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Chapter 1

Introduction

1.1 Recommendations for students

Serial data communication is the transmission and reception of digital data one bit at a time, in
sequence, and it is as old as the telegraph. This module discusses principles common to most serial
networks without focusing on any one in particular.

Important concepts related to serial communication include the encoding of information in
digital form, delimiting of serial data, NRZ encoding, RZ encoding, Manchester encoding, FSK
encoding, bit rate, baud, the packaging of information into frames, start and stop bits, parity,
ASCII code, signal noise, frame checking, flow control, full-duplex versus half-duplex,
channel arbitration techniques, tokens, polling, data collisions, determinism, jabber, and
the OSI model.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to test the bit-rate of a serial data
signal? What hypothesis (i.e. prediction) might you pose for that experiment, and what
result(s) would either support or disprove that hypothesis?

• How does serial communication differ from parallel communication?

• How was information communicated over early telegraph systems?

• What are “mark” and “space” states?

• What are some of the possible interpretational problems when communicating serially?

• What are some different ways we may encode digital bits of information as electrical signals?

• What is the purpose of a “frame” in serial data communication?

• How do we measure the speed of communication in a serial system?

• When is bit rate not equal to baud?

3



4 CHAPTER 1. INTRODUCTION

• What kinds of auxiliary information needs to be communicated in a serial system besides the
data itself?

• How are streams of serial data synchronized for reliable reception?

• How do NRZ, RZ, FSK, and Manchester encoding schemes differ from one another?

• What are some common sources of errors in serial communication?

• What are some different ways to check for the presence of errors in serial communication?

• What is the basic principle of a parity bit?

• How can parity be fooled (i.e. what type(s) of error(s) can get through without being detected
by a parity check)?

• How can multiple devices share the same communication channel without interfering with each
other? What are some of the different strategies for accomplishing this goal?

• How could you explain each type of channel arbitration protocol by analogy to human
conversations? (e.g. “Master-Slave would be like three people in a group who . . .”)

• What are some weaknesses of each channel arbitration scheme?

• What is “flow control” and why is it necessary in some applications but not in others?

• Why is determinism an important quality for some communication networks?

• How does the OSI Reference Model relate to different communication systems?

• How is it possible for some layers of the OSI Reference Model to apply to a specific
communication standard but not other layers?
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1.2 Challenging concepts related to serial data
communication

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Manchester encoding – physical encoding schemes where the rising/falling edges of a pulse
convey bit information are generally more difficult to interpret than NRZ signals due to the
challenge of identifying which edge(s) represent data bits versus which are merely reversals
setting up for the next data bit.

• Parity – a common area of confusion for students is the subject of parity bits and error-checking
in general. In order to understand these topics accurately and to avoid misconception, it is
helpful to run some thought experiments whereby you imagine data becoming corrupted during
serial transmission, and analyze how each of the error-checking techniques would be able to
identify the presence of data corruption.

• Network arbitration – the same is true for channel arbitration techniques such as
CSMA/CD, master-slave, and others. It is helpful to imagine a set of devices all requiring
access to a common channel of communication, and stepping through each of the protocols
to see how they manage this access without having multiple devices “talk over” one another.
This, like so many other things, simply takes time to digest and cannot be rushed.

• OSI reference model – an easy way to get confused on this subject is to try to interpret it as
a standard in and of itself. It is more accurately thought of as a taxonomy of communication
instead: merely a way to label and describe aspects of communications standards. No single
communications embodies all seven layers of the OSI model, and many relate to only one of
those layers!

• Synchronous versus Asynchronous communication – synchronous communication is
when two or more digital devices communicate in lock-step with each other due to the
simultaneous transmission of a clock signal. Asynchronous communication is when two or
more digital devices use internal clocks to keep pace with each other, but rely on a “start”
signal of some kind to synchronize themselves together at the start of each data frame.

The Case Tutorial chapter contains sections showing pulse waveforms for UART and EIA/TIA-
232 which are helpful in learning to decipher serial data frames and their parity bits.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

• Outcome – Interpret serial data frames from oscillographs

Assessment – Correctly determine the binary data word represented by NRZ, RZ,
Manchester, and FSK waveforms; e.g. pose problems in the form of the “Serial data stream
decoding” Conceptual Reasoning question.

Assessment – Correctly determine the binary data word, and whether or not parity
checks okay, from oscillographs of serial data transmissions; e.g. pose problems in the form of
the “Interpreting NRZ data frames” and “Interpreting more NRZ data frames” Conceptual
Reasoning questions.

Assessment – Correctly determine ASCII characters from oscillographs of serial data
transmissions; e.g. pose problems in the form of the “EIA/TIA-232 data frames of ASCII
characters” Conceptual Reasoning question.

• Outcome – Independent research

Assessment – Read and summarize in your own words reliable source documents on the
subject of OSI Reference Model.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

7



8 CHAPTER 2. CASE TUTORIAL

2.1 Example: UART data frames with and without parity

In the following illustrations we will show three examples of UART serial data signals representing
eight-bit binary numbers, assuming the use of positive DC source voltage for “idle” and logical “1”
states and zero voltage for logical “0” states1, no parity bit, and two stop bits:

Binary number = 11001001

idle stop

start

1 0 0 1 0 0 1 1

idle

idle stop

start

1 0 0 01 1

idle

Binary number = 00110111 1 1

idle stop

start

1 0 00 1 1

idle

1 1Binary number = 01111010

Note how UART data is always transmitted with the least-significant bit (LSB) sent first and
the most-significant bit (MSB) last. This is why the pulse waveforms’ high and low states seem to
come in reverse order.

1Note how this “positive” logic is consistent with most digital logic devices such as logic gates, but is opposite of
certain communication standards such as EIA/TIA-232 where a positive voltage is a 0 or “space” state and a negative
voltage is a 1 or a “mark” state!
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Next we will examine three more examples of UART signals using the same parameters as before
(positive logic levels, 8 data bits, and 2 stop bits), but this time including a parity bit set for odd
parity :

idle stop

start

10 0 1 0 1

idle

idle stop

start

1 0 0 1

idle

11

idle stop

start

1 00 1

idle

1

Binary number = 10011000 0 0 0

parity

Binary number = 01100101 0 10

parity

Binary number = 10001111 11 0 0

parity

Note how each one of the bits’ time duration is identical, the data bits each occupying the
exact same amount of time on the horizontal axis as each start bit, each stop bit, and each parity
bit. The duration of the “idle” time is arbitrary, depending only on how often binary numbers get
communicated.

Parity bits exist for the purpose of error detection in serial data communication. Errors usually
originate in communication systems due to excessive electrical noise, and so it is possible for noise to
grow strong enough to corrupt one of the bits so as to be interpreted at the receiving end as the wrong
logical state; i.e. a bit transmitted as a 0 being received as a 1, or vice-versa. If both transmitting
and receiving devices are pre-configured to generate and interpret (respectively) a parity bit whose
value is based on the number of “1” bits in the data payload, any single-bit corruption will be
detectable as such when the receiver does its own parity calculation and determines a mis-match.

In the last set of UART signal examples shown, parity was configured for “odd”. This meant
that the transmitting device counted up the number of “1” bits in the eight-bit binary number and
then made the parity bit either a “1” or a “0” as necessary to bring the total “1” bit count to an
odd value. For example, the binary number 10011000 in the first parity example already had an
odd number of “1” bits and so the transmitting device set the parity bit to zero because it didn’t
need any more “1” bits to make an odd count. However, the binary number 01100101 used in the
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second parity example had an even number of “1” bits and so the transmitting device did need to
set the parity but to one in order to being the total “1” bit count to an odd number. The receiving
device simply has to count all the “1” bits it receives in total to see if it finds an odd number. If it
happens to count an even number of “1” bits in total, it would knows something has gone wrong.
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2.2 Example: ASCII data captured on an oscilloscope

This is a screen-capture from a digital oscilloscope showing the ASCII code for the capital letter
“K” (binary 01001011) communicated via EIA/TIA-232 using 8 data bits, odd parity, and 1 stop
bit:

Since the ASCII code for “K” contains an even number of 1’s and the communication is configured
for odd parity, the parity bit is set (1) to bring the total number of 1 states to an odd value.
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Chapter 3

Tutorial
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3.1 Serial communication principles

One of the great benefits of digital technology is the ability to communicate vast amounts of
information over networks. This very text you are reading was transmitted in digital form over the
electronic network we call the Internet : a feat virtually impossible for any sort of analog technology.
Serial data communication refers to the transmission of digital signals one bit at a time rather than
multiple bits at a time. While this may seem inefficient from a perspective of speed, it is highly
efficient in terms of necessary data channels: by communicating just one bit at a time, only one wire
(or one radio signal, or one optical fiber) is necessary to convey that data.

The task of encoding digital data as a sequential stream of bits and then sending those bits to a
receiving device requires mutually-agreed standards for the encoding, the “packaging” of those bits,
the speed at which the bits are sent, methods for multiple devices to use a common channel, and a
host of other concerns. This tutorial will delineate the major points of compatibility necessary for
digital devices to communicate serially. We begin with a brief exploration of some of the standards
used in early telegraph systems.

An early form of digital communication was Morse Code, used to communicate alpha-numerical
information as a series of “dots” and “dashes” over telegraph1 systems. Each letter in the alphabet,
and each numerical digit (0 through 9) was represented in Morse Code by a specific series of “dot”
and “dash” symbols, a “dot” being a short pulse and a “dash” being a longer pulse. Samuel Morse’s
original code specification relied on both “long” and “short” dashes in addition to dot symbols, and
also had pauses between symbols within some of the characters, as well as an inconsistent pattern
for representing numerical digits. These inconsistencies in Morse’s original code were eliminated
with the invention of the Continental Code, so named because of its widespread use in Europe.
This improved code standard eventually became adopted world-wide and subsequently known as
the International Morse Code. Samuel Morse’s code became known as American Morse, and faded
into obscurity.

As primitive as these codes were, they encapsulated many of the basic principles we find in
modern digital serial communication systems. First, a system of codes was necessary in order to
represent English letters and numerals by electrical pulses. Next, there needed to be some way to
delineate the beginning and end of each character.

1I do not expect any reader of this book to have firsthand knowledge of what a “telegraph” is, but I suspect some
will have never heard of one until this point. Basically, a telegraph was a primitive electrical communication system
stretching between cities using a keyswitch at the transmitting end to transmit on-and-off pulses and a “sounder”
to make those pulses audible on the receiving end. Trained human operators worked these systems, one at the
transmitting end (encoding English-written messages into a series of pulses) and one at the receiving end (translating
those pulses into English letters).
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A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

International Morse Code (English letters and Arabic numerals only)

Consider the encoding for the word NOWHERE. By placing an extra pause between characters, it
is easy to delineate individual characters in the message:

N O W H E R E

"NOWHERE"

If this space between characters were not present, it would be impossible to determine the message
with certainty. By removing the spaces, we find multiple non-sensical interpretations are possible
for the same string of “dots” and “dashes:”

LSZK G

N O W H E R E

Y DHK D

Same sequence of "dots" and "dashes,"
with multiple interpretations!
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For that matter, it is even possible to confuse the meaning of the text string “NOWHERE” when
the individual characters are properly interpreted. Does the string of characters say “NOWHERE,” or
does it say “NOW HERE”?

This simple example illustrates the need for delimiting in serial data communication. Some
means must be employed to distinguish individual groups of bits (generally called frames or
packets) from one another, lest their meanings be lost. In the days when human operators
sent and interpreted Morse and Continental code messages, the standard delimiter was an
extra time delay (pause) between characters, and between words2. This is not much different
from the use of whitespace to delineate words, sentences, and paragraphs typed on a page.
Sentenceswouldcertainlybeconfusingtoreadifnotforspaces!

In later years, when teletype machines were designed to replaced skilled Morse operators, the
concept of frame delineation had to be addressed more rigorously. These machines consisted of a
typewriter-style keyboard which marked either paper strips or pages with dots corresponding to a
5-bit code called the Baudot code. The paper strip or sheets were then read electrically and converted
into a serial stream of on-and-off pulses which were then transmitted along standard telegraph circuit
lines. A matching teletype machine at the receiving end would then convert the signal stream into
printed characters (a telegram). Not only could unskilled operators use teletype machines, but
the data rate far exceeded what the best human Morse operators could achieve3. However, these
machines required special “start” and “stop” signals to synchronize the communication of each
character, not being able to reliably interpret pauses like human operators could. Developed in the
1870’s, the Baudot code still finds application today in Radio Teletype or RTTY communication, a
digital mode of radio communication used by many amateur radio operators.

Interestingly, modern asynchronous4 serial data communication relies on the same concept of
“start” and “stop” bits to synchronize the transmission of data packets. Each new packet of serial
data is preceded by some form of “start” signal, then the packet is sent, and followed up by some
sort of “stop” signal. The receiving device(s) synchronize to the transmitter when the “start” signal
is detected, and non-precision clocks keep the transmitting and receiving devices in step with each
other over the short time duration of the data packet. So long as the transmitting and receiving
clocks are close enough to the same frequency, and the data packet is short enough in its number of
bits, the synchronization will be good enough for each and every bit of the message to be properly
interpreted at the receiving end.

2According to Recommendation ITU-R M.1677 from the ITU Radiocommunication Assembly in 2004, a dash
should have a time duration three times that of a dot, the time delay between dots and dashes within the same
character should last as long as a single dot, the time delay between characters should last as long as a dash (three
dots), and the space between two words should last as long as seven dots.

3A test message sent in 1924 between two teletype machines achieved a speed of 1920 characters per minute (32
characters per second), sending the sentence fragments “THE WESTERN ELECTRIC COMPANY”, “FRESHEST
EGGS AT BOTTOM MARKET PRICES”, and “SHE IS HIS SISTER”.

4“Asynchronous” refers to the transmitting and receiving devices not having to be in perfect synchronization in
order for data transfer to occur. In synchronous serial networks, a common “clock” signal maintains transmitting and
receiving devices in a constant state of synchronization, so that data packets do not have to be preceded by “start”
bits or followed by “stop” bits. Synchronous data communication networks are therefore more efficient (not having
to include “extra” bits in the data stream) but also more complex. Most long-distance, heavy traffic digital networks
(such as the “backbone” networks used for the Internet) are synchronous for this reason.
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3.2 Physical encoding of bits

Telegraph systems were Boolean in nature: representing “dots” and “dashes” by one electrical
state of the telegraph line, and pauses by another. When manually-actuated keyswitches were
abandoned in favor of teletype machines, and Morse code abandoned in favor of the Baudot (5-
bit) code for representing alphanumeric characters, the electrical nature of the telegraph (at least
initially5) remained the same. The telegraph line would either be energized or not, corresponding
to marks or spaces made on the teletype paper.

Many modern digital communication standards represent binary “1” and “0” values in exactly
this way: a “1” is represented by a “mark” state and a “0” is represented by a “space” state. “Marks”
and “spaces” in turn correspond to different voltage levels between the conductors of the network
circuit. For example, the very common EIA/TIA-232 serial communications standard (once the
most popular way of connecting peripheral devices to personal computers, formerly called RS-232)
defines a “mark” (1) state as −3 Volts between the data wire and ground, and a “space” (0) state
as +3 Volts between the data wire and ground. This is referred to as Non-Return-to-Zero6 or NRZ
encoding:

0 0 1 0 0

Non-Return-to-Zero (NRZ) encoding

mark

space

An easy way to remember the difference between a “mark” and a “space” in this scheme is
to recall the operation of old telegraph printing units, specifically how they created marks and
spaces on moving paper strip. When the printing unit was energized (i.e. the transmitting key was
pressed, sending current through the solenoid coil of the printer, corresponding to a “1” state), the
printer’s iron armature would be pulled down to draw a mark on the paper strip. When de-energized
(transmitting key released, stopping current in the telegraph line, corresponding to a “0” state), the
printer’s armature would spring-return up from the paper to leave a blank space.

5Later versions of teletype systems employed audio tones instead of discrete electrical pulses so that many different
channels of communication could be funneled along one telegraph line, each channel having its own unique audio tone
frequency which could be filtered from other channels’ tones. This was a form of analog multiplexing.

6This simply refers to the fact that the signal never settles at 0 Volts.



18 CHAPTER 3. TUTORIAL

A different way to represent bits in serial fashion is to use bipolar (positive and negative) voltage
levels to represent “1” and “0” bits respectively with zero-voltage representing resting states between
bits. This general approach is known as Bipolar Return-to-Zero or RZ encoding:

0 0 1 0 0

Return-to-Zero (RZ) encoding

This encoding is used in the ARINC 429 serial communications standard, popularly applied
in aviation electronics (“avionics”) systems. An advantage this offers over NRZ encoding is that
with RZ each and every bit has its own distinct pulse peak which makes the bit states completely
unambiguous. Another way of stating this same fact is to say that the serial data stream is self-
clocking : i.e. the clock signal synchronizing each bit may be interpreted directly from the data
stream.

Other versions of RZ encoding exist besides this one, but the basic principle of always returning
to a zero-voltage state between “high” bits is the common feature.
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Another method to serially represent bits is to use an oscillating (square-wave) signal, counting
up and down transitions (pulse edges) at specific times to represent 1 and 0 states. This is called
Manchester encoding, and it is used in the 10 Mbps (10 million bits per second) version of Ethernet
as well as some specialized industrial network standards as well (e.g. FOUNDATION Fieldbus “H1”
and Profibus “PA”):

C
lo

ck
ed

C
lo

ck
ed

C
lo

ck
ed

C
lo

ck
ed

C
lo

ck
ed

0 0 1 0 0

clock
period

clock
period

clock
period

clock
period

Manchester encoding

R
ev

er
sa

l

R
ev

er
sa

l

Note how each binary bit (0 or 1) is represented by the direction of the voltage signal’s transition.
A low-to-high transition represents a “1” state while a high-to-low transition represents a “0” state.
Extra “reversal” transitions appear in the pulse stream only to set up the voltage level as needed
for the next bit-representing transitions. The representation of bits by transitions rather than by
static voltage levels guarantees the receiving device can naturally detect the clock frequency of
the transmitted signal7. Manchester data is therefore another example of a self-clocking encoding
scheme.

Interpreting a Manchester waveform is easier than it first appears. The key is identifying which
transitions represent “clocked” bits and which transitions represent “reversals” prior to bits. If we
identify the widest periods of the waveform, we know the transitions in these periods must represent
real bits because there are no reversals. Another way to say this is the greatest time period found
between successive transitions in a Manchester waveform is the clock period. Once we identify this

7This is most definitely not the case with NRZ encoding. To see the difference for yourself, imagine a continuous
string of either “0” or “1” bits transmitted in NRZ encoding: it would be nothing but a straight-line DC signal. In
Manchester encoding, it is impossible to have a straight-line DC signal for an indefinite length of time. Manchester
signals must oscillate at a minimum frequency equal to the clock speed, thereby guaranteeing all receiving devices
the ability to detect that clock speed and thereby synchronize themselves with it.
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clock period, we may step along the waveform at that same period width to distinguish clocked bits
from reversals.

Yet another method for encoding binary 1 and 0 states is to use sine waves of different frequencies
(“tone bursts”). This is referred to as Frequency Shift Keying, or FSK, and it is the method of
encoding embodied in the Bell 202 standard once used for computer modems and for communicating
caller ID data over simple telephone service lines.

0 0 1 0 0

Frequency Shift Key (FSK) encoding

The Bell 202 standard defines two complete 2200 Hz cycles as a “0” bit (space) and one complete
1200 Hz cycle as a “1” bit (mark). This standard was invented as a way to exchange digital data
over telephone networks, which were built to communicate audio-frequency AC signals and thus
could not reliably communicate the square-wave (NRZ) signals associated with direct digital data.
By assigning digital values to different audio frequencies, serial data could be communicated over
telephone channels as a series of sine-wave tones.

Other methods exist as well for encoding digital data along network cables as well.
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3.3 Communication speed

In order to successfully communicate digital data along a network, there must not only be a standard
agreed upon between transmitting and receiving devices for encoding bits (NRZ, Manchester, FSK,
etc.), but there must also be a standard in place for the speed at which those bits will be sent. This
is especially true for NRZ and FSK encoding, where the “clock” speed is not explicitly present in
the signal8.

For example, consider the confusion that could arise interpreting a NRZ signal if the transmitting
device sends data at half the speed assumed by the receiving device:

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

What was sent

What was interpreted
by the receiver

Actual duration
of each bit

Assumed duration
of each bit

(by the receiver)

(from the transmitter)

Thus, one of the essential parameters in a serial data communication system is the bit rate,
measured in bits per second (bps). Some communications standards have fixed bit rates, such as
FOUNDATION Fieldbus H1 and Profibus PA, both standardized at exactly 31.25 kbps. Some, such
as Ethernet, have a few pre-defined speeds (10 Mbps, 100 Mbps, 1 Gbps) defined by the specific
transmitting and receiving hardware used. Others, such as EIA/TIA-232 may be arbitrarily set by
the user at speeds ranging from 300 bps to over 115 kbps.

An older term sometimes used synonymously with bit rate is baud rate, however “bits per second”
and “baud” are actually different things. “Baud” refers to the number of voltage (or current)
alternations per second of time, whereas “bits per second” refers to the actual number of binary
data bits communicated per second of time. Baud is useful when determining whether or not the
bandwidth (the maximum frequency capacity) of a communications channel is sufficient for a certain
communications purpose. For a string of alternating bits (e.g. 010101010101) using NRZ encoding,

8This is one of the advantages of RZ and Manchester encoding: they are “self-clocking” serial digital signals.
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the baud rate is equivalent9 to the bit rate: exactly one voltage transition for each bit. For a string
of unchanging bits (e.g. 000000000000 or 111111111111) using NRZ encoding, the baud rate is
far less than the bit rate. In systems using Manchester encoding, the worst-case10 baud rate will
be exactly twice the bit rate, with two transitions (one up, one down) per bit. In some clever
encoding schemes, it is possible to encode multiple bits per signal transition, such that the bit rate
will actually be greater than the baud rate.

9This is likely why “bit rate” and “baud rate” became intermingled in digital networking parlance: the earliest
serial data networks requiring speed configuration were NRZ in nature, where “bps” and “baud” are one and the
same.

10For Manchester encoding, “worst-case” is a sequence of identical bit states, such as 111111111111, where the
signal must make an extra (down) transition in order to be “ready” for each meaningful (up) transition representing
the next “1” state.
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3.4 Data frames

Serial data communicated asynchronously means the transmitting and receiving hardware need not
be in perfect synchronization to reliably send and receive digital data. In order for this to work,
data must be sent in “frames” or “packets” of fixed (maximum) length, each frame preceded by
a special “start” signal and concluded with a special “stop” signal. As soon as the transmitting
device issues the “start” signal, the receiving device synchronizes to that start time, and runs at the
pre-determined clock speed to gather the successive bits of the message until the “stop” signal is
received. So long as the internal clock circuits of the transmitting and receiving devices are running
at approximately the same speed, the devices will be synchronized closely enough to exchange a short
message without any bits being lost or corrupted. There is such a thing as a synchronous digital
network, where all transmitting and receiving devices are locked into a common clock signal so they
cannot stray out of step with each other. The obvious advantage of synchronous communication is
that no time need be wasted on “start” and “stop” bits, since data transfer may proceed continuously
rather than in packets. However, synchronous communication systems tend to be more complex due
to the need to keep all devices in perfect synchronization, and thus we see synchronous systems used
for long-distance, high-traffic digital networks such as those use for Internet “backbones” and not
for short-distance networks.

Like bit rate, the particular scheme of start and stop bits must also be agreed upon in order
for two serial devices to communicate with each other. In some networks, this scheme is fixed and
cannot be altered by the user. Ethernet is an example of this, where a sequence of 64 bits (an
alternating string of “1” and “0” bits ending with a “1, 1”; this is the “preamble” and “start frame
delimiter” or “SFD” bit groups) is used to mark the start of a frame and another group of bits
specifies the length of the frame (letting the receiver know ahead of time when the frame will end).
A graphic description of the IEEE 802.3 standard for Ethernet data frames is shown here, illustrating
the lengths and functions of the bits comprising an Ethernet frame:

Preamble
Destination
address

Source
address

Frame
check
sequenceData

48 bits 48 bits

16 bits

46 to 1500 bytes 32 bits

(CRC)

56 bits

8 bits

S
F

D

Start Stop

Length
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A simpler example of a data frame is that generated and received by UART (Universal
Asynchronous Receiver-Transmitter) circuits, used in communications standards such as EIA/TIA-
232, 422, and 485. A single bit marks the start of a message frame, followed by a succession of data
bits comprising the “payload” of the frame, and terminated by at least one bit marking the end
(stop) of the frame. An optional parity bit serves as a crude error-checking feature:

Data

Start Stop

1 bit

S
tart

Typically 5 to 8 bits

1 bit

P
arity

1 or 2 bits

S
top

In many UART-based serial networks the user is free to select options for the number of data
bits, parity, and stop bits. It is imperative in such systems that all transmitting and receiving
devices within a given network be configured exactly the same, so that they will all “agree” on how
to send and receive data. A screenshot from a UNIX-based serial communication terminal program
(called minicom11) shows these options:

In this particular screenshot, you can see the data rate options (extending from 300 bps all the
way up to 230400 bps!), the number of data bits (from 5 to 8), and the number of stop bits (1 or
2), all configurable by the user. Of course, if this program were being used for communication of

11An equivalent program for Microsoft Windows is Hyperterminal. A legacy application, available for both Microsoft
Windows and UNIX operating systems, is the serial communications program called kermit.
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data between two personal computers, both of those computers would need these parameters set
identically in order for the communication to take place. Otherwise, the two computers would not
be in agreement on speed, number of data bits, and stop bits; their respective data frames simply
would not match.

To give an example of an EIA/TIA-232 data frame shown as a series of voltage states, consider
this waveform communicating a string of eight bits (01011001), using NRZ encoding. Here, a single
“start” marks the beginning of the data frame, while two successive “stop” bits end it, and in this
case there is no parity bit. Also note how the bit sequence is transmitted “backwards,” with the
least-significant bit (LSB) sent first and the most-significant bit (MSB) sent last12:

Time

Data

. . . . . .

Start Stop Stop1 0 0 0 01 1 1

Mark

Space

Mark Mark Mark Mark Mark Mark Mark Mark

Space Space Space Space

(LSB) (MSB)

Serial bitstream for the digital byte 01011001,
where the least-significant bit (LSB) is sent first

Interestingly, the “mark” state (corresponding to a binary bit value of “1”) is the default state
of the communications channel when no data is being passed. The “start” bit is actually a space
(0). This is the standard encoding scheme for EIA/TIA-232, EIA/TIA-485, and some other NRZ
serial communication standards.

12This is standard in EIA/TIA-232 communications.
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3.5 Parity

One of the options you probably noticed in the “minicom” terminal program screenshot was
something called parity. This is a simple form of error-checking used in many serial communication
standards. The basic principle is quite simple: an extra bit is added at the end of the data frame
(between the data and stop bits) to force the total number of “1” states to be either odd or even.
For example, in the data stream just shown (10011010), there is an even number of “1” bits. If the
serial device sending this eight-bit data group were configured for “odd” parity, it would append
an additional “1” to the end of that frame to make the total number of “1” bits odd rather than
even. If the next data group were 11001110 instead (already having an odd number of “1” bits), the
transmitting device would have to attach a “0” parity bit on to the data frame in order to maintain
an odd count of “1” bits.

Meanwhile, the receiving device is programmed to count up all the “1” bits in each data frame
(including the parity bit), and check to see that the total number is still odd (if the receiving device
is configured for odd parity just as the transmitting device, which the two should always be in
agreement). Unlike the transmitting device which is tasked with creating the parity bit state, the
receiving device is tasked with reading all the data bits plus the parity bit to check if the count is still
as it should be. If any one bit somehow gets corrupted during transmission, the received frame will
not have the correct parity, and the receiving device will “know” something has gone wrong. Parity
does not suggest which bit got corrupted, but it will indicate if there was a single-bit13 corruption
of data, which is better than no form of error-checking at all.

13It should take only a moment or two of reflection to realize that such a parity check cannot detect an even

number of corruptions, since flipping the states of any two or any four or any six (or even all eight!) bits will not
alter the evenness/oddness of the bit count. So, parity is admittedly an imperfect error-detection scheme. However,
it is certainly better than no error detection at all!
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The following example shows how parity-checking would work to detect a transmission error in a
7-bit data word. Suppose a digital device asynchronously transmits the character “T” using ASCII
encoding (“T” = 1010100), with one start bit, one stop bit, and “odd” parity. Since the “start” bit is
customarily a 0 state (space), the data transmitted in reverse order (LSB first, MSB last), the parity
bit transmitted after the data’s MSB, and the “stop” bit represented by a 1 state (mark), the entire
frame will be the following sequence of bits: 0001010101. Viewed on an oscilloscope display where
a negative voltage represents a “mark” and a positive voltage represents a “space,” the transmitted
data frame will look like this:

Time

Data

. . . . . .

Start Stop

Space

Mark Mark Mark Mark Mark

Space Space Space Space

(LSB) (MSB)

0 10 0 1 0 1 0

Space

Mark

(Idle) (Idle)

(Parity)

An odd number of 1’s
for the data and parity

bits combined

Note how the parity bit in this particular frame has been generated by the transmitting device
as a 0 state, because the parity type is set for “odd,” and the transmitting device realizes that the
7-bit data word already has an odd number of 1 bits in it and doesn’t need another “1” for the
parity bit. The pulse waveform you see above is how this data frame will be transmitted onto the
network.
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Now suppose this transmitted frame encounters a significant amount of electrical noise as it
travels to the receiving device. If the frame reaches the receiver as shown in the next illustration,
the receiving device will interpret the message incorrectly:

Data

. . . . . .

Start Stop

(LSB) (MSB)

0 10 0 0 1 0(Idle) (Idle)

(Parity)

Mark threshold

Space threshold

0

Bit error!
An even number of 1’s
for the data and parity

bits combined

One of the bits has been corrupted by noise, such that the fifth transmitted data bit (which
should be 1) is instead received as a 0. The receiving device, of course, has no knowledge of the
noise present on the NRZ signal because all it “sees” is the “mark” or “space” states as interpreted
by its input buffer circuitry. When the receiving device goes to count the number of 1 bits in the
message (data plus parity bit, disregarding start and stop bits), however, it will count an even
number of 1’s instead of an odd number of 1’s. Since the receiving device is also set for “odd” parity
to match the transmitting device, it expects an odd number of 1’s in the received message. Thus, it
“knows” there is a problem somewhere in this transmission, because the received parity is not odd
as it should be.

Parity-checking does not tell us which bit is corrupted, but it does indicate that something has
gone wrong in the transmission. If the receiving device is programmed to take action on receipt of
a non-matching parity, it may reply with a request for the transmitting device to re-send the data
as many times as necessary until the parity is correct.
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If we look at the “minicom” terminal screenshot again to analyze the parity options, we see there
are several to choose from:

The five options for parity in this program include None, Even, Odd, Mark, and Space. “None”
parity is self-explanatory: the transmitting device does not attach an extra bit for parity at all, and
the receiving device does not bother to check for it. Since the inclusion of a parity bit does add
to the bulk of a data frame, it has the unfortunate effect of slowing down communications (more
bit “traffic” occupying the channel than would otherwise need to be), thus the option to waive
parity altogether for a more compact (faster) data frame. “Even” and “Odd” parity options work
as previously described, with the transmitting device adding a parity bit to each frame to bring
the total “1” bit count either to an even number or to an odd number (depending on the user’s
configuration), and the receiving device checks for the same. “Mark” and “Space” are really of
limited usefulness. In either of these two options, a parity bit is added, but the transmitting device
does not bother to calculate the evenness or oddness of the data bits, rather simply making the
parity bit always equal to 1 (“mark”) or 0 (“space”) as chosen by the user. The receiving device
checks to see that the parity bit is always that value. These two options are of limited usefulness
because the parity bit fails to reflect the status of the data being transmitted. The only corruption
the receiving device can detect, therefore, is a corruption of the parity bit itself!

One will often find the communications parameters of a serial network such as this displayed
in “shorthand” notation as seen at the top of the “minicom” terminal display: 38400 8N1. In this
case, the terminal program is configured for a bit rate of 38400 bits per second, with a data field 8
bits long, no parity bit, and 1 stop bit. A serial device configured for a bit rate of 9600 bps, with a
7-bit data field, odd parity, and 2 stop bits would be represented as 9600 7O2.
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3.6 Frame check sequences

Parity bits are not the only way to detect error, though. Some communication standards employ
more sophisticated means called a frame check sequence, which is a collection of bits mathematically
calculated by the transmitting device based on the content of the data. The mathematical calculation
is called a hash algorithm, and it always generates an output with a fixed number of bits (called a
hash code or a digest or simply a hash). In the IEEE 802.3 Ethernet standard, the hash algorithm
is called a 32-bit Cyclic Redundancy Check, or CRC32 14. Like a parity algorithm, the transmitting
device processes the data bits to create the hash and then appends that hash to the end of the
data field. The receiving device then takes the received data field and performs the exact same
hash algorithm to see that its hash matches the one transmitted. As it is highly unlikely that any
random corruption of bits during transmission would result in identical hash codes, this method is
more robust for error-checking than parity.

An analogy for hashing is to envision someone sending a package to someone else in the mail,
and being concerned that portions of the package’s contents might be lost in transit. If the sender
places the package on a precise weigh-scale and then writes the weight measurement on the package
prior to sending, the receiving party will be able to weight the package on their own precise scale
to see that their measurement agrees with the weight written by the sender on the package. If the
receiving weight doesn’t match the recorded weight of the package at sending time, something must
be different. The weight measurement is the hash code, or digest, of the package. If included in the
package’s mailing label and used as a means of detecting loss, it would be the frame check sequence.

Like parity, frame check sequences do not indicate where the errors lie, and also like parity
they are imperfect. A chance always exists that just the right combination of errors may occur in
transmission causing the frame check sequence values at both ends to match even though the data is
not identical15, but this is highly unlikely (calculated to be one chance in 1014 for Ethernet’s 32-bit
CRC). It is certainly better than having no error detection ability at all.

If the communications software in the receiving device is configured to take action on a detection
of error, it may return a “request for re-transmission” to the transmitting device, so the corrupted
message may be re-sent. This is analogous to a human being hearing a garbled transmission in a
telephone conversation, and subsequently requesting the other person repeat what they just said.

14Several web-based (online) CRC32 generators exist which you may experiment with. Also, stronger has algorithms
such as SHA256 are commonly available as command-line tools in operating systems such as Linux.

15This is called a hash collision.
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3.7 Flow control

Another option often found in serial data communications settings is something called flow control.
In the context of digital communications, “flow control” refers to the ability of a receiving device to
request a reduction in speed or even a complete cessation of data transmission if the speed of the
transmitted data is too fast for the receiving device to keep pace. An example common to personal
computers is that of a mechanical printer: while the computer may be able to transmit data to
be printed at a very rapid pace, the printer is limited by the speed of its printing mechanism. In
order to make the printing process go more smoothly, printers are equipped with buffer memory
to store portions of the print job received from the transmitting computer that have not had time
to print yet. However, these buffers are of finite size, and may become overwhelmed on large print
jobs. So, if and when a printer detects its buffer near full capacity, it may issue a command to the
computer to freeze serial data transmission until the printer’s buffer has had some time to empty.
In other words, the printer can send a message to the computer saying “Stop!” when its buffer is
full, then later send another message saying “Resume” when its buffer is empty enough to resume
filling. Thus, the receiving device has control over the flow of data necessary to manage its buffer
resources.

Flow control in serial networks may take place in either hardware mode or software mode.
“Hardware” mode refers to the existence of additional connector pins and cable conductors
specifically designated for such “halt” and “resume” signals. “Software” mode refers to data codes
communicated over the regular network channel telling the transmitting device to halt and resume.
Software flow control is sometimes referred to as XON/XOFF in honor of the names given to these
codes16. Hardware flow control is sometimes referred to as RTS/CTS (“Request To Send” and
“Clear To Send” respectively) in honor of the labels given to the serial port pins conveying these
signals. In a hardware flow-controlled system the device intending to transmit first asserts an RTS
signal which is then received by the other device, that other device in turn responding with an
asserted CTS signal indicating it is ready (i.e. “clear”) to begin receiving data.

16The “XOFF” code tells the transmitting device to halt its serial data stream to give the receiving device a
chance to “catch up.” In data terminal applications, the XOFF command may be issued by pressing the key
combination <Ctrl><S>. This will “freeze” the stream of text data sent to the terminal by the host computer.
The key combination <Ctrl><Q> sends the “XON” code, enabling the host computer to resume data transmission
to the terminal.
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The following screen shot shows options for flow control in the “minicom” terminal program:

Here, you can see “hardware” flow control enabled and “software” flow control disabled. The
enabling of “hardware” flow control means the serial communications cable must be equipped with
the necessary lines to convey these handshaking signals (when needed) between devices. Software
flow control tends to be the more popular option, the advantage of this of course being fewer
conductors necessary in the serial data cable. The disadvantage of using software flow control over
hardware is a slight inefficiency in data throughput, since the XON and XOFF commands require
time to be transmitted serially over the same network as the rest of the data.
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3.8 Channel arbitration

When two or more communication devices exchange data, the directions of their communication
may be classified into one of two categories: simplex or duplex. A “simplex” network is one-way
communication only. A sensor outputting digital data to a remotely-located indicator over a digital
network would be an example of simplex communication, where the flow of information goes from
sensor to indicator, and never the other direction. A public-address (PA) system is an analog example
of a simplex communication system, since audio information only goes in one direction (from the
person with the microphone to the audience).

“Duplex” communication refers to two-way data exchange. Voice telephony is an analog example
of two-way (duplex) communication, where either person at the end of the connection can hear
the other person talking. Duplex communication may be further subdivided into half-duplex and
full-duplex, referring to whether or not the two-way communication may be simultaneous. In a
“full-duplex” system, both devices may transmit data to each other simultaneously because they
have separate channels (separate wires, or optical fibers, or radio frequencies) for their respective
transmissions. In a “half-duplex” system, only one device may transmit at any time because the
devices must share a common channel. A telephone system is an example of a full-duplex system,
although it may be rather difficult for the people to understand each other when they are speaking
over one another. A push-to-talk radio system (“walkie-talkie”) is an example of a half-duplex
system, where each person must take turns talking.

In half-duplex systems, there must be some way for the respective devices to “know” when they
are allowed to transmit. If multiple devices sharing one communications channel attempt to transmit
simultaneously, their messages will “collide” in such a way that no device on the network will be
able to interpret either message. The problem is analogous to two people simultaneously pressing
the “talk” buttons on their two-way radio units: neither of the talking people can hear each other,
and anyone else on the same channel hears the garbled amalgam of those two peoples’ superimposed
transmissions. In order to avoid this scenario in a half-duplex network, there must be some strategy
to coordinate transmissions so only one device “talks” at any given time. The problem of deciding
“who” gets to “talk” at any given time is generally known as channel arbitration. Several strategies
for addressing this problem have been developed in the data communications field, a few of which
will be described in this subsection.
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3.8.1 Master-slave

Our first method works on the principle of having only one device on the network (the “master”)
with permission to arbitrarily transmit data. All other devices on the network are “slaves,” which
may only respond in direct answer to a query from the master. If the network happens to be simplex
in nature, slave devices don’t even have the ability to transmit data – all they can do is “listen” and
receive data from the one master device.

For example, in a half-duplex master-slave network, if one slave device has data that needs to
be sent to another slave device, the first slave device must wait until it is prompted (“polled”)
by the master device before it is allowed to transmit that data to the network. Once the data is
transmitted, any and all slave devices may receive that transmission, since they all “listen” to the
same communications channel.

An example of a master-slave industrial network is aModbus network connecting a programmable
logic controller (PLC) to multiple variable-frequency motor drives (VFDs). The master device (the
PLC) initiates all communications, with the slave devices (the motor drives) at most replying to
the PLC master (and in many cases not replying at all, but merely receiving data from the PLC in
simplex mode).

Master-slave arbitration is simple and efficient, but suffers from one glaring weakness: if the
master device happens to fail, all communication on the network halts. This means the ability of
any device on the network to transmit information utterly depends on the proper function of one
device, representing a high level of dependence on that one (master) device’s function.

Some master-slave networks address this problem by pre-assigning special “back-up” status to
one or more slave devices. In the event that the master device fails and stops transmitting for a
certain amount of time, the back-up device becomes “deputized” to act as the new master, taking
over the role of the old master device by ensuring all slave devices are polled on schedule.
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3.8.2 Token-passing

Another method of arbitrating which device gets to transmit on a channel in a half-duplex network
is the token-passing method. Here, a special data message called the “token” serves as temporary
authorization for each device to transmit. Any device in possession of the token is allowed to act as
a master device, transmitting at will. After a certain amount of time, that device must relinquish
the token by transmitting the token message on the network, complete with the address of the
next device. When that other device receives the token message, it switches into master mode and
transmits at will. The strategy is not unlike a group of people situated at a table, where only one
of them at a time holds some object universally agreed to grant speaking authority to the holder.

Token-passing ensures only one device is allowed to transmit at any given time, and it also solves
the problem inherent to master-slave networks of what happens when the master device fails. If one
of the devices on a token-passing network fails, its silence will be detected after the last token-holding
device transmits the token message to the failed device. After some pre-arranged period of time, the
last token-holding device may re-transmit the token message to the next device after the one that
failed, re-establishing the pattern of token sharing and ensuring all devices get to “speak” their turn
once more.

Examples of token-passing networks include the general-purpose Token Ring network standard
(IEEE 802.5) and the defunct Token Bus (IEEE 802.4).

Token-passing networks require a substantially greater amount of “intelligence” built into each
network device than master-slave requires. The benefits, though, are greater reliability and a
high level of bandwidth utilization. That being said, token-passing networks may suffer unique
disadvantages of their own. For example, there is the question of what to do if such a network
becomes severed, so that the one network is now divided into two segments. At the time of the
break, only one device will possess the token, which means only one of the segments will possess
any token at all. If this state of affairs holds for some time, it will mean the devices lucky enough
to be in the segment that still has the token will continue communicating with each other, passing
the token to one another over time as if nothing was wrong. The isolated segment, however, lacking
any token at all, will remain silent even though all its devices are still in working order and the
network cable connecting them together is still functional. In a case like this, the token-passing
concept fares no better than a master-slave network. However, what if the designers of the token-
passing network decide to program the devices to automatically generate a new token in the event
of prolonged network silence, anticipating such a failure? If the network becomes severed and
broken into multiple segments, the isolated segments will now generate their own tokens and resume
communication between their respective devices, which is certainly better than complete silence as
before. The problem now is, what happens if a technician locates the break in the network cable
and re-connects it? Now, there will be multiple tokens on one network, and confusion will reign!

Another example of a potential token-passing weakness is to consider what would happen to such
a network if the device in possession of the token failed before it had an opportunity to relinquish
the token to another device. Now, the entire network will be silent, because no device possesses the
token! Of course, the network designers could anticipate such a scenario and pre-program the devices
to generate a new token after some amount of silence is detected, but then this raises the possibility
of the previously-mentioned problem when a network becomes severed and multiple tokens arise in
an effort to maintain communication in those isolated network segments, then at some later time
the network is re-connected and now multiple tokens create data collision problems.
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3.8.3 TDMA

A method of channel arbitration similar to token-passing is TDMA, or “Time Division Multiple
Access.” Here, each device is assigned an absolute “time slot” in a repeating schedule when it alone
is allowed to transmit. With token-passing, permission to transmit is granted to each device by
the previous device as it relinquishes the token. With TDMA, permission to transmit is granted by
an appointment on a fixed time schedule. TDMA is less time-efficient than token-passing because
devices with no data to transmit still occupy the same amount of time in the schedule as when they
have data to transmit. However, TDMA has the potential to be more tolerant of device failure and
network segmentation than token-passing because neither the failure of a device nor segmentation
of the network can prevent remaining devices from communicating with each other. If a device
fails (becomes “silent”) in a TDMA network, that time slot simply goes unused while all other
communication continues unabated. If the network becomes severed, each set of devices in the two
segments will still follow their pre-programmed time schedule and therefore will still be able to
communicate with each other.

An example of a TDMA network includes the legacy 2G (GSM) cellular telephone standard,
which used TDMA as part of a larger strategy to manage access between multiple cell phones and cell
towers. TDMA arbitration works very well for wireless (radio) networks where the communication
channel is inherently unreliable due to physical obstacles. If a device on a TDMA wireless network
falls out of range or becomes blocked, the rest of the network carries on without missing a step.

Practical TDMA networks are not quite as fault tolerant as the idealized vision of TDMA
previously described. Real TDMA networks do depend on some “master” device to assign new
time slots and also to maintain synchronization of all device clocks so that they do not “lose their
place” in the schedule. If this master device fails, the TDMA network will lose the ability to accept
new devices and will (eventually) lose synchronization.

In light of this fact, it might appear at first that TDMA is no better than master-slave arbitration,
since both ultimately depend on one master device to manage communication between all other
devices. However, TDMA does offer one significant benefit over master-slave, and that is more
efficient use of time. In a master-slave network, the master must poll each and every device on the
network to check if it has data to transmit. This polling requires additional network time beyond
that required by the “slave” devices to report their data. In a TDMA network, the master device
need only occupy time transmitting to the network when updating time-slot assignments and when
broadcasting time synchronization messages. You can think of TDMA as being a “smarter” version
of master-slave arbitration, where the devices need only be told once when they may transmit, rather
than having to be told every single time when they may transmit.
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3.8.4 CSMA

A completely different method of channel arbitration is where any and all devices have permission
to transmit when the network is silent. This is generally called CSMA, or “Carrier Sense Multiple
Access.” There are no dedicated master and slave devices with CSMA, nor are devices permitted
to transmit in a pre-determined order as with token-passing or in a pre-determined schedule as
with TDMA. Any device on a CSMA network may “talk” in any order and at any time whenever
the network is free. This is analogous to an informal conversation between peers, where anyone is
permitted to break the silence.

Of course, such an egalitarian form of channel arbitration invites instances where two or more
devices begin communicating simultaneously. This is called a collision, and must be addressed in
some manner in order for any CSMA network to be practical.

Multiple methods exist to overcome this problem. Perhaps the most popular in terms of number
of installed networks is CSMA/CD (“Carrier Sense Multiple Access with Collision Detection”), the
strategy used in Ethernet. With CSMA/CD, all devices are not only able to sense an idle channel,
but are also able to sense when they have “collided” with another transmitting device. In the event
of a collision, the colliding devices both cease transmission, and set random time-delays to wait
before re-transmission. The individual time delays are randomized to decrease the probability that
a re-collision between the same devices will occur after the wait. This strategy is analogous to
several peers in one group holding a conversation, where all people involved are equally free to begin
speaking, and equally deferential to their peers if ever two or more accidently begin speaking at the
same time. Occasional collisions are normal in a CSMA/CD network, and should not be taken as
an indication of trouble unless their frequency becomes severe.

A different method of addressing collisions is to pre-assign to each device on the network a
priority number, which determines the order of re-transmission following a collision. This is called
CSMA/BA, or “Carrier Sense Multiple Access with Bitwise Arbitration,” and it is analogous to
several people of different social levels in one group holding a conversation. All are free to speak
when the room is silent, but if two or more people accidently begin speaking at the same time, the
person of highest “rank” is allowed to continue while the “lower-rank” person(s) must wait. This
is the strategy used in CAN Bus technology, one of the more popular data networks for digital
automotive subsystems.

Some CSMA networks lack the luxury of collision detection, and must therefore strive to prevent
collisions rather than gracefully recover from them. Wireless digital networks are an example where
collision detection is not an option, since a wireless (radio) device having a single antenna and a
single channel cannot “hear” any other devices’ transmissions while it is transmitting, and therefore
cannot detect a collision if one were to occur. A way to avoid collisions for such devices is to pre-
assign each device on the network with a priority number, which determines how long each device is
forced to wait after detecting a “quiet” network before it is allowed to transmit a new message. So
long as no two devices on the network have the same “wait” time, there will be no collisions. This
strategy is called CSMA/CA, or “Carrier Sense Multiple Access with Collision Avoidance,” and is
the technique used for WLAN networks (the IEEE 802.11 specification). A consequence of collision
avoidance, though, is unequal access to the network. Those devices with higher-priority (shorter
wait times) will always have an advantage in transmitting their data over devices of lower priority.
The degree of disparity in network access grows as more devices occupy the network. CSMA/CA is
analogous to a group of shy people talking, each person afraid to speak at the same time as another,
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and so each person waits a different amount of time following the conclusion of the last utterance
before daring to speak. This sort of ultra-polite behavior may ensure no one accidently interrupts
another, but it also means the shiest person will hardly ever get a chance to speak.

One characteristic distinguishing all CSMA networks from master-slave, token-passing, and
TDMA networks is a lack of determinism. “Determinism” is the ability of a given arbitration
method to guarantee every device on the network is able to transmit within a specified maximum
time. That is to say, a “deterministic” network ensures no device will ever be forced to wait longer
than some specified maximum amount of time before it can transmit. A master-slave or TDMA
network following a repeating schedule guarantees that the wait time will never be longer than the
period of the cycle, and therefore is deterministic. A token-passing network following a definite order
guarantees that the wait time will never take longer than the number of devices times the maximum
time each device may hold the token, and so is also deterministic. A CSMA network, however,
offers no such guarantee for response time and is therefore a “non-deterministic” network. At least
hypothetically, any device on a CSMA network may be prevented indefinitely from transmitting its
message if it keeps being blocked by other devices’ transmissions (the one highest-priority device in
a CSMA/BA or CSMA/CA network being an exception of course). Determinism is important in
industrial control systems where communication delays may adversely affect the stability of a closed-
loop feedback control, and it is especially important in safety control systems where fast action is
needed to avert catastrophe.

A potential problem in any digital network, but particularly networks employing CSMA
arbitration, is something known as jabbering. If a network device happens to fail in such a way
that it ceaselessly transmits a signal on the network, none of the other CSMA devices will ever be
allowed to transmit because they continuously detect a “carrier” signal from the jabbering device17.
Some Ethernet components sport jabber latch protection circuits designed to detect jabber and
automatically cut off the offending device from the network, or employ “store-and-forward” buffering
which is able to block jabbered data frames.

17I once encountered this very type of failure on the job, where a copper-to-fiber adapter on a personal computer’s
Ethernet port jammed the entire network by constantly spewing a meaningless stream of data. Fortunately, indicator
lights on all the channels of the communications equipment clearly showed where the offending device was on the
network, allowing us to take it out of service for replacement.
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3.9 The OSI Reference Model

Digital data communication may be described in many ways. For example, a connection formed
between two computers to exchange a text document is a multi-layered activity, involving many
steps to convert human language into electrical impulses for transmission, then re-convert those
electrical impulses into human language again at the receiving end. Not surprisingly, there usually
exist many different ways to perform this same task: different types of networks, different encodings,
different communications and presentation software, etc.

To illustrate by analogy, think of all the actions and components necessary to transport items
using an automobile. In order to move furniture from an apartment to a house, for example, you
would require the following:

• An appropriate vehicle

• Addresses or directions for both locations

• A driver’s license and knowledge of driving rules

• Fuel for the vehicle

• Knowledge of how to safely stack furniture for transport

• Knowledge of how the furniture is to be placed in the house

These details may seem trivial to mention, as human beings familiar with the common task of
moving personal belongings from one location to another, but imagine having to describe every single
action and component to someone from a primitive culture ignorant of vehicles, addresses, maps,
driver’s licenses, fuel, etc. One way to help describe all this complexity would be to assign different
people to different layers of detail. For example, an automotive engineer could discuss the details
of how engines burn fuel to do mechanical work (propelling the vehicle) while a furniture loader
could describe how furniture is to be loaded and taken off the vehicle. A driving instructor could
then explain all the procedures of safely driving the vehicle, while a city planner could explain the
organization of streets and addresses in relation to a city map. Finally, an interior decorator could
wax eloquent on the proper placement of furniture in the house. Each person would be describing a
different aspect of the furniture move, each one of those aspects being important to the overall goal
of moving furniture from one location to another.

Moreover, for each one of the aspects described by a specialist, there may exist several different
alternatives. For example, there are many different models and designs of vehicle one might use
for the job, and there may be different driving rules depending on where the two locations are for
the move. Addresses and directions will certainly vary from city to city, and even within one city
there will be alternative routes between the two locations. Finally, there is virtually no end to
arrangements for furniture at the destination house, each one with its own functional and esthetic
merits.
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By the same token, the task of transporting digital data may be divided into similar categories.
In order to move and process data from one computer to another, you need the following:

• An appropriate cable (or radio link) connecting the two computers

• Standardized electrical signals to represent bit states

• Addresses for each computer on the network

• Algorithms specifying how each computer takes turns “talking” on the common network

• Algorithms specifying how to organize packets of data to be sent and received serially

• Software to format the data on the transmitting end and interpret the data on the receiving
end

Each of these aspects is important to the overall goal of creating, moving, and interpreting digital
data between two or more computers, and there are many alternative methods (standards) for each
aspect. We may represent 0 and 1 bits using NRZ (Non-Return to Zero) encoding, Manchester
encoding, FSK modulation, etc.; the signals may be electrical or they may be optical or they may
even be radio waves; the options for electrical cables and connector types are many. Bits may be
framed differently as they are packaged for transmission, and arbitration between devices on the
network managed in a variety of different ways. How we address multiple devices on a network so
messages get routed to their proper destinations is important as well.
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A scheme originally intended as a formal standard, but now widely regarded as a general
model to describe the portions of other standards, helps us clarify the complexity of digital
communications by dividing communication functions into seven18 distinct “layers.” Developed
by the ISO (International Organization for Standards)19 in 1983, the OSI Reference Model divides
communication functions into the following categories, shown in this table with examples:

Layer 7

Application

Layer 6
Presentation

Layer 5

Session

Layer 4

Transport

Layer 3

Network

Layer 2

Data link

Layer 1

Physical

This is where digital data takes on practical meaning in the
context of some human or overall system function.

This is where data gets converted between different formats.

closed, and otherwise managed for reliable data flow.

This is where complete data transfer is handled, ensuring all data
gets put together and error-checked before use.

This is where the system determines network-wide addresses,
ensuring a means for data to get from one node to another.

This is where data bits are equated to electrical, optical, or other
signals.  Other physical details such as cable and connector types

This is where "conversations" between digital devices are opened,

Examples: IP, ARP

Examples: CSMA/CD, Token passing, Master/Slave

Examples: ASCII, EBCDIC, MPEG, JPG, MP3

Examples: TCP, UDP

Examples: Sockets, NetBIOS

Examples: EIA/TIA-232, 422, 485, Bell 202
are also specified here.

This is where basic data transfer methods and sequences (frames)
are defined within the smallest segment(s) of a network.

Examples: HTTP, FTP, HART, Modbus

The vast majority of digital networking standards in existence address mere portions of the
7-layer model. Any one of the various Ethernet standards, for example, applies to layers 1 and
2, but none of the higher-level layers. In other words, Ethernet is a means of encoding digital
information in electronic form and packaging that data in a standard format understandable to other
Ethernet devices, but it provides no functionality beyond that. Ethernet does not specify how data
will be routed over large-area networks, how to manage data-exchange sessions between computers
(opening connections, initiating data transfer, closing connections), nor how to format the data to

18An additional layer sometimes added to the OSI model is layer 8, representing either the human user of the network
system or the physical process interfacing with the network system. If the purpose of this model is to describe all
the functioning portions of a communications link in the context of a system used for some practical purpose, layer 8
represents an essential part of that system and should not be ignored.

19If you are thinking the acronym should be “IOS” instead of “ISO,” you are thinking in terms of English. “ISO”
is a non-English acronym!
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represent real-world variables and media. Common serial network standards such as EIA/TIA-232
and EIA/TIA-485 don’t even go that far, being limited mostly to layer 1 concerns (signal voltage
levels, wiring, and in some cases types of electrical connectors). For example, EIA/TIA-485 does
not specify how to address multiple devices connected to a common electrical network – all it does
is specify what voltage levels represent “0” and “1” bits.

By contrast, some other digital networking standards specify nothing about lower-level layers,
instead focusing on high-level concerns. Modbus, for example, is concerned only with layer 7,
and not with any of the lower-level layers. This means if two or more devices on a network use
“Modbus” to communicate with each other, it refers only to the high-level programming codes
designed to poll and interpret data within those devices. The actual cable connections, electrical
signals, and communication techniques used in that “Modbus” network may vary widely. Anything
from EIA/TIA-232 to Ethernet to a wireless network such as WLAN may be used to actually
communicate the high-level Modbus instructions between devices. Similarly, the ASCII standard
strictly defines alphanumerical and control characters may be presented as seven-bit digital words
(layer 6), but says nothing about how that data should be physically represented (layer 1), organized
into frames of bits (layer 2), routed to different locations (layer 3), etc.
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Historical References

This chapter is where you will find references to historical texts and technologies related to the
module’s topic.

Readers may wonder why historical references might be included in any modern lesson on a
subject. Why dwell on old ideas and obsolete technologies? One answer to this question is that the
initial discoveries and early applications of scientific principles typically present those principles in
forms that are unusually easy to grasp. Anyone who first discovers a new principle must necessarily
do so from a perspective of ignorance (i.e. if you truly discover something yourself, it means you must
have come to that discovery with no prior knowledge of it and no hints from others knowledgeable in
it), and in so doing the discoverer lacks any hindsight or advantage that might have otherwise come
from a more advanced perspective. Thus, discoverers are forced to think and express themselves
in less-advanced terms, and this often makes their explanations more readily accessible to others
who, like the discoverer, comes to this idea with no prior knowledge. Furthermore, early discoverers
often faced the daunting challenge of explaining their new and complex ideas to a naturally skeptical
scientific community, and this pressure incentivized clear and compelling communication. As James
Clerk Maxwell eloquently stated in the Preface to his book A Treatise on Electricity and Magnetism
written in 1873,

It is of great advantage to the student of any subject to read the original memoirs on
that subject, for science is always most completely assimilated when it is in its nascent
state . . . [page xi]

Furthermore, grasping the historical context of technological discoveries is important for
understanding how science intersects with culture and civilization, which is ever important because
new discoveries and new applications of existing discoveries will always continue to impact our lives.
One will often find themselves impressed by the ingenuity of previous generations, and by the high
degree of refinement to which now-obsolete technologies were once raised. There is much to learn
and much inspiration to be drawn from the technological past, and to the inquisitive mind these
historical references are treasures waiting to be (re)-discovered.

43



44 CHAPTER 4. HISTORICAL REFERENCES

4.1 Ancient serial data communication

The representation and communication of text by discrete (on/off) signals is rooted in ancient
practice. The Greek historian Polybius described one such system in his Histories written in the
second century BCE, used to communicate information about military maneuvers. In this passage
Polybius describes the problem posed by primitive fire signals, and presents an improved method:

It is evident to all that in every matter, and especially in warfare, the power of acting at
the right time contributes very much to the success of enterprises, and fire signals are the
most efficient of all the devices that aid us to do this. For they show what has recently
occurred and what is still in the course of being done, and by means of them anyone
who cares to do so even if he is at a distance of three, four, or even more days’ journey
can be informed. So that it is always surprising how help can be brought by means of
fire messages when the situation requires it. Now in former times, as fire signals were
simple beacons, they were for the most part of little use to those who used them. It was
possible for those who had agreed to convey a signal that a fleet had arrived in Oreus,
Peparethus, or Chalcis, but when it came to some of the citizens having changed sides
or having been guilty of treachery or a massacre having taken place in town, or anything
of the kind, things that often happen, but cannot all be foreseen – and it is chiefly
unexpected occurrences which require instant consideration and help – all such matters
defied communication by fire signal. It was quite impossible to have a preconceived code
for things which there was no means of foretelling.

This is the vital matter; for how can anyone consider how to render assistance if he does
not know how many of the enemy have arrived, or where? And how can anyone be of
good cheer or the reverse, or in fact think of anything at all, if he does not understand
how many ships or how much corn has arrived from the allies?

The most recent method, devised by Cleoxenus and Democleitus and perfected by myself,
is quite definite and capable of dispatching with accuracy every kind of urgent messages,
but in practice it requires care and exact attention. It is as follows: We take the alphabet
and divide it into five parts, each consisting of five letters. Each of the two parties who
signal to each other must get ready five tablets and write one division of the alphabet
on each tablet. The dispatcher of the message will raise the first set of torches on the
left side indicating which tablet is to be consulted; i.e., one torch if it is the first, two if
it is the second, and so on. Next he will raise the second set on the right on the same
principle to indicate what letter of the tablet the receiver should write down.

Note the last sentence in the first paragraph: “It was quite impossible to have a preconceived code
for things which there was no means of foretelling.” One could, for example, imagine a fire-signal
code consisting of a few distinct patterns of torches, each one encoding a specific military event (e.g.
enemy approaching, surrender, victory, retreat, mutiny, riot, type of weapon(s) employed). However,
to be of any practical use the number of specific codes would have to be extremely large. Instead,
the code described by Polybius neatly handles this problem by leveraging another pre-existing code:
written language. This way the fire beacons need only encode characters of their alphabet, and with
those characters they could describe any military event encoded in their written language. The only
limitations then would be vocabulary and the speed at which messages could be communicated.
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This compounding of codes is very common in digital communication systems. For example,
the ASCII code is useful for encoding English alpha-numerical symbols as seven-bit binary words,
but when transmitting digital data over long distances we must devise ways to encode the bits
themselves as physical signals (e.g. pulses of voltage, current, light, sound, shifting frequencies,
etc.). For the sake of argument, we could even employ Polybius’ crude fire-torches as the “physical
layer” of encoding for an ASCII character set! Once received and decoded, the ASCII symbols could
themselves be interpreted as a code representing something other than text. The Modbus ASCII
standard is a good example of this, where multiple ASCII characters are interpreted to represent
“frames” of digital data which could be used to represent any arbitrary information, from numbers
to letters to machine instructions to measurements, etc.
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4.2 The original telegraph code

Samuel Morse, inventor of the telegraph, actually did not use what is known today as Morse Code
to transmit his first messages. Instead, his original method of encoding was based on decimal
numbers, with specific words represented by unique numbers. Page 29 of the book Early History
of the Electro-Magnetic Telegraph by Alfred Vail documents a typical message communicated using
Morse’s system:

The jagged lines form an oscillograph of the telegraph circuit’s digital state over time, and as
you can see it used groups of successive pulses to count digits of decimal numbers. For example, the
number 215 was encoded as two pulses followed by a brief rest, then one pulse followed by another
rest, then a sequence of five pulses. A longer rest separated individual numbers from each other, as
opposed to the shorter rests which merely separated digits of the same number from each other.

A “telegraphic dictionary” served to cross-reference common words with number values. As
you can see from the example shown, the number 215 represented the word Successful, while 36
represented Experiments, 2 represented With, and so on. One can only imagine how many numbers
would have been required to represent even a rudimentary cross-section of the English vocabulary!



Chapter 5

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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5.1 ASCII character codes

ASCII characters consist of seven-bit digital words. The following table shows all 128 possible
combinations of these seven bits, from 0000000 (ASCII “NUL” character) to 1111111 (ASCII “DEL”
character). For ease of organization, this table’s columns represent the most-significant three bits of
the seven-bit word, while the table’s rows represent the least-significant four bits. For example, the
capital letter “C” would be encoded as 1000011 in the ASCII standard.

↓ LSB / MSB → 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ‘ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN ( 8 H X h x

1001 HT EM ) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [ k {
1100 FF FS , < L \ l |
1101 CR GS − = M ] m }
1110 SO RS . > N ˆ n ˜

1111 SI US / ? O o DEL

It is worth noting that the ASCII codes for the Arabic numerals 0 through 9 are simply the four-
bit binary representation of those numbers preceded by 011. For example, the number six (0110)
is represented in ASCII as 0110110; the number three (0011) in ASCII as 0110011; etc. This is
useful to know, for example, if you need to program a computer to convert single decimal digits to
their corresponding ASCII codes: just take each four-bit numerical value and add forty-eight (0x30
in hexadecimal) to it.



5.2. HASH ALGORITHMS 49

5.2 Hash algorithms

A hash algorithm is a mathematical/logical procedure by which a large set of data generates a result
of fixed-bit-width that is fairly unique. We see hash algorithms applied as error-checking mechanisms
in such communication standards as IEEE 802.3 Ethernet.

Interestingly, hash algorithms are applicable to more than just transmitted data in a digital
network. They may also be used to validate the integrity of any collection of digital data, including
files existing within a computer’s memory or stored on a digital drive. Comparisons of hash codes
for such data would then reveal tampering or corruption of that data1.

To demonstrate, we will use the same frame check sequence algorithm used by Ethernet (called
CRC32 ) to process a dataset consisting of ASCII text characters from the following passage taken
from Henry David Thoreau’s book Walden:

If I wished a boy to know something about the arts and sciences, for instance, I would
not pursue the common course, which is merely to send him into the neighborhood of
some professor, where anything is professed and practised but the art of life; – to survey
the world through a telescope or a microscope, and never with his natural eye; to study
chemistry, and not learn how his bread is made, or mechanics, and not learn how it is
earned; to discover new satellites to Neptune, and not detect the motes in his eyes, or to
what vagabond he is a satellite himself; or to be devoured by the monsters that swarm all
around him, while contemplating the monsters in a drop of vinegar. Which would have
advanced the most at the end of a month – the boy who had made his own jackknife
from the ore which he had dug and smelted, reading as much as would be necessary
for this – or the boy who had attended the lectures on metallurgy at the Institute in
the meanwhile, and had received a Rodgers’ penknife from his father? Which would be
most likely to cut his fingers?... To my astonishment I was informed on leaving college
that I had studied navigation! – why, if I had taken one turn down the harbor I should
have known more about it. Even the poor student studies and is taught only political
economy, while that economy of living which is synonymous with philosophy is not even
sincerely professed in our colleges. The consequence is, that while he is reading Adam
Smith, Ricardo, and Say, he runs his father in debt irretrievably.

1I once used an industrial control system that relied on UV-erasable EPROM memory ICs to store the code defining
the system’s functions. These EPROM chips were susceptible to data loss by accidental exposure to light, and so as
a precautionary measure we used the programming device to generate a hash (which we called a “checksum”) and
hand-wrote that hash code on the piece of tape we used to cover up the glass UV-exposure window on the IC. If ever
there was doubt that a particular EPROM chip had become corrupted, we could place that chip into the programmer
machine’s DIP socket and re-run the hash algorithm to see if the hash code it generated still matched what was
written on the tape. A mis-match indicated data corruption.
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Applying the CRC32 hash algorithm to this text2 generates the following digest:

a1c544e8

Now, to demonstrate the sensitivity of the hash algorithm to even the smallest change, consider
the result when we alter a single character from Thoreau’s text (changing the question-mark symbol
following the word fingers into a blank space character, this substitution representing a single-bit
difference between the ASCII characters: 0100000 for the space character versus 0100001 for the
exclamation point) and re-run the CRC32 hash algorithm on that edited text:

9719f081

Of course, these disparate hash codes tell us nothing about the location or extent of the data
corruption, only that some corruption occurred and a message re-transmission is necessary.

2Note that CRC32 is not the only hash algorithm in existence – it just happens to be simple and fast to
compute which is why it was chosen as the frame check sequence algorithm for Ethernet. The relatively high
speed of Ethernet serial communication requires a hash algorithm that is simple enough to be executed for
every single Ethernet frame by end-devices having limited computing power. An example of a more robust hash
algorithm is SHA1, which is simple to test on any computer with a command-line interface and the necessary
SHA1 application installed. Simply save the data to a file (e.g. walden.txt) and then type the command:
sha1sum walden.txt to see the hash (digest) printed to the console. For the Walden passage example, the original
SHA1 digest is d48055e2065e9324fefb0ea54747d0990e855041 and the SHA1 digest for the corrupted passage is
14f0df7536e301978148d6d46ecf8cff7c6edb35 which as you can see is quite different.
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Animations

Some concepts are much easier to grasp when seen in action. A simple yet effective form of animation
suitable to an electronic document such as this is a “flip-book” animation where a set of pages in the
document show successive frames of a simple animation. Such “flip-book” animations are designed
to be viewed by paging forward (and/or back) with the document-reading software application,
watching it frame-by-frame. Unlike video which may be difficult to pause at certain moments,
“flip-book” animations lend themselves very well to individual frame viewing.
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6.1 Animation of serial-in, parallel-out shift register

The following animation shows an eight-bit serial-in, parallel-out shift register accepting a serial
stream of eight bits and one-by-one shifting them to its eight output lines for parallel reading.
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6.2 Animation of parallel-in, serial-out shift register

The following animation shows an eight-bit parallel-in, serial-out shift register accepting a parallel
batch of of eight bits and one-by-one shifting them to its eight output lines for serial transmission
to some other digital circuit.
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Chapter 7

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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7.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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7.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.
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7.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Digital signal

Discrete signal

Analog signal

Bit

Noise immunity

Encoding

NRZ encoding

Manchester encoding

FSK encoding

Bit rate

Baud rate
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Data frame

Synchronous versus asynchronous communication

Parity

UART

Frame check sequence

Hash

Flow control

Channel arbitration

Master-slave arbitration

Token-passing arbitration

TDMA arbitration

CSMA arbitration

Determinism

Jabber



7.1. CONCEPTUAL REASONING 99

OSI model

Simplex

Duplex
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7.1.3 Manchester encoding of a digital word

Decoding a Manchester-encoded waveform is challenging to many students, because it’s not clear at
first how to differentiate “real” signal transitions (i.e. those pulse edges representing actual binary
data bits) from transitions that are merely “reversals” (i.e. those pulse edges that are simply set-up
for the next “real” data pulse). Here, I will show you a practical problem-solving method to gain a
deeper understanding.

We will apply the problem-solving technique of working backwards to understand the concept
better. If the part we’re struggling with is how to convert a waveform into a series of bits, then we’ll
turn the problem backwards by starting with a known series of bits and working to convert that
series of bits into a waveform:

Here we see a series of bits aligned with a set of grey lines which we know will be pulse edges:

10 0 0 1 0 0 0 1 1 1 0

Begin by tracing the rising- and falling-edge pulses for each bit, following the standard of a rising
edge representing a “1” bit and a falling edge representing a “0” bit. Feel free to draw small arrows
distinguishing the rising versus falling transitions. Then, figure out how to connect these rising and
falling edges together to form an actual pulse waveform.

It should quickly become apparent to you where “reversals” are necessary in order to “set up”
properly for the next data pulse.

After you have done this, cover up the “1” and “0” bits so you can only see the waveform you’ve
sketched. Erase any arrow-heads you might have sketched, so there is nothing visible to you except
a clean pulse waveform. Now, explain to yourself how you would interpret this waveform to know
which pulse edges represented real data as opposed to reversals.

Challenges

• Manchester encoding is used to encode digital data on magnetic tape, where the playback
speed of that tape may not be precisely constant. Explain why Manchester encoding makes
sense for a medium where the bit rate will never be perfectly uniform.



7.1. CONCEPTUAL REASONING 101

7.1.4 Serial data stream decoding

Decode the following serial data streams, each one encoded using a different method:

(RZ encoding)

(Manchester encoding)
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(NRZ encoding)

(FSK encoding)

Challenges

• Which of these encoding schemes might be mistaken for another based on appearance alone?



7.1. CONCEPTUAL REASONING 103

7.1.5 More Manchester and FSK decoding

Decode the following serial data streams, each one encoded using a different method:

(Manchester encoding)

(FSK encoding)

(Manchester encoding)

(FSK encoding)
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Challenges

• Assuming a common time scale for all data streams shown, which of the two has the highest
bit rate?

• Assuming a common time scale for all data streams shown, which of the two has the highest
baud rate?

7.1.6 Ambiguous Manchester data stream

Try to interpret this Manchester-encoded digital signal as viewed on an oscilloscope display, and
explain why the task is difficult (or impossible) without further information:

Challenges

• Identify multiple interpretations of this data stream.
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7.1.7 Interpreting NRZ data frames

The following oscillographs show NRZ data streams with different data bit widths and parities.

Seven-bit data, with no parity bit:

Mark

Space

Seven-bit data, with no parity bit:

Mark

Space

Eight-bit data, with no parity bit:

Mark

Space

Challenges

• Explain how it is possible to identify the time period of a single bit, from any of these
oscillographs.
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7.1.8 Interpreting ASCII character from EIA/TIA-232 data frame

Here is an oscilloscope’s view of an ASCII character (7 bits) sent asynchronously with even parity
and 2 stop bits (“7-E-2”), using NRZ (Non-Return to Zero) encoding used by the EIA/TIA-232
serial communication standard:

Mark

Space

Identify the specific ASCII character represented by the data in this frame, and determine
whether or not the parity checks out okay.

Challenges

• Label each of the bits on the waveform: start bit, data bits, parity bit, and stop bits.
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7.1.9 Interpreting more NRZ data frames

The following oscillographs show NRZ-encoded data. Interpret each and identify the features listed
for each.

Eight data bits, no parity, two stop bits:

Time

. . . . . .

• All “Mark” and “Space” states

• The location and state of the start bit

• The eight-bit binary data represented by this waveform

• The location and state of the stop bits

• The default “idle” state between serial data packets

• Identify the binary data represented by this waveform.
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Seven data bits, odd parity, one stop bit:

Mark

Space

• All “Mark” and “Space” states

• The location and state of the start bit

• The eight-bit binary data represented by this waveform

• The location and state of the stop bits

• The default “idle” state between serial data packets

• Identify the ASCII character represented by this waveform, and determine whether or not the
parity checks out okay.

Eight data bits, even parity, one stop bit:

Mark

Space

• All “Mark” and “Space” states

• The location and state of the start bit

• The eight-bit binary data represented by this waveform

• The location and state of the stop bits

• The default “idle” state between serial data packets

• Identify the ASCII character represented by this waveform, and determine whether or not the
parity checks out okay.

Challenges

• Explain why it is critically important that we know in advance the number of data bits
contained in the frame.
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7.1.10 EIA/TIA-232 data frames of ASCII characters

Decode the following EIA/TIA-232 data “frames” captured on a digital oscilloscope, each image
showing a single ASCII character. Note that the EIA/TIA-232 serial data communication protocol
uses NRZ encoding where a “low” voltage is a “Mark” state (1) and a “high” voltage is a “Space”
state (0), and where the data bits are transmitted in reverse order (LSB first, MSB last). Please
note that each of these examples are of serial data communicated at the exact same bit rate, with
a successful parity check (i.e. no corrupted bits):

Example #1 – 8 data bits, odd parity, 1 stop bit:
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Example #2 – 8 data bits, even parity, 1 stop bit:
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Example #3 – 8 data bits, even parity, 1 stop bit:
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Example #4 – 8 data bits, odd parity, 1 stop bit:
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Example #5 – 7 data bits, even parity, 2 stop bits:

Challenges

• Identify the bit rate at which all these ASCII characters were transmitted.
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7.1.11 Microcontroller UART communication program

The following schematic diagram and C-language code show how to configure a Texas Instruments
MSP430G2553IN20 20-pin microcontroller to transmit simple text-based messages using its built-in
UART, which TI refers to as its Universal Serial Communications Interface A0, abbreviated as
USCI A0 or more simply as UCA0:

M
S

P
430G

2553IN
20

VSSVCC (+3.3 V)

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P2.0

P2.1

P2.2

P2.6

P2.7

TEST

RST

P1.7

P1.6

P2.5

P2.4

P2.3

+3.3V

+3.3V

+3.3V
Serial data out

#include <msp430.h>

void transmit_ASCII(char * tx_data); // Prototype for transmit function

void main(void)

{

unsigned int button, lastbutton;

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

BCSCTL1 = CALBC1_1MHZ; // Set DCO to 1 MHz

DCOCTL = CALDCO_1MHZ;

P1DIR = 0xF7; // P1.3 input, all other P1 pins output

P1REN = 0x08; // Enables pullup/pulldown resistor on P1.3

P1OUT = 0x08; // Selects pullup resistor for P1.3

P1SEL = BIT1 + BIT2; // P1.1 is UCA0RXD and P1.2 is UCA0TXD

P1SEL2 = BIT1 + BIT2; // when P1SEL and P1SEL2 bits set

UCA0CTL1 |= UCSSEL_2; // Have USCI use System Master Clock

UCA0BR0 = 104; // These two USCI_A0 8-bit clock prescalers

UCA0BR1 = 0; // comprise a 16-bit value to set bit rate.

// Value of 104 = 9600 bps with 1MHz clock

// (as per table 15.4 in MSP430 user guide)

UCA0MCTL = UCBRS0; // Bit rate may be further tweaked using the

// "modulation" register
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UCA0CTL1 &= ~UCSWRST; // Start the USCI’s state machine

while(1) // Endless loop

{

if ((P1IN & BIT3) == BIT3) // "button" represents state of P1.3

button = 1; // == 1 when P1.3 is high

else

button = 0; // == 0 when P1.3 is low

if((button == 0) && (lastbutton == 1)) // Detects P1.3 high-to-low

{ // without requiring interrupt

transmit_ASCII("Hello world!\r\n"); // Transmit text

transmit_ASCII("Goodbye now.\r\n"); // Transmit more text

}

lastbutton = button;

}

}

void transmit_ASCII(char * char_array) // Function accepts char. array pointer

{

unsigned int n = 0;

while(char_array[n]) // Increment until null pointer (0) reached

{

while ((UCA0STAT & UCBUSY)); // Wait if line TX/RX module busy with data

UCA0TXBUF = char_array[n]; // Load each character into transmit buffer

++n; // Increment variable for array address

}

}

Why does this program use the variables button and lastbutton to trigger the UART to begin
transmitting?

What sort of data gets passed to the transmit ASCII function as an argument?
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When the output signal (P1.2) is measured on a digital oscilloscope capable of EIA/TIA-232
serial data decoding, we see the following result:

Explain how to decode these voltage pulses to interpret them as alphabetical characters.

Challenges

• Of what practical importance is bit rate to serial data communication?
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7.1.12 Microcontroller UART text and number program

The following schematic diagram and C-language code show how to configure a Texas Instruments
MSP430G2553IN20 20-pin microcontroller to transmit simple text-based messages including
alphabetical characters and four-digit integer numbers using its built-in UART, which TI refers
to as its Universal Serial Communications Interface A0, abbreviated as USCI A0 or more simply as
UCA0:

M
S

P
430G

2553IN
20

VSSVCC (+3.3 V)

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P2.0

P2.1

P2.2

P2.6

P2.7

TEST

RST

P1.7

P1.6

P2.5

P2.4

P2.3

+3.3V

+3.3V

+3.3V
Serial data out

#include <msp430.h>

void transmit_ASCII(char * tx_data); // Prototype for alpha transmit function

void transmit_Num(int num); // Prototype for number transmit function

int x = 1486; // Flame temperature, degrees C

void main(void)

{

unsigned int button, lastbutton;

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

BCSCTL1 = CALBC1_1MHZ; // Set DCO to 1 MHz

DCOCTL = CALDCO_1MHZ;

P1DIR = 0xF7; // P1.3 input, all other P1 pins output

P1REN = 0x08; // Enables pullup/pulldown resistor on P1.3

P1OUT = 0x08; // Selects pullup resistor for P1.3

P1SEL = BIT1 + BIT2; // P1.1 is UCA0RXD and P1.2 is UCA0TXD

P1SEL2 = BIT1 + BIT2; // when P1SEL and P1SEL2 bits set

UCA0CTL1 |= UCSSEL_2; // Have USCI use System Master Clock

UCA0BR0 = 104; // These two USCI_A0 8-bit clock prescalers

UCA0BR1 = 0; // comprise a 16-bit value to set bit rate.

// Value of 104 = 9600 bps with 1MHz clock
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// (as per table 15.4 in MSP430 user guide)

UCA0MCTL = UCBRS0; // Bit rate may be further tweaked using the

// "modulation" register

UCA0CTL1 &= ~UCSWRST; // Start the USCI’s state machine

while(1) // Endless loop

{

if ((P1IN & BIT3) == BIT3) // "button" represents state of P1.3

button = 1; // == 1 when P1.3 is high

else

button = 0; // == 0 when P1.3 is low

if((button == 0) && (lastbutton == 1)) // Detects P1.3 high-to-low

{ // without requiring interrupt

transmit_ASCII("Flame temp = "); // Transmit text

transmit_Num(x); // Transmit number

transmit_ASCII(" deg C\r\n"); // Transmit more text

}

lastbutton = button;

}

}

void transmit_ASCII(char * char_array) // Function accepts char. array pointer

{

unsigned int n = 0;

while(char_array[n]) // Increment until null pointer (0) reached

{

while ((UCA0STAT & UCBUSY)); // Wait if line TX/RX module busy with data

UCA0TXBUF = char_array[n]; // Load each character into transmit buffer

++n; // Increment variable for array address

}

}

void transmit_Num(int num) // Function accepts 4-digit integer number

{

unsigned int n = 0;

char char_array[5];

char_array[0] = (int)(num/1000) + 0x30;

char_array[1] = (int)(num/100) - 10*(int)(num/1000) + 0x30;
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char_array[2] = (int)(num/10) - 10*(int)(num/100) + 0x30;

char_array[3] = (int)(num) - 10*(int)(num/10) + 0x30;

char_array[4] = 0;

while(char_array[n]) // Increment until null pointer (0) reached

{

while ((UCA0STAT & UCBUSY)); // Wait if line TX/RX module busy with data

UCA0TXBUF = char_array[n]; // Load each character into transmit buffer

++n; // Increment variable for array address

}

}

Explain how the transmit Num function takes a four-digit decimal value and produces four ASCII
characters representing the digits of that number.

What sort of data gets passed to the transmit Num function as an argument?

Challenges

• Of what practical importance is bit rate to serial data communication?

• Devise a “thought experiment” whereby you could test the operation of the transmit Num()

function, showing step-by-step how it converts an integer value into an ASCII character string.
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7.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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7.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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7.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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7.2.3 Manchester data frame with a specified bit rate

Sketch an oscillograph for a Manchester-encoded data stream 1011101 at a data rate of 14400 bits
per second:

Be sure to specify the oscilloscope’s timebase setting (i.e. the number of milliseconds per division).

Challenges

• Of what practical importance is bit rate to serial data communication?
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7.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.

7.3.1 Testing determinism

Devise a diagnostic test you could apply to assess the determinism of any given serial data network.

Challenges

• Explain the significance of determinism in a serial communication network.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn
to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize
and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word
processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.
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Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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