” for 30 seconds), rather than
a narrow pulse every 60 seconds.
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7.2.6 Wired-AND modulus reduction

The following circuit uses four diodes and a resistor to form a wired-AND function to limit its
modulus:

VDD

Clock T 1LI'L —> CTR RST
QO Ql QZ Q3 Q4 QS QG Q7

<
<
<
<

Explain how this strategy works in contrast to the more conventional method of using AND
gates, and also determine the counter’s effective modulus with this wired-AND network in place
assuming the counter IC’s reset line is active-high and synchronous.

e Determine the counter’s modulus assuming an active-low reset input.

e Modify this circuit assuming an active-low reset input.
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7.2.7 Frequency division using clear versus using preset

When using a counter 1C such as the 74HC163 for the purposes of frequency division, there is more
than one way to reduce its modulus to achieve the frequency-division ration desired. One way is to
wire external circuitry to the counter so that it clears itself back to zero prematurely; another is to
wire external circuitry so that it gets preset to some non-zero value after reaching its terminal count
(binary 1111).

Sketch all necessary components and wiring to make these counters function as frequency dividers
with 6:1 division ratios, using the clear (Master Reset) function in the left-hand example and the
preset (SPE) function in the right-hand example. Also identify the terminals for input frequency
and output (divided) frequency:

SPE SPE
P, P, P, P, P, P, P, P,
— lpE —PE
—TE  74HCT163 TC —TE  74HCT163 TC [—
—]>>CP —]>CP
Q Q1 Q Qs Q Q1 Q2 Qg
MR MR

e Identify any advantage(s) one strategy has over the other.
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7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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7.3.1 Faulty four-bit counter circuit design

A student just learned how a two-bit synchronous binary counter works, and he is excited about
building his own. He does so, and the circuit works perfectly:

Voo Qo Q

el el

Clock § C C

vV
\Y

@ K Q K Q

After that success, student tries to expand on their success by adding more flip-flops, following
the same pattern as the two original flip-flops:

Voo Q Q Q, Q3
el el el
Clock
C> ‘ C> ‘ C> ‘ C>

= A - [ - O % I -3

Unfortunately, this circuit does not work as intended — the sequence it generates is not a binary
count. Determine what the counting sequence of this circuit is, and then try to figure out what
modifications would be required to make it count in a proper binary sequence.

e What exactly makes this counter circuit synchronous?

e How could you construct an asynchronous four-bit counter circuit?
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7.3.2 Counter with faulted gate

Explain what would happen if the upper AND gate’s output were to become “stuck” in the high
state regardless of its input conditions. What effect would this kind of failure have on the counter’s

operation?

Up/Down
Qo Q
!DD

J Q J Q
C C

Clock ——> D >
e K9

; D

e Explain the purpose for the inverter gate in this circuit.
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7.3.3 Faulty eight-bit counter design

A student attempts to construct an eight-bit up/down counter, and builds the following circuit:

Up/Down
VDD Ql QZ Q3
P Q J Q J Q
C (¢ C
Clock
B Q K Q K Q
- [ [
L (
Up/Down
Qs Q,
J Q J Q
C (¢]
Clock
[« o [ L o
- [

Explain what is wrong with this design.

e Identify the incorrect count sequence(s) this circuit would generate as shown.
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7.3.4 Incorrect 74HC192 usage

A student is trying to get a 74HC192 up/down counter to function. However, it is simply not
cooperating:

Vdd

ol 1

(Count up)
¢ UP c— CO
rf 74HC192
| = 71— {powN B0
(Count down)
Qn Q Qc Qp

orl | | | |
Clock —

Determine what the student is doing wrong with this 74HC192, and then correct the schematic
diagram.

e Suppose we wished to pre-load this counter with the value Ob1011. How exactly would we do
this?

e Identify the distinction between the model 74HC192 and the model 74HC193 counter ICs.
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7.3.5 Diagnosing a clock circuit

A technician is trying to build a timer project using a set of cascaded counters, each one connected
to its own 7-segment decoder and display:

MOD-10 TP1 MOD-6 TP2 MOD-10 TP3 MOD-6 TP4

I I
Seconds display Minutes display

The technician was trying to troubleshoot this circuit, but left without finishing the job. You
were sent to finish the work, having only been told that the timer circuit “has some sort of problem”.
Your first step is to power up the circuit and watch the timing sequence, and after a few minutes of
time you fail to notice anything out of the ordinary.

Now, you could sit there for a whole hour and watch the count sequence, but that might take a
long time before anything unusual appears for you to see. Devise a test procedure that will allow
you to pinpoint problems at a much faster rate.

e Suppose your test failed to identify a problem. Identify possible faults that could appear and
disappear at random, which could explain the disparity between your assessment of the circuit
and the other technician’s.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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B.1 First principles of learning

Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education
is broad-based and principle-oriented. When preparing for a life-long career, education beats
training every time.

Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.
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B.2 Proven strategies for instructors

Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for Al to critique students’ clarity of thought and of
expression, for example by employing Al as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, Al has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

Have students build as much of their lab equipment as possible: building power sources,
building test assemblies', and building complete working systems (no kits!). In order to provide

n the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.
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this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and dialogue with the industry representatives attending.

Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

Address problems while they are small, before they grow larger. This is equally true when
helping students overcome confusion as it is when helping students build professional habits.

Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.
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B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

e Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

e Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

e Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

e Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

¢ Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding?.

e Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

e Above all, recognize that learning is hard work, and that a certain level of
frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied? effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

20n a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.
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B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment? where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic® dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt



Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

105
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTIAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

9 January 2025 — added a new Case Tutorial chapter with a section showing an analog multiplexer
used to create an arbitrary waveform generator circuit.

9 November 2024 — divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

29 April 2024 - added a Case Tutorial section with examples of latching logic circuits and timing
diagrams.

20 July 2023 — added a new Case Tutorial section on the phenomenon of switch bounce as well as
mitigation techniques.

9-10 May 2023 — minor edits on the definition of “modulus” (number of unique and stable output
states of a counter). Also added Case Tutorial sections showing counter circuits with reduced
modulus.

27 April 2023 — minor edits to the Full Tutorial chapter.

14 January 2023 — added a Quantitative Reasoning question regarding reducing the modulus of a
74HC163 synchronous counter by using its preset capability rather than its clear capability in order

to achieve frequency division.

28 November 2022 — placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

25 May 2022 — minor additions to the Simplified Tutorial chapter.
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4-5 May 2022 — added content to the Full Tutorial and to the Introduction regarding synchronous
versus asynchronous clear inputs on JK flip-flops for reduced-count moduli.

17 January 2022 — added a Quantitative Reasoning question regarding wired-AND logic for
truncating a counter’s modulus.

27-28 July 2021 - changed title of the existing Tutorial to “Full Tutorial” and created both
“Simplified Tutorial” and “Case Tutorial” chapters. Also corrected some typographical errors.

10 May 2021 — commented out or deleted empty chapters.

20 October 2020 — corrected error in modulo-5 counter diagram where I had the counter resetting
on a count value of six rather than a count value of five.

5 October 2020 — significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

15 March 2020 — added some instructor notes, and corrected some errors in the instructor notes
for the Quantitative Reasoning problem “Frequency division” and Diagnostic Reasoning problem
“Counter with faulted gate”.

7 June 2020 — added more questions.

7 March 2020 — added Technical Reference section on digital pulse criteria.

29 January 2020 — added Foundational Concepts to the list in the Conceptual Reasoning section.
18 November 2019 — minor edits.

17 November 2019 — added more questions.

16 November 2019 — finished introduction and added some questions.

15 November 2019 — finished first draft of tutorial chapter.

14 November 2019 — document first created.
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