
Dynamic fluids

This worksheet and all related files are licensed under the Creative Commons Attribution License,
version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and
conditions of this license allow for free copying, distribution, and/or modification of all licensed works by
the general public.

This worksheet introduces the basic concepts of gases and liquids in motion.
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Questions

Question 1

Water flowing through an 8-inch pipe at an average velocity of 5 feet per second enters a narrower
section of pipe (3 inches), changing its velocity accordingly. Calculate the water’s average velocity in this
narrower section of pipe.

file i04796

Question 2

Crude oil flows at an average velocity of 14 feet per second through a pipe with an internal diameter of
7.92 inches. Calculate the flow rate of this oil in units of gallons per minute, as well as barrels per day.

file i04797

Question 3

Crude oil flows at an average velocity of 10 feet per second through a pipe with an internal diameter of
5.95 inches. Calculate the flow rate of this oil in units of gallons per minute, as well as barrels per day.
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Question 4

Calculate the average velocity of gasoline flowing through a 6-inch pipe at a flow rate of 180 GPM.
file i04788

Question 5

Use Bernoulli’s equation to calculate the hydrostatic pressure at the bottom of this water storage tank:

22 ft Water

P = ???

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2

Where,
ρ = 1.94 slugs/ft3 (for water)
g = 32.2 ft/s2
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Question 6

If we poke a hole at the bottom of a vessel containing an otherwise static column of liquid, we have an
application for Bernoulli’s equation at three different points in the system:

P2

P1 = 0z1

z2 = 0

Point 1

P3 = 0

Point 2

Point 3
v3

v2 = 0

v1 = 0

z3 = 0

Note that point 1 has no velocity or pressure, but it does have elevation (height); point 2 has no velocity
or elevation, but it does have pressure; and point 3 has no elevation or pressure, but it does have velocity.

Use Bernoulli’s equation to write a new equation relating the elevation of point 1 with the pressure of
point 2 and the velocity of point 3, and then solve for the velocity at point 3 in terms of the other two points’
non-zero variables.

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2
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Question 7

Almost one century prior to Daniel Bernoulli’s famous equation (1738), an Italian named Evangelista
Torricelli (1643) discovered that the velocity of a liquid stream exiting a vessel was proportional to the square
root of the height of the liquid column inside the vessel:

v

h

v =
√

2gh

Where,

v = Liquid stream velocity, in meters per second (m/s)

g = Acceleration of gravity, in meters per second squared (m/s2)

h = Height of liquid column, in meters (m)

An interesting aspect of Torricelli’s discovery was that this velocity did not depend at all on the density
of the liquid. In other words, the velocity of a mercury stream would be the same as the velocity of a water
stream so long as the two liquids’ column heights were equal.

It should come as no surprise that Torricelli was a student of Galileo, the man who discovered that the
velocity of a falling object did not depend upon the mass of the object (neglecting the effect of air friction).

Use algebra to prove falling objects follow the same basic rule, namely that free-fall velocity is a function
of height alone and not mass (neglecting air friction):

v

h

Mass
(dropped from 

height h)

Potential energy of mass at height h (before falling) = mgh

Kinetic energy of mass just before it hits the ground = 1

2
mv2
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Do you notice a similarity between the Torricelli’s formula and the one you derived from the potential
and kinetic energy equations?

file i00447

Question 8

Torricelli’s Theorem describes the velocity of a liquid exiting the bottom of a vessel as a function of
liquid height within the vessel, and also the acceleration of Earth’s gravity (g):

h

v =   2gh

Torricelli’s Theorem

We also know that the hydrostatic pressure generated by a vertical column of liquid follows this formula:

P = ρgh

Combine this formula with Torricelli’s Theorem to express fluid velocity through an orifice as a function
of pressure rather than of liquid height.
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Question 9

Calculate the pressure at the discharge end of this pipe (P2), assuming water as the fluid (with a mass
density ρ = 1.94 slugs/ft3), 32.2 ft/s2 as the acceleration of gravity (g), and frictionless flow (no pressure
loss due to friction):

Curved pipe

Flow

z1 = 5 ft

z2 = 20 ft

v1 = 30 ft/s

v2 = 24 ft/s

P2 = ???

P1 = 1100 lb/ft2

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2

Suggestions for Socratic discussion

• One way students commonly fail to arrive at the correct answers with Bernoulli’s Law calculations is
by using incompatible units of measurement. Show how all the units of measurement provided to you
in this question are compatible in their given forms, with no need for conversion.
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Question 10

Calculate the pressure at the discharge end of this pipe (P2), assuming water as the fluid (with a mass
density ρ = 1.94 slugs/ft3), 32.2 ft/s2 as the acceleration of gravity (g), and frictionless flow (no pressure
loss due to friction):

Curved pipe

Flow

P2 = 17,000 lb/ft2

P1 = ???

v1 = 10 ft/s

v2 = 4 ft/s

z1 = 7 ft

z2 = 21 ft

Express your answer in units of PSI as well as PSF (pounds per square foot).

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2
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Question 11

Calculate the pressures P1 and P2, assuming a fluid mass density of 1.72 slugs per cubic foot:

Pump8-inch pipe

6-inch pipe

8-inch pipe

(schedule 40)

(schedule 80)

(schedule 80)

ID = 7.981 inches

ID = 5.761 inches

ID = 7.625 inches

P = 145 PSI

P = 302 PSI

P1 = ???

P2 = ???

6.75 feet

9.1 feet

8-inch pipe
(schedule 40)

ID = 7.981 inches

Q = 2000 GPM

Also, comment on whether or not Bernoulli’s equation could be used to compare the suction and
discharge pressures of the pump, being that those two pressures (145 and 302 PSI) are measured on the
same size pipe, with the same flow rate, and very similar elevations (heights).
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Question 12

The following illustration shows a portion of water piping from an overhead view, looking down toward
the ground (a “birds-eye” view). The pipe itself is completely level (parallel) with the ground, so that all
points along the pipe centerline are at the same height:

???

4 inch pipe

16 inch pipe

Flow

Flow

50 PSI

14 ft/s

The inlet pressure gauge shows 50 PSI, and the velocity of the water entering through the 4 inch pipe
is known to be 14 feet per second. Both pressure gauges are fixed at the centerline of the pipe, and are thus
at the exact same height. Calculate the pressure registered at the outlet gauge (on the 16 inch pipe section)
in units of PSI, assuming inviscid (frictionless) flow throughout, and a mass density for water of ρ = 1.94
slugs/ft3.

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2
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Question 13

Elevation (z) and pressure (P ) readings are taken at two different points in a piping system carrying
liquid benzene (γ = 56.1 lb/ft3):

z1 = 50 inches z2 = 34 inches

P1 = 70 PSI P2 = 69 PSI

Calculate the fluid velocity at point 2 (v2) if the velocity at point 1 is known to be equal to 5 feet per
second (v1 = 5 ft/s).

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2

file i02988

Question 14

As fluid flows past a stationary object such as a Pitot tube, the fluid immediately in front of the tube
comes to a full stop. This is called a stagnation point, and the pressure resulting from the complete loss of
velocity at the stagnation point is called the stagnation pressure.

Flow

pipe wall

pipe wall

Pitot tube

Pstatic Pstatic + Pstagnation

stagnation point

Manipulate Bernoulli’s equation to show how this stagnation pressure is determined by fluid velocity
(v).
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Question 15

Calculate the pressure developed by a Pitot tube measuring air speed at 50 MPH, at sea level (ρair =
0.00235 slugs/ft3).

Also, how much pressure will the Pitot tube develop at twice the air speed (100 MPH)?
file i02982

Question 16

Calculate the differential pressure developed by an open venturi tube measuring air speed at 50 MPH,
at sea level (ρair = 0.00235 slugs/ft3), where the throat diameter is one-half that of the entrance diameter:

∆P

50 MPH
air

Also, how much pressure will the venturi tube develop at twice the air speed (100 MPH)?
file i02984

Question 17

From Bernoulli’s equation, develop a formula for calculating volumetric flow rate (Q) given differential
pressure drop ∆P between two flow streams with differing cross-sectional areas (A1 and A2). Assume an
incompressible fluid (ρ = constant) flowing along a level path (z1 = z2), and recall that volumetric flow rate
is equal to the product of cross-sectional area and fluid velocity (Q = Av).

Q

∆P

A1

A2

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2
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Question 18

Calculate the flow rate necessary (in units of gallons per minute) to create exactly 0 PSI gauge pressure
at the throat of this venturi, and also calculate the (ideal) pressure at the third gauge. Assume a liquid with
a mass density (ρ) of 1.951 slugs per cubic foot:

Diameter
D1 = 12 inches

Diameter

Diameter
D3 = 12 inches

D2 = 5 inches

Q = ???

P1 = 100 PSI P2 = 0 PSI P3 = ???

Furthermore, determine what will happen to the pressure at the throat if the flow rate increases beyond
this rate, assuming all other factors remain unchanged?

file i00444

Question 19

Compare and contrast laminar versus turbulent flow regimes with regard to the following criteria:

• Which regime creates the least amount of drag (frictional energy losses) through a long length of pipe?

• Which regime is better for mixing fluids together in a piping system?

• Which regime is better for ensuring thorough reaction between chemical reactants in a piping system?

• Which regime is preferable inside of a heat exchanger, to ensure maximum heat transfer?

Examine the following formulae for calculating Reynolds number:

To calculate Reynolds number given English units (gas flow):

Re =
(6.32)ρQ

Dµ

Where,

Re = Reynolds number (unitless)

ρ = Mass density of gas, in pounds (mass) per cubic foot (lbm/ft3)

Q = Flow rate, standard cubic feet per hour (SCFH)

D = Diameter of pipe, in inches (in)

µ = Absolute viscosity of fluid, in centipoise (cP)
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To calculate Reynolds number given specific gravity instead of density (liquid flow):

Re =
(3160)GfQ

Dµ

Where,
Re = Reynolds number (unitless)
Gf = Specific gravity of liquid (unitless)
Q = Flow rate, gallons per minute (GPM)
D = Diameter of pipe, in inches (in)
µ = Absolute viscosity of fluid, in centipoise (cP)

Now, qualitatively identify which direction each variable in the formula must change (e.g. increase
versus decrease) in order to promote turbulence in a fluid stream, all other factors remaining unchanged.

Suggestions for Socratic discussion

• For any given fluid velocity, Reynolds number will decrease if the pipe diameter decreases. Knowing
this, explain why we see D in the denominator of these fractions rather than in the numerator.

file i01299
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Question 20

One of the most fundamental relationships in the study of electricity is Ohm’s Law. This mathematical
expression relates the flow of electric charge (I, which we call current) to electromotive potential (V , which
we call voltage) and opposition to charge flow (R, which we call resistance):

V

II
R

Arrows point in direction
of conventional flow I =

V

R
(For all conditions)

The relationship between liquid flow rate, pressure drop, and “resistance” for a piping restriction
(orifice, throttling valve, pipe bend, etc.) is not as simple. No single mathematical expression is sufficient
to predict flow rates for all conditions:

R

∆P

Q Q
P1 P2

Q =
P1 − P2

R1

=
∆P

R1

(For laminar flow conditions only)

Q =

√

P1 − P2

R2

=

√

∆P

R2

(For turbulent flow conditions only)

Shunt resistors may be used as electric current-measuring elements, producing a voltage drop in precise
proportion to the current through it. All we need to know is the shunt resistance, and we may infer current
by measuring voltage. In a similar manner, orifices may be used as liquid flow-measuring elements, producing
a pressure drop that varies with the amount of flow passing through it:

II

V

Rshunt

Q Q

PDT

Orifice

H L

Measuring electric current Measuring fluid flow

Given the “Ohm’s Law” equations shown for liquid flow, identify what we would have to know before
using an orifice as an accurate liquid flow-measuring device, and how we would be able to obtain that
information. Also identify the type of sensing instrument we would need to measure the pressure, so we
could infer flow rate from its reading.
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Question 21

One of the most fundamental relationships in the study of electricity is Ohm’s Law. This mathematical
expression relates the flow of electric charge (I, which we call current) to electromotive potential (V , which
we call voltage) and opposition to charge flow (R, which we call resistance):

V

II
R

Arrows point in direction
of conventional flow I =

V

R
(For all conditions)

The relationship between gas flow rate, pressure drop, and “resistance” for a piping restriction (orifice,
throttling valve, pipe bend, etc.) is not as simple. No single mathematical expression is sufficient to predict
flow rates for all conditions:

R

∆P

Q Q
P1 P2

Q =
P1 − P2

R1

=
∆P

R1

Subsonic velocity with small ∆P

Q =

√

P1 − P2

R2

=

√

∆P

R2

Subsonic velocity with moderate ∆P

Q =

√

P2(P1 − P2)

R3

= Subsonic velocity with large ∆P

Shunt resistors may be used as electric current-measuring elements, producing a voltage drop in precise
proportion to the current through it. All we need to know is the shunt resistance, and we may infer current
by measuring voltage. In a similar manner, orifices may be used as gas flow-measuring elements, producing
a pressure drop that varies with the amount of flow passing through it:

II

V

Rshunt

Q Q

PDT

Orifice

H L

Measuring electric current Measuring fluid flow

Given the “Ohm’s Law” equations shown for gas flow, identify what we would have to know before using
an orifice as an accurate gas flow-measuring device, and how we would be able to obtain that information.
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Also identify the type of sensing instrument(s) we would need to measure the pressure, so we could infer
flow rate from its reading.

file i00087

Question 22

A manometer may be used to measure differential pressure across a restriction placed within a pipe.
Pressure will be dropped as a result of flow through the pipe, making the manometer capable of (indirectly)
measuring flow:

Flow

Higher
pressure

Lower
pressure

Mercury manometer

Pipe Restriction

In the example shown above, the fluid moving through the pipe is air, and the manometer uses mercury
as the indicating liquid. If we try to measure the flow rate of a liquid such as water using the same technique,
though, we will find that the manometer does not register quite the way we might expect:

Higher
pressure

Lower
pressure

Mercury manometer

Pipe Restriction

Flow

That is to say, given the exact same amount of differential pressure generated by the restriction, the
manometer will register differently than if it was measuring air pressure. Determine whether the manometer
will register falsely high or falsely low, and also why it will do so.
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Question 23

A centrifugal pump works by spinning a disk with radial vanes called an “impeller,” which flings fluid
outward from the center of the disk to the edge of the disk. This kinetic energy imparted to the fluid
translates to potential energy in the form of pressure when the fluid molecules strike the inner wall of the
pump casing:

Centrifugal pump

Suction

Discharge

External view

Suction

Discharge
Internal view

The performance of a centrifugal pump is often expressed in a special graph known as a pump curve. A
typical centrifugal pump curve appears here, traced for one particular shaft speed:

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Output
pressure (%)

Flow rate through pump (%)

Typical centrifugal pump curve

Examine this pump curve, and explain in your own words what it tells us about the performance
behavior of this pump when turned at a constant speed.

Suggestions for Socratic discussion

• One way to describe the operation of a centrifugal pump is to say it generates discharge pressure by
converting kinetic energy into potential energy. Elaborate on this statement, explaining exactly where
and how kinetic energy gets converted to potential energy. Hint: this might be easier to answer if you
consider the “limiting case” of maximum discharge pressure described by the pump curve, where flow
is zero and pressure is maximum.

• Appealing to the conversion of energy between kinetic and potential forms, explain why discharge
pressure for a centrifugal pump falls off as flow rate increases.
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• The pump curve shown assumes a constant rotational speed for the pump’s impeller. How would the
pump curve be modified if the pump were rotated at a slower speed?

file i01407
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Question 24

A centrifugal pump works by spinning a disk with radial vanes called an “impeller,” which flings fluid
outward from the center of the disk to the edge of the disk. This kinetic energy imparted to the fluid
translates to potential energy in the form of pressure when the fluid molecules strike the inner wall of the
pump casing:

Centrifugal pump

Suction

Discharge

External view

Suction

Discharge
Internal view

The energy conveyed by the liquid exiting the discharge port of this pump comes in two forms: pressure
head and velocity head. Ignoring differences in elevation (height), we may apply Bernoulli’s equation to
describe this fluid energy:

Fluid Energy at discharge port =
ρv2

2
+ P

Where,
Fluid Energy = expressed in units of pounds per square foot, or PSF
P = Gauge pressure (pounds per square foot, or PSF)
ρ = Mass density of fluid (slugs per cubic foot)
v = Velocity of fluid (feet per second)

When the discharge port is completely blocked by an obstruction such as a closed valve or a blind, there
is no velocity at the port (v = 0) and therefore the total energy is in the potential form of pressure (P ).
When the discharge port is completely unobstructed, there will be no pressure at the port (P = 0) and

therefore the total energy is in kinetic form (ρv2

2
). During normal operation when the discharge experiences

some degree of resistance, the discharge fluid stream will possess some velocity as well as some pressure.

Assuming that the fluid molecules’ maximum velocity is equal to the speed of the impeller’s rim, calculate
the discharge pressure under these conditions for a pump having an 8 inch diameter impeller spinning at
1760 RPM and a discharge port of 2 inches diameter, with water as the fluid (mass density ρ = 1.94 slugs
per cubic foot) and assuming atmospheric pressure at the suction port:

• Discharge flow = 0 GPM ; P = PSI

• Discharge flow = 100 GPM ; P = PSI

• Discharge flow = 200 GPM ; P = PSI

• Discharge flow = 300 GPM ; P = PSI

• Discharge flow = 400 GPM ; P = PSI

• Discharge flow = 500 GPM ; P = PSI

Next, calculate the maximum flow rate out of the pump with a completely open discharge port (P = 0).

file i02588
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Question 25

Suppose two water pipes of different diameter both have blunt objects (“bluff bodies”) in the paths of
their respective water flows. A pressure sensor device located near each of the bluff bodies measures the
frequency of the vortices produced:

Fluid flow

Fluid flow

Small-diameter pipe

Large-diameter pipe

sensor

sensor

If the bluff bodies in both pipes have the same physical dimensions, and the vortex shedding frequencies
are the same in both scenarios, which pipe carries a greater volumetric flow rate of water? Or, do they carry
the same amount of flow? Why or why not??

file i00495

Question 26

An important numerical constant related to the von Kármán effect is the Strouhal number. Explain what
this number means, and why its constant (unchanging) value is important to flow-measuring instruments
based on the von Kármán effect.

file i00492

Question 27

Suppose a stream of water flowing through a 10-inch diameter pipe passes by a 1-inch-wide blunt object
installed in the middle of that pipe, and generates a series of von Kármán vortices having a frequency of
4.167 Hz. Calculate the flow rate through the pipe in gallons per minute (GPM).
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Question 28

This process flow diagram shows a Fluid Catalytic Cracking (FCC) unit, used in oil refineries to convert
heavy oils into feedstocks for making gasoline and other high-value fuels:

Dispersion
steam

Regenerator Reactor

Cyclone
separators

Stripping
steam

Air

Blower

RiserRegenerated catalyst

Spent catalyst

Light gas oil

Heavy gas oil

Overhead

Settler

Clarified slurry

Heavy feed

Fractionator

Air

CO
boiler

Steam generator

Recycle slurry

hydrocarbons

N2 + O2 gases

CO + CO2 + N2 gases

Exhaust (CO2 + N2 gases)

The word “fluid” in this unit’s name refers to the fact that the catalyst used to promote the chemical
cracking reaction is a fine powder, which is circulated in the reactors and pipes along with the hot hydrocarbon
vapors as though it were a fluid itself.

An FCC unit process should be designed so that the flow regime inside the riser pipe is highly turbulent.
Explain why this is, and identify which design parameters of the riser might be controlled to ensure turbulent
flow.

An FCC unit process should be designed so that the flow regime inside the settler vessel is laminar.
Explain why this is, and identify which design parameters of the vessel might be controlled to ensure laminar
flow.

Multiple cyclone separators are used at the tops of the reactor and regenerator vessels to separate
powdered catalyst from hydrocarbon vapors, returning the catalyst powder to the vessels and letting the
hydrocarbon vapors move on to other processes. Explain how a cyclone separator works.

Suggestions for Socratic discussion

• Identify which reactions in this process are exothermic and which are endothermic, and explain why for
each case based on a simple analysis of the reactants and products.
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Answers

Answer 1

The Continuity equation relates volumetric flow rate to pipe area and average velocity, assuming a
constant fluid density:

Q = A1v1 = A2v2

Given the same flow rate in both sections of pipe, the relationship between pipe area and velocity is as
such:

v2

v1

=
A1

A2

Since area is proportional to the square of the diameter (or radius), we may express the ratio of velocities
as a ratio of squared diameters:

v2

v1

=

(

d1

d2

)2

This being the case, we may solve for the velocity in the narrower section of pipe:

v2 = v1

(

d1

d2

)2

v2 = 5 ft/s

(

8 in

3 in

)2

= 35.56 ft/s
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Answer 2

The volumetric flow rate for any fluid is equal to the flow velocity (v) multiplied by the cross-sectional
area of the pipe (A):

Q = Av

We already know the velocity, so what we need to do now is calculate the pipe’s flowing area. The pipe’s
internal diameter of 7.92 inches gives us this cross-sectional area:

A = πr2

A = π

(

7.92

2

)2

= 49.27 in2

Converting the velocity into units of inches per minute before multiplying will give us a flow rate in
cubic inches per minute:

(

14 ft

s

)(

12 in

1 ft

)(

60 s

1 min

)

= 10080 in/min

Calculating volumetric flow rate:

Q = Av

Q = (49.27 in2)(10080 in/min) = 496593 in3/min

Converting volumetric flow rate units:

(

496593 in3

min

)(

1 gal

231 in3

)

= 2149.8 GPM

(

2149.8 gal

min

)(

1 bbl

42 gal

)(

60 min

1 hr

)(

24 hr

1 day

)

= 73706 bbl/day
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Answer 3

The volumetric flow rate for any fluid is equal to the flow velocity (v) multiplied by the cross-sectional
area of the pipe (A):

Q = Av

We already know the velocity, so what we need to do now is calculate the pipe’s flowing area. The pipe’s
internal diameter of 5.95 inches gives us this cross-sectional area:

A = πr2

A = π

(

5.95

2

)2

= 27.81 in2

Converting the velocity into units of inches per minute before multiplying will give us a flow rate in
cubic inches per minute:

(

10 ft

s

)(

12 in

1 ft

)(

60 s

1 min

)

= 7200 in/min

Calculating volumetric flow rate:

Q = Av

Q = (27.81 in2)(7200 in/min) = 200196.4 in3/min

Converting volumetric flow rate units:

(

200196.4 in3

min

)(

1 gal

231 in3

)

= 866.7 GPM

(

866.7 gal

min

)(

1 bbl

42 gal

)(

60 min

1 hr

)(

24 hr

1 day

)

= 29713.8 bbl/day
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Answer 4

The Continuity equation relates volumetric flow rate to pipe area and average velocity, assuming a
constant fluid density:

Q = Av

Velocity may be determined by manipulating this equation and plugging in the known quantities in the
proper units:

v =
Q

A

First, we need to convert the flow rate into units of cubic inches per minute, and calculate area in square
inches:

Q =

(

180 gal

min

) (

231 in3

1 gal

)

= 41580 in3/min

A = πr2 = π(3 in)2 = 28.27 in2

Now we may calculate average velocity:

v =
Q

A
=

41580 in3/min

28.27 in2
= 1470.6 in/min

Answer 5

P = 1374.3 lb/ft2 = 9.544 PSI
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Answer 6

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2 = z3ρg +

v2

3
ρ

2
+ P3

z1ρg + 0 + 0 = 0 + 0 + P2 = 0 +
v2

3
ρ

2
+ 0

z1ρg = P2 =
v2

3
ρ

2

v3 =
√

2gz1

v3 =

√

2P2

ρ

The Pitot tube converts the outlet stream’s velocity head (v2ρ
2

) into a stagnation pressure head (P ),
then into an elevation head (zρg).

Challenge question: explain why a Pitot tube placed in the path of the outlet stream generates a liquid
column equal in height to z1:

P2

P1 = 0z1

z2 = 0

Point 1

P3 = 0

Point 2

Point 3

v3

v2 = 0

v1 = 0

z3 = 0
Pitot tube

Answer 7

There is more than just a similarity here – the two equations are absolutely identical! This means the
velocity of the liquid stream is equal to the final velocity of a falling object, if the liquid column height is
the same as the object’s drop height.

Follow-up question: are the units of measurement specified for Torricelli’s Theorem specific to this form
of the equation, or can we use different units of measurement with the exact same equation?
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Answer 8

In order to combine these two formulae together, we need to identify the common variable. In this case,
it is height. Note that g is not really a variable, but rather a constant so long as the location is on the surface
of planet Earth.

Now that we know what the common variable is, we may manipulate the hydrostatic pressure formula
to solve for that variable, so that we will have something to substitute into Torricelli’s Theorem and finally
have an formula solving for velocity (v) in terms of pressure (P ):

P = ρgh

h =
P

ρg

v =
√

2gh

v =

√

2g

(

P

ρg

)

v =

√

2

(

P

ρ

)

v =

√

2P

ρ

(Alternatively . . .)

v =
√

2

√

P

ρ

Note that P actually refers to the amount of differential pressure across the opening, since Torricelli’s
Theorem assumes a discharge into atmospheric pressure as well as a vented tank (atmospheric pressure on
top of the liquid).
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Answer 9

Head Calculation at low end Value
z1ρg (5 ft) (1.94 slugs/ft3) (32.2 ft/s2) 312.34 lb/ft2

v2

1
ρ/2 (30 ft/s)2 (1.94 slugs/ft3) / 2 873.00 lb/ft2

P1 (value already given) 1100 lb/ft2

Total 312.34 lb/ft2 + 873.00 lb/ft2 + 1100 lb/ft2 2285.34 lb/ft2

Head Calculation at high end Value
z2ρg (20 ft) (1.94 slugs/ft3) (32.2 ft/s2) 1249.36 lb/ft2

v2

2
ρ/2 (24 ft/s)2 (1.94 slugs/ft3) / 2 558.72 lb/ft2

P2 ??? lb/ft2

Total 1249.36 lb/ft2 + 558.72 lb/ft2 + ??? lb/ft2 2285.34 lb/ft2

P2 = 477.26 lb/ft2

It is tempting to alter Bernoulli’s Equation to handle measurements in inches rather than feet (especially
the annoying unit of pressure measurement: pounds per square foot, rather than PSI). However, caution
must be exercised when attempting this, because there is more to it than simply converting feet into inches
every place you see “ft” in the equation.

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2

There is the unit of “feet” lurking inside the unit of “slugs” which must also be accounted for. Here is
the standard weight-mass-gravity equation relating slugs to pounds:

W = mg

[lb] = [slug]

[

ft

s2

]

If we re-write the unit analysis equation to show slugs as a compound unit, we see that “feet” lurks
within:

[lb] =

[

lb · s2

ft

] [

ft

s2

]

Thus, expressing g in inches per second squared would require us to invent a new unit of mass (lb · s2

per in) instead of slugs (lb · s2 per ft).

Answer 10

P2 = 17,793 lb/ft2 = 123.56 PSI

Answer 11

P1 = 296.77 PSI P2 = 293.27 PSI

Bernoulli’s equation assumes no gain or loss of energy between the two locations compared, and so it
cannot be used to contrast the pump’s suction and discharge pressures. The pump is a machine that adds
energy to the fluid going through it, and so the assumption of equal (total) energy between the incoming
and outgoing flow streams is not correct.
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Answer 12

Pout = 51.315 PSI

Note: with a pipe diameter ratio of 4:1 (out:in), the exit velocity will be 16 times slower than the inlet
velocity (1:4)2 = (1:16).

Answer 13

v2 = 16.57 ft/s

Note that the two pressures are given in units of PSI (not pounds per square foot), and that the two
heights are given in inches instead of feet. Also, ρbenzene = 1.753 slugs/ft3.

Answer 14

Bernoulli’s equation:

z1ρg +
v2

1
ρ

2
+ P1 = z2ρg +

v2

2
ρ

2
+ P2

Assuming no change in height (z) is involved:

v2

1
ρ

2
+ P1 =

v2

2
ρ

2
+ P2

Knowing that P1 is the static pressure and that P2 is equal to Pstatic + Pstagnation:

v2

1
ρ

2
+ Pstatic =

v2

2
ρ

2
+ Pstatic + Pstagnation

v2

1
ρ

2
=

v2

2
ρ

2
+ Pstagnation

Knowing that v2 is zero at the stagnation point:

v2

1
ρ

2
= Pstagnation

Therefore, Pstagnation = 1

2
v2ρ

Answer 15

P at 50 MPH = 1.215 inches H2O

P at 100 MPH = 4.859 inches H2O

Answer 16

∆P at 50 MPH = 18.22 ”W.C.

∆P at 100 MPH = 72.88 ”W.C.
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Answer 17

Assuming no difference in height (z):

v2

1
ρ

2
+ P1 =

v2

2
ρ

2
+ P2

P1 − P2 =
v2

2
ρ

2
−

v2

1
ρ

2

∆P =
ρ

2

(

v2

2
− v2

1

)

2∆P

ρ
= v2

2
− v2

1

If Q = Av then v =
Q

A

2∆P

ρ
=

(

Q

A2

)2

−

(

Q

A1

)2

2∆P

ρ
=

Q2

A2

2

−
Q2

A2

1

2∆P

ρ
=

Q2A2

1

A2

1
A2

2

−
Q2A2

2

A2

1
A2

2

2∆P

ρ
= Q2

A2

1
− A2

2

A2

1
A2

2

Q2 =

(

A2

1
A2

2

A2

1
− A2

2

)(

2∆P

ρ

)

Q =

√

A2

1
A2

2

A2

1
− A2

2

√

2∆P

ρ

Q =
A1A2

√

A2

1
− A2

2

√

2∆P

ρ

Where,
Q = Volumetric flow rate (ft3/s)
A1 = Large flow area (ft2)
A2 = Small (throat) flow area (ft2)
∆P = Differential pressure drop (lb/ft2)
ρ = Mass density of fluid (slugs/ft3)

Answer 18

Q = 16.822 ft3/sec or 7550.29 GPM

If the flow rate increases beyond 7550.29 GPM, the pressure at P2 will decrease further, creating a
vacuum.
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Answer 19

• Which regime creates the least amount of drag (frictional energy losses) through a long length of pipe?
Laminar

• Which regime is better for mixing fluids together in a piping system? Turbulent

• Which regime is better for ensuring thorough reaction between chemical reactants in a piping system?
Turbulent

• Which regime is preferable inside of a heat exchanger, to ensure maximum heat transfer? Turbulent

All other factors being equal, turbulence will be promoted by the following:

• Increasing flow rate (Q)

• Increasing fluid density (ρ or Gf )

• Decreasing pipe diameter (D)

• Decreasing viscosity (µ)

Answer 20

Here, what we do not know about the flow-measurement scenario is the flow regime (laminar or
turbulent), and also what the “resistance” of the fluid restriction is. Of course, the Reynolds number
for our flowstream will indicate its regime status, and the R factor for the orifice may be either determined
experimentally or derived from orifice equations (available in any exhaustive reference book).

The proper pressure-sensing instrument to use for fluid flow is a differential pressure instrument, such
as a DP cell or DP gauge, or perhaps even a mercury manometer.

Answer 21

Here, what we do not know about the flow-measurement scenario is the flow regime (laminar or
turbulent), and also what the “resistance” of the fluid restriction is. Of course, the Reynolds number
for our flowstream will indicate its regime status, and the R factor for the orifice may be either determined
experimentally or derived from orifice equations (available in any exhaustive reference book).

The proper pressure-sensing instrument to use for fluid flow is a differential pressure instrument, such
as a DP cell or DP gauge, or perhaps even a mercury manometer. In the case of large pressure drops, it may
also be important to measure downstream pressure (P2) with reference to atmosphere.

Answer 22

The manometer will register falsely high, showing greater differential pressure than what is actually
there. If you are having difficulty figuring this out, imagine if the liquid moving through the pipe was just
as dense as the mercury within the manometer: what would that do to the mercury in the manometer given
any applied ∆P? In other words, set up a thought experiment with absurdly (simple) conditions and then
look for patterns or trends which you may generalize for any condition.

Challenge question: derive a mathematical correction factor for interpreting the manometer’s indication
to yield true inches of mercury ∆P.

Answer 23

This graph relates pressure output versus liquid flow rate for a centrifugal-style pump operating at a
constant rotational speed.
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Answer 24

The velocity of the fluid molecules will be equal to the rim speed of the impeller, which is the
circumference of the impeller multiplied by its rotational speed:

(

1760 rev

min

)(

8π in

rev

)

= 44233.6 in/min = 61.436 ft/s

This velocity lets us calculate the velocity head at the impeller’s rim. If we assume the water enters the
pump with no pressure, this velocity head should be the only energy the water possesses at the impeller rim:

Fluid Energy at impeller rim =
ρv2

2
=

(1.94)(61.436)2

2
= 3661.1 PSF = 25.42 PSI

This figure of 25.42 PSI will be the blocked-discharge pressure, where 100% of the fluid’s kinetic energy
is translated into pressure as it finds no place to flow and its velocity stagnates to zero.

Conversely, if we imagine a situation where the discharge port is completely unblocked to achieve zero
discharge pressure, the fluid velocity exiting the port will be approximately equal to the impeller rim velocity.
Applying this velocity to the Continuity equation to calculate volumetric flow at the 2-inch diameter discharge
port:

Q = Av

Q = πr2v

Q = (π)(12)(44233.6) = 138964 in3/min = 601.6 GPM

Therefore, the maximum flow rate of this pump at zero discharge pressure will be approximately 600
gallons per minute.

At any flow rate between zero and maximum, the combined sum of velocity and pressure heads at the
pump discharge must be equal to the maximum head at the impeller rim (3661.1 PSF equivalent). Therefore:

3681.9 =
ρv2

2
+ P

P = 3661.1 −
ρv2

2

Using the Continuity equation to calculate discharge velocity at 100 GPM (23100 in3/min), and then
Bernoulli’s equation to calculate discharge pressure:

v =
Q

A
=

23100

π
= 7352.96 in/min = 10.21 ft/s

P = 3661.1 −
(1.94)(10.212)

2
= 3458.8 PSF = 24.02 PSI
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Using the Continuity equation to calculate discharge velocity at 200 GPM (46200 in3/min), and then
Bernoulli’s equation to calculate discharge pressure:

v =
Q

A
=

46200

π
= 14705.9 in/min = 20.42 ft/s

P = 3681.9 −
(1.94)(20.422)

2
= 3256.4 PSF = 22.61 PSI

Using the Continuity equation to calculate discharge velocity at 300 GPM (69300 in3/min), and then
Bernoulli’s equation to calculate discharge pressure:

v =
Q

A
=

69300

π
= 22058.9 in/min = 30.64 ft/s

P = 3681.9 −
(1.94)(30.642)

2
= 2750.6 PSF = 19.10 PSI

Using the Continuity equation to calculate discharge velocity at 400 GPM (92400 in3/min), and then
Bernoulli’s equation to calculate discharge pressure:

v =
Q

A
=

92400

π
= 29411.8 in/min = 40.85 ft/s

P = 3681.9 −
(1.94)(40.852)

2
= 2042.5 PSF = 14.18 PSI

Using the Continuity equation to calculate discharge velocity at 500 GPM (115500 in3/min), and then
Bernoulli’s equation to calculate discharge pressure:

v =
Q

A
=

115500

π
= 36764.8 in/min = 51.06 ft/s

P = 3681.9 −
(1.94)(51.062)

2
= 1132.0 PSF = 7.861 PSI

Summarizing these calculated results:

• Discharge flow = 0 GPM ; P = 25.42 PSI

• Discharge flow = 100 GPM ; P = 24.02 PSI

• Discharge flow = 200 GPM ; P = 22.61 PSI

• Discharge flow = 300 GPM ; P = 19.10 PSI

• Discharge flow = 400 GPM ; P = 14.18 PSI

• Discharge flow = 500 GPM ; P = 7.861 PSI

If we were to plot these flow and pressure data points, we would have a pump curve for this centrifugal
pump.

33



Answer 25

The large pipe carries a greater volumetric rate of water flow than the small pipe.

Since the vortex shedding frequency is proportional to the fluid velocity, we know that the flow velocities
in both cases must be the same (given identical bluff body geometries). However, since the larger pipe has a
greater cross-sectional area, an identical velocity equates to a greater volume rate of water moving past the
bluff body and sensor.

Answer 26

The Strouhal number (approximately equal to 0.17) is the ratio of a blunt object’s width to the distance
between successive fluid vortices spilling off of the side of that object.

Fluid flow
sensor

d

λ

d

λ
= 0.17

In essence, the Strouhal number tells us that the wavelength (λ) of vortex “waves” is always constant
given a bluff body of constant width. Therefore, the frequency of these waves is directly proportional to the
velocity of the fluid (and thus the volumetric flow rate in a pipe of constant cross-sectional area).

It should also be noted that wavelength (λ), wave velocity (v), and wave frequency (f) are related to
each other by the following equation:

v = fλ

Dimensional analysis helps prove this is true:

[

meters

second

]

=

[

cycles

second

] [

meters

cycle

]

My choice to use “meters” here is arbitrary. The relationship is true regardless of length unit (feet,
inches, centimeters, miles, cubits, whatever!).
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Answer 27

Q = 500.04 GPM

We may derive an exact formula by using a proportionality factor (k) and the specific set of values used
to answer the quantitative question. We know that flow rate will be proportional to the product of frequency,
bluff body width, and the square of pipe diameter1:

Q ∝ fwD2

We may express this as an exact equation by adding a factor k:

Q = kfwD2

Solving for k:

k =
Q

fwD2

k =
500.04

(4.167)(1)(10)2
= 1.2

Therefore,

Q = 1.2fwD2

Where,
Q = Flow rate, in gallons per minute (GPM)
f = Vortex shedding frequency, in Hertz (Hz)
w = Bluff body width, in inches (in)
D = Diameter of pipe, in inches (in)

One really neat advantage of calculating k in this manner is that it incorporates all the necessary unit
conversions performed in the original solution of Q = 500.04 GPM. Now, all we do is enter f in Hertz, w in
inches, and D in inches, and we automatically get an answer for Q in units of gallons per minute.

Answer 28

Turbulence in the riser is desirable to ensure thorough mixing of all the reactants, to expedite the
cracking reaction. High flow rates and a narrow pipe ensure the necessary turbulence.

Laminar flow is desirable inside the settler, to allow catalyst powder to settle to the bottom and be sent
back to the reactor rather than be carried off to another processing unit. Large cross-sectional area for the
flowing slurry ensures the flow will drop to a laminar regime once inside the settler vessel.

Cyclone separators introduce the incoming flow tangential to the circumference of the separator, letting
centrifugal force pin solid particles to the separator wall. This causes the particles to lose kinetic energy and
fall out the bottom of the separator.

1 Using qualitative analysis, we can tell that Q increases proportionally with increases in f and with
increases in w. We can also tell that Q increases proportionally with the square of increases in D. Just
imagine doubling each of these variables, one at a time (while holding the others constant) and determine
the effect on Q.
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