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Preface

I did not want to write this book . . . honestly.

My first book project began in 1998, titled Lessons In Electric Circuits, and I didn’t call “quit” until
six volumes and five years later. Even then it was not complete, but being an open-source project
it gained traction on the Internet to the point where other people took over its development and
it grew fine without me. The impetus for writing this first tome was a general dissatisfaction with
available electronics textbooks. Plenty of textbooks exist to describe things, but few really ezplain
things well for students, and the field of electronics is no exception. I wanted my book(s) to be
different, and so they were. No one told me how time-consuming it was going to be to write them,
though!

The next few years’ worth of my spare time went to developing a set of question-and-answer
worksheets designed to teach electronics theory in a Socratic, active-engagement style. This project
proved quite successful in my professional life as an instructor of electronics. In the summer of 2006,
my job changed from teaching electronics to teaching industrial instrumentation, and I decided to
continue the Socratic mode of instruction with another set of question-and-answer worksheets.

However, the field of industrial instrumentation is not as well-represented as general electronics,
and thus the array of available textbooks is not as vast. I began to re-discover the drudgery of
trying to teach with inadequate texts as source material. The basis of my active teaching style was
that students would spend time researching the material on their own, then engage in Socratic-style
discussion with me on the subject matter when they arrived for class. This teaching technique
functions in direct proportion to the quality and quantity of the research sources at the students’
disposal. Despite much searching, I was unable to find a textbook adequately addressing my students’
learning needs. Many textbooks I found were written in a shallow, “math-phobic” style well below
the level I intended to teach to. Some reference books I found contained great information, but
were often written for degreed engineers with lots of Laplace transforms and other mathematical
techniques well above the level I intended to teach to. Few on either side of the spectrum actually
made an effort to explain certain concepts students generally struggle to understand. I needed a
text giving good, practical information and theoretical coverage at the same time.

In a futile effort to provide my students with enough information to study outside of class, I
scoured the Internet for free tutorials written by others. While some manufacturer’s tutorials were
nearly perfect for my needs, others were just as shallow as the textbooks I had found, and/or were
little more than sales brochures. I found myself starting to write my own tutorials on specific topics
to “plug the gaps,” but then another problem arose: it became troublesome for students to navigate
through dozens of tutorials in an effort to find the information they needed in their studies. What
my students really needed was a book, not a smorgasbord of tutorials.

3
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So here I am again, writing another textbook. This time around I have the advantage of wisdom
gained from the first textbook project. For this project, I will not:

. attempt to maintain a parallel book in HTML markup (for direct viewing on the Internet).
I had to go to the trouble of inventing my own quasi-XML markup language last time in an
effort to generate multiple format versions of the book from the same source code. Instead,
this time I will use stock ITEX as the source code format and regular Adobe PDF format for
the final output, which anyone may read thanks to its ubiquity. If anyone else desires the book
in a different format, I will gladly let them deal with issues of source code translation. Not
that this should be a terrible problem for anyone technically competent in markup languages,
as IATEX source is rather easy to work with.

use a GNU GPL-style copyleft license. Instead, I will use the Creative Commons
Attribution-only license, which is far more permissive for anyone wishing to incorporate my
work into derivative works. My interest is maximum flexibility for those who may adapt my
material to their own needs, not the imposition of certain philosophical ideals.

. start from a conceptual state of “ground zero.” I will assume the reader has certain
familiarity with electronics and mathematics, which I will build on. If a reader finds they need
to learn more about electronics, they should go read Lessons In Electric Clircuits.

. avoid using calculus to help explain certain concepts. Not all my readers will understand
these parts, and so I will be sure to explain what I can without using calculus. However,
I want to give my more mathematically adept students an opportunity to see the power of
calculus applied to instrumentation where appropriate. By occasionally applying calculus and
explaining my steps, I also hope this text will serve as a practical guide for students who might
wish to learn calculus, so they can see its utility and function in a context that interests them.

There do exist many fine references on the subject of industrial instrumentation. I only wish I
could condense their best parts into a single volume for my students. Being able to do so would
certainly save me from having to write my own! Listed here are some of the best books I can
recommend for those wishing to explore instrumentation outside of my own presentation:

Instrument Engineers’ Handbook series (Volumes I, II, and III), edited by Béla Liptak — by
far my favorite modern references on the subject. Unfortunately, there is a fair amount of
material within that lies well beyond my students’ grasp (Laplace transforms, etc.), and the
volumes are incredibly bulky and expensive (nearly 2000 pages, and at a cost of nearly $200.00,
apiece!). These texts also lack some of the basic content my students do need, and I don’t
have the heart to tell them to buy yet another textbook to fill the gaps.

Handbook of Instrumentation and Controls, by Howard P. Kallen. Perhaps the best-written
textbook on general instrumentation I have ever encountered. Too bad it is both long out of
print — my copy dates 1961 — and technologically dated. Like most American textbooks written
during the years immediately following Sputnik, it is a masterpiece of practical content and
conceptual clarity. I consider books like this useful for their presentations of “first principles,”
which of course are timeless.

Industrial Instrumentation Fundamentals, by Austin E. Fribance. Another great post-Sputnik
textbook — my copy dates 1962.
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e [nstrumentation for Process Measurement and Control, by Norman A. Anderson. An inspiring
effort by someone who knows the art of teaching as well as the craft of instrumentation. Too
bad the content doesn’t seem to have been updated since 1980.

o Applied Instrumentation in the Process Industries (Volume I), edited by William G. Andrew.
A very clear and fairly comprehensive overview of industrial instrumentation. Sadly, this fine
book is out of print, and much of the material is quite dated (second edition written in 1979).

e Practically anything written by Francis Greg Shinskey.

Whether or not I achieve my goal of writing a better textbook is a judgment left for others to
make. One decided advantage my book will have over all the others is its openness. If you don’t
like anything you see in these pages, you have the right to modify it to your liking! Delete content,
add content, modify content — it’s all fair game thanks to the Creative Commons licensing. My
only condition is declared in the license: you must give me credit for my original authorship. What
you do with it beyond that is wholly up to you?. This way, perhaps I can spare someone else from
having to write their own textbook from scratch!

2This includes selling copies of it, either electronic or print. Of course, you must include the Creative Commons
license as part of the text you sell (see Section 4, subsection 1 of the license for details), which means anyone will be
able to tell it is an open text and can probably figure out how to download an electronic copy off the Internet for free.
The only way you're going to make significant money selling this text is to add your own value to it, either in the
form of expansions or bundled product (e.g. simulation software, learning exercises, etc.), which of course is perfectly
fair — you must profit from your own labors. All my work does for you is give you a starting point.
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Chapter 1

Calculus

Mathematics is the investigation of an artificial world: a universe populated by abstract entities
and rigid rules governing those entities. Mathematicians devoted to the study and advancement of
pure mathematics have an extremely well-developed respect for these rules, for the integrity of this
artificial world depends on them. In order to preserve the integrity of their artificial world, their
collective work must be rigorous, never allowing for sloppy handling of the rules or allowing intuitive
leaps to be left unproven.

However, many of the tools and techniques developed by mathematicians for their artificial
world happen to be extremely useful for understanding the real world in which we live and work,
and therein lies a problem. In applying mathematical rules to the study of real-world phenomena,
we often take a far more pragmatic approach than any mathematician would feel comfortable with.

The tension between pure mathematicians and those who apply math to real-world problems is
not unlike the tension between linguists and those who use language in everyday life. All human
languages have rules (though none as rigid as in mathematics!), and linguists are the guardians
of those rules, but the vast majority of human beings play fast and loose with the rules as they
use language to describe and understand the world around them. Whether or not this “sloppy”
adherence to rules is good depends on which camp you are in. To the purist, it is offensive; to the
pragmatist, it is convenient.

I like to tell my students that mathematics is very much like a language. The more you understand
mathematics, the larger “vocabulary” you will possess to describe principles and phenomena you
encounter in the world around you. Proficiency in mathematics also empowers you to grasp
relationships between different things, which is a powerful tool in learning new concepts.

This book is not written for (or by!) mathematicians. Rather, it is written for people wishing
to make sense of industrial process measurement and control. This chapter of the book is devoted
to a very pragmatic coverage of certain mathematical concepts, for the express purpose of applying
these concepts to real-world systems.

Mathematicians, cover your eyes for the rest of this chapter!
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1.1 Introduction to calculus

Few areas of mathematics are as powerfully useful in describing and analyzing the physical world as
calculus: the mathematical study of changes. Calculus also happens to be tremendously confusing
to most students first encountering it. A great deal of this confusion stems from mathematicians’
insistence on rigor! and denial of intuition.

Look around you right now. Do you see any mathematicians? If not, good — you can proceed in
safety. If so, find another location to begin reading the rest of this chapter. I will frequently appeal to
practical example and intuition in describing the basic principles of single-variable calculus, for the
purpose of expanding your mathematical “vocabulary” to be able to describe and better understand
phenomena of change related to instrumentation.

Silvanus P. Thompson, in his wonderful book Calculus Made Simple originally published in 1910,
began his text with a short chapter entitled, “To Deliver You From The Preliminary Terrors®.” I
will follow his lead by similarly introducing you to some of the notations frequently used in calculus,
along with very simple (though not mathematically rigorous) definitions.

When we wish to speak of a change in some variable’s value (let’s say ), it is common to precede
the variable with the capital Greek letter “delta” as such:

Ax = “Change in 2"

An alternative interpretation of the “delta” symbol (A) is to think of it as denoting a difference
between two values of the same variable. Thus, Az could be taken to mean “the difference between
two values of 7. The cause of this difference is not important right now: it may be the difference
between the value of z at one point in time versus another point in time, it may be the difference
between the value of x at one point in space versus another point in space, or it may simply be
the difference between values of = as it relates to some other variable (e.g. y) in a mathematical
function. If we have some variable such as z that is known to change value relative to some other
variable (e.g. time, space, y), it is nice to be able to express that change using precise mathematical
symbols, and this is what the “delta” symbol does for us.

1In mathematics, the term rigor refers to a meticulous attention to detail and insistence that each and every step
within a chain of mathematical reasoning be thoroughly justified by deductive logic, not intuition or analogy.

2The book’s subtitle happens to be, Being a very-simplest introduction to those beautiful methods of reckoning
which are generally called by the terrifying names of the differential calculus and the integral calculus. Not only did
Thompson recognize the anti-pragmatic tone with which calculus is too often taught, but he also infused no small
amount of humor in his work.
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For example, if the temperature of a furnace (7") increases over time, we might wish to describe

that change in temperature as AT

Blower
Valve @

N 4= Air flow

Exhaust stack

Refractory brick

Furnace
To.us = 1255 °F

Fuel gas
inlet

Refractory brick

Temperature of furnace at 9:45 AM = 1255 °F

Blower
Valve @

N 4= Air flow

Exhaust stack

Refractory brick

Furnace
Ti03 = 1276 °F

Fuel gas
inlet

Refractory brick

Temperature of furnace at 10:32 AM = 1276 °F

AT =Tioa - Touss
AT = 1276 °F - 1255 °F = 21 °F

The value of AT is nothing more than the difference (subtraction) between the recent temperature
and the older temperature. A rising temperature over time thus yields a positive value for AT, while
a falling temperature over time yields a negative value for AT.

We could also describe differences between the temperature of two locations (rather than a
difference of temperature between two times) by the notation AT, such as this example of heat
transfer through a heat-conducting wall where one side of the wall is hotter than the other:

Tcold Thot

Heat Heat

-

Once again, AT is calculated by subtracting one temperature from another. Here, the sign
(positive or negative) of AT denotes the direction of heat flow through the thickness of the wall.

One of the major concerns of calculus is changes or differences between variable values lying very
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close to each other. In the context of a heating furnace, this could mean increases in temperature over
miniscule time periods. In the context of heat flowing through a wall, this could mean differences in
temperature sampled between points within the wall immediately adjacent each other. If our desire
is to express the change in a variable between neighboring points along a continuum rather than
over some discrete period, we may use a different notation than the capital Greek letter delta (A);
instead, we use a lower-case Roman letter d (or in some cases, the lower-case Greek letter delta: §).

Thus, a change in furnace temperature from one instant in time to the next instant could be
expressed as dT (or dT), while a difference in temperature between two adjacent positions within
the heat-conducting wall could also be expressed as dT' (or 67). We even have a unique name for
this concept of extremely small differences: whereas AT is called a difference in temperature, d1" is
called a differential of temperature.

The concept of a differential may seem useless to you right now, but they are actually quite
powerful for describing continuous changes, especially when one differential is related to another
differential by ratio (something we call a derivative).

Another major concern in calculus is how quantities accumulate, especially how differential
quantities accumulate to form a larger whole. If we were concerned with how much the furnace’s
temperature would rise over time, we could express its total temperature rise (ATotq;) as the
accumulation, or sum, of many temperature differences (AT') measured over multiple increments of
time. Supposing we periodically measured the furnace’s temperature once every minute from 9:45
to 10:32 AM:

ATiorqr = ATg.a5 + ATy.46 + - - - AT10.30 = Total temperature rise over time, from 9:45 to 10:32

A more sophisticated expression of this series uses the capital Greek letter sigma (meaning “sum
of” in mathematics) with notations specifying which temperature differences to sum:

10:32
ATyora1 = Z AT, = Total temperature rise over time, from 9:45 to 10:32
n=9:45

However, if our furnace temperature monitor scans at an infinite pace, measuring temperature
differentials (dT) and summing them in rapid succession, we may express the same accumulated
temperature rise as an infinite sum of infinitesimal (infinitely small) changes, rather than as a
finite sum of temperature changes measured once every minute. Just as we introduced a unique
mathematical symbol to represent differentials (d) over a continuum instead of differences (A) over
discrete periods, we will introduce a unique mathematical symbol to represent the summation of
differentials () instead of the summation of differences (}°):

10:32
ATiotal = / dT = Total temperature rise over time, from 9:45 to 10:32
9:45
This summation of infinitesimal quantities is called integration, and the elongated “S” symbol
(/) is the integral symbol.

These are the two major ideas in calculus: differentials and integrals, and the notations used to
represent each. Now that wasn’t so frightening, was it?
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1.2 The concept of differentiation

Suppose we wished to measure the rate of propane gas flow through a hose to a torch:

Torch

Flowmeters appropriate for measuring low flow rates of any gas are typically very expensive,
making it impractical to directly measure the flow rate of propane fuel gas consumed by this torch
at any given moment. We could, however, indirectly measure the flow rate of propane by placing
the tank on a scale where its mass (m) could be monitored over time. By taking measurements of
mass over short time periods (At), we could calculate the corresponding differences in mass (Am),
then calculate the ratio of mass lost over time to calculate average mass flow rate (W):

— A
W = TT = Average mass flow rate

Where,
W = Average mass flow rate within each time period (kilograms per minute)
Am = Measured mass difference over time period (kilograms)
At = Time period of mass measurement sample (minutes)

Note that flow rate is a ratio (quotient) of mass change over time change. The units used to
express flow even reflect this process of division: kilograms per minute.

k]

[min]

k
= Average mass flow rate = {_g]

W =

min
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Graphed as a function over time, the tank’s mass will be seen to decrease as time elapses.
Each dot represents a mass and time measurement coordinate pair (e.g. 20 kilograms at 7:38, 18.6
kilograms at 7:51, etc.):

Average flow rate

- Am
W= A

Propane
mass

(m)

Time (1)

We should recall from basic geometry that the slope of a line segment is defined as its rise
(vertical height) divided by its run (horizontal width). Thus, the average mass flow rate calculated
within each time period may be represented as the pitch (slope) of the line segments connecting
dots, since mass flow rate is defined as a change in mass per (divided by) change in time.

Periods of high propane flow (large flame from the torch) show up on the graph as steeply-pitched
line segments. Periods of no propane flow reveal themselves as flat portions on the graph (no rise
or fall over time).

If the determination of average flow rates between significant gaps in time is good enough for
our application, we need not do anything more. However, if we wish to detect mass flow rate at any
particular instant in time, we need to perform the same measurements of mass loss, time elapse,
and division of the two at an infinitely fast rate.
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Supposing such a thing were possible, what we would end up with is a smooth graph showing
mass consumed over time. Instead of a few line segments roughly approximating a curve, we would
have an infinite number of infinitely short line segments connected together to form a seamless curve.
The flow rate at any particular point in time would be the ratio of the mass and time differentials
(the slope of the infinitesimal line segment) at that point:

Instantaneous flow rate

_ dm

W=~
Propane
mass dt
(m) dm
Time (t)
dm
W = a = Instantaneous mass flow rate
Where,

W = Instantaneous mass flow rate at a given time (kilograms per minute)
dm = Mass differential at a single point in time (kilograms)
dt = Time differential at a single point in time (minutes)

Flow is calculated just the same as before: a quotient of mass and time differences, except here
the differences are infinitesimal in magnitude. The unit of flow measurement reflects this process of
division, just as before, with mass flow rate expressed in units of kilograms per minute. Also, just as
before, the rate of flow is graphically represented by the slope of the graph: steeply-sloped points on
the graph represent moments of high flow rate, while shallow-sloped points on the graph represent
moments of low flow rate.

Such a ratio of differential quantities is called a derivative in calculus®. Derivatives — especially
time-based derivatives such as flow rate — find many applications in instrumentation as well as the

3Isaac Newton referred to derivatives as fluzions, and in Silvanus Thompson’s day they were known as differential
coefficients.
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general sciences. Some of the most common time-based derivative functions include the relationships
between position (x), velocity (v), and acceleration (a).

Velocity is the rate at which an object changes position over time. Since position is typically
denoted by the variable = and time by the variable ¢, the derivative of position with respect to time
may be written as such:

dx [meters]

V= [meters/second] =

[seconds]
The metric units of measurement® for velocity (meters per second, miles per hour, etc.) betray
this process of division: a differential of position (meters) divided by a differential of time (second).

Acceleration is the rate at which an object changes velocity over time. Thus, we may express
acceleration as the time-derivative of velocity, just as velocity was expressed as the time-derivative
of position:

_dv

dv [meters/second]
ot

a [meters/second’] =

[seconds]

We may even express acceleration as a function of position (z), since it is the rate of change of
the rate of change in position over time. This is known as a second derivative, since it is applying
the process of “differentiation” twice:

d*z

a=— [meters/second’] =

[meters]

[seconds?]

As with velocity, the units of measurement for acceleration (meters per second squared, or
alternatively meters per second per second) betray a compounded quotient.

4British units of measurement for velocity betray this same process of division: the number of feet traveled in a
time period of seconds yields a velocity in feet per second. There is nothing unique about metric units in this regard.
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It is also possible to express rates of change between different variables not involving time. A
common example in the engineering realm is the concept of gain, generally defined as the ratio of
output change to input change. An electronic amplifier, for example, with an input signal of 2 volts
(peak-to-peak) and an output signal of 8.6 volts (peak-to-peak), would be said to have a gain of 4.3,
since the change in output measured in peak-to-peak volts is 4.3 times larger than the corresponding
change in input voltage:

j_/\/ —to ot——o

Amplifier
8.6 volts P-P

—?7 _. Gain =4.3 ._ Avout

2 volts P-P
AV, @ J
il
Vous

This gain could be expressed as a quotient of differences (AAV
derivative instead:

), or it could be expressed as a

If the amplifier’s behavior is perfectly linear, there will be no difference between gain calculated
using differences and gain calculated using differentials (the derivative), since the average slope of
a straight line is the same as the instantaneous slope at any point along that line. If, however, the
amplifier does not behave in a perfectly linear fashion, gain calculated from large changes in voltage
(AAVT‘::;) will not be the same as gain calculated from infinitesimal changes at different points along
the amplifier’s operating voltage range.
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1.3 The concept of integration

Suppose we wished to measure the loss of mass over time in a large propane storage tank supplying a
building with heating fuel, because the tank lacked a level indicator to show how much fuel was left
at any given time. The flow rate is sufficiently large, and the task sufficiently important, to justify
the installation of a mass flowmeter®, which registers flow rate at an indicator inside the building:

d RN

Propane tank Flowmeter

H Gas pipe \:I|_ E

By measuring true mass flow rate, it should be possible to indirectly measure how much propane
has been used at any time following the most recent filling of the tank. For example, if the mass
flow rate of propane into the building was measured to be an average of 5 kilograms per hour for 30
hours, it would be a simple matter of multiplication to arrive at the consumed mass:

k h
150 ke = <5hrg> (301 rs)

Expressing this mathematically as a function of differences in mass and differences in time, we
may write the following equation:

Am =W At

Where,
W = Average mass flow rate within the time period (kilograms per hour)
Am = Mass difference over time period (kilograms)
At = Time period of flow measurement sample (hours)

It is easy to see how this is just a variation of the quotient-of-differences equation used previously
in this chapter to define mass flow rate:

— Am
W = —— = Average mass flow rate

At

Inferring mass flow rate from changes in mass over time periods is a process of division. Inferring
changes in mass from flow rate over time periods is a process of multiplication. The units of
measurement used to express each of the variables makes this quite clear.

5Most likely a thermal mass flowmeter or a Coriolis lowmeter.
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As we learned previously, the process of differentiation is really just a matter of determining the
slope of a graph. A graph of propane fuel mass (m) plotted over time (¢) has a slope corresponding
to mass flow rate (W = ‘ILTT). Here, we are attempting to do the opposite: the data reported by the
sensing instrument is propane mass flow rate (W), and our goal is to determine total mass lost (Am)
as the propane is consumed from the storage tank over a period of time (At). This is fundamentally
different from differentiation, which means the graphical interpretation will not be the same. Instead
of calculating the slope of the graph, we will have to do something else.

Suppose the propane flowmeter happened to report a constant mass flow rate (W) of 5 kilograms
of propane per hour. The total mass of propane consumed (Am) over a 30-hour interval (At) would
obviously be 150 kilograms, multiplying the constant mass flow rate by the time interval. Graphing
this, we see that the process of multiplication used to calculate the mass loss corresponds to the
geometric area enclosed by the graph, since the area of a rectangle is height times width:

8 —
7
6 —
- 30 hours >
Propane 5
flow rate |
(W)
kg/hr 3
2 -
1 -
0 I I I I I I I I I I I I I I I I I 1
0 5 10 15 20 25 30 35 40 45

Time (t) hours
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The task of inferring lost mass over time becomes more complicated if the propane flow rate
changes substantially over time. Consider the following graph, showing periods of increased and
decreased flow rate due to different gas-fired appliances turning on and off inside the building:

Propane
flow rate

(W)

1]
Time (t)

Here, the propane gas flow rate does not stay constant throughout the entire time interval covered
