MODULAR ELECTRONICS LEARNING (MODEL)
PROJECT

* SPI CE ckt

vl 1 0 dc 12

2 21 dc 15

1 2 3 4700

2 3 0 7100

dc vl 12 12 1

print dc v(2,3)
print dc i(v2)
end

IR
1

DicITAL SIGNAL PROCESSING

(© 2025 BY TONY R. KUPHALDT — UNDER THE TERMS AND CONDITIONS OF THE CREATIVE
COMMONS ATTRIBUTION 4.0 INTERNATIONAL PUBLIC LICENSE

LAST UPDATE = 28 JuLy 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.



ii



Contents

1 Introduction

2 Case Tutorial

2.1 Example: . . ... e
2.2 Example: . ... e e e e e e e
2.3 Example: . . .. e
2.4 Example: . ... e e e e e e e
2.5 Example: . ... e e e
3 Tutorial
3.1 Analog-digital signal conversion . . . . . . .. ... 0oL
3.2 Datatypes . . . . . . e
3.3 Databuffering . . . . ...
3.4 Digitized signal frequency . . . . . . . .. L
3.5 Fourier transform functions . . . . . . . . ... L o
3.6 Complex numbers . . . . . . . .. L e e
3.7 Digital signal mixing . . . . . . .. L Lo e
3.8 Decimation . . . . . . .. e
3.9 Imterpolation . . . . . . . . ..
3.10 Digital signal filtering . . . . . . . ... L
3.11 Window functions . . . . . . . . . . e
4 Programming References

4.1 Programming in CH++4 . . . . . . . L e
4.2 Programming in Python . . . . . . ... L o
4.3 Discrete Fourier Transform algorithm in C++ . . . . . . ... ... ... ... ...

4.3.1 DFT of asquare wave . . . . . . .« . v v v v v v i vt e

4.3.2 DFTof asine wave . . . .. .. .. . i

4.3.3 DFT of adelta function . . . . . . ... . ... ... ... ...

4.3.4 DFT of two sine waves . . . . . . . . . v o v v it

4.3.5 DFT of an amplitude-modulated sine wave . . . . . ... ... ... .....

4.3.6  DFT of a full-rectified sine wave . . . . .. .. ... ... ... ... ....
4.4 Spectrum analyzer in CH++4 . . . . . . . ...

4.4.1 Spectrum of a square wave . . . . . . .. ...

iii



CONTENTS

4.4.2
4.4.3
4.4.4

Spectrum of a sine wave . . . . . ... oL oo
Spectrum of a sine wave product . . . . . ... ... L
Spectrum of an impulse . . . . . ...

4.5 Crude low-pass filter modeled in C++4+ . . . . . . . . . .. .. .. ... ...,
4.6 Crude high- and low-pass filters modeled in C++ . . . . . . .. .. ... .. ... ..

5 Questions

5.1 Conceptual reasoning . . . . . . . ..o L

5.2

5.3

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7

Reading outline and reflections . . . . .. ... ... o Lo
Foundational concepts . . . . . . . . ...
First conceptual question . . . . . . . ... L oo
Second conceptual question . . . . . . . .. Lo

Explaining the meaning of calculations . . . . . .. .. .. ... ... ... ..
Explaining the meaning of code . . . . . . . . . . ... .. .. ... ... ...

Quantitative reasoning . . . . . . . .. ... e e e e

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

Miscellaneous physical constants . . . . . .. .. ... 0oL
Introduction to spreadsheets . . . . . . ... .. .. ... .. .. ... ...,
First quantitative problem . . . . . . . . . .. ... o
Second quantitative problem . . . ... ... L oo
777 simulation program . . . . . .. ... e e e e

Diagnostic reasoning . . . . . . . ... oL Lo e

5.3.1
5.3.2

First diagnostic scenario . . . . . . . . ... oL o o
Second diagnostic scenario . . . . . ... oL oL oo

A Problem-Solving Strategies

B Instructional philosophy
B.1 First principles of learning . . . . . . . . . . . . ...
B.2 Proven strategies for instructors . . . . . . ... oL o L
B.3 Proven strategies for students . . . . . .. ... oL Lo
B.4 Design of these learning modules . . . . . . .. ... 0oL

H & O Q

Index

Tools used

References

Creative Commons License

Version history

36
37
38
39
40

41
45
46
47
48
48
49
50
o1
52
53
54
57
57
57
58
58
59

61

63
64
65
67
68

71

75

83

85

85



CONTENTS



Chapter 1

Introduction



CHAPTER 1. INTRODUCTION



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?



6 CHAPTER 2. CASE TUTORIAL

2.1 Example:



2.2. EXAMPLE:

2.2 Example:



8 CHAPTER 2. CASE TUTORIAL

2.3 Example:



2.4. EXAMPLE:

2.4 Example:



10 CHAPTER 2. CASE TUTORIAL

2.5 Example:



Chapter 3

Tutorial

3.1 Analog-digital signal conversion
3.2 Data types

3.3 Data buffering

3.4 Digitized signal frequency

3.5 Fourier transform functions

3.6 Complex numbers

3.7 Digital signal mixing

3.8 Decimation

3.9 Interpolation

3.10 Digital signal filtering

3.11 Window functions

11



12

CHAPTER 3. TUTORIAL



Chapter 4

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

13



14 CHAPTER 4. PROGRAMMING REFERENCES

4.1 Programming in C++4

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C+-+ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>
using namespace std;

int main (void)

{
float x, y;
x = 200;
y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;
cout << "the two numbers " << x << " and " << y << " and then" << endl;
cout << '"displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;
cout << "Difference = " << x - y << endl;
cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0O;

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing! to view.

L Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.



4.1. PROGRAMMING IN C++ 15

Let’s examine the C++ source code to explain what it means:

#include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C4++ programming.

Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments
to that function. Braces surround lines of executable code belonging to a particular function.

The float declaration reserves places in the computer’s memory for two floating-point
variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz
would be a single variable).

The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout
command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.



16 CHAPTER 4. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system?, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

gt++ -0 myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram. exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram. exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio®, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on
the two numbers 200 and -560.5 and then
displays the results on the computer’s console.

Sum = -360.5
Difference = 760.5
Product = -112100
Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.



4.1. PROGRAMMING IN C++ 17

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.



18 CHAPTER 4. PROGRAMMING REFERENCES

4.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python3* and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200
>>> y = -560.5
>>>x +y
-360.5
>>> x -y
760.5
>>> x x y
-112100.0
>>x /vy
-0.35682426404995538
>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.



4.2. PROGRAMMING IN PYTHON 19

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *
>>> 5in(30.0)
-0.98803162409286183
>>> sin(radians(30.0))
0.49999999999999994
>>> pow(2.0, 5.0)

32.0

>>> 10g10(10000.0)

4.0

>>> e
2.7182818284590451

>>> pi
3.1415926535897931

>>> log(pow(e,6.0))
6.0

>>> asin(0.7071068)
0.78539819000368838
>>> degrees(asin(0.7071068))
45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the 1og10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.



20 CHAPTER 4. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors® as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * £ * 4.7e-6)

>>> zc complex (0,-xc)

>>> x1 =2 % pi * f % 1.0

>>> z1 = complex(0,x1)

>>> r + zc + z1
(400-187.388112391548823)

>>> 1/(1/r + 1/zc + 1/21)
(355.837695813625+125.357937776193853)
>>> polar(r + zc + zl)
(441.717448903332, -0.4381072059213295)
>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)
-0.4381072059213295

>>> degrees(phase(r + zc + z1))
-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect () function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as X¢ £ —90° with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 §2), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0 — j X, © and
0+ jX; Q, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Q / —25.102°).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians; abs() returns
just the polar magnitude; phase () returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.



4.2. PROGRAMMING IN PYTHON 21

assignment of variables as well as a convenient text record® of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram. py:

x = 200
y = -560.5

print ("Sum")
print(x + y)

print ("Difference")
print(x - y)

print ("Product")
print(x * y)

print ("Quotient")
print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5
Difference
760.5

Product
-112100.0
Quotient
-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.



22 CHAPTER 4. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.



4.3. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 23

4.3 Discrete Fourier Transform algorithm in C++

The following page of C++ code is the main() function for a Discrete Fourier Transform algorithm.
As written, this C+4 program simulates a square wave and computes the DC average value as well
as the first nine harmonics of this wave, although the f(x) function code could be re-written to
generate any test waveform desired.

A DFT algorithm requires no calculus, only simple trigonometric functions (sine and cosine) and
basic arithmetic (multiplication and addition, squares and square roots). The basic idea of it is
simple enough: multiply the instantaneous values of the test waveform by the corresponding values
of a sinusoid at some harmonic of the test frequency, and sum all of those values over one period of
the test waveform. If the sum adds up to zero (or nearly) zero, then that harmonic does not exist
in the test waveform. The magnitude of this sum indicates how strong the harmonic is in the test
waveform.

Even the mathematical foundation of the DFT is simple, and requires no calculus. It is based on
trigonometric identities, specifically those involving the product (multiplication) of sine and/or cosine
terms. When two sinusoids of differing frequency are multiplied together, the result is two completely
different sinusoids: one having a frequency equal to the sum of the two original frequencies, and
the other having a frequency equal to the difference of the two original frequencies. The basic
trigonometric identity is shown here:

cos(x — y) + cos(x + y)
2
Next, is the version of this using w, and wy to represent the two waves’ frequencies:

COST COSY =

cos(wgt — wyt) + cos(wyt + wyt)
2

If the sinusoids being multiplied happen to have the same frequency and be in-phase with each
other, the result is a second harmonic and a DC (constant) value (i.e. one sinusoid having a frequency
of 2w and the other having a frequency of zero). So, in order to test a waveform for the presence of a
particular harmonic, we multiply it by that other harmonic and see if the resulting product contains
DC. How do we test a wave for DC? We sum up all its instantaneous values and see if the result is
anything other than zero!

cos(wgt) cos(wyt) =

Any practical DFT needs to be just a bit more sophisticated, though, because we must account
for phase. We obtain a DC-containing product only if the frequencies and phases match. If we
happen to multiply a wave by another that’s exactly 90° out of phase, we don’t get any DC. To
account for phase shift, then, what we do is compute two products and two sums: one based on a
sine wave and the other based on a cosine wave (i.e. 90° apart from each other, so at least one of
these two sums will show a match) and then tally their respective sums by the Pythagorean theorem:
v/x? + y2. The rationale for using sine and cosine waves is the same as representing an AC phasor
quantity in rectangular form: the sum based on cosines represents the real component of the phasor
while the sum based on sines represents the imaginary component. \/z2 + 2 simply computes the
polar-form magnitude of these sinusoids’ sums.



24

CHAPTER 4. PROGRAMMING REFERENCES

#include <iostream>
#include <math.h>
using namespace std;

float f(int x);

int main(void)

{

}

int

sample, harmonic;

float sinsum, cossum, polarsum[10];

for (harmonic = 1; harmonic < 10; ++harmonic)
{
sinsum = O;
cossum = 0;
for (sample = 0; sample < 128; ++sample)
{
sinsum = sinsum + (f(sample) * (sin(sample*harmonic*2*M_PI/128)));
cossum = cossum + (f(sample) * (cos(samplex*harmonic*2*M_PI/128)));
}
polarsumlharmonic] = sqrt(pow(cossum, 2) + pow(sinsum, 2));
cout << "Harmonic = " << harmonic << " -- Normalized weight = "
<< fixed << polarsum[harmonic] / polarsum[1] << endl;
}
return 0;

float f(int x)

{

if (x < 64)
return 1.0;
else

return -1.0;




4.3. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 25

What follows is an explanation of how this DFT algorithm’s code works.

e The include and namespace directives instruct the compiler to be prepared for functions of
text printing (iostream) and for mathematics (math.h).

e The next line (float f(int x);) is a function prototype for a C++ function named f. This
function purposely resembles the standard mathematical function form f(x) because it is where
the code will reside for the waveform to be analyzed. The input to this function will be an
integer number, and the output will be a floating-point number (i.e. capable of fractional
values, unlike an integer). The domain of our function happens to be 0 to 127, in whole-
numbered steps. The range of our function can be anything representable by a floating-point
number. The actual code for this function may appear later in the file (as is the case in this
example), or it may even reside in its own source file to be linked to the main program at
compilation time.

e Inside the main() function we first declare several variables, both integer and floating-point.
All mathematical functions are computed over 128 samples, numbered 0 through 127. During
each of these samples, we compute the value of our test waveform (£(x)) and multiply it by
the corresponding value of a sine wave and of a cosine wave, each at some harmonic frequency
of the test waveform. The inner for() loop computes these products, and also a running
total of each (sinsum and cossum). After each completion of the inner for() loop, we use
the Pythagorean Theorem to combine the sine- and cosine-sums so that we get a complete
summation (polarsum) for that harmonic, saving each one in an array polarsum[], with
polarsum[1] being the basis for normalizing the values of all others. We then print that
summed value. The outer for () loop repeats this process for harmonics 1 through 9.

e Our test waveform is generated within its own subroutine, called a function in C and C++
alike. Here is where we insert code to generate whatever waveform we wish to analyze. In this
particular example, it is a square wave with a peak value of 1. The algorithm for creating this
square wave is extremely simple: for x values from 0 to 63 the wave is at +1, and for = values
from 64 to 127 the wave is at —1. Since the domain of x happens to be 0 to 127 (as called by
the main() program) this produces one symmetrical cycle of a square wave.

Locating the f(x) function within its own section of C++ code allows for easy modification
of that function in the future, without modifying the main() program. This is generally a good
programming practice: to make your code modular so that individual sections of it may be separately
edited (and even reside in separate source files!). Doing this makes it easier for teams of programmers
to develop projects together, and also makes it easier for code to be re-used in other projects.



26 CHAPTER 4. PROGRAMMING REFERENCES

4.3.1 DFT of a square wave

When the example code previously shown is compiled and run, the result is the following text output:

Harmonic = 1 -- Normalized weight = 1.000000
Harmonic = 2 -- Normalized weight = 0.000000
Harmonic = 3 -- Normalized weight = 0.333601
Harmonic = 4 -- Normalized weight = 0.000000
Harmonic = 5 -- Normalized weight = 0.200483
Harmonic = 6 -- Normalized weight = 0.000000
Harmonic = 7 -- Normalized weight = 0.143548
Harmonic = 8 -- Normalized weight = 0.000000
Harmonic = 9 -- Normalized weight = 0.112009

This program assumes the first harmonic’s amplitude is the “norm” by which all other harmonics
are scaled. Therefore, the first harmonic always shows up as having a normalized weight of 1, with
all other harmonic values shown proportionate to that norm.

Fourier theory predicts that a square wave with a 50% duty cycle will only contain odd harmonics
(in agreement with our symmetry rule), the relative amplitudes of those harmonics diminishing
by a factor of % where n is the harmonic number. Therefore, if the first harmonic is normalized
to an amplitude of 1, then the third harmonic will have an amplitude of %, the fifth harmonic an
amplitude of %, ete.:

4 1 1 1 1
Vsquare = — Vm | sinwt 4+ = sin 3wt + = sindwt + = sin 7wt + - - - + — sin nwt
T 3 5 7 n

e 1st harmonic = % =1

e 3rd harmonic = § ~ 0.3333
e 5th harmonic = % = 0.2000
e 7th harmonic = % ~ 0.1429
e 9th harmonic = % ~0.1111

As you can see, the output of our simple DFT algorithm closely approximates these theoretical
results.

By modifying just the code within the f(x) function we may compute the harmonic content of
different wave-shapes. The next several examples will show the modified f(x) function code and
the resulting output of this DFT algorithm.



4.3. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 27

4.3.2 DFT of a sine wave

First, we will re-code £ (x) to generate a simple sine wave. The argument = passed to this function
is an integer number starting at zero and incrementing to 127, representing a sequence of samples
spanning one period of the fundamental frequency, and so some scaling arithmetic is necessary to
convert this domain into a value in radians from 0 to 27 suitable for the sin() function:

float f(int x) // Sine wave function
{
return sin(2 * M_PI * x / 128.0);

}
Harmonic = 1 -- Normalized weight = 1.000000
Harmonic = 2 -- Normalized weight = 0.000000
Harmonic = 3 -- Normalized weight = 0.000000
Harmonic = 4 -- Normalized weight = 0.000000
Harmonic = 5 -- Normalized weight = 0.000000
Harmonic = 6 -- Normalized weight = 0.000000
Harmonic = 7 -- Normalized weight = 0.000000
Harmonic = 8 -- Normalized weight = 0.000000
Harmonic = 9 -- Normalized weight = 0.000000

Not surprisingly, the result is a strong first harmonic and no other harmonics. Also, we get the
same results if we replace the sine function with a cosine function in f(x): in either case, a plain
sinusoid only has one harmonic component, and that is the first harmonic.



28 CHAPTER 4. PROGRAMMING REFERENCES

4.3.3 DFT of a delta function

As another test of our DFT algorithm, we will re-code f(x) to output a delta function, which is
nothing more than the briefest of impulses. A delta function consists of a “spike”” at time zero
followed (and preceded) by values of zero:

float f(int x) // Delta impulse function
{
if (x == 0)
return 1.0;
else
return 0.0;
}
Harmonic = 1 -- Normalized weight = 1.000000
Harmonic = 2 -- Normalized weight = 1.000000
Harmonic = 3 -- Normalized weight = 1.000000
Harmonic = 4 -- Normalized weight = 1.000000
Harmonic = 5 -- Normalized weight = 1.000000
Harmonic = 6 -- Normalized weight = 1.000000
Harmonic = 7 -- Normalized weight = 1.000000
Harmonic = 8 -- Normalized weight = 1.000000
Harmonic = 9 -- Normalized weight = 1.000000

The result is all harmonics at equal strength, which is what the Fourier transform predicts for a
delta function: a constant-valued function in the frequency domain. In other words, an infinitesimally
brief impulse is equivalent to a superposition of all frequencies.

This is a good example of our steepness rule in action: a delta function consists of nothing but
steepness, being a “spike” up and down over the briefest possible time interval. As such, it contains
all frequencies, which of course includes the nine harmonic frequencies shown.

If we consider carefully how the DFT algorithm works, it becomes evident why this must be
so, and precisely how every frequency’s value must have the same normalized value. The very first
sample (sample = 0) is the only one where the delta function is not zero, and therefore this will be
the only sample where any of the sums tallied in the program accumulate any value. Furthermore,
the only sums accumulating value during this sample must be the cosine sums because the sine
function is zero at an angle of zero, while cosine is one at an angle of zero. Therefore, every cosine
function multiplied by the delta impulse function will increment its sum by one. This must include
every cosine of every conceivable frequency and not just the select harmonics tested by our DFT
algorithm. Therefore, based on the criteria of the DFT algorithm, a delta function must contain all
cosine terms, of every frequency.

7A true Dirac delta function actually consists of an infinite-magnitude spike with zero width, but having an
enclosed area equal to unity. We cannot emulate that in procedural code, but we may approximate it!



4.3. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 29

In practice there is no such thing as a real delta impulse function. A function consisting of a pulse
of infinitesimal width defies physical implementation, but nevertheless is useful as a theoretical tool,
and serves as a limit for very brief (real) pulses. The practical lesson to learn here is that the spectra
of real pulse signals approaches uniformity as the width of the pulse approaches zero —i.e. the briefer
the pulse duration, the wider the spread of constituent frequencies. This means any circuitry tasked
with amplifying, attenuating, or otherwise processing this pulse signal must contend with a broad
span of frequencies, and failure to properly process all of the frequencies within that pulse signal
invariably corrupts the pulse in some way.



30 CHAPTER 4. PROGRAMMING REFERENCES

4.3.4 DFT of two sine waves

Next, we will try modifying f(x) to generate a superposition of two sine waves, one at 5x our
assumed fundamental frequency, and another at 8x the fundamental:

float f(int x) // Dual sine waves

{
return sin(5 * 2 * M_PI * x / 128.0)
+ sin(8 * 2 * M_PI * x / 128.0);

}

From this we would expect a harmonic spectrum consisting of a 5th harmonic and 8th harmonic,
and nothing else. What we obtain looks strange at first, though:

Harmonic = 1 -- Normalized weight = 1.000000
Harmonic = 2 -- Normalized weight = 3.847159
Harmonic = 3 -- Normalized weight = 4.564931
Harmonic = 4 -- Normalized weight = 5.773269
Harmonic = 5 -- Normalized weight = 159252960.000000
Harmonic = 6 -- Normalized weight = 4.397245
Harmonic = 7 -- Normalized weight = 2.756398
Harmonic = 8 -- Normalized weight = 159252960.000000
Harmonic = 9 -- Normalized weight = 1.914945

The amplitudes of the 5th and 8th harmonics are enormous, while the others are meager by
comparison. Remember, though, that our DFT algorithm normalizes all harmonic amplitudes to
that of the first harmonic, which in this particular case should be virtually nonexistent. Therefore,
the first harmonic registers with a weight of 1, the 5th and 8th with very large weights, and the
others about as small as the first harmonic (in comparison with the 5th and 8th). So, even with the
crude nature of this algorithm, we get a spectral response that makes sense for the test waveform.

This is a good example of our superposition rule, where the spectrum of two superimposed
waves is the superposition of those waves’ spectra. The 5th harmonic wave consisted of a single peak
in its “spectrum” as did the 8th harmonic wave. When these two waves were added in their time
domains, the result is a spectrum consisting of those two frequency peaks, no more and no less.



4.3. DISCRETE FOURIER TRANSFORM ALGORITHM IN C++ 31

4.3.5 DFT of an amplitude-modulated sine wave

Next, we will re-code f(x) to generate an amplitude-modulated waveform: the product of a sine
wave at 2x the assumed fundamental and another sine wave at 5x the fundamental.

float f(int x) // Mixed sine waves (AM)
{
return sin(2 * 2 * M_PI * x / 128.0)
* sin(5 * 2 * M_PI * x / 128.0);
}

Modulation theory predicts that “mixing” two sinusoids in this manner will result in two
completely new frequencies: one being the sum of the two mixed frequencies, and the other being
the difference of the two mixed frequencies. So, for one sine wave oscillating at 2w and another at
5w, we would expect one sinusoid at (5 4+ 2)w and another at (5 — 2)w.

Harmonic = 1 -- Normalized weight = 1.000000
Harmonic = 2 -- Normalized weight = 0.077597
Harmonic = 3 -- Normalized weight = 17697600.000000
Harmonic = 4 -- Normalized weight = 0.180189
Harmonic = 5 -- Normalized weight = 0.128424
Harmonic = 6 -- Normalized weight = 0.152171
Harmonic = 7 -- Normalized weight = 17697598.000000
Harmonic = 8 -- Normalized weight = 0.150321
Harmonic = 9 -- Normalized weight = 0.557960

True to form, the result is a pair of harmonics in the spectrum, a 3rd harmonic and a 7th
harmonic.

This is an excellent example of our non-linear systems rule: when signals pass through
non-linear systems, new frequencies arise. Multiplication of two independent signals is definitely
nonlinear, as doubling both signals’ amplitudes does not result in a doubled output amplitude. What
came into this system was a 2nd and 5th harmonic, but what left was a 3rd and 7th harmonic.



32 CHAPTER 4. PROGRAMMING REFERENCES

4.3.6 DFT of a full-rectified sine wave

Next, we will re-code £ (x) to generate the first half (i.e. positive half) of a sine wave. This is all we

need to simulate a full-wave rectified sinusoid since all other half-periods of that wave will identical

to the first. To represent this in code, we just take the same line used for the sine wave and eliminate
T

the 2 multiplier. In other words, instead of calculating sin (2178) we compute sin (1“7"‘8)

float f(int x) // Full-rectified sine wave

{
return sin(M_PI * x / 128.0);
}

The result is shown here:

Harmonic = 1 -- Normalized weight = 1.000000
Harmonic = 2 -- Normalized weight = 0.200121
Harmonic = 3 -- Normalized weight = 0.085852
Harmonic = 4 -- Normalized weight = 0.047763
Harmonic = 5 -- Normalized weight = 0.030450
Harmonic = 6 -- Normalized weight = 0.021127
Harmonic = 7 -- Normalized weight = 0.015534
Harmonic = 8 -- Normalized weight = 0.011915
Harmonic = 9 -- Normalized weight = 0.009439

Fourier theory predicts the relative amplitudes of each harmonic for a full-rectified sine wave
diminish by a factor of émr}i_l where n is the harmonic number. Therefore, if the first harmonic has
an amplitude of %, then the second harmonic will have an amplitude of %, the third harmonic an
amplitude of %, etc. If we normalize all the amplitudes to that of the first harmonic, the relative

amplitudes will be as follows:

e 1st harmonic = % =1

e 2nd harmonic = % = % = 0.200
e 3rd harmonic = % ~ 0.0857

e 4th harmonic = % = % ~ 0.0476
e 5th harmonic = % = % ~ 0.0303

As you can see, the output of our simple DFT algorithm closely approximates these theoretical
results.

This is a good example of our symmetry rule. A rectified sine wave does not have the same
shape when inverted, and so we know it must contain even-numbered harmonics. Contrast this
against symmetrical waveforms such as the square wave from the original code example, generating
a spectrum consisting only of odd-numbered harmonics.



4.4. SPECTRUM ANALYZER IN C++ 33

4.4 Spectrum analyzer in C++4

This program builds on the foundation of the Discrete Fourier Transform (DFT) from the previous
section, but instead of displaying only the normalized harmonic amplitudes this program outputs
a comma-separated value (CSV) file that may be plotted using any spreadsheet application (e.g.
Microsoft Excel) or mathematical visualizing application (e.g. gnuplot).

I happened to use gnuplot to generate the spectra. My gnuplot script is as follows, saved to a
file named script.txt:

set datafile separator ","

set xrange [0:10.0]

set style line 1 1lw 2 1lc rgb "red"

plot ’data.csv’ using 1:2 with lines 1s 1

All C++ programs were compiled using g++ and run with text output redirected to a file named
data.csv using the following command-line instructions:

g++ main.cpp ; ./a.out > data.csv

Then, after the comma-separated value file was populated with data from the C++ program’s
execution, I run gnuplot using the following command:

gnuplot -p script.txt



34 CHAPTER 4. PROGRAMMING REFERENCES

#include <iostream>
#include <math.h>
using namespace std;

#define MAX 4096
#define CYCLES 10

float f(int x);

int main(void)

{
int sample;
float iharm, sinsum, cossum, polarsum;
for (iharm = 0.0; iharm < 10.0; iharm = iharm + 0.1)
{
sinsum = 0;
cossum = 0;
for (sample = 0; sample < MAX; ++sample)
{
sinsum = sinsum + (f(sample) * (sin(CYCLES*sample*iharm*2xM_PI/MAX)));
cossum = cossum + (f(sample) * (cos(CYCLES*sample*iharm*2xM_PI/MAX)));
}
polarsum = sqrt(pow(cossum, 2) + pow(sinsum, 2));
cout << iharm << " , " << polarsum << endl;
}
return 0;
}

float f(int x)
{

// (return value of function to be analyzed here)

}




4.4. SPECTRUM ANALYZER IN C++

4.4.1 Spectrum of a square wave

35

float f(int x) // Square wave

{
if ((x %
return

else
return

(MAX / CYCLES)) < (0.5 * MAX / CYCLES))

1.0;

-1.0;

3000

2500

2000

1500

1000

500

T
‘data.csv’ using 1:2

L;J:izﬁgk

10



36 CHAPTER 4. PROGRAMMING REFERENCES

4.4.2 Spectrum of a sine wave

float f(int x) // Sine wave
{

return sin(CYCLES*x*2xM_PI/MAX) ;
}

2500 T T T

T
‘data.csv’ using 1:2

2000

1500 —

1000

500 - 1




4.4. SPECTRUM ANALYZER IN C++ 37

4.4.3 Spectrum of a sine wave product

float f(int x) // Product of f and 1.5f sine waves
{

return sin(CYCLES*x*2*M_PI/MAX) * sin(CYCLES#*1.5%x*2xM_PI/MAX) ;
T

1200 T T T

T
‘data.csv’ using 1:2

1000

800 - —

600 1

400 - —

200 y

0 L L L L
0 2 4 6 8 10

Note the two peaks at 0.5f and 2.5f: frequencies representing the difference and sum,
respectively, of the original sinusoids.



38 CHAPTER 4. PROGRAMMING REFERENCES

4.4.4 Spectrum of an impulse

float f(int x) // Unity impulse function at x = 0

{
if (x == 0)
return 1;

else
return O;

T
‘data.csv’ using 1:2 ——
14 R

12 | -

0.8 - E

0.2 4

0 1 1 1 1
0 2 4 6 8 10

Note how the impulse is equivalent to a spectrum consisting of all frequencies. Since the
amplitude of the spectrum is much less than in previous examples, I used a different y-axis range in
gnuplot than in the other simulations:

set datafile separator ","

set xrange [0:10.0]

set yrange [0:1.5]

set style line 1 1w 2 1lc rgb "red"

plot ’data.csv’ using 1:2 with lines 1s 1




4.5. CRUDE LOW-PASS FILTER MODELED IN C++

4.5 Crude low-pass filter modeled in C+-+

39

#include <iostream>
using namespace std;

int main(void)

{

float wavel1[30] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0,
10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0};
float wave2[30] = {0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0.0,
0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0.0,
0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0.0, 10.0, 0.0,
float *x = wavel;
float aout = 0.0;
int n;
for (n =0 ; n < 30 ; ++n)
{
aout = (x[n] - aout)/3 + aout;
cout << n << " , " << x[n] << ", " << aout << endl;
¥
return O;

10.0,




40

CHAPTER 4. PROGRAMMING REFERENCES

4.6 Crude high- and low-pass filters modeled in C+4+

#include <iostream>
#include <math.h>
using namespace std;

#define STEPS 500
int main (void)

{
float in[STEPS], 1lp = 0.0, hp;

int n;
sigma = 2.0 / STEPS;
for (n = 0 ; n < STEPS ; ++n)

for (n = 0 ; n < STEPS ; ++n)
{
if (n < 10)
in[n] = 0.0;

else
in[n] = 10.0;

}

for (n = 0 ; n < STEPS ; ++n)

{

in[n] - 1p;

((in[n] - 1p) * sigma) + lp;

<< np <" " << in[n] << "

hp =
1p
cout

return O;

float peak = 10.0, freq = 15.0, sigma;

// Rate in units of Hz or s~-1

in[n] = peak * sin(freq * n / STEPS);

// Square wave input

, " << 1p << "

// Sine wave input

, " << hp << endl;




Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

41



42 CHAPTER 5. QUESTIONS

GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

e Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.




43

GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.




44

CHAPTER 5. QUESTIONS

Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?



5.1. CONCEPTUAL REASONING 45

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.



46 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning
as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.



5.1. CONCEPTUAL REASONING 47

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

‘ Conservation of Energy

‘Simpliﬁcation as a problem-solving strategy‘

‘Thought experiments as a problem-solving strategy‘

‘ Limiting cases as a problem-solving Strategy‘

‘ Annotating diagrams as a problem-solving strategy‘

‘Interpreting intermediate results as a problem-solving strategy

‘Graphing as a problem-solving strategy

‘ Converting a qualitative problem into a quantitative problem‘

‘ Converting a quantitative problem into a qualitative problem‘

‘Working “backwards” to validate calculated results‘




48 CHAPTER 5. QUESTIONS

‘Reductio ad absurdum

‘Re—drawing schematics as a problem-solving strategy

’ Cut-and-try problem-solving strategﬂ

‘ Algebraic substitution

5.1.3 First conceptual question

o 777.
o 777.

o 777.

5.1.4 Second conceptual question

o 777.
o 777.

o 777.



5.1. CONCEPTUAL REASONING 49

5.1.5 Applying foundational concepts to 777

Identify which foundational concept(s) apply to each of the declarations shown below regarding the
following circuit. If a declaration is true, then identify it as such and note which concept supports
that declaration; if a declaration is false, then identify it as such and note which concept is violated
by that declaration:

(Under development)

o 777
o 777
o 777

° 777

Here is a list of foundational concepts for your reference: Conservation of Energy,
Conservation of Electric Charge, behavior of sources vs. loads, Ohm’s Law, Joule’s Law,
effects of open faults, effect of shorted faults, properties of series networks, properties
of parallel networks, Kirchhoff’s Voltage Law, Kirchhoff’s Current Law. More than one of

these concepts may apply to a declaration, and some concepts may not apply to any listed declaration
at all. Also, feel free to include foundational concepts not listed here.

o 777,
o 777,

o 777,



50 CHAPTER 5. QUESTIONS

5.1.6 Explaining the meaning of calculations

Below is a quantitative problem where all the calculations have been performed for you, but all
variable labels, units, and other identifying data are unrevealed. Assign proper meaning to each
of the numerical values, identify the correct unit of measurement for each value as well as any
appropriate metric prefix(es), explain the significance of each value by describing where it “fits” into
the circuit being analyzed, and identify the general principle employed at each step:

Schematic diagram of the 777 circuit:

(Under development)

Calculations performed in order from first to last:

l.z4+y=2=2
2.z4+y==x
J.z+y==z
4. x+y==z
S. r+y==z
6. z4+y==z

o 777,
o 777,

o 777,



5.1. CONCEPTUAL REASONING 51

5.1.7 Explaining the meaning of code

Shown below is a schematic diagram for a 777 circuit, and after that a source-code listing of a
computer program written in the 777 language simulating that circuit. Explain the purpose of each
line of code relating to the circuit being simulated, identify the correct unit of measurement for
each computed value, and identify all foundational concepts of electric circuits (e.g. Ohm’s Law,
Kirchhoff’s Laws, etc.) employed in the program:

Schematic diagram of the 777 circuit:

(Under development)

Code listing;:

#include <stdio.h>

int main (void)

{

return 0;

}

o 777.
o 777.

o 777,



52 CHAPTER 5. QUESTIONS

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

49

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.



5.2. QUANTITATIVE REASONING 53

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (o) = 1.25663706212(19) x 1076 Henrys per meter (H/m)
Electric permittivity of free space (€y) = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.



54 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46. 9 Kiloneters
Time el apsed 1.18 Hour s
Aver age speed = Bl / B2 knm h

G |W|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.



5.2. QUANTITATIVE REASONING 95

Common’ arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4n2) - (4*B3*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4A2) - (4*B3*B5))) / (2*B3)
3 a = 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coeflicients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.



56 CHAPTER 5. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = V/b% — dac z=2a

_—bEy
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4r2) - (4*B3*B5))
2 X_2 = (-B4 - c1) / Cc2 |= 2*B3

3 a= 9

4 b = 5

5 c = )

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.



5.2. QUANTITATIVE REASONING

5.2.3 First quantitative problem

o 777.
o 777.

o 777.

5.2.4 Second quantitative problem

o 777.
o 777.

o 777.

5.2.5 77?7 simulation program

Write a text-based computer program (e.g. C, C++, Python) to calculate 777

o 777,
o 777,

o 777,

o7



58 CHAPTER 5. QUESTIONS

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 First diagnostic scenario

o 777,
o 777,

o 777.



5.3. DIAGNOSTIC REASONING

5.3.2 Second diagnostic scenario

o 777.
o 777.

o 777.

59



60

CHAPTER 5. QUESTIONS



Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

61



62

APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.




Appendix B

Instructional philosophy

63



64

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.1 First principles of learning

Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education is
broad-based and principle-oriented. When preparing for a life-long technical career, education
beats training every time.

Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.



B.2.

PROVEN STRATEGIES FOR INSTRUCTORS 65

B.2 Proven strategies for instructors

Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for Al to critique students’ clarity of thought and of
expression, for example by employing Al as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, Al has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

Have students build as much of their lab equipment as possible: building power sources,
building test assemblies', and building complete working systems (no kits!). In order to provide

n the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.



66

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and to dialogue with the industry representatives at those
meetings.

Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

Hold mandatory “check-in” meetings between all program faculty and each new student during
their first term. Offer these to all other students as an option, except for any students
continuing to manifest unprofessional behaviors, poor academic performance, or who have
some other need for a face-to-face meeting with faculty.

Address problems while they are small, before they grow larger. This is equally true for
tutoring technical concepts as it is for helping students build professional habits.

Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.



B.3. PROVEN STRATEGIES FOR STUDENTS 67

B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

e Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

e Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

e Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

e Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

¢ Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding?.

e Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

e Above all, recognize that learning is hard work, and that a certain level of
frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied? effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

20n a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.



68

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.



B.4. DESIGN OF THESE LEARNING MODULES 69

These learning modules were expressly designed to be used in an “inverted” teaching
environment? where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic® dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).



70 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt



Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

71



72 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTIAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.



Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.



74 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.



Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

75



76 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.



7

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;



78 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,



79

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully



80 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.



81

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.



82

APPENDIX D. CREATIVE COMMONS LICENSE



Appendix E

References

83



84

APPENDIX E. REFERENCES



Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

28 July 2025 — added some C++ programming examples showing how low-pass and high-pass
filters may be modeled.

22 April 2025 — document first created, with negligible content.

85



Index

Adding quantities to a qualitative problem, 62

Annotating diagrams, 61

C++, 14

Checking for exceptions, 62
Checking your work, 62
Code, computer, 71
Compiler, C++, 14
Computer programming, 13

Delta impulse function, 28
DFT, 23

Dimensional analysis, 61
Dirac delta function, 28
Discrete Fourier Transform, 23

Edwards, Tim, 72

Graph values to solve a problem, 62
Greenleaf, Cynthia, 41

How to teach with these modules, 69
Hwang, Andrew D., 73

Identify given data, 61
Identify relevant principles, 61
Impulse function, 28
Intermediate results, 61
Interpreter, Python, 18
Inverted instruction, 69

Java, 15
Knuth, Donald, 72

Lamport, Leslie, 72
Limiting cases, 62

Metacognition, 46

86

Moolenaar, Bram, 71
Murphy, Lynn, 41

Open-source, 71

Problem-solving;:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving;:
Problem-solving:

61

Problem-solving:
Problem-solving:
Problem-solving;:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving:
Problem-solving;:

61

Problem-solving:

annotate diagrams, 61

check for exceptions, 62
checking work, 62

dimensional analysis, 61

graph values, 62

identify given data, 61
identify relevant principles, 61
interpret intermediate results,

limiting cases, 62

qualitative to quantitative, 62
quantitative to qualitative, 62
reductio ad absurdum, 62
simplify the system, 61
thought experiment, 61

track units of measurement, 61
visually represent the system,

work in reverse, 62

Programming, computer, 13
Pythagorean theorem, 23

Python, 18
Qualitatively  approaching a  quantitative
problem, 62

Reading Apprenticeship, 41
Reductio ad absurdum, 62, 68, 69

Schoenbach, Ruth, 41
Scientific method, 46
Simplifying a system, 61

Socrates, 68



INDEX

Socratic dialogue, 69

Source code, 14
SPICE, 41
Stallman, Richard, 71

Thought experiment, 61
Torvalds, Linus, 71

Units of measurement, 61
Visualizing a system, 61

Whitespace, C++, 14, 15

Whitespace, Python, 21

Work in reverse to solve a problem, 62
WYSIWYG, 71, 72

87



	Introduction
	Case Tutorial
	Example: 
	Example: 
	Example: 
	Example: 
	Example: 

	Tutorial
	Analog-digital signal conversion
	Data types
	Data buffering
	Digitized signal frequency
	Fourier transform functions
	Complex numbers
	Digital signal mixing
	Decimation
	Interpolation
	Digital signal filtering
	Window functions

	Programming References
	Programming in C++
	Programming in Python
	Discrete Fourier Transform algorithm in C++
	DFT of a square wave
	DFT of a sine wave
	DFT of a delta function
	DFT of two sine waves
	DFT of an amplitude-modulated sine wave
	DFT of a full-rectified sine wave

	Spectrum analyzer in C++
	Spectrum of a square wave
	Spectrum of a sine wave
	Spectrum of a sine wave product
	Spectrum of an impulse

	Crude low-pass filter modeled in C++
	Crude high- and low-pass filters modeled in C++

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	First conceptual question
	Second conceptual question
	Applying foundational concepts to ???
	Explaining the meaning of calculations
	Explaining the meaning of code

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	First quantitative problem
	Second quantitative problem
	??? simulation program

	Diagnostic reasoning
	First diagnostic scenario
	Second diagnostic scenario


	Problem-Solving Strategies
	Instructional philosophy
	First principles of learning
	Proven strategies for instructors
	Proven strategies for students
	Design of these learning modules

	Tools used
	Creative Commons License
	References
	Version history
	Index

