
Modular Electronics Learning (ModEL)
project

v1 1 0 dc 12

v2 2 1 dc 15

r1 2 3 4700

r2 3 0 7100

.end

* SPICE ckt

V = I R

.dc v1 12 12 1

.print dc v(2,3)

.print dc i(v2)

PID Control

© 2025 by Tony R. Kuphaldt – under the terms and conditions of the Creative
Commons Attribution 4.0 International Public License

Last update = 18 February 2025

This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International
Public License. A copy of this license is found in the last Appendix of this document. Alternatively,
you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed
works by the general public.

ii

Contents

1 Introduction 3

2 Tutorial 5

2.1 Process control terms and definitions . 6
2.2 Basic feedback control principles . 8
2.3 Proportional-only control . 15
2.4 Proportional-only offset . 24
2.5 Integral (reset) control . 30
2.6 Derivative (rate) control . 35
2.7 Summary of PID control terms . 37

2.7.1 Proportional control mode (P) . 37
2.7.2 Integral control mode (I) . 38
2.7.3 Derivative control mode (D) . 39

2.8 Different PID equations . 39
2.8.1 Parallel PID equation . 40
2.8.2 Ideal PID equation . 41
2.8.3 Series PID equation . 42

2.9 Analog electronic PID controllers . 43
2.9.1 Proportional control action . 44
2.9.2 Derivative and integral control actions . 46
2.9.3 Full-PID circuit design . 50

2.10 Digital PID algorithms . 53
2.10.1 Position versus velocity algorithms . 53

3 Derivations and Technical References 59

3.1 P, I, and D responses graphed . 59
3.1.1 Responses to a single step-change . 60
3.1.2 Responses to a momentary step-and-return 61
3.1.3 Responses to two momentary steps-and-returns 63
3.1.4 Responses to a ramp-and-hold . 64
3.1.5 Responses to an up-and-down ramp . 65
3.1.6 Responses to a multi-slope ramp . 66
3.1.7 Responses to a multiple ramps and steps . 67
3.1.8 Responses to a sine wavelet . 68

iii

iv CONTENTS

3.1.9 Note to students regarding quantitative graphing 70

4 Programming References 75

4.1 Programming in C++ . 76
4.2 Programming in Python . 80
4.3 Introduction to pseudocode . 85

4.3.1 Program loops . 85
4.3.2 Assigning values . 86
4.3.3 Testing values (conditional statements) . 87
4.3.4 Branching and functions . 88

5 Questions 91

5.1 Conceptual reasoning . 95
5.1.1 Reading outline and reflections . 96
5.1.2 Foundational concepts . 97
5.1.3 First conceptual question . 98
5.1.4 Second conceptual question . 98
5.1.5 Applying foundational concepts to ??? . 99
5.1.6 Explaining the meaning of calculations . 100
5.1.7 Explaining the meaning of code . 101

5.2 Quantitative reasoning . 102
5.2.1 Miscellaneous physical constants . 103
5.2.2 Introduction to spreadsheets . 104
5.2.3 First quantitative problem . 107
5.2.4 Second quantitative problem . 107
5.2.5 ??? simulation program . 107

5.3 Diagnostic reasoning . 108
5.3.1 First diagnostic scenario . 108
5.3.2 Second diagnostic scenario . 109

6 Projects and Experiments 111

6.1 Recommended practices . 111
6.1.1 Safety first! . 112
6.1.2 Other helpful tips . 114
6.1.3 Terminal blocks for circuit construction . 115
6.1.4 Conducting experiments . 118
6.1.5 Constructing projects . 122

6.2 Experiment: (first experiment) . 123
6.3 Project: (first project) . 124

A Problem-Solving Strategies 125

B Instructional philosophy 127

C Tools used 133

D Creative Commons License 137

CONTENTS 1

E References 145

F Version history 147

Index 147

2 CONTENTS

Chapter 1

Introduction

3

4 CHAPTER 1. INTRODUCTION

Chapter 2

Tutorial

5

6 CHAPTER 2. TUTORIAL

2.1 Process control terms and definitions

The field of industrial measurement and control has its own unique terms and standards, some
common terms defined below:

Process – The physical system we are attempting to control or measure. Examples: water filtration

system, molten metal casting system, steam boiler, oil refinery unit, power generation unit, vehicle

speed, robot arm position.

Process Variable, or PV – The specific quantity we are measuring in a process. Examples: fluid

pressure, liquid level, temperature, fluid flow, electrical conductivity, water pH, machine position,

shaft rotational speed, vibration.

Setpoint, or SP – The value at which we desire the process variable to be maintained at. In other
words, the “target” value for the process variable.

Primary Sensing Element, orPSE – A device directly sensing the process variable and translating
that sensed quantity into an analog representation (electrical voltage, current, resistance; mechanical
force, motion, etc.). Examples: thermocouple, thermistor, bourdon tube, microphone, potentiometer,

electrochemical cell, accelerometer.

Transmitter – A device translating the signal produced by a primary sensing element (PSE) into
a standardized electronic signal that a control system can understand.

Controller – A device receiving a process variable (PV) signal from a primary sensing element
(PSE) or transmitter, comparing that signal to the desired value (called the setpoint) for that
process variable, and calculating an appropriate output signal value to be sent to a final control
element (FCE) such as an electric motor or control valve.

Final Control Element, or FCE – A device receiving the signal output by a controller to directly
influence the process. Examples: variable-speed electric motor, control valve, electric heater.

Manipulated Variable, or MV – The quantity in a process we adjust or otherwise manipulate in
order to influence the process variable (PV). Also used to describe the output signal generated by
a controller; i.e. the signal commanding (“manipulating”) the final control element to influence the
process.

Load – any uncontrolled factor affecting the process variable’s value. Example: a window opening

in a room letting warm air out and cold air in, affecting that room’s temperature in such a way that

that thermostatic heating system must compensate to maintain the room’s temperature at setpoint.

Automatic mode – When the controller generates an output signal based on the relationship of
process variable (PV) to the setpoint (SP).

Manual mode – When the controller’s decision-making ability is bypassed to let a human operator
directly determine the output signal sent to the final control element.

Loop – This widely-used term unfortunately has multiple meanings. In one sense it refers to the

2.1. PROCESS CONTROL TERMS AND DEFINITIONS 7

complete electrical circuit comprising a 4-20 mA analog measurement or control signal. In another
sense it refers to the circular flow of information in any negative feedback regulation system.

8 CHAPTER 2. TUTORIAL

2.2 Basic feedback control principles

Before we begin our discussion on process control, we must define a few key terms. First, we have
what is known as the process : the physical system we wish to monitor and control. For the sake of
illustration, consider a heat exchanger that uses high-temperature steam to transfer heat to a lower-
temperature liquid. Heat exchangers are used frequently in the chemical industries to maintain the
necessary temperature of a chemical solution, so the desired blending, separation, or reactions can
occur. A very common design of heat exchanger is the “shell-and-tube” style, where a metal shell
serves as a conduit for the chemical solution to flow through, while a network of smaller tubes runs
through the interior of the shell, carrying steam or some other heat-transfer fluid. The hotter steam
flowing through the tubes transfers heat energy to the cooler process fluid surrounding the tubes,
inside the shell of the heat exchanger:

Shell

Tube

Steam in

Steam out

Cool process
fluid in

Warm process
fluid out

Shell-and-Tube
heat exchanger

In this case, the process is the entire heating system, consisting of the fluid we wish to heat,
the heat exchanger, and the steam delivering the required heat energy. In order to maintain steady
control of the process fluid’s exiting temperature, we must find a way to measure it and represent
that measurement in signal form so it may be interpreted by other instruments taking some form of
control action. In instrumentation terms, the measuring device is known as a transmitter, because
it transmits the process measurement in the form of a signal.

2.2. BASIC FEEDBACK CONTROL PRINCIPLES 9

Transmitters are represented in process diagrams by small circles with identifying letters inside,
in this case, “TT,” which stands for Temperature Transmitter:

Steam in

Steam out

TT

"Process Variable" (PV)
signal

The signal output by the transmitter (represented by the “PV” dashed line), representing the
heated fluid’s exiting temperature, is called the process variable. Like a variable in a mathematical
equation that represents some story-problem quantity, this signal represents the measured quantity
we wish to control in the process.

In order to exert control over the process variable, we must have some way of altering fluid flow
through the heat exchanger, either of the process fluid, the steam, or both. Generally, it makes
more sense to alter the flow of the heating medium (the steam), and let the process fluid flow rate
be dictated by the demands of the larger process. If this heat exchanger were part of an oil refinery
unit, for example, it would be far better to throttle steam flow to control oil temperature rather
than to throttle the oil flow itself, since altering the oil’s flow will also affect other process variables
upstream and downstream of the exchanger. Ideally, the heat exchanger temperature control system
would provide consistent temperature of the exiting oil, for any given incoming oil temperature and
flow-rate of oil through it.

10 CHAPTER 2. TUTORIAL

One convenient way to throttle steam flow into the heat exchanger is to use a control valve
(labeled “TV” because it is a Temperature Valve). In general terms, a control valve is known as a
final control element. Other types of final control elements exist (servo motors, variable-flow pumps,
and other mechanical devices used to vary some physical quantity at will), but valves are the most
common, and probably the simplest to understand. With a final control element in place, the steam
flow becomes known as the manipulated variable, because it is the quantity we will manipulate in
order to gain control over the process variable:

Steam in

Steam out

TT

TV

Control signal

Valves come in a wide variety of sizes and styles. Some valves are hand-operated: that is, they
have a “wheel” or other form of manual control that may be moved to “pinch off” or “open up”
the flow passage through the pipe. Other valves come equipped with signal receivers and positioner
devices, which move the valve mechanism to various positions at the command of a signal (usually
an electrical signal, like the type output by transmitter instruments). This feature allows for remote
control, so a human operator or computer device may exert control over the manipulated variable
from a distance. In the previous illustration, the steam control valve is equipped with such an
electrical signal input, represented by the “control signal” dashed line.

2.2. BASIC FEEDBACK CONTROL PRINCIPLES 11

This brings us to the final component of the heat exchanger temperature control system: the
controller. This is a device designed to interpret the transmitter’s process variable signal and decide
how far open the control valve needs to be in order to maintain that process variable at the desired
value.

Steam in

Steam out

TT

TC

TV

Reverse-acting
(e = SP-PV)

SP

PV

Here, the circle with the letters “TC” in the center represents the controller. Those letters
stand for Temperature Controller, since the process variable being controlled is the process fluid’s
temperature. Usually, the controller consists of a computer making automatic decisions to open and
close the valve as necessary to stabilize the process variable at some predetermined setpoint.

Note that the controller’s circle has a solid line going through the center of it, while the
transmitter and control valve circles are open. An open circle represents a field-mounted device
according to the ISA standard for instrumentation symbols, and a single solid line through the
middle of a circle tells us the device is located on the front of a control panel in a main control room
location. So, even though the diagram might appear as though these three instruments are located
close to one another, they in fact may be quite far apart. Both the transmitter and the valve must
be located near the heat exchanger (out in the “field” area rather than inside a building), but the
controller may be located a long distance away where human operators can adjust the setpoint from
inside a safe and secure control room.

These elements comprise the essentials of a feedback control system: the process (the system

12 CHAPTER 2. TUTORIAL

to be controlled), the process variable (the specific quantity to be measured and controlled), the
transmitter (the device used to measure the process variable and output a corresponding signal),
the controller (the device that decides what to do to bring the process variable as close to setpoint as
possible), the final control element (the device that directly exerts control over the process), and the
manipulated variable (the quantity to be directly altered to effect control over the process variable).

Feedback control may be viewed as a sort of information “loop,” from the transmitter (measuring
the process variable), to the controller, to the final control element, and through the process itself,
back to the transmitter. Ideally, a process control “loop” not only holds the process variable at a
steady level (the setpoint), but also maintains control over the process variable given changes in
setpoint, and even changes in other variables of the process:

Measuring
device

Final control
device

Controller

The Process

Senses

Decides

Influences

Reacts

Specifically, the type of feedback we are employing here to control the process is negative or
degenerative feedback. The term “negative” refers to the direction of action the control system
takes in response to any measured change in the process variable. If something happens to drive
the process variable up, the control system will automatically respond in such a way as to bring the
process variable back down where it belongs. If the process variable happens to sag below setpoint,
the control system will automatically act to drive the process variable back up to setpoint. Whatever
the process variable does in relation to setpoint, the control system takes the opposite (inverse, or
negative) action in an attempt to stabilize it at setpoint.

For example, if the unheated process fluid flow rate were to suddenly increase, the heat exchanger
outlet temperature would fall due to the physics of heat transfer, but once this drop was detected by
the transmitter and reported to the controller, the controller would automatically call for additional
steam flow to compensate for the temperature drop, thus bringing the process variable back in
agreement with the setpoint. Ideally, a well-designed and well-tuned control loop will sense and

2.2. BASIC FEEDBACK CONTROL PRINCIPLES 13

compensate for any change in the process or in the setpoint, the end result being a process variable
value that always holds steady at the setpoint value.

The unheated fluid flow rate is an example of an uncontrolled, or wild, variable because our
control system here has no ability to influence it. This flow is also referred to as a load because it
“loads” or affects the process variable we are trying to stabilize. Loads are present in nearly every
controlled system, and indeed are the primary factor necessitating a control system at all. Referring
back to our heat exchanger process again, we could adequately control the operating temperature of
it with just a manually-set steam control valve if only none of the other factors (steam temperature,
fluid flow rate, incoming fluid temperature, etc.) ever changed!

Many types of processes lend themselves to feedback control. Consider an aircraft autopilot
system, keeping an airplane on a steady course heading despite the effects of loads such as side-
winds: reading the plane’s heading (process variable) from an electronic compass and using the
rudder as a final control element to change the plane’s “yaw.” An automobile’s “cruise control” is
another example of a feedback control system, with the process variable being the car’s velocity, and
the final control element being the engine’s throttle. The purpose of a cruise control is to maintain
constant driving speed despite the influence of loads such as hills, head-winds, tail-winds, and road
roughness. Steam boilers with automatic pressure controls, electrical generators with automatic
voltage and frequency controls, and water pumping systems with automatic flow controls are further
examples of how feedback may be used to maintain control over certain process variables.

Modern technology makes it possible to control nearly anything that may be measured in an
industrial process. This extends beyond the pale of simple pressure, level, temperature, and flow
variables to include even certain chemical properties.

14 CHAPTER 2. TUTORIAL

In municipal water and wastewater treatment systems, for example, numerous chemical
quantities must be measured and controlled automatically to ensure maximum health and minimum
environmental impact. Take for instance the chlorination of treated wastewater, before it leaves the
wastewater treatment facility into a large body of water such as a river, bay, or ocean. Chlorine
is added to the water to kill any residual bacteria so they do not consume oxygen in the body of
water they are released to. Too little chlorine added, and not enough bacteria are killed, resulting
in a high biological oxygen demand or BOD in the water which will asphyxiate the fish swimming
in it. Too much chlorine added, and the chlorine itself poses a hazard to marine life. Thus, the
chlorine content must be carefully controlled at a particular setpoint, and the control system must
take aggressive action if the dissolved chlorine concentration strays too low or too high:

Mixer

Influent

Chlorine supply

Contact
chamber

AT

AIC

Effluent

Cl2

M

SP

Analytical
transmitter

Analytical
indicating
controller

Motor-operated
control valve

4-20 mA

signal

4-20 mA

signal

measurement

control

Reverse-acting
(e = SP-PV)

Now that we have seen the basic elements of a feedback control system, we will concentrate on
the algorithms used in the controller to maintain a process variable at setpoint. For the scope of
this topic, an “algorithm” is a mathematical relationship between the process variable and setpoint
inputs of a controller, and the output (manipulated variable). Control algorithms determine how the
manipulated variable quantity is deduced from PV and SP inputs, and range from the elementary
to the very complex. In the most common form of control algorithm, the so-called “PID” algorithm,
calculus is used to determine the proper final control element action for any combination of input
signals.

2.3. PROPORTIONAL-ONLY CONTROL 15

2.3 Proportional-only control

Imagine a liquid-level control system for a vessel, where the position of a level-sensing float directly
sets the stem position of a control valve. As the liquid level rises, the valve opens up proportionally:

View inside
float chamber

Process
vessel

Float

Coupling
(setpoint adjustment)

Despite its crude mechanical nature, this proportional control system would in fact help regulate
the level of liquid inside the process vessel. If an operator wished to change the “setpoint” value
of this level control system, he or she would have to adjust the coupling between the float and
valve stems for more or less distance between the two. Increasing this distance (lengthening the
connection) would effectively raise the level setpoint, while decreasing this distance (shortening the
connection) would lower the setpoint.

16 CHAPTER 2. TUTORIAL

We may generalize the proportional action of this mechanism to describe any form of controller
where the output is a direct function of process variable (PV) and setpoint (SP):

m = Kpe+ b

Where,
m = Controller output
e = Error (difference between PV and SP)
Kp = Proportional gain
b = Bias

A new term introduced with this formula is e, the “error” or difference between process variable
and setpoint. Error may be calculated as SP−PV or as PV−SP, depending on whether or not the
controller must produce an increasing output signal in response to an increase in the process variable
(“direct” acting), or output a decreasing signal in response to an increase in the process variable
(“reverse” acting):

m = Kp(PV− SP) + b (Direct-acting proportional controller)

m = Kp(SP− PV) + b (Reverse-acting proportional controller)

Proportional
controller

PV

SP

Output

Direct-acting controller

Proportional
controller

PV

SP

Output

Reverse-acting controller

e = PV-SP e = SP-PV

The optional “+” and “−” symbols clarify the effect each input has on the controller output: a
“−” symbol representing an inverting effect and a “+” symbol representing a noninverting effect.
When we say that a controller is “direct-acting” or “reverse-acting” we are referring to it reaction
to the PV signal, therefore the output signal from a “direct-acting” controller goes in the same
direction as the PV signal and the output from a “reverse-acting” controller goes in the opposite
direction of its PV signal. It is important to note, however, that the response to a change in setpoint
(SP) will yield the opposite response as does a change in process variable (PV): a rising SP will drive
the output of a direct-acting controller down while a rising SP drives the output of a reverse-acting
controller up. “+” and “−” symbols explicitly show the effect both inputs have on the controller
output, helping to avoid confusion when analyzing the effects of PV changes versus the effects of SP
changes.

2.3. PROPORTIONAL-ONLY CONTROL 17

The direction of action required of the controller is determined by the nature of the process,
transmitter, and final control element. In the case of the crude mechanical level controller, the action
needs to be direct so that a greater liquid level will result in a further-open control valve to drain the
vessel faster. In the case of the automated heat exchanger shown earlier, we are assuming that an
increasing output signal sent to the control valve results in increased steam flow, and consequently
higher temperature, so our controller will need to be reverse-acting (i.e. an increase in measured
temperature results in a decrease in output signal; error calculated as SP−PV):

Steam in

Steam out

TT

TC

TV

Reverse-acting
(e = SP-PV)

SP

PV

After the error has been calculated, the controller then multiplies the error signal by a constant
value called the gain, which is programmed into the controller. The resulting figure, plus a “bias”
quantity, becomes the output signal sent to the valve to proportion it. The “gain” value is exactly
what it seems to be for anyone familiar with electronic amplifier circuits: a ratio of output to input.
In this case, the gain of a proportional controller is the ratio of output signal change to input signal
change, or how aggressive the controller reacts to changes in input (PV or SP).

To give a numerical example, a loop controller set to have a gain of 4 will change its output
signal by 40% if it sees an input change of 10%: the ratio of output change to input change will be
4:1. Whether the input change comes in the form of a setpoint adjustment, a drift in the process
variable, or some combination of the two does not matter to the magnitude of the output change.

The bias value of a proportional controller is simply the value of its output whenever process

18 CHAPTER 2. TUTORIAL

variable happens to be equal to setpoint (i.e. a condition of zero error). Without a bias term in the
proportional control formula, the valve would always return to a fully shut (0%) condition if ever
the process variable reached the setpoint value. The bias term allows the final control element to
achieve a non-zero state at setpoint.

2.3. PROPORTIONAL-ONLY CONTROL 19

If the m = Kpe+ b proportional controller formula resembles the standard slope-intercept form
of linear equation (y = mx+ b), it is more than coincidence. Often, the response of a proportional
controller is shown graphically as a line, the slope of the line representing gain and the y-intercept
of the line representing the output bias point, or what value the output signal will be when there is
no error (PV precisely equals SP):

0

Output

Error = (SP - PV)

+10 +20 +30 +40 +50 +60 +70 +80 +90 +100-10-20-30-40-50-60-70-80-90-100

+10

+20

+30

+40

+50

+60

+70

+80

+90

+100

In this graph the bias value is 50% and the gain of the controller is 1. Changing the bias value
(b) of the controller shifts the line up or down. Changing the gain value (Kp) alters the slope of the
line for more or less aggressive control action.

If the controller could be configured for infinite gain, its response would duplicate on/off control.
That is, any amount of error will result in the output signal becoming “saturated” at either 0%
or 100%, and the final control element will simply turn on fully when the process variable drops
below setpoint and turn off fully when the process variable rises above setpoint. Conversely, if the
controller is set for zero gain, it will become completely unresponsive to changes in either process
variable or setpoint: the valve will hold its position at the bias point no matter what happens to
the process.

Obviously, then, we must set the gain somewhere between infinity and zero in order for this
algorithm to function any better than on/off control. Just how much gain a controller needs to have
depends on the process and all the other instruments in the control loop.

If the gain is set too high, there will be oscillations as the PV converges on a new setpoint value:

20 CHAPTER 2. TUTORIAL

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

2.3. PROPORTIONAL-ONLY CONTROL 21

If the gain is set too low, the process response will be stable under steady-state conditions but
relatively slow to respond to changes in setpoint, as shown in the following trend recording:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP

PV

A characteristic deficiency of proportional control action, exacerbated with low controller gain
values, is a phenomenon known as proportional-only offset where the PV never fully reaches SP. A
full explanation of proportional-only offset is too lengthy for this discussion and will be presented
in a subsequent section of the book, but may be summarized here simply by drawing attention to
the proportional controller equation which tells us the output always returns to the bias value when
PV reaches SP (i.e. m = b when PV = SP). If anything changes in the process to require a different
output value than the bias (b) to stabilize the PV, an error between PV and SP must develop to
drive the controller output to that necessary output value. This means it is only by chance that the
PV will settle precisely at the SP value – most of the time, the PV will deviate from SP in order to
generate an output value sufficient to stabilize the PV and prevent it from drifting. This persistent
error, or offset, worsens as the controller gain is reduced. Increasing controller gain causes this offset
to decrease, but at the expense of oscillations.

22 CHAPTER 2. TUTORIAL

With proportional-only control, the choice of gain values is really a compromise between excessive
oscillations and excessive offset. A well-tuned proportional controller response is shown here:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

An unnecessarily confusing aspect of proportional control is the existence of two completely
different ways to express controller proportionality. In the proportional-only equation shown earlier,
the degree of proportional action was specified by the constant Kp, called gain. However, there is
another way to express the sensitivity of proportional action, and that is to state the percentage of
error change necessary to make the output (m) change by 100%. Mathematically, this is the inverse
of gain, and it is called proportional band (PB):

Kp =
1

PB
PB =

1

Kp

Gain is always specified as a unitless value1, whereas proportional band is always specified as
a percentage. For example, a gain value of 2.5 is equivalent to a proportional band value of 40%,
because the error input to this controller must change by 40% in order to make the output change
a full 100%.

1In electronics, the unit of decibels is commonly used to express gains. Thankfully, the world of process control
was spared the introduction of decibels as a unit of measurement for controller gain. The last thing we need is a third

way to express the degree of proportional action in a controller!

2.3. PROPORTIONAL-ONLY CONTROL 23

Due to the existence of these two completely opposite conventions for specifying proportional
action, you may see the proportional term of the control equation written differently depending on
whether the author assumes the use of gain or the use of proportional band:

Kp = gain PB = proportional band

Kpe
1

PBe

Many modern digital electronic controllers allow the user to conveniently select the unit they
wish to use for proportional action. However, even with this ability, anyone tasked with adjusting
a controller’s “tuning” values may be required to translate between gain and proportional band,
especially if certain values are documented in a way that does not match the unit configured for the
controller.

When you communicate the proportional action setting of a process controller, you should always
be careful to specify either “gain” or “proportional band” to avoid ambiguity. Never simply say
something like, “The proportional setting is twenty,” for this could mean either:

• Proportional band = 20%; Gain = 5 . . . or . . .

• Gain = 20; Proportional band = 5%

As you can see here, the real-life difference in controller response to an input disturbance (wave)
depending on whether it has a proportional band of 20% or a gain of 20 is quite dramatic:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SPPV

PB = 20% (Gain = 5)

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SPPV

Gain = 20 (PB = 5%)

Output

Output

24 CHAPTER 2. TUTORIAL

2.4 Proportional-only offset

A fundamental limitation of proportional control has to do with its response to changes in setpoint
and changes in process load. A “load” in a controlled process is any variable not controlled by the
loop controller which nevertheless affects the process variable the controller is trying to regulate. In
other words, a “load” is any factor the loop controller must compensate for while maintaining the
process variable at setpoint.

In our hypothetical heat exchanger system, the temperature of the incoming process fluid is an
example of a load:

Steam in

Steam out

TT

TC

TV

Changes in incoming
feed temperature
constitute a "load"
on the process

If the incoming fluid temperature were to suddenly decrease, the immediate effect this would
have on the process would be to decrease the outlet temperature (which is the temperature we
are trying to maintain at a steady value). It should make intuitive sense that a colder incoming
fluid will require more heat input to raise it to the same outlet temperature as before. If the heat
input remains the same (at least in the immediate future), this colder incoming flow must make the
outlet flow colder than it was before. Thus, incoming feed temperature has an impact on the outlet
temperature whether we like it or not, and the control system must compensate for these unforeseen
and uncontrolled changes. This is precisely the definition of a “load”: a burden2 on the control

2One could argue that the presence of loads actually justifies a control system, for if there were no loads, there

2.4. PROPORTIONAL-ONLY OFFSET 25

system.
Of course, it is the job of the controller to counteract any tendency for the outlet temperature

to stray from setpoint, but as we shall soon see this cannot be perfectly achieved with proportional
control alone.

Let us perform a “thought experiment” to demonstrate this phenomenon of proportional-only
offset. Imagine the controller has been controlling outlet temperature exactly at setpoint (PV =
SP), and then suddenly the inlet feed temperature drops and remains colder than before. Recall
that the equation for a reverse-acting proportional controller is as follows:

m = Kp(SP− PV) + b

Where,
m = Controller output
Kp = Proportional gain
SP = Setpoint
PV = Process variable
b = Bias

The introduction of colder feed fluid to the heat exchanger makes the outlet temperature (PV)
begin to fall. As the PV falls, the controller calculates a positive error (SP − PV). This positive
error, when multiplied by the controller’s gain value, drives the output to a greater value. This
opens up the steam valve, adding more heat to the exchanger.

As more heat is added, the rate of temperature drop slows down. The further the PV drops, the
more the steam valve opens, until enough additional heat is being added to the heat exchanger to
maintain a constant outlet temperature. However, this new stable PV value will be less than it was
prior to the introduction of colder feed (i.e. less than the SP). In fact, the controller’s automatic
action can never return the PV to its original (SP) value so long as the feed remains colder than
before. The reason for this is that a greater flow of steam is necessary to balance a colder feed coming
in, and the only way a proportional controller is ever going to automatically drive the steam valve
to this greater-flow position is if an error develops between PV and SP. Thus, an offset inevitably
develops between PV and SP due to the load (colder feed).

We may prove the inevitability of this offset another way: imagine somehow that the PV did
actually return to the SP value despite the colder feed fluid (remaining colder). If this happened,
the steam valve would also return to its former throttling position where it was before the feed
temperature dropped. However, we know that this former position will not allow enough steam
through to the exchanger to overcome the colder feed – if it did, the PV never would have decreased
to begin with! A further-open valve is precisely what we need to stabilize the PV given this colder
feed, yet the only way the proportional-only controller can achieve this is if the PV actually falls
below SP.

To summarize: the only way a proportional-only controller can automatically generate a new
output value (m) is if the PV deviates from SP. Therefore, load changes (requiring new output
values to compensate) force the PV to deviate from SP.

would be nothing to compensate for, and therefore no need for an automatic control system at all! In the total absence
of loads, a manually-set final control element would be enough to hold most process variables at setpoint.

26 CHAPTER 2. TUTORIAL

Another “thought experiment” may be helpful to illustrate the phenomenon of proportional-
only offset. Imagine building your own cruise control system for your automobile based on the
proportional-only equation: the engine’s throttle position is a function of the difference between PV
(road speed) and SP (the desired “target” speed). Let us further suppose that you carefully adjust
the bias value of your cruise control system to achieve PV = SP on level ground at a speed of 70
miles per hour (70% on a 0 to 100 MPH speedometer scale), with the throttle at a position of 40%,
and a gain (Kp) of 2:

m = Kp(SP− PV) + b

40% = 2(70− 70) + 40%

Imagine now that after cruising precisely at setpoint (70% = 70 MPH), the road begins to
incline uphill for several miles. This, obviously, is a load on the cruise control system. With the
cruise control disengaged, the automobile would slow down because the same throttle position (40%)
sufficient to maintain setpoint (70 MPH) on level ground is not enough power to maintain that same
setpoint on an incline.

With the cruise control engaged, the engine throttle will automatically open further as speed
drops. At a speed of 69 MPH, the throttle opens up to 42%. At a speed of 68 MPH, the throttle
opens up to 44%. Every drop in speed of 1 MPH results in a 2% further-open throttle to send more
power to the wheels.

Suppose the demands of this particular inclined road require a 50% throttle position for this
automobile to maintain a constant speed. In order for your proportional-only cruise control system
to deliver this necessary 50% throttle position, the speed will have to “droop” by 5 MPH below
setpoint:

m = Kp(SP− PV) + b

50% = 2(70− 65) + 40%

There is simply no other way for your proportional-only controller to automatically achieve the
requisite 50% throttle position aside from letting the speed sag below setpoint by 5% (5 MPH). Given
this fact, the only way the proportional-only cruise control will ever return the speed to setpoint (70
MPH) is if and when the load conditions change to allow for a lesser throttle position of 40%. So
long as the load demands a different throttle position than the bias value, the speed must deviate
from the setpoint value of 70 MPH.

This necessary error developing between PV and SP is called proportional-only offset, sometimes
called droop. The amount of droop depends on how severe the load change is, and how aggressive
the controller responds (i.e. how much gain it has). The term “droop” is very misleading, as it
is possible for the error to develop the other way (i.e. the PV might rise above SP due to a load
change!). Imagine the opposite load-change scenario in our steam heat exchanger process, where the
incoming feed temperature suddenly rises instead of falls. If the controller was controlling exactly
at setpoint before this upset, the final result will be an outlet temperature that settles at some point
above setpoint, enough so the controller is able to pinch the steam valve far enough closed to stop
any further rise in temperature.

2.4. PROPORTIONAL-ONLY OFFSET 27

Proportional-only offset also occurs as a result of setpoint changes. We could easily imagine
the same sort of effect following an operator’s increase of setpoint for the temperature controller on
the heat exchanger. After increasing the setpoint, the controller immediately increases the output
signal, sending more steam to the heat exchanger. As temperature rises, though, the proportional
algorithm causes the output signal to decrease. When the rate of heat energy input by the steam
equals the rate of heat energy carried away from the heat exchanger by the heated fluid (a condition
of energy balance), the temperature stops rising. This new equilibrium temperature will not be at
setpoint, assuming the temperature was holding at setpoint prior to the human operator’s setpoint
increase. The new equilibrium temperature indeed cannot ever achieve any setpoint value higher
than the one it did in the past, for if the error ever returned to zero (PV = SP), the steam valve
would return to its old position, which we know would be insufficient to raise the temperature of
the heated fluid to a new value.

An example of proportional-only control in the context of electronic power supply circuits is the
following opamp voltage regulator, used to stabilize voltage to a load with power supplied by an
unregulated voltage source:

−

+

Load

m
SP

PV

Zener diode
voltage

reference

Power
transistorUnregulated

voltage source

Regulated
voltage to loadVref

Vload

(e = SP-PV)
Reverse-acting

In this circuit, a zener diode establishes a “reference” voltage (which may be thought of as a
“setpoint” for the controlling opamp to follow). The operational amplifier acts as the proportional-
only controller, sensing voltage at the load (PV), and sending a driving output voltage to the base of
the power transistor to keep load voltage constant despite changes in the supply voltage or changes
in load current (both “loads” in the process-control sense of the word, since they tend to influence
voltage at the load circuit without being under the control of the opamp).

If everything functions properly in this voltage regulator circuit, the load’s voltage will be
stable over a wide range of supply voltages and load currents. However, the load voltage cannot
ever precisely equal the reference voltage established by the zener diode, even if the operational
amplifier (the “controller”) is without defect. The reason for this incapacity to perfectly maintain
“setpoint” is the simple fact that in order for the opamp to generate any output signal at all, there
absolutely must be a differential voltage between the two input terminals for the amplifier to amplify.
Operational amplifiers (ideally) generate an output voltage equal to the enormously high gain value
(AV) multiplied by the difference in input voltages (in this case, Vref −Vload). If Vload (the “process

28 CHAPTER 2. TUTORIAL

variable”) were to ever achieve equality with Vref (the “setpoint”), the operational amplifier would
experience absolutely no differential input voltage to amplify, and its output signal driving the power
transistor would fall to zero. Therefore, there must always exist some offset between Vload and Vref

(between process variable and setpoint) in order to give the amplifier some input voltage to amplify.
The amount of offset is ridiculously small in such a circuit, owing to the enormous gain of the

operational amplifier. If we take the opamp’s transfer function to be Vout = AV (V(+) − V(−)), then
we may set up an equation predicting the load voltage as a function of reference voltage (assuming
a constant 0.7 volt drop between the base and emitter terminals of the transistor):

Vout = AV (V(+) − V(−))

Vout = AV (Vref − Vload)

Vload + 0.7 = AV (Vref − Vload)

Vload + 0.7 = AV Vref −AV Vload

Vload +AV Vload = AV Vref − 0.7

(AV + 1)Vload = AV Vref − 0.7

Vload =
AV Vref − 0.7

AV + 1

If, for example, our zener diode produced a reference voltage of 5.00000 volts and the operational
amplifier had an open-loop voltage gain of 250000, the load voltage would settle at a theoretical
value of 4.9999772 volts: just barely below the reference voltage value. If the opamp’s open-loop
voltage gain were much less – say only 100 – the load voltage would only be 4.94356 volts. This
still is quite close to the reference voltage, but definitely not as close as it would be with a greater
opamp gain!

Clearly, then, we can minimize proportional-only offset by increasing the gain of the process
controller gain (i.e. decreasing its proportional band). This makes the controller more “aggressive”
so it will move the control valve further for any given change in PV or SP. Thus, not as much
error needs to develop between PV and SP to move the valve to any new position it needs to go.
However, too much controller gain makes the control system unstable: at best it will exhibit residual
oscillations after setpoint and load changes, and at worst it will oscillate out of control altogether.
Extremely high gains work well to minimize offset in operational amplifier circuits, only because
time delays are negligible between output and input. In applications where large physical processes
are being controlled (e.g. furnace temperatures, tank levels, gas pressures, etc.) rather than voltages
across small electronic loads, such high controller gains would be met with debilitating oscillations.

If we are limited in how much gain we can program in to the controller, how do we minimize this
offset? One way is for a human operator to periodically place the controller in manual mode and move
the control valve just a little bit more so the PV once again reaches SP, then place the controller back

2.4. PROPORTIONAL-ONLY OFFSET 29

into automatic mode. In essence this technique adjusts the “Bias” term of the controller equation.
The disadvantage of this technique is rather obvious: it requires human intervention. What is the
point of having an automation system requiring periodic human intervention to maintain setpoint?

A more sophisticated method for eliminating proportional-only offset is to add a different control
action to the controller: one that takes action based on the amount of error between PV and SP
and the amount of time that error has existed. We call this control mode integral, or reset.

30 CHAPTER 2. TUTORIAL

2.5 Integral (reset) control

Imagine a liquid-level control system for a vessel, where the position of a level-sensing float sets
the position of a potentiometer, which then sets the speed of a motor-actuated control valve. If the
liquid level is above setpoint, the valve continually opens up; if below setpoint, the valve continually
closes off:

View inside
float chamber

Process
vessel

Float

Motor

Printed
circuit
board

To power supply

Unlike the proportional control system where valve position was a direct function of float position,
this control system sets the speed of the motor-driven valve according to the float position. The
further away from setpoint the liquid level is, the faster the valve moves open or closed. In fact,
the only time the valve will ever halt its motion is when the liquid level is precisely at setpoint;
otherwise, the control valve will be in constant motion.

This control system does its job in a very different manner than the all-mechanical float-based
proportional control system illustrated previously. Both systems are capable of regulating liquid level
inside the vessel, but they take very different approaches to doing so. One of the most significant
differences in control behavior is how the proportional system would inevitably suffer from offset

(a persistent error between PV and SP), whereas this control system actively works at all times
to eliminate offset. The motor-driven control valve literally does not rest until all error has been
eliminated!

2.5. INTEGRAL (RESET) CONTROL 31

Instead of characterizing this control system as proportional, we call it integral3 in honor of the
calculus principle (“integration”) whereby small quantities are accumulated over some span to form
a total. Don’t let the word “calculus” scare you! You are probably already familiar with the concept
of numerical integration even though you may have never heard of the term before.

Calculus is a form of mathematics dealing with changing variables, and how rates of change
relate between different variables. When we “integrate” a variable with respect to time, what we
are doing is accumulating that variable’s value as time progresses. Perhaps the simplest example
of this is a vehicle odometer, accumulating the total distance traveled by the vehicle over a certain
time period. This stands in contrast to a speedometer, indicating the rate of distance traveled per

unit of time.
Imagine a car moving along at exactly 30 miles per hour. How far will this vehicle travel after 1

hour of driving this speed? Obviously, it will travel 30 miles. Now, how far will this vehicle travel
if it continues for another 2 hours at the exact same speed? Obviously, it will travel 60 more miles,
for a total distance of 90 miles since it began moving. If the car’s speed is a constant, calculating
total distance traveled is a simple matter of multiplying that speed by the travel time.

The odometer mechanism that keeps track of the mileage traveled by the car may be thought of
as integrating the speed of the car with respect to time. In essence, it is multiplying speed times
time continuously to keep a running total of how far the car has gone. When the car is traveling
at a high speed, the odometer “integrates” at a faster rate. When the car is traveling slowly, the
odometer “integrates” slowly.

If the car travels in reverse, the odometer will decrement (count down) rather than increment
(count up) because it sees a negative quantity for speed4. The rate at which the odometer decrements
depends on how fast the car travels in reverse. When the car is stopped (zero speed), the odometer
holds its reading and neither increments nor decrements.

Now let us return to the context of an automated process to see how this calculus principle works
inside a process controller. Integration is provided either by a pneumatic mechanism, an electronic
opamp circuit, or by a microprocessor executing a digital integration algorithm. The variable being
integrated is error (the difference between PV and SP) over time. Thus the integral mode of the
controller ramps the output either up or down over time in response to the amount of error existing
between PV and SP, and the sign of that error. We saw this “ramping” action in the behavior of
the liquid level control system using a motor-driven control valve commanded by a float-positioned
potentiometer: the valve stem continuously moves so long as the liquid level deviates from setpoint.
The reason for this ramping action is to increase or decrease the output as far as it is necessary in
order to completely eliminate any error and force the process variable to precisely equal setpoint.
Unlike proportional action, which simply moves the output an amount proportional to any change
in PV or SP, integral control action never stops moving the output until all error is eliminated.

3An older term for this mode of control is floating, which I happen to think is particularly descriptive. With a
“floating” controller, the final control element continually “floats” to whatever value it must in order to completely
eliminate offset.

4At least the old-fashioned mechanical odometers would. Modern cars use a pulse detector on the driveshaft which
cannot tell the difference between forward and reverse, and therefore their odometers always increment. Shades of
the movie Ferris Bueller’s Day Off.

32 CHAPTER 2. TUTORIAL

If proportional action is defined by the error telling the output how far to move, integral action
is defined by the error telling the output how fast to move. One might think of integral as being how
“impatient” the controller is, with integral action constantly ramping the output as far as it needs
to go in order to eliminate error. Once the error is zero (PV = SP), of course, the integral action
stops ramping, leaving the controller output (valve position) at its last value just like a stopped car’s
odometer holds a constant value.

If we add an integral term to the controller equation, we get something that looks like this5:

m = Kpe+
1

τi

∫

e dt+ b

Where,
m = Controller output
e = Error (difference between PV and SP)
Kp = Proportional gain
τi = Integral time constant (minutes)
t = Time
b = Bias

The most confusing portion of this equation for those new to calculus is the part that says
“
∫

e dt”. The integration symbol (looks like an elongated letter “S”) tells us the controller will
accumulate (“sum”) multiple products of error (e) over tiny slices of time (dt). Quite literally, the
controller multiplies error by time (for very short segments of time, dt) and continuously adds up
all those products to contribute to the output signal which then drives the control valve (or other
final control element). The integral time constant (τi) is a value set by the technician or engineer
configuring the controller, proportioning this cumulative action to make it more or less aggressive
over time.

To see how this works in a practical sense, let’s imagine how a proportional + integral controller
would respond to the scenario of a heat exchanger whose inlet temperature suddenly dropped. As
we saw with proportional-only control, an inevitable offset occurs between PV and SP with changes
in load, because an error must develop if the controller is to generate the different output signal
value necessary to halt further change in PV. We called this effect proportional-only offset.

Once this error develops, though, integral action begins to work. Over time, a larger and larger
quantity accumulates in the integral mechanism (or register) of the controller due to the persistent
error between PV and SP. That accumulated value adds to the controller’s output, driving the
steam control valve further and further open. This, of course, adds heat at a faster rate to the
heat exchanger, which causes the outlet temperature to rise. As the temperature re-approaches
setpoint, the error becomes smaller and thus the integral action proceeds at a slower rate (like a
car’s odometer incrementing at a slower rate as the car’s speed decreases). So long as the PV is
below SP (the outlet temperature is still too cool), the controller will continue to integrate upwards,
driving the control valve further and further open. Only when the PV rises to exactly meet SP does

5The equation for a proportional + integral controller is often written without the bias term (b), because the
presence of integral action makes it unnecessary. In fact, if we let the integral term completely replace the bias term,
we may consider the integral term to be a self-resetting bias. This, in fact, is the meaning of the word “reset” in the
context of PID controller action: the “reset” term of the controller acts to eliminate offset by continuously adjusting
(resetting) the bias as necessary.

2.5. INTEGRAL (RESET) CONTROL 33

integral action finally rest, holding the valve at a steady position. Integral action tirelessly works
to eliminate any offset between PV and SP, thus neatly eliminating the offset problem experienced
with proportional-only control action.

As with proportional action, there are (unfortunately) two completely opposite ways to specify
the degree of integral action offered by a controller. One way is to specify integral action in terms
of minutes or minutes per repeat. A large value of “minutes” for a controller’s integral action means
a less aggressive integral action over time, just as a large value for proportional band means a less
aggressive proportional action. The other way to specify integral action is the inverse: how many
repeats per minute, equivalent to specifying proportional action in terms of gain (large value means
aggressive action). For this reason, you will sometimes see the integral term of a PID equation
written differently:

τi = minutes per repeat Ki = repeats per minute

1
τi

∫

e dt Ki

∫

e dt

Many modern digital electronic controllers allow the user to select the unit they wish to use
for integral action, just as they allow a choice between specifying proportional action as gain or as
proportional band.

Integral is a highly effective mode of process control. In fact, some processes respond so well
to integral controller action that it is possible to operate the control loop on integral action alone,
without proportional. Typically, though, process controllers implement some form of proportional
plus integral (“PI”) control.

Just as too much proportional gain will cause a process control system to oscillate, too much
integral action (i.e. an integral time constant that is too short) will also cause oscillation. If the
integration happens at too fast a rate, the controller’s output will “saturate” either high or low
before the process variable can make it back to setpoint. Once this happens, the only condition that
will “unwind” the accumulated integral quantity is for an error to develop of the opposite sign, and
remain that way long enough for a canceling quantity to accumulate. Thus, the PV must cross over
the SP, guaranteeing at least another half-cycle of oscillation.

A similar problem called reset windup (or integral windup) happens when external conditions
make it impossible for the controller to achieve setpoint. Imagine what would happen in the heat
exchanger system if the steam boiler suddenly stopped producing steam. As outlet temperature
dropped, the controller’s proportional action would open up the control valve in a futile effort to
raise temperature. If and when steam service is restored, proportional action would just move the
valve back to its original position as the process variable returned to its original value (before the
boiler died). This is how a proportional-only controller would respond to a steam “outage”: nice
and predictably. If the controller had integral action, however, a much worse condition would result.
All the time spent with the outlet temperature below setpoint causes the controller’s integral term
to “wind up” in a futile attempt to admit more steam to the heat exchanger. This accumulated
quantity can only be un-done by the process variable rising above setpoint for an equal error-time
product6, which means when the steam supply resumes, the temperature will rise well above setpoint

6Since integration is fundamentally a process of multiplication followed by addition, the units of measurement are
always the product (multiplication) of the function’s variables. In the case of reset (integral) control, we are multiplying

34 CHAPTER 2. TUTORIAL

until the integral action finally “unwinds” and brings the control valve back to a same position again.

Various techniques exist to manage integral windup. Controllers may be built with limits to
restrict how far the integral term can accumulate under adverse conditions. In some controllers,
integral action may be turned off completely if the error exceeds a certain value. The surest fix for
integral windup is human operator intervention, by placing the controller in manual mode. This
typically resets the integral accumulator to a value of zero and loads a new value into the bias term
of the equation to set the valve position wherever the operator decides. Operators usually wait until
the process variable has returned at or near setpoint before releasing the controller into automatic
mode again.

While it might appear that operator intervention is again a problem to be avoided (as it was
in the case of having to correct for proportional-only offset), it is noteworthy to consider that
the conditions leading to integral windup usually occur only during shut-down conditions. It is
customary for human operators to run the process manually anyway during a shutdown, and so the
switch to manual mode is something they would do anyway and the potential problem of windup
often never manifests itself.

Integral control action has the unfortunate tendency to create loop oscillations (“cycling”) if the
final control element exhibits hysteresis, such as the case with a “sticky” control valve. Imagine for a
moment our steam-heated heat exchanger system where the steam control valve possesses excessive
packing friction and therefore refuses to move until the applied air pressure changes far enough to
overcome that friction, at which point the valve “jumps” to a new position and then “sticks” in that
new position. If the valve happens to stick at a stem position resulting in the product temperature
settling slightly below setpoint, the controller’s integral action will continually increase the output
signal going to the valve in an effort to correct this error (as it should). However, when that output
signal has risen far enough to overcome valve friction and move the stem further open, it is very likely
the stem will once again “stick” but this time do so at a position making the product temperature
settle above setpoint. The controller’s integral action will then ramp downward in an effort to correct
this new error, but due to the valve’s friction making precise positioning impossible, the controller
can never achieve setpoint and therefore it cyclically “hunts” above and below setpoint.

The best solution to this “reset cycling” phenomenon, of course, is to correct the hysteresis in
the final control element. Eliminating friction in the control valve will permit precise positioning
and allow the controller’s integral action to achieve setpoint as designed. Since it is practically
impossible to eliminate all friction from a control valve, however, other solutions to this problem
exist. One of them is to program the controller to stop integrating whenever the error is less than
some pre-configured value (sometimes referred to as the “integral deadband” or “reset deadband”
of the controller). By activating reset control action only for significant error values, the controller
ignores small errors rather than “compulsively” trying to correct for any detected error no matter
how small.

controller error (the difference between PV and SP, usually expressed in percent) by time (usually expressed in minutes
or seconds). Therefore the result will be an “error-time” product. In order for an integral controller to self-recover
following windup, the error must switch signs and the error-time product accumulate to a sufficient value to cancel
out the error-time product accumulated during the windup period.

2.6. DERIVATIVE (RATE) CONTROL 35

2.6 Derivative (rate) control

The final element of PID control is the “D” term, which stands for derivative. This is a calculus
concept like integral, except most people consider it easier to understand. Simply put, derivative is
the expression of a variable’s rate-of-change with respect to another variable. Finding the derivative
of a function (differentiation) is the inverse operation of integration. With integration, we calculated
accumulated value of some variable’s product with time. With derivative, we calculate the ratio of a
variable’s change per unit of time. Whereas integration is fundamentally a multiplicative operation
(products), differentiation always involves division (ratios).

A controller with derivative (or rate) action looks at how fast the process variable changes per
unit of time, and takes action proportional to that rate of change. In contrast to integral (reset)
action which represents the “impatience” of the controller, derivative (rate) action represents the
“caution” of the controller.

If the process variable starts to change at a high rate of speed, the job of derivative action is to
move the final control element in such a direction as to counteract this rapid change, and thereby
moderate the speed at which the process variable changes. In simple terms, derivative action works
to limit how fast the error can change.

What this will do is make the controller “cautious” with regard to rapid changes in process
variable. If the process variable is headed toward the setpoint value at a rapid rate, the derivative
term of the equation will diminish the output signal, thus tempering the controller’s response
and slowing the process variable’s approach toward setpoint. This is analogous to a truck driver
preemptively applying the brakes to slow the approach to an intersection, knowing that the heavy
truck doesn’t “stop on a dime.” The heavier the truck’s load, the sooner a cautious driver will apply
the brakes, to avoid “overshoot” beyond the stop sign and into the intersection. For this reason,
derivative control action is also called pre-act in addition to being called rate, because it acts “ahead
of time” to avoid overshoot.

If we modify the controller equation to incorporate differentiation, it will look something like
this:

m = Kpe+
1

τi

∫

e dt+ τd
de

dt
+ b

Where,
m = Controller output
e = Error (difference between PV and SP)
Kp = Proportional gain
τi = Integral time constant (minutes)
τd = Derivative time constant (minutes)
t = Time
b = Bias

The de
dt

term of the equation expresses the rate of change of error (e) over time (t). The lower-case
letter “d” symbols represent the calculus concept of differentials which may be thought of in this
context as very tiny increments of the following variables. In other words, de

dt
refers to the ratio

of a very small change in error (de) over a very small increment of time (dt). On a graph, this is
interpreted as the slope of a curve at a specific point (slope being defined as rise over run).

36 CHAPTER 2. TUTORIAL

It is also possible to build a controller with proportional and derivative actions, but lacking
integral action. These are most commonly used in applications prone to wind-up7, and where the
elimination of offset is not critical:

m = Kpe+ τd
de

dt
+ b

Many PID controllers offer the option of calculating derivative response based on rates of change
for the process variable (PV) only, rather than the error (PV − SP or SP − PV). This avoids huge
“spikes” in the output of the controller if ever a human operator makes a sudden change in setpoint8.
The mathematical expression for such a controller would look like this9:

m = Kpe+
1

τi

∫

e dt+ τd
dPV

dt
+ b

Even when derivative control action is calculated on PV alone (rather than on error), it is still
useful for controlling processes dominated by large lag times. The presence of derivative control
action in a PID controller generally means the proportional (P) and integral (I) terms may be
adjusted more aggressively than before, since derivative (D) will act to limit overshoot. In other
words, the judicious presence of derivative action in a PID controller lets us “get away” with using
a bit more P and I action than we ordinarily could, resulting in faster approach to setpoint with
minimal overshoot.

It should be mentioned that derivative mode should be used with caution. Since it acts on rates
of change, derivative action will “go crazy” if it sees substantial noise in the PV signal. Even small
amounts of noise possess extremely large rates of change (defined as percent PV change per minute
of time) owing to the relatively high frequency of noise compared to the timescale of physical process
changes.

Ziegler and Nichols, the engineers who wrote the ground-breaking paper entitled “Optimum
Settings for Automatic Controllers” had these words to say regarding “pre-act” control (page 762
of the November 1942 Transactions of the A.S.M.E.):

The latest control effect made its appearance under the trade name “Pre-Act.” On
some control applications, the addition of pre-act response made such a remarkable
improvement that it appeared to be in embodiment of mythical “anticipatory”
controllers. On other applications it appeared to be worse than useless. Only the
difficulty of predicting the usefulness and adjustment of this response has kept it from
being more widely used.

7An example of such an application is where the output of a loop controller may be “de-selected” or otherwise
“over-ridden” by some other control function. This sort of control strategy is often used in energy-conserving controls,
where multiple controllers monitoring different process variables selectively command a single FCE.

8It should not be assumed that such spikes are always undesirable. In processes characterized by long lag times,
such a response may be quite helpful in overcoming that lag for the purpose of rapidly achieving new setpoint values.
Slave (secondary) controllers in cascaded systems – where the controller receives its setpoint signal from the output
of another (primary, or master) controller – may similarly benefit from derivative action calculated on error instead
of just PV. As usual, the specific needs of the application dictate the ideal controller configuration.

9The expression shown is valid for a direct-acting controller. A reverse-acting controller with derivative action on
PV rather than error must subtract the derivative term rather than add it to the output value.

2.7. SUMMARY OF PID CONTROL TERMS 37

2.7 Summary of PID control terms

PID control can be a confusing concept to understand. Here, a brief summary of each term within
PID (P. I, and D) is presented for your learning benefit.

2.7.1 Proportional control mode (P)

Proportional – sometimes called gain or sensitivity – is a control action reproducing changes in
input as changes in output. Proportional controller action responds to present changes in input
by generating immediate and commensurate changes in output. When you think of “proportional
action” (P), think prompt : this control action works immediately (never too soon or too late) to
match changes in the input signal.

Mathematically defined, proportional action is the ratio of output change to input change. This
may be expressed as a quotient of differences, or as a derivative (a rate of change, using calculus
notation):

Gain value =
∆Output

∆Input

Gain value =
dOutput

dInput
=

dm

de

For example, if the PV input of a proportional-only process controller with a gain of 2 suddenly
changes (“steps”) by 5 percent, and the output will immediately jump by 10 percent (∆Output =
Gain × ∆Input). The direction of this output jump in relation to the direction of the input jump
depends on whether the controller is configured for direct or reverse action.

A legacy term used to express this same concept is proportional band : the mathematical reciprocal
of gain. “Proportional band” is defined as the amount of input change necessary to evoke full-
scale (100%) output change in a proportional controller. Incidentally, it is always expressed as a
percentage, never as fraction or as a per unit value:

Proportional Band value =
∆Input

∆Output

Proportional Band value =
dInput

dOutput
=

de

dm

Using the same example of a proportional controller exhibiting an output “step” of 10% in
response to a PV “step” of 5%, the proportional band would be 50%: the reciprocal of its gain
(12 = 50%). Another way of saying this is that a 50% input “step” would be required to change the
output of this controller by a full 100%, since its gain is set to a value of 2.

38 CHAPTER 2. TUTORIAL

2.7.2 Integral control mode (I)

Integral – sometimes called reset or floating control – is a control action causing the output signal
to change over time at a rate proportional to the amount of error (the difference between PV and
SP values). Integral controller action responds to error accumulated over time, ramping the output
signal are far as it needs to go to completely eliminate error. If proportional (P) action tells the
output how far to move when an error appears, integral (I) action tells the output how fast to move
when an error appears. If proportional (P) action acts on the present, integral (I) action acts on
the past. Thus, how far the output signal gets driven by integral action depends on the history of
the error over time: how much error existed, and for how long. When you think of “integral action”
(I), think impatience: this control action drives the output further and further the longer PV fails
to match SP.

Mathematically defined, integral action is the ratio of output velocity to input error:

Integral value (repeats per minute) =
Output velocity

Input error

Integral value (repeats per minute) =
dm
dt

e

An alternate way to express integral action is to use the reciprocal unit of “minutes per repeat.”
If we define integral action in these terms, the defining equations must be reciprocated:

Integral time constant (minutes per repeat) = τi =
Input error

Output velocity

Integral time constant (minutes per repeat) = τi =
e
dm
dt

For example, if an error of 5% appears between PV and SP on an integral-only process controller
with an integral value of 3 repeats per minute (i.e. an integral time constant of 0.333 minutes per
repeat), the output will begin ramping at a rate of 15% per minute (dm

dt
= Integral value × e, or

dm
dt

= e
τi
). In most PI and PID controllers, integral response is also multiplied by proportional gain,

so the same conditions applied to a PI controller that happened to also have a gain of 2 would
result in an output ramping rate of 30% per minute (dm

dt
= Gain value × Integral value × e, or dm

dt

= Gain value × e
τi
). The direction of this ramping in relation to the direction (sign) of the error

depends on whether the controller is configured for direct or reverse action.

2.8. DIFFERENT PID EQUATIONS 39

2.7.3 Derivative control mode (D)

Derivative – sometimes called rate or pre-act – is a control action causing the output signal to be
offset by an amount proportional to the rate at which the input is changing. Derivative controller
action responds to how quickly the input changes over time, biasing the output signal commensurate
with that rate of input change. If proportional (P) action tells the output how far to move when
an error appears, derivative (D) action tells the output how far to move when the input ramps. If
proportional (P) action acts on the present and integral (I) action acts on the past, derivative (D)
action acts on the future: it effectively “anticipates” overshoot by tempering the output response
according to how fast the process variable is rising or falling. When you think of “derivative action”
(D), think discretion: this control action is cautious and prudent, working against change.

Mathematically defined, derivative action is the ratio of output offset to input velocity :

Derivative time constant (minutes) = τd =
Output offset

Input velocity

Derivative time constant (minutes) = τd =
∆Output

de
dt

For example, if the PV signal begins to ramp at a rate of 5% per minute on a process controller
with a derivative time constant of 4 minutes, the output will immediately become offset by 20%
(∆Output = Derivative value × de

dt
). In most PD and PID controllers, derivative response is also

multiplied by proportional gain, so the same conditions applied to a PD controller that happened
to also have a gain of 2 would result in an immediate offset of 40% (∆Output = Gain value ×
Derivative value × de

dt
). The direction (sign) of this offset in relation to the direction of the input

ramping depends on whether the controller is configured for direct or reverse action.

2.8 Different PID equations

For better or worse, there are no fewer than three different forms of PID equations implemented in
modern PID controllers: the parallel, ideal, and series. Some controllers offer the choice of more
than one equation, while others implement just one. It should be noted that more variations of PID
equation exist than these three, but that these are the three major variations.

40 CHAPTER 2. TUTORIAL

2.8.1 Parallel PID equation

The equation used to describe PID control so far in this chapter is the simplest form, sometimes
called the parallel equation, because each action (P, I, and D) occurs in separate terms of the
equation, with the combined effect being a simple sum:

m = Kpe+
1

τi

∫

e dt+ τd
de

dt
+ b Parallel PID equation

In the parallel equation, each action parameter (Kp, τi, τd) is independent of the others. At first,
this may seem to be an advantage, for it means each adjustment made to the controller should only
affect one aspect of its action. However, there are times when it is better to have the gain parameter
affect all three control actions (P, I, and D)10.

We may show the independence of the three actions mathematically, by breaking the equation
up into three different parts, each one describing its contribution to the output (∆m):

∆m = Kp∆e Proportional action

∆m =
1

τi

∫

e dt Integral action

∆m = τd
de

dt
Derivative action

As you can see, the three portions of this PID equation are completely separate, with each tuning
parameter (Kp, τi, and τd) acting independently within its own term of the equation.

10An example of a case where it is better for gain (Kp) to influence all three control modes is when a technician
re-ranges a transmitter to have a larger or smaller span than before, and must re-tune the controller to maintain the
same loop gain as before. If the controller’s PID equation takes the parallel form, the technician must adjust the P,
I, and D tuning parameters proportionately. If the controller’s PID equation uses Kp as a factor in all three modes,
the technician need only adjust Kp to re-stabilize the loop.

2.8. DIFFERENT PID EQUATIONS 41

2.8.2 Ideal PID equation

An alternate version of the PID equation designed such that the gain (Kp) affects all three actions
is called the Ideal or ISA equation:

m = Kp

(

e+
1

τi

∫

e dt+ τd
de

dt

)

+ b Ideal or ISA PID equation

Here, the gain constant (Kp) is distributed to all terms within the parentheses, equally affecting
all three control actions. Increasing Kp in this style of PID controller makes the P, the I, and the D
actions equally more aggressive.

We may show this mathematically, by breaking the “ideal” equation up into three different parts,
each one describing its contribution to the output (∆m):

∆m = Kp∆e Proportional action

∆m =
Kp

τi

∫

e dt Integral action

∆m = Kpτd
de

dt
Derivative action

As you can see, all three portions of this PID equation are influenced by the gain (Kp)
owing to algebraic distribution, but the integral and derivative tuning parameters (τi and τd) act
independently within their own terms of the equation.

42 CHAPTER 2. TUTORIAL

2.8.3 Series PID equation

A third version, with origins in the peculiarities of pneumatic controller mechanisms and analog
electronic circuits, is called the Series or Interacting equation:

m = Kp

[(

τd

τi
+ 1

)

e+
1

τi

∫

e dt+ τd
de

dt

]

+ b Series or Interacting PID equation

Here, the gain constant (Kp) affects all three actions (P, I, and D) just as with the “ideal”
equation. The difference, though, is the fact that both the integral and derivative constants have an
effect on proportional action as well! That is to say, adjusting either τi or τd does not merely adjust
those actions, but also influences the aggressiveness of proportional action11.

We may show this mathematically, by breaking the “series” equation up into three different
parts, each one describing its contribution to the output (∆m):

∆m = Kp

(

τd

τi
+ 1

)

∆e Proportional action

∆m =
Kp

τi

∫

e dt Integral action

∆m = Kpτd
de

dt
Derivative action

As you can see, all three portions of this PID equation are influenced by the gain (Kp) owing to
algebraic distribution. However, the proportional term is also affected by the values of the integral
and derivative tuning parameters (τi and τd). Therefore, adjusting τi affects both the I and P
actions, adjusting τd affects both the D and P actions, and adjusting Kp affects all three actions.

This “interacting” equation is an artifact of certain pneumatic and electronic controller designs.
Back when these were the dominant technologies, and PID controllers were modularly designed
such that integral and derivative actions were separate hardware modules included in a controller
at additional cost beyond proportional-only action, the easiest way to implement the integral and
derivative actions was in a way that just happened to have an interactive effect on controller gain.
In other words, this odd equation form was a sort of compromise made for the purpose of simplifying
the physical design of the controller.

Interestingly enough, many digital PID controllers are programmed to implement the
“interacting” PID equation even though it is no longer an artifact of controller hardware. The
rationale for this programming is to have the digital controller behave identically to the legacy
analog electronic or pneumatic controller it is replacing. This way, the proven tuning parameters
of the old controller may be plugged into the new digital controller, yielding the same results. In
essence, this is a form of “backward compatibility” between digital PID control and analog (electronic
or pneumatic) PID control.

11This becomes especially apparent when using derivative action with low values of τi (aggressive integral action).
The error-multiplying term

τd
τi

+ 1 may become quite large if τi is small, even with modest τd values.

2.9. ANALOG ELECTRONIC PID CONTROLLERS 43

2.9 Analog electronic PID controllers

Although analog electronic process controllers are considered a newer technology than pneumatic
process controllers, they are actually “more obsolete” than pneumatic controllers. Panel-mounted
(inside a control room environment) analog electronic controllers were a great improvement over
panel-mounted pneumatic controllers when they were first introduced to industry, but they were
superseded by digital controller technology later on. Field-mounted pneumatic controllers were either
replaced by panel-mounted electronic controllers (either analog or digital) or left alone. Applications
still exist for field-mounted pneumatic controllers, even now at the beginning of the 21st century,
but very few applications exist for analog electronic controllers in any location.

Analog electronic controllers enjoy two inherent advantages over digital electronic controllers:
greater reliability12 and faster response. However, these advantages have been diminishing as digital
control technology has advanced. Today’s digital electronic technology is far more reliable than the
digital technology available during the heyday of analog electronic controllers. Now that digital
controls have achieved very high levels of reliability, the first advantage of analog control is largely
academic13, leaving only the second advantage for practical consideration. The advantage of faster
speed may be fruitful in applications such as motion control, but for most industrial processes
even the slowest digital controller is fast enough14. Furthermore, the numerous advantages offered
by digital technology (data recording, networking capability, self-diagnostics, flexible configuration,
function blocks for implementing different control strategies) severely weaken the relative importance
of reliability and speed.

Most analog electronic PID controllers utilize operational amplifiers in their designs. It is
relatively easy to construct circuits performing amplification (gain), integration, differentiation,
summation, and other useful control functions with just a few opamps, resistors, and capacitors.

12The reason for this is the low component count compared to a comparable digital control circuit. For any given
technology, a simpler device will tend to be more reliable than a complex device if only due to there being fewer
components to fail. This also suggests a third advantage of analog controllers over digital controllers, and that is the
possibility of easily designing and constructing your own for some custom application such as a hobby project. A
digital controller is not outside the reach of a serious hobbyist to design and build, but it is definitely more challenging
due to the requirement of programming expertise in addition to electronic hardware expertise.

13It is noteworthy that analog control systems are completely immune from “cyber-attacks” (malicious attempts
to foil the integrity of a control system by remote access), due to the simple fact that their algorithms are fixed by
physical laws and properties of electronic components rather than by code which may be edited. This new threat
constitutes an inherent weakness of digital technology, and has spurred some thinkers in the field to reconsider analog
controls for the most critical applications.

14The real problem with digital controller speed is that the time delay between successive “scans” translates into
dead time for the control loop. Dead time is the single greatest impediment to feedback control.

44 CHAPTER 2. TUTORIAL

2.9.1 Proportional control action

The basic proportional-only control algorithm follows this formula:

m = Kpe+ b

Where,
m = Controller output
e = Error (difference between PV and SP)
Kp = Proportional gain
b = Bias

The “error” variable (e) is the mathematical difference between process variable and setpoint. If
the controller is direct-acting, e = PV − SP. If the controller is reverse-acting, e = SP − PV. Thus,

m = Kp(PV− SP) + b Direct-acting

m = Kp(SP− PV) + b Reverse-acting

Mathematical operations such as subtraction, multiplication by a constant, and addition are
quite easy to perform using analog electronic (operational amplifier) circuitry. Prior to the advent
of reliable digital electronics for industrial applications, it was natural to use analog electronic
circuitry to perform proportional control for process control loops.

For example, the subtraction function necessary to calculate error (e) from process variable and
setpoint signals may be performed with a three-amplifier “subtractor” circuit:

−

+

−

+
−

+

PV

SP

R

R R

R

Output = SP - PV

This particular subtractor circuit calculates error for a reverse-acting controller. As the PV signal
increases, the error signal decreases (becomes more negative). It could be modified for direct action
simply by swapping the two inputs: SP on top and PV on bottom such that the Output becomes
PV − SP.

2.9. ANALOG ELECTRONIC PID CONTROLLERS 45

Gain is really nothing more than multiplication by a constant, in this case the constant being
Kp. A very simple one-amplifier analog circuit for performing this multiplication is the inverting15

amplifier circuit:

−

+

Kp

Error signal (e)

Output = -Kpe

With the potentiometer’s wiper in mid-position, the voltage gain of this circuit will be 1 (with an
inverted polarity which we shall ignore for now). Moving the wiper toward the left-hand side of the
potentiometer increases the circuit’s gain past unity, while moving the wiper toward the right-hand
side of the potentiometer decreases the gain toward zero.

In order to add the bias (b) term in the proportional control equation, we need an analog circuit
capable of summing two voltage signals. This need is nicely met in the inverting summer circuit,
shown here:

−

+

R

R R

A

B -(A+B)

15This circuit configuration is called “inverting” because the mathematical sign of the output is always opposite
that of the input. This sign inversion is not an intentional circuit feature, but rather a consequence of the input signal
facing the opamp’s inverting input. Non-inverting multiplier circuits also exist, but are more complicated when built
to achieve multiplication factors less than one.

46 CHAPTER 2. TUTORIAL

Combining all these analog functions together into one circuit, and adding a few extra features
such as direct/reverse action selection, bias adjustment, and manual control with a null voltmeter to
facilitate bumpless mode transfer, gives us this complete analog electronic proportional controller:

−

+

−

+
−

+

−

+

+V

−

+

−

+

PV signal
input

Output

-V

Setpoint
adjust

+V

Auto

Manual

Null

10 kΩ 10 kΩ

10 kΩ10 kΩ

10 kΩ

10 kΩ 10 kΩ

R1

R2

R5

error

Summer

Kp

Manual output adjust

Reverse Direct

Bias

Proportional (gain)

2.9.2 Derivative and integral control actions

Differentiating and integrating live voltage signals with respect to time is quite simple using
operational amplifier circuits. Instead of using all resistors in the negative feedback network, we may
implement these calculus functions by using a combination of capacitors and resistors, exploiting
the capacitor’s natural derivative relationship between voltage and current:

I = C
dV

dt

Where,
I = Current through the capacitor (amperes)
C = Capacitance of capacitor (farads)
V = Voltage across the capacitor (volts)
dV
dt

= Rate-of-change of voltage across the capacitor (volts per second)

2.9. ANALOG ELECTRONIC PID CONTROLLERS 47

If we build an operational amplifier with a resistor providing negative feedback current through
a capacitor, we create a differentiator circuit where the output voltage is proportional to the rate-
of-change of the input voltage:

−

+

RC

A -RC
dA

dt

Since the inverting input of the operational amplifier is held to ground potential by feedback
(a “virtual ground”), the capacitor experiences the full input voltage of signal A. So, as A varies
over time, the current through that capacitor will directly represent the signal A’s rate of change
over time (I = C dA

dt
). This current passes through the feedback resistor, creating a voltage drop

at the output of the amplifier directly proportional to signal A’s rate of change over time. Thus,
the output voltage of this circuit reflects the input voltage’s instantaneous rate of change, albeit
with an inverted polarity. The mathematical term RC is the time constant of this circuit. For a
differentiator circuit such as this, we typically symbolize its time constant as τd (the “derivative”
time constant).

For example, if the input voltage to this differentiator circuit were to ramp at a constant rate of
+4.3 volts per second (rising) with a resistor value of 10 kΩ and a capacitor value of 33 µF (i.e. τd
= 0.33 seconds), the output voltage would be a constant −1.419 volts:

Vout = −RC
dVin

dt

Vout = −(10000 Ω)(33× 10−6 F)

(

4.3 V

s

)

Vout = −(0.33 s)

(

4.3 V

s

)

Vout = −1.419 V

Recall that the purpose of derivative action in a PID controller is to react to sudden changes in
either the error (e) or the process variable (PV). This circuit fulfills that function, by generating an
output proportional to the input voltage’s rate of change.

48 CHAPTER 2. TUTORIAL

If we simply swap16 the locations of the resistor and capacitor in the feedback network of this
operational amplifier circuit, we create an integrator circuit where the output voltage rate-of-change
is proportional to the input voltage:

−

+

R C

A -
1

RC
∫Α dt

This integrator circuit provides the exact inverse function of the differentiator. Rather than a
changing input signal generating an output signal proportional to the input’s rate of change, an
input signal in this circuit controls the rate at which the output signal changes.

The way it works is by acting as a current source, pumping current into the capacitor at a value
determined by the input voltage and the resistor value. Just as in the previous (differentiator) circuit
where the inverting terminal of the amplifier was a “virtual ground” point, the input voltage in this
circuit is impressed across the resistor R. This creates a current which must go through capacitor
C on its way either to or from the amplifier’s output terminal. As we have seen in the capacitor’s
equation (I = C dV

dt
), a current forced through a capacitor causes the capacitor’s voltage to change

over time. This changing voltage becomes the output signal of the integrator circuit. As in the case
of the differentiator circuit, the mathematical term RC is the time constant of this circuit as well.
Being an integrator, we customarily represent this “integral” time constant as τi.

Any amount of change in output voltage (∆Vout) occurring between some initial time (t0) and a
finishing time (tf) may be calculated by the following integral:

∆Vout = − 1

RC

∫ tf

t0

Vin dt

If we wish to know the absolute output voltage at the end of that time interval, all we need to
do is add the circuit’s initial output voltage (V0, i.e. the voltage stored in the capacitor at the initial
time t0) to the calculated change:

Vout = − 1

RC

∫ tf

t0

Vin dt+ V0

16This inversion of function caused by the swapping of input and feedback components in an operational amplifier
circuit points to a fundamental principle of negative feedback networks: namely, that placing a mathematical element
within the feedback loop causes the amplifier to exhibit the inverse of that element’s intrinsic function. This is
why voltage dividers placed within the feedback loop cause an opamp to have a multiplicative gain (division →

multiplication). A circuit element exhibiting a logarithmic response, when placed within a negative feedback loop,
will cause the amplifier to exhibit an exponential response (logarithm → exponent). Here, an element having a time-
differentiating response, when placed inside the feedback loop, causes the amplifier to time-integrate (differentiation →

integration). Since the opamp’s output voltage must assume any value possible to maintain (nearly) zero differential
voltage at the input terminals, placing a mathematical function in the feedback loop forces the output to assume the
inverse of that function in order to “cancel out” its effects and achieve balance at the input terminals.

2.9. ANALOG ELECTRONIC PID CONTROLLERS 49

For example, if we were to input a constant DC voltage of +1.7 volts to this circuit with a resistor
value of 81 kΩ and a capacitor value of 47 µF (i.e. τi = 3.807 seconds), the output voltage would
ramp at a constant rate of −0.447 volts per second17. If the output voltage were to begin at −3.0
volts and be allowed to ramp for exactly 12 seconds at this rate, it would reach a value of −8.359
volts at the conclusion of that time interval:

Vout = − 1

RC

∫ tf

t0

Vin dt+ V0

Vout = −
(

1

(81000 Ω)(47× 10−6 F)

)(
∫ 12

0

1.7 V dt

)

− 3 V

Vout = −
(

1

3.807 s

)

(20.4 V · s)− 3 V

Vout = −5.359 V− 3 V

Vout = −8.359 V

If, after ramping for some amount of time, the input voltage of this integrator circuit is brought
to zero, the integrating action will cease. The circuit’s output will simply hold at its last value until
another non-zero input signal voltage appears.

Recall that the purpose of integral action in a PID controller is to eliminate offset between process
variable and setpoint by calculating the error-time product (how far PV deviates from SP, and for
how long). This circuit will fulfills that function if the input voltage is the error signal, and the
output voltage contributes to the output signal of the controller.

17If this is not apparent, imagine a scenario where the +1.7 volt input existed for precisely one second’s worth of
time. However much the output voltage ramps in that amount of time must therefore be its rate of change in volts per
second (assuming a linear ramp). Since we know the area accumulated under a constant value of 1.7 (high) over a time
of 1 second (wide) must be 1.7 volt-seconds, and τi is equal to 3.807 seconds, the integrator circuit’s output voltage
must ramp 0.447 volts during that interval of time. If the input voltage is positive and we know this is an inverting
opamp circuit, the direction of the output voltage’s ramping must be negative, thus a ramping rate of −0.447 volts

per second.

50 CHAPTER 2. TUTORIAL

2.9.3 Full-PID circuit design

The following schematic diagram shows a full PID controller implemented using eight operational
amplifiers, designed to input and output voltage signals representing PV, SP, and Output18:

−

+

−

+

Input(+)

R1 R2 R3 R4

−

+

−

+

R5

R6 R7

−

+

−

+

R8

R9

R10

R11

−

+

R12

Rprop

Rint

Rder

Cint

Cder

Jprop

Jder

Jint

Rbias

+V -V

C1

C2

+V

-V

Gnd

Vout

100k 100k 100k 100k

10k

100k 100k 100k

100k

100k

100k

1/4 TL084 1/4 TL084

1/4 TL084 1/4 TL084

1/4 TL084

1/4 TL084

1/4 TL084

100k

10µ

10µ

1M

100k

1k

1k

33µ

33µ

Integral
clear

2M

100k

R13 R14

Input(-)

D1

15 V
R15

R16

It is somewhat stunning to realize that such a controller, fully capable of controlling many
industrial process types, may be constructed using only two integrated circuit “chips” (two “quad”
operational amplifiers) and a handful of passive electronic components. The only significant
engineering challenge in this simple circuit design is achieving slow enough time constants (in the

18The two input terminals shown, Input(+) and Input(−) are used as PV and SP signal inputs, the correlation of
each depending on whether one desires direct or reverse controller action.

2.9. ANALOG ELECTRONIC PID CONTROLLERS 51

range of minutes rather than seconds) in the integrator and differentiator functions using non-
polarized capacitors19.

This controller implements the so-called ideal PID algorithm, with the proportional (gain) value
distributing to the integral and derivative terms:

m = Kp

(

e+
1

τi

∫

e dt+ τd
de

dt

)

Ideal PID equation

We may determine this from the schematic diagram by noting that the I and D functions each
receive their input signals from the output of the proportional amplifier (the one with the Rprop

potentiometer). Adjusting Rprop affects not only the controller’s proportional gain, but also the
sensitivity of τi and τd.

An actual implementation of this PID controller in printed circuit board form appears here:

19This particular design has integral and derivative time value limits of 10 seconds, maximum. These relatively
“quick” tuning values are the result of having to use non-polarized capacitors in the integrator and differentiator
stages. The practical limits of cost and size restrict the maximum value of on-board capacitance to around 10 µF
each.

52 CHAPTER 2. TUTORIAL

It is possible to construct an analog PID controller with fewer components. An example is shown
here:

−

+

−

+

Input(+)

R1 R2 R3 R4

Rder

Vout

100k 100k 100k 100k

1/4 TL084 1/4 TL084

Input(-)

−

+
Rprop

Rint

1/4 TL084

Cder

Cint

As you can see, a single operational amplifier does all the work of calculating proportional,
integral, and derivative responses. The first two amplifiers do nothing but buffer the input signals
and calculate error (PV − SP, or SP − PV, depending on the direction of action).

One of the consequences of consolidating all three control terms in a single amplifier is that those
control terms interact with each other. The mathematical expression of this control action is shown
here, called the series or interacting PID equation:

m = Kp

[(

τd

τi
+ 1

)

e+
1

τi

∫

e dt+ τd
de

dt

]

Series or Interacting PID equation

Not only does a change in gain (Kp) alter the relative responses of integral and derivative in the
series equation (as it also does in the ideal equation), but changes in either integral or derivative
time constants also have an effect on proportional response! This is especially noticeable when the
integral time constant is set to some very small value, which is typically the case on fast-responding,
self-regulating processes such as liquid flow or liquid pressure control.

It should be apparent that an analog controller implementing the series equation is simpler in
construction than one implementing either the parallel or ideal PID equation. This also happens
to be true for pneumatic PID controller mechanisms: the simplest analog controller designs all
implement the series PID equation20.

20An interesting example of engineering tradition is found in electronic PID controller designs. While it is not too
terribly difficult to build an analog electronic controller implementing either the parallel or ideal PID equation (just a
few more parts are needed), it is quite challenging to do the same in a pneumatic mechanism. When analog electronic
controllers were first introduced to industry, they were often destined to replace old pneumatic controllers. In order
to ease the transition from pneumatic to electronic control, manufacturers built their new electronic controllers to
behave exactly the same as the old pneumatic controllers they would be replacing. The same legacy followed the
advent of digital electronic controllers: many digital controllers were programmed to behave in the same manner as
the old pneumatic controllers, for the sake of operational familiarity, not because it was easier to design a digital
controller that way.

2.10. DIGITAL PID ALGORITHMS 53

2.10 Digital PID algorithms

Instrument technicians should not have to concern themselves over the programming details internal
to digital PID controllers. Ideally, a digital PID controller should simply perform the task of
executing PID control with all the necessary features (setpoint tracking, output limiting, etc.)
without the end-user having to know anything about those details. However, in my years of
experience I have seen enough examples of poor PID implementation to warrant an explanatory
section in this book, both so instrumentation professionals may recognize poor PID implementation
when they see it, and also so those with the responsibility of designing PID algorithms may avoid
some common mistakes.

2.10.1 Position versus velocity algorithms

The canonical “ideal” or “ISA” variety of PID equation takes the following form:

m = Kp

(

e+
1

τi

∫

e dt+ τd
de

dt

)

Where,
m = Controller output
e = Error (SP − PV or PV − SP, depending on controller action being direct or reverse)
Kp = Controller gain
τi = Integral (reset) time constant
τd = Derivative (rate) time constant

The same equation may be written in terms of “gains” rather than “time constants” for the
integral and derivative terms. This re-writing exhibits the advantage of consistency from the
perspective of PID tuning, where each tuning constant has the same (increasing) effect as its
numerical value grows larger:

m = Kp

(

e+Ki

∫

e dt+Kd

de

dt

)

Where,
m = Controller output
e = Error
Kp = Controller gain
Ki = Integral (reset) gain (repeats per unit time)
Kd = Derivative (rate) gain

54 CHAPTER 2. TUTORIAL

However the equation is written, there are two major ways in which it is commonly implemented
in a digital computer. One way is the position algorithm, where the result of each pass through
the program “loop” calculates the actual output value. If the final control element for the loop is a
control valve, this value will be the position of that valve’s stem, hence the name position algorithm.
The other way is the so-called velocity algorithm, where the result of each pass through the program
“loop” calculates the amount the output value will change. Assuming a control valve for the final
control element once again, the value calculated by this algorithm is the distance the valve stem will
travel per scan of the program. In other words, the magnitude of this value describes how fast the
valve stem will travel, hence the name velocity algorithm.

Mathematically, the distinction between the position and velocity algorithms is a matter of
differentials: the position equation solves for the output value (m) directly while the velocity equation
solves for small increments (differentials) of m, or dm.

A comparison of the position and velocity equations shows both the similarities and the
differences:

m = Kp

(

e+Ki

∫

e dt+Kd

de

dt

)

Position equation

dm = Kp

(

de+Kie dt+Kd

d2e

dt

)

Velocity equation

Of the two approaches to implementing PID control, the position algorithm makes the most
intuitive sense and is the easiest to understand.

We will begin our exploration of both algorithms by examining their application to proportional-
only control. This will be a simpler and “gentler” introduction than showing how to implement
full PID control. The two respective proportional-only control equations we will consider are shown
here:

m = Kpe+ Bias Position equation for P-only control

dm = Kpde Velocity equation for P-only control

You will notice how a “bias” term is required in the position equation to keep track of the
output’s “starting point” each time a new output value is calculated. No such term is required in
the velocity equation, because the computer merely calculates how far the output moves from its

last value rather than the output’s value from some absolute reference.

2.10. DIGITAL PID ALGORITHMS 55

First, we will examine a simple pseudocode program for the “position” equation form:

Pseudocode listing for a “position algorithm” proportional-only controller

DECLARE PV, SP, and Out to be floating-point variables

DECLARE K_p, Error, and Bias to be floating-point variables

DECLARE Action, and Mode to be boolean variables

LOOP

SET PV = analog_input_channel_N // Update PV

SET K_p = operator_input_channel_Gain // From operator interface

IF Action = 1 THEN

SET Error = SP - PV // Calculate error assuming reverse action

ELSE THEN

SET Error = PV - SP // Calculate error assuming direct action

ENDIF

IF Mode = 1 THEN // Automatic mode (if Mode = 1)

SET Out = K_p * Error + Bias

SET SP = operator_input_channel_SP // From operator interface

ELSE THEN // Manual mode (if Mode = 0)

SET Out = operator_input_channel_Out // From operator interface

SET SP = PV // Setpoint tracking

SET Bias = Out // Output tracking

ENDIF

ENDLOOP

The first SET instructions within the loop update the PV to whatever value is being measured
by the computer’s analog input channel (channel N in this case), and the K p variable to whatever
value is entered by the human operator through the use of a keypad, touch-screen interface, or
networked computer. Next, a set of IF/THEN conditionals determines which way the error should
be calculated: Error = SP − PV if the control action is “reverse” (Action = 1) and Error = PV −
SP if the control action is “direct” (Action = 0).

The next set of conditional instructions determines what to do in automatic versus manual modes.
In automatic mode (Mode = 1), the output value is calculated according to the position equation and
the setpoint comes from a human operator’s input. In manual mode (Mode = 0), the output value
is no longer calculated by an equation but rather is obtained from the human operator’s input, the
setpoint is forced equal to the process variable, and the Bias value is continually made equal to the
value of the output. Setting SP = PV provides the convenient feature of setpoint tracking, ensuring
an initial error value of zero when the controller is switched back to automatic mode. Setting the
Bias equal to the output provides the essential feature of output tracking, where the controller begins
automatic operation at an output value precisely equal to the last manual-mode output value.

56 CHAPTER 2. TUTORIAL

Next, we will examine a simple pseudocode program for the “velocity” equation form:

Pseudocode listing for a “velocity algorithm” proportional-only controller

DECLARE PV, SP, and Out to be floating-point variables

DECLARE K_p, Error, and last_Error to be floating-point variables

DECLARE Action, and Mode to be boolean variables

LOOP

SET PV = analog_input_channel_N // Update PV

SET K_p = operator_input_channel_Gain // From operator interface

SET last_Error = Error

IF Action = 1 THEN

SET Error = SP - PV // Calculate error assuming reverse action

ELSE THEN

SET Error = PV - SP // Calculate error assuming direct action

ENDIF

IF Mode = 1 THEN // Automatic mode (if Mode = 1)

SET Out = Out + (K_p * (Error - last_Error))

SET SP = operator_input_channel_SP // From operator interface

ELSE THEN // Manual mode (if Mode = 0)

SET Out = operator_input_channel_Out // From operator interface

SET SP = PV // Setpoint tracking

ENDIF

ENDLOOP

The code for the velocity algorithm is mostly identical to the code for the position algorithm,
with just a few minor changes. The first difference we encounter in reading the code from top to
bottom is that we calculate a new variable called “last Error” immediately prior to calculating a
new value for Error. The reason for doing this is to provide a way to calculate the differential change
in error (de) from scan to scan of the program. The variable “last Error” remembers the value of
Error during the previous scan of the program. Thus, the expression “Error − last Error” is equal
to the amount the error has changed from last scan to the present scan.

When the time comes to calculate the output value in automatic mode, we see the SET command
calculating the change in output (K p multiplied by the change in error), then adding this change
in output to the existing output value to calculate a new output value. This is how the program
translates calculated output increments into an actual output value to drive a final control element.
The mathematical expression “K p * (Error − last Error)” defines the incremental change in output
value, and this increment is then added to the current output value to generate a new output value.

From a human operator’s point of view, the position algorithm and the velocity algorithm are

2.10. DIGITAL PID ALGORITHMS 57

identical with one exception: how each controller reacts to a sudden change in gain (K p). To
understand this difference, let us perform a “thought experiment” where we imagine a condition of
constant error between PV and SP. Suppose the controller is operating in automatic mode, with a
setpoint of 60% and a (steady) process variable value of 57%. We should not be surprised that a
constant error might exist for a proportional-only controller, since we should be well aware of the
phenomenon of proportional-only offset.

How will this controller react if the gain is suddenly increased in value while operating in
automatic mode? If the controller executes the position algorithm, the result of a sudden gain
change will be a sudden change in its output value, since output is a direct function of error and
gain. However, if the controller executes the velocity algorithm, the result of a sudden gain change
will be no change to the output at all, so long as the error remains constant. Only when the error
begins to change will there be any noticeable difference in the controller’s behavior compared to how
it acted before the gain change. This is because the velocity algorithm is a function of gain and
change in error, not error directly.

Comparing the two responses, the velocity algorithm’s response to changes in gain is regarded
as “better-mannered” than the position algorithm’s response to changes in gain. When tuning a
controller, we would rather not have the controller’s output suddenly jump in response to simple gain
changes21, and so the velocity algorithm is generally preferred. If we allow the gain of the algorithm
to be set by another process variable22, the need for “stable” gain-change behavior becomes even
more important.

21It should be noted that this is precisely what happens when you change the gain in a pneumatic or an analog
electronic controller, since all analog PID controllers implement the “position” equation. Although the choice between
“position” and “velocity” algorithms in a digital controller is arbitrary, it is much easier to build an analog mechanism
or circuit implementing the position algorithm than it is to build an analog “velocity” controller.

22We call this an adaptive gain control system.

58 CHAPTER 2. TUTORIAL

Chapter 3

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.

3.1 P, I, and D responses graphed

A very helpful method for understanding the operation of proportional, integral, and derivative
control terms is to analyze their respective responses to the same input conditions over time. This
section is divided into subsections showing P, I, and D responses for several different input conditions,
in the form of graphs. In each graph, the controller is assumed to be direct-acting (i.e. an increase
in process variable results in an increase in output).

It should be noted that these graphic illustrations are all qualitative, not quantitative. There
is too little information given in each case to plot exact responses. The illustrations of P, I, and D
actions focus only on the shapes of the responses, not their exact numerical values.

In order to quantitatively predict PID controller responses, one would have to know the values of
all PID settings, as well as the original starting value of the output before an input change occurred
and a time index of when the change(s) occurred.

59

60 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1.1 Responses to a single step-change

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the shape of the input change (a step). Integral action ramps
at a rate proportional to the magnitude of the input step. Since the input step holds a constant
value, the integral action ramps at a constant rate (a constant slope). Derivative action interprets
the step as an infinite rate of change, and so generates a “spike1” driving the output to saturation.

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

1This is the meaning of the vertical-pointing arrowheads shown on the trend graph: momentary saturation of the
output all the way up to 100%.

3.1. P, I, AND D RESPONSES GRAPHED 61

3.1.2 Responses to a momentary step-and-return

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the shape of the input change (an up-and-down step).
Integral action ramps at a rate proportional to the magnitude of the input step, for as long as
the PV is unequal to the SP. Once PV = SP again, integral action stops ramping and simply holds
the last value2. Derivative action interprets both steps as infinite rates of change, and so generates
“spikes3” at the leading and at the trailing edges of the step. Note how the leading (rising) edge
causes derivative action to saturate high, while the trailing (falling) edge causes it to saturate low.

2This is a good example of how integral controller action represents the history of the PV − SP error. The
continued offset of integral action from its starting point “remembers” the area accumulated under the rectangular
“step” between PV and SP. This offset will go away only if a negative error appears having the same percent-minute
product (area) as the positive error step.

3This is the meaning of the vertical-pointing arrowheads shown on the trend graph: momentary saturation of the
output all the way up to 100% (or down to 0%).

62 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

3.1. P, I, AND D RESPONSES GRAPHED 63

3.1.3 Responses to two momentary steps-and-returns

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the shape of all input changes. Integral action ramps at a
rate proportional to the magnitude of the input step, for as long as the PV is unequal to the SP.
Once PV = SP again, integral action stops ramping and simply holds the last value. Derivative
action interprets each step as an infinite rate of change, and so generates a “spike” at the leading
and at the trailing edges of each step. Note how a leading (rising) edge causes derivative action to
saturate high, while a trailing (falling) edge causes it to saturate low.

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

64 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1.4 Responses to a ramp-and-hold

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the ramp-and-hold shape of the input. Integral action ramps
slowly at first (when the error is small) but increases ramping rate as error increases. When error
stabilizes, integral rate likewise stabilizes. Derivative action offsets the output according to the
input’s ramping rate.

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

3.1. P, I, AND D RESPONSES GRAPHED 65

3.1.5 Responses to an up-and-down ramp

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the up-and-down ramp shape of the input. Integral action
ramps slowly at first (when the error is small) but increases ramping rate as error increases, then
ramps slower as error decreases back to zero. Once PV = SP again, integral action stops ramping
and simply holds the last value. Derivative action offsets the output according to the input’s ramping
rate: first positive then negative.

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

66 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1.6 Responses to a multi-slope ramp

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the ramp shape of the input. Integral action ramps slowly
at first (when the error is small) but increases ramping rate as error increases, then accelerates its
increase as the PV ramps even steeper. Once PV = SP again, integral action stops ramping and
simply holds the last value. Derivative action offsets the output according to the input’s ramping
rate: first positive, then more positive, then it spikes negative when the PV suddenly returns to SP.

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

3.1. P, I, AND D RESPONSES GRAPHED 67

3.1.7 Responses to a multiple ramps and steps

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

Proportional action directly mimics the ramp-and-step shape of the input. Integral action ramps
slowly at first (when the error is small) but increases ramping rate as error increases. Which each
higher ramp-and-step in PV, integral action winds up at an ever-increasing rate. Since PV never
equals SP again, integral action never stops ramping upward. Derivative action steps with each
ramp of the PV.

When combined into one PID output, the three actions produce this response:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

68 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1.8 Responses to a sine wavelet

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

Proportional response

Integral response

Derivative response

As always, proportional action directly mimics the shape of the input. The 90o phase shift seen
in the integral and derivative responses, compared to the PV wavelet, is no accident or coincidence.
The derivative of a sinusoidal function is always a cosine function, which is mathematically identical
to a sine function with the angle advanced by 90o:

d

dx
(sinx) = cosx = sin(x+ 90o)

Conversely, the integral of a sine function is always a negative cosine function4, which is
mathematically identical to a sine function with the angle retarded by 90o:

∫

sinx dx = − cosx = sin(x− 90o)

In summary, the derivative operation always adds a positive (leading) phase shift to a sinusoidal
input waveform, while the integral operation always adds a negative (lagging) phase shift to a
sinusoidal input waveform.

4In this example, I have omitted the constant of integration (C) to keep things simple. The actual integral is as

such:
∫

sinx dx = − cosx + C = sin(x − 90o) + C. This constant value is essential to explaining why the integral
response does not immediately “step” like the derivative response does at the beginning of the PV sine wavelet.

3.1. P, I, AND D RESPONSES GRAPHED 69

When combined into one PID output, these particular integral and derivative actions mostly
cancel, since they happen to be sinusoidal wavelets of equal amplitude and opposite phase. Thus,
the only way that the final (PID) output differs from proportional-only action in this particular case
is the “steps” caused by derivative action responding to the input’s sudden rise at the beginning
and end of the wavelet:

Time
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

%

SP
PV

PID response

If the I and D tuning parameters were such that the integral and derivative responses were not

equal in amplitude, their effects would not completely cancel. Rather, the resultant of P, I, and D
actions would be a sine wavelet having a phase shift somewhere between −90o and +90o exclusive,
depending on the relative strengths of the P, I, and D actions.

The 90 degree phase shifts associated with the integral and derivative operations are useful to
understand when tuning PID controllers. If one is familiar with these phase shift relationships, it
is relatively easy to analyze the response of a PID controller to a sinusoidal input (such as when a
process oscillates following a sudden load or setpoint change) to determine if the controller’s response
is dominated by any one of the three actions. This may be helpful in “de-tuning” an over-tuned
(overly aggressive) PID controller, if an excess of P, I, or D action may be identified from a phase
comparison of PV and output waveforms.

70 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

3.1.9 Note to students regarding quantitative graphing

A common exercise for students learning the function of PID controllers is to practice graphing a
controller’s output given input (PV and SP) conditions, either qualitatively or quantitatively. This
can be a frustrating experience for some students, as they struggle to accurately combine the effects
of P, I, and/or D responses into a single output trend. Here, I will present a way to ease the pain.

Suppose for example you were tasked with graphing the response of a PD (proportional +
derivative) controller to the following PV and SP inputs over time. You are told the controller has
a gain of 1, a derivative time constant of 0.3 minutes, and is reverse-acting:

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0:30 1:000:15 0:45 1:15 1:30 1:45 2:00 2:15 2:30 2:45

% SP

PV

Output

Time (min:sec)

3.1. P, I, AND D RESPONSES GRAPHED 71

My first recommendation is to qualitatively sketch the individual P and D responses. Simply
draw two different trends, each one right above or below the given PV/SP trends, showing the shapes
of each response over time. You might even find it easier to do if you re-draw the original PV and
SP trends on a piece of non-graph paper with the qualitative P and D trends also sketched on the
same piece of non-graph paper. The purpose of the qualitative sketches is to separate the task of
determining shapes from the task of determining numerical values, in order to simplify the process.

After sketching the separate P and D trends, label each one of the “features” (changes either up
or down) in these qualitative trends. This will allow you to more easily combine the effects into one
output trend later:

SP

PV

P-only

D-only

P1 P2 P3 P4

D1 D2

D3 D4

D5 D6

D7 D8

72 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

Now, you may qualitatively sketch an output trend combining each of these “features” into one
graph. Be sure to label each ramp or step originating with the separate P or D trends, so you know
where each “feature” of the combined output graph originates from:

SP

PV

P-only

D-only

P1 P2 P3 P4

D1 D2

D3 D4

D5 D6

D7 D8

D1

P1 D2

D3

P2 D4

D5

P3 D6

D7

P4 D8

P+D

Once the general shape of the output has been qualitatively determined, you may go back to the
separate P and D trends to calculate numerical values for each of the labeled “features.”

Note that each of the PV ramps is 15% in height, over a time of 15 seconds (one-quarter of a
minute). With a controller gain of 1, the proportional response to each of these ramps will also be
a ramp that is 15% in height.

Taking our given derivative time constant of 0.3 minutes and multiplying that by the PV’s

rate-of-change (dPV
dt

) during each of its ramping periods (15% per one-quarter minute, or 60%
per minute) yields a derivative response of 18% during each of the ramping periods. Thus, each
derivative response “step” will be 18% in height.

3.1. P, I, AND D RESPONSES GRAPHED 73

Going back to the qualitative sketches of P and D actions, and to the combined (qualitative)
output sketch, we may apply the calculated values of 15% for each proportional ramp and 18% for
each derivative step to the labeled “features.” We may also label the starting value of the output
trend as given in the original problem (35%), to calculate actual output values at different points
in time. Calculating output values at specific points in the graph becomes as easy as cumulatively
adding and subtracting the P and D “feature” values to the starting output value:

SP

PV

P-only

D-only

P1 P2 P3 P4

D1 D2

D3 D4

D5 D6

D7 D8

D1

P1 D2

D3

P2 D4

D5

P3 D6

D7

P4 D8

P+D

15% 15% 15% 15%

18% 18%

18% 18%

18%

18%

18%

18%

35%

15%

15%

15%

15%

18%

18%

18%

18%

18%

18%

18%

18%

17%

2%

20%

38%

53%

35%

17%

2%

38%

53%

35%

74 CHAPTER 3. DERIVATIONS AND TECHNICAL REFERENCES

Now that we know the output values at all the critical points, we may quantitatively sketch the
output trend on the original graph:

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0:30 1:000:15 0:45 1:15 1:30 1:45 2:00 2:15 2:30 2:45

% SP

PV

Output

Time (min:sec)

Chapter 4

Programming References

A powerful tool for mathematical modeling is text-based computer programming. This is where
you type coded commands in text form which the computer is able to interpret. Many different
text-based languages exist for this purpose, but we will focus here on just two of them, C++ and
Python.

75

76 CHAPTER 4. PROGRAMMING REFERENCES

4.1 Programming in C++

One of the more popular text-based computer programming languages is called C++. This is a
compiled language, which means you must create a plain-text file containing C++ code using a
program called a text editor, then execute a software application called a compiler to translate your
“source code” into instructions directly understandable to the computer. Here is an example of
“source code” for a very simple C++ program intended to perform some basic arithmetic operations
and print the results to the computer’s console:

#include <iostream>

using namespace std;

int main (void)

{

float x, y;

x = 200;

y = -560.5;

cout << "This simple program performs basic arithmetic on" << endl;

cout << "the two numbers " << x << " and " << y << " and then" << endl;

cout << "displays the results on the computer’s console." << endl;

cout << endl;

cout << "Sum = " << x + y << endl;

cout << "Difference = " << x - y << endl;

cout << "Product = " << x * y << endl;

cout << "Quotient of " << x / y << endl;

return 0;

}

Computer languages such as C++ are designed to make sense when read by human programmers.
The general order of execution is left-to-right, top-to-bottom just the same as reading any text
document written in English. Blank lines, indentation, and other “whitespace” is largely irrelevant
in C++ code, and is included only to make the code more pleasing1 to view.

1Although not included in this example, comments preceded by double-forward slash characters (//) may be added
to source code as well to provide explanations of what the code is supposed to do, for the benefit of anyone reading
it. The compiler application will ignore all comments.

4.1. PROGRAMMING IN C++ 77

Let’s examine the C++ source code to explain what it means:

• #include <iostream> and using namespace std; are set-up instructions to the compiler
giving it some context in which to interpret your code. The code specific to your task is located
between the brace symbols ({ and }, often referred to as “curly-braces”).

• int main (void) labels the “Main” function for the computer: the instructions within this
function (lying between the { and } symbols) it will be commanded to execute. Every complete
C++ program contains a main function at minimum, and often additional functions as well,
but the main function is where execution always begins. The int declares this function will
return an integer number value when complete, which helps to explain the purpose of the
return 0; statement at the end of the main function: providing a numerical value of zero at
the program’s completion as promised by int. This returned value is rather incidental to our
purpose here, but it is fairly standard practice in C++ programming.

• Grouping symbols such as (parentheses) and {braces} abound in C, C++, and other languages
(e.g. Java). Parentheses typically group data to be processed by a function, called arguments

to that function. Braces surround lines of executable code belonging to a particular function.

• The float declaration reserves places in the computer’s memory for two floating-point

variables, in this case the variables’ names being x and y. In most text-based programming
languages, variables may be named by single letters or by combinations of letters (e.g. xyz

would be a single variable).

• The next two lines assign numerical values to the two variables. Note how each line terminates
with a semicolon character (;) and how this pattern holds true for most of the lines in this
program. In C++ semicolons are analogous to periods at the ends of English sentences. This
demarcation of each line’s end is necessary because C++ ignores whitespace on the page and
doesn’t “know” otherwise where one line ends and another begins.

• All the other instructions take the form of a cout command which prints characters to
the “standard output” stream of the computer, which in this case will be text displayed
on the console. The double-less-than symbols (<<) show data being sent toward the cout

command. Note how verbatim text is enclosed in quotation marks, while variables such as x
or mathematical expressions such as x - y are not enclosed in quotations because we want
the computer to display the numerical values represented, not the literal text.

• Standard arithmetic operations (add, subtract, multiply, divide) are represented as +, -, *,
and /, respectively.

• The endl found at the end of every cout statement marks the end of a line of text printed
to the computer’s console display. If not for these endl inclusions, the displayed text would
resemble a run-on sentence rather than a paragraph. Note the cout << endl; line, which
does nothing but create a blank line on the screen, for no reason other than esthetics.

78 CHAPTER 4. PROGRAMMING REFERENCES

After saving this source code text to a file with its own name (e.g. myprogram.cpp), you would
then compile the source code into an executable file which the computer may then run. If you are
using a console-based compiler such as GCC (very popular within variants of the Unix operating
system2, such as Linux and Apple’s OS X), you would type the following command and press the
Enter key:

g++ -o myprogram.exe myprogram.cpp

This command instructs the GCC compiler to take your source code (myprogram.cpp) and create
with it an executable file named myprogram.exe. Simply typing ./myprogram.exe at the command-
line will then execute your program:

./myprogram.exe

If you are using a graphic-based C++ development system such as Microsoft Visual Studio3, you
may simply create a new console application “project” using this software, then paste or type your
code into the example template appearing in the editor window, and finally run your application to
test its output.

As this program runs, it displays the following text to the console:

This simple program performs basic arithmetic on

the two numbers 200 and -560.5 and then

displays the results on the computer’s console.

Sum = -360.5

Difference = 760.5

Product = -112100

Quotient of -0.356824

As crude as this example program is, it serves the purpose of showing how easy it is to write and
execute simple programs in a computer using the C++ language. As you encounter C++ example
programs (shown as source code) in any of these modules, feel free to directly copy-and-paste the
source code text into a text editor’s screen, then follow the rest of the instructions given here (i.e.
save to a file, compile, and finally run your program). You will find that it is generally easier to

2A very functional option for users of Microsoft Windows is called Cygwin, which provides a Unix-like console
environment complete with all the customary utility applications such as GCC!

3Using Microsoft Visual Studio community version 2017 at the time of this writing to test this example, here are
the steps I needed to follow in order to successfully compile and run a simple program such as this: (1) Start up
Visual Studio and select the option to create a New Project; (2) Select the Windows Console Application template,
as this will perform necessary set-up steps to generate a console-based program which will save you time and effort
as well as avoid simple errors of omission; (3) When the editing screen appears, type or paste the C++ code within
the main() function provided in the template, deleting the “Hello World” cout line that came with the template; (4)
Type or paste any preprocessor directives (e.g. #include statements, namespace statements) necessary for your code
that did not come with the template; (5) Lastly, under the Debug drop-down menu choose either Start Debugging
(F5 hot-key) or Start Without Debugging (Ctrl-F5 hotkeys) to compile (“Build”) and run your new program. Upon
execution a console window will appear showing the output of your program.

4.1. PROGRAMMING IN C++ 79

learn computer programming by closely examining others’ example programs and modifying them
than it is to write your own programs starting from a blank screen.

80 CHAPTER 4. PROGRAMMING REFERENCES

4.2 Programming in Python

Another text-based computer programming language called Python allows you to type instructions
at a terminal prompt and receive immediate results without having to compile that code. This
is because Python is an interpreted language: a software application called an interpreter reads
your source code, translates it into computer-understandable instructions, and then executes those
instructions in one step.

The following shows what happens on my personal computer when I start up the Python
interpreter on my personal computer, by typing python34 and pressing the Enter key:

Python 3.7.2 (default, Feb 19 2019, 18:15:18)

[GCC 4.1.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> symbols represent the prompt within the Python interpreter “shell”, signifying readiness
to accept Python commands entered by the user.

Shown here is an example of the same arithmetic operations performed on the same quantities,
using a Python interpreter. All lines shown preceded by the >>> prompt are entries typed by the
human programmer, and all lines shown without the >>> prompt are responses from the Python
interpreter software:

>>> x = 200

>>> y = -560.5

>>> x + y

-360.5

>>> x - y

760.5

>>> x * y

-112100.0

>>> x / y

-0.35682426404995538

>>> quit()

4Using version 3 of Python, which is the latest at the time of this writing.

4.2. PROGRAMMING IN PYTHON 81

More advanced mathematical functions are accessible in Python by first entering the line
from math import * which “imports” these functions from Python’s math library (with functions
identical to those available for the C programming language, and included on any computer with
Python installed). Some examples show some of these functions in use, demonstrating how the
Python interpreter may be used as a scientific calculator:

>>> from math import *

>>> sin(30.0)

-0.98803162409286183

>>> sin(radians(30.0))

0.49999999999999994

>>> pow(2.0, 5.0)

32.0

>>> log10(10000.0)

4.0

>>> e

2.7182818284590451

>>> pi

3.1415926535897931

>>> log(pow(e,6.0))

6.0

>>> asin(0.7071068)

0.78539819000368838

>>> degrees(asin(0.7071068))

45.000001524425265

>>> quit()

Note how trigonometric functions assume angles expressed in radians rather than degrees, and
how Python provides convenient functions for translating between the two. Logarithms assume a
base of e unless otherwise stated (e.g. the log10 function for common logarithms).

The interpreted (versus compiled) nature of Python, as well as its relatively simple syntax, makes
it a good choice as a person’s first programming language. For complex applications, interpreted
languages such as Python execute slower than compiled languages such as C++, but for the very
simple examples used in these learning modules speed is not a concern.

82 CHAPTER 4. PROGRAMMING REFERENCES

Another Python math library is cmath, giving Python the ability to perform arithmetic on
complex numbers. This is very useful for AC circuit analysis using phasors5 as shown in the following
example. Here we see Python’s interpreter used as a scientific calculator to show series and parallel
impedances of a resistor, capacitor, and inductor in a 60 Hz AC circuit:

>>> from math import *

>>> from cmath import *

>>> r = complex(400,0)

>>> f = 60.0

>>> xc = 1/(2 * pi * f * 4.7e-6)

>>> zc = complex(0,-xc)

>>> xl = 2 * pi * f * 1.0

>>> zl = complex(0,xl)

>>> r + zc + zl

(400-187.38811239154882j)

>>> 1/(1/r + 1/zc + 1/zl)

(355.837695813625+125.35793777619385j)

>>> polar(r + zc + zl)

(441.717448903332, -0.4381072059213295)

>>> abs(r + zc + zl)

441.717448903332

>>> phase(r + zc + zl)

-0.4381072059213295

>>> degrees(phase(r + zc + zl))

-25.10169387356105

When entering a value in rectangular form, we use the complex() function where the arguments
are the real and imaginary quantities, respectively. If we had opted to enter the impedance values
in polar form, we would have used the rect() function where the first argument is the magnitude
and the second argument is the angle in radians. For example, we could have set the capacitor’s
impedance (zc) as XC 6 −90o with the command zc = rect(xc,radians(-90)) rather than with
the command zc = complex(0,-xc) and it would have worked the same.

Note how Python defaults to rectangular form for complex quantities. Here we defined a 400
Ohm resistance as a complex value in rectangular form (400 +j0 Ω), then computed capacitive and
inductive reactances at 60 Hz and defined each of those as complex (phasor) values (0− jXc Ω and
0+ jXl Ω, respectively). After that we computed total impedance in series, then total impedance in
parallel. Polar-form representation was then shown for the series impedance (441.717 Ω 6 −25.102o).
Note the use of different functions to show the polar-form series impedance value: polar() takes
the complex quantity and returns its polar magnitude and phase angle in radians ; abs() returns
just the polar magnitude; phase() returns just the polar angle, once again in radians. To find the
polar phase angle in degrees, we nest the degrees() and phase() functions together.

The utility of Python’s interpreter environment as a scientific calculator should be clear from
these examples. Not only does it offer a powerful array of mathematical functions, but also unlimited

5A “phasor” is a voltage, current, or impedance represented as a complex number, either in rectangular or polar
form.

4.2. PROGRAMMING IN PYTHON 83

assignment of variables as well as a convenient text record6 of all calculations performed which may
be easily copied and pasted into a text document for archival.

It is also possible to save a set of Python commands to a text file using a text editor application,
and then instruct the Python interpreter to execute it at once rather than having to type it line-by-
line in the interpreter’s shell. For example, consider the following Python program, saved under the
filename myprogram.py:

x = 200

y = -560.5

print("Sum")

print(x + y)

print("Difference")

print(x - y)

print("Product")

print(x * y)

print("Quotient")

print(x / y)

As with C++, the interpreter will read this source code from left-to-right, top-to-bottom, just the
same as you or I would read a document written in English. Interestingly, whitespace is significant
in the Python language (unlike C++), but this simple example program makes no use of that.

To execute this Python program, I would need to type python myprogram.py and then press the
Enter key at my computer console’s prompt, at which point it would display the following result:

Sum

-360.5

Difference

760.5

Product

-112100.0

Quotient

-0.35682426405

As you can see, syntax within the Python programming language is simpler than C++, which
is one reason why it is often a preferred language for beginning programmers.

6Like many command-line computing environments, Python’s interpreter supports “up-arrow” recall of previous
entries. This allows quick recall of previously typed commands for editing and re-evaluation.

84 CHAPTER 4. PROGRAMMING REFERENCES

If you are interested in learning more about computer programming in any language, you will
find a wide variety of books and free tutorials available on those subjects. Otherwise, feel free to
learn by the examples presented in these modules.

4.3. INTRODUCTION TO PSEUDOCODE 85

4.3 Introduction to pseudocode

Pseudocode is a form of text-based programming intended only for human reading, yet similar enough
in syntax and structure to real computer programming languages for a human programmer to be
able to easily translate to a high-level programming language such as C++, Python, etc. Since
pseudocode is not a formal computer language, we may use it to very efficiently describe certain
algorithms (procedures) without having to abide by strict “grammatical” rules as we would if writing
in a formal programming language. There is no agreed-upon standard for pseudocode, but here I
will outline my own conventions.

4.3.1 Program loops

Each line of text in the following listing represents a command for the digital computer to follow,
one by one, in order from top to bottom. The LOOP and ENDLOOP markers represent the boundaries
of a program loop, where the same set of encapsulated commands are executed over and over again
in cyclic fashion:

Pseudocode listing 7

LOOP

PRINT "Hello World!" // This line prints text to the screen

OUTPUT audible beep on the speaker // This line beeps the speaker

ENDLOOP

In this particular case, the result of this program’s execution is a continuous printing of the words
“Hello World!” to the computer’s display with a single “beep” tone accompanying each printed line.
The words following a double-slash (//) are called comments, and exist only to provide explanatory
text for the human reader, not the computer. Admittedly, this example program would be both
impractical and annoying to actually run in a computer, but it does serve to illustrate the basic
concept of a program “loop” shown in pseudocode.

7I have used a typesetting convention to help make my pseudocode easier for human beings to read: all formal
commands appear in bold-faced blue type, while all comments appear in italicized red type. All other text appears as
normal-faced black type. One should remember that the computer running any program cares not for how the text
is typeset: all it cares is that the commands are properly used (i.e. no “grammatical” or “syntactical” errors).

86 CHAPTER 4. PROGRAMMING REFERENCES

4.3.2 Assigning values

For another example of pseudocode, consider the following program. This code causes a variable (x)
in the computer’s memory to alternate between two values of 0 and 2 indefinitely:

Pseudocode listing

DECLARE x to be an integer variable

SET x = 2 // Initializing the value of x

LOOP

// This SET command alternates the value of x with each pass

SET x = 2 - x

ENDLOOP

The first instruction in this listing declares the type of variable x will be. In this case, x will be
an integer variable, which means it may only represent whole-number quantities and their negative
counterparts – no other values (e.g. fractions, decimals) are possible. If we wished to limit the scope
of x even further to represent just 0 or 1 (i.e. a single bit), we would have to declare it as a Boolean

variable. If we required x to be able to represent fractional values as well, we would have to declare it
as a floating-point variable. Variable declarations are important in computer programming because
it instructs the computer how much space in its random-access memory to allocate to each variable,
which necessarily limits the range of numbers each variable may represent.

The next instruction initializes x to a value of two. Like the declaration, this instruction need only
happen once at the beginning of the program’s execution, and never again so long as the program
continues to run. The single SET statement located between the LOOP and ENDLOOPmarkers, however,
repeatedly executes as fast as the computer’s processor allows, causing x to rapidly alternate between
the values of two and zero.

It should be noted that the “equals” sign (=) in computer programming often has a different
meaning from that commonly implied in ordinary mathematics. When used in conjunction with the
SET command, an “equals” sign assigns the value of the right-hand quantity to the left-hand variable.
For example, the command SET x = 2 − x tells the computer to first calculate the quantity 2− x

and then set the variable x to this new value. It definitely does not mean to imply x is actually
equal in value to 2 − x, which would be a mathematical contradiction. Thus, you should interpret
the SET command to mean “set equal to . . .”

4.3. INTRODUCTION TO PSEUDOCODE 87

4.3.3 Testing values (conditional statements)

If we mean to simply test for an equality between two quantities, we may use the same symbol (=)
in the context of a different command, such as “IF”:

Pseudocode listing

DECLARE x to be an integer variable

LOOP

// (other code manipulating the value of x goes here)

IF x = 5 THEN

PRINT "The value of the number is 5"

OUTPUT audible beep on the speaker

ENDIF

ENDLOOP

This program repeatedly tests whether or not the variable x is equal to 5, printing a line of text
and producing a “beep” on the computer’s speaker if that test evaluates as true. Here, the context
of the IF command tells us the equals sign is a test for equality rather than a command to assign a
new value to x. If the condition is met (x = 5) then all commands contained within the IF/ENDIF
set are executed.

Some programming languages draw a more explicit distinction between the operations of equality
test versus assignment by using different symbol combinations. In C and C++, for example, a single
equals sign (=) represents assignment while a double set of equals signs (==) represents a test for
equality. In Structured Text (ST) PLC programming, a single equals sign (=) represents a test
for equality, while a colon plus equals sign (:=) represents assignment. The combination of an
exclamation point and an equals sign (!=) represents “not equal to,” used as a test condition to
check for inequality between two quantities.

88 CHAPTER 4. PROGRAMMING REFERENCES

4.3.4 Branching and functions

A very important feature of any programming language is the ability for the path of execution to
change (i.e. the program “flow” to branch in another direction) rather than take the exact same
path every time. We saw shades of this with the IF statement in our previous example program:
the computer would print some text and output a beep sound if the variable x happened to be equal
to 5, but would completely skip the PRINT and OUTPUT commands if x happened to be any other
value.

An elegant way to modularize a program into separate pieces involves writing portions of the
program as separate functions which may be “called” as needed by the main program. Let us
examine how to apply this concept to the following conditional program:

Pseudocode listing

DECLARE x to be an integer variable

LOOP

// (other code manipulating the value of x goes here)

IF x = 5 THEN

PRINT "The value of the number is 5"

OUTPUT audible beep on the speaker

ELSEIF x = 7 THEN

PRINT "The value of the number is 7"

OUTPUT audible beep on the speaker

ELSEIF x = 11 THEN

PRINT "The value of the number is 11"

OUTPUT audible beep on the speaker

ENDIF

ENDLOOP

This program takes action (printing and outputting beeps) if ever the variable x equals either 5,
7, or 11, but not for any other values of x. The actions taken with each condition are quite similar:
print the numerical value of x and output a single beep. In fact, one might argue this code is ugly
because we have to keep repeating one of the commands verbatim: the OUTPUT command for each
condition where we wish to computer to output a beep sound.

4.3. INTRODUCTION TO PSEUDOCODE 89

We may streamline this program by placing the PRINT and OUTPUT commands into their own
separate “function” written outside the main loop, and then call that function whenever we need
it. The boundaries of this function’s code are marked by the BEGIN and END labels shown near the
bottom of the listing:

Pseudocode listing

DECLARE n to be an integer variable

DECLARE x to be an integer variable

DECLARE PrintAndBeep to be a function

LOOP

// (other code manipulating the value of x goes here)

IF x = 5 OR x = 7 OR x = 11 THEN

CALL PrintAndBeep(x)

ENDIF

ENDLOOP

BEGIN PrintAndBeep (n)

PRINT "The value of the number is" (n) "!"

OUTPUT audible beep on the speaker

RETURN

END PrintAndBeep

The main program loop is much shorter than before because the repetitive tasks of printing the
value of x and outputting beep sounds has been moved to a separate function. In older computer
languages, this was known as a subroutine, the concept being that flow through the main program
(the “routine”) would branch to a separate sub-program (a “subroutine”) to do some specialized
task and then return back to the main program when the sub-program was done with its task.

Note that the program execution flow never reaches the PrintAndBeep function unless x happens
to equal 5, 7, or 11. If the value of x never matches any of those specific conditions, the program
simply keeps looping between the LOOP and ENDLOOP markers.

90 CHAPTER 4. PROGRAMMING REFERENCES

Note also how the value of x gets passed on to the PrintAndBeep function, then read inside
that function under another variable name, n. This was not strictly necessary for the purpose of
printing the value of x, since x is the only variable in the main program. However, the use of a
separate (“local”) variable within the PrintAndBeep function enables us at some later date to use
that function to act on other variables within the main program while avoiding conflict. Take this
program for example:

Pseudocode listing

DECLARE n to be an integer variable

DECLARE x to be an integer variable

DECLARE y to be an integer variable

DECLARE PrintAndBeep to be a function

LOOP

// (other code manipulating the value of x and y goes here)

IF x = 5 OR x = 7 OR x = 11 THEN

CALL PrintAndBeep(x)

ENDIF

IF y = 0 OR y = 2 THEN

CALL PrintAndBeep(y)

ENDIF

ENDLOOP

BEGIN PrintAndBeep (n)

PRINT "The value of the number is" (n) "!"

OUTPUT audible beep on the speaker

RETURN

END PrintAndBeep

Here, the PrintAndBeep function gets used to print certain values of x, then re-used to print
certain values of y. If we had used x within the PrintAndBeep function instead of its own variable
(n), the function would only be useful for printing the value of x. Being able to pass values to
functions makes those functions more useful.

A final note on branching and functions: most computer languages allow a function to call itself

if necessary! This concept is known as recursion in computer science.

Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

91

92 CHAPTER 5. QUESTIONS

General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.

93

General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.

94 CHAPTER 5. QUESTIONS

• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?

5.1. CONCEPTUAL REASONING 95

5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.

96 CHAPTER 5. QUESTIONS

5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.

5.1. CONCEPTUAL REASONING 97

5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Simplification as a problem-solving strategy

Thought experiments as a problem-solving strategy

Limiting cases as a problem-solving strategy

Annotating diagrams as a problem-solving strategy

Interpreting intermediate results as a problem-solving strategy

Graphing as a problem-solving strategy

Converting a qualitative problem into a quantitative problem

Converting a quantitative problem into a qualitative problem

Working “backwards” to validate calculated results

98 CHAPTER 5. QUESTIONS

Reductio ad absurdum

Re-drawing schematics as a problem-solving strategy

Cut-and-try problem-solving strategy

Algebraic substitution

???

5.1.3 First conceptual question

Challenges

• ???.

• ???.

• ???.

5.1.4 Second conceptual question

Challenges

• ???.

• ???.

• ???.

5.1. CONCEPTUAL REASONING 99

5.1.5 Applying foundational concepts to ???

Identify which foundational concept(s) apply to each of the declarations shown below regarding the
following circuit. If a declaration is true, then identify it as such and note which concept supports
that declaration; if a declaration is false, then identify it as such and note which concept is violated
by that declaration:

(Under development)

• ???

• ???

• ???

• ???

Here is a list of foundational concepts for your reference: Conservation of Energy,
Conservation of Electric Charge, behavior of sources vs. loads, Ohm’s Law, Joule’s Law,
effects of open faults, effect of shorted faults, properties of series networks, properties
of parallel networks, Kirchhoff’s Voltage Law, Kirchhoff’s Current Law. More than one of
these concepts may apply to a declaration, and some concepts may not apply to any listed declaration
at all. Also, feel free to include foundational concepts not listed here.

Challenges

• ???.

• ???.

• ???.

100 CHAPTER 5. QUESTIONS

5.1.6 Explaining the meaning of calculations

Below is a quantitative problem where all the calculations have been performed for you, but all
variable labels, units, and other identifying data are unrevealed. Assign proper meaning to each
of the numerical values, identify the correct unit of measurement for each value as well as any
appropriate metric prefix(es), explain the significance of each value by describing where it “fits” into
the circuit being analyzed, and identify the general principle employed at each step:

Schematic diagram of the ??? circuit:

(Under development)

Calculations performed in order from first to last:

1. x+ y = z

2. x+ y = z

3. x+ y = z

4. x+ y = z

5. x+ y = z

6. x+ y = z

Challenges

• ???.

• ???.

• ???.

5.1. CONCEPTUAL REASONING 101

5.1.7 Explaining the meaning of code

Shown below is a schematic diagram for a ??? circuit, and after that a source-code listing of a
computer program written in the ??? language simulating that circuit. Explain the purpose of each
line of code relating to the circuit being simulated, identify the correct unit of measurement for
each computed value, and identify all foundational concepts of electric circuits (e.g. Ohm’s Law,
Kirchhoff’s Laws, etc.) employed in the program:

Schematic diagram of the ??? circuit:

(Under development)

Code listing:

#include <stdio.h>

int main (void)

{

return 0;

}

Challenges

• ???.

• ???.

• ???.

102 CHAPTER 5. QUESTIONS

5.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.

5.2. QUANTITATIVE REASONING 103

5.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.

104 CHAPTER 5. QUESTIONS

5.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.

5.2. QUANTITATIVE REASONING 105

Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.

106 CHAPTER 5. QUESTIONS

Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.

5.2. QUANTITATIVE REASONING 107

5.2.3 First quantitative problem

Challenges

• ???.

• ???.

• ???.

5.2.4 Second quantitative problem

Challenges

• ???.

• ???.

• ???.

5.2.5 ??? simulation program

Write a text-based computer program (e.g. C, C++, Python) to calculate ???

Challenges

• ???.

• ???.

• ???.

108 CHAPTER 5. QUESTIONS

5.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

5.3.1 First diagnostic scenario

Challenges

• ???.

• ???.

• ???.

5.3. DIAGNOSTIC REASONING 109

5.3.2 Second diagnostic scenario

Challenges

• ???.

• ???.

• ???.

110 CHAPTER 5. QUESTIONS

Chapter 6

Projects and Experiments

The following project and experiment descriptions outline things you can build to help you
understand circuits. With any real-world project or experiment there exists the potential for physical
harm. Electricity can be very dangerous in certain circumstances, and you should follow proper safety

precautions at all times!

6.1 Recommended practices

This section outlines some recommended practices for all circuits you design and construct.

111

112 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.1.1 Safety first!

Electricity, when passed through the human body, causes uncomfortable sensations and in large
enough measures1 will cause muscles to involuntarily contract. The overriding of your nervous
system by the passage of electrical current through your body is particularly dangerous in regard
to your heart, which is a vital muscle. Very large amounts of current can produce serious internal
burns in addition to all the other effects.

Cardio-pulmonary resuscitation (CPR) is the standard first-aid for any victim of electrical shock.
This is a very good skill to acquire if you intend to work with others on dangerous electrical circuits.
You should never perform tests or work on such circuits unless someone else is present who is
proficient in CPR.

As a general rule, any voltage in excess of 30 Volts poses a definitive electric shock hazard, because
beyond this level human skin does not have enough resistance to safely limit current through the
body. “Live” work of any kind with circuits over 30 volts should be avoided, and if unavoidable
should only be done using electrically insulated tools and other protective equipment (e.g. insulating
shoes and gloves). If you are unsure of the hazards, or feel unsafe at any time, stop all work and
distance yourself from the circuit!

A policy I strongly recommend for students learning about electricity is to never come into

electrical contact2 with an energized conductor, no matter what the circuit’s voltage3 level! Enforcing
this policy may seem ridiculous when the circuit in question is powered by a single battery smaller
than the palm of your hand, but it is precisely this instilled habit which will save a person from
bodily harm when working with more dangerous circuits. Experience has taught me that students
who learn early on to be careless with safe circuits have a tendency to be careless later with dangerous
circuits!

In addition to the electrical hazards of shock and burns, the construction of projects and running
of experiments often poses other hazards such as working with hand and power tools, potential

1Professor Charles Dalziel published a research paper in 1961 called “The Deleterious Effects of Electric Shock”
detailing the results of electric shock experiments with both human and animal subjects. The threshold of perception
for human subjects holding a conductor in their hand was in the range of 1 milliampere of current (less than this
for alternating current, and generally less for female subjects than for male). Loss of muscular control was exhibited
by half of Dalziel’s subjects at less than 10 milliamperes alternating current. Extreme pain, difficulty breathing,
and loss of all muscular control occurred for over 99% of his subjects at direct currents less than 100 milliamperes
and alternating currents less than 30 milliamperes. In summary, it doesn’t require much electric current to induce
painful and even life-threatening effects in the human body! Your first and best protection against electric shock is
maintaining an insulating barrier between your body and the circuit in question, such that current from that circuit
will be unable to flow through your body.

2By “electrical contact” I mean either directly touching an energized conductor with any part of your body, or
indirectly touching it through a conductive tool. The only physical contact you should ever make with an energized
conductor is via an electrically insulated tool, for example a screwdriver with an electrically insulated handle, or an
insulated test probe for some instrument.

3Another reason for consistently enforcing this policy, even on low-voltage circuits, is due to the dangers that even
some low-voltage circuits harbor. A single 12 Volt automobile battery, for example, can cause a surprising amount of
damage if short-circuited simply due to the high current levels (i.e. very low internal resistance) it is capable of, even
though the voltage level is too low to cause a shock through the skin. Mechanics wearing metal rings, for example,
are at risk from severe burns if their rings happen to short-circuit such a battery! Furthermore, even when working on
circuits that are simply too low-power (low voltage and low current) to cause any bodily harm, touching them while
energized can pose a threat to the circuit components themselves. In summary, it generally wise (and always a good
habit to build) to “power down” any circuit before making contact between it and your body.

6.1. RECOMMENDED PRACTICES 113

contact with high temperatures, potential chemical exposure, etc. You should never proceed with a
project or experiment if you are unaware of proper tool use or lack basic protective measures (e.g.
personal protective equipment such as safety glasses) against such hazards.

Some other safety-related practices should be followed as well:

• All power conductors extending outward from the project must be firmly strain-relieved (e.g.
“cord grips” used on line power cords), so that an accidental tug or drop will not compromise
circuit integrity.

• All electrical connections must be sound and appropriately made (e.g. soldered wire joints
rather than twisted-and-taped; terminal blocks rather than solderless breadboards for high-
current or high-voltage circuits). Use “touch-safe” terminal connections with recessed metal
parts to minimize risk of accidental contact.

• Always provide overcurrent protection in any circuit you build. Always. This may be in the
form of a fuse, a circuit breaker, and/or an electronically current-limited power supply.

• Always ensure circuit conductors are rated for more current than the overcurrent protection
limit. Always. A fuse does no good if the wire or printed circuit board trace will “blow” before
it does!

• Always bond metal enclosures to Earth ground for any line-powered circuit. Always. Ensuring
an equipotential state between the enclosure and Earth by making the enclosure electrically
common with Earth ground ensures no electric shock can occur simply by one’s body bridging
between the Earth and the enclosure.

• Avoid building a high-energy circuit when a low-energy circuit will suffice. For example,
I always recommend beginning students power their first DC resistor circuits using small
batteries rather than with line-powered DC power supplies. The intrinsic energy limitations
of a dry-cell battery make accidents highly unlikely.

• Use line power receptacles that are GFCI (Ground Fault Current Interrupting) to help avoid
electric shock from making accidental contact with a “hot” line conductor.

• Always wear eye protection when working with tools or live systems having the potential to
eject material into the air. Examples of such activities include soldering, drilling, grinding,
cutting, wire stripping, working on or near energized circuits, etc.

• Always use a step-stool or stepladder to reach high places. Never stand on something not
designed to support a human load.

• When in doubt, ask an expert. If anything even seems remotely unsafe to you, do not proceed
without consulting a trusted person fully knowledgeable in electrical safety.

114 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.1.2 Other helpful tips

Experience has shown the following practices to be very helpful, especially when students make their
own component selections, to ensure the circuits will be well-behaved:

• Avoid resistor values less than 1 kΩ or greater than 100 kΩ, unless such values are definitely
necessary4. Resistances below 1 kΩ may draw excessive current if directly connected to
a voltage source of significant magnitude, and may also complicate the task of accurately
measuring current since any ammeter’s non-zero resistance inserted in series with a low-value
circuit resistor will significantly alter the total resistance and thereby skew the measurement.
Resistances above 100 kΩ may complicate the task of measuring voltage since any voltmeter’s
finite resistance connected in parallel with a high-value circuit resistor will significantly alter
the total resistance and thereby skew the measurement. Similarly, AC circuit impedance values
should be between 1 kΩ and 100 kΩ, and for all the same reasons.

• Ensure all electrical connections are low-resistance and physically rugged. For this reason, one
should avoid compression splices (e.g. “butt” connectors), solderless breadboards5, and wires
that are simply twisted together.

• Build your circuit with testing in mind. For example, provide convenient connection points
for test equipment (e.g. multimeters, oscilloscopes, signal generators, logic probes).

• Design permanent projects with maintenance in mind. The more convenient you make
maintenance tasks, the more likely they will get done.

• Always document and save your work. Circuits lacking schematic diagrams are more
difficult to troubleshoot than documented circuits. Similarly, circuit construction is simpler
when a schematic diagram precedes construction. Experimental results are easier to interpret
when comprehensively recorded. Consider modern videorecording technology for this purpose
where appropriate.

• Record your steps when troubleshooting. Talk to yourself when solving problems. These
simple steps clarify thought and simplify identification of errors.

4An example of a necessary resistor value much less than 1 kΩ is a shunt resistor used to produce a small voltage
drop for the purpose of sensing current in a circuit. Such shunt resistors must be low-value in order not to impose
an undue load on the rest of the circuit. An example of a necessary resistor value much greater than 100 kΩ is an
electrostatic drain resistor used to dissipate stored electric charges from body capacitance for the sake of preventing
damage to sensitive semiconductor components, while also preventing a path for current that could be dangerous to
the person (i.e. shock).

5Admittedly, solderless breadboards are very useful for constructing complex electronic circuits with many
components, especially DIP-style integrated circuits (ICs), but they tend to give trouble with connection integrity after
frequent use. An alternative for projects using low counts of ICs is to solder IC sockets into prototype printed circuit
boards (PCBs) and run wires from the soldered pins of the IC sockets to terminal blocks where reliable temporary
connections may be made.

6.1. RECOMMENDED PRACTICES 115

6.1.3 Terminal blocks for circuit construction

Terminal blocks are the standard means for making electric circuit connections in industrial systems.
They are also quite useful as a learning tool, and so I highly recommend their use in lieu of
solderless breadboards6. Terminal blocks provide highly reliable connections capable of withstanding
significant voltage and current magnitudes, and they force the builder to think very carefully about
component layout which is an important mental practice. Terminal blocks that mount on standard
35 mm DIN rail7 are made in a wide range of types and sizes, some with built-in disconnecting
switches, some with built-in components such as rectifying diodes and fuseholders, all of which
facilitate practical circuit construction.

I recommend every student of electricity build their own terminal block array for use in
constructing experimental circuits, consisting of several terminal blocks where each block has at
least 4 connection points all electrically common to each other8 and at least one terminal block
that is a fuse holder for overcurrent protection. A pair of anchoring blocks hold all terminal blocks
securely on the DIN rail, preventing them from sliding off the rail. Each of the terminals should
bear a number, starting from 0. An example is shown in the following photograph and illustration:

Fuse

Anchor block

Anchor block

DIN rail end

DIN rail end

Fuseholder block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block
4-terminal block

Electrically common
points shown in blue

(typical for all terminal blocks)

1

5
4

6
7
8
9
10

4-terminal block0

2

11
12

3

Screwless terminal blocks (using internal spring clips to clamp wire and component lead ends) are
preferred over screw-based terminal blocks, as they reduce assembly and disassembly time, and also
minimize repetitive wrist stress from twisting screwdrivers. Some screwless terminal blocks require
the use of a special tool to release the spring clip, while others provide buttons9 for this task which
may be pressed using the tip of any suitable tool.

6Solderless breadboard are preferable for complicated electronic circuits with multiple integrated “chip”
components, but for simpler circuits I find terminal blocks much more practical. An alternative to solderless
breadboards for “chip” circuits is to solder chip sockets onto a PCB and then use wires to connect the socket pins to
terminal blocks. This also accommodates surface-mount components, which solderless breadboards do not.

7DIN rail is a metal rail designed to serve as a mounting point for a wide range of electrical and electronic devices
such as terminal blocks, fuses, circuit breakers, relay sockets, power supplies, data acquisition hardware, etc.

8Sometimes referred to as equipotential, same-potential, or potential distribution terminal blocks.
9The small orange-colored squares seen in the above photograph are buttons for this purpose, and may be actuated

by pressing with any tool of suitable size.

116 CHAPTER 6. PROJECTS AND EXPERIMENTS

The following example shows how such a terminal block array might be used to construct a
series-parallel resistor circuit consisting of four resistors and a battery:

Fuse1

5
4

6
7
8
9
10

0

2

11
12

3 +
-

Pictorial diagramSchematic diagram

R1

R2

R3

R4

Fuse

R1

R2

R3

R4

6 V

6 V

2.2 kΩ

3.3 kΩ

4.7 kΩ

7.1 kΩ

7.1 kΩ

2.2 kΩ

3.3 kΩ

4.7 kΩ

Numbering on the terminal blocks provides a very natural translation to SPICE10 netlists, where
component connections are identified by terminal number:

* Series-parallel resistor circuit

v1 1 0 dc 6

r1 2 5 7100

r2 5 8 2200

r3 2 8 3300

r4 8 11 4700

rjmp1 1 2 0.01

rjmp2 0 11 0.01

.op

.end

Note the use of “jumper” resistances rjmp1 and rjmp2 to describe the wire connections between
terminals 1 and 2 and between terminals 0 and 11, respectively. Being resistances, SPICE requires
a resistance value for each, and here we see they have both been set to an arbitrarily low value of
0.01 Ohm realistic for short pieces of wire.

Listing all components and wires along with their numbered terminals happens to be a useful
documentation method for any circuit built on terminal blocks, independent of SPICE. Such a
“wiring sequence” may be thought of as a non-graphical description of an electric circuit, and is
exceptionally easy to follow.

10SPICE is computer software designed to analyze electrical and electronic circuits. Circuits are described for the
computer in the form of netlists which are text files listing each component type, connection node numbers, and
component values.

6.1. RECOMMENDED PRACTICES 117

An example of a more elaborate terminal block array is shown in the following photograph,
with terminal blocks and “ice-cube” style electromechanical relays mounted to DIN rail, which is
turn mounted to a perforated subpanel11. This “terminal block board” hosts an array of thirty five
undedicated terminal block sections, four SPDT toggle switches, four DPDT “ice-cube” relays, a
step-down control power transformer, bridge rectifier and filtering capacitor, and several fuses for
overcurrent protection:

Four plastic-bottomed “feet” support the subpanel above the benchtop surface, and an unused
section of DIN rail stands ready to accept other components. Safety features include electrical
bonding of the AC line power cord’s ground to the metal subpanel (and all metal DIN rails),
mechanical strain relief for the power cord to isolate any cord tension from wire connections,
clear plastic finger guards covering the transformer’s screw terminals, as well as fused overcurrent
protection for the 120 Volt AC line power and the transformer’s 12 Volt AC output. The perforated
holes happen to be on 1

4 inch centers with a diameter suitable for tapping with 6-32 machine screw
threads, their presence making it very easy to attach other sections of DIN rail, printed circuit boards,
or specialized electrical components directly to the grounded metal subpanel. Such a “terminal block
board” is an inexpensive12 yet highly flexible means to construct physically robust circuits using
industrial wiring practices.

11An electrical subpanel is a thin metal plate intended for mounting inside an electrical enclosure. Components are
attached to the subpanel, and the subpanel in turn bolts inside the enclosure. Subpanels allow circuit construction
outside the confines of the enclosure, which speeds assembly. In this particular usage there is no enclosure, as the
subpanel is intended to be used as an open platform for the convenient construction of circuits on a benchtop by
students. In essence, this is a modern version of the traditional breadboard which was literally a wooden board such
as might be used for cutting loaves of bread, but which early electrical and electronic hobbyists used as platforms for
the construction of circuits.

12At the time of this writing (2019) the cost to build this board is approximately $250 US dollars.

118 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.1.4 Conducting experiments

An experiment is an exploratory act, a test performed for the purpose of assessing some proposition
or principle. Experiments are the foundation of the scientific method, a process by which careful
observation helps guard against errors of speculation. All good experiments begin with an hypothesis,
defined by the American Heritage Dictionary of the English Language as:

An assertion subject to verification or proof, as (a) A proposition stated as a basis for
argument or reasoning. (b) A premise from which a conclusion is drawn. (c) A conjecture
that accounts, within a theory or ideational framework, for a set of facts and that can
be used as a basis for further investigation.

Stated plainly, an hypothesis is an educated guess about cause and effect. The correctness of this
initial guess matters little, because any well-designed experiment will reveal the truth of the matter.
In fact, incorrect hypotheses are often the most valuable because the experiments they engender
lead us to surprising discoveries. One of the beautiful aspects of science is that it is more focused
on the process of learning than about the status of being correct13. In order for an hypothesis to be
valid, it must be testable14, which means it must be a claim possible to refute given the right data.
Hypotheses impossible to critique are useless.

Once an hypothesis has been formulated, an experiment must be designed to test that hypothesis.
A well-designed experiment requires careful regulation of all relevant variables, both for personal
safety and for prompting the hypothesized results. If the effects of one particular variable are to
be tested, the experiment must be run multiple times with different values of (only) that particular
variable. The experiment set up with the “baseline” variable set is called the control, while the
experiment set up with different value(s) is called the test or experimental.

For some hypotheses a viable alternative to a physical experiment is a computer-simulated

experiment or even a thought experiment. Simulations performed on a computer test the hypothesis
against the physical laws encoded within the computer simulation software, and are particularly
useful for students learning new principles for which simulation software is readily available15.

13Science is more about clarifying our view of the universe through a systematic process of error detection than it is
about proving oneself to be right. Some scientists may happen to have large egos – and this may have more to do with
the ways in which large-scale scientific research is funded than anything else – but scientific method itself is devoid
of ego, and if embraced as a practical philosophy is quite an effective stimulant for humility. Within the education
system, scientific method is particularly valuable for helping students break free of the crippling fear of being wrong.
So much emphasis is placed in formal education on assessing correct retention of facts that many students are fearful
of saying or doing anything that might be perceived as a mistake, and of course making mistakes (i.e. having one’s
hypotheses disproven by experiment) is an indispensable tool for learning. Introducing science in the classroom – real

science characterized by individuals forming actual hypotheses and testing those hypotheses by experiment – helps
students become self-directed learners.

14This is the principle of falsifiability: that a scientific statement has value only insofar as it is liable to disproof
given the requisite experimental evidence. Any claim that is unfalsifiable – that is, a claim which can never be
disproven by any evidence whatsoever – could be completely wrong and we could never know it.

15A very pertinent example of this is learning how to analyze electric circuits using simulation software such as
SPICE. A typical experimental cycle would proceed as follows: (1) Find or invent a circuit to analyze; (2) Apply
your analytical knowledge to that circuit, predicting all voltages, currents, powers, etc. relevant to the concepts you
are striving to master; (3) Run a simulation on that circuit, collecting “data” from the computer when complete; (4)
Evaluate whether or not your hypotheses (i.e. predicted voltages, currents, etc.) agree with the computer-generated
results; (5) If so, your analyses are (provisionally) correct – if not, examine your analyses and the computer simulation
again to determine the source of error; (6) Repeat this process as many times as necessary until you achieve mastery.

6.1. RECOMMENDED PRACTICES 119

Thought experiments are useful for detecting inconsistencies within your own understanding of
some subject, rather than testing your understanding against physical reality.

Here are some general guidelines for conducting experiments:

• The clearer and more specific the hypothesis, the better. Vague or unfalsifiable hypotheses
are useless because they will fit any experimental results, and therefore the experiment cannot
teach you anything about the hypothesis.

• Collect as much data (i.e. information, measurements, sensory experiences) generated by an
experiment as is practical. This includes the time and date of the experiment, too!

• Never discard or modify data gathered from an experiment. If you have reason to believe the
data is unreliable, write notes to that effect, but never throw away data just because you think
it is untrustworthy. It is quite possible that even “bad” data holds useful information, and
that someone else may be able to uncover its value even if you do not.

• Prioritize quantitative data over qualitative data wherever practical. Quantitative data is more
specific than qualitative, less prone to subjective interpretation on the part of the experimenter,
and amenable to an arsenal of analytical methods (e.g. statistics).

• Guard against your own bias(es) by making your experimental results available to others. This
allows other people to scrutinize your experimental design and collected data, for the purpose
of detecting and correcting errors you may have missed. Document your experiment such that
others may independently replicate it.

• Always be looking for sources of error. No physical measurement is perfect, and so it is
impossible to achieve exact values for any variable. Quantify the amount of uncertainty (i.e.
the “tolerance” of errors) whenever possible, and be sure your hypothesis does not depend on
precision better than this!

• Always remember that scientific confirmation is provisional – no number of “successful”
experiments will prove an hypothesis true for all time, but a single experiment can disprove
it. Put into simpler terms, truth is elusive but error is within reach.

• Remember that scientific method is about learning, first and foremost. An unfortunate
consequence of scientific triumph in modern society is that science is often viewed by non-
practitioners as an unerring source of truth, when in fact science is an ongoing process of
challenging existing ideas to probe for errors and oversights. This is why it is perfectly
acceptable to have a failed hypothesis, and why the only truly failed experiment is one where
nothing was learned.

120 CHAPTER 6. PROJECTS AND EXPERIMENTS

The following is an example of a well-planned and executed experiment, in this case a physical
experiment demonstrating Ohm’s Law.

Planning Time/Date = 09:30 on 12 February 2019

HYPOTHESIS: the current through any resistor should be exactly proportional

to the voltage impressed across it.

PROCEDURE: connect a resistor rated 1 k Ohm and 1/4 Watt to a variable-voltage

DC power supply. Use an ammeter in series to measure resistor current and

a voltmeter in parallel to measure resistor voltage.

RISKS AND MITIGATION: excessive power dissipation may harm the resistor and/

or pose a burn hazard, while excessive voltage poses an electric shock hazard.

30 Volts is a safe maximum voltage for laboratory practices, and according to

Joule’s Law a 1000 Ohm resistor will dissipate 0.25 Watts at 15.81 Volts

(P = V^2 / R), so I will remain below 15 Volts just to be safe.

Experiment Time/Date = 10:15 on 12 February 2019

DATA COLLECTED:

(Voltage) (Current) (Voltage) (Current)

0.000 V = 0.000 mA 8.100 = 7.812 mA

2.700 V = 2.603 mA 10.00 V = 9.643 mA

5.400 V = 5.206 mA 14.00 V = 13.49 mA

Analysis Time/Date = 10:57 on 12 February 2019

ANALYSIS: current definitely increases with voltage, and although I expected

exactly one milliAmpere per Volt the actual current was usually less than

that. The voltage/current ratios ranged from a low of 1036.87 (at 8.1 Volts)

to a high of 1037.81 (at 14 Volts), but this represents a variance of only

-0.0365% to +0.0541% from the average, indicating a very consistent

proportionality -- results consistent with Ohm’s Law.

ERROR SOURCES: one major source of error is the resistor’s value itself. I

did not measure it, but simply assumed color bands of brown-black-red meant

exactly 1000 Ohms. Based on the data I think the true resistance is closer

to 1037 Ohms. Another possible explanation is multimeter calibration error.

However, neither explains the small positive and negative variances from the

average. This might be due to electrical noise, a good test being to repeat

the same experiment to see if the variances are the same or different. Noise

should generate slightly different results every time.

6.1. RECOMMENDED PRACTICES 121

The following is an example of a well-planned and executed virtual experiment, in this case
demonstrating Ohm’s Law using a computer (SPICE) simulation.

Planning Time/Date = 12:32 on 14 February 2019

HYPOTHESIS: for any given resistor, the current through that resistor should be

exactly proportional to the voltage impressed across it.

PROCEDURE: write a SPICE netlist with a single DC voltage source and single

1000 Ohm resistor, then use NGSPICE version 26 to perform a "sweep" analysis

from 0 Volts to 25 Volts in 5 Volt increments.

* SPICE circuit

v1 1 0 dc

r1 1 0 1000

.dc v1 0 25 5

.print dc v(1) i(v1)

.end

RISKS AND MITIGATION: none.

DATA COLLECTED:

DC transfer characteristic Thu Feb 14 13:05:08 2019

Index v-sweep v(1) v1#branch

0 0.000000e+00 0.000000e+00 0.000000e+00

1 5.000000e+00 5.000000e+00 -5.00000e-03

2 1.000000e+01 1.000000e+01 -1.00000e-02

3 1.500000e+01 1.500000e+01 -1.50000e-02

4 2.000000e+01 2.000000e+01 -2.00000e-02

5 2.500000e+01 2.500000e+01 -2.50000e-02

Analysis Time/Date = 13:06 on 14 February 2019

ANALYSIS: perfect agreement between data and hypothesis -- current is precisely

1/1000 of the applied voltage for all values. Anything other than perfect

agreement would have probably meant my netlist was incorrect. The negative

current values surprised me, but it seems this is just how SPICE interprets

normal current through a DC voltage source.

ERROR SOURCES: none.

122 CHAPTER 6. PROJECTS AND EXPERIMENTS

As gratuitous as it may seem to perform experiments on a physical law as well-established as
Ohm’s Law, even the examples listed previously demonstrate opportunity for real learning. In
the physical experiment example, the student should identify and explain why their data does not
perfectly agree with the hypothesis, and this leads them naturally to consider sources of error. In
the computer-simulated experiment, the student is struck by SPICE’s convention of denoting regular
current through a DC voltage source as being negative in sign, and this is also useful knowledge for
future simulations. Scientific experiments are most interesting when things do not go as planned!

Aside from verifying well-established physical laws, simple experiments are extremely useful as
educational tools for a wide range of purposes, including:

• Component familiarization (e.g. Which terminals of this switch connect to the NO versus NC

contacts?)

• System testing (e.g. How heavy of a load can my AC-DC power supply source before the

semiconductor components reach their thermal limits?)

• Learning programming languages (e.g. Let’s try to set up an “up” counter function in this

PLC!)

Above all, the priority here is to inculcate the habit of hypothesizing, running experiments, and
analyzing the results. This experimental cycle not only serves as an excellent method for self-directed
learning, but it also works exceptionally well for troubleshooting faults in complex systems, and for
these reasons should be a part of every technician’s and every engineer’s education.

6.1.5 Constructing projects

Designing, constructing, and testing projects is a very effective means of practical education. Within
a formal educational setting, projects are generally chosen (or at least vetted) by an instructor
to ensure they may be reasonably completed within the allotted time of a course or program of
study, and that they sufficiently challenge the student to learn certain important principles. In a
self-directed environment, projects are just as useful as a learning tool but there is some risk of
unwittingly choosing a project beyond one’s abilities, which can lead to frustration.

Here are some general guidelines for managing projects:

• Define your goal(s) before beginning a project: what do you wish to achieve in building it?
What, exactly, should the completed project do?

• Analyze your project prior to construction. Document it in appropriate forms (e.g. schematic
diagrams), predict its functionality, anticipate all associated risks. In other words, plan ahead.

• Set a reasonable budget for your project, and stay within it.

• Identify any deadlines, and set reasonable goals to meet those deadlines.

• Beware of scope creep: the tendency to modify the project’s goals before it is complete.

• Document your progress! An easy way to do this is to use photography or videography: take
photos and/or videos of your project as it progresses. Document failures as well as successes,
because both are equally valuable from the perspective of learning.

6.2. EXPERIMENT: (FIRST EXPERIMENT) 123

6.2 Experiment: (first experiment)

Conduct an experiment to . . .

EXPERIMENT CHECKLIST:

• Prior to experimentation:
√

Write an hypothesis (i.e. a detailed description of what you expect will happen)
unambiguous enough that it could be disproven given the right data.

√
Write a procedure to test the hypothesis, complete with adequate controls and

documentation (e.g. schematic diagrams, programming code).
√

Identify any risks (e.g. shock hazard, component damage) and write a mitigation
plan based on best practices and component ratings.

• During experimentation:
√

Safe practices followed at all times (e.g. no contact with energized circuit).
√

Correct equipment usage according to manufacturer’s recommendations.
√

All data collected, ideally quantitative with full precision (i.e. no rounding).

• After each experimental run:
√

If the results fail to match the hypothesis, identify the error(s), correct the hypothesis
and/or revise the procedure, and re-run the experiment.

√
Identify any uncontrolled sources of error in the experiment.

• After all experimental re-runs:
√

Save all data for future reference.√
Write an analysis of experimental results and lessons learned.

Challenges

• Science is an iterative process, and for this reason is never complete. Following the results of
your experiment, what would you propose for your next hypothesis and next experimental
procedure? Hint: if your experiment produced any unexpected results, exploring those
unexpected results is often a very good basis for the next experiment!

• ???.

• ???.

124 CHAPTER 6. PROJECTS AND EXPERIMENTS

6.3 Project: (first project)

This is a description of the project!

PROJECT CHECKLIST:

• Prior to construction:
√

Prototype diagram(s) and description of project scope.
√

Risk assessment/mitigation plan.
√

Timeline and action plan.

• During construction:
√

Safe work habits (e.g. no contact made with energized circuit at any time).
√

Correct equipment usage according to manufacturer’s recommendations.
√

Timeline and action plan amended as necessary.
√

Maintain the originally-planned project scope (i.e. avoid adding features!).

• After completion:
√

All functions tested against original plan.
√

Full, accurate, and appropriate documentation of all project details.
√

Complete bill of materials.
√

Written summary of lessons learned.

Challenges

• ???.

• ???.

• ???.

Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical

125

126 APPENDIX A. PROBLEM-SOLVING STRATEGIES

principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.

Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.

127

128 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).

129

from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.

130 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn

to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.

131

Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize

and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.

132 APPENDIX B. INSTRUCTIONAL PHILOSOPHY

Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

133

134 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.

135

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.

136 APPENDIX C. TOOLS USED

gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.

Appendix D

Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or

137

138 APPENDIX D. CREATIVE COMMONS LICENSE

limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.

139

For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;

140 APPENDIX D. CREATIVE COMMONS LICENSE

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,

141

whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully

142 APPENDIX D. CREATIVE COMMONS LICENSE

be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.

143

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.

144 APPENDIX D. CREATIVE COMMONS LICENSE

Appendix E

References

145

146 APPENDIX E. REFERENCES

Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

18 February 2025 – formatting and other minor edits made to the Tutorial chapter. Also added
a new section to the Tutorial introducing readers to common process-control terminology.

2-3 February 2025 – document first created.

147

Index

Action, controller, 16
Adding quantities to a qualitative problem, 126
Algorithm, 14
Annotating diagrams, 125
Assignment, computer programming, 86
Automatic mode, 6

Biological oxygen demand, 14
BOD, 14
Boolean variable, 86
Branching, computer programming, 88
Breadboard, solderless, 114, 115
Breadboard, traditional, 117

C++, 76
Cardio-Pulmonary Resuscitation, 112
Checking for exceptions, 126
Checking your work, 126
Code, computer, 133
Compiler, C++, 76
Computer programming, 75
Control algorithm, 14
Controller, 6
Controller action, direct vs. reverse, 16
Controller gain, 17
CPR, 112

Dalziel, Charles, 112
Deadband, integral, 34
Deadband, reset, 34
Derivative control, 35
Derivative control action, 39
Differential, 35
Dimensional analysis, 125
DIN rail, 115
DIP, 114
Direct-acting controller, 16

Droop, 26

Edwards, Tim, 134
Electric shock, 112
Electrically common points, 113
Enclosure, electrical, 117
Equipotential points, 113, 115
Error, controller, 16, 31
Experiment, 118
Experimental guidelines, 119

Feedback control system, 12
Final Control Element, 6
Floating control action, 31, 38
Floating-point variable, 86

Gain, controller, 17
Graph values to solve a problem, 126
Greenleaf, Cynthia, 91

Heat exchanger, 8
How to teach with these modules, 128
Hwang, Andrew D., 135

IC, 114
Ideal PID equation, 41, 51, 53
Identify given data, 125
Identify relevant principles, 125
Instructions for projects and experiments, 129
Integer variable, 86
Integral control action, 31, 38
Integral deadband, 34
Integral windup, 34
Interacting PID equation, 42, 52
Intermediate results, 125
Interpreter, Python, 80
Inverted instruction, 128
ISA PID equation, 41, 53

148

INDEX 149

Java, 77

Knuth, Donald, 134

Lamport, Leslie, 134
Limiting cases, 126
Load, 6, 13, 24
Loop, 7
Loop, computer programming, 85

Manipulated variable, 6, 10
Manual mode, 6
Metacognition, 96
Moolenaar, Bram, 133
Murphy, Lynn, 91
MV, 6

Negative feedback, 47

Open-source, 133

Parallel PID equation, 40
Position algorithm, defined, 54
Potential distribution, 115
Pre-act control action, 35, 39
Primary sensing element, 6
Problem-solving technique: thought experiment,

25, 57
Problem-solving: annotate diagrams, 125
Problem-solving: check for exceptions, 126
Problem-solving: checking work, 126
Problem-solving: dimensional analysis, 125
Problem-solving: graph values, 126
Problem-solving: identify given data, 125
Problem-solving: identify relevant principles, 125
Problem-solving: interpret intermediate results,

125
Problem-solving: limiting cases, 126
Problem-solving: qualitative to quantitative, 126
Problem-solving: quantitative to qualitative, 126
Problem-solving: reductio ad absurdum, 126
Problem-solving: simplify the system, 125
Problem-solving: thought experiment, 119, 125
Problem-solving: track units of measurement,

125
Problem-solving: visually represent the system,

125

Problem-solving: work in reverse, 126
Process, 6, 8
Process variable, 6, 9
Programming, computer, 75
Project management guidelines, 122
Proportional band, 22, 37
Proportional control action, 37
Proportional-only offset, 26, 32
Pseudocode, 85
Python, 80

Qualitatively approaching a quantitative
problem, 126

Rate control, 35
Rate control action, 35, 39
Reading Apprenticeship, 91
Recursion, computer programming, 90
Reductio ad absurdum, 126–128
Reset control action, 31, 38
Reset deadband, 34
Reset windup, 34
Reverse-acting controller, 16

Safety, electrical, 112
Schoenbach, Ruth, 91
Scientific method, 96, 118
Scope creep, 122
Series PID equation, 42, 52
Setpoint, 6, 11
Shunt resistor, 114
Simplifying a system, 125
Socrates, 127
Socratic dialogue, 128
Solderless breadboard, 114, 115
Source code, 76
SPICE, 91, 119
SPICE netlist, 116
Stallman, Richard, 133
Subpanel, 117
Surface mount, 115

Terminal block, 113–117
Test, computer programming, 87
Thought experiment, 25, 57, 119, 125
Time constant, differentiator circuit, 47

150 INDEX

Time constant, integrator circuit, 48
Torvalds, Linus, 133
Transmitter, 6

Units of measurement, 125

Velocity algorithm, defined, 54
Visualizing a system, 125

Wastewater disinfection, 14
Whitespace, C++, 76, 77
Whitespace, Python, 83
Wild variable, 13
Wind-up, controller, 34
Wiring sequence, 116
Work in reverse to solve a problem, 126
WYSIWYG, 133, 134

	Introduction
	Tutorial
	Process control terms and definitions
	Basic feedback control principles
	Proportional-only control
	Proportional-only offset
	Integral (reset) control
	Derivative (rate) control
	Summary of PID control terms
	Proportional control mode (P)
	Integral control mode (I)
	Derivative control mode (D)

	Different PID equations
	Parallel PID equation
	Ideal PID equation
	Series PID equation

	Analog electronic PID controllers
	Proportional control action
	Derivative and integral control actions
	Full-PID circuit design

	Digital PID algorithms
	Position versus velocity algorithms

	Derivations and Technical References
	P, I, and D responses graphed
	Responses to a single step-change
	Responses to a momentary step-and-return
	Responses to two momentary steps-and-returns
	Responses to a ramp-and-hold
	Responses to an up-and-down ramp
	Responses to a multi-slope ramp
	Responses to a multiple ramps and steps
	Responses to a sine wavelet
	Note to students regarding quantitative graphing

	Programming References
	Programming in C++
	Programming in Python
	Introduction to pseudocode
	Program loops
	Assigning values
	Testing values (conditional statements)
	Branching and functions

	Questions
	Conceptual reasoning
	Reading outline and reflections
	Foundational concepts
	First conceptual question
	Second conceptual question
	Applying foundational concepts to ???
	Explaining the meaning of calculations
	Explaining the meaning of code

	Quantitative reasoning
	Miscellaneous physical constants
	Introduction to spreadsheets
	First quantitative problem
	Second quantitative problem
	??? simulation program

	Diagnostic reasoning
	First diagnostic scenario
	Second diagnostic scenario

	Projects and Experiments
	Recommended practices
	Safety first!
	Other helpful tips
	Terminal blocks for circuit construction
	Conducting experiments
	Constructing projects

	Experiment: (first experiment)
	Project: (first project)

	Problem-Solving Strategies
	Instructional philosophy
	Tools used
	Creative Commons License
	References
	Version history
	Index

