MODULAR ELECTRONICS LEARNING (MODEL)
PROJECT

* SPI CE ckt

vl 1 0 dc 12

2 21 dc 15

1 2 3 4700

2 3 0 7100

dc vl 12 12 1

print dc v(2,3)
print dc i(v2)
end

IR
1

MULTIPLEXERS AND DEMULTIPLEXERS

(©) 2019-2025 BY TONY R. KUPHALDT — UNDER THE TERMS AND CONDITIONS OF THE
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL PUBLIC LICENSE

LAST UPDATE = 9 JANUARY 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction

1.1 Recommendations for students oL
1.2 Challenging concepts related to digital multiplexers and demultiplexers.
1.3 Recommendations for instructors L oL L oo
2 Case Tutorial
2.1 Example: arbitrary waveform generator using an analog multiplexer
3 Tutorial
3.1 Steering digital signals L L
3.2 Data concentration
3.3 Multiplexer and demultiplexer construction
3.4 Multiplexing and demultiplexing words Lo oL
3.5 Common mux and demux symbols L Lo o
3.6 Arbitrary logic functions oL
3.7 Microcontroller I/O expansion
4 Questions
4.1 Conceptual Teasoningo e e e
4.1.1 Reading outline and reflections
4.1.2 Foundational concepts
4.1.3 Oscilloscope alternate and chop modes,
4.1.4 Mux versus demuxXcu et e e e e e
4.1.5 Multiplexed accelerometers e
4.1.6 Two-input selector logic L
4.1.7 TAHCISL MUX .+ v v v o e e e e e e e e e e e e e e e e e e e
4.1.8 Address latching L
4.2 Quantitative reasoning e
4.2.1 Miscellaneous physical constants 0L
4.2.2 Introduction to spreadsheets L.
4.2.3 Arbitrary truth table oL o
4.2.4 Arbitrary SOP expression L e
4.2.5 TAHCIb4 decoder o o o o e
4.3 Diagnostic reasoningo e

iii

S Ot w W

J

11
11
13
14
16
17
19
21

CONTENTS

4.3.1 Faulted AWG circuit . .

4.3.2 Faulted concentrator circuit e

A Problem-Solving Strategies

B Instructional philosophy
B.1 First principles of learning . . .
B.2 Proven strategies for instructors
B.3 Proven strategies for students .
B.4 Design of these learning modules

Tools used

C
D Creative Commons License
E References

F

Version history

Index

53

55
56
57
59
60

63

67

75

77

78

CONTENTS

Chapter 1

Introduction

1.1 Recommendations for students

Multiplezing in its broadest sense refers to the communication of multiple streams of data over
a commonly-shared channel. Many different methods exist to do this, but in basic digital logic
circuits the strategy is time-division multiplexing, where a common data channel conveys multiple
data streams one stream at a time. A digital multiplezer (“mux”) is a logic circuit “selecting” one-
of-n inputs to be output to a single line. A digital demultiplezer (“demux”) takes a single input
and sends it to one-of-n output lines. Both muxes and demuxes are controlled by a binary input
instructing which I/0 is to be selected.

Important concepts related to multiplexing and demultiplexing include binary numeration,
analog versus digital signals, combinational logic, decoding, strobing, microcontrollers,
and flip-flops.

Here are some good questions to ask of yourself while studying this subject:

e How might an experiment be designed and conducted to test the proper operation of a
multiplexer IC? What hypothesis (i.e. prediction) might you pose for that experiment, and
what result(s) would either support or disprove that hypothesis?

e How might an experiment be designed and conducted to test the proper operation of a
demultiplexer IC? What hypothesis (i.e. prediction) might you pose for that experiment,
and what result(s) would either support or disprove that hypothesis?

e What is the fundamental difference between a multiplexer and a demultiplexer?

e How can multiplexing reduce the number of conductors necessary for communication?
e What is the function of an “enable” or “strobe” input to a digital logic circuit?

e Which function (mux or demux) is most similar to an decoder?

e How may multiplexing and demultiplexing be used to expand the effective number of I/O lines
on another digital device?

CHAPTER 1. INTRODUCTION

e How may multiplexing be used to implement an arbitrary logic function?

e What are all the logical states of each gate within a multiplexer IC when selecting a particular
channel (i.e. trace all the high and low states for given input conditions)?

e What is set-up time and hold time, and why are these parameters important in digital logic?

1.2. CHALLENGING CONCEPTS RELATED TO DIGITAL MULTIPLEXERS AND DEMULTIPLEXERS5

1.2 Challenging concepts related to digital multiplexers and
demultiplexers

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

e Confusing encoders, decoders, multiplexers, and demultiplexers — students often mix
up the identities of encoders, decoders, multiplexers, and demultiplexers. It is important for
them to realize that while multiplexers and demultiplexers contain decoders, they are not
the same as decoders (or encoders). In essence, muxes and demuxes “steer” signals to/from
different locations, while encoders and decoders convert data from one format to another.

6 CHAPTER 1. INTRODUCTION

1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

e Outcome — Demonstrate effective technical reading and writing

Assessment — Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment — Students present their “Conceptual Toolbox” Theory Journal entries listing
important concepts applied in the Tutorial text(s). A “Conceptual Toolbox” serves as
inspiration when solving problems, each concept suggesting a potential problem-solving action.
Challenge students to collaboratively generate a Conceptual Toolbox for the day’s topic during
the class session and then use it when solving problems together, thus fostering the habit of
reasoning from principles rather than recalling procedures!

e Outcome — Design an arbitrary logic function circuit

Assessment — Sketch a schematic diagram of a circuit employing a digital multiplexer to
implement a given truth table; e.g. pose problems in the form of the “Arbitrary truth table”
Quantitative Reasoning question.

e Outcome — Identify logic states in digital circuits

Assessment — Identify logic states for the outputs of a decoder IC given the input
conditions; e.g. pose problems in the form of the “74HC154 decoder” Quantitative Reasoning
question.

e Outcome — Independent research

Assessment — Locate IC multiplexer datasheets and properly interpret some of the
information contained in those documents including truth tables, voltage levels, etc.

Assessment — Locate IC demultiplexer datasheets and properly interpret some of the
information contained in those documents including truth tables, voltage levels, etc.

Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?

8 CHAPTER 2. CASE TUTORIAL

2.1 Example: arbitrary waveform generator using an analog
multiplexer

Multiplexer (mux) ICs are made for both digital (high/low) and analog (variable-voltage) signals.
The model CD4051 and 74HC4051 integrated circuits are examples of analog multiplexers, which are
also capable of functioning as demultiplexers since the inputs and output may both sink and source
current. This particular analog mux/demux model also features an “inhibit” input which controls
an internal MOSFET to either connect or disconnect the common terminal from the selected 1/O
pin. A functional diagram is shown below:

CD4051 analog mux/demux

J>|w|l\.>|._\|o

Analog channels

Common

|~ | |@

| | | |

"Select" ! Szl Sll So | .

inputs ulnhlblt"
Input

All digital inputs (the three select bits plus the inhibit) are active-high. Therefore, making the
inhibit input pin high forces the internal MOSFET on the common terminal to turn off and places
the device into an analog “high-impedance” mode where none of the eight analog channels connects
to the common pin, while making the inhibit pin low connects the common pin to whichever analog
channel is selected by the three select bits.

One useful circuit you can build with such an IC is a simple arbitrary waveform generator where
a digital counter cycles through all the channel values for the mux, and the mux in turn sequentially
connects eight adjustable DC voltage signals one at a time with the common signal to create a
stepped waveform having whatever shape you desire using eight steps.

2.1. EXAMPLE: ARBITRARY WAVEFORM GENERATOR USING AN ANALOG MULTIPLEXER9

A schematic diagram of such a circuit appears below, DC power supply terminals omitted from
the schematic for simplicity:

+V +V +V +V +V +V

—|=|=|=|= 0
T CD4051 Raw waveform
sel [[[] :
P, P, P, P, 2 Filtered waveform
PE 3 e
Com

TE 74HC161/163 TC [— 4
5

- e I

7 -

JUL—PCP g Q1 @ & cCBA
| |

i

The clock signal may be supplied by a benchtop signal generator, by the output terminal of a
555 timer IC connected for astable operation, or any other suitable digital pulse signal source. Since
the mux cycles through all its channels every eight counts of the counter IC, the final output signal
will have a frequency one-eighth that of the digital clock pulse driving the counter.

Such a circuit is useful as a crude signal generator in its own right, as well as a source of interesting
audio tones (for electronic music synthesis). The R and C values for the low-pass “smoothing”
filter should be chosen to avoid loading down the eight signal-programming potentiometers; i.e.
select a value for R that is at least ten times larger than the whole-resistance value of any single
potentiometer, and select a suitable C value to provide a cutoff frequency that works well to soften
the stair-step edges of the raw signal. This filter network’s cutoff value, of course, depends on your
intended analog signal frequency: the higher the signal frequency, the higher the cutoff needs to be
in order to properly “smooth” the signal’s wave-shape without attenuating it too much.

Note how the CD4051 IC’s inhibit input is tied to ground, forcing it to be “low” all the time. This
enables, rather than inhibits, the mux and allows the three select bits to choose which potentiometer
signal gets passed along to the common output terminal and into the RC filter network. An
alternative way to use this inhibit input is to connect it to a digital pulse waveform with a variable
duty cycle (i.e. a pulse-width modulated or PWM signal). If this PWM pulse signal’s frequency
is substantially greater than the counter’s clock frequency, the inhibit pin will be activated and
de-activated multiple times during each of the eight “steps” of the arbitrary waveform, serving as an
analog amplitude control for the arbitrary waveform. When the PWM duty cycle is low (i.e. “low”
for more time each period than “high”) the arbitrary waveform signal will largely pass through the
4051 mux unimpeded, but when the PWM signal is adjusted to a greater duty cycle value the mux
will spend more and more time in its high-impedance mode which means the RC filter’s capacitor
won’t be charged or discharged to as great a degree with each step of the eight-step cycle, resulting
in a filtered output waveform with the same basic wave-shape but being smaller in peak-to-peak
amplitude.

10 CHAPTER 2. CASE TUTORIAL

A more conventional use of the multiplexer’s inhibit input is to permit multiple muxes to work
together, allowing for more than eight analog signals to be sampled. Here we see two CD4051 analog
mux ICs connected to the four-bit 74HC161/163" counter IC to allow a sixteen-step analog waveform
to be synthesized:

+V
Tﬁ CD4051 Raw waveform
sel [[]
P, P, P, P Filtered waveform
PE /
Com
TE 74HC161/163 TC L
MR T
JutL CPQ & Q Q B A Inh =
[
CD4051
Com
B A Inh

In this circuit, the counter’s most-significant bit (MSB) output Q5 will be “low” during the first
eight counts (0 through 7) and then “high” during the last eight counts (8 through 15), enabling the
upper CD4051 mux for the first eight and the lower CD4051 mux for the latter eight count states.
When each of these mux ICs are disabled, only the other mux will be able to send a potentiometer
voltage value through to the RC filter.

Having a sixteen-step arbitrary waveform gives one the ability to generate a wave-shape with a
“smoother” profile, having sixteen steps to work with rather than just eight. Of course, this means
the synthesized analog signal will have a frequency that is now sixteen times slower than that of the
digital clock.

IThe only functional difference between the model 74HC161 and 74HC163 counters is the behavior of their reset
inputs, the 161 being asynchronous reset and the 163 being synchronous. Since we’re not using the reset input at
all, this distinction is irrelevant and therefore either model of counter will suffice. Both of these counter ICs happen
to be synchronous in their counting, though, which is good for this application because otherwise a counter with
asynchronous (“ripple”) count bits might cause the mux to falsely select the wrong channel as it transitions from one
count state to the next.

Chapter 3

Tutorial

3.1 Steering digital signals

Many digital logic applications require signals to be “steered” in different directions, analogous to a
railroad switch mechanism whereby railway trains may be steered from one set of tracks to another.
A device that “steers” a multiple incoming signals onto a single outgoing line is called a multiplezer,
often abbreviated as muz. A functional' diagram of a mux appears below:

Multiplexer

Data in

Data out

-/

|\1|m|m J>|w|l\)|._\|o

=
=

I
"Select” | Sl S!S
inputs

The three selector input lines accept a 3-bit binary number specifying which input channel’s
signal will be directed to the output (i.e. 000 selects input zero and 111 selects input seven).

1A functional diagram does not show electrical details like a schematic diagram, but rather attempts to convey
the general purpose of the device or system. In this case, the multi-position switch represents combinational logic to
direct one of the multiple input lines to the output line.

12 CHAPTER 3. TUTORIAL

Conversely, a device built to “steer” a single incoming signal to one of multiple outgoing lines is
called a demultiplexer, often abbreviated as demuz, shown in the following functional diagram:

Demultiplexer

s o InTeTo

Data out

Data in

L

[~ To o

[| |
"Select" ! Szl Sll So
inputs

As with the mux, the demux’s internal redirection logic is controlled by a binary word input, in
this case a 3-bit binary value representing one of eight possible outputs.

Although most multiplexers and demultiplexers are strictly digital devices, directing the pathways
for discrete voltage signals, analog muxes and demuxes also exist. An analog multiplexer or
demultiplexer differs from its digital cousin in its redirection circuitry (typically field-effect transistors
designed to present either a “shorted” or “open” series resistance to any analog signal passing through
the device, much like a solid-state version of a mechanical switch)?, but is still controlled by a digital
binary word identifying the input or output line to be selected.

2In fact, a truly mechanical analog multiplexer or demultiplexer may be built using a decoder and a set of
electromechanical relays: the digital decoder drives the coils of one-of-n relays, each relay dedicated to one of the
non-multiplexed input or output lines. Sending a binary word to the decoder causes only one of the n relays to
energize, closing its contact and allowing that particular analog signal through.

3.2. DATA CONCENTRATION 13

3.2 Data concentration

A very useful application for mux/demux pairs is to form a data concentrator circuit, the purpose
of which is to “concentrate” multiple channels of digital data through the fewest possible wires.
An example of this circuit appears below in functional-diagram form, showing how eight individual
digital data streams may be sent — one at a time — through a single wire at the command of the
binary counter’s value (requiring three more wires):

Data concentrator

0 0
1] B
2| B
3_—\ /7 B
Data in 4_—\“ Data out Data in J/— '+ - Data out
S|/ ~__|®
o/ A
[|
"Select" S2| S1| So "Select" Sz| S1| So
inputs inputs
Counter
b [
Clock [
signal

The three-bit counter increments from 000 to 001 to 010 and so on through to 111, then “recycles”
back to 000 in an endless sequence. If cycled fast enough, the data flow from inputs to outputs
appears seamless, enabling eight distinct digital data streams to be communicated over four wires
(plus a shared ground connection). Obviously, this circuit only makes sense for scenarios where wire
count is extremely limited, as the obvious alternative of using eight wires to convey eight signals is
far less complex.

The economy of a data concentrator grows with channel and selection-bit count. For example,
a 4-bit-selected mux/demux pair could communicate sizteen distinct data channels using only five
wires plus ground. With each additional bit in the binary selection word, the number of multiplexed
data channels doubles while the conductor count merely increments by one.

14 CHAPTER 3. TUTORIAL

3.3 Multiplexer and demultiplexer construction

Multiplexer logic circuitry consists of AND gates, OR gates, and inverters (shown as
complementation bubbles on some of the AND gate inputs). Recall that an AND gate outputs
a high signal only if all inputs are high. Therefore, a “high” input signal becomes selected by a
particular AND gate only if the other three inputs of that AND gate see the appropriate binary bit
combination to satisfy the AND gate’s requirement of all “high” inputs. Then, the cascaded OR
gates route any AND gate’s high output to the final output of the mux:

Multiplexer

L

| N

w

Data in

—— Data out

'f
&
]

e
v

| a1

| o

| ~

N
[f
.

S,'8:!' S E
"Select" "Enable”
inputs input

As with many combinational logic functions, multiplexers are often equipped with one or more
enable or strobe inputs to override the output state regardless of channel or select line statuses. As
you can see in the above diagram, the “enable” input allows data to pass through the multiplexer
when active (high) but forces the output to a low state if inactive (low). Of course, you often find
multiplexers with active-low enable inputs as well.

3.3. MULTIPLEXER AND DEMULTIPLEXER CONSTRUCTION 15

Demultiplexer logic is slightly simpler. Here, the OR gates are eliminated, while maintaining
the same AND gate array. Each output line goes “high” only if the input line is high and the
inverted /noninverted binary bits are such to satisfy that output’s AND gate with all “high” inputs:

Demultiplexer

4 Data out

uuuu@qu

S2'S1!'So

"Select"
inputs

Interestingly, a demultiplexer is identical to a binary decoder equipped with an enable input. If
you examine the demultiplexer circuit shown above and imagine re-labeling the “Data in” input as
either “Enable” or “Strobe”, you can see that by maintaining the newly-labeled “Enable/Strobe”
line in an active state the circuit simply functions as a decoder: activating one out of n channels
according to the binary value impressed at the “Select” input lines.

16 CHAPTER 3. TUTORIAL

3.4 Multiplexing and demultiplexing words

So far all the multiplexer and demultiplexer designs we have explored handle single bits of data, but
other versions exist as well. For example, a quad 2-input multiplexer consists of four multiplexers in
one integrated circuit, each of those multiplexers selecting one of two inputs. A functional diagram
of this appears in the following illustration:

Quad 2-input multiplexer

A0

d A
Al <" —
BO |
B1 | +° —

Data in oo Data out

Cl) -+
DO |

D1 -+

"Select" | S
input

These multiplexers find popular use selecting between one of two four-bit digital words, in this
case word 0 and word 1. Demultiplexers with similar formats also exist, directing a digital word to
one of two banks of output lines.

Quad 2-output demultiplexer

A0
A S—
AL a1
BO
B S——
] * |8l
Data in co | Data out
C S
] T |a
DO
D S——
] * |D1
I
"Select” | S
input

For both of these mux/demux units only one selection input line exists, since there are only two
(21) switch states.

3.5. COMMON MUX AND DEMUX SYMBOLS 17

3.5 Common mux and demux symbols

So far in this Tutorial we have illustrated the function of both multiplexers and demultiplexers using
generic rectangular “box” symbols, but in many digital system documentation we see trapezoidal
shapes used to denote these devices. The trapezoid shape is intended to evoke the image of data
being either funneled into a single output channel (mux) or fanned out to a single output channel
(demux):

Mux Demux

Inputs Outputs

~N o oA WN PP O
o
=4
5

N o oA WN PO

$ S S S S S

In the above illustrations we see 8-channel mux and demux functions, each with 3-bit selector
words. Note how each of the selected I/O lines is numbered in decimal form according to the binary
value of the selector word, but that it is also appropriate to label in binary as well. This next
example shows binary labeling of selectable I/O lines for both mux and demux devices:

Mux

Inputs Outputs

18 CHAPTER 3. TUTORIAL

Multiplexers and demultiplexers operating on multi-bit words may also be represented using this
same symbology. As an example of this, here we see both mux and demux units selecting one of
eight four-bit words:

Mux

Inputs Outputs

AT
RRRARRSE

3.6. ARBITRARY LOGIC FUNCTIONS 19

3.6 Arbitrary logic functions

One interesting application for a multiplexer is the generation of arbitrary logic functions. If we
consider the “select” lines to be the input lines of a logic function, and the single mux output line
to be the output line of that same logic function, the mux input lines serve as connection points for
“programmable” output states. Consider these simple examples:

Pullup resistors Pullup resistors

| —/.—/
———o—| ———o—|
———o—| ———o—|
———o—| ———o—|
— e Multiplexer — Output — e Multiplexer — Output
———o—| ———o—|
o 6 ——o—| 6
S ’ 7
—L_ 3-input AND function —L_ 3-input NOR function
i SR N N N i —T5,[s,[s,
Inputs Inputs

As we apply all possible high/low combinations to the three “select” input lines (Sz, S1, and Sp)
of these multiplexers, those binary values select one input channel at a time (e.g. when Sy is low and
S; is low, and Sy is low, the mux selects the logic state applied to input terminal 0 to be “steered”
to the output terminal.

The toggle switches connected to the multiplexer’s input lines thus serve to define the logic
function. Simply by setting these switches to different positions, we may specify any 3-input logic
function desired.

20 CHAPTER 3. TUTORIAL

To show just how arbitrary the logic function may be when implemented by a multiplexer,
consider the following example. Here we see a truth table not adhering to any canonical logic
function such as AND or NOR, but nevertheless implemented just as easily as any other logic
function using the same multiplexer IC we saw in the two prior examples. The output states for
each row of the truth table are “programmed” by the settings of the eight toggle switches connected
to the multiplexer’s input channel terminals:

Pullup resistors

S, S; Sy Output
olofo] o —e—] d
ofof1] 1 e
olifo] o }—ee— A 2
oflt|t] 1 S ¥ ¥ ¥ :
110 lo 1 A 4 Multiplexer L ougput
1lofa] o e >
1ltfo] o }—e— °
11| 1 e !
) ——s[si[s,
Inputs

A simple thought experiment works well to explore how this circuit functions. Just imagine
setting the three “select” input lines to various high (1) and low (0) states, one combination at a
time, and see for yourself which input channel the mux selects for each combination. Remember
that the three “select” input line states constitute bits of a three-bit binary number, the value of
that number determining which input channel gets “steered” to the output:

e So =0 S;=0 Sg=0 Output = 0 because channel 0’s toggle switch is closed
e Sy =0 S;=0 Sg=1 Output = 1 because channel 1’s toggle switch is open
e So =0 S;=1 Sg=0 Output = 0 because channel 2’s toggle switch is closed
e Sy =0 S;=1 Sg=1 Output = 1 because channel 3’s toggle switch is open
e So=1 Sy =0 Sp=0 Output = 1 because channel 4’s toggle switch is open
e So=1 S;=0 Sg=1 Output = 0 because channel 5’s toggle switch is closed
e So=1 S;=1 Sg=0 Output = 0 because channel 6’s toggle switch is closed

e So=1 Sy =1 Sp=1 Output = 1 because channel 7’s toggle switch is open

3.7. MICROCONTROLLER I/O EXPANSION 21

3.7 Microcontroller I/O expansion

Another practical use for multiplexers and demultiplexers is expanding the I/O capability of
microcontrollers. This is similar in concept to the “data concentrator” examined earlier, where
multiple digital signals could be routed, one at a time, through a single conductor. A microcontroller
(often abbreviated MCU) is a functioning computer built on a single integrated circuit, useful for
a great many practical tasks®. Due to their small physical size these small computers tend to be
very limited in input and output (I/O) lines. Multiplexers may be used to effectively increase the
number of input lines to the microcontroller by permitting a single input line to sequentially sample
multiple inputs. Likewise, demultiplexers may be used to effectively expand the number of output
lines on a microcontroller by permitting a single output line to sequentially drive multiple outputs.

3Most people reading this document actually own several microcontrollers without necessarily realizing their
presence. Modern automobiles contain multiple microcontrollers, used for such tasks as airbag deployment, antilock
brake modulation, engine management (e.g. air/fuel mixture control, ignition timing), and a host of “accessory”
functions (e.g. sound system, seat adjustment, temperature control, etc.). Many residential appliances contain
microcontrollers, too: digital thermostats, televisions, radios, remote control units, refrigerators, toasters, mixers,
ovens, etc. Interestingly, most personal computers, besides containing their own microprocessor units, contain
microcontrollers to handle peripheral tasks such as USB-networked devices (e.g. keyboard, mouse, printer). If you
own an electric toothbrush, it most likely contains a microcontroller as well!

22 CHAPTER 3. TUTORIAL

Examples of both applications appear in this diagram, where a microcontroller drives both a
mux and a demux with three of its output lines, sampling the selected inputs with one input line
and driving the selected outputs with an additional output line:

i DEMUX
Expanded —
MCU outputs | _| Outputs Input
) Select MCU
—PN—1
Outputs
—
~ | Select]
MUX
| __| |Inputs
Expanded |— ,_

MCU inputs | _| Inputs Output

The microcontroller’s program must instruct the three “select” output lines to periodically output
binary values from 000 to 111 (a recirculating 3-bit binary count sequence is perhaps the easiest
sequence to program), while other portion’s of the MCU’s program reads logic states at the one
utilized input line and writes logic states to the remaining output line at the appropriate times (i.e.
shortly following the output of each new count value). Given the necessary programming in the
MCU, the multiplexer and demultiplexer have expanded the MCU’s available I/O count from four
inputs and four outputs to eleven inputs and eight outputs.

3.7. MICROCONTROLLER I/O EXPANSION 23

Of course, this multiplexed expansion of I/O lines comes at a price. First is the penalty in time
delay: eight multiplexed inputs cannot read data as quickly as eight independent input lines, because
time must be spent “cycling” through each one. Second is the inability for the microcontroller to
maintain high states on the eight demultiplexed outputs, since all output lines on a demultiplexer
default to their inactive states (“low” for an active-high output demux) when not selected. At best,
all the MCU is able to do with the eight multiplexed outputs is pulse them one at a time.

There are ways to enable the MCU to “latch” its expanded output lines, but once again it carries
a functional penalty. We may use the demux outputs not as expanded outputs for the MCU directly,
but instead as clock inputs for eight D-type flip-flops. The demux’s input line will be connected
“high” so that each flip-flop receives a low-to-high pulse when that channel is selected, and it falls
upon the MCU to output the desired state for that flip-flop just prior to and following the count
transition (respecting the set-up time and hold time requirements of the flip-flops) in order to reliably
“clock” that logic state through:

<
—{Q DI

<
—{Q DI

N DEMUX
_Q —e

+V

5
¥

Outputs Input

.
A O
|

_ Q D—

< Select — MCU
S, W | W—

—1Q DI | Outputs
<

—{Q DI— a Select]
< MUX —

] Inputs

_|nputs Output

24

CHAPTER 3. TUTORIAL

Chapter 4

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

25

26 CHAPTER 4. QUESTIONS

GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

e Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.

27

GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.

28

CHAPTER 4. QUESTIONS

Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?

4.1. CONCEPTUAL REASONING 29

4.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

30 CHAPTER 4. QUESTIONS

4.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning
as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.

4.1. CONCEPTUAL REASONING 31

4.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Multiplexing

Demultiplexing ‘

Binary number ‘

Digital signal

Analog signal

Counter

OR function

AND function

Microcontroller ‘

32 CHAPTER 4. QUESTIONS

4.1.3 Oscilloscope alternate and chop modes

Most modern analog oscilloscopes have the ability to display multiple traces on their screens (dual-
trace is the standard), even though the CRT itself used by the ’scope may only have one electron
gun, and thus only be able to “paint” one flying dot on the screen at a time.

Oscilloscopes with single-gun display tubes achieve dual-trace capability by way of multiplexing
the two input channels to the same CRT. There are usually two different modes for this multiplexing,
though: alternate and chop.

Explain how these multiplexing techniques work, and what conditions would prompt you to use
the two different multiplexing modes. I strongly encourage you to experiment with displaying two
different signals on one of these oscilloscopes as your research. You will likely learn far more from a
hands-on exercise than if you were to read about it in a book!

e Describe what might happen if you have the oscilloscope set for the wrong multiplexing mode.

4.1. CONCEPTUAL REASONING 33

4.1.4 Mux versus demux

Multiplezers and demultiplexers are often confused with one another by students first learning about
them. Although they appear similar, they certainly perform different functions. Shown here is
a multiplexer and a demultiplexer, each using a multiple-position switch symbol to indicate the
selection functions inside the respective circuits:

Mux or Demux?

So
"Select" T
inputs
S,
Data in
— Data out
Mux or Demux?
So
"Select" -
inputs 1!
S,
Data out Data i
~ Data in

After identifying which is which, provide definitions for “multiplexer” and “demultiplexer” in
your own words.

34

CHAPTER 4. QUESTIONS

e What do the triangle symbols represent, and why are those components included inside the
mux and demux ICs?

4.1. CONCEPTUAL REASONING 35

4.1.5 Multiplexed accelerometers

A variety of practical electronic applications require multiplexing, where several input signals are
individually selected, one at a time but very rapidly, to be communicated through a single channel.
In order to rapidly select (or switch) analog signals in these multiplexing applications, we need some
form of semiconductor on/off switch capable of fast switching time, low pass-through (“on” state)
impedance, and high blocking (“off” state) impedance. Thankfully, there is such a device commonly
and inexpensively produced, called a CMOS bilateral switch:

v 4066 CMOS quad bilateral switch IC

] [&] [@ [l 5] 5]

=) [
1] 2]] [[s] [ef [7]

Vss

This hybrid analog/digital device uses digital logic signals (high/low) to activate the gates of
CMOS transistor assemblies to switch analog signals on and off. It is like having four low-current
solid-state relays in a single integrated circuit. When the control line is made “high” (standard
CMOS logic level), the respective switch goes into its conductive (“on”) state. When the control
line is made “low,” the switch turns off. Because it is MOSFETs we are turning on and off, the
control lines draw negligible current (just like CMOS logic gate inputs).

36 CHAPTER 4. QUESTIONS

If we are to use such bilateral switches to multiplex analog signals along a common signal line,
though, we must add some accessory components to control which switch (out of the four) is active
at any given time. Take for instance this circuit where we use four bilateral switches to multiplex
the voltage signals from four accelerometers (measuring acceleration on a vibration-testing jig):

Four-channel analog multiplexer circuit

l v O [Accel |
L S
L g B [Accel]
i —
l v O [Accel|
L S
Selected Coaxial signal cable ! -
accelerometer -} A () () |Acce|.|
signal ﬂ €
| Mystery
So device
S;———————————1 ????

Identify the necessary “mystery device” shown in the schematic, which allows a binary input (Sp
and S; with four combinations of high/low states: 00, 01, 10, and 11) to activate just one bilateral
switch at a time.

e Propose a solution involving individual logic gates.

4.1. CONCEPTUAL REASONING 37

4.1.6 Two-input selector logic

The following schematic diagram is for a two-input selector circuit, which (as the name implies)
selects one of two inputs to be sent to the output:

Input,

Select o
control

Output

Inputg

Determine which state the “select control” input line has to be in to select Input4 to be sent to
the output, and which state it has to be in to select Inputpg to go to the output.

e Why is the inverter gate necessary for proper function?

38 CHAPTER 4. QUESTIONS

4.1.7 T74HC151 mux

The 74HC151 is a high-speed CMOS (TTL-compatible) integrated circuit multiplexer, also known
as a data selector. It is commonly available as a 24 pin DIP “chip.” Identify the terminals of a
74HC151, and label them here:

D 74HC151

In particular, note the locations and functions of the “select” terminals, as well as the output
terminal.

What types of electrical “data” may be “selected” by this particular integrated circuit? For
example, can it select an analog waveform, such as human speech from a microphone? Is it limited
to discrete TTL logic levels? How can you tell?

e How will this IC behave if its enable line is left unconnected?

4.1.8 Address latching

The 74HC137 and 74HC237 decoder/demultiplexer integrated circuits have a feature that some
other decoder/demultiplexers do not: address latching. Explain what this additional feature is, how
it works, and how you would disable the feature if you needed to use one of these integrated circuits
in an application not requiring address latching.

e What is the functional difference between the 74HC137 and the 74HC2377 How would the
respective schematic symbols for these two decoder/demux ICs differ?

e Devise a practical application where you might need the feature of address latching.

4.2. QUANTITATIVE REASONING 39

4.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases™” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely” on an answer key!

49

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students
to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

40 CHAPTER 4. QUESTIONS

4.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (o) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) x 10~% H/m represents a center value (i.e. the location
parameter) of 1.25663706212 x 10~ Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019 x 106 Henrys per meter.

Avogadro’s number (N4) = 6.02214076 x 10?* per mole (mol™!)

Boltzmann’s constant (k) = 1.380649 x 10~2% Joules per Kelvin (J/K)

Electronic charge (¢) = 1.602176634 x 107! Coulomb (C)

Faraday constant (F) = 96,485.33212... x 10* Coulombs per mole (C/mol)

Magnetic permeability of free space (o) = 1.25663706212(19) x 1076 Henrys per meter (H/m)
Electric permittivity of free space (€y) = 8.8541878128(13) x 10~!2 Farads per meter (F/m)
Characteristic impedance of free space (Zp) = 376.730313668(57) Ohms (€2)

Gravitational constant (G) = 6.67430(15) x 107! cubic meters per kilogram-seconds squared
(m?/kg-s”)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 x 10~3* joule-seconds (J-s)

Stefan-Boltzmann constant (o) = 5.670374419... x 10~® Watts per square meter-Kelvin*
(W/m?K*)

Speed of light in a vacuum (¢) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants — Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

4.2. QUANTITATIVE REASONING 41

4.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

A B C D
Di stance travel ed 46. 9 Kiloneters
Time el apsed 1.18 Hour s
Aver age speed = Bl / B2 knm h

G |W|IN |

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables® would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

42 CHAPTER 4. QUESTIONS

Common’ arithmetic operations available for your use in a spreadsheet include the following:
e Addition (+)

e Subtraction (-)

e Multiplication (*)

e Division (/)

e Powers ()

e Square roots (sqrt())

e Logarithms (1n() , 1og10Q))

Parentheses may be used to ensure® proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of az? + bz + c:

_ —b=EVb? —4ac

. 2a
A B
1 x_1 = (-B4 + sqrt((B4n2) - (4*B3*B5))) / (2*B3)
2 X_2 = (-B4 - sqrt((B4A2) - (4*B3*B5))) / (2*B3)
3 a = 9
4 b = 5
5 c = -2

This example is configured to compute roots’ of the polynomial 922 4 5z — 2 because the values
of 9, 5, and —2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and ¢ coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coeflicients.

"Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9962 + 52 — 2) the two roots happen to be z = 0.269381 and = = —0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

4.2. QUANTITATIVE REASONING 43

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y = V/b% — dac z=2a

_—bEy
z
A B C

1 x_1 = (-B4 + C1) / C2 |= sqrt((B4r2) - (4*B3*B5))
2 X_2 = (-B4 - c1) / Cc2 |= 2*B3

3 a= 9

4 b = 5

5 c =)

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary'? — all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

44 CHAPTER 4. QUESTIONS

4.2.3 Arbitrary truth table

Multiplexers, or data selectors, may be used to generate arbitrary truth table functions. Take for
example this truth table, shown beside a symbol for a 16-channel multiplexer:

Out G —

EO —
El —
E2 —
E3 —
E4 —
ES —
E6 —
E7 —
E8 —
E9 —
E10 —
E1l —
E12 —
E13 —
El4 —
E15 —15

— Output

LOCD\IO)O'I-th\JI—‘OI'I'I—IOO-bI\JH

=
o

Rk kR ~|lo|o|lo|o|o|o|lo|o|g

N N === = R =l=]=1l=]le
R|r|o|lo|r|r|olo|r|r|o|lolr|r|lo|lolm
Rlo|r|o|r|o|r|o|r|o|r|o|lr|o|r|o| >
R|lo|lo|r|r|o|r|o|r|r|r|olo|o|r|o

=
=

I
A W N

Show the wire connections necessary to make the multiplexer output the specified logic states in
response to the data select (A, B, C, and D) inputs.

e What should be done with the G line?

4.2. QUANTITATIVE REASONING

4.2.4 Arbitrary SOP expression

45

Multiplexers, or data selectors, may be used to generate arbitrary truth table functions. Take for
example this Boolean SOP expression, shown beside a symbol for a 16-channel multiplexer:

ABCD + ABCD + ABCD

EO —
El —
E2 —
E3 —
E4 —
ES —
E6 —
E7 —
E8 —
E9 —
E10 —
E1ll —
E12 —
E13 —
El4 —

© o ~o abs»wn Pomdo >N R

ol e
A W N R O

E15 —

(=Y
(6]

— Output

Show the wire connections necessary to make the multiplexer implement the specified Boolean

expression.

e What should be done with the G line?

46

e Complete a truth table describing this same SOP expression.

CHAPTER 4. QUESTIONS

4.2. QUANTITATIVE REASONING 47

4.2.5 T4HC154 decoder

The 74HC154 is a high-speed CMOS (TTL-compatible) integrated circuit decoder with four input
lines and sixteen output lines:

74HC154
VDD

© 0o N o 0o M W N P O

rrrrrrrrrrrrrrey

o A N B
[EnY
(]

e
N

|
=
w

|

Ro
[EEN
N

0]

N
=
(6)]

Identify the logic states of all output terminals given the input conditions shown.

48 CHAPTER 4. QUESTIONS

Next, identify the logic states for the same circuit, this time with a square wave (on/off pulse)
logic signal applied to the enable terminals:

74HC154
VDD

© 0o N o 0o~ W N PFE O

rrrrrrrrrrrrrrey

o A~ N PP

o e
N RO

=
w

Qo
|_\
o

=
al

e In the square-wave application of this decoder, is it functioning as a mux or as a demux?

e Explain why it is necessary to use both G1 and G2, and not just one of them.

4.3. DIAGNOSTIC REASONING 49

4.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

50 CHAPTER 4. QUESTIONS

4.3.1 Faulted AWG circuit

The following schematic diagram shows an eight-step arbitrary waveform generator (AWG). The
analog multiplexer selects one of the eight potentiometer signals at a time, stepping from one to the
next at the pace of the clock pulse:

SRASE
SRSE

2

SRASE

SRYSE
SRSE

SRASE
SRYSE

Vour — U U 0
out u 1
LT

Clock

Explain what effect a shorted bilateral switch would have on the output waveform. Be as specific
as possible.

e Why is it important that all the potentiometers connect to both +V and —V?
e Identify how to increase or decrease the frequency output by the AWG.
e Identify the function of Uy;.

4.3. DIAGNOSTIC REASONING 51

4.3.2 Faulted concentrator circuit

Predict how the operation of this “concentrator” circuit (taking eight digital inputs and
“concentrating” them into a single, multiplexed, communication line to be expanded into eight
outputs at the receiving end) will be affected as a result of the following faults. Consider each fault
independently (i.e. one at a time, no coincidental faults):

Cable
74151 L 74138
0 0
0 0
CTR LGy LGy
0 p——
1 o—o
Clock 2 g o—
— 2 Wp— Gl +b— [Dataout
. 3 —g G2A 5 p——
Data in
. t—dG2B Sp——
6
7 —
EN

I

e Clock pulse generator stops pulsing:
e Pin breaks on the W output of 74151 chip, leaving that wire floating:
e Pin breaks on G2A input of 74138 chip, leaving it floating:

e Enable pin breaks on 74151 chip, leaving it floating:

For each of these conditions, explain why the resulting effects will occur.

e What factors influence the appropriate choice of clock frequency for a circuit such as this?

52

CHAPTER 4. QUESTIONS

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

53

54

APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

55

56

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.1 First principles of learning

Anyone can learn anything given appropriate time, effort, resources, challenges,
encouragement, and expectations. Dedicating time and investing effort are the student’s
responsibility; providing resources, challenges, and encouragement are the teacher’s
responsibility; high expectations are a responsibility shared by both student and teacher.

Transfer is not automatic. The human mind has a natural tendency to compartmentalize
information, which means the process of taking knowledge learned in one context and applying
it to another usually does not come easy and therefore should never be taken for granted.

Learning is iterative. The human mind rarely learns anything perfectly on the first attempt.
Anticipate mistakes and plan for multiple tries to achieve full understanding, using the lessons
of those mistakes as feedback to guide future attempts.

Information is absorbed, but understanding is created. Facts and procedures may be
memorized easily enough by repeated exposure, but the ability to reliably apply principles
to novel scenarios only comes through intense personal effort. This effort is fundamentally
creative in nature: explaining new concepts in one’s own words, running experiments to test
understanding, building projects, and teaching others are just a few ways to creatively apply
new knowledge. These acts of making knowledge “one’s own” need not be perfect in order to
be effective, as the value lies in the activity and not necessarily the finished product.

Education trumps training. There is no such thing as an entirely isolated subject, as all
fields of knowledge are connected. Training is narrowly-focused and task-oriented. Education is
broad-based and principle-oriented. When preparing for a life-long technical career, education
beats training every time.

Character matters. Poor habits are more destructive than deficits of knowledge or skill.
This is especially true in collective endeavors, where a team’s ability to function depends on
trust between its members. Simply put, no one wants an untrustworthy person on their team.
An essential component of education then, is character development.

People learn to be responsible by bearing responsibility. An irresponsible person is
someone who has never had to be responsible for anything that mattered enough to them.
Just as anyone can learn anything, anyone can become responsible if the personal cost of
irresponsibility becomes high enough.

What gets measured, gets done. Accurate and relevant assessment of learning is key to
ensuring all students learn. Therefore, it is imperative to measure what matters.

Failure is nothing to fear. Every human being fails, and fails in multiple ways at multiple
times. Eventual success only happens when we don’t stop trying.

B.2.

PROVEN STRATEGIES FOR INSTRUCTORS o7

B.2 Proven strategies for instructors

Assume every student is capable of learning anything they desire given the proper conditions.
Treat them as capable adults by granting real responsibility and avoiding artificial incentives
such as merit or demerit points.

Create a consistent culture of high expectations across the entire program of study.
Demonstrate and encourage patience, persistence, and a healthy sense of self-skepticism.
Anticipate and de-stigmatize error. Teach respect for the capabilities of others as well as
respect for one’s own fallibility.

Replace lecture with “inverted” instruction, where students first encounter new concepts
through reading and then spend class time in Socratic dialogue with the instructor exploring
those concepts and solving problems individually. There is a world of difference between
observing someone solve a problem versus actually solving a problem yourself, and so the
point of this form of instruction is to place students in a position where they cannot passively
observe.

Require students to read extensively, write about what they learn, and dialogue with you and
their peers to sharpen their understanding. Apply Francis Bacon’s advice that “reading maketh
a full man; conference a ready man; and writing an exact man”. These are complementary
activities helping students expand their confidence and abilities.

Use artificial intelligence (AI) to challenge student understanding rather than merely provide
information. Find productive ways for Al to critique students’ clarity of thought and of
expression, for example by employing Al as a Socratic-style interlocutor or as a reviewer of
students’ journals. Properly applied, Al has the ability to expand student access to critical
review well outside the bounds of their instructor’s reach.

Build frequent and rapid feedback into the learning process so that students know at all times
how well they are learning, to identify problems early and fix them before they grow. Model the
intellectual habit of self-assessing and self-correcting your own understanding (i.e. a cognitive
feedback loop), encouraging students to do the same.

Use “mastery” as the standard for every assessment, which means the exam or experiment or
project must be done with 100% competence in order to pass. Provide students with multiple
opportunity for re-tries (different versions of the assessment every time).

Require students to devise their own hypotheses and procedures on all experiments, so that the
process is truly a scientific one. Have students assess their proposed experimental procedures
for risk and devise mitigations for those risks. Let nothing be pre-designed about students’
experiments other than a stated task (i.e. what principle the experiment shall test) at the
start and a set of demonstrable knowledge and skill objectives at the end.

Have students build as much of their lab equipment as possible: building power sources,
building test assemblies', and building complete working systems (no kits!). In order to provide

n the program I teach, every student builds their own “Development Board” consisting of a metal chassis with
DIN rail, terminal blocks, and an AC-DC power supply of their own making which functions as a portable lab
environment they can use at school as well as take home.

58

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

this same “ground-up” experience for every new student, this means either previous students
take their creations with them, or the systems get disassembled in preparation for the new
students, or the systems grow and evolve with each new student group.

Incorporate external accountability for you and for your students, continuously improving the
curriculum and your instructional methods based on proven results. Have students regularly
network with active professionals through participation in advisory committee meetings,
service projects, tours, jobshadows, internships, etc. Practical suggestions include requiring
students to design and build projects for external clients (e.g. community groups, businesses,
different departments within the institution), and also requiring students attend all technical
advisory committee meetings and to dialogue with the industry representatives at those
meetings.

Repeatedly explore difficult-to-learn concepts across multiple courses, so that students have
multiple opportunities to build their understanding.

Relate all new concepts, whenever possible, to previous concepts and to relevant physical laws.
Challenge each and every student, every day, to reason from concept to concept and to explain
the logical connections between. Challenge students to verify their conclusions by multiple
approaches (e.g. double-checking their work using different methods). Ask “Why?” often.

Maintain detailed records on each student’s performance and share these records privately with
them. These records should include academic performance as well as professionally relevant
behavioral tendencies.

Hold mandatory “check-in” meetings between all program faculty and each new student during
their first term. Offer these to all other students as an option, except for any students
continuing to manifest unprofessional behaviors, poor academic performance, or who have
some other need for a face-to-face meeting with faculty.

Address problems while they are small, before they grow larger. This is equally true for
tutoring technical concepts as it is for helping students build professional habits.

Build rigorous quality control into the curriculum to ensure every student masters every
important concept, and that the mastery is retained over time. This includes (1) review
questions added to every exam to re-assess knowledge taught in previous terms, (2) cumulative
exams at the end of every term to re-assess all important concepts back to the very beginning of
the program, and (3) review assessments in practical (hands-on) coursework to ensure critically-
important skills were indeed taught and are still retained. What you will find by doing this is
that it actually boosts retention of students by ensuring that important knowledge gets taught
and is retained over long spans of time. In the absence of such quality control, student learning
and retention tends to be spotty and this contributes to drop-out and failure rates later in
their education.

Finally, never rush learning. Education is not a race. Give your students ample time to digest
complex ideas, as you continually remind yourself of just how long it took you to achieve
mastery! Long-term retention and the consistently correct application of concepts are always
the result of focused effort over long periods of time which means there are no shortcuts to
learning.

B.3. PROVEN STRATEGIES FOR STUDENTS 59

B.3 Proven strategies for students

The single most important piece of advice I have for any student of any subject is to take
responsibility for your own development in all areas of life including mental development. Expecting
others in your life to entirely guide your own development is a recipe for disappointment. This is
just as true for students enrolled in formal learning institutions as it is for auto-didacts pursuing
learning entirely on their own. Learning to think in new ways is key to being able to gainfully use
information, to make informed decisions about your life, and to best serve those you care about.
With this in mind, I offer the following advice to students:

e Approach all learning as valuable. No matter what course you take, no matter who you
learn from, no matter the subject, there is something useful in every learning experience. If
you don’t see the value of every new experience, you are not looking closely enough!

e Continually challenge yourself. Let other people take shortcuts and find easy answers to
easy problems. The purpose of education is to stretch your mind, in order to shape it into a
more powerful tool. This doesn’t come by taking the path of least resistance. An excellent
analogy for an empowering education is productive physical exercise: becoming stronger, more
flexible, and more persistent only comes through intense personal effort.

e Master the use of language. This includes reading extensively, writing every day, listening
closely, and speaking articulately. To a great extent language channels and empowers thought,
so the better you are at wielding language the better you will be at grasping abstract concepts
and articulating them not only for your benefit but for others as well.

e Do not limit yourself to the resources given to you. Read books that are not on the
reading list. Run experiments that aren’t assigned to you. Form study groups outside of class.
Take an entrepreneurial approach to your own education, as though it were a business you
were building for your future benefit.

¢ Express and share what you learn. Take every opportunity to teach what you have learned
to others, as this will not only help them but will also strengthen your own understanding?.

e Realize that no one can give you understanding, just as no one can give you physical
fitness. These both must be built.

e Above all, recognize that learning is hard work, and that a certain level of
frustration is unavoidable. There are times when you will struggle to grasp some of these
concepts, and that struggle is a natural thing. Take heart that it will yield with persistent and
varied? effort, and never give up! That concepts don’t immediately come to you is not a sign
of something wrong, but rather of something right: that you have found a worthy challenge!

20n a personal note, I was surprised to learn just how much my own understanding of electronics and related
subjects was strengthened by becoming a teacher. When you are tasked every day with helping other people grasp
complex topics, it catalyzes your own learning by giving you powerful incentives to study, to articulate your thoughts,
and to reflect deeply on the process of learning.

3As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

60

APPENDIX B. INSTRUCTIONAL PHILOSOPHY

B.4 Design of these learning modules

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits. Every effort has been made to embed the following instructional and
assessment philosophies within:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

B.4. DESIGN OF THESE LEARNING MODULES 61

These learning modules were expressly designed to be used in an “inverted” teaching
environment? where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic® dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

4In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

5Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

6This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

62 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

To high standards of education,

Tony R. Kuphaldt

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

63

64 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTIAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

66 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

67

68 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

69

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;

70 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

71

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

72 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

73

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

74

APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

Bogart, Theodore F. Jr., Introduction to Digital Circuits, Glencoe division of Macmillan/McGraw-
Hill, 1992.

75

76

APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

9 January 2025 — added a new Case Tutorial chapter with a section showing an analog multiplexer
used to create an arbitrary waveform generator circuit.

19 November 2024 — corrected an error in image_2530 courtesy of Daniel Renshaw.

9 November 2024 — divided the Introduction chapter into sections, one with recommendations for
students, one with a listing of challenging concepts, and one with recommendations for instructors.

26-27 November 2023 — added a new Tutorial section describing trapezoidal mux and demux
symbols. Also added some instructor notes to Challenge questions.

24 April 2023 - improvement to Tutorial text regarding switching between different binary words,
referring to them as words 0 and 1 rather than words A and B. This improvement courtesy of Joe
Archer.

28 November 2022 — placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

26 July 2022 — added more explanatory text on forming arbitrary logic functions using a mux.

25 May 2022 — divided the Tutorial into sections. Also, corrected minor illustration error in
image_2530 and added some more questions to the Introduction chapter.

2 December 2021 — added Challenge questions.
10 May 2021 — commented out or deleted empty chapters.

2 October 2020 - significantly edited the Introduction chapter to make it more suitable as a

7

78 APPENDIX F. VERSION HISTORY

pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

11 Mar 2020 — minor error corrections: wrong type of quotation marks used in a problem, and also
had ”encoder” written in a footnote where it should have said ”decoder”. Also expanded on some
of the instructor-version answers, and added discussion of enable/strobe inputs to the tutorial.

28 January 2020 — added Foundational Concepts to the list in the Conceptual Reasoning section.

18 December 2019 — minor edits to diagnostic questions, replacing “no multiple faults” with “no
coincidental faults”.

22 November 2019 — began writing Tutorial.

21 November 2019 — document first created.

Index

Adding quantities to a qualitative problem, 54
Annotating diagrams, 53

Checking for exceptions, 54
Checking your work, 54
Code, computer, 63

Demultiplexer, 3, 12
Demux, 3, 12
Dimensional analysis, 53

Edwards, Tim, 64
Enable, 14, 15

Graph values to solve a problem, 54
Greenleaf, Cynthia, 25

Hold time, 23
How to teach with these modules, 61
Hwang, Andrew D., 65

1/0, 21

Identify given data, 53
Identify relevant principles, 53
Input/Output, 21
Intermediate results, 53
Inverted instruction, 61

Knuth, Donald, 64

Lamport, Leslie, 64
Limiting cases, 54

MCU, 21
Metacognition, 30
Microcontroller, 21
Moolenaar, Bram, 63
Multiplexer, 3, 11

Murphy, Lynn, 25
Mux, 3, 11

Open-source, 63

Problem-solving: annotate diagrams, 53
Problem-solving: check for exceptions, 54
Problem-solving: checking work, 54
Problem-solving: dimensional analysis, 53
Problem-solving: graph values, 54
Problem-solving: identify given data, 53
Problem-solving: identify relevant principles, 53
Problem-solving: interpret intermediate results,
53
Problem-solving: limiting cases, 54
Problem-solving: qualitative to quantitative, 54
Problem-solving: quantitative to qualitative, 54
Problem-solving: reductio ad absurdum, 54
Problem-solving: simplify the system, 53
Problem-solving: thought experiment, 53
Problem-solving: track units of measurement, 53
Problem-solving: visually represent the system,
53
Problem-solving: work in reverse, 54
Pulse width modulation, 9
PWM, 9

Qualitatively approaching a
problem, 54

quantitative

Reading Apprenticeship, 25
Reductio ad absurdum, 54, 60, 61

Schoenbach, Ruth, 25
Scientific method, 30
Set-up time, 23
Simplifying a system, 53
Socrates, 60

80 INDEX

Socratic dialogue, 61
SPICE, 25

Stallman, Richard, 63
Strobe, 14, 15

Thought experiment, 53
Torvalds, Linus, 63

Units of measurement, 53
Visualizing a system, 53

Work in reverse to solve a problem, 54
WYSIWYG, 63, 64

	Introduction
	Recommendations for students
	Challenging concepts related to digital multiplexers and demultiplexers
	Recommendations for instructors

	Case Tutorial
	Example: arbitrary waveform generator using an analog multiplexer

	Tutorial
	Steering digital signals
	Data concentration
	Multiplexer and demultiplexer construction
	Multiplexing and demultiplexing words
	Common mux and demux symbols
	Arbitrary logic functions
	Microcontroller I/O expansion

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	Oscilloscope alternate and chop modes
	Mux versus demux
	Multiplexed accelerometers
	Two-input selector logic
	74HC151 mux
	Address latching

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	Arbitrary truth table
	Arbitrary SOP expression
	74HC154 decoder

	Diagnostic reasoning
	Faulted AWG circuit
	Faulted concentrator circuit

	Problem-Solving Strategies
	Instructional philosophy
	First principles of learning
	Proven strategies for instructors
	Proven strategies for students
	Design of these learning modules

	Tools used
	Creative Commons License
	References
	Version history
	Index

