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Chapter 1

Introduction

1.1 Recommendations for students

A network theorem is a useful tool for simplifying the analysis of some system, provable on the basis
of more fundamental principles and/or theorems. Anyone familiar with the proofs and theorems of
geometry (e.g. the Isosceles Triangle Theorem1) has experienced the benefit of theorems, allowing
rigorous analysis of geometric systems without having to constantly resort to low-level definitions
and axioms of geometry. Similarly, network theorems are proven tools useful for quickly and easily
analyzing complex electrical networks without being limited to fundamental rules such as Ohm’s
Law and Kirchhoff’s Laws.

Thévenin’s and Norton’s Theorems are two such network theorems, and they find frequent
application in electronic circuit analysis. The end-result of each is simple: any linear network,
no matter how complex, may be reduced to an equivalent network consisting of one voltage source
and one resistor (a Thévenin equivalent) or one current source and one resistor (a Norton equivalent).
As with the Superposition Theorem, both Thévenin’s and Norton’s Theorems are limited to linear

functions, which means components having stable resistance (R) over their operational ranges and
directly-mathematical functions.

Important concepts related to these network theorems include voltage sources, current
sources, internal resistance, the effects of opens versus shorts, light versus heavy load
conditions, Ohm’s Law, properties of series networks, properties of parallel networks, bridge
networks, linear versus non-linear functions, equivalent electrical networks, and substitution
of source resistances.

A problem-solving technique found throughout this text is the thought experiment, whereby we
imagine altering some facet of an electrical network and analyze the effects of that alteration, for the
purpose of better understanding the network. You may think of this as akin to a real experiment
except that we apply known principles to a hypothetical condition rather than set up real components
and take real measurements.

1According to the Isosceles Triangle Theorem, any triangle having two sides of equal length must exhibit equal
angles opposite to those two sides.

3
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When reading any mathematically-based presentation, a useful habit for effective learning is to
actually perform the mathematics being shown in the text. Don’t just passively read what the
text tells you and trust that the math works – try the math for yourself. Not only will this serve
to confirm what you are reading, but it is also an excellent way to practice those mathematical
techniques.

Another useful reading strategy is to write your own summary page of important principles,
especially when those principles mirror each other. For this module I would recommend writing
your own summaries of network Thévenization and Nortonization: the steps involved to perform
each type of analysis.

Here are some good questions to ask of yourself while studying this subject:

• How might an experiment be designed and conducted to demonstrate Thévenin’s Theorem?
What hypothesis (i.e. prediction) might you pose for that experiment, and what result(s)
would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to demonstrate Norton’s Theorem?
What hypothesis (i.e. prediction) might you pose for that experiment, and what result(s)
would either support or disprove that hypothesis?

• How might an experiment be designed and conducted to test whether or not two different
electrical sources were equivalent to one another? What hypothesis (i.e. prediction) might you
pose for that experiment, and what result(s) would either support or disprove that hypothesis?

• In what ways do voltage sources differ from current sources?

• What is the definition of a “series” network?

• What is the definition of a “parallel” network?

• How much internal resistance does an ideal voltage source possess?

• How much internal resistance does an ideal current source possess?

• What makes a load either “heavy” or “light” from the perspective of the source supplying
energy to it?

• How would you describe the procedure for “Thévenizing” a network, in your own words?

• How would you describe the procedure for “Nortonizing” a network, in your own words?

• How does either of these theorems help to simplify complex networks?

• What does it mean for two electrical networks to be considered “equivalent” to one another?

• What is a “linear” electrical component, and what are some practical examples of linear
components?

• What is a “nonlinear” electrical component, and what are some practical examples of nonlinear
components?
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• Why is a five-resistor unbalanced bridge circuit impossible to analyze as a series-parallel
network?

• Would the bridge circuit be easier to analyze, harder to analyze, or the same difficulty to
analyze if it were balanced rather than unbalanced?

• Why is it permissible to “wire-bend” a circuit diagram to aid in its analysis?

• What do we replace a voltage source with when “disabling” it during Thévenin or Norton
analysis, and why?

• What do we replace a current source with when “disabling” it during Thévenin or Norton
analysis, and why?
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1.2 Challenging concepts related to Thévenin’s and Norton’s
Theorems

The following list cites concepts related to this module’s topic that are easily misunderstood, along
with suggestions for properly understanding them:

• Equivalent electrical networks – the possibility that completely different networks of
components may nevertheless behave identically from the perspective of two or more connection
terminals is non-intuitive for many students new to electric circuits. However, there are many
analogues in life that may be used to help explain. For example, a box containing an unknown
assortment of items may have precisely the same weight as a different box containing something
completely different from the first: i.e. from the perspective of weight sense at the handle when
lifting each box, the boxes may behave the same even though their contents may be wholly
different.

• Schematic annotation as a problem-solving tool – as an instructor you will find
most students new to the study of electronics attempt to solve circuit-analysis problems by
inspection, or by plugging given values into familiar equations until something resembling an
answer emerges. Such efforts are usually fruitless because it is difficult to track the real-
world context of every circuit parameter doing things this way. You will need to demonstrate,
encourage, and at times require your students to apply the alternative strategy of first sketching
a schematic diagram of the circuit and then annotating it with all known values. Once the
given information gains context through this annotation, appropriate principles (e.g. Ohm’s
Law, KVL, KCL) are much easier to identify and then properly apply for that circuit. Then,
as calculated values get annotated on the same schematic diagram the next logical steps to
follow become easier and easier to identify. I recommend using different colors to label different
parameters (e.g. blue for voltage, red for current, black for component values, green for power).
Students should have blank “scratch” paper and writing instruments with them at all times,
even during discussions, so as to neatly organize information and to articulate and focus their
thoughts! Both Thévenin’s and Norton’s Theorems embody this principle by reducing any
collection of linear and bilateral electrical components to a single source and a single resistance
behaving precisely the same as the original network from the perspective of two connection
terminals.

• Creative application of foundational concepts – many students enter college-level study
of electronics with an educational background stressing rote memorization at the expense of
logical reasoning from trusted principles, and as such tend to find circuit analysis daunting
where there is no single procedure or single formula always yielding the correct answer(s). The
educational solution to this is for the instructor to constantly tie all new circuit concepts back
to previously-learned principles and show the logical relationships between them, and then
with every new circuit-analysis example challenge students to reason from those concepts on
their own. When students construct a mental “toolbox” they may apply in a plurality of ways
to any new challenge they encounter, they will be as free as any skilled mechanic who knows
how and why each of their hand tools functions to freely select and use whichever of those
tools is most appropriate at any given time. A word of caution for new instructors: be very

sparing in your direction on how to use those tools, instead engaging with students Socratically

when they are “stuck” and cannot see a path to a solution!
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Thévenin’s and Norton’s Theorems are particularly challenging because they involve spatial

reasoning more so than other electrical analysis techniques. This means it is particularly important
to determine exactly where the equivalent network “fits” within the original network as shown. A
similar spatial-relations challenge is in identifying series and parallel connections while sources are
disabled, and/or when load terminals are shorted together (e.g. finding the Norton current).

A helpful resource for the confused is the Animations chapter section showing Thévenization
performed step-by-step on a series-parallel electrical network. As usual, the Case Tutorial chapter
also contains completely-worked examples of networks being reduced to Thévenin and Norton
equivalents.
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1.3 Recommendations for instructors

This section lists realistic student learning outcomes supported by the content of the module as well
as suggested means of assessing (measuring) student learning. The outcomes state what learners
should be able to do, and the assessments are specific challenges to prove students have learned.

• Outcome – Demonstrate effective technical reading and writing

Assessment – Students present their outlines of this module’s instructional chapters
(e.g. Case Tutorial, Tutorial, Historical References, etc.) ideally as an entry to a larger
Journal document chronicling their learning. These outlines should exhibit good-faith effort
at summarizing major concepts explained in the text.

Assessment – Students show how quantitative results were obtained by the author in
the Tutorial chapter’s examples. This is especially important with Thévenin’s and Norton’s

Theorems. Do not be surprised when students plead to have you verbally explain everything

to them rather than closely inspect the approaches described in the text. Remember that their

intelligence is up to the task – always treat them as capable thinkers!

• Outcome – Apply the concept of Thévenin’s Theorem to the simplification of electrical
networks

Assessment – Reduce a given electrical network to a Thévenin equivalent; e.g. pose
problems in the form of the “Thévenin and Norton equivalents of a single-source network”
Quantitative Reasoning question.

Assessment – Reduce a given electrical network to a Thévenin equivalent; e.g. pose
problems in the form of the “Thévenin equivalent of an AC/DC power supply” Quantitative
Reasoning question.

• Outcome – Apply the concept of Norton’s Theorem to the simplification of electrical networks

Assessment – Reduce a given electrical network to a Norton equivalent; e.g. pose problems
in the form of the “Thévenin and Norton equivalents of a single-source network” Quantitative
Reasoning question.

Assessment – Reduce a given electrical network to a Norton equivalent; e.g. pose problems
in the form of the “Norton equivalent of an electric arc welder” Quantitative Reasoning
question.



Chapter 2

Case Tutorial

The idea behind a Case Tutorial is to explore new concepts by way of example. In this chapter you
will read less presentation of theory compared to other Tutorial chapters, but by close observation
and comparison of the given examples be able to discern patterns and principles much the same way
as a scientific experimenter. Hopefully you will find these cases illuminating, and a good supplement
to text-based tutorials.

These examples also serve well as challenges following your reading of the other Tutorial(s) in
this module – can you explain why the circuits behave as they do?

9
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2.1 Example: Thévenizing series-parallel networks

Original network #1:

Load terminals

1 kΩ

1 kΩ

1 kΩ

1 kΩ

24 V

Thévenin equivalent network #1:

8 V

1.667 kΩ
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Original network #2:

30 V

1 kΩ

2.2 kΩ

5 kΩ

1 kΩ

Load terminals

Thévenin equivalent network #2:

Load terminals

2.951 kΩ

18.293 V
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Original network #3:

15

300
1k

400

2k

Thévenin equivalent network #3:

8.772

479.53
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2.2 Example: Thévenizing and Nortonizing a power supply

Based on the following open-circuit and loaded tests of an AC-to-DC power supply (voltage being
measured at the power supply’s terminals), we may derive a Thévenin equivalent network:

Lamp

Switch

Switch off:

DC output

Iout = 0 mA DC

Switch on:

V mA

Iout = 845 mA DC

Vout = 14.3 Volts DC

Vout = 12.8 Volts DC

Thévenin voltage is simply the power supply’s open-circuit voltage value of 14.3 Volts. By
calculating how much that terminal voltage “sagged” under the 845 mA load (14.3 Volts − 12.8
Volts = 1.5 Volts of “sag”), we know how much voltage must be dropped across the Thévenin
equivalent resistance at that amount of current. Ohm’s Law then provides us with that RTh value.

Thévenin and Norton equivalent networks:

14.3 V

1.775 Ω

+
− 8.06 A 1.775 Ω

VTh

RTh

IN
RN
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2.3 Example: improvised 3.3 Volt power supply

Suppose that a student builds a digital logic circuit designed to operate with a DC source voltage
of 3.3 Volts, but they only have a 5.0 Volt DC power supply on hand. Improvising, the student
connects a potentiometer to the output of the 5.0 Volt DC power supply terminals and carefully
adjusts the knob to the 66% position where she measures 3.3 Volts between the two wires attached
to the terminal block:

Low-voltage 
AC power supply

6 6
12

5 Volt regulated
power supply

Pot

100 Ω

OFF

COMA

V A

V A

V
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The student’s plan is to connect the VCC (+) and VEE (−) DC terminals of her digital logic
circuit to the same two terminal block terminals where the voltmeter connects. An ammeter installed
in series between the digital circuit and the terminal block measures load current:

Low-voltage 
AC power supply

6 6
12

5 Volt regulated
power supply

Pot

100 Ω

OFF

COMA

V A

V A

Digital logic circuit

OFF

COMA

V A

V A

Off On

mA

VEE

VCC

V

With both meters in place, the student will be able to monitor the stability of the DC power
sent to the digital logic circuit as its current varies. The regulated 5.0 Volt power supply is designed
to compensate for variations in load current, maintaining a stable 5 Volts for all loads within its
rated capability. However, the resistance of the potentiometer will cause some voltage “sag” to occur
at the digital circuit’s power terminals as its current varies. This is an inherent limitation of the
improvised power supply circuit, achieving a reduced output voltage at the expense of less stability.
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This table shows the results of the student’s testing:

Switch Current Voltage

Off 0.00 mA 3.30 V

On 1.00 mA 3.28 V

On 2.00 mA 3.26 V

On 5.00 mA 3.19 V

On 7.40 mA 3.13 V

On 9.25 mA 3.09 V

Using a 100 Ω potentiometer to reduce 5.0 Volts down to 3.3 Volts is equivalent to an ideal 3.3
Volt voltage source with a series resistance value of 22.44 Ω.
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2.4 Example: Thévenizing a multi-source network

+ −

8 V

2 mA 3k3

5k6

Original network

1k

Calculating terminal resistance (left) and open-circuit terminal voltage (right):

3k3

5k61k

R = 6.6 kΩ

+ −

8 V

2 mA 3k3

5k61k 2 mA 2 mA

2 mA

2 V 11.2 V

6.6 V

VOC = 21.2 V

27.8 V

+ −

VTh = 21.2 V RTh = 6.6 kΩ

Thevenin equivalent network
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2.5 Example: Nortonizing a multi-source network

+ −

8 V

2 mA 3k3

5k6

Original network

1k

Calculating terminal resistance (left) and short-circuit terminal current (right):

3k3

5k61k

R = 6.6 kΩ

+ −

8 V

2 mA 3k3

5k61k

2 mA

6.6 V

1.212 mA

1.212 mA1.212 V 6.788 V

6.6 V

1.212 mA

ISC = 3.212 mA

IN = 3.212 mA

RN = 6.6 kΩ
Norton equivalent network
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2.6 Example: Thévenizing an unbalanced bridge

Original network:

1 k
Ω

2.2 kΩ

3.3 kΩ
1.5

 kΩ

2.7 kΩ

9 V

+−

Thévenin equivalent network (from the perspective of the 2.2 kΩ resistor as the load:

7.6922 V

788.64 Ω

2.2 kΩ+
−

In this Thévenin equivalent network we may easily calculate the voltage across that 2.2 kΩ load
resistor as 5.6624 Volts, because the equivalent network is a simple series circuit. The bridge circuit,
however cannot be reduced to a single resistance as we can do with standard series-parallel circuits.
In this scenario we must use a network theorem (or some other advanced circuit-analysis technique)
to determine any of the voltage or currents.
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The most difficult part of this analysis is determining the Thévenin equivalent resistance (RTh).
Here is a step-by-step reduction of the bridge into a single RTh value from the perspective of the
terminals the 2.2 kΩ resistor used to connect to:

1 k
Ω

3.3 kΩ
1.5

 kΩ

2.7 kΩ

(voltage source disabled)

Step 1: (disable the voltage source)

1 kΩ

3.3 kΩ

1.5
 kΩ

2.7 kΩ

Step 2: ("bend" the wires)

1 kΩ

3.3 kΩ

1.5 kΩ
2.7 kΩ

Step 3: (re-arrange perpendicularly) Step 4: (solve for RTh)

788.64 Ω

RTh



Chapter 3

Tutorial

3.1 Ideal versus real sources

A perfect voltage source outputs constant voltage regardless of how much or little current passes
through it: no matter the rate of electrical charge carriers flowing through a perfect voltage source,
each charge carrier gains the exact same amount of energy from the source. Real voltage sources
cannot maintain absolutely constant voltage over wide variations in current, and so we often model
real voltage sources as ideal voltage sources connected in series with internal resistance:

+
− Load

Ideal voltage source

The voltage source maintains
constant voltage regardless
of the load

+
− Load

Model of a real
voltage source

Rinternal

The voltage source’s output
decreases as load current
increases

VoutVout

The closer to ideal a voltage source is, the less its internal resistance. An ideal voltage source is
considered to have zero internal resistance.

21



22 CHAPTER 3. TUTORIAL

Similarly, a perfect current source outputs constant current regardless of how much or little
voltage appears across its terminals: no matter how much energy is given to each electrical charge
carrier as it passes through the source, the rate that charge carriers move through will remain
constant. Real current sources cannot maintain absolutely constant current over wide variations in
voltage, and so we often model real current sources as ideal current sources connected in parallel
with internal resistance:

Load Load

Model of a real

Rinternal

increases

Ideal current source current source

The current source maintains
constant current regardless
of the load

The current source’s output
decreases as load voltage

Iout Iout

The closer to ideal a current source is, the more its internal resistance. An ideal current source
is considered to have infinite internal resistance.

Real sources, both voltage and current, approach ideal behavior as their loads become lighter
(i.e. dissipate less power) and deviate more from ideal behavior when their loads become heavier
(i.e. dissipate more power). For a voltage source, a “light” load is one drawing little or no current,
such as an open-circuit, because less current for any given voltage results in less power. For a current
source, a “light” load is one dropping little to no voltage, such as a short-circuit, because less voltage
for any given current also results in less power. If you examine the schematic models of real voltage
and current sources previously shown, and imagine their respective minimum-power load conditions
(i.e. open load for the voltage source and shorted load for the current source) you will see that in
both cases the internal resistance becomes irrelevant. For the voltage source, a load drawing no
current means that the source’s Rinternal drops no voltage, leaving full source voltage at the output
terminals. For the current source, a load dropping no voltage means that the source’s Rinternal

passes no current, leaving full source current at the output terminals.

While the internal resistances of real voltage and current sources have many practical
implications, the important point to recognize for this tutorial is that voltage sources ideally have

no internal resistance while current sources ideally have infinite internal resistance. In particular,
some electrical network theorems require this knowledge to apply, as one must consider the internal
resistance of each source as a factor in the theorem.
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3.2 Equivalent electrical networks

Suppose someone handed you a sealed wooden box with two metal terminals on its exterior. Inside
this box, you are told, is a voltage source in series with a resistance connected to those two terminals:

Box

Terminals???

Connecting a digital multimeter to those terminals, you decide to perform an open-circuit voltage
test and a short-circuit current test to figure out what those internal component values are, measuring
6 Volts and 1.2 milliAmperes, respectively:

Box

???

OFF

V

V

mV
Ω

mA
A

µA

A mA µA COM V Ω

400 mA
fused

10 A fused

MIN MAX RANGE

REL ∆ Hz

HOLD

PEAK MIN MAX

0 1.00.5

V

Box

???

OFF

V

V

mV
Ω

mA
A

µA

A mA µA COM V Ω

400 mA
fused

10 A fused

MIN MAX RANGE

REL ∆ Hz

HOLD

PEAK MIN MAX

0 1.00.5

mA
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These two measurements provide enough information to identify the values of the voltage source
and resistor we were told are both hidden inside the box:

6 V

5 kΩ
+
−

A voltmeter connected to the two terminals will directly sense the 6 Volt voltage source, since
its negligible current draw ensures the box’s series resistor will drop none of the source’s voltage
during the test. An ammeter connected to the same two terminals senses the 1.2 milliAmperes that
the 6 Volt source is able to drive through the series 5 kiloOhm resistor. In other words, the open-
circuit volmeter test directly indicates the voltage source’s value, while the short-circuit ammeter
test indicates current which may be combined with the voltmeter measurement to yield the series
resistance value by Ohm’s Law (R = V

I
).

Later, though, when we open up this box and look inside, we discover the person who gave it to
us did not tell us the whole truth about the circuit inside. Rather than containing a single 6 Volt
source and a single 5 kiloOhm resistor, we discover a 12 Volt source and two 10 kiloOhm resistors:

10 kΩ12 V

10 kΩ+
−

The fact that our hypothetical 6 Volt source and 5 kiloOhm series resistor would in fact behave
identically to this more complex network comprised of a 12 Volt source and two 10 kiloOhm resistors
means the two electrical networks are equivalent to one another. In other words, these two networks
are indistinguishable from one another as measured from the perspective of their test terminals, and
are guaranteed to behave identically to one another regardless of what we might connect between
those terminals. Without peering into the box, there is absolutely no way for us to tell which of the
equivalent networks is inside.
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What is even more interesting is that other equivalent networks are possible1. Consider the
following networks which behave the same as the single 6 Volt source and series 5 kiloOhm resistor:

15 kΩ

7.5 kΩ

18 V

15 kΩ

7.5 kΩ9 V

6.25 kΩ

25 kΩ 6.25 kΩ

25 kΩ

30 V 7.5 V

+
−

+
−

+
−

+
−

It is highly recommended as an active reading exercise to analyze each of these equivalent
networks by calculating the amount of voltage between each network’s open terminals as well as the
amount of current that would flow if each network’s terminals were directly “shorted” together with
wire. In each case you should find 6 Volts (open-circuited) and 1.2 milliAmperes (short-circuited).

Each of these equivalent voltage-sourced networks behaves identically to the original “sealed
box” circuit and to our simple single-source-single-resistor network. They are all equivalent from
the perspective of their two test terminals, in that every one of them manifests a 6 Volt open-
circuit voltage and a 1.2 milliAmpere short-circuit current at their terminals. If some arbitrary load
resistance value were connected between their terminals, they would all power that load at identical
voltage and current levels.

1These examples represent just a few possible with (fairly) round-number component values. As it so happens,
there exist an infinite number of possible voltage-source-and-two-resistor networks equivalent to our original 6 Volt
and 5 kΩ network!
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We may even construct equivalent networks using current sources rather than voltage sources:

5 kΩ

2.5 kΩ

2.5 kΩ

2.4 mA

1 kΩ

4 kΩ

1.5 mA

1.2 mA

1 kΩ

4 kΩ6 mA

2 kΩ

3 kΩ

2 mA

2 kΩ

3 kΩ3 mA

As with the voltage-sourced equivalent networks, it is highly recommended as an active reading

exercise to analyze each of these equivalent networks by calculating the amount of voltage between
each network’s open terminals as well as the amount of current that would flow if each network’s
terminals were directly “shorted” together with wire. In each case you should find 6 Volts (open-
circuited) and 1.2 milliAmperes (short-circuited).

Just like the set of equivalent voltage-sourced networks shown previously, this set of current-
sourced networks also behaves identically to the original “sealed box” circuit and to our simple
single-source-single-resistor network. They are all equivalent from the perspective of their two test
terminals, in that every one of them manifests 6 Volts when open-circuited and 1.2 milliAmpere
when short-circuited, and when connected to some load resistance would all power that load at
identical voltage and current levels.

The existence of electrically-equivalent networks means it is possible, at least in theory, to take
most any complex electrical network and reduce it down to a much simpler network that behaves
the same. In the following sections of this Tutorial we will explore two such theorems based on this
principle of electrical equivalence, Thévenin’s Theorem and Norton’s Theorem, the only difference
between the two theorems being that the former yields an equivalent network based on a single
voltage source while the latter gives an equivalent network based on a single current source.
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3.3 Thévenin’s and Norton’s theorems

Two network theorems particularly useful for analyzing complex circuits are Thévenin’s and Norton’s

Theorems. Each of these may be stated quite simply:

Thévenin’s Theorem

Any linear network connected between two terminals may be modeled as an
ideal voltage source in series with a single equivalent resistance.

Norton’s Theorem

Any linear network connected between two terminals may be modeled as an
ideal current source in parallel with a single equivalent resistance.

So long as all the components behave linearly2, both Thévenin’s and Norton’s Theorems apply
equally well to any network no matter how complex that network may be:

+ −

+
−

Complex network

+
−VTh

RTh

Thevenin equivalent
network network

Norton equivalent

IN RN

Thevenin
conversion conversion

Norton

A

B

A

B

A

B

2For the purpose of this discussion, a “nonlinear” component is one where voltage and current are not directly
proportional to each other at any portion of the component’s range. Another way to consider this characteristic would
be to think of such components as having unstable resistance values. Not only are semiconductor PN junctions quite
nonlinear, but so are some non-semiconductor devices such as incandescent lamps (where filament resistance changes
with temperature, which in turn is affected by voltage and current). Some texts also add the condition of bilateral
symmetry to the use of the Superposition Theorem, meaning that components must behave the same when energized
in both polarities. However, the concept of linearity applied across a range of values both positive and negative covers
this criterion. If a component does not exhibit bilateral symmetry, then it cannot be linear across its entire range of
permitted values.
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Converting a complex network into a Thévenin equivalent network consists of two steps. First,
you will need to determine the complex network’s open-circuit3 voltage between its two output
terminals. This open-circuit output voltage will be the value of VTh in the Thévenin equivalent
network. Next, you will need to determine the complex network’s resistance as measured from its
output terminals and with all of its internal sources disabled and substituted with their equivalent
resistances (i.e. voltage sources replaced by shorts and current sources replaced by opens). This
resistance will be the value of RTh in the Thévenin equivalent network.

Illustrating the “Thévenization” process:

+ −

+
−

Complex network
+
−VTh

RTh

Thevenin equivalent
network

Thevenin
conversion

Complex network

Open-circuit
voltage = VTh

Source-disabled
resistance = RTh

sources
disabled

The rationale for these steps is easiest to understand by examining the Thévenin equivalent
network. Once we accept the fact that there is such a thing as a Thévenin equivalent network for
any complex linear-component network, whose behavior as measured from its output terminals is
indistinguishable from the complex network’s, it becomes easy to see why VTh must be the open-
circuit voltage and RTh must be the resistance with VTh replaced by a short. Open-circuiting the
Thévenin equivalent network must result in VTh being present between the output terminals because
RTh would drop zero voltage in an open-circuit (i.e. zero-current) state. Resistance between the
output terminals likewise must be equal to RTh if VTh is disabled by a short. If the Thévenin
equivalent behaves like this, then so must the complex network it is equivalent to.

3“Open-circuit” in this context means nothing else connects to the network’s terminals but the network itself. For
example, if the network happened to be powering a load from those two terminals, you would omit that load before
determining voltage between those terminals.
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Converting a complex network into a Norton equivalent network likewise consists of two steps.
First, you will need to determine the complex network’s short-circuit current between its two output
terminals. This short-circuit output current will be the value of IN in the Norton equivalent network.
Next, you will need to determine the complex network’s resistance as measured from its output
terminals and with all of its internal sources disabled and substituted with their equivalent resistances
(i.e. voltage sources replaced by shorts and current sources replaced by opens). This will be the
Norton resistance value (RN ). You will note that this second step is identical to the step involved
for calculating RTh in a Thévenin equivalent network.

Illustrating the “Nortonization” process:

+ −

+
−

Complex network

networkconversion

Complex network

Source-disabled

sources
disabled

Short-circuit
current = IN

Norton

RNIN

Norton equivalent

resistance = RN

As with Thévenization, the rationale for the steps required to “Nortonize” a network is easiest
to understand by examining the Norton equivalent network. Once we accept the fact that there
is such a thing as a Norton equivalent network for any complex linear-component network, whose
behavior as measured from its output terminals is indistinguishable from the complex network’s, it
becomes easy to see why IN must be the short-circuit current and RN must be the resistance with
IN replaced by an open. Short-circuiting the Norton equivalent network must result in IN being
present at the output terminals because the short would “shunt” the entirety of the source’s current
past RN . Resistance between the output terminals likewise must be equal to RN if IN is disabled
by an open. If the Norton equivalent behaves like this, then so must the complex network it is
equivalent to.
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Not surprisingly, it is fairly easy to convert from any circuit’s Thévenin equivalent to its
corresponding Norton equivalent network, and vice-versa. A good way to understand this process
is to apply the same “thought experiment” of shorting and opening the output terminals of each
network that we performed in obtaining either a Thévenin or Norton equivalent from the original
circuit. If a Thévenin and Norton network pair are to be equivalent to the same circuit (i.e. and
therefore equivalent to each other), they must behave identically when short-circuited and when
open-circuited.

First, let’s imagine a Thévenin and Norton pair under short-circuit conditions:

+
−VTh

RTh

IN RN
short-circuit short-circuit

ISC ISC

Calculating the short-circuit current (ISC) in the Thévenin circuit is as simple as applying Ohm’s
Law (ISC = VTh

RTh

). In the Norton circuit, ISC is simply equal to IN because the short-circuit
“jumper” wire bypasses all current around RN . Therefore, the equivalent Norton current value
must be equal to the Thévenin voltage divided by the Thévenin resistance (IN = VTh

RTh

).

Next, let’s imagine a Thévenin and Norton pair under open-circuit conditions:

+
−VTh

RTh

IN RN
open-circuit

VOC

open-circuit

VOC

Calculating the open-circuit voltage (VOC) in the Norton circuit is as simple as applying Ohm’s
Law (VOC = INRN ). In the Thévenin circuit, VOC is simply equal to VTh because RTh carries
no current and therefore drops none of VTh’s voltage, allowing all of VTh to appear between the
networks’ terminals. Therefore, the equivalent Thévenin voltage value must be equal to the Norton
current times the Norton resistance (VTh = INRN ).
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Converting between Thévenin and Norton internal resistance values is even simpler: they are

identical. The equality between RTh and RN is evident if you disable each source (replacing it with
its ideal resistance4) and imagine measuring resistance between the network terminals:

RTh

RN

VTh replaced
by short

IN replaced
by openR = RTh R = RN

Both Thévenin and Norton equivalents are useful tools for analyzing complex electrical networks,
and the choice between the two is arbitrary. If you prefer to think in terms of voltage sources, you
are free to use Thévenin equivalents. If current sources are preferred, you are free to use Norton
equivalents. And, if you end up wishing to switch from one type to the other, the conversion (as we
have just seen) is very simple: Thévenin and Norton resistance values for equivalent networks are
identical, and their respective voltage and current source values may be computed using Ohm’s Law
(VTh = INRN and IN = VTh

RTh

).

As interesting as Thévenin’s and Norton’s Theorems may be, their utility may not be obvious.
The practical value of any network theorem is to somehow reduce the complexity of a given problem

for the purpose of making it easier to solve. In the next section we will explore this concept in more
detail. In the sections following that, we will explore some specific example problems illustrating
the power of Thévenin’s and Norton’s Theorems.

4Another way to conceptualize the disabling of a source is to consider what we would have to replace it with in
order to ensure a “zero” condition. For example, in order to ensure a zero-voltage condition when disabling a voltage
source, it makes sense that we would substitute a short for the voltage source since the guaranteed effect of a short
is a condition of zero voltage. Similarly, in order to ensure a zero-current condition with disabling a current source,
it makes sense we would replace that current source with an open since we know the guaranteed effect of an open is
to halt current.
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3.4 Uses for Thévenin’s and Norton’s Theorems

The real-world practicality of any theorem converting a complex network of electrical components
into a simpler (equivalent) network may not be apparent at first. Sure, this might be useful for the
kinds of convoluted resistor networks you see in a textbook, but how does this help us analyze real

circuits? Here we will briefly discuss two important applications:

• Load-testing power supply designs

• Selecting components to achieve required input or output impedance
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3.4.1 Power supply design testing

A power supply is any circuit designed to condition electrical power between a given source and
a specific load, often performing such tasks as transforming power between different voltage and
current levels and/or regulating voltage or current to prescribed values. Such circuits can be quite
complex, containing many individual components, but at least for certain ranges of operation we
may apply either Thévenin’s Theorem or Norton’s Theorem to reduce such a complex circuit to a
single equivalent network consisting of a perfect voltage or current source and an internal resistance.
If we apply one of these network theorems and thereby derive an equivalent network, we may then
very quickly and easily run a series of calculations predicting how stable that power supply’s output
voltage and/or current will be for a range of load conditions.

The following schematic diagram shows a standard “pass”-style voltage regulator circuit, designed
to take electrical power from any imperfect voltage source and deliver it at nearly constant voltage
to a load whose resistance may vary substantially:

−

+

Load

U1D1

Q1

Q2

Q3
Q4

R1 R2

R3

V1

1

0

2

3

4

5

6

If we are careful to define the limits of operation for this circuit, it is possible to apply either
Thévenin’s or Norton’s Theorem to it and arrive at an elementary network behaving very nearly
the same. An ideal voltage source plus low-valued internal resistance makes sense to model a power
supply circuit designed to maintain constant load resistance, making Thévenin’s Theorem a natural
fit for this problem.
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Once we have determined5 the values of VTh and RTh in the equivalent network, it then becomes
a trivial matter to explore how stable the circuit’s output terminal voltage will be for varying load
conditions because the power supply and attached load resistance is nothing more than a simple
series circuit:

Load
(adjustable)

+
−

Thevenin equivalent

VTh

RTh

Rather than have to perform a long series of calculations over and over again to determine
load voltage and current for different load resistance values applied to the original circuit, we may
perform a long series of calculations once to derive the Thévenin equivalent network and then after
that perform very simple calculations over and over again for each proposed load resistance value.
Not only will this be less tedious for us, but it may also allow us to gain insights we might otherwise
miss if we are cognitively burdened by the complexity of the original power supply circuit.

5Details of how to perform this determination on the voltage-regulator circuit shown will not be given here. For
now we are merely exploring why these theorems are useful, not precisely how they apply to all scenarios. In order
to explain how to apply Thévenin’s or Norton’s Theorem to this voltage regulator circuit, we would first have to
understand how transistors, Zener diodes, and operational amplifiers function which is far beyond the scope of this
Tutorial.
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3.4.2 Input/output impedances

An important parameter for many electronic circuits is something called impedance, which if you
have not yet studied this term is equivalent to resistance for the sake of this discussion. Any circuit
receiving power or signal from an external source will present a load to that source as it extracts
energy from it, and we may model that loading effect as though it were a single resistance (called
the input impedance of that circuit). Similarly, any circuit delivering power to an external load
will itself manifest some amount of internal resistance, which is the Thévenin or Norton equivalent
output impedance of that circuit.

Below we see a schematic diagram of a single-transistor amplifier receiving an AC signal from a
signal source and delivering an amplified version of that signal to a resistive load:

+V

Rsource
Rload

RE

R2

R1

RC

Vsource

Amplifier

Signal source Load

Signal source "sees" a certain
resistance value "looking in" to

the input of the amplfier

Load "sees" a certain resistance
value coming from the output 

of the amplifier

In order to operate at peak efficiency, the input impedance (resistance) of the amplifier must
match the signal source’s internal resistance to satisfy the Maximum Power Transfer Theorem. If
we know the source’s internal resistance value, it is possible to choose component values within the
amplifier circuit to make its input impedance match. In other words, we treat the AC signal source
as a Thévenin equivalent network and apply Thévenin/Norton reduction techniques to the amplifier
to reduce its input circuitry to a single equivalent resistance, then determine what the amplifier’s
component values must be to yield that matching amount of input resistance.

Similarly, the amount of internal impedance (resistance) exhibited by the amplifier at its output
is a function of its component values, and by applying Thévenin/Norton reduction techniques we
may find out exactly what dictates this internal value too.
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Here we see the simplified6 equivalent of the amplifier circuit, its input presenting a simple
resistance “load” to the signal source, and its output transferring power to the load through an
internal output resistance:

Rsource
Rload

Vsource

Signal source Load

Rinput

Routput

Amplifier (after simplifying)

In summary, we find Thévenin’s and Norton’s Theorems to be useful tools to model complex
networks as much simpler networks. This in turn allows us to assess in a much easier and intuitive
fashion how the original (complex) network will perform when interfaced with other sources and
loads.

6Again, details of how to perform this simplification from the original amplifier circuit to this equivalent will not
be given here. For now we are merely exploring why these theorems are useful, not precisely how they apply to all
scenarios. In order to explain how to apply either Thévenin’s or Norton’s Theorem to this amplifier circuit, we would
have to also explain how transistors function.
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3.5 Example: Voltage dropped by a varying load resistance

For our first example we will consider a voltage divider circuit providing power to a load of varying
resistance, the variable load represented by a potentiometer wired as a rheostat7:

+
−

Load
(adjustable)

1 kΩ

1 kΩ
24 V

Range =
200 Ω to 1.5 kΩ

In an unloaded condition, this voltage divider consisting of identical resistors and a 24 Volt source
would output half of its internal source voltage (i.e. 12 Volts). However, we know that under loaded
conditions the divider’s output voltage will “sag” below the ideal value of 12 Volts. Our task is to
determine how much that voltage sags as the load’s resistance varies between 200 Ω and 1.5 kΩ.

The most direct method for calculating the divider’s output voltage under varying load conditions
would be to analyze this as a series-parallel circuit for different values of Rload. However, Thévenin’s
Theorem provides a faster solution. Our first task is to “Thévenize” the voltage divider network to
obtain an equivalent network that will behave the same as viewed from its output terminals:

+
−

1 kΩ

1 kΩ
24 V

VOC = VTh

= 12 V

1 kΩ

1 kΩ

short

R = RTh

= 500 Ω

From the open-circuit and disabled-source tests, we see the Thévenin equivalent network must
consist of a 12 Volt source in series with a 500 Ohm resistance.

7A “rheostat” is simple a variable resistance. By connecting the wiper of the potentiometer to one of its outside
terminals, it simply functions as a variable resistance.
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With this Thévenin equivalent in hand, our loaded voltage divider circuit becomes a simple-series

circuit rather than an series-parallel circuit, thereby simplifying our task of computing load voltage
at different load resistance varies:

Load
(adjustable)

Range =
200 Ω to 1.5 kΩ+

−12 V

500 Ω
Thevenin equivalent

Now, instead of having to perform series-parallel analysis for each and every load resistance value,
we may simply use the voltage divider formula:

• VLoad @ 200 Ohms = (12 V)
(

200 Ω

500 Ω+200 Ω

)

= 3.429 Volts

• VLoad @ 1000 Ohms = (12 V)
(

1000 Ω

500 Ω+1000 Ω

)

= 8.000 Volts

• VLoad @ 1500 Ohms = (12 V)
(

1500 Ω

500 Ω+1500 Ω

)

= 9.000 Volts

We could have just as easily reduced the original voltage divider circuit to a Norton equivalent
instead8, and we would still have a circuit easier to analyze for multiple load resistance values than
the original series-parallel network:

Load
(adjustable)

Range =
200 Ω to 1.5 kΩ

Norton equivalent

500 Ω24 mA

• VLoad @ 200 Ohms = (24 mA)
(

1
1

500 Ω
+ 1

200 Ω

)

= 3.429 Volts

• VLoad @ 1000 Ohms = (24 mA)
(

1
1

500 Ω
+ 1

1000 Ω

)

= 8.000 Volts

• VLoad @ 1500 Ohms = (24 mA)
(

1
1

500 Ω
+ 1

1500 Ω

)

= 9.000 Volts

Bear in mind that Thévenin and Norton equivalents make any circuit with a varying load as
easy to analyze as simple-series and simple-parallel networks, respectively.

8Since we already know VTh and RTh, we may quickly calculate the Norton equivalent values IN =
VTh

RTh

= 24

mA and RN = RTh = 500 Ω.
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3.6 Example: Unbalanced bridge circuit

In the previous example we saw how either Thévenin’s or Norton’s Theorem could be used to simplify
a series-parallel circuit into a simple-series or simple-parallel circuit (respectively) to facilitate
modeling a variable load resistance. The resulting Thévenin or Norton equivalent network saved us
the trouble of performing longer calculations, and therefore was a useful problem-solving strategy. In
this example, however, we will see a more powerful application of Thévenin’s and Norton’s Theorems
– one where the original circuit is impossible to analyze as a series-parallel network.

Consider the following bridge circuit, where each of the five resistance values are unique:

+
−

10
0 Ω

500 Ω

250 Ω
1 k

Ω

10 kΩ
18 V

Not only are all resistors unequal in value, but their ratios are unequal as well. This fact makes the
bridge circuit unbalanced9 and therefore challenging to analyze. As tempting as it may be to try to
condense these five resistors into a single equivalent resistance representing a series-parallel network,
we will find this task impossible because no two resistors are in series or in parallel with each other.
Recall the respective definitions of series and of parallel, shown in the following illustrations:

Series-connected components

Only one path exists for current

Parallel-connected components
These points are electrically common

These points are electrically common

Series is defined as having only one path for current. Parallel is defined as the components all
connected across the same two sets of electrically-common points. You will search in vain for any
two resistors in the bridge circuit sharing just one path for current between them, or sharing the
same two sets of electrically-common points. Bridge circuits are not series-parallel networks, and
so we cannot use the techniques of series-parallel analysis to reduce any bridge circuit to a single
equivalent resistance!

9Recall that a balanced bridge circuit has equal ratios between pairs of resistors on opposite sides of the bridge,
resulting in zero voltage across the middle resistor (in this case, the 10 kΩ resistor). Balanced bridge circuits are easy
to analyze because the lack of voltage across the middle resistance means there is no current flowing through that
resistor, and therefore we may effectively regard that resistor as not being there at all (i.e. equivalent to an open).
This is why balanced bridge circuits may be considered nothing more than a pair of two-resistor voltage dividers.
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How does either Thévenin’s or Norton’s Theorem help us in this case? We may apply either
theorem by arbitrarily selecting one of the resistors in the bridge circuit and call it our load, and
then reducing the rest of the bridge circuit to a Thévenin or Norton equivalent. The reduction of
the single source and four resistors to a single source and single resistor will greatly simplify our
determination of voltage and/or current for that arbitrarily-selected resistor. This will become clear
by example.

Suppose we wish to know the voltage and current for the 10 kΩ resistor in this bridge circuit. We
may declare this resistor to be the load, then Thévenize or Nortonize the rest of the bridge circuit
to arrive at an equivalent network of just one source and one resistance, and finally re-connect our
10 kΩ load to this equivalent network to solve for its voltage and current. The temporary removal
of the 10 kΩ resistor from the original bridge circuit is the key to success: eliminating this resistor
simplifies the bridge into a series-parallel network, for which we have applicable tools to analyze.

First, removing the 10 kΩ “load” resistor and solving for the Thévenin voltage (VTh):

+
−

10
0 Ω

500 Ω

250 Ω
1 k

Ω

VTh

18 V

Kirchhoff’s Voltage Law informs us that the voltage between the open terminals (VTh) must be
equal to the difference in voltage dropped across the two lower10 resistors.

VTh = V250Ω − V1000Ω

VTh = (18 V)

(

250 Ω

100 Ω + 250 Ω

)

− (18 V)

(

1000 Ω

500 Ω + 1000 Ω

)

VTh = 12.857 V− 12 V

VTh = 0.857 V (+ on left)

When we re-draw the circuit as a Thévenin equivalent connected to the 10 kΩ “load” resistor,
the Thévenin equivalent will have a VTh voltage value of 0.857 Volts.

10Also, equal to the difference in voltage dropped across the two upper resistors. The choice of which resistor-pair
to use is arbitrary.
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Next, we determine the Thévenin equivalent resistance of the four remaining resistors in the
bridge circuit. To do this, of course, we must replace the 18 Volt source by a shorting wire:

10
0 Ω

500 Ω

250 Ω
1 k

Ω

short

RTh

The result is a terminal-to-terminal resistance equal to the 100 Ω and 250 Ω resistors in parallel
with each other, in series with the 500 Ω and 1 kΩ resistors in parallel with each other. This is
perhaps the most confusing aspect of the Thévenization/Nortonization process for this bridge circuit,
and it may be more easily grasped by viewing a sequence of “wire-bending” steps:

100 Ω 500 Ω

250 Ω
1 k

Ω

RTh

Step 1: Step 2:

100 Ω 500 Ω

250 Ω
1 k

Ω

RTh

100 Ω 500 Ω
250 Ω

1 k
Ω

RTh

Step 3:

100 Ω 500 Ω250 Ω 1 kΩ

RTh

Step 4:

RTh =
1

1

100 Ω
+ 1

250 Ω

+
1

1

1000 Ω
+ 1

500 Ω

= 404.76 Ω

When we re-draw the circuit as a Thévenin equivalent connected to the 10 kΩ “load” resistor,
the Thévenin equivalent will have an internal RTh resistance of 404.76 Ohms.
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Re-drawing the circuit as a Thévenin equivalent plus the 10 kΩ “load” resistor:

10 kΩ+
−

404.76 Ω

0.857 V

Thevenin equivalent

Now, it is a very simple matter indeed to calculate the 10 kΩ resistor’s voltage and current using
the properties of series circuits and Ohm’s Law:

I =
VTh

Rtotal

=
0.857 V

404.76 Ω + 10000 Ω
= 82.380 µA

Vload = IRload = (82.380 µA)(10000 Ω) = 0.8238 V

Therefore, the 10 kΩ resistor in the original bridge circuit must drop 0.8238 Volts and pass 82.380
µA of current:

+
−

10
0 Ω

500 Ω

250 Ω
1 k

Ω

10 kΩ
18 V

0.8238 V

82.38 µA



Chapter 4

Derivations and Technical
References

This chapter is where you will find mathematical derivations too detailed to include in the tutorial,
and/or tables and other technical reference material.
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4.1 Derivation of Millman’s Theorem

Whenever we encounter a network of multiple voltage sources connected together in parallel, each
with its own associated series-connected resistance, there is an easy way to calculate that parallel
network’s voltage value. This method treats each source-resistor pair as a Thévenin voltage source
and then converts each into a corresponding Norton current source (current source and parallel-
connected resistance). In the converted network all sources and resistors are in parallel with each
other, which means all the current source currents simply add together and pass through a parallel-
equivalent resistance value determined by the individual resistors:

+
−V1 V2 V3

R1 R2 R3

+
−

+
−

Vtotal

Original network

R1 R3 VtotalI1 I2 R2 I3

Nortonized network

Voltage across the Nortonized network is fairly simple to calculate, multiplying total current by the
total (parallel-diminished) resistance in accordance with Ohm’s Law (V = I

R
):

Vtotal =
I1 + I2 + I3
1

R1
+ 1

R2
+ 1

R3

Expanding back to the original network with three voltage sources, we must re-write the numerator
of the fraction to show each Norton-equivalent current as the quotient of a voltage source and its
respective resistance:

Vtotal =
V1

R1
+ V2

R2
+ V3

R3

1

R1
+ 1

R2
+ 1

R3

That last equation is the mathematical expression of Millman’s Theorem, useful for predicting
voltage in any network comprised of parallel-connected voltage sources (with individual resistances).
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4.2 Time delay circuits and Thévenin’s/Norton’s Theorems

Circuits containing resistors along with capacitors or inductors typically result in voltage and current
values that vary over time. Determining starting and final values for these parameters, as well as
calculating the “time constant” (τ = RC = L

R
) can be challenging especially if the circuit in question

consists of more than just a single resistor, single source, and single reactive (C or L).

Take for example the following two RC circuits, each one containing one capacitor but two
resistors:

+
− R1

R2

V1
+
− R1

R2

V1C C

If the capacitor begins in a completely de-energized state with the switch in the open position,
capacitor voltage for each circuit is guaranteed to begin at 0 Volts because energy stored in any
capacitance always manifests as a voltage across that capacitance. When we close the switch, we
would expect the capacitor in both circuits to begin energizing as they absorb energy from the
voltage source V1, and this means their voltages will rise over time. However, what is not as clear
upon first inspection is what the final voltage will be for either capacitor after the switch has been
left in its closed state for a long time, as well as how we might calculate the time constant τ = RC

given the fact each circuit has two resistors and not just one.
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Obviously, an RC circuit containing just one resistor and one capacitor instead of two resistors and
one capacitor would be simpler to analyze, so why don’t we just apply either Thévenin’s Theorem or
Norton’s Theorem to each circuit in order to reduce it to just a single source and single resistance?
Choosing the capacitor to be the load, we will convert the rest of each circuit into its Thévenin
equivalent:

+
− R1

R2

V1
+
− R1

R2

V1

Convert to equivalent network

+
−VTh

RTh

+
−VTh

RTh

Equal to R2 Equal to R
1
 || R2

Equal to V1 
R1

R1 + R2

Recall that determining either the Thévenin or the Norton equivalent resistance of any complex
network consists of disabling all sources in the original circuit and determining resistance as measured
from load terminal to load terminal. In the left-hand circuit the disabled V1 is replaced by a short
which completely bypasses R1 and leaves only R2 remaining. In the right-hand circuit the disabled V1

(again, replaced by a short) causes R1 and R2 to be in parallel with each other from the perspective
of the two load terminals. Thus, the time constant for the left-hand circuit is simply τ = R2C while
the time constant for the right-hand circuit will be τ = C

1

R1
+ 1

R2

.

Recall that determining the Thévenin equivalent voltage of any complex network consists of
calculating voltage from one load terminal to the other with all original sources active. Here we see
that the left-hand circuit’s open-circuit load terminal voltage must simply be V1, while the right-
hand circuit’s open-circuit terminal voltage will be the result of V1 powering a two-resistor voltage
divider.

Re-attaching the capacitor C to the load terminals of the Thévenin equivalent networks results
in a pair of simpler circuits to analyze, where the time constant in each case is τ = RThC and the
final capacitor voltage after full energization is VTh.
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Norton’s Theorem, of course, works just as well as Thévenin’s Theorem for this purpose. To
illustrate, we will apply Norton’s Theorem to a pair of resistor-inductor circuits to determine how
multiple resistors affect the inductors’ energization:

+
− R1

R2

V1
+
−

R1

R2

V1 R3L L

Removing the inductor from each circuit and converting the remaining networks into Norton
equivalents:

+
− R1

R2

V1
+
−

R1

R2

V1

Convert to equivalent network

Equal to R2

R3

Equal to R3 || (R1 + R2)RN RN

Equal to
V1

R1 + R2

ININ

Equal to
V1

R2

The process for determining Norton equivalent resistance is exactly the same as it is for Thévenin
equivalent resistance: simply disable all original sources and determine what an ohmmeter would
register if connected between the two load terminals. In the left-hand circuit we see once again that
R1 is of no effect to the Norton equivalent value of RN , while in the right-hand circuit RN is a
series-parallel combination of the three original resistors.

Recall that determining the Norton equivalent current of any complex network consists of
calculating current passing through a shorting wire placed between the two load terminals with
all the original sources active. In the left-hand circuit we see that this short-circuit current is the
limited only by R2 and so IN = V1

R2
. In the right-hand circuit we see only R1 and R2 serving to

limit current, and so IN = V1

R1+R2
.
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Re-attaching the inductor L to the load terminals of the Norton equivalent networks results in
a pair of simpler circuits to analyze, where the time constant in each case is τ = L

RN
and the final

inductor current after full energization is IN .



Chapter 5

Animations

Some concepts are much easier to grasp when seen in action. A simple yet effective form of animation
suitable to an electronic document such as this is a “flip-book” animation where a set of pages in the
document show successive frames of a simple animation. Such “flip-book” animations are designed
to be viewed by paging forward (and/or back) with the document-reading software application,
watching it frame-by-frame. Unlike video which may be difficult to pause at certain moments,
“flip-book” animations lend themselves very well to individual frame viewing.

49
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5.1 Animation of Thévenin’s Theorem

The following animation shows the steps involved in “Thévenizing” a circuit.
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

This is our original circuit:
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

to simplify this portion of the circuit . . .
We may use Thevenin's Theorem
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Rload

to simplify this portion of the circuit . . .

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

We may use Thevenin's Theorem
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Rload

to simplify this portion of the circuit . . .

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

We may use Thevenin's Theorem
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Rload

to simplify this portion of the circuit . . .

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

We may use Thevenin's Theorem
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

To this Thevenin equivalent circuit . . .
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

To this Thevenin equivalent circuit . . .

VTH

RTH
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

. . . to which we may attach
the same load and analyze.
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

. . . to which we may attach
the same load and analyze.

Rload
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

. . . to which we may attach
the same load and analyze.

Rload
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

. . . to which we may attach
the same load and analyze.

Rload
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

. . . to which we may attach
the same load and analyze.

Rload
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Rload
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Rload

the load resistor.
First we disconnect
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RloadR1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

the load resistor.
First we disconnect
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

the load resistor.
First we disconnect
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

the load resistor.
First we disconnect
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Then we calculate how
much voltage appears
across the open load

terminals.
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Then we calculate how
much voltage appears
across the open load

terminals.
+

V
-
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Then we calculate how
much voltage appears
across the open load

terminals.
+

V
-
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Then we calculate how
much voltage appears
across the open load

terminals.
+

V
- (18 volts)

10 kΩ

(14 kΩ + 12 kΩ + 10 kΩ)

Note: here we are applying the Voltage Divider equation

to solve for R3's voltage, but we could use any other 

technique we might wish.  The point is, we calculate R3's 

voltage any way possible!
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

Then we calculate how
much voltage appears
across the open load

terminals.
+

V
- (18 volts)

10 kΩ

(14 kΩ + 12 kΩ + 10 kΩ)

= 5 volts

Note: here we are applying the Voltage Divider equation

to solve for R3's voltage, but we could use any other 

technique we might wish.  The point is, we calculate R3's 

voltage any way possible!
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

+
V

-
5 V
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

VTH

RTH

+
V

-
5 V

This voltage becomes
our Thevenin source
voltage . . . 
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

+
V

-
5 V

This voltage becomes
our Thevenin source
voltage . . . 

5 V
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

+
V

-
5 V

This voltage becomes
our Thevenin source
voltage . . . 

5 V
. . . in the Thevenin equivalent circuit.
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

5 V
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Now we replace each source
in the original circuit with its
own internal resistance.
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Now we replace each source
in the original circuit with its
own internal resistance.

For voltage sources, this
means a short-circuit.
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Now we replace each source
in the original circuit with its
own internal resistance.

For voltage sources, this
means a short-circuit.
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Rload

R1

R2

R3

18 V

10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Now we replace each source
in the original circuit with its
own internal resistance.

For voltage sources, this
means a short-circuit.
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Now we replace each source
in the original circuit with its
own internal resistance.

For voltage sources, this
means a short-circuit.
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

resistance across the open
load terminals.

. . . and we calculate
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

resistance across the open
load terminals.Ω

. . . and we calculate
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

resistance across the open
load terminals.Ω

. . . and we calculate
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

resistance across the open
load terminals.Ω

. . . and we calculate

(14 kΩ + 12 kΩ) // 10 kΩ
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

resistance across the open
load terminals.Ω

. . . and we calculate

(14 kΩ + 12 kΩ) // 10 kΩ
= 7.22 kΩ
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Ω 7.22 kΩ
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

RTH

5 V

Ω 7.22 kΩ

This resistance becomes
our Thevenin source

resistance . . .
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

Ω 7.22 kΩ

This resistance becomes
our Thevenin source

resistance . . .

7.22 kΩ



5.1. ANIMATION OF THÉVENIN’S THEOREM 95

Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

Ω 7.22 kΩ

This resistance becomes
our Thevenin source

resistance . . .

7.22 kΩ

. . . in the Thevenin equivalent circuit.
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

Calculate:

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

Calculate:

Vload

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

Calculate:

Vload

Iload

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Now that we have an 
equivalent circuit to 

work with, we may insert
the load there to see what

happens!

Calculate:

Vload

Iload

Pload

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
These load calculations will
reflect what happens in the
original circuit!
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
These load calculations will
reflect what happens in the
original circuit!

Rload
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
These load calculations will
reflect what happens in the
original circuit!

Rload
Vload

(same)



110 CHAPTER 5. ANIMATIONS

Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
These load calculations will
reflect what happens in the
original circuit!

Rload
Vload

(same)

Iload
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
These load calculations will
reflect what happens in the
original circuit!

Rload
Vload

(same)

Iload

Pload



112 CHAPTER 5. ANIMATIONS

Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ

Calculate:

Vload

Iload

Pload

18 V
These load calculations will
reflect what happens in the
original circuit!

Rload
Vload

Iload

Pload
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ Vload

Iload

Pload

18 V

Rload

Vload

Iload

Pload
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ Vload

Iload

Pload

18 V

Rload

Vload

Iload

Pload
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Rload

R1

R2

R3 10 kΩ

12 kΩ

14 kΩ

5 V

7.22 kΩ Vload

Iload

Pload

18 V

Rload

Vload

Iload

Pload

The load cannot ‘‘tell’’
any difference between the

Thevenin equivalent circuit.
original circuit and the
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Chapter 6

Questions

This learning module, along with all others in the ModEL collection, is designed to be used in an
inverted instructional environment where students independently read1 the tutorials and attempt
to answer questions on their own prior to the instructor’s interaction with them. In place of
lecture2, the instructor engages with students in Socratic-style dialogue, probing and challenging
their understanding of the subject matter through inquiry.

Answers are not provided for questions within this chapter, and this is by design. Solved problems
may be found in the Tutorial and Derivation chapters, instead. The goal here is independence, and
this requires students to be challenged in ways where others cannot think for them. Remember
that you always have the tools of experimentation and computer simulation (e.g. SPICE) to explore
concepts!

The following lists contain ideas for Socratic-style questions and challenges. Upon inspection,
one will notice a strong theme of metacognition within these statements: they are designed to foster
a regular habit of examining one’s own thoughts as a means toward clearer thinking. As such these
sample questions are useful both for instructor-led discussions as well as for self-study.

1Technical reading is an essential academic skill for any technical practitioner to possess for the simple reason
that the most comprehensive, accurate, and useful information to be found for developing technical competence is in
textual form. Technical careers in general are characterized by the need for continuous learning to remain current
with standards and technology, and therefore any technical practitioner who cannot read well is handicapped in
their professional development. An excellent resource for educators on improving students’ reading prowess through
intentional effort and strategy is the book textitReading For Understanding – How Reading Apprenticeship Improves
Disciplinary Learning in Secondary and College Classrooms by Ruth Schoenbach, Cynthia Greenleaf, and Lynn
Murphy.

2Lecture is popular as a teaching method because it is easy to implement: any reasonably articulate subject matter
expert can talk to students, even with little preparation. However, it is also quite problematic. A good lecture always
makes complicated concepts seem easier than they are, which is bad for students because it instills a false sense of
confidence in their own understanding; reading and re-articulation requires more cognitive effort and serves to verify
comprehension. A culture of teaching-by-lecture fosters a debilitating dependence upon direct personal instruction,
whereas the challenges of modern life demand independent and critical thought made possible only by gathering
information and perspectives from afar. Information presented in a lecture is ephemeral, easily lost to failures of
memory and dictation; text is forever, and may be referenced at any time.
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General challenges following tutorial reading

• Summarize as much of the text as you can in one paragraph of your own words. A helpful
strategy is to explain ideas as you would for an intelligent child: as simple as you can without
compromising too much accuracy.

• Simplify a particular section of the text, for example a paragraph or even a single sentence, so
as to capture the same fundamental idea in fewer words.

• Where did the text make the most sense to you? What was it about the text’s presentation
that made it clear?

• Identify where it might be easy for someone to misunderstand the text, and explain why you
think it could be confusing.

• Identify any new concept(s) presented in the text, and explain in your own words.

• Identify any familiar concept(s) such as physical laws or principles applied or referenced in the
text.

• Devise a proof of concept experiment demonstrating an important principle, physical law, or
technical innovation represented in the text.

• Devise an experiment to disprove a plausible misconception.

• Did the text reveal any misconceptions you might have harbored? If so, describe the
misconception(s) and the reason(s) why you now know them to be incorrect.

• Describe any useful problem-solving strategies applied in the text.

• Devise a question of your own to challenge a reader’s comprehension of the text.
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General follow-up challenges for assigned problems

• Identify where any fundamental laws or principles apply to the solution of this problem,
especially before applying any mathematical techniques.

• Devise a thought experiment to explore the characteristics of the problem scenario, applying
known laws and principles to mentally model its behavior.

• Describe in detail your own strategy for solving this problem. How did you identify and
organized the given information? Did you sketch any diagrams to help frame the problem?

• Is there more than one way to solve this problem? Which method seems best to you?

• Show the work you did in solving this problem, even if the solution is incomplete or incorrect.

• What would you say was the most challenging part of this problem, and why was it so?

• Was any important information missing from the problem which you had to research or recall?

• Was there any extraneous information presented within this problem? If so, what was it and
why did it not matter?

• Examine someone else’s solution to identify where they applied fundamental laws or principles.

• Simplify the problem from its given form and show how to solve this simpler version of it.
Examples include eliminating certain variables or conditions, altering values to simpler (usually
whole) numbers, applying a limiting case (i.e. altering a variable to some extreme or ultimate
value).

• For quantitative problems, identify the real-world meaning of all intermediate calculations:
their units of measurement, where they fit into the scenario at hand. Annotate any diagrams
or illustrations with these calculated values.

• For quantitative problems, try approaching it qualitatively instead, thinking in terms of
“increase” and “decrease” rather than definite values.

• For qualitative problems, try approaching it quantitatively instead, proposing simple numerical
values for the variables.

• Were there any assumptions you made while solving this problem? Would your solution change
if one of those assumptions were altered?

• Identify where it would be easy for someone to go astray in attempting to solve this problem.

• Formulate your own problem based on what you learned solving this one.

General follow-up challenges for experiments or projects

• In what way(s) was this experiment or project easy to complete?

• Identify some of the challenges you faced in completing this experiment or project.
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• Show how thorough documentation assisted in the completion of this experiment or project.

• Which fundamental laws or principles are key to this system’s function?

• Identify any way(s) in which one might obtain false or otherwise misleading measurements
from test equipment in this system.

• What will happen if (component X) fails (open/shorted/etc.)?

• What would have to occur to make this system unsafe?
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6.1 Conceptual reasoning

These questions are designed to stimulate your analytic and synthetic thinking3. In a Socratic
discussion with your instructor, the goal is for these questions to prompt an extended dialogue
where assumptions are revealed, conclusions are tested, and understanding is sharpened. Your
instructor may also pose additional questions based on those assigned, in order to further probe and
refine your conceptual understanding.

Questions that follow are presented to challenge and probe your understanding of various concepts
presented in the tutorial. These questions are intended to serve as a guide for the Socratic dialogue
between yourself and the instructor. Your instructor’s task is to ensure you have a sound grasp of
these concepts, and the questions contained in this document are merely a means to this end. Your
instructor may, at his or her discretion, alter or substitute questions for the benefit of tailoring the
discussion to each student’s needs. The only absolute requirement is that each student is challenged
and assessed at a level equal to or greater than that represented by the documented questions.

It is far more important that you convey your reasoning than it is to simply convey a correct
answer. For this reason, you should refrain from researching other information sources to answer
questions. What matters here is that you are doing the thinking. If the answer is incorrect, your
instructor will work with you to correct it through proper reasoning. A correct answer without an
adequate explanation of how you derived that answer is unacceptable, as it does not aid the learning
or assessment process.

You will note a conspicuous lack of answers given for these conceptual questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your conceptual answers, where applicable, is to use circuit simulation
software to explore the effects of changes made to circuits. For example, if one of these conceptual
questions challenges you to predict the effects of altering some component parameter in a circuit,
you may check the validity of your work by simulating that same parameter change within software
and seeing if the results agree.

3Analytical thinking involves the “disassembly” of an idea into its constituent parts, analogous to dissection.
Synthetic thinking involves the “assembly” of a new idea comprised of multiple concepts, analogous to construction.
Both activities are high-level cognitive skills, extremely important for effective problem-solving, necessitating frequent
challenge and regular practice to fully develop.
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6.1.1 Reading outline and reflections

“Reading maketh a full man; conference a ready man; and writing an exact man” – Francis Bacon

Francis Bacon’s advice is a blueprint for effective education: reading provides the learner with
knowledge, writing focuses the learner’s thoughts, and critical dialogue equips the learner to
confidently communicate and apply their learning. Independent acquisition and application of
knowledge is a powerful skill, well worth the effort to cultivate. To this end, students should read
these educational resources closely, journal their own reflections on the reading, and discuss in detail
their findings with classmates and instructor(s). You should be able to do all of the following after
reading any instructional text:

√
Briefly SUMMARIZE THE TEXT in the form of a journal entry documenting your learning

as you progress through the course of study. Share this summary in dialogue with your classmates
and instructor. Journaling is an excellent self-test of thorough reading because you cannot clearly
express what you have not read or did not comprehend.

√
Demonstrate ACTIVE READING STRATEGIES, including verbalizing your impressions as

you read, simplifying long passages to convey the same ideas using fewer words, annotating text
and illustrations with your own interpretations, working through mathematical examples shown in
the text, cross-referencing passages with relevant illustrations and/or other passages, identifying
problem-solving strategies applied by the author, etc. Technical reading is a special case of problem-
solving, and so these strategies work precisely because they help solve any problem: paying attention
to your own thoughts (metacognition), eliminating unnecessary complexities, identifying what makes
sense, paying close attention to details, drawing connections between separated facts, and noting
the successful strategies of others.

√
Identify IMPORTANT THEMES, especially GENERAL LAWS and PRINCIPLES, expounded

in the text and express them in the simplest of terms as though you were teaching an intelligent
child. This emphasizes connections between related topics and develops your ability to communicate
complex ideas to anyone.

√
Form YOUR OWN QUESTIONS based on the reading, and then pose them to your instructor

and classmates for their consideration. Anticipate both correct and incorrect answers, the incorrect
answer(s) assuming one or more plausible misconceptions. This helps you view the subject from
different perspectives to grasp it more fully.

√
Devise EXPERIMENTS to test claims presented in the reading, or to disprove misconceptions.

Predict possible outcomes of these experiments, and evaluate their meanings: what result(s) would
confirm, and what would constitute disproof? Running mental simulations and evaluating results is
essential to scientific and diagnostic reasoning.

√
Specifically identify any points you found CONFUSING. The reason for doing this is to help

diagnose misconceptions and overcome barriers to learning.



6.1. CONCEPTUAL REASONING 123

6.1.2 Foundational concepts

Correct analysis and diagnosis of electric circuits begins with a proper understanding of some basic
concepts. The following is a list of some important concepts referenced in this module’s full tutorial.
Define each of them in your own words, and be prepared to illustrate each of these concepts with a
description of a practical example and/or a live demonstration.

Energy

Conservation of Energy

Thought experiments as a problem-solving strategy

Electrical source

Electrical load

Series connection

Equivalent networks

Current source

Voltage source

Open

Short

Voltage divider
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Re-drawing schematics as a problem-solving strategy

6.1.3 Testing a “black box” voltage source

Suppose you were handed a black box with two metal terminals on one side, for attaching electrical
(wire) connections. Inside this box, you were told, was a voltage source (an ideal voltage source
connected in series with a resistance):

Box

Terminals

How would you empirically determine the voltage of the ideal voltage source inside this box,
and how would you empirically determine the resistance of the series resistor? By “empirically” I
mean determine voltage and resistance using actual test equipment rather than assuming certain
component values (remember, this “black box” is sealed, so you cannot look inside!).

Challenges

• How does this empirical technique relate to the theoretical process of Thévenizing or
Nortonizing a network?
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6.1.4 Testing a “black box” current source

Suppose you were handed a black box with two metal terminals on one side, for attaching electrical
(wire) connections. Inside this box, you were told, was a current source (an ideal current source
connected in parallel with a resistance):

Box

Terminals

How would you empirically determine the current of the ideal current source inside this box,
and how would you empirically determine the resistance of the parallel resistor? By “empirically”
I mean determine current and resistance using actual test equipment rather than assuming certain
component values (remember, this “black box” is sealed, so you cannot look inside!).

Challenges

• How does this empirical technique relate to the theoretical process of Thévenizing or
Nortonizing a network?
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6.1.5 Load lines of equivalent sources

Load lines are special types of graphs used in electronics to characterize the output voltage and
current behavior of different power sources:

Vload

Iload

0

1

2

3

4

5

6

7

8

9

10

11

12

(mA)

0 1 2 3 4

(volts)

5 6 7 8 9 10 11 12

Power source

Rinternal

RloadVinternal

Each point on the load line represents
the output voltage and current for a
unique amount of load resistance.

If we know that all the internal components of a power source are inherently linear, we know
that the load line plot will indeed by a straight line. And, if we know the plot will be a straight line,
all we need in order to plot a complete load line are two data points.

Usually, the easiest data points to gather for a circuit – whether it be a real circuit or an
hypothetical circuit existing on paper only – is the open-circuit condition and the short-circuit

condition. In other words, we see how much voltage the source will output with no load connected
(Iload = 0 milliAmperes) and then we see how much current the source will output into a direct
short (Vload = 0 Volts):
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Vload

Iload

0

1

2

3

4

5

6

7

8

9

10

11

12

(mA)

0 1 2 3 4

(volts)

5 6 7 8 9 10 11 12

Rinternal

Vinternal

Rinternal

Vinternal

Open-circuit condition

Short-circuit condition

ISC = ???

ISC

VOC

VOC = ???

Suppose we have two differently-constructed power sources, yet both of these sources share the
same open-circuit voltage (VOC) and the same short-circuit current (ISC). Assuming the internal
components of both power sources are linear in nature, explain how we would know without doubt
that the two power sources were electrically equivalent to one another. In other words, explain how
we would know just from the limited data of VOC and ISC that these two power sources will behave
exactly the same when connected to the same load resistance, whatever that load resistance may be.
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How do we know these two power sources are completely
equivalent to one another just from their equal open-circuit
voltage and short-circuit current figures?

VOC = 7.5 volts

ISC = 8.75 mA

VOC = 7.5 volts

ISC = 8.75 mA

Challenges

• A line may be mathematically defined with just two points of data. Explain why this is fact
is significant to this problem.
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6.1.6 Thévenizing a solar cell

A photovoltaic solar cell is a semiconductor component designed to act as an electrical source when
struck by sunlight. Its behavior is approximated by the lumped-component model shown below:

D1
Isc

R1

R2

Solar cell model

The current output by source ISC depends on the geometry of the solar cell and the amount of
light striking it. The resistance values also depend on the geometry and chemical composition of
the cell.

One of these modeling components – the diode labeled D1 – has a non-linear characteristic.
In other words, it does not exhibit a stable resistance value like the other modeling components.
Although its real behavior is best described by the exponential Shockley diode equation, for the sake
of our analysis here we may think of the diode as being either on or off depending on the voltage
across its terminals: if the voltage is less than 0.7 Volts, this diode will be “off” (non-conducting);
an attempt to raise its voltage above 0.7 Volts results in it turning “on” and maintaining a constant
(regulated) voltage drop of 0.7 Volts as it conducts current. In other words, below 0.7 Volts it
behaves as an open and at all other times it behaves as a constant 0.7 Volt device (e.g. a 0.7 Volt
source).

Develop one Thévenin equivalent network for this solar cell assuming a condition where VD1 <

Volts, and another Thévenin equivalent network assuming VD1 = 0.7 Volts.

Challenges

• ???
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6.2 Quantitative reasoning

These questions are designed to stimulate your computational thinking. In a Socratic discussion with
your instructor, the goal is for these questions to reveal your mathematical approach(es) to problem-
solving so that good technique and sound reasoning may be reinforced. Your instructor may also pose
additional questions based on those assigned, in order to observe your problem-solving firsthand.

Mental arithmetic and estimations are strongly encouraged for all calculations, because without
these abilities you will be unable to readily detect errors caused by calculator misuse (e.g. keystroke
errors).

You will note a conspicuous lack of answers given for these quantitative questions. Unlike
standard textbooks where answers to every other question are given somewhere toward the back
of the book, here in these learning modules students must rely on other means to check their work.
My advice is to use circuit simulation software such as SPICE to check the correctness of quantitative
answers. Refer to those learning modules within this collection focusing on SPICE to see worked
examples which you may use directly as practice problems for your own study, and/or as templates
you may modify to run your own analyses and generate your own practice problems.

Completely worked example problems found in the Tutorial may also serve as “test cases4” for
gaining proficiency in the use of circuit simulation software, and then once that proficiency is gained
you will never need to rely5 on an answer key!

4In other words, set up the circuit simulation software to analyze the same circuit examples found in the Tutorial.
If the simulated results match the answers shown in the Tutorial, it confirms the simulation has properly run. If
the simulated results disagree with the Tutorial’s answers, something has been set up incorrectly in the simulation
software. Using every Tutorial as practice in this way will quickly develop proficiency in the use of circuit simulation
software.

5This approach is perfectly in keeping with the instructional philosophy of these learning modules: teaching students

to be self-sufficient thinkers. Answer keys can be useful, but it is even more useful to your long-term success to have
a set of tools on hand for checking your own work, because once you have left school and are on your own, there will
no longer be “answer keys” available for the problems you will have to solve.
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6.2.1 Miscellaneous physical constants

Note: constants shown in bold type are exact, not approximations. Values inside of parentheses show
one standard deviation (σ) of uncertainty in the final digits: for example, the magnetic permeability
of free space value given as 1.25663706212(19) × 10−6 H/m represents a center value (i.e. the location
parameter) of 1.25663706212 × 10−6 Henrys per meter with one standard deviation of uncertainty
equal to 0.0000000000019× 10−6 Henrys per meter.

Avogadro’s number (NA) = 6.02214076 × 1023 per mole (mol−1)

Boltzmann’s constant (k) = 1.380649 × 10−23 Joules per Kelvin (J/K)

Electronic charge (e) = 1.602176634 × 10−19 Coulomb (C)

Faraday constant (F ) = 96,485.33212... × 104 Coulombs per mole (C/mol)

Magnetic permeability of free space (µ0) = 1.25663706212(19) × 10−6 Henrys per meter (H/m)

Electric permittivity of free space (ǫ0) = 8.8541878128(13) × 10−12 Farads per meter (F/m)

Characteristic impedance of free space (Z0) = 376.730313668(57) Ohms (Ω)

Gravitational constant (G) = 6.67430(15) × 10−11 cubic meters per kilogram-seconds squared
(m3/kg-s2)

Molar gas constant (R) = 8.314462618... Joules per mole-Kelvin (J/mol-K) = 0.08205746(14)
liters-atmospheres per mole-Kelvin

Planck constant (h) = 6.62607015 × 10−34 joule-seconds (J-s)

Stefan-Boltzmann constant (σ) = 5.670374419... × 10−8 Watts per square meter-Kelvin4

(W/m2·K4)

Speed of light in a vacuum (c) = 299,792,458 meters per second (m/s) = 186282.4 miles per
second (mi/s)

Note: All constants taken from NIST data “Fundamental Physical Constants – Complete Listing”,
from http://physics.nist.gov/constants, National Institute of Standards and Technology
(NIST), 2018 CODATA Adjustment.
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6.2.2 Introduction to spreadsheets

A powerful computational tool you are encouraged to use in your work is a spreadsheet. Available
on most personal computers (e.g. Microsoft Excel), spreadsheet software performs numerical
calculations based on number values and formulae entered into cells of a grid. This grid is
typically arranged as lettered columns and numbered rows, with each cell of the grid identified
by its column/row coordinates (e.g. cell B3, cell A8). Each cell may contain a string of text, a
number value, or a mathematical formula. The spreadsheet automatically updates the results of all
mathematical formulae whenever the entered number values are changed. This means it is possible
to set up a spreadsheet to perform a series of calculations on entered data, and those calculations
will be re-done by the computer any time the data points are edited in any way.

For example, the following spreadsheet calculates average speed based on entered values of
distance traveled and time elapsed:

1

2

3

4

5

A B C

Distance traveled

Time elapsed

Kilometers

Hours

Average speed km/h

D

46.9

1.18

= B1 / B2

Text labels contained in cells A1 through A3 and cells C1 through C3 exist solely for readability
and are not involved in any calculations. Cell B1 contains a sample distance value while cell B2
contains a sample time value. The formula for computing speed is contained in cell B3. Note how
this formula begins with an “equals” symbol (=), references the values for distance and speed by
lettered column and numbered row coordinates (B1 and B2), and uses a forward slash symbol for
division (/). The coordinates B1 and B2 function as variables6 would in an algebraic formula.

When this spreadsheet is executed, the numerical value 39.74576 will appear in cell B3 rather
than the formula = B1 / B2, because 39.74576 is the computed speed value given 46.9 kilometers
traveled over a period of 1.18 hours. If a different numerical value for distance is entered into cell
B1 or a different value for time is entered into cell B2, cell B3’s value will automatically update. All
you need to do is set up the given values and any formulae into the spreadsheet, and the computer
will do all the calculations for you.

Cell B3 may be referenced by other formulae in the spreadsheet if desired, since it is a variable
just like the given values contained in B1 and B2. This means it is possible to set up an entire chain
of calculations, one dependent on the result of another, in order to arrive at a final value. The
arrangement of the given data and formulae need not follow any pattern on the grid, which means
you may place them anywhere.

6Spreadsheets may also provide means to attach text labels to cells for use as variable names (Microsoft Excel
simply calls these labels “names”), but for simple spreadsheets such as those shown here it’s usually easier just to use
the standard coordinate naming for each cell.
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Common7 arithmetic operations available for your use in a spreadsheet include the following:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Powers (^)

• Square roots (sqrt())

• Logarithms (ln() , log10())

Parentheses may be used to ensure8 proper order of operations within a complex formula.
Consider this example of a spreadsheet implementing the quadratic formula, used to solve for roots
of a polynomial expression in the form of ax2 + bx+ c:

x =
−b±

√
b2 − 4ac

2a

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

= (-B4 - sqrt((B4^2) - (4*B3*B5))) / (2*B3)

= (-B4 + sqrt((B4^2) - (4*B3*B5))) / (2*B3)

This example is configured to compute roots9 of the polynomial 9x2 +5x− 2 because the values
of 9, 5, and −2 have been inserted into cells B3, B4, and B5, respectively. Once this spreadsheet has
been built, though, it may be used to calculate the roots of any second-degree polynomial expression
simply by entering the new a, b, and c coefficients into cells B3 through B5. The numerical values
appearing in cells B1 and B2 will be automatically updated by the computer immediately following
any changes made to the coefficients.

7Modern spreadsheet software offers a bewildering array of mathematical functions you may use in your
computations. I recommend you consult the documentation for your particular spreadsheet for information on
operations other than those listed here.

8Spreadsheet programs, like text-based programming languages, are designed to follow standard order of operations
by default. However, my personal preference is to use parentheses even where strictly unnecessary just to make it
clear to any other person viewing the formula what the intended order of operations is.

9Reviewing some algebra here, a root is a value for x that yields an overall value of zero for the polynomial. For
this polynomial (9x2+5x−2) the two roots happen to be x = 0.269381 and x = −0.82494, with these values displayed
in cells B1 and B2, respectively upon execution of the spreadsheet.
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Alternatively, one could break up the long quadratic formula into smaller pieces like this:

y =
√

b2 − 4ac z = 2a

x =
−b± y

z

1

2

3

4

5

A B

5

-2

x_1

x_2

a =

b =

c =

9

C

= sqrt((B4^2) - (4*B3*B5))

= 2*B3

= (-B4 + C1) / C2

= (-B4 - C1) / C2

Note how the square-root term (y) is calculated in cell C1, and the denominator term (z) in cell
C2. This makes the two final formulae (in cells B1 and B2) simpler to interpret. The positioning of
all these cells on the grid is completely arbitrary10 – all that matters is that they properly reference
each other in the formulae.

Spreadsheets are particularly useful for situations where the same set of calculations representing
a circuit or other system must be repeated for different initial conditions. The power of a spreadsheet
is that it automates what would otherwise be a tedious set of calculations. One specific application
of this is to simulate the effects of various components within a circuit failing with abnormal values
(e.g. a shorted resistor simulated by making its value nearly zero; an open resistor simulated by
making its value extremely large). Another application is analyzing the behavior of a circuit design
given new components that are out of specification, and/or aging components experiencing drift
over time.

10My personal preference is to locate all the “given” data in the upper-left cells of the spreadsheet grid (each data
point flanked by a sensible name in the cell to the left and units of measurement in the cell to the right as illustrated
in the first distance/time spreadsheet example), sometimes coloring them in order to clearly distinguish which cells
contain entered data versus which cells contain computed results from formulae. I like to place all formulae in cells
below the given data, and try to arrange them in logical order so that anyone examining my spreadsheet will be able
to figure out how I constructed a solution. This is a general principle I believe all computer programmers should
follow: document and arrange your code to make it easy for other people to learn from it.
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6.2.3 Testing sources under load

Calculate the voltage dropped across the load resistor, and the current through the load resistor, for
the load resistance values of 1 kΩ, 2 kΩ, 5 kΩ, 8 kΩ, and 10 kΩ:

Rinternal

10 V

1.5 Ω

Rload

Do the “boxed” components in this circuit behave more like a constant voltage source, or a
constant current source? Explain your answer.

Now, do the same for this circuit:

Rinternal

Rload

1.5 MΩ

10 kV

Do the “boxed” components in this circuit behave more like a constant voltage source, or a
constant current source? Explain your answer.

Challenges

• Would you say that voltage sources are typically characterized as having high internal
resistances or low internal resistances? What about current sources? Explain your answers.
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6.2.4 Thévenin and Norton equivalents of a single-source network

Reduce the following circuit to a Norton equivalent, and also to a Thévenin equivalent:

30 V

1 kΩ

2.2 kΩ

5 kΩ

1 kΩ

Load terminals

Challenges

• Explain why Thévenization and Nortonization are useful tools in circuit analysis.
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6.2.5 Thévenin equivalent of an AC/DC power supply

Suppose you had an AC/DC power supply, which performed as follows (open-circuit and loaded test
conditions):

OnOff

Lamp

Switch

Switch off:

DC output

Iout = 0 mA DC

Switch on:V mA

Iout = 845 mA DC

Vout = 14.3 Volts DC

Vout = 12.8 Volts DC

Draw a Thévenin equivalent network to model the behavior of this power supply.

Challenges

• Identify any assumptions we need to make about this power supply in order to apply Thévenin’s
Theorem to these measured values.
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6.2.6 Norton equivalent of an electric arc welder

An electric arc welder is a low-voltage, high-current power source designed to supply enough electric
current to sustain an arc capable of welding metal with its high temperature:

arc

receptacle
Power

Electric "arc" welding

Metal plates being 
welded together

welder

It is possible to derive a Norton equivalent network for an arc welder based on empirical
measurements of voltage and current. Take for example these measurements, under loaded and
no-load conditions:

arc

Metal plates being 
welded together

COMA

V

V A

A
OFF

Clamp-on
ammeter

welder
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COMA

V

V A

A
OFF

Clamp-on
ammeter

(no arc)
welder

Based on these measurements, derive a Norton equivalent network for the arc welder.

Challenges

• Identify any assumptions we need to make about this arc welder in order to apply Thévenin’s
Theorem to these measured values.
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6.2.7 Thévenizing a loaded voltage divider

Resistive voltage dividers are very useful and popular circuits. However, it should be realized that
their output voltages “sag” under load:

12 V

1 kΩ

1 kΩ

1 kΩ 4 V

8 V

Unloaded

12 V

1 kΩ

1 kΩ

1 kΩ

Loaded

LoadLess than
4 V

Less than
8 V

Just how much a voltage divider’s output will sag under a given load may be a very important
question in some applications. Take for instance the following application where we are using a
resistive voltage divider to supply an engine sensor with reduced voltage (8 Volts) from the 12 Volt
battery potential in the automobile:

12 V

1 kΩ

1 kΩ

1 kΩ

Chassis "ground"

battery

Fuse

Sensor
Output

wire

Isensor

Sensor
supply
voltage
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If the sensor draws no current (Isensor = 0 mA), then the voltage across the sensor supply
terminals will be 8 Volts. However, if we were asked to predict the voltage across the sensor supply
terminals for a variety of different sensor current conditions, we would be faced with a much more
complex problem:

• Isensor = 0 mA ; Sensor terminal voltage = 8 Volts

• Isensor = 1 mA ; Sensor terminal voltage =

• Isensor = 2 mA ; Sensor terminal voltage =

• Isensor = 3 mA ; Sensor terminal voltage =

• Isensor = 4 mA ; Sensor terminal voltage =

• Isensor = 5 mA ; Sensor terminal voltage =

One technique we could use to simplify this problem is to reduce the voltage divider resistor
network into a Thévenin equivalent network. With the three-resistor divider reduced to a single
resistor in series with an equivalent voltage source, the calculations for sensor supply voltage become
much simpler.

Show how this could be done, then complete the list of sensor supply voltages shown above.

Challenges

• If we are not supposed to let the sensor supply voltage to fall below 6.5 Volts, what is the
maximum amount of current it may draw from this voltage divider circuit.

• Try solving for the sensor’s terminal voltage without using Thévenin’s Theorem, and describe
the difficulty in doing so.
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6.2.8 Unbalanced bridge circuit

Inspect the following circuit:

1 k
Ω

2.2 kΩ

3.3 kΩ
1.5

 kΩ

2.7 kΩ

9 V

Note that it is not reducible to a single resistance and power source. In other words, it is not

a series-parallel combination circuit. In fact, no two resistors in this network are directly in series

with each other or directly in parallel with each other! And, while it is a bridge circuit, you are not
able to simply analyze the resistor ratios because it is obviously not in a state of balance! If you
were asked to calculate voltage or current for any component in this circuit, it would be a difficult
task . . . unless you know either Thévenin’s or Norton’s Theorems, that is!

Apply either one of these theorems to the determination of voltage across the 2.2 kΩ resistor
(the resistor in the upper-right corner of the bridge). Hint: consider the 2.2 kΩ resistor as the load

in a Thévenin or Norton equivalent network.

Challenges

• What is the definition of a series network?

• What is the definition of a parallel network?
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6.3 Diagnostic reasoning

These questions are designed to stimulate your deductive and inductive thinking, where you must
apply general principles to specific scenarios (deductive) and also derive conclusions about the failed
circuit from specific details (inductive). In a Socratic discussion with your instructor, the goal is for
these questions to reinforce your recall and use of general circuit principles and also challenge your
ability to integrate multiple symptoms into a sensible explanation of what’s wrong in a circuit. Your
instructor may also pose additional questions based on those assigned, in order to further challenge
and sharpen your diagnostic abilities.

As always, your goal is to fully explain your analysis of each problem. Simply obtaining a
correct answer is not good enough – you must also demonstrate sound reasoning in order to
successfully complete the assignment. Your instructor’s responsibility is to probe and challenge
your understanding of the relevant principles and analytical processes in order to ensure you have a
strong foundation upon which to build further understanding.

You will note a conspicuous lack of answers given for these diagnostic questions. Unlike standard
textbooks where answers to every other question are given somewhere toward the back of the book,
here in these learning modules students must rely on other means to check their work. The best way
by far is to debate the answers with fellow students and also with the instructor during the Socratic
dialogue sessions intended to be used with these learning modules. Reasoning through challenging
questions with other people is an excellent tool for developing strong reasoning skills.

Another means of checking your diagnostic answers, where applicable, is to use circuit simulation
software to explore the effects of faults placed in circuits. For example, if one of these diagnostic
questions requires that you predict the effect of an open or a short in a circuit, you may check the
validity of your work by simulating that same fault (substituting a very high resistance in place of
that component for an open, and substituting a very low resistance for a short) within software and
seeing if the results agree.
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6.3.1 Fault current of a battery bank

Suppose a 12 Volt lead-acid battery has an internal resistance of 20 milli-Ohms (20 mΩ):

Lead-acid battery

Videal

Rinternal20 mΩ

12 V

If a short-circuit were placed across the terminals of this large battery, the fault current would
be quite large: 600 Amperes!

Now suppose three of these batteries were connected directly in parallel with one another:

Videal

Rinternal20 mΩ

12 V Videal

Rinternal20 mΩ

12 V Videal

Rinternal20 mΩ

12 V

Three lead-acid batteries connected in parallel

Re-calculate the fault current available at the terminals of the three-battery “bank” in the event
of a direct short-circuit.

Challenges

• Explain what practical importance this question has for parallel-connected batteries, and how
either Thévenin’s or Norton’s Theorems makes the concept easier to explain to someone else.
What safety issues might be raised by the parallel connection of large batteries such as these?
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6.3.2 Variable-voltage power source

One day an electronics student decides to build her own variable-voltage power source using a 6 Volt
battery and a 10 kΩ potentiometer:

+
-

Pot

6 volts

To circuit 
under test

Power source

10 kΩ

She tests her circuit by connecting a voltmeter to the output terminals and verifying that the
voltage does indeed increase and decrease as the potentiometer knob is turned.

Later that day, her instructor assigns a quick lab exercise: measure the current through a parallel
resistor circuit with an applied voltage of 3 Volts, as shown in the following schematic diagram.

A

3 V

I = ???

1 kΩ 1 kΩ

Calculating current in this circuit is a trivial exercise, she thinks to herself: 3 V ÷ 500 Ω = 6
mA. This will be a great opportunity to use the new power source circuit, as 3 Volts is well within
the voltage adjustment range!
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She first sets up her circuit to output 3 Volts precisely (turning the 10 kΩ potentiometer to the
50% position), measuring with her voltmeter as she did when initially testing the circuit. Then she
connects the output leads to the two parallel resistors through her multimeter (configured as an
ammeter), like this:

+
-

Pot

6 volts

COMA

V

V A

A
OFF

(Set at 50%)

1 kΩ 1 kΩ

mA

However, when she reads her ammeter display, the current only measures 1 mA, not 6 mA as
she predicted. This is a very large discrepancy between her prediction and the measured value for
current!

Why didn’t her circuit behave as she predicted it would?

Challenges

• Explain what this student would have to do to use her adjustable-voltage power source circuit
to properly demonstrate the lab circuit as assigned.

• Identify at least one circuit failure which would result in zero measured (ammeter) current.
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Problem-Solving Strategies

The ability to solve complex problems is arguably one of the most valuable skills one can possess,
and this skill is particularly important in any science-based discipline.

• Study principles, not procedures. Don’t be satisfied with merely knowing how to compute
solutions – learn why those solutions work.

• Identify what it is you need to solve, identify all relevant data, identify all units of measurement,
identify any general principles or formulae linking the given information to the solution, and
then identify any “missing pieces” to a solution. Annotate all diagrams with this data.

• Sketch a diagram to help visualize the problem. When building a real system, always devise
a plan for that system and analyze its function before constructing it.

• Follow the units of measurement and meaning of every calculation. If you are ever performing
mathematical calculations as part of a problem-solving procedure, and you find yourself unable
to apply each and every intermediate result to some aspect of the problem, it means you
don’t understand what you are doing. Properly done, every mathematical result should have
practical meaning for the problem, and not just be an abstract number. You should be able to
identify the proper units of measurement for each and every calculated result, and show where
that result fits into the problem.

• Perform “thought experiments” to explore the effects of different conditions for theoretical
problems. When troubleshooting real systems, perform diagnostic tests rather than visually
inspecting for faults, the best diagnostic test being the one giving you the most information
about the nature and/or location of the fault with the fewest steps.

• Simplify the problem until the solution becomes obvious, and then use that obvious case as a
model to follow in solving the more complex version of the problem.

• Check for exceptions to see if your solution is incorrect or incomplete. A good solution will
work for all known conditions and criteria. A good example of this is the process of testing
scientific hypotheses: the task of a scientist is not to find support for a new idea, but rather
to challenge that new idea to see if it holds up under a battery of tests. The philosophical
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principle of reductio ad absurdum (i.e. disproving a general idea by finding a specific case
where it fails) is useful here.

• Work “backward” from a hypothetical solution to a new set of given conditions.

• Add quantities to problems that are qualitative in nature, because sometimes a little math
helps illuminate the scenario.

• Sketch graphs illustrating how variables relate to each other. These may be quantitative (i.e.
with realistic number values) or qualitative (i.e. simply showing increases and decreases).

• Treat quantitative problems as qualitative in order to discern the relative magnitudes and/or
directions of change of the relevant variables. For example, try determining what happens if a
certain variable were to increase or decrease before attempting to precisely calculate quantities:
how will each of the dependent variables respond, by increasing, decreasing, or remaining the
same as before?

• Consider limiting cases. This works especially well for qualitative problems where you need to
determine which direction a variable will change. Take the given condition and magnify that
condition to an extreme degree as a way of simplifying the direction of the system’s response.

• Check your work. This means regularly testing your conclusions to see if they make sense.
This does not mean repeating the same steps originally used to obtain the conclusion(s), but
rather to use some other means to check validity. Simply repeating procedures often leads to
repeating the same errors if any were made, which is why alternative paths are better.
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Instructional philosophy

“The unexamined circuit is not worth energizing” – Socrates (if he had taught electricity)

These learning modules, although useful for self-study, were designed to be used in a formal
learning environment where a subject-matter expert challenges students to digest the content and
exercise their critical thinking abilities in the answering of questions and in the construction and
testing of working circuits.

The following principles inform the instructional and assessment philosophies embodied in these
learning modules:

• The first goal of education is to enhance clear and independent thought, in order that
every student reach their fullest potential in a highly complex and inter-dependent world.
Robust reasoning is always more important than particulars of any subject matter, because
its application is universal.

• Literacy is fundamental to independent learning and thought because text continues to be the
most efficient way to communicate complex ideas over space and time. Those who cannot read
with ease are limited in their ability to acquire knowledge and perspective.

• Articulate communication is fundamental to work that is complex and interdisciplinary.

• Faulty assumptions and poor reasoning are best corrected through challenge, not presentation.
The rhetorical technique of reductio ad absurdum (disproving an assertion by exposing an
absurdity) works well to discipline student’s minds, not only to correct the problem at hand
but also to learn how to detect and correct future errors.

• Important principles should be repeatedly explored and widely applied throughout a course
of study, not only to reinforce their importance and help ensure their mastery, but also to
showcase the interconnectedness and utility of knowledge.
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These learning modules were expressly designed to be used in an “inverted” teaching
environment1 where students first read the introductory and tutorial chapters on their own, then
individually attempt to answer the questions and construct working circuits according to the
experiment and project guidelines. The instructor never lectures, but instead meets regularly
with each individual student to review their progress, answer questions, identify misconceptions,
and challenge the student to new depths of understanding through further questioning. Regular
meetings between instructor and student should resemble a Socratic2 dialogue, where questions
serve as scalpels to dissect topics and expose assumptions. The student passes each module only
after consistently demonstrating their ability to logically analyze and correctly apply all major
concepts in each question or project/experiment. The instructor must be vigilant in probing each
student’s understanding to ensure they are truly reasoning and not just memorizing. This is why
“Challenge” points appear throughout, as prompts for students to think deeper about topics and as
starting points for instructor queries. Sometimes these challenge points require additional knowledge
that hasn’t been covered in the series to answer in full. This is okay, as the major purpose of the
Challenges is to stimulate analysis and synthesis on the part of each student.

The instructor must possess enough mastery of the subject matter and awareness of students’
reasoning to generate their own follow-up questions to practically any student response. Even
completely correct answers given by the student should be challenged by the instructor for the
purpose of having students practice articulating their thoughts and defending their reasoning.
Conceptual errors committed by the student should be exposed and corrected not by direct
instruction, but rather by reducing the errors to an absurdity3 through well-chosen questions and
thought experiments posed by the instructor. Becoming proficient at this style of instruction requires
time and dedication, but the positive effects on critical thinking for both student and instructor are
spectacular.

An inspection of these learning modules reveals certain unique characteristics. One of these is
a bias toward thorough explanations in the tutorial chapters. Without a live instructor to explain
concepts and applications to students, the text itself must fulfill this role. This philosophy results in
lengthier explanations than what you might typically find in a textbook, each step of the reasoning
process fully explained, including footnotes addressing common questions and concerns students
raise while learning these concepts. Each tutorial seeks to not only explain each major concept
in sufficient detail, but also to explain the logic of each concept and how each may be developed

1In a traditional teaching environment, students first encounter new information via lecture from an expert, and
then independently apply that information via homework. In an “inverted” course of study, students first encounter
new information via homework, and then independently apply that information under the scrutiny of an expert. The
expert’s role in lecture is to simply explain, but the expert’s role in an inverted session is to challenge, critique, and
if necessary explain where gaps in understanding still exist.

2Socrates is a figure in ancient Greek philosophy famous for his unflinching style of questioning. Although he
authored no texts, he appears as a character in Plato’s many writings. The essence of Socratic philosophy is to
leave no question unexamined and no point of view unchallenged. While purists may argue a topic such as electric
circuits is too narrow for a true Socratic-style dialogue, I would argue that the essential thought processes involved
with scientific reasoning on any topic are not far removed from the Socratic ideal, and that students of electricity and
electronics would do very well to challenge assumptions, pose thought experiments, identify fallacies, and otherwise
employ the arsenal of critical thinking skills modeled by Socrates.

3This rhetorical technique is known by the Latin phrase reductio ad absurdum. The concept is to expose errors by
counter-example, since only one solid counter-example is necessary to disprove a universal claim. As an example of
this, consider the common misconception among beginning students of electricity that voltage cannot exist without
current. One way to apply reductio ad absurdum to this statement is to ask how much current passes through a
fully-charged battery connected to nothing (i.e. a clear example of voltage existing without current).
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from “first principles”. Again, this reflects the goal of developing clear and independent thought in
students’ minds, by showing how clear and logical thought was used to forge each concept. Students
benefit from witnessing a model of clear thinking in action, and these tutorials strive to be just that.

Another characteristic of these learning modules is a lack of step-by-step instructions in the
Project and Experiment chapters. Unlike many modern workbooks and laboratory guides where
step-by-step instructions are prescribed for each experiment, these modules take the approach that
students must learn to closely read the tutorials and apply their own reasoning to identify the
appropriate experimental steps. Sometimes these steps are plainly declared in the text, just not as
a set of enumerated points. At other times certain steps are implied, an example being assumed
competence in test equipment use where the student should not need to be told again how to use
their multimeter because that was thoroughly explained in previous lessons. In some circumstances
no steps are given at all, leaving the entire procedure up to the student.

This lack of prescription is not a flaw, but rather a feature. Close reading and clear thinking are
foundational principles of this learning series, and in keeping with this philosophy all activities are
designed to require those behaviors. Some students may find the lack of prescription frustrating,
because it demands more from them than what their previous educational experiences required. This
frustration should be interpreted as an unfamiliarity with autonomous thinking, a problem which
must be corrected if the student is ever to become a self-directed learner and effective problem-solver.
Ultimately, the need for students to read closely and think clearly is more important both in the
near-term and far-term than any specific facet of the subject matter at hand. If a student takes
longer than expected to complete a module because they are forced to outline, digest, and reason
on their own, so be it. The future gains enjoyed by developing this mental discipline will be well
worth the additional effort and delay.

Another feature of these learning modules is that they do not treat topics in isolation. Rather,
important concepts are introduced early in the series, and appear repeatedly as stepping-stones
toward other concepts in subsequent modules. This helps to avoid the “compartmentalization”
of knowledge, demonstrating the inter-connectedness of concepts and simultaneously reinforcing
them. Each module is fairly complete in itself, reserving the beginning of its tutorial to a review of
foundational concepts.

This methodology of assigning text-based modules to students for digestion and then using
Socratic dialogue to assess progress and hone students’ thinking was developed over a period of
several years by the author with his Electronics and Instrumentation students at the two-year college
level. While decidedly unconventional and sometimes even unsettling for students accustomed to
a more passive lecture environment, this instructional philosophy has proven its ability to convey
conceptual mastery, foster careful analysis, and enhance employability so much better than lecture
that the author refuses to ever teach by lecture again.

Problems which often go undiagnosed in a lecture environment are laid bare in this “inverted”
format where students must articulate and logically defend their reasoning. This, too, may be
unsettling for students accustomed to lecture sessions where the instructor cannot tell for sure who
comprehends and who does not, and this vulnerability necessitates sensitivity on the part of the
“inverted” session instructor in order that students never feel discouraged by having their errors
exposed. Everyone makes mistakes from time to time, and learning is a lifelong process! Part of
the instructor’s job is to build a culture of learning among the students where errors are not seen as
shameful, but rather as opportunities for progress.
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To this end, instructors managing courses based on these modules should adhere to the following
principles:

• Student questions are always welcome and demand thorough, honest answers. The only type
of question an instructor should refuse to answer is one the student should be able to easily
answer on their own. Remember, the fundamental goal of education is for each student to learn

to think clearly and independently. This requires hard work on the part of the student, which
no instructor should ever circumvent. Anything done to bypass the student’s responsibility to
do that hard work ultimately limits that student’s potential and thereby does real harm.

• It is not only permissible, but encouraged, to answer a student’s question by asking questions
in return, these follow-up questions designed to guide the student to reach a correct answer
through their own reasoning.

• All student answers demand to be challenged by the instructor and/or by other students.
This includes both correct and incorrect answers – the goal is to practice the articulation and
defense of one’s own reasoning.

• No reading assignment is deemed complete unless and until the student demonstrates their
ability to accurately summarize the major points in their own terms. Recitation of the original
text is unacceptable. This is why every module contains an “Outline and reflections” question
as well as a “Foundational concepts” question in the Conceptual reasoning section, to prompt
reflective reading.

• No assigned question is deemed answered unless and until the student demonstrates their
ability to consistently and correctly apply the concepts to variations of that question. This is
why module questions typically contain multiple “Challenges” suggesting different applications
of the concept(s) as well as variations on the same theme(s). Instructors are encouraged to
devise as many of their own “Challenges” as they are able, in order to have a multitude of
ways ready to probe students’ understanding.

• No assigned experiment or project is deemed complete unless and until the student
demonstrates the task in action. If this cannot be done “live” before the instructor, video-
recordings showing the demonstration are acceptable. All relevant safety precautions must be
followed, all test equipment must be used correctly, and the student must be able to properly
explain all results. The student must also successfully answer all Challenges presented by the
instructor for that experiment or project.
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Students learning from these modules would do well to abide by the following principles:

• No text should be considered fully and adequately read unless and until you can express every
idea in your own words, using your own examples.

• You should always articulate your thoughts as you read the text, noting points of agreement,
confusion, and epiphanies. Feel free to print the text on paper and then write your notes in
the margins. Alternatively, keep a journal for your own reflections as you read. This is truly
a helpful tool when digesting complicated concepts.

• Never take the easy path of highlighting or underlining important text. Instead, summarize

and/or comment on the text using your own words. This actively engages your mind, allowing
you to more clearly perceive points of confusion or misunderstanding on your own.

• A very helpful strategy when learning new concepts is to place yourself in the role of a teacher,
if only as a mental exercise. Either explain what you have recently learned to someone else,
or at least imagine yourself explaining what you have learned to someone else. The simple act
of having to articulate new knowledge and skill forces you to take on a different perspective,
and will help reveal weaknesses in your understanding.

• Perform each and every mathematical calculation and thought experiment shown in the text
on your own, referring back to the text to see that your results agree. This may seem trivial
and unnecessary, but it is critically important to ensuring you actually understand what is
presented, especially when the concepts at hand are complicated and easy to misunderstand.
Apply this same strategy to become proficient in the use of circuit simulation software, checking
to see if your simulated results agree with the results shown in the text.

• Above all, recognize that learning is hard work, and that a certain level of frustration is
unavoidable. There are times when you will struggle to grasp some of these concepts, and that
struggle is a natural thing. Take heart that it will yield with persistent and varied4 effort, and
never give up!

Students interested in using these modules for self-study will also find them beneficial, although
the onus of responsibility for thoroughly reading and answering questions will of course lie with
that individual alone. If a qualified instructor is not available to challenge students, a workable
alternative is for students to form study groups where they challenge5 one another.

To high standards of education,

Tony R. Kuphaldt

4As the old saying goes, “Insanity is trying the same thing over and over again, expecting different results.” If
you find yourself stumped by something in the text, you should attempt a different approach. Alter the thought
experiment, change the mathematical parameters, do whatever you can to see the problem in a slightly different light,
and then the solution will often present itself more readily.

5Avoid the temptation to simply share answers with study partners, as this is really counter-productive to learning.
Always bear in mind that the answer to any question is far less important in the long run than the method(s) used to
obtain that answer. The goal of education is to empower one’s life through the improvement of clear and independent
thought, literacy, expression, and various practical skills.
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Appendix C

Tools used

I am indebted to the developers of many open-source software applications in the creation of these
learning modules. The following is a list of these applications with some commentary on each.

You will notice a theme common to many of these applications: a bias toward code. Although
I am by no means an expert programmer in any computer language, I understand and appreciate
the flexibility offered by code-based applications where the user (you) enters commands into a plain
ASCII text file, which the software then reads and processes to create the final output. Code-based
computer applications are by their very nature extensible, while WYSIWYG (What You See Is What
You Get) applications are generally limited to whatever user interface the developer makes for you.

The GNU/Linux computer operating system

There is so much to be said about Linus Torvalds’ Linux and Richard Stallman’s GNU

project. First, to credit just these two individuals is to fail to do justice to the mob of
passionate volunteers who contributed to make this amazing software a reality. I first
learned of Linux back in 1996, and have been using this operating system on my personal
computers almost exclusively since then. It is free, it is completely configurable, and it
permits the continued use of highly efficient Unix applications and scripting languages
(e.g. shell scripts, Makefiles, sed, awk) developed over many decades. Linux not only
provided me with a powerful computing platform, but its open design served to inspire
my life’s work of creating open-source educational resources.

Bram Moolenaar’s Vim text editor

Writing code for any code-based computer application requires a text editor, which may
be thought of as a word processor strictly limited to outputting plain-ASCII text files.
Many good text editors exist, and one’s choice of text editor seems to be a deeply personal
matter within the programming world. I prefer Vim because it operates very similarly to
vi which is ubiquitous on Unix/Linux operating systems, and because it may be entirely
operated via keyboard (i.e. no mouse required) which makes it fast to use.
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Donald Knuth’s TEX typesetting system

Developed in the late 1970’s and early 1980’s by computer scientist extraordinaire Donald
Knuth to typeset his multi-volume magnum opus The Art of Computer Programming,
this software allows the production of formatted text for screen-viewing or paper printing,
all by writing plain-text code to describe how the formatted text is supposed to appear.
TEX is not just a markup language for documents, but it is also a Turing-complete
programming language in and of itself, allowing useful algorithms to be created to control
the production of documents. Simply put, TEX is a programmer’s approach to word

processing. Since TEX is controlled by code written in a plain-text file, this means
anyone may read that plain-text file to see exactly how the document was created. This
openness afforded by the code-based nature of TEX makes it relatively easy to learn how
other people have created their own TEX documents. By contrast, examining a beautiful
document created in a conventional WYSIWYG word processor such as Microsoft Word
suggests nothing to the reader about how that document was created, or what the user
might do to create something similar. As Mr. Knuth himself once quipped, conventional
word processing applications should be called WYSIAYG (What You See Is All You
Get).

Leslie Lamport’s LATEX extensions to TEX

Like all true programming languages, TEX is inherently extensible. So, years after the
release of TEX to the public, Leslie Lamport decided to create a massive extension
allowing easier compilation of book-length documents. The result was LATEX, which
is the markup language used to create all ModEL module documents. You could say
that TEX is to LATEX as C is to C++. This means it is permissible to use any and all TEX
commands within LATEX source code, and it all still works. Some of the features offered
by LATEX that would be challenging to implement in TEX include automatic index and
table-of-content creation.

Tim Edwards’ Xcircuit drafting program

This wonderful program is what I use to create all the schematic diagrams and
illustrations (but not photographic images or mathematical plots) throughout the ModEL
project. It natively outputs PostScript format which is a true vector graphic format (this
is why the images do not pixellate when you zoom in for a closer view), and it is so simple
to use that I have never had to read the manual! Object libraries are easy to create for
Xcircuit, being plain-text files using PostScript programming conventions. Over the
years I have collected a large set of object libraries useful for drawing electrical and
electronic schematics, pictorial diagrams, and other technical illustrations.



157

Gimp graphic image manipulation program

Essentially an open-source clone of Adobe’s PhotoShop, I use Gimp to resize, crop, and
convert file formats for all of the photographic images appearing in the ModEL modules.
Although Gimp does offer its own scripting language (called Script-Fu), I have never
had occasion to use it. Thus, my utilization of Gimp to merely crop, resize, and convert
graphic images is akin to using a sword to slice bread.

SPICE circuit simulation program

SPICE is to circuit analysis as TEX is to document creation: it is a form of markup
language designed to describe a certain object to be processed in plain-ASCII text.
When the plain-text “source file” is compiled by the software, it outputs the final result.
More modern circuit analysis tools certainly exist, but I prefer SPICE for the following
reasons: it is free, it is fast, it is reliable, and it is a fantastic tool for teaching students of
electricity and electronics how to write simple code. I happen to use rather old versions of
SPICE, version 2g6 being my “go to” application when I only require text-based output.
NGSPICE (version 26), which is based on Berkeley SPICE version 3f5, is used when I
require graphical output for such things as time-domain waveforms and Bode plots. In
all SPICE example netlists I strive to use coding conventions compatible with all SPICE
versions.

Andrew D. Hwang’s ePiX mathematical visualization programming library

This amazing project is a C++ library you may link to any C/C++ code for the purpose
of generating PostScript graphic images of mathematical functions. As a completely
free and open-source project, it does all the plotting I would otherwise use a Computer
Algebra System (CAS) such as Mathematica or Maple to do. It should be said that
ePiX is not a Computer Algebra System like Mathematica or Maple, but merely a
mathematical visualization tool. In other words, it won’t determine integrals for you
(you’ll have to implement that in your own C/C++ code!), but it can graph the results, and
it does so beautifully. What I really admire about ePiX is that it is a C++ programming
library, which means it builds on the existing power and toolset available with that
programming language. Mr. Hwang could have probably developed his own stand-alone
application for mathematical plotting, but by creating a C++ library to do the same thing
he accomplished something much greater.
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gnuplot mathematical visualization software

Another open-source tool for mathematical visualization is gnuplot. Interestingly, this
tool is not part of Richard Stallman’s GNU project, its name being a coincidence. For
this reason the authors prefer “gnu” not be capitalized at all to avoid confusion. This is
a much “lighter-weight” alternative to a spreadsheet for plotting tabular data, and the
fact that it easily outputs directly to an X11 console or a file in a number of different
graphical formats (including PostScript) is very helpful. I typically set my gnuplot

output format to default (X11 on my Linux PC) for quick viewing while I’m developing
a visualization, then switch to PostScript file export once the visual is ready to include in
the document(s) I’m writing. As with my use of Gimp to do rudimentary image editing,
my use of gnuplot only scratches the surface of its capabilities, but the important points
are that it’s free and that it works well.

Python programming language

Both Python and C++ find extensive use in these modules as instructional aids and
exercises, but I’m listing Python here as a tool for myself because I use it almost daily
as a calculator. If you open a Python interpreter console and type from math import

* you can type mathematical expressions and have it return results just as you would
on a hand calculator. Complex-number (i.e. phasor) arithmetic is similarly supported
if you include the complex-math library (from cmath import *). Examples of this are
shown in the Programming References chapter (if included) in each module. Of course,
being a fully-featured programming language, Python also supports conditionals, loops,
and other structures useful for calculation of quantities. Also, running in a console
environment where all entries and returned values show as text in a chronologically-
ordered list makes it easy to copy-and-paste those calculations to document exactly how
they were performed.
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Creative Commons License

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms
and conditions of this Creative Commons Attribution 4.0 International Public License (“Public
License”). To the extent this Public License may be interpreted as a contract, You are granted the
Licensed Rights in consideration of Your acceptance of these terms and conditions, and the Licensor
grants You such rights in consideration of benefits the Licensor receives from making the Licensed
Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translated, altered,
arranged, transformed, or otherwise modified in a manner requiring permission under the Copyright
and Similar Rights held by the Licensor. For purposes of this Public License, where the Licensed
Material is a musical work, performance, or sound recording, Adapted Material is always produced
where the Licensed Material is synched in timed relation with a moving image.

b. Adapter’s License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of this Public
License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui Generis
Database Rights, without regard to how the rights are labeled or categorized. For purposes of this
Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

d. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO
Copyright Treaty adopted on December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
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limitation to Copyright and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to Your use of
the Licensed Material and that the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public performance,
distribution, dissemination, communication, or importation, and to make material available to the
public including in ways that members of the public may access the material from a place and at a
time individually chosen by them.

j. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially equivalent rights anywhere
in the world.

k. You means the individual or entity exercising the Licensed Rights under this Public License.
Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a
worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations
apply to Your use, this Public License does not apply, and You do not need to comply with its terms
and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
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For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material
automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms
or conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission
to assert or imply that You are, or that Your use of the Licensed Material is, connected with,
or sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor
are publicity, privacy, and/or other similar personality rights; however, to the extent possible, the
Licensor waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the
exercise of the Licensed Rights, whether directly or through a collecting society under any voluntary
or waivable statutory or compulsory licensing scheme. In all other cases the Licensor expressly
reserves any right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
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iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of,
or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the
medium, means, and context in which You Share the Licensed Material. For example, it may be
reasonable to satisfy the conditions by providing a URI or hyperlink to a resource that includes the
required information.

3. If requested by the Licensor, You must remove any of the information required by Section
3(a)(1)(A) to the extent reasonably practicable.

4. If You Share Adapted Material You produce, the Adapter’s License You apply must not
prevent recipients of the Adapted Material from complying with this Public License.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce,
and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis Database
Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion
of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties of
any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors,
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whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in
part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this
Public License or use of the Licensed Material, even if the Licensor has been advised of the possibility
of such losses, costs, expenses, or damages. Where a limitation of liability is not allowed in full or
in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in
a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver
of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here.
However, if You fail to comply with this Public License, then Your rights under this Public License
terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to
seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate
terms or conditions or stop distributing the Licensed Material at any time; however, doing so will
not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated
herein are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully
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be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall
be automatically reformed to the minimum extent necessary to make it enforceable. If the provision
cannot be reformed, it shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented
to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal
processes of any jurisdiction or authority.
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Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances will
be considered the “Licensor.” Except for the limited purpose of indicating that material is shared
under a Creative Commons public license or as otherwise permitted by the Creative Commons
policies published at creativecommons.org/policies, Creative Commons does not authorize the
use of the trademark “Creative Commons” or any other trademark or logo of Creative Commons
without its prior written consent including, without limitation, in connection with any unauthorized
modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part
of the public licenses.

Creative Commons may be contacted at creativecommons.org.
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Appendix F

Version history

This is a list showing all significant additions, corrections, and other edits made to this learning
module. Each entry is referenced by calendar date in reverse chronological order (newest version
first), which appears on the front cover of every learning module for easy reference. Any contributors
to this open-source document are listed here as well.

23 October 2024 – added a new Technical References section on applying Thévenin’s and Norton’s
Theorems to time-delay circuits.

8 October 2024 – fixed the RTh error in equivalent network #3 of the “Example: Thévenizing
series-parallel networks” section of the Case Tutorial chapter.

2 October 2024 – added another “Challenging concepts” bullet-item to the list in the Introduction
chapter.

15-17 September 2024 – divided the Introduction chapter into sections, one with
recommendations for students, one with a listing of challenging concepts, and one with
recommendations for instructors. Also added active-reading suggestions to the Tutorial chapter
on analyzing the example equivalent networks, as well as changed the phrase “equivalent circuit” to
“equivalent network”.

5 March 2024 – added notes to images anim thevenin 24 and anim thevenin 25 explaining the use
of the voltage divider equation to calculate VR3.

10 October 2023 – converted a Case Tutorial section into a new (regular) Tutorial section, focusing
on equivalent electrical networks using a “sealed box” analogy.

12 June 2023 – added Derivations and Technical References chapter, with a section showing a
derivation of Millman’s Theorem.

6-7 Mar 2023 – minor edits to the Tutorial for readability, including capitalizing the word
“Theorem” when used with Thévenin’s or Norton’s.
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27 November 2022 – placed questions at the top of the itemized list in the Introduction chapter
prompting students to devise experiments related to the tutorial content.

10-11 October 2022 – minor additions to the Tutorial chapter, providing alternative
conceptualizations for the disabling of current sources and voltage sources. Also fixed a typographical
error (“short-circuit voltage” should have been “short-circuit current”) courtesy of Kobe Wessels.
Also made minor additions to the Introduction chapter. Also corrected a mathematical error in one
of the instructor comments.

28 February 2022 – added some page breaks to the “Example: Thévenizing series-parallel
networks” Case Tutorial section for cleaner appearance.

15-17 February 2022 – minor additions to the Introduction and Tutorial chapters, as well as some
edits to illustrations in the “Norton equivalent of an electric arc welder” Quantitative Reasoning
question. Also added a Conceptual Reasoning question on Thévenizing a solar cell, and added some
new Case Tutorial sections.

12 October 2021 – added “A” and “B” terminal labels to image 2038 to make it clear that the
two equivalent networks are referencing the terminals shown in the original network. Also, colored
the DMM digits shown in image 3524 and image 3513 and image 3514.

23 September 2021 – minor edits to a schematic diagram in the “Thévenizing a loaded voltage
divider” Quantitative Reasoning question.

16 September 2021 – added section to Tutorial elaborating on the practical applications of these
theorems.

28 August 2021 – commented out or deleted empty chapters, as well as added more questions.

23 March 2021 – added Case Tutorial sections showing a multi-source network being Thévenized
and Nortonized.

12-13 October 2020 – minor additions to the Introduction chapter, and minor additions to
instructor notes.

1 October 2020 – significantly edited the Introduction chapter to make it more suitable as a
pre-study guide and to provide cues useful to instructors leading “inverted” teaching sessions.

27 September 2020 – added a Case Tutorial chapter.

7 May 2020 – completed the Foundational concepts section.

30 April 2020 – added many questions.

12 September 2019 – continued writing Tutorial.

11 September 2019 – continued writing Tutorial.
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6 September 2019 – continued writing Tutorial.

5 September 2019 – document first created.
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