Molecular quantities

This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public.

This worksheet introduces the basic concepts of molecular quantities (moles, percent volume, percent mass, etc.) used in the study of chemistry and chemical reactions.

H $\quad 1$ Hydrogen 1.00794 $1 \mathrm{~s}^{1}$	Periodic Table of the Elements											Metalloids			Nonmetals		He $\quad 2$ Helium 4.00260 $1 \mathrm{~s}^{2}$
$\begin{aligned} & \text { Li }{ }^{\text {Lithium }}{ }^{3} \\ & 6.941 \\ & 2 s^{1} \end{aligned}$	Be 4 Beryllium 9.012182 $2 s^{2}$ 					occurence on earth) Metals						BBoron 10.81 $2 p^{1}$${ }^{1}$	$\begin{aligned} & \mathrm{C}^{\text {Carbon }}{ }^{6} \\ & 12.011 \\ & 2 p^{2} \end{aligned}$	NNitrogen 14.0067 $2 p^{3}$	OOxygen 15.9994 $2 p^{4}$	FFluorine 18.9984 $2 p^{5}$	$\mathrm{Ne} \quad 10$ Neon 20.179 $2 \mathrm{p}^{6}$
Na $\quad 11$ Sodium 22.989768 $3 \mathrm{~s}^{1}$	Mg $\quad 12$ Magnesium 24.3050 $3 s^{2}$			lectron figuration								Al $\quad 13$ Aluminum 26.9815 $3 p^{1}$	Si $\quad 14$ Silicon 28.0855 $3 p^{2}$	$\mathrm{P} \quad 15$ Phosphorus 30.9738 $3 \mathrm{p}^{3}$	$\begin{array}{\|l\|} \hline \text { S } \quad 16 \\ \text { Sulfur } \\ 32.06 \\ 3 p^{4} \end{array}$	CI $\quad 17$ Chlorine 35.453 $3 p^{5}$	ArArgon 39.948 $3 p^{6}$
K 19 Potassium 39.0983 $4 s^{1}$	$\begin{aligned} & \text { Ca } 20 \\ & \text { Calcium } \\ & 40.078 \\ & 4 s^{2} \end{aligned}$	Sc Scandium 44.955910 $3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}$	$\begin{array}{\|l\|} \hline \mathrm{Ti} \quad 22 \\ \text { Titanium } \\ 47.88 \\ 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2} \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline V & 23 \\ \text { Vanadium } \\ 50.9415 \\ 3 d^{3} 4 s^{2} \end{array}$	$\begin{array}{\|lr} \hline \mathrm{Cr} r & 24 \\ \text { Chromium } \\ 51.9961 \\ 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1} \\ \hline \end{array}$	Mn $\quad 25$ Manganese 54.93805 $3 d^{5} 4 \mathrm{~s}^{2}$	$\begin{array}{\|c\|} \hline \mathrm{Fe} \quad 26 \\ \text { Iron } \\ 55.847 \\ 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2} \\ \hline \end{array}$	Co $\quad 27$ Cobalt 58.93320 $3 d^{7} 4 \mathrm{~s}^{2}$	$\begin{array}{\|c\|} \hline \mathrm{Ni} \quad 28 \\ \text { Nickel } \\ 58.69 \\ 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} \\ \hline \end{array}$	Cu $\quad 29$ Copper 63.546 $3 d^{10} 4 \mathrm{~s}^{1}$	$\begin{array}{\|l\|} \hline \mathrm{Zn} \quad 30 \\ \text { Zinc } \\ 65.39 \\ 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} \\ \hline \end{array}$	Ga $\left.\begin{array}{l}\text { Gallium } \\ 69.723 \\ 4 p^{1} \\ \hline\end{array}\right]$	Ge 32 Germanium 72.61 $4 p^{2}$	As 33 Arsenic 74.92159 $4 p^{3}$	Se $\quad 34$ Selenium 78.96 $4 \mathrm{p}^{4}$	$\mathrm{Br} \quad 35$ Bromine 79.904 $4 \mathrm{p}^{5}$	Kr 36 Krypton 83.80 $4 p^{6}$
Rb $\quad 37$ Rubidium 85.4678 $5 s^{1}$	$\mathrm{Sr} \quad 38$ Strontium 87.62 $5 \mathrm{~s}^{2}$	Y Yttrium 88.90585 $4 d^{1} 5 s^{2}$	$\begin{array}{lr} \hline \mathrm{Zr} & 40 \\ \text { Zirconium } \\ 91.224 \\ 4 d^{2} 5 s^{2} \end{array}$	Nb $\quad 41$ Niobium 92.90638 $4 d^{4} 5 s^{1}$	Mo 42 Molybdenum 95.94 $4 d^{5} 5 \mathrm{~s}^{1}$	Tc $\quad 43$ Technetium (98) $4 d^{5} 5 s^{2}$	Ru $\quad 44$ Ruthenium 101.07 $4 d^{7} 5 s^{1}$	Rh 45 Rhodium 102.90550 $4 d^{8} 5 s^{1}$	$\begin{array}{\|lr\|} \hline \text { Pd } & 46 \\ \text { Palladium } \\ 106.42 \\ 4 d^{10} 5 s^{\circ} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Ag}_{\text {Silver }}^{47} \\ & 107.868 \\ & 1 \mathrm{~d}^{.0} 5 \mathrm{~s}^{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{Cd} \quad 48 \\ & \text { Cadmium } \\ & 112.411 \\ & 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} \\ & \hline \end{aligned}$	$\begin{array}{\|cc} \hline \text { In } & 49 \\ \text { Indium } \\ 114.82 \\ 5 p^{1} & \\ \hline \end{array}$	$\begin{gathered} \mathrm{Sn} \quad 50 \\ \operatorname{Tin}^{18.710} \\ 5 \mathrm{p}^{2} \\ \hline \end{gathered}$	Sb 51 Antimony 121.75 $5 p^{3}$	$\begin{aligned} & \hline \text { Te } \quad 52 \\ & \text { Tellurium } \\ & 127.60 \\ & 5 p^{4} \end{aligned}$	I53 lodine 126.905 $5 p^{5}$	Xe $\quad 54$ Xenon 131.30 $5 p^{6}$
Cs $\quad 55$ Cesium 132.90543 $6 s^{1}$	$\begin{array}{lc} \hline \text { Ba } & 56 \\ \text { Barium } \\ 137.327 \\ 6 s^{2} & \\ \hline \end{array}$	$57-71$ $\begin{gathered}\text { Lanthanide } \\ \text { series }\end{gathered}$ series	$\begin{aligned} & \hline \mathrm{Hf} \quad 72 \\ & \text { Hafnium } \\ & 178.49 \\ & 5 \mathrm{~d}^{2} 6 \mathrm{~s}^{2} \\ & \hline \end{aligned}$	$\begin{array}{lr} \hline \text { Ta } \quad 73 \\ \text { Tantalum } \\ 180.9479 \\ 5 d^{3} 6 s^{2} \end{array}$	W 74 Tungsten 183.85 $5 d^{4} 6 s^{2}$	Re $\quad 75$ Rhenium 186.207 $5 d^{5} 6 s^{2}$	Os $\quad 76$ Osmium 190.2 $5 d^{6} 6 s^{2}$	$\begin{array}{\|l\|} \hline \text { Ir } \quad 77 \\ \text { Iridium } \\ 192.22 \\ 5 d^{7} 6 s^{2} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{Pt} \quad 78 \\ & \text { Platinum } \\ & 195.08 \\ & 5 d^{9} 6 s^{1} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Au } \quad 79 \\ \text { Gold } \\ 196.96654 \\ 5 d^{10} 6 s^{1} \\ \hline \end{gathered}$	$\mathrm{Hg} \quad 80$ Mercury 200.59 $5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2}$	TI $\quad 81$ Thallium 204.3833 $6 p^{1}$	$\begin{array}{\|l\|} \hline \mathrm{Pb} \quad 82 \\ \text { Lead } \\ 207.2 \\ 6 \mathrm{p}^{2} \\ \hline \end{array}$	Bi 83 Bismuth 208.98037 $6 p^{3}$	Po 84 Polonium (209) $6 p^{4}$	At $\quad 85$ Astatine (210) $6 p^{5}$	RnRadon (222) $6 p^{6}$
$\mathrm{Fr} \quad 87$ Francium (223) $7 \mathrm{~s}^{1}$	RaRadium (226) $7 \mathrm{~s}^{2}$	$\begin{aligned} & 89-103 \\ & \text { Actinide } \end{aligned}$ series	Unq 104 Unnilquadium (261) $6 d^{2} 7 s^{2}$	Unp 105 Unnilpentium (262) $6 d^{3} 7 s^{2}$	Unh 106 Unnilhexium (263) $6 d^{4} 7 s^{2}$	Uns Unniseptium (262)	108	109									

$\begin{aligned} & \text { Lanthanide } \\ & \text { series } \end{aligned}$	La $\quad 57$ Lanthanum 138.9055 $5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$	Ce $\quad 58$ Cerium 140.115 $4 f^{1} 5 d^{1} 6 s^{2}$	Pr Praseodymium 140.90765 $4 f^{3} 6 \mathrm{~s}^{2}$	$\mathrm{Nd} \quad 60$ Neodymium 144.24 $4 \mathrm{f}^{4} 6 \mathrm{~s}^{2}$	Pm 61 Promethium (145) $4 f^{5} 6 \mathrm{~s}^{2}$	Sm $\quad 62$ Samarium 150.36 $4 f^{6} 6 s^{2}$	Eu $\quad 63$ Europium 151.965 $4 f^{7} 6 s^{2}$	Gd $\quad 64$ Gadolinium 157.25 $4 f^{7} 5 d^{1} 6 s^{2}$	Tb $\quad 65$ Terbium 158.92534 $4 \mathrm{f}^{9} 6 \mathrm{~s}^{2}$	Dy $\quad 66$ Dysprosium 162.50 $4 \mathrm{f}^{10} 6 \mathrm{~s}^{2}$	Ho $\quad 67$ Holmium 164.93032 $4 \mathrm{f}^{11} 6 \mathrm{~s}^{2}$	Er $\quad 68$ Erbium 167.26 $4 \mathrm{f}^{12} 6 \mathrm{~s}^{2}$	Tm $\quad 69$ Thulium 168.93421 $4 \mathrm{f}^{13} 6 \mathrm{~s}^{2}$	$\mathrm{Yb} \quad 70$ Ytterbium 173.04 $4 \mathrm{f}^{14} 6 \mathrm{~s}^{2}$	Lu $\quad 71$ Lutetium 174.967 $41^{14} 5 d^{1} 6 s^{2}$
Actinide series	Ac $\quad 89$ Actinium (227) $6 d^{1} 7 s^{2}$	Th $\quad 90$ Thorium 232.0381 $6 \mathrm{~d}^{2} 7 \mathrm{~s}^{2}$	Pa $\quad 91$ Protactinium 231.03588 $5 f^{2} 6 d^{1} 7 s^{2}$	U $\quad 92$ Uranium 238.0289 $5 f^{3} 6 d^{1} 7 \mathrm{~s}^{2}$	Np $\quad 93$ Neptunium (237) $5 f^{4} 6 d^{1} 7 \mathrm{~s}^{2}$	Pu $\quad 94$ Plutonium (244) $5 f^{6} 6 d^{0} 7 s^{2}$	$\begin{array}{\|l\|} \hline \text { Am } \quad 95 \\ \text { Americium } \\ (243) \\ 5 f^{7} 6 d^{0} 7 s^{2} \end{array}$	Cm $\quad 96$ Curium (247) $5 f^{7} 6 d^{1} 7 s^{2}$	$\begin{array}{\|l\|} \hline \text { Bk } \quad 97 \\ \text { Berkelium } \\ (247) \\ 5 f^{9} 6 d^{0} 7 s^{2} \\ \hline \end{array}$	Cf $\quad 98$ Californium (251) $5 f^{10} 6 d^{0} 7 \mathrm{~s}^{2}$	Es $\quad 99$ Einsteinium (252) $5 f^{11} 6 d^{0} 7 s^{2}$	Fm $\quad 100$ Fermium (257) $5 f^{12} 6 d^{0} 7 s^{2}$	Md $\quad 101$ Mendelevium (258) $5 f^{13} 6 d^{0} 7 s^{2}$	No $\quad 102$ Nobelium (259) $6 d^{0} 7 \mathrm{~s}^{2}$	Lr $\quad 103$ Lawrencium (260) $6 d^{1} 7 \mathrm{~s}^{2}$

Question 2

A mixture of oxygen and helium gases is prepared for use by scuba divers, mixing the following quantities of these two gases together:

- 27 moles of pure oxygen $\left(\mathrm{O}_{2}\right)$ gas
- 108 moles of pure helium (He) gas

A chemist calculates the mass of this gas mixture in preparation to verify the mixture by means of a mass scale. In calculating mass, the chemist writes the following mathematical expression:

$$
\left(\frac{27 \mathrm{~mol} \mathrm{O}_{2}}{1}\right)\left(\frac{32 \mathrm{~g}}{\mathrm{~mol} \mathrm{O}_{2}}\right)+\left(\frac{108 \mathrm{~mol} \mathrm{He}}{1}\right)\left(\frac{4 \mathrm{~g}}{\mathrm{~mol} \mathrm{He}}\right)
$$

Complete this calculation for the total mass of the oxygen/helium gas mixture, and then explain the chemist's rationale for writing the calculation as she did.
file i04805

Question 3

Calculate the mass (in grams) for each of these substance quantities:

- 1 mole of pure ${ }^{12} \mathrm{C}$
- 1 mole of carbon (naturally occurring)
- 1 mole of pure ${ }^{56} \mathrm{Fe}$
- 5.5 moles of mercury (naturally occurring)
- 0.002 moles of helium (naturally occurring)

Hint: you will find the Periodic Table of the Elements extremely helpful here! file i00566

Question 4

Suppose a chemist asks you to provide her with a beaker containing 2.6 moles of pure sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. You have no way to directly measure "moles" of acid when you go to retrieve the acid from a storage tank and pour it into the beaker, so how do you fulfill the chemist's request?
file i02580

Question 5

Calculate the mass (in grams) for each of these substance quantities (when calculating, round all atomic masses to the nearest hundredth):

- 1 mole of water: $\mathrm{H}_{2} \mathrm{O}$
- 1 mole of heavy water (deuterium oxide, or $\mathrm{D}_{2} \mathrm{O}$)
- 1 mole of sulfuric acid: $\mathrm{H}_{2} \mathrm{SO}_{4}$
- 14 moles of methane: CH_{4}
- 5 moles of ammonium carbonate: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Note: "deuterium" is an isotope of hydrogen, each atom containing one proton and one neutron in the nucleus.
file i00567

Question 6
Calculate the mass of the following quantities of pure chemical compound. In each case, feel free to use atomic mass values rounded to the nearest whole number (from a Periodic Table) in your calculations:

- 35.2 moles of alumina $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $25^{\circ} \mathrm{C}$
- 10.6 moles of nitroglycerine $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$ at $77{ }^{\circ} \mathrm{C}$
- 3.7 moles of phosgene COCl_{2} at $145{ }^{\circ} \mathrm{F}$
- 130 moles of tetraethyl pyrophosphate or "TEPP" $\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{PO}\right]_{2} \mathrm{O}$ at $-10{ }^{\circ} \mathrm{F}$

Suggestions for Socratic discussion

- Demonstrate how to estimate numerical answers for this problem without using a calculator.
- Calculate the amount of heat required to warm 30 moles of water from 20 degrees Celsius to 25 degrees Celsius.
- Calculate the amount of heat required to warm 200 moles of hydrogen gas from 50 degrees Celsius to 70 degrees Celsius.
file i04113

Question 7

Calculate the mass of 2.1 moles of ammonium carbonate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$. Feel free to use atomic mass values rounded to the nearest whole number (from a Periodic Table) in your calculation.

Suggestions for Socratic discussion

- Demonstrate how to estimate numerical answers for this problem without using a calculator.
file i04117

Question 8

Calculate the mass of 55.4 moles of alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. Feel free to use atomic mass values rounded to the nearest whole number (from a Periodic Table) in your calculation.
file i04800

Question 9

Calculate the mass of 3.4 moles of glutaric anhydride, the "line drawing" for this organic molecule shown here:

file i02649

Question 10
A sample of "table" salt (sodium chloride, NaCl) has a mass of 10 kg . How many moles of salt is this equal to?
file i02582

Question 11
Calculate the molar quantity (n, in moles) for the following quantities of pure chemical substances. Feel free to use atomic mass values rounded to the nearest whole number (from a Periodic Table) in your calculations:

- 500 grams of pure iron at $10^{\circ} \mathrm{C}$ and 1.2 atmospheres
- 1.1 kilograms of pure propane $\mathrm{C}_{3} \mathrm{H}_{8}$ at $-30^{\circ} \mathrm{C}$ and 3 atmospheres
- 250 kilograms of naphthalene $\mathrm{C}_{10} \mathrm{H}_{8}$ at $0{ }^{\circ} \mathrm{C}$ and 45 kPaA
- 71 grams of hexafluoroacetone $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CO}$ at $110^{\circ} \mathrm{F}$ and 50 bar (gauge)

Suggestions for Socratic discussion

- What effects do temperature and pressure have on the mass of a sample?
- Demonstrate how to estimate numerical answers for this problem without using a calculator.
- Does the phase of the substance (i.e. gas, liquid, solid) matter in these calculations? Why or why not? $\underline{\text { file } \mathrm{i} 04118}$

Question 12

Calculate the number of moles of glycoluril required to make a total mass of 2 kg . The "line drawing" for this organic molecule is shown here:

file i02650

Question 13
When acid attacks metal, the result is typically a release of hydrogen gas and the production of a salt. If we immerse a piece of solid zinc metal (Zn) is into liquid sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, we see this general tendency in the production of hydrogen gas $\left(\mathrm{H}_{2}\right)$ and a salt called zinc sulfate $\left(\mathrm{ZnSO}_{4}\right)$. The chemical equation describing this reaction is shown here:

$$
\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}
$$

For every single atom of zinc, it takes one molecule of sulfuric acid to react. The reaction products for the one atom of zinc and one molecule of sulfuric acid will be one molecule of zinc sulfate and one molecule of hydrogen.

Identify how many moles of zinc metal and how many moles of pure sulfuric acid will be required to produce 15 moles of hydrogen gas.
file i04115

Question 14

Dilute chemical concentrations are often measured in the unit of parts per million, abbreviated ppm. For extremely dilute solutions, the unit parts per billion (ppb) is used. These are nothing more than ratios, much like percentage. In fact, the unit of "percent" may be thought of as nothing more than "parts per hundred" although it is never conventionally expressed as such.

In light of this definition for $p p m$, express the tolerance of a $\pm 5 \%$ carbon-composition resistor in ppm instead of percent.

Also calculate the following volumetric and mass concentrations in units of ppm:

- 3.6 milliliters of methyl alcohol mixed into 10.5 liters of pure water
- 55 cubic inches of natural gas released into a room of air 10 feet by 15 feet by 8 feet
- 10 grams of hydrofluoric acid added to 560 kg of water
- 140 grams of $\mathrm{H}_{2} \mathrm{~S}$ gas released into open air
file i00587

Question 15

Dilute chemical concentrations are often measured in the unit of parts per million, abbreviated ppm. For extremely dilute solutions, the unit parts per billion (ppb) is used. These are nothing more than ratios, much like percentage. In fact, the unit of "percent" may be thought of as nothing more than "parts per hundred" although it is never conventionally expressed as such.

In light of this definition for $p p m$, calculate the following volumetric and mass quantities:

- The quantity of hydrazine vapor in 34000 cubic feet of air, where the volumetric concentration of hydrazine is 2.3 ppm
- The quantity of $\mathrm{H}_{2} \mathrm{~S}$ gas in a room measuring 25 feet by 8 feet by 31 feet, where the volumetric concentration of hydrogen sulfide gas is 93 ppm
- The quantity of sulfuric acid in 50 kg of water, where the mass concentration of acid is 247 ppm file i02583

Question 16
What does it mean if a particular sample of ethyl alcohol has a molarity of $0.1 M$, or 0.1 molar? file i03004

Question 17
If a 2 kilogram sample of pure water is mixed with 1 gram of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$, what will the resulting sulfuric acid's molality be? Note: I am asking you to calculate molality (m), not molarity (M), of the acid solution! file i03005

Question 18

Calculate the sodium ion molarity of a solution made from 0.05 moles of table salt (NaCl) completely dissolved in 30 cups of water.

Calculate the chlorine ion molarity of a solution made from 0.05 moles of table salt (NaCl) completely dissolved in 30 cups of water.
file i04130

Question 19

A pressure "cylinder" containing hydrogen gas at a pressure of 2000 PSIG (137 atmospheres) was filled by a technician at Acme Hydrogen, Inc. Unfortunately, the technician doesn't remember if he filled it with regular hydrogen gas $\left({ }^{1} \mathrm{H}_{2}\right)$ or with "heavy" hydrogen gas (deuterium, ${ }^{2} \mathrm{H}_{2}$). Assuming the cylinder has an empty weight of 37.1 pounds, and now weighs 38.36 pounds, determine the type of hydrogen gas it's filled with.

The cylinder has an interior volume of 25 liters and is at ambient temperature of $20^{\circ} \mathrm{C}$.
Hint: the Ideal Gas Law relates pressure, volume, molecular quantity, and temperature for most gases:

$$
P V=n R T
$$

Where,
$P=$ Absolute pressure (atmospheres)
$V=$ Volume (liters)
$n=$ Gas quantity (moles)
$R=$ Universal gas constant ($0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$)
$T=$ Absolute temperature (K) $=$ degrees Celcius $\left({ }^{\circ} \mathrm{C}\right)+273.15$
file i02581

Answers
Answer 1

Answer 2

$$
\left(\frac{27 \mathrm{~mol} \mathrm{O}}{2} 10\left(\frac{32 \mathrm{~g}}{\mathrm{~mol} \mathrm{O}_{2}}\right)+\left(\frac{108 \mathrm{~mol} \mathrm{He}}{1}\right)\left(\frac{4 \mathrm{~g}}{\mathrm{~mol} \mathrm{He}}\right)=1296 \mathrm{~g}=1.296 \mathrm{~kg}\right.
$$

The fraction $\frac{32 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{O}_{2}}$ expresses the proportionality between grams of mass and moles of oxygen gas, as a "unity fraction". The fraction $\frac{4 \mathrm{~g}}{1 \text { mol He }}$ does the same for helium gas. This allows the chemist to proceed with calculations of mass as though it were nothing more than a simple unit conversion problem, with units of "moles" canceling to leave no unit left except for "grams".

Answer 3

- 1 mole of pure ${ }^{12} \mathrm{C}=12 \mathrm{~g}$
- 1 mole of carbon (naturally occurring) $=12.011 \mathrm{~g}$
- 1 mole of pure ${ }^{56} \mathrm{Fe}=56 \mathrm{~g}$
- 5.5 moles of mercury (naturally occurring) $=1.1032 \mathrm{~kg}$
- 0.002 moles of helium (naturally occurring) $=8.0052 \mathrm{mg}$

To calculate each of these masses, simply multiply the number of moles by the atomic mass given or found in the periodic table.

Answer 4

You might not be able to directly measure moles of acid, but you can certainly obtain a mass balance or scale to measure grams of acid!

Sulfuric acid $-\mathrm{H}_{2} \mathrm{SO}_{4}$ - has a molecular weight (approximately) equal to:

$$
(2)(1)+(32)(1)+(16)(4)=98 \mathrm{amu}
$$

This means 1 mole of pure sulfuric acid will have a mass of 98 grams. We may use this equivalence to set up a "unity fraction" and treat this as a units-conversion problem:

$$
\left(\frac{2.6 \mathrm{~mol} \text { acid }}{1}\right)\left(\frac{98 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{acid}}\right)=254.8 \mathrm{~g}
$$

So, you just fill up the beaker with 254.8 grams of pure sulfuric acid, and you will have filled it with 2.6 moles of acid!

Answer 5

- Each molecule of $\mathrm{H}_{2} \mathrm{O}$ contains:
- 2 atoms of H at 1.01 amu each
- 1 atom of O at 16 amu each
$(1 \mathrm{~mol})[(2$ atoms $)(1.01 \mathrm{amu} /$ atom $)+(1$ atom $)(16 \mathrm{amu} /$ atom $)]=18.02 \mathrm{~g}$
- Each molecule of $D_{2} O$ contains:
- 2 atoms of $\mathrm{D}\left(\mathrm{H}^{2}\right)$ at 2 amu each
- 1 atom of O at 16 amu each
$(1 \mathrm{~mol})[(2$ atoms $)(2 \mathrm{amu} /$ atom $)+(1$ atom $)(16 \mathrm{amu} /$ atom $)]=20 \mathrm{~g}$
- Each molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains:
- 2 atoms of H at 1.01 amu each
- 1 atom of S at 32.06 amu each
- 4 atoms of O at 16 amu each
$(1 \mathrm{~mol})[(2$ atoms $)(1.01 \mathrm{amu} /$ atom $)+(1 \mathrm{atom})(32.06 \mathrm{amu} /$ atom $)+(4$ atoms $)(16 \mathrm{amu} /$ atom $)]=98.08$ g
- Each molecule of CH_{4} contains:
- 1 atom of C at 12.01 amu each
- 4 atoms of H at 1.01 amu each
$(14 \mathrm{~mol})[(1$ atom $)(12.01 \mathrm{amu} /$ atom $)+(4$ atoms $)(1.01 \mathrm{amu} /$ atom $)]=224.7 \mathrm{~g}$
- Each molecule of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ contains:
- 2 atoms of N at 14.01 amu each
- 8 atoms of H at 1.01 amu each
- 1 atom of C at 12.01 amu each
- 3 atoms of O at 16 amu each
$(5 \mathrm{~mol})[(2 \mathrm{atoms})(14.01 \mathrm{amu} /$ atom $)+(8 \mathrm{atoms})(1.01 \mathrm{amu} /$ atom $)+(1$ atom $)(12.01 \mathrm{amu} /$ atom $)+(3$ atoms $)(16 \mathrm{amu} /$ atom $)]=480.55 \mathrm{~g}$

Answer 6

- 35.2 moles of alumina $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $25{ }^{\circ} \mathrm{C}=\mathbf{3 5 9 0 . 4}$ grams $=\mathbf{3 . 5 9 0 4} \mathbf{~ k g}$
- 10.6 moles of nitroglycerine $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$ at $77{ }^{\circ} \mathrm{C}=\mathbf{2 4 0 6 . 2}$ grams $=\mathbf{2 . 4 0 6 2} \mathbf{~ k g}$
- 3.7 moles of phosgene COCl_{2} at $145{ }^{\circ} \mathrm{F}=\mathbf{3 6 6 . 3}$ grams $=\mathbf{0 . 3 6 6 3} \mathbf{~ k g}$
- 130 moles of tetraethyl pyrophosphate or "TEPP" $\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{PO}\right]_{2} \mathrm{O}$ at $-10^{\circ} \mathrm{F}=\mathbf{3 7 , 7 0 0}$ grams $=$ 37.700 kg

```
Answer 7
\[
m=201.6 \text { grams }=0.2016 \mathrm{~kg}
\]
```

```
Answer 8
    \(m=5648.4\) grams \(=5.6484 \mathrm{~kg}\)
```


Answer 9

Converting the line drawing into a molecular formula, we get $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$. Remember that the general rule for interpreting line drawings is that every vertex or intersection of lines marks the location of one carbon atom having four bonds, and that any bonds not shown are bonds to hydrogen atoms. The molecular weight for this formula is approximated as follows:

$$
(12)(11)+(1)(10)+(16)(3)=190 \mathrm{amu}=190 \text { grams per mole glutaric anhydride }
$$

Calculating mass given the molar quantity of this compound:

$$
\left(\frac{3.4 \mathrm{~mol} \text { glutaric anhydride }}{1}\right)\left(\frac{190 \mathrm{~g}}{\text { mol glutaric anhydride }}\right)=646 \mathrm{~g}
$$

Answer 10

"Table" salt is sodium chloride (NaCl), with 1 atom of sodium bound to 1 atom of chlorine. Together, the number of atomic mass units (amu) for each sodium chloride molecule is the sum of the individual atoms' atomic masses:

- Each molecule of NaCl contains:
- 1 atom of Na at 22.99 amu each
- 1 atom of Cl at 35.45 amu each
$[(1$ atom $)(22.99 \mathrm{amu} /$ atom $)+(1$ atom $)(35.45 \mathrm{amu} /$ atom $)]=58.44 \mathrm{~g}$ per mole of NaCl
Since we now know the number of grams per mole for NaCl , we may calculate the number of moles needed to make $10 \mathrm{~kg}(10000 \mathrm{~g})$ of salt:
$(10000 \mathrm{~g})(1 \mathrm{~mol} / 58.44 \mathrm{~g})=171.1 \mathrm{~mol}$
Therefore, 10 kg of "table" salt is equal to 171.1 moles.

Answer 11

Partial answer:

- 1.1 kilograms of pure propane $\mathrm{C}_{3} \mathrm{H}_{8}$ at $-30^{\circ} \mathrm{C}$ and 3 atmospheres $=\mathbf{2 5}$ moles
- 71 grams of hexafluoroacetone $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CO}$ at $110^{\circ} \mathrm{F}$ and 50 bar (gauge) $=\mathbf{0 . 4 2 7 7}$ moles

Answer 12

Converting the line drawing into a molecular formula, we get $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$. Remember that the general rule for interpreting line drawings is that every vertex or intersection of lines marks the location of one carbon atom having four bonds, and that any bonds not shown are bonds to hydrogen atoms. The molecular weight for this formula is approximated as follows:

$$
(12)(4)+(1)(6)++(14)(4)+(16)(2)=142 \mathrm{amu}=142 \text { grams per mole glycoluril }
$$

Calculating moles given the mass of this sample:

$$
\left(\frac{2000 \mathrm{~g}}{1}\right)\left(\frac{\text { mol glycoluril }}{142 \mathrm{~g}}\right)=14.08 \mathrm{~mol} \text { glycoluril }
$$

Answer 13

15 moles of zinc and 15 moles of sulfuric acid are needed to produce 15 moles of hydrogen gas, since the molecular ratio for all reactants and products is 1:1.

Answer 14

Partial answer:

$\pm 5 \%$ (gold color code) is $\mathbf{5 0 , 0 0 0} \mathbf{~ p p m}$.

- 3.6 milliliters of methyl alcohol mixed into 10.5 liters of pure water $=\mathbf{3 4 2 . 7 4} \mathbf{~ p p m}$ If your calculated answer was 342.86 ppm, you made a minor error: you took 10.5 liters to be the total volume of liquid after adding the alcohol. 10.5 liters is just the water's volume, not the total solution (mixed) volume!
- 10 grams of hydrofluoric acid added to 560 kg of water $=\mathbf{1 7 . 8 6} \mathbf{~ p p m}$

Answer 15

- The quantity of 2.3 ppm (by volume) hydrazine vapor in 34000 cubic feet of air $=\mathbf{0 . 0 7 8 2}$ cubic feet of pure hydrazine vapor
- The quantity of 93 ppm (by volume) $\mathrm{H}_{2} \mathrm{~S}$ gas in a room measuring 25 feet by 8 feet by 31 feet $=\mathbf{0 . 5 7 6 6}$ cubic feet of pure $\mathrm{H}_{2} \mathrm{~S}$ gas
- The quantity of 247 ppm (by mass) sulfuric acid in 50 kg of water $=\mathbf{1 2 . 3 5}$ grams of pure sulfuric acid

Answer 16

For a solution of 0.1 molar $(0.1 M)$ concentration, there are 0.1 moles of solute (pure ethyl alcohol) for every 1 liter of total solution volume. It should be noted that the molarity of a solution changes with temperature, because a solution's volume will change with temperature even though the quantity of solute in moles does not!

Answer 17

Molality is defined as the number of moles of solute per kilograms of solvent (not of the total solution!). We were given the solvent mass in kilograms (2 kg) already. All we need to know is the molar quantity of the pure acid and we can solve for molality.

First, let's tally the number of grams per mole for $\mathrm{H}_{2} \mathrm{SO}_{4}$, based on the atomic mass units (amu) for the constituent elements:

For $\mathrm{H}_{2} \mathrm{SO}_{4}$, each molecule contains:

- 2 atoms of H at 1.01 amu each
- 1 atom of S at 32.06 amu each
- 4 atoms of O at 16 amu each

This gives a total of 98.08 grams per mole of pure $\mathrm{H}_{2} \mathrm{SO}_{4}$.
This figure may be used as a unity fraction to convert moles into grams, or grams into moles. For our application, we need to convert the given mass of 1 gram into moles:
$(1 \mathrm{~g})(1 \mathrm{~mol} / 98.08 \mathrm{~g})=0.0102 \mathrm{~mol}$
Taking this quantity in moles and dividing by the mass of solvent (2 kg) gives us the molality of the acid solution:
$0.0102 \mathrm{~mol} / 2 \mathrm{~kg}=0.0051 \mathrm{~m}$

Answer 18

Molarity of sodium ions in the saltwater solution $=0.05 \mathrm{~mol} / 7.098$ liters $=0.007045 \mathrm{M}$
Molarity of chlorine ions in the saltwater solution $=0.05 \mathrm{~mol} / 7.098$ liters $=0.007045 \mathrm{M}$
The molarities are equal because sodium chloride (NaCl) completely dissociates into Na^{+}and Cl^{-}ions in solution, with equal molecular quantities. For every mole of Na^{+}originating from the salt, there will be one mole of Cl^{-}in the solution as well.

Answer 19

One problem-solving strategy would be to calculate the number of moles (n) of gas filling this cylinder at the stated conditions of 2000 PSIG, 25 liters, and $20^{\circ} \mathrm{C} .2000 \mathrm{PSIG}$ is equivalent to 137 atmospheres of absolute pressure. $20^{\circ} \mathrm{C}$ is equivalent to 293.15 Kelvin absolute temperature. Solving for n :

$$
\begin{gathered}
P V=n R T \\
n=\frac{P V}{R T}=\frac{(137)(25)}{(0.0821)(293.15)}=142.3 \text { moles of gas }
\end{gathered}
$$

The weight of the gas is simply the current weight of the cylinder minus the cylinder's empty weight:

$$
38.36-37.1=1.26 \mathrm{lb}=0.5715 \mathrm{~kg}=571.5 \text { grams }
$$

Taking the ratio of grams to moles tells us the molecular weight of the gas filling the cylinder:

$$
\frac{571.5 \mathrm{~g}}{142.3 \mathrm{~mol}}=4.02 \mathrm{amu}
$$

The gas in question must be deuterium ("heavy" hydrogen, ${ }^{2} \mathrm{H}_{2}$), with each molecule having an atomic mass of 4 .

