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Chapter 1

Introduction

1.1 Recommendations for students

A programmable logic controller or PLC is a specialized form of industrial computer, designed to
be programmed by the end user for many different types of discrete and continuous process control
applications. The word “programmable” in its name reveals just why PLCs are so useful: the end-
user is able to program, or instruct, the PLC to execute virtually any control function imaginable.

PLCs were introduced to industry as electronic replacements for electromechanical relay controls.
In applications where relays typically control the starting and stopping of electric motors and other
discrete output devices, the reliability of an electronic PLC meant fewer system failures and longer
operating life. The re-programmability of a PLC also meant changes could be implemented to the
control system strategy must easier than with relay circuits, where re-wiring was the only way to
alter the system’s function. Additionally, the computer-based nature of a PLC meant that process
control data could now be communicated by the PLC over networks, allowing process conditions to
be monitored in distant locations, and by multiple operator stations.

The legacy of PLCs as relay-replacements is probably most evident in their traditional
programming language: a graphical convention known as a Ladder Diagram. Ladder Diagram PLC
programs resemble ladder-style electrical schematics, where vertical power “rails” convey control
power to a set of parallel “rung” circuits containing switch contacts and relay coils. A human
being programming a PLC literally draws the diagram on the screen, using relay-contact symbols
to represent instructions to read data bits in the PLC’s memory, and relay-coil symbols to represent
instructions writing data bits to the PLC’s memory. When executing, these graphical elements
become colored when “conductive” to virtual electricity, thereby indicating their status to any human
observer of the program. This style of programming was developed to make it easier for industrial
electricians to adapt to the new technology of PLCs. While Ladder Diagram programming definitely
has limitations compared to other computer programming languages, it is relatively easy to learn
and diagnose, which is why it remains popular as a PL.C programming language today.

While ladder diagram programming was designed to be simple by virtue of its resemblance to
relay ladder-logic schematic diagrams, this very same resemblance often creates problems for students
encountering it for the very first time. A very common misconception is to think that the contact and
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CHAPTER 1. INTRODUCTION

coil symbols shown on the editing screen of the PLC programming software are somehow identical
or at least directly representative of real-world contacts and coils wired to the PLC. This is not true.
Contacts and coils shown on the screen of PLC programming software applications are instructions
for the PLC to follow, and their logical states depend both on how they are drawn in the program
and upon their related bit states in the PLC’s memory.

The relationship between a discrete sensor (e.g. switch) and the colored state of a ladder diagram
element inside of a PLC follows a step-by-step chain of causation:

1.
2.

Physical closure of the discrete switch causes electricity to flow through the switch’s contact.
This electrical current flows through the PLC input terminal wired to that switch.
This energization causes a corresponding bit in the PLC’s memory to become “high” (1).

Any Ladder Diagram “contact” instruction associated with that bit will become “actuated”. If
the contact instruction is normally-open, the “1” bit state will “close” the contact instruction
and cause it to be colored. If the contact instruction is normally-closed, the “1” bit state will
“open” is and cause it to be un-colored.

If all elements in a rung of the Ladder Diagram program are colored, the final instruction (at
the far right end of the rung) will become activated and will cause it to fulfill its function.

Here are some good questions to ask of yourself while studying this subject:

How might an experiment be designed and conducted to test whether a switch is normally-open
or normally-closed?

How might an experiment be designed and conducted to test the “scan time” of a PLC
program?

What are some practical applications of PLCs?

What is the “normal” status of a switch?

How does a “two-out-of-three” alarm or shutdown system function?
What is a “nuisance trip”?

Are there applications where a hard-wired relay control system might actually be better than
a system using a PLC?

What purpose is served by the color highlighting feature of PLC program editing software?
What is an HMI panel, and where would one be useful?

How might you alter one of the example analyses shown in the text, and then determine the
behavior of that altered circuit?

Devise your own question based on the text, suitable for posing to someone encountering this
subject for the first time
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1.2 Challenging concepts related to programmable logic
controllers (PLCs)

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

e Normal status of a switch — to say that a switch is “normally open” or “normally closed”
refers to its electrical state when at rest, and not necessarily the state you will typically find
the switch in. The root of the confusion here is the word normal, which most people take to
mean “typical” or “ordinary”. In the case of switches, though, it refers to the zero-stimulation
status of the switch as it has been manufactured. In the case of PLCs it refers to the status
of a “virtual switch” when its controlling bit is 0.

e Sourcing versus Sinking output currents — a common misconception is that since PLC
outputs are called “outputs” it must mean that current only ever exits those terminals. This is
untrue. All that “output” actually signifies is the fact that the PLC is outputting information
consisting of voltage values measured between that terminal and ground. Sometimes the
assertion of an “on” state requires that the PLC output channel actually draws current in
through its “output” terminal!
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

e Outcome — Demonstrate effective technical reading and writing

Assessment — Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment — Interpret elements of a real PLC ladder-logic program such as those shown
in the Tutorial chapter, including identification of virtual coils, virtual contacts (normally-open
and normally-closed), color-highlighting, and associated statuses of those elements based on
color highlighting.

e Outcome — Apply the concept of “normal” contact status to real and virtual contacts in PLC
systems

Assessment — Predict the status of every PLC program virtual contact and PLC program
coil in a ladder-style diagram for various input switch state combinations. Good starting points
include the Case Tutorial section “Example: NAND function in a PLC”.

e Outcome — Sketch wire connections necessary to interface a PLC to a controlled process

Assessment — Sketch wire placement in a pictorial diagram showing how switches would
connect to the input channels of a PLC and how loads would connect to the output channels
of the same PLC; e.g. pose problems in the form of the “Sketching wires to PLC discrete I/0”
Conceptual Reasoning question.

e Outcome — Independent research

Assessment — Locate PLC I/O module datasheets and properly interpret some of the
information contained in those documents including number of I/O channels, voltage and
current limitations, sourcing versus sinking capability, etc.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module — can you explain why the circuits behave as they do?
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2.1 Example: NAND function in a PLC

Programmable Logic Controller (PLC)

Switch A unpressed
Switch B unpressed

T -
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2.1. EXAMPLE: NAND FUNCTION IN A PLC
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2.2 Example: simple PLC comparisons

The following illustration shows wiring and a sample relay ladder logic (RLL) program for an Allen-
Bradley MicroLogix 1000 PLC:

Toggle switch
%Avéguom%%g%%@@@@

gooooo Allen-Bradley

3 Power

3 Run

O Fault MicroLogix

[ Force 1000
oooo

v — 1 ]
r U | VAC VAC VAC VAC
u 2N L 58 00 ypgé O ypg 02 ypg OB

Q000000020002

LED (with dropping resistor)
2 t«:: -

Ladder-Diagram program written to PLC:

1:0 1:0 o0
| /1 | | ()
/| | N
0 1 0

/END>

Note how Allen-Bradley I/0 is labeled in the program: input bits designated by the letter I and
output bits designated by the letter 0.

In order to energize the LED, the switch connected to input terminal 0 must be off (open) and
the switch connected to input terminal 1 must be on (closed).
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The following illustration shows wiring and a sample relay ladder logic (RLL) program for a
Siemens Simatic S7-200 PLC:

+
24VDC I‘ L

LED (with dropping resistor)

SIEMENS @@@@@@@@@@@@@@P

s usiosaoni

Toggle switch

=S

2 @
swaric [ v o

cPu 224xP

@OOOOoOoOoOQoo DeIDCIDC

3 sFpiAG 01234567 0.1

oO0O0000O00O0an0O0O0O0O00
N o

Q0P PPRPPPPDPQ@

Ladder-Diagram program written to PLC:

10.0 Q.0

-

Note how Siemens I/O is labeled in the program: input bits designated by the letter I and output
bits designated by the letter Q.

In order to energize the LED, either the switch connected to input terminal 0.0 must be on
(closed) or the switch connected to input terminal 0.1 must be off (open).
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The following illustration shows wiring and a sample relay ladder logic (RLL) program for a

Koyo CLICK PLC:

CLICK C0-02DD1-D

Koyo

PWR
= RUN \\
RUN [
ERR [J STOP
PORT 1
™ 3
rRx1 I
™ 3
Rx2
PORT 2
PORT 3 RS-485
@+
™| g |-
R3O (o e

c1

LED (with dropping resistor)

R,

|®®®®®®®®®®®®®®®®®®®®

Toggle switch

Y

9
I
<

oL’_@J

24VDC

+

Ladder-Diagram program written to PLC:

Y1l

/|
/1

()

(o)

Note how Koyo I/0 is labeled in the program: input bits designated by the letter X and output

bits designated by the letter Y.

In order to energize the LED, at least one of the following conditions must be met:

e X1 switch turned on (closed) and X2 switch turned off (open)

e X2 switch turned on (closed) and X1 switch turned off (open)

Either the switch connected to input terminal 0.0 must be on (closed) or the switch connected
to input terminal 0.1 must be off (open).
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Tutorial

3.1 Review of basic PLC functionality

A Programmable Logic Controller, or PLC, is a general-purpose industrial computer designed to be
easily programmed by end-user maintenance and engineering personnel for specific control functions.
PLCs have input and output channels (often hosted on removable “I/O cards”) intended to connect
to field sensor and control devices such as proximity switches, pushbuttons, solenoids, lamps, sirens,
etc. The user-written program instructs the PLC how to energize its outputs in accordance with
input conditions.

Monolithic PLC Modular ("rack-based") PLC

@ox1 ?1 8 Y10@ zl?r\;ﬁ;'

@ox2 Y20Q@

@ox3 Y30@

@ox4 PLC Y40@

@oX5 Y50@

@ox6 Y60@ %t; .

@Comon  “memm’ Source @ @ond

All /O is fixed in one PLC unit

Individual cards may be
removed and replaced

PLCs were originally invented as a replacement for hard-wired relay control systems, and a
popular PLC programming language called Ladder Diagram was invented to allow personnel familiar
with relay ladder logic diagrams to write PLC programs performing the same discrete (on/off)
functions as control relays. With a PLC, the discrete functionality for any system could be altered
merely by editing the Ladder Diagram program rather than by re-wiring connections between
physical relays.

13
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The following diagram shows a PLC separated into three sections: (1) a discrete input card, (2)
the program space in the processor’s memory, and (3) a discrete output card:

L, Discrete input card L,
4 -
Trip = 110° < N1
Trip = 30 kPa —? 7 N2
-\Q'\ 7 @
Ladder Diagram PLC program
Discrete output card
blls ‘*R_ @ Y
A
—H—0 1L
QUT2 2 /\/
QUT3
@ —@ S
5

Inputs INO through IN3 are connected to a pushbutton switch, temperature switch, pressure
switch, and limit switch, respectively. Outputs 0UTO through OUT3 connect to an indicator lamp,
electric heater, solenoid coil, and electromechanical relay coil, respectively. The input card triggers'
bits in the PLC’s memory to switch from 0 to 1 when each respective input is electrically energized,
and another set of bits in the PLC’s memory control TRIACs inside the output card to turn on when
1 and off when 0. However, with no program installed in the processor, this PLC will not actually
do anything. As the switch contacts open and close, the only thing the PLC will do is represent
their discrete states by the bits INO through IN3 (0 = de-energized and 1 = energized).

1Not shown in this simplified diagram are the optotransistors coupled to the LEDs inside the input card, translating
each LED’s state to a discrete logic level at the transistor to be interpreted by the PLC’s digital processor. Likewise,
another set of LEDs driven by the processor’s outputs couple to the opto-TRIACs in the output card. Optical isolation
of all I/O points is standard design practice for industrial PLCs.
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This next diagram shows the same PLC, but this time with a very simple Ladder Diagram
program running in the processor, and with stimuli applied to some of the switches:

L, Discrete input card L,

Pressed o
-

Trip = 110°

? Temp = 140°
Trip = 30 kPa
E\ Press. = 23 kPa
\Q No contact

I NL Ladder Diagram PLC program

Discrete output card

QUTO W , =i X

z

}

Y
AA

"\s

Inputs INO and IN1 are energized by their closed switches (pushbutton and temperature),
triggering those bits to “1” states in the PLC’s memory. The Ladder Diagram program consists
of two virtual “contact” instructions and two virtual “coil” instructions, the contact instructions
controlled by input bits IN1 and IN2 and the coil instructions controlling output bits 0UT3 and 0OUTO.
Contact instruction IN1 “connects” (virtually) to coil instruction OUT3, contact IN2 connecting to
coil OUTO similarly. Colored highlighting shows the “virtual electricity” status of these instructions,
as though they were relays being energized with real electricity. Contact instruction IN1 is colored
because it is a “normally-open” that is being stimulated into its closed state by its “1” bit status.
Contact instruction IN2 is also normally-open, but since its bit is “0” it remains uncolored, and
so is the coil it’s connected to. The end-result of this program is that the relay’s state follows the
temperature switch, and the lamp’s state follows the pressure switch.

N

OUTL =l X

J

OUT2 » , = X

J

T3 3 =1
@ -5

J

=
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Things get more complex when we begin adding normally-closed contact instructions to the

program for the PLC to follow:

Ly
Unpressed

Discrete inpu

program. Consider this next diagram, with updated stimuli and an expanded Ladder Diagram

t card L,

Trip = 110°

? Temp = 140°
Trip = 30 kPa

E\ Press. = 23 kPa

'\Q No contact

I NL Ladder Diagram PLC program

Discrete output card

QUTO =

1

QUTL =

1

QUT2 =

1

QUT3 =

b ¢ [x [x

"\s

J

o

The first two rungs of the program are unchanged, as are the temperature and pressure switch
statuses, and so outputs 0UT3 and OUTO do precisely what they did before. A new rung has been
added to the program, with contact instructions linked to bits IN2 and INO, and the pushbutton
switch is no longer being pressed. Both bits INO and IN2 are currently “0” and so their respective
contact instructions are both in their “normal” (i.e. resting) states. The normally-closed contact
instruction IN2 is colored because it is “closed” but the OUT1 coil in that rung is uncolored because
the normally-open contact instruction INO is uncolored and therefore blocks virtual electricity from

reaching that coil.

Practically any logic function may be made simply by drawing virtual contact and coil

instructions controlling the flow of “virtual electricity”.

We co

uld describe the above program

in Boolean terms: OUTO0 = IN2; OUT1 = (IN2)(INO) ; OUT2=0; OUT3 = IN1.
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This next diagram shows the same PLC with a completely re-written program. The program
is now written so that the solenoid coil will energize if the limit switch makes contact, or if the
temperature is below 110° and the pushbutton is pressed, or if the pressure rises above 30 kPa and
the pushbutton is unpressed:

L, Discrete input card L,

Unpressed -
X

Trip = 110°

? Temp = 140°
Trip = 30 kPa
E\ Press. = 23 kPa
'\Q No contact

N3 Ladder Diagram PLC program

Discrete output card

QUTO |, =

1

OUTL =l

1

QUT2 =

2%

QUT3 =

1

RES

B

All switch stimuli are the same as before, resulting in a “0” state for bit 0UT2 and a
correspondingly de-energized solenoid. It should be clear to see how this program implements the
intended AND and OR functionality by means of series-connected and parallel-connected contact
instructions, respectively, with inversion (i.e. the NOT function) implemented by normally-closed
rather than normally-open contact instructions.
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The logical chain of causality from input to output on a PLC is very important to understand,
and will be represented here by a sequence of numbered statements:

1.
2.

5.
6.

Energization of input channels controls input bit states (no current = 0 and current = 1)

Bit states control the resting/actuated status of contact instructions (0 = resting and 1 =
actuated)

The resting/actuated status of a contact instruction, combined with its “normal” type
determines virtual conductivity (open = uncolored and closed = colored)

Continuous color on a rung activates that rung’s coil instruction
The coil’s status controls output bits (uncolored = 0 and colored = 1)

Output bits control energization of output channels (0 = off and 1 = on)

All PLCs follow this chain of logic precisely, and this same causality must be mentally tracked in
order to successfully analyze a Ladder Diagram program in a PLC. The most confusing part of this
for new students seems to be the relationship of contact instructions to real-world switch inputs.
Many students have an unfortunate tendency to want to directly? associate real-world switch status
with Ladder Diagram color, and/or to believe that the “normal” status of a Ladder Diagram contact

instruction must always match the

“normal” status of the real-world switch. These and other such

misconceptions are rooted in the same error, namely not deliberately following the chain of causation
from beginning to end (i.e. input energization — input bit state — contact instruction actuation —
color based on normal type and bit state — coil color — output bit state — output energization).

2For a normally-open contact instruction, this association is direct. However, for a normally-closed contact
instruction it is inverted!
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Being fully-fledged digital computers in their own right, PLCs are not limited to executing simple
Boolean functions represented by “virtual relay” contacts and coils. Other digital functions include
counters and timers. An example of a counter program is shown here:

L, Discrete input card L,
L o
Trip = 110° 7 NL
Trip = 30 kPa —? 7 N2
—\Q'\ 7 @
\
N3 Ladder Diagram PLC program ouTL
I I Up CTUD [ —
Count
I NO up/down
I I Down
Preset =
I N2 14
I / I Reset

ouTL VH‘_@ |'|_|'|_|'|_|
our2 VH‘_@ /\/
""" iy
—

The CTUD instruction is an up/down counter receiving three discrete inputs and generating one
discrete output. The program is written so that this counter instruction’s count value will increment
(i.e. count up) once for every closure of the limit switch, decrement (i.e. count down) once for every
closure of the pushbutton switch, and reset to zero if the pressure falls below 30 kPa. The output
signal (“wired” to coil OUT1) energizes the heating element if this count value reaches or exceeds the
“preset” value of 14.
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Next we see an example PLC program showcasing two timing instructions, an on-delay timer
and an off-delay timer:

L, Discrete input card L,
1 1o
Trip = 110° 7 NL
Trip = 30 kPa } 7 N2
‘Q'\ 4 -
\
I N2 Ladder Diagram PLC program ouT1
|| EN TN
On-delay
Preset= 5 sec
I N1 QuTo
|| EN  ToF
Off-delay
Preset= 9 sec
Discrete output card
e @ Y
ANA
—H—0 1L
QUT2 g /\/
QUT3
@ Q@ S
—_— _: —

When the pressure exceeds 30 kPa and closes the pressure switch connected to input IN2, the TON
timer instruction begins counting. After 5 seconds of continuous activation, output OUT1 activates to
energize the heating element. When the pressure falls below 30 kPa, the heating element immediately
de-energizes.

When the temperature exceeds 110° and closes the temperature switch connected to input IN1,
the TOF timer instruction immediately activates its output (OUTO) to energize the indicator lamp.
When the temperature cools down below 110°, the off-delay timer begins timing and does not de-
energize the indicator lamp until 9 seconds after the temperature switch has opened.



3.2. TYPES AND SIZES OF PLCS 21

Both the utility and versatility of programmable logic controllers should be evident in this brief
tutorial. These are digital computers, fully programmable by the end-user in a simple instructional
language, designed to implement discrete logic functions, counting functions, timing functions, and
a whole host of other useful operations for the purpose of controlling electrically-based systems.
Originally designed to replace hard-wired electromechanical relay control circuits, PLCs are designed
to mimic the functionality of relays while providing superior reliability and reconfigurability.

PLCs are not limited to contact, coil, counter, and timer instructions, either. A typical PLC
literally offers dozens of instruction types in its set, which may be applied and combined in
nearly limitless fashion. Other types of PLC programming instructions include latch instructions
(offering bistable “set” and “reset” capability), one-shot instructions (outputting an active state
for exactly one “scan” of the PLC’s program every time the input transitions from inactive to
active), sequencers (controlling a pre-determined sequence of discrete states based on a count
value), arithmetic instructions (e.g. addition, subtraction, multiplication, division, etc.), comparison
instructions (comparing two numerical values and generating a discrete signal indicating equality,
inequality, etc.), data communication instructions (sending and receiving digital messages over a
communications network), and clock/calendar functions (tracking time and date).

One advantage of PLCs over relay circuitry which may not be evident at first inspection is the
fact that the number of virtual “contacts” and “coils” and other instructions is limited only by
how much memory the PLC’s processor has. The example programs shown on the previous pages
were extremely short, but a real PLC program may be dozens of pages long! Electromechanical
control and timing relays are, of course, limited in the number of physical switch contacts each one
offers, which in turn limits how elaborate the control system may be. For the sake of illustration,
a PLC with a single discrete input (say, INO wired to a pushbutton switch) may contain a program
with hundreds of virtual contacts labeled INO triggering all kinds of logical, counting, and timing
functions.

3.2 Types and sizes of PLCs

Large PLC systems consist of a rack into which circuit “cards” are plugged. These cards include
processors, input and output (I/O) points, communications ports, and other functions necessary
to the operation of a complete PLC system. Such “modular” PLCs may be configured differently
according to the specific needs of the application. Individual card failures are also easier to repair
in a modular system, since only the failed card need be replaced, not all the cards or the whole card
rack.

Small PLC systems consist of a monolithic “brick” containing all processor, I/0, and
communication functions. These PLCs are typically far less expensive than their modular cousins,
but are also more limited in I/O capability and must be replaced as a whole in the event of failure.

The following photographs show several examples of real PLC systems, some modular and
some monolithic. These selections are not comprehensive by any means, as there are many more
manufacturers and models of PLC than those I have photographed. They do, however, represent
some of the more common brands and models in current (2019) industrial use.
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The first photograph is of a Siemens (Texas Instruments) 505 series PLC, installed in a control
panel of a municipal wastewater treatment plant. This is an example of a modular PLC, with
individual processor, I/O, and communication cards plugged into a rack. Three racks appear in this
photograph (two completely filled with cards, and the third only partially filled):

The power supply and processor card for each rack is located on the left-hand end, with I/0O
cards plugged into slots in the rest of the rack. Input devices such as switches and sensors connect by
wire to terminals on input cards, while output devices such as lamps, solenoids, and motor contactor
coils connect by wire to terminals on output cards.

One of the benefits of modular PLC construction is that I/O cards may be changed out as
desired, altering the I/O configuration of the PLC as needed. If, for example, the PLC needs to be
configured to monitor a greater number of sensors, more input cards may be plugged into the rack
and subsequently wired to those sensors. Or, if the type of sensor needs to be changed — perhaps
from a 24 volt DC sensor to one operating on 120 Volts AC — a different type of input card may be
substituted to match the new sensor(s).

In this particular application, the PLC is used to sequence the operation of self-cleaning “trash
racks” used to screen large debris such as rags, sticks, and other non-degradable items from municipal
wastewater prior to treatment. These trash racks are actuated by electric motors, the captured debris
scraped off and transported to a solid waste handling system. The motion of the trash racks, the
sensing of wastewater levels and pressures, and the monitoring of any human-operated override
controls are all managed by these PLCs. The programming of these PLCs involves timers, counters,
sequencers, and other functions to properly manage the continuous operation of the trash racks.
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The next photograph shows an Allen-Bradley (Rockwell) PLC-5 system, used to monitor and
control the operation of a large natural gas compressor. Two racks appear in this first photograph,
with different types of I/O cards plugged into each rack:
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Like the Siemens 505 PLC seen previously, this Allen-Bradley PLC-5 system is fully modular
and configurable. The types and locations of the I/O cards inserted into the rack may be altered
by appropriately skilled technicians to suit any desired application. The programming of the PLC’s
processor card may also be altered if a change in the control strategy is desired for any reason.

In this particular application, the PLC is tasked with monitoring certain variables on the gas
compressor unit, and taking corrective action if needed to keep the machine productive and safe.
The automatic control afforded by the PLC ensures safe and efficient start-ups, shut-downs, and
handling of emergency events. The networking and data-logging capability of the PLC ensures that
critical data on the compressor unit may be viewed by the appropriate personnel. For this particular
compressor station, the data gets communicated from Washington state where the compressor is
located all the way to Utah state where the main operations center is located. Human operators
in Utah are able to monitor the compressor’s operating conditions and issue commands to the
compressor over digital networks.

Both the Siemens (formerly Texas Instruments) 505 and Allen-Bradley (Rockwell) PLC-5 systems
are considered “legacy” PLC systems by modern standards, the two systems in the previous
photographs being over 20 years old each. It is not uncommon to find “obsolete” PLCs still in
operation, though. Given their extremely rugged construction and reliable design, these control
systems may continue to operate without significant trouble for decades.
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A later model of PLC manufactured by Allen-Bradley was the SLC 500 series (often verbally
referred to as the “Slick 500”), also modular in design like the older PLC-5 system, although the
racks and modules of the SLC 500 design were more compact than the PLC-5. The SLC 500 rack
shown in the next photograph has 7 “slots” for processor and I/O cards to plug in to, numbered 0
through 6 (left to right):

The first three slots of this particular SLC 500 rack (0, 1, and 2) are occupied by the processor
card, an analog input card, and a discrete input card, respectively. The slots 3 and 4 are empty
(revealing the backplane circuit board and connectors for accepting new cards). The slots 5 and 6
hold discrete output and analog output cards, respectively.

A feature visible on all cards in this system are numerous LED indicators, designed to show the
status of each card. The processor card has LED indicators for “Run” mode, “Fault” conditions,
“Force” conditions (when either input or output bits have been forced into certain states by the
human programmer for testing purposes), and communication network indicators. Each discrete
I/O card has indicator LEDs showing the on/off status of each I/O bit, and the analog card has a
single LED showing that the card is powered.
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A nine-slot SLC 500 system is shown in the next photograph, controlling a high-purity water
treatment system for a biopharmaceuticals manufacturing facility. As you can see in this photograph,
not all slots in this particular rack are occupied by I/O cards either:

Some of the inputs to this PLC include water level switches, pressure switches, water flow meters,
and conductivity meters (to measure the purity of the water, greater electrical conductivity indicating
the presence of more dissolved minerals, which is undesirable in this particular process application).
In turn, the PLC controls the starting and stopping of water pumps and the switching of water
valves to manage the water purification and storage processes.
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26
A modern PLC manufactured by Siemens appears in this next photograph, an S7-300, which is
a different design of modular PLC. Instead of individual cards plugging into a rack, this modular

PLC design uses individual modules plugging into each other on their sides to form a wider unit:
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A modern PLC manufactured by Allen-Bradley (Rockwell) is this ControlLogix 5000 system,
shown in this photograph used to control a cereal manufacturing process. The modular design of
the ControlLogix 5000 system follows the more traditional scheme of individual cards plugged into

a rack of fixed size:
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While the Siemens S7 and Rockwell ControlLogix PLC platforms represent large-scale, modular
PLC systems, there exist much smaller PLCs available for a fraction of the cost. Perhaps the least
expensive PLC on the market at this time of writing is the Koyo “CLICK” PLC series, the processor
module (with eight discrete input and six discrete output channels built in) shown in my hand (sold
for 69 US dollars in the year 2010, and with free programming software!):

This is a semi-modular PLC design, with a minimum of input/output (I/O) channels built into
the processor module, but having the capacity to accept multiple I/O modules plugged in to the
side, much like the Siemens S7-300 PLC.
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Other semi-modular PLCs expand using I/O cards that plug in to the base unit not unlike
traditional rack-based PLC systems. The Koyo DirectLogic DL06 is a good example of this type
of semi-modular PLC, the following photograph showing a model DL0O6 accepting a thermocouple
input card in one of its four available card slots:

This photograph shows the PLC base unit with 20 discrete input channels and 16 discrete output
channels, accepting an analog input card (this particular card is designed to input signals from
thermocouples to measure up to four channels of temperature).
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Some low-end PLCs are strictly monolithic, with no ability to accept additional I/O modules.
This General Electric Series One PLC (used to monitor a small-scale hydroelectric power generating
station) is an example of a purely monolithic design, having no “expansion” slots to accept I/O
cards:

A disadvantage of monolithic PLC construction is that damaged I/O cannot be independently
replaced. If an I/O channel on one of these PLCs becomes damaged, the entire PLC must be
replaced to fix the problem. In a modular system, the damaged I/O card may simply be unplugged
from the rack and replaced with a new I/O card. Another disadvantage of monolithic PLCs is the
inherently fixed nature of the I/O: the end-user cannot customize the I/O configuration to match
the application. For these reasons, monolithic PLCs are usually found on small-scale processes with
few I/O channels and limited potential for expansion.
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3.3 PLC hardware inputs and outputs (I/0)

Every programmable logic controller must have some means of receiving and interpreting signals from
real-world sensors such as switches, and encoders, and also be able to effect control over real-world
control elements such as solenoids, valves, and motors. This is generally known as input/output,
or I/0, capability. Monolithic (“brick”) PLCs have a fixed amount of I/O capability built into the
unit, while modular (“rack”) PLCs use individual circuit board “cards” to provide customized I/O
capability.

Monolithic PLC Modular (“rack-based") PLC
@ @ Power
@ox1 L1 2 Y °@ supply
@ox2 Y20@
@oXx3 Y30@
@ox4 PLC Y40Q
@ox5 Y50@
@ox6 Y60@ @u
Programeing @Lan
@ Common = Sour ce@ @cnd

All /O is fixed in one PLC unit

Individual cards may be
removed and replaced

The advantages of using replaceable 1/O cards instead of a monolithic PLC design are numerous.
First, and most obvious, is the fact that individual I/O cards may be easily replaced in the event
of failure without having to replace the entire PLC. Specific I/O cards may be chosen for custom
applications, biasing toward discrete cards for applications using many on/off inputs and outputs,
or biasing toward analog cards for applications using many 4-20 mA and similar signals. Some PLCs
even offer the feature of hot-swappable cards, meaning each card may be removed and a new one
inserted without de-energizing power to the PLC processor and rack. Please note that one should
not assume any system has hot-swappable cards, because if you attempt to change out a card “live”
in a system without this feature, you run the risk of damaging the card and/or the rest of the unit
it is plugged in to!
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Some PLCs have the ability to connect to processor-less remote racks filled with additional 1/O
cards or modules, thus providing a way to increase the number of I/O channels beyond the capacity
of the base unit. The connection from host PLC to remote I/O racks usually takes the form of a
special digital network, which may span a great physical distance:

Power
supply

QL1
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@Gnd

Network
cable

Host PLC (base unit)

Remote I/O rack

An alternative scheme for system expansion is to network multiple PLCs together, where each
PLC has its own dedicated rack and processor. Through the use of communication instructions,
one PLC may be programmed to read data from and/or write data to another PLC, effectively
using the other PLC as an extension of its own I/O. Although this method is more expensive than
remote I/O (where the remote racks lack their own dedicated processors), it provides the capability
of stand-alone control in the event the network connection between PLC processors becomes severed.

Input/output capability for programmable logic controllers comes in three basic varieties:
discrete, analog, and network; each type discussed in a following subsection.
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3.3.1 Discrete I/O

A “discrete” data point is one with only two states on and off. Process switches, pushbutton switches,
limit switches, and proximity switches are all examples of discrete sensing devices. In order for a PLC
to be aware of a discrete sensor’s state, it must receive a signal from the sensor through a discrete
input channel. Inside each discrete input module is (typically) a set of light-emitting diodes (LEDs)
which will be energized when the corresponding sensing device turns on. Light from each LED shines
on a photo-sensitive device such as a phototransistor inside the module, which in turn activates a bit
(a single element of digital data) inside the PLC’s memory. This opto-coupled arrangement makes
each input channel of a PLC rather rugged, capable of isolating the sensitive computer circuitry of
the PLC from transient voltage “spikes” and other electrical phenomena capable of causing damage:

Hand switch
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Energizing an input channel lights the LED inside the optocoupler,
turning on the phototransistor, sending a "high" signal to the PLC’s
microprocessor, setting (1) that bit in the PLC’s input register.

The internal schematic diagram for a discrete input module (“card”) shown above reveals the
componentry typical for a single input channel on that card. Each input channel has its own
optocoupler, writing to its own unique memory register bit inside the PLC’s memory. Discrete
input cards for PLCs typically have 4, 8, 16, or 32 channels.
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Indicator lamps, solenoid valves, and motor starters (assemblies consisting of contactors and
overload protection devices) are all examples of discrete control devices. In a manner similar to
discrete inputs, a PLC connects to any number of different discrete final control devices through
a discrete output channel®. Discrete output modules typically use the same form of opto-isolation
to allow the PLC’s computer circuitry to send electrical power to loads: the internal PLC circuitry
driving an LED which then activates some form of photosensitive switching device.

PLC [S] Contactor
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Setting a bit (1) in the PLC’s output register sends a "high" signal
to the LED inside the optocoupler, turning on the photo-TRIAC,
sending AC power to the output channel to energize the load.

As with the schematic diagram for a discrete input module shown previously, the schematic
diagram shown here for a discrete output module reveals the componentry typical for a single
channel on that card. Each output channel has its own optocoupler, driven by its own unique
memory register bit inside the PLC’s memory. Discrete output cards for PLCs also typically have
4, 8, 16, or 32 channels.

3I/O “channels” are often referred to as “points” in industry lingo. Thus, a “32-point input card” refers to an
input circuit with 32 separate channels through which to receive signals from on/off switches and sensors.
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A common alternative to opto-isolated semiconductor switching elements such as transistors (DC)
or TRIACs (AC) are miniature electromechanical relays. Mechanical relay contacts are capable of
switching DC or AC, and provide similar levels of electrical isolation between the PLC’s internal
logic circuitry and external control circuits compared with opto-isolated transistors and TRIACs:
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Setting a bit (1) in the PLC’s output register sends a "high" signal
to the relay coil, closing the relay contact, completing the circuit
for power to energize the load.

The relay-based discrete PLC output shown here happens to share a “Common” terminal with
the other discrete output channels of the PLC. Isolated relay outputs, however, are a popular option.
In an isolated relay output array, each relay contact has its own pair of dedicated screw terminals.
This is useful when multiple loads requiring separate power supplies must be controlled by the same
PLC.

Just like transistor and TRIAC discrete outputs, relay outputs typically allow the end-user to
connect their power supply of choice to the switching element. Given that relay contacts are capable
of DC and AC current switching, this provides a greater level of versatility than semiconductor
elements such as transistors and TRIACs. Relays, of course, have their disadvantages as well. Relay
contacts are much slower-responding than semiconductors which have no moving parts. The moving
components of relays are subject to wear and failure in ways that semiconductor devices cannot fail.
Relay contacts also “bounce” as they move, which may be problematic if the PLC output needs
to drive the input of a high-speed counting device because each “bounce” will count as a separate
contact closure event.

A term you will frequently encounter regarding PLC output relay contacts is dry contact. This
simply means the relay contact inside the PLC’s output channel has no pre-connected power source,
and that the end-user must wire in their own (external) power source in order for the contact to
send electrical power to any load. Most semiconductor-based discrete I/O channels are the same
way, but interestingly the term “dry” is rarely used to describe semiconductor switching elements,
only electromechanical relay contacts. By contrast, a wetted contact is internally connected to an
electrical source, with terminals provided to directly connect to a load with no external power supply
required.
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An important concept to master when working with DC discrete 1/0 is the distinction between
current-sourcing and current-sinking devices. The terms “sourcing” and “sinking” refer to the
direction of current (as denoted by conventional flow notation) into or out of a device’s control wire®.
A device sending (conventional flow) current out of its control terminal to some other device(s) is
said to be sourcing current, while a device accepting (conventional flow) current into its control
terminal is said to be sinking current.

To illustrate, the following illustration shows a PLC output channel is sourcing current to an
indicator lamp, which is sinking current to ground:
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discrete output channel

These terms really only make sense when electric current is viewed from the perspective of
conventional flow, where the positive terminal of the DC power supply is envisioned to be the
“source” of the current, with current finding its way “down” to ground (the negative terminal of
the DC power supply). In every circuit formed by the output channel of a PLC driving a discrete
control device, or by a discrete sensing device driving an input channel on a PLC, one element in
the circuit must be sourcing current while the other is sinking current.

An engineering colleague of mine has a charming way to describe sourcing and sinking: blowing
and sucking. A device that sources current to another “blows” current toward the other device. A
device that sinks current “sucks” current from the other device. Many students seem to find these
terms helpful in first mastering the distinction between sourcing and sinking despite (or perhaps
because of!) their informal nature.

4By “control wire,” I mean the single conductor connecting the I/0 card channel to the field device, as opposed to
conductors directly common with either the positive or negative lead of the voltage source. If you focus your attention
on this one wire, noting the direction of conventional-flow current through it, the task of determining whether a device
is sourcing or sinking current becomes much simpler.
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If the discrete device connecting to the PLC is not polarity-sensitive, either type of PLC I/0O
module will suffice. For example, the following diagrams show a mechanical limit switch connecting

to a sinking PLC input and to a sourcing PLC input:

Note the differences in polarity and labeling between the sinking c
the sourcing card’s common terminal. On the “sinking” card, the input
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while the common (“Com”) terminal is negative. On the “sourcing” card, the input channel terminal

is negative while the common (“VDC”) terminal is positive.
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Some discrete sensing devices are polarity-sensitive, such as electronic proximity sensors
containing transistor outputs. A “sourcing” proximity switch can only interface with a “sinking”
PLC input channel, and vice-versa:
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In all cases, the “sourcing” device sends current out of its signal terminal while the “sinking”
device takes current into its signal terminal.
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Two photographs of a DC (sinking) discrete input module for an Allen-Bradley model SLC 500
PLC are shown here: one with the plastic cover closed over the connection terminals, and the other
with the plastic cover opened up for viewing the terminals. A legend on the inside of the cover
shows the purpose of each screw terminal: eight input channels (numbered 0 through 7) and two
redundant “DC Com” terminals for the negative pole of the DC power supply to connect:

A standard feature found on practically every PLC discrete I/O module is a set of LED indicators
visually indicating the status of each bit (discrete channel). On the SLC 500 module, the LEDs
appear as a cluster of eight numbered squares near the top of the module.

A photograph of discrete output terminals on another brand of PLC (a Koyo model DL06) shows
somewhat different labeling:
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Here, each output channel terminal is designated with a letter/number code beginning with the
letter “Y”. Several “common” terminals labeled with “C” codes service clusters of output channels.
In this particular case, each “common” terminal is common only to four output channels. With
sixteen total output channels on this PLC, this means there are four different “common” terminals.
While this may seem somewhat strange (why not just have one “common” terminal for all sixteen
output channels?), it more readily permits different DC power supplies to service different sets of
output channels.

Electrical polarity is not an issue with AC discrete I/O, since the polarity of AC reverses
periodically anyway. However, there is still the matter of whether the “common” terminal on
a discrete PLC module will connect to the neutral (grounded) or hot (ungrounded) AC power
conductor.

The next photograph shows a discrete AC output module for an Allen-Bradley SLC 500 PLC,
using TRIACs as power switching devices rather than transistors as is customary with DC discrete
output modules:
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This particular eight-channel module provides two sets of TRIACs for switching power to AC
loads, each set of four TRIACs receiving AC power from a “hot” terminal (VAC 1 or VAC 2), the
other side of the load device being connected to the “neutral” (grounded) conductor of the AC power
source.



40 CHAPTER 3. TUTORIAL

Fortunately, the hardware reference manual supplied by the manufacturer of every PLC shows
diagrams illustrating how to connect discrete input and output channels to field devices. One should
always consult these diagrams before connecting devices to the I/O points of a PLC!

3.3.2 Analog I/O

In the early days of programmable logic controllers, processor speed and memory were too limited
to support anything but discrete (on/off) control functions. Consequently, the only I/O capability
found on early PLCs were discrete in nature®. Modern PLC technology, though, is powerful enough
to support the measurement, processing, and output of analog (continuously variable) signals.

All PLCs are digital devices at heart. Thus, in order to interface with an analog sensor or control
device, some “translation” is necessary between the analog and digital worlds. Inside every analog
input module is an ADC, or Analog-to-Digital Converter, circuit designed to convert an analog
electrical signal into a multi-bit binary word. Conversely, every analog output module contains
a DAC, or Digital-to-Analog Converter, circuit to convert the PLC’s digital command words into
analog electrical quantities.

Analog I/0 is commonly available for modular PLCs for many different analog signal types,
including:

e Voltage (0 to 10 Volt, 0 to 5 Volt)

Current (0 to 20 mA, 4 to 20 mA)

e Thermocouple (millivoltage)

RTD (millivoltage)

Strain gauge (millivoltage)

5Some modern PLCs such as the Koyo “CLICK?” are also discrete-only. Analog I/O and processing is significantly
more complex to engineer and more expensive to manufacture than discrete control, and so low-end PLCs are more
likely to lack analog capability.
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The following photographs show two analog I/O cards for an Allen-Bradley SLC 500 modular
PLC system, an analog input card and an analog output card. Labels on the terminal cover doors
indicate screw terminal assignments:
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3.3.3 Network I/O

Many different digital network standards exist for PLCs to communicate with, from PLC to PLC
and between PLCs and field devices. One of the earliest digital protocols developed for PLC
communication was Modbus, originally for the Modicon brand of PLC. Modbus was adopted by
other PLC and industrial device manufacturers as a de facto standard®, and remains perhaps the
most universal digital protocol available for industrial digital devices today.

Another digital network standard developed by a particular manufacturer and later adopted as
a de facto standard is Profibus, originally developed by Siemens.

6A “de facto” standard is one arising naturally out of legacy rather than by an premeditated agreement between
parties. Modbus and Profibus networks are considered “de facto” standards because those networks were designed,
built, and marketed by pioneering firms prior to their acceptance as standards for others to conform to. In Latin, de
facto means “from the fact,” which in this case refers to the fact of pre-existence: a standard agreed upon to conform
to something already in popular use. By contrast, a standard intentionally agreed upon before its physical realization
is a de jure standard (Latin for “from the law”). FOUNDATION Fieldbus is an example of a de jure standard, where
a committee arrives at a consensus for a network design and specifications prior to that network being built and
marketed by any firm.
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Chapter 4

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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4.1 Feature comparisons between PLC models

In most cases, similarities are far greater for different models of PLC than differences. However,
differences do exist, and it is worth exploring the differences in basic features offered by an array of
PLC models.

4.1.1 Viewing live values

e Allen-Bradley Logix 5000: the Controller Tags folder (typically on the left-hand pane of the
programming window set) lists all the tag names defined for the PLC project, allowing you to
view the real-time status of them all. Discrete inputs do not have specific input channel tag
names, as tag names are user-defined in the Logix5000 PLC series.

e Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) lists all the data files within that PLC’s memory.
Opening a data file window allows you to view the real-time status of these data points.
Discrete inputs are the I file addresses (e.g. 1:0/2, I:3/5, etc.). The letter “I” represents
“input,” the first number represents the slot in which the input card is plugged, and the last
number represents the bit within that data element (a 16-bit word) corresponding to the input
card.

e Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory. Discrete inputs are the
I memory addresses (e.g. I0.1, I1.5, etc.).

e Koyo (Automation Direct) DirectLogic and CLICK: the Data View window allows the user to
custom-configure a table showing the real-time values of multiple addresses within the PLC’s
memory. Discrete inputs are the X memory addresses (e.g. X1, X2, etc.).
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4.1.2 Forcing live values

e Allen-Bradley Logix 5000: forces may be applied to specific tag names by right-clicking on the
tag (in the program listing) and selecting the “Monitor” option. Discrete outputs do not have
specific output channel tag names, as tag names are user-defined in the Logix5000 PLC series.

e Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Force Files listing (typically on the left-
hand pane of the programming window set) lists those data files within the PLC’s memory
liable to forcing by the user. Opening a force file window allows you to view and set the
real-time status of these bits. Discrete outputs are the 0 file addresses (e.g. 0:0/7, 0:6/2,
etc.). The letter “0” represents “output,” the first number represents the slot in which the
output card is plugged, and the last number represents the bit within that data element (a
16-bit word) corresponding to the output card.

e Siemens S7-200: the Status Chart window allows the user to custom-configure a table showing
the real-time values of multiple addresses within the PLC’s memory, and enabling the user to
force the values of those addresses. Discrete outputs are the Q memory addresses (e.g. Q0.4,
Q1.2 etc.).

e Koyo (Automation Direct) DirectLogic and CLICK: the Owerride View window allows the
user to force variables within the PLC’s memory. Discrete outputs are the Y memory addresses
(e.g. Y1, Y2, etc.).

4.1.3 Special “system” values

Every PLC has special registers holding data relevant to its operation, such as error flags, processor
scan time, etc.

e Allen-Bradley Logix 5000: various “system” values are accessed via GSV (Get System Value)
and SSV (Save System Value) instructions.

e Allen-Bradley PLC-5, SLC 500, and MicroLogix: the Data Files listing (typically on the left-
hand pane of the programming window set) shows file number 2 as the “Status” file, in which
you will find various system-related bits and registers.

e Siemens S7-200: the Special Memory registers contain various system-related bits and registers.
These are the SM memory addresses (e.g. SMO.1, SMB8, SMW22, etc.).

e Koyo (Automation Direct) DirectLogic and CLICK: the Special registers contain various
system-related bits and registers. These are the SP memory addresses (e.g. SP1, SP2, SP3,
etc.) in the DirectLogic PLC series, and the SC and SD memory addresses in the CLICK PLC
series.
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4.1.4 Free-running clock pulses

e Allen-Bradley SLC 500: status bit S:4/0 is a free-running clock pulse with a period of 20
milliseconds, which may be used to clock a counter instruction up to 50 to make a 1-second
pulse (because 50 times 20 ms = 1000 ms = 1 second).

e Siemens S7-200: Special Memory bit SMO.5 is a free-running clock pulse with a period of 1
second.

e Koyo (Automation Direct) DirectLogic: Special relay SP4 is a free-running clock pulse with a
period of 1 second.

4.1.5 Standard counter instructions

e Allen-Bradley Logix 5000: CTU count-up, CTD count-down, and CTUD count-up/down
instructions.

e Allen-Bradley SLC 500: CTU and CTD instructions.

e Siemens S7-200: CTU count-up, CTD count-down, and CTUD count-up/down instructions.

e Kovo (Automation Direct) DirectLogic: UDC counter instruction.

4.1.6 High-speed counter instructions

e Allen-Bradley SLC 500: HSU high-speed count-up instruction.

e Siemens S7-200: HSC high-speed counter instruction, used in conjunction with the HDEF high-
speed counter definition instruction.

4.1.7 Timer instructions

e Allen-Bradley Logix 5000: TOF off-delay timer, TON on-delay timer, RTO retentive on-delay
timer, TOFR off-delay timer with reset, TONR on-delay timer with reset, and RTOR retentive
on-delay timer with reset instructions.

e Allen-Bradley SL.C 500: TOF off-delay timer, TON on-delay timer, and RTO retentive on-delay
timer instructions.

e Siemens S7-200: TOF off-delay timer, TON on-delay timer, and TONR retentive on-delay timer
instructions.
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4.1.8 ASCII text message instructions

Allen-Bradley Logix 5000: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

Allen-Bradley SLC 500: the “ASCII Write” instructions AWT and AWA may be used to do
this. The “ASCII Write Append” instruction (AWA) is convenient to use because it may be
programmed to automatically insert linefeed and carriage-return commands at the end of a
message string.

Siemens S7-200: the “Transmit” instruction (XMT) is useful for this task when used in Freeport
mode.

Koyo (Automation Direct) DirectLogic: the “Print Message” instruction (PRINT) is useful for
this task.

4.1.9 Analog signal scaling

Allen-Bradley Logix 5000: the I/O configuration menu (specifically, the Module Properties
window) allows you to directly and easily scale analog input signal ranges into any arbitrary
numerical range desired. Floating-point (“REAL”) format is standard, but integer format may
be chosen for faster processing of the analog signal.

Allen-Bradley PLC-5, SLC 500, and MicroLogix: raw analog input values are 16-bit signed
integers. The SCL and SCP instructions are custom-made for scaling these raw integer ADC
count values into ranges of your choosing.

Siemens S7-200: raw analog input values are 16-bit signed integers. Interestingly, the S7-200
PLC provides built-in potentiometers assigned to special word registers (SMB28 and SMB29)
with an 8-bit (0-255 count) range. These values may be used for any suitable purpose,
including combination with the raw analog input register values in order to provide mechanical
calibration adjustments for the analog input(s).

Koyo (Automation Direct) DirectLogic: you must use standard math instructions (e.g. ADD,
MUL) to implement a y = ma + b linear equation for scaling purposes.

Koyo (Automation Direct) CLICK: the I/O configuration menu allows you to directly and
easily scale analog input signal ranges into any arbitrary numerical range desired.
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4.2 Legacy Allen-Bradley memory maps and I/O addressing

A wise PLC programmer once told me that the first thing any aspiring programmer should learn
about the PLC they intend to program is how the digital memory of that PLC is organized.
This is sage advice for any programmer, especially on systems where memory is limited, and/or
where I/0 has a fixed association with certain locations in the system’s memory. Virtually every
microprocessor-based control system comes with a published memory map showing the organization
of its limited memory: how much is available for certain functions, which addresses are linked to
which I/O points, how different locations in memory are to be referenced by the programmer.

Discrete input and output channels on a PLC correspond to individual bits in the PLC’s
memory array. Similarly, analog input and output channels on a PLC correspond to multi-bit
words (contiguous blocks of bits) in the PLC’s memory. The association between I/O points
and memory locations is by no means standardized between different PLC manufacturers, or even
between different PLC models designed by the same manufacturer. This makes it difficult to write
a general tutorial on PLC addressing, and so my ultimate advice is to consult the engineering
references for the PLC system you intend to program.

The most common brand of PLC in use in the United States at the time of this writing (2019)
is Allen-Bradley (Rockwell), and a great many of these Allen-Bradley PLCs still in service happen
to use a unique form of I/O addressing’ students tend to find confusing.

I The most modern Allen-Bradley PLCs have all but done away with fixed-location I/O addressing, opting instead
for tag name based I/O addressing. However, enough legacy Allen-Bradley PLC systems still exist in industry to
warrant coverage of these addressing conventions.
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The following table shows a partial memory map for an Allen-Bradley SLC 500 PLC?:

49

File number File type Logical address range
0 Output image 0:0 to 0:30
1 Input image I:0t01:30
2 Status S:0toS:n
3 Binary B3:0 to B3:255
4 Timers T4:0 to T4:255
5 Counters C5:0 to C5:255
6 Control R6:0 to R6:255
7 Integer N7:0 to N7:255
8 Floating-point F8:0 to F8:255
9 Network x9:0 to x9:255
10 through 255 User defined x10:0 to x255:255

Note that Allen-Bradley’s use of the word “file” differs from personal computer parlance. In
the SLC 500 controller, a “file” is a block of random-access memory used to store a particular
type of data. By contrast, a “file” in a personal computer is a contiguous collection of data bits
with collective meaning (e.g. a word processing file or a spreadsheet file), usually stored on the
computer’s hard disk drive. Within each of the Allen-Bradley PLC’s “files” are multiple “elements,”
each element consisting of a set of bits (8, 16, 24, or 32) representing data. Elements are addressed
by number following the colon after the file designator, and individual bits within each element
addressed by a number following a slash mark. For example, the first bit (bit 0) of the second
element in file 3 (Binary) would be addressed as B3:2/0.

In Allen-Bradley PLCs such as the SLC 500 and PLC-5 models, files 0, 1, and 2 are exclusively
reserved for discrete outputs, discrete inputs, and status bits, respectively. Thus, the letter
designators O, I, and S (file types) are redundant to the numbers 0, 1, and 2 (file numbers). Other
file types such as B (binary), T (timers), C (counters), and others have their own default file numbers
(3, 4, and 5, respectively), but may also be used in some of the user-defined file numbers (10 and
above). For example, file 7 in an Allen-Bradley controller is reserved for data of the “integer” type
(N), but integer data may also be stored in any file numbered 10 or greater at the user’s discretion.
Thus, file numbers and file type letters for data types other than output (O), input (I), and status
(S) always appear together. You would not typically see an integer word addressed as N:30 (integer
word 30 in the PLC’s memory) for example, but rather as N7:30 (integer word 30 in file 7 of the
PLC’s memory) to distinguish it from other integer word 30’s that may exist in other files of the
PLC’s memory.

2Also called the data table, this map shows the addressing of memory areas reserved for programs entered by
the user. Other areas of memory exist within the SLC 500 processor, but these other areas are inaccessible to the
technician writing PLC programs.
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This file-based addressing notation bears further explanation. When an address appears in a
PLC program, special characters are used to separate (or “delimit”) different fields from each other.
The general scheme for Allen-Bradley SLC 500 PLCs is shown here:

File separator Bit separator
(colon) (slash)
File type File Element Word Bit
(letter) number number number number

!

Word separator
(point)

Not all file types need to distinguish individual words and bits. Integer files (N), for example,
consist of one 16-bit word for each element. For instance, N7:5 would be the 16-bit integer word
number five held in file seven. A discrete input file type (I), though, needs to be addressed as
individual bits because each separate I/O point refers to a single bit. Thus, I:3/7 would be bit
number seven residing in input element three. The “slash” symbol is necessary when addressing
discrete I/O bits because we do not wish to refer to all sixteen bits in a word when we just mean a
single input or output point on the PLC. Integer numbers, by contrast, are collections of 16 bits each
in the SLC 500 memory map, and so are usually addressed as entire words rather than bit-by-bit?.

Certain file types such as timers are more complex. FEach timer “element®” consists of two
different 16-bit words (one for the timer’s accumulated value, the other for the timer’s target value)
in addition to no less than three bits declaring the status of the timer (an “Enabled” bit, a “Timing”
bit, and a “Done” bit). Thus, we must make use of both the decimal-point and slash separator
symbols when referring to data within a timer. Suppose we declared a timer in our PLC program
with the address T4:2, which would be timer number two contained in timer file four. If we wished
to address that timer’s current value, we would do so as T4:2.ACC (the “Accumulator” word of timer
number two in file four). The “Done” bit of that same timer would be addressed as T4:2/DN (the
“Done” bit of timer number two in file four)®.

3This is not to say one cannot specify a particular bit in an otherwise whole word. In fact, this is one of the
powerful advantages of Allen-Bradley’s addressing scheme: it gives you the ability to precisely specify portions of
data, even if that data is not generally intended to be portioned into smaller pieces!

4Programmers familiar with languages such as C and C++ might refer to an Allen-Bradley “element” as a data
structure, each type with a set configuration of words and/or bits.

5Referencing the Allen-Bradley engineering literature, we see that the accumulator word may alternatively be
addressed by number rather than by mnemonic, T4:2.2 (word 2 being the accumulator word in the timer data
structure), and that the “done” bit may be alternatively addressed as T4:2.0/13 (bit number 13 in word 0 of the
timer’s data structure). The mnemonics provided by Allen-Bradley are certainly less confusing than referencing word
and bit numbers for particular aspects of a timer’s function!
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A hallmark of the SLC 500’s addressing scheme common to many legacy PLC systems is that
the address labels for input and output bits explicitly reference the physical locations of the I/O
channels. For instance, if an 8-channel discrete input card were plugged into slot 4 of an Allen-
Bradley SLC 500 PLC, and you wished to specify the second bit (bit 1 out of a 0 to 7 range), you
would address it with the following label: I:4/1. Addressing the seventh bit (bit number 6) on a
discrete output card plugged into slot 3 would require the label 0:3/6. In either case, the numerical
structure of that label tells you exactly where the real-world input signal connects to the PLC.

To illustrate the relationship between physical I/O and bits in the PLC’s memory, consider this
example of an Allen-Bradley SLC 500 PLC, showing one of its discrete input channels energized
(the switch being used as a “Start” switch for an electric motor):
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If an input or output card possesses more than 16 bits — as in the case of the 32-bit discrete
output card shown in slot 3 of the example SLC 500 rack — the addressing scheme further subdivides
each element into words and bits (each “word” being 16 bits in length). Thus, the address for bit
number 27 of a 32-bit input module plugged into slot 3 would be I:3.1/11 (since bit 27 is equivalent
to bit 11 of word 1 — word 0 addressing bits 0 through 15 and word 1 addressing bits 16 through
31):

SLC 500 4-slot chassis

Slot 0 Slot 1 Slot 2 Slot 3

Power
supply

@L1
@L2IN
@ Gnd

Output bitO 3. 1/ 11
inside the PLC’s
memory is "set"

Output image element for slot 3

0T¥1g [O|O
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A close-up photograph of a 32-bit DC input card for an Allen-Bradley SLC 500 PLC system
shows this multi-word addressing;:

ey

INPUT

| (.0/0 to 15) | (.1/0 to 15) |
0 4 81216202428

1091317212529
2 6101418 22 26 30
3 7111519 2327 31

DC-SINK

The first sixteen input points on this card (the left-hand LED group numbered 0 through 15) are
addressed I:X.0/0 through I1:X.0/15, with “X” referring to the slot number the card is plugged into.
The next sixteen input points (the right-hand LED group numbered 16 through 31) are addressed
I:X.1/0 through I:X.1/15.

Legacy PLC systems typically reference each one of the I/O channels by labels such as “I:1/3”
(or equivalent®) indicating the actual location of the input channel terminal on the PLC unit. The
IEC 61131-3 programming standard refers to this channel-based addressing of I/O data points as
direct addressing. A synonym for direct addressing is absolute addressing.

Addressing I/0 bits directly by their card, slot, and/or terminal labels may seem simple and
elegant, but it becomes very cumbersome for large PLC systems and complex programs. Every time
a technician or programmer views the program, they must “translate” each of these I/O labels to
some real-world device (e.g. “Input I:1/3 is actually the Start pushbutton for the middle tank
mixer motor”) in order to understand the function of that bit. A later effort to enhance the clarity
of PLC programming was the concept of addressing variables in a PLC’s memory by arbitrary
names rather than fixed codes. The IEC 61131-3 programming standard refers to this as symbolic
addressing in contrast to “direct” (channel-based) addressing, allowing programmers arbitrarily

6Some systems such as the Texas Instruments 505 series used “X” labels to indicate discrete input channels and
“Y” labels to indicate discrete output channels (e.g. input X9 and output Y14). This same labeling convention is still
used by Koyo in its DirectLogic and “CLICK” PLC models. Siemens continues a similar tradition of I/O addressing
by using the letter “I” to indicate discrete inputs and the letter “Q” to indicate discrete outputs (e.g. input channel
10.5 and output Q4.1).
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name I/O channels in ways that are meaningful to the system as a whole. To use our simple
motor “Start” switch example, it is now possible for the programmer to designate input I:1/3 (an
example of a direct address) as “Motor_start_switch” (an example of a symbolic address) within
the program, thus greatly enhancing the readability of the PLC program. Initial implementations
of this concept maintained direct addresses for I/O data points, with symbolic names appearing as
supplements to the absolute addresses.

The modern trend in PLC addressing is to avoid the use of direct addresses such as I:1/3
altogether, so they do not appear anywhere in the programming code. The Allen-Bradley “Logix”
series of programmable logic controllers is the most prominent example of this new convention
at the time of this writing. Each I/O point, regardless of type or physical location, is assigned
a tag name which is meaningful in a real-world sense, and these tag names (or symbols as they
are alternatively called) are referenced to absolute I/O channel locations by a database file. An
important requirement of tag names is that they contain no space characters between words (e.g.
instead of “Motor start switch”, a tag name should use hyphens or underscore marks as spacing
characters: “Motor_start_switch”), since spaces are generally assumed by computer programming
languages to be delimiters (separators between different variables).



Chapter 5

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read' the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture?, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding — How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.

55
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GENERAL CHALLENGES FOLLOWING TUTORIAL READING

e Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

e Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

e Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

e Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

e Identify any new concept(s) presented in the text, and explain in your own words.

e Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

e Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

e Devise an experiment to disprove a plausible misconception.

e Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

e Describe any useful problem-solving strategies applied in the text.

e Devise a question of your own to challenge a reader’s comprehension of the text.
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GENERAL FOLLOW-UP CHALLENGES FOR ASSIGNED PROBLEMS

e Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

e Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

e Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

e Is there more than one way to solve this problem? Which method seems best to you?

e Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

e What would you say was the most challenging part of this problem, and why was it so?
e Was any important information missing from the problem which you had to research or recall?

e Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

e Examine someone else’s solution to identify where they applied fundamental laws or principles.

e Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

e For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

e For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

e For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

e Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

e Identify where it would be easy for someone to go astray in attempting to solve this problem.

e Formulate your own problem based on what you learned solving this one.

GENERAL FOLLOW-UP CHALLENGES FOR EXPERIMENTS OR PROJECTS

e In what way(s) was this experiment or project easy to complete?

e Identify some of the challenges you faced in completing this experiment or project.
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Show how thorough documentation assisted in the completion of this experiment or project.

Which fundamental laws or principles are key to this system’s function?

Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

What will happen if (component X) fails (open/shorted/etc.)?

What would have to occur to make this system unsafe?
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5.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking®. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3 Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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5.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” — Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning
as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as
you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded
in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor
and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.
Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

Specifically identify any points you found CONFUSING. The reason for doing this is to help
diagnose misconceptions and overcome barriers to learning.
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5.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.
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5.1.3 Relay ladder logic analogy for a PLC

Analyze the status of all relay contacts and lamps in this hard-wired relay “ladder logic” control
circuit, annotating the diagram to show electrical conductivity and non-conductivity of all contacts
and energization statuses of all relay coils and loads:
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Assume the following input conditions:
e Pushbutton switch unpressed
e Pressure above trip threshold

e Selector switch in its right-hand position
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Now, analyze the status of this PLC-controlled system assuming the same input conditions.
Note the distinction between the 120 VAC circuitry and the “virtual circuit” in the blue-shaded
area representing the program executed by the PLC’s microprocessor. As with the relay-based
system, annotate all real-world contact conductivities and coil energization statuses, as well as show
which of the PLC program’s elements should be “colored” to reflect virtual conductivity and virtual
energization:

L 120 VAC L,

PBNO "A" X1
1 {D_'
PLC input card
Pressure switch > X2

Selector switch X3

Lehj Right C
— —

X2 X1 Cc4
/A
X3 X2 Y1l

— | | -
_|>1|_ PLC program

C4 X3 Y2

— (-

- <
T
oo
g

PLC output card

Green

O

Assume the same input conditions:

e Pushbutton switch unpressed

e Pressure above trip threshold

e Selector switch in its right-hand position

How is the PLC-controlled system similar to the hard-wired relay control system? How is it
different?
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e What advantages does the PLC enjoy over the hard-wired relay control system?

e What advantages does the electromechanical relay design enjoy over the PLC control system?

5.1.4 Sourcing versus sinking PLC I/0

Discrete (on/off) I/O for PLCs often works on AC (alternating current) power. AC input circuitry
usually consists of an optocoupler (LED) with rectification and a large dropping resistor to allow
120 Volt AC operation. AC output circuitry usually consists of TRIACs. Explain how both of these
technologies work.

DC 1/0 for a PLC generally consists of optocoupled LEDs for inputs and bipolar transistors
for outputs. Some examples are shown in the following schematics. Note carefully the different
variations:

Discrete input module Discrete input module

Discrete output module Discrete output module
Com YO0
YO
Y1
Y1
Y2
Y2
Y3
Y3 Com

Determine for each of these input and output module types, whether they would be properly
designated sourcing or sinking.

e Determine how real input and output devices (e.g. switches, solenoid coils) would need to be
connected to the I/O terminals of these modules.
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5.1.5 Sketching wires to PLC discrete I/0

Sketch the wires necessary to connect two pressure switches and two relay coils to the following Allen-
Bradley MicroLogix 1000 PLC (model 1761-L10BWA, with 6 discrete DC inputs either sourcing or
sinking, and 4 discrete relay contact outputs). Be sure to wire the two switches so they source
current to the PLC’s inputs (the low-pressure switch to I/2 and the high-pressure switch to I/5,
normally-open contacts on both) and wire the relay coils so the PLC sources current to them (0/0

and 0/1):
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e Define “sinking” and “sourcing” as these terms apply to PLC I/O terminals.
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5.2 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough — you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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5.2.1 Incorrect PLC output wiring
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The PLC shown below is supposed to control the energization of a lamp and a small motor. Someone
wired both loads to different PLC output channels as shown in the illustration below, but was

surprised to find neither load energized when its respective PLC output channel activated:
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Explain what is wrong in this circuit, and then re-sketch the wiring so that these loads will
function properly. Incidentally, this same error happens to be a very common misconception among
students new to PLCs. Identify what the fundamental misconception is, and how it may be remedied.

e What information should we ideally have regarding the PLC and the two loads shown in order
to design a complete circuit that will function safely and reliably?

e From the information available in the illustration, is it possible to formulate an educated guess
about the type of discrete output channels offered by this PLC?
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Appendix A

Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

e Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions — learn why those solutions work.

e Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

e Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

e Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

e Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

e Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

e Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

Work “backward” from a hypothetical solution to a new set of given conditions.

Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.




Appendix B

Instructional philosophy

“The unexamined circuit is not worth energizing” — Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

Articulate communication is fundamental to work that is complex and interdisciplinary.

Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment' where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic’> dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity® through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary ezplain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Fveryone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers — the goal is to practice the articulation and
defense of one’s own reasoning.

No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

e No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

e You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

e Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

e A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

e Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

e Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied” effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge® one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5 Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU
project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.

7



78 APPENDIX C. TOOLS USED

Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSTIAYG (What You See Is All You
Get).

Leslie Lamport’s XTEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was KTEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to I/ TEX as C is to C++. This means it is permissible to use any and all TEX
commands within I#TEX source code, and it all still works. Some of the features offered
by ETEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.



Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. T typically set my gnuplot
output format to default (X11 on my Linux PC) for quick viewing while I'm developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I'm writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I'm listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import
* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 — Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 — Scope.
a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor — Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 — License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if

designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 — Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 — Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 — Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 — Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 — Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c¢. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix E

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

13 May 2025 — document first created, taking content from the legacy “Introduction to PLCs”
(mod_plc) module.
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